xref: /openbmc/linux/drivers/block/rbd.c (revision 110e6f26)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47 
48 #include "rbd_types.h"
49 
50 #define RBD_DEBUG	/* Activate rbd_assert() calls */
51 
52 /*
53  * The basic unit of block I/O is a sector.  It is interpreted in a
54  * number of contexts in Linux (blk, bio, genhd), but the default is
55  * universally 512 bytes.  These symbols are just slightly more
56  * meaningful than the bare numbers they represent.
57  */
58 #define	SECTOR_SHIFT	9
59 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
60 
61 /*
62  * Increment the given counter and return its updated value.
63  * If the counter is already 0 it will not be incremented.
64  * If the counter is already at its maximum value returns
65  * -EINVAL without updating it.
66  */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69 	unsigned int counter;
70 
71 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72 	if (counter <= (unsigned int)INT_MAX)
73 		return (int)counter;
74 
75 	atomic_dec(v);
76 
77 	return -EINVAL;
78 }
79 
80 /* Decrement the counter.  Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83 	int counter;
84 
85 	counter = atomic_dec_return(v);
86 	if (counter >= 0)
87 		return counter;
88 
89 	atomic_inc(v);
90 
91 	return -EINVAL;
92 }
93 
94 #define RBD_DRV_NAME "rbd"
95 
96 #define RBD_MINORS_PER_MAJOR		256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
98 
99 #define RBD_MAX_PARENT_CHAIN_LEN	16
100 
101 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
102 #define RBD_MAX_SNAP_NAME_LEN	\
103 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
104 
105 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
106 
107 #define RBD_SNAP_HEAD_NAME	"-"
108 
109 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
110 
111 /* This allows a single page to hold an image name sent by OSD */
112 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
113 #define RBD_IMAGE_ID_LEN_MAX	64
114 
115 #define RBD_OBJ_PREFIX_LEN_MAX	64
116 
117 /* Feature bits */
118 
119 #define RBD_FEATURE_LAYERING	(1<<0)
120 #define RBD_FEATURE_STRIPINGV2	(1<<1)
121 #define RBD_FEATURES_ALL \
122 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
123 
124 /* Features supported by this (client software) implementation. */
125 
126 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
127 
128 /*
129  * An RBD device name will be "rbd#", where the "rbd" comes from
130  * RBD_DRV_NAME above, and # is a unique integer identifier.
131  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
132  * enough to hold all possible device names.
133  */
134 #define DEV_NAME_LEN		32
135 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
136 
137 /*
138  * block device image metadata (in-memory version)
139  */
140 struct rbd_image_header {
141 	/* These six fields never change for a given rbd image */
142 	char *object_prefix;
143 	__u8 obj_order;
144 	__u8 crypt_type;
145 	__u8 comp_type;
146 	u64 stripe_unit;
147 	u64 stripe_count;
148 	u64 features;		/* Might be changeable someday? */
149 
150 	/* The remaining fields need to be updated occasionally */
151 	u64 image_size;
152 	struct ceph_snap_context *snapc;
153 	char *snap_names;	/* format 1 only */
154 	u64 *snap_sizes;	/* format 1 only */
155 };
156 
157 /*
158  * An rbd image specification.
159  *
160  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
161  * identify an image.  Each rbd_dev structure includes a pointer to
162  * an rbd_spec structure that encapsulates this identity.
163  *
164  * Each of the id's in an rbd_spec has an associated name.  For a
165  * user-mapped image, the names are supplied and the id's associated
166  * with them are looked up.  For a layered image, a parent image is
167  * defined by the tuple, and the names are looked up.
168  *
169  * An rbd_dev structure contains a parent_spec pointer which is
170  * non-null if the image it represents is a child in a layered
171  * image.  This pointer will refer to the rbd_spec structure used
172  * by the parent rbd_dev for its own identity (i.e., the structure
173  * is shared between the parent and child).
174  *
175  * Since these structures are populated once, during the discovery
176  * phase of image construction, they are effectively immutable so
177  * we make no effort to synchronize access to them.
178  *
179  * Note that code herein does not assume the image name is known (it
180  * could be a null pointer).
181  */
182 struct rbd_spec {
183 	u64		pool_id;
184 	const char	*pool_name;
185 
186 	const char	*image_id;
187 	const char	*image_name;
188 
189 	u64		snap_id;
190 	const char	*snap_name;
191 
192 	struct kref	kref;
193 };
194 
195 /*
196  * an instance of the client.  multiple devices may share an rbd client.
197  */
198 struct rbd_client {
199 	struct ceph_client	*client;
200 	struct kref		kref;
201 	struct list_head	node;
202 };
203 
204 struct rbd_img_request;
205 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
206 
207 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
208 
209 struct rbd_obj_request;
210 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
211 
212 enum obj_request_type {
213 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
214 };
215 
216 enum obj_operation_type {
217 	OBJ_OP_WRITE,
218 	OBJ_OP_READ,
219 	OBJ_OP_DISCARD,
220 };
221 
222 enum obj_req_flags {
223 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
224 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
225 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
226 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
227 };
228 
229 struct rbd_obj_request {
230 	const char		*object_name;
231 	u64			offset;		/* object start byte */
232 	u64			length;		/* bytes from offset */
233 	unsigned long		flags;
234 
235 	/*
236 	 * An object request associated with an image will have its
237 	 * img_data flag set; a standalone object request will not.
238 	 *
239 	 * A standalone object request will have which == BAD_WHICH
240 	 * and a null obj_request pointer.
241 	 *
242 	 * An object request initiated in support of a layered image
243 	 * object (to check for its existence before a write) will
244 	 * have which == BAD_WHICH and a non-null obj_request pointer.
245 	 *
246 	 * Finally, an object request for rbd image data will have
247 	 * which != BAD_WHICH, and will have a non-null img_request
248 	 * pointer.  The value of which will be in the range
249 	 * 0..(img_request->obj_request_count-1).
250 	 */
251 	union {
252 		struct rbd_obj_request	*obj_request;	/* STAT op */
253 		struct {
254 			struct rbd_img_request	*img_request;
255 			u64			img_offset;
256 			/* links for img_request->obj_requests list */
257 			struct list_head	links;
258 		};
259 	};
260 	u32			which;		/* posn image request list */
261 
262 	enum obj_request_type	type;
263 	union {
264 		struct bio	*bio_list;
265 		struct {
266 			struct page	**pages;
267 			u32		page_count;
268 		};
269 	};
270 	struct page		**copyup_pages;
271 	u32			copyup_page_count;
272 
273 	struct ceph_osd_request	*osd_req;
274 
275 	u64			xferred;	/* bytes transferred */
276 	int			result;
277 
278 	rbd_obj_callback_t	callback;
279 	struct completion	completion;
280 
281 	struct kref		kref;
282 };
283 
284 enum img_req_flags {
285 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
286 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
287 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
288 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
289 };
290 
291 struct rbd_img_request {
292 	struct rbd_device	*rbd_dev;
293 	u64			offset;	/* starting image byte offset */
294 	u64			length;	/* byte count from offset */
295 	unsigned long		flags;
296 	union {
297 		u64			snap_id;	/* for reads */
298 		struct ceph_snap_context *snapc;	/* for writes */
299 	};
300 	union {
301 		struct request		*rq;		/* block request */
302 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
303 	};
304 	struct page		**copyup_pages;
305 	u32			copyup_page_count;
306 	spinlock_t		completion_lock;/* protects next_completion */
307 	u32			next_completion;
308 	rbd_img_callback_t	callback;
309 	u64			xferred;/* aggregate bytes transferred */
310 	int			result;	/* first nonzero obj_request result */
311 
312 	u32			obj_request_count;
313 	struct list_head	obj_requests;	/* rbd_obj_request structs */
314 
315 	struct kref		kref;
316 };
317 
318 #define for_each_obj_request(ireq, oreq) \
319 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_from(ireq, oreq) \
321 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
322 #define for_each_obj_request_safe(ireq, oreq, n) \
323 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
324 
325 struct rbd_mapping {
326 	u64                     size;
327 	u64                     features;
328 	bool			read_only;
329 };
330 
331 /*
332  * a single device
333  */
334 struct rbd_device {
335 	int			dev_id;		/* blkdev unique id */
336 
337 	int			major;		/* blkdev assigned major */
338 	int			minor;
339 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
340 
341 	u32			image_format;	/* Either 1 or 2 */
342 	struct rbd_client	*rbd_client;
343 
344 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
345 
346 	spinlock_t		lock;		/* queue, flags, open_count */
347 
348 	struct rbd_image_header	header;
349 	unsigned long		flags;		/* possibly lock protected */
350 	struct rbd_spec		*spec;
351 	struct rbd_options	*opts;
352 
353 	char			*header_name;
354 
355 	struct ceph_file_layout	layout;
356 
357 	struct ceph_osd_event   *watch_event;
358 	struct rbd_obj_request	*watch_request;
359 
360 	struct rbd_spec		*parent_spec;
361 	u64			parent_overlap;
362 	atomic_t		parent_ref;
363 	struct rbd_device	*parent;
364 
365 	/* Block layer tags. */
366 	struct blk_mq_tag_set	tag_set;
367 
368 	/* protects updating the header */
369 	struct rw_semaphore     header_rwsem;
370 
371 	struct rbd_mapping	mapping;
372 
373 	struct list_head	node;
374 
375 	/* sysfs related */
376 	struct device		dev;
377 	unsigned long		open_count;	/* protected by lock */
378 };
379 
380 /*
381  * Flag bits for rbd_dev->flags.  If atomicity is required,
382  * rbd_dev->lock is used to protect access.
383  *
384  * Currently, only the "removing" flag (which is coupled with the
385  * "open_count" field) requires atomic access.
386  */
387 enum rbd_dev_flags {
388 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
389 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
390 };
391 
392 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
393 
394 static LIST_HEAD(rbd_dev_list);    /* devices */
395 static DEFINE_SPINLOCK(rbd_dev_list_lock);
396 
397 static LIST_HEAD(rbd_client_list);		/* clients */
398 static DEFINE_SPINLOCK(rbd_client_list_lock);
399 
400 /* Slab caches for frequently-allocated structures */
401 
402 static struct kmem_cache	*rbd_img_request_cache;
403 static struct kmem_cache	*rbd_obj_request_cache;
404 static struct kmem_cache	*rbd_segment_name_cache;
405 
406 static int rbd_major;
407 static DEFINE_IDA(rbd_dev_id_ida);
408 
409 static struct workqueue_struct *rbd_wq;
410 
411 /*
412  * Default to false for now, as single-major requires >= 0.75 version of
413  * userspace rbd utility.
414  */
415 static bool single_major = false;
416 module_param(single_major, bool, S_IRUGO);
417 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
418 
419 static int rbd_img_request_submit(struct rbd_img_request *img_request);
420 
421 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
422 		       size_t count);
423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
424 			  size_t count);
425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
426 				    size_t count);
427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
428 				       size_t count);
429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
430 static void rbd_spec_put(struct rbd_spec *spec);
431 
432 static int rbd_dev_id_to_minor(int dev_id)
433 {
434 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
435 }
436 
437 static int minor_to_rbd_dev_id(int minor)
438 {
439 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
440 }
441 
442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
446 
447 static struct attribute *rbd_bus_attrs[] = {
448 	&bus_attr_add.attr,
449 	&bus_attr_remove.attr,
450 	&bus_attr_add_single_major.attr,
451 	&bus_attr_remove_single_major.attr,
452 	NULL,
453 };
454 
455 static umode_t rbd_bus_is_visible(struct kobject *kobj,
456 				  struct attribute *attr, int index)
457 {
458 	if (!single_major &&
459 	    (attr == &bus_attr_add_single_major.attr ||
460 	     attr == &bus_attr_remove_single_major.attr))
461 		return 0;
462 
463 	return attr->mode;
464 }
465 
466 static const struct attribute_group rbd_bus_group = {
467 	.attrs = rbd_bus_attrs,
468 	.is_visible = rbd_bus_is_visible,
469 };
470 __ATTRIBUTE_GROUPS(rbd_bus);
471 
472 static struct bus_type rbd_bus_type = {
473 	.name		= "rbd",
474 	.bus_groups	= rbd_bus_groups,
475 };
476 
477 static void rbd_root_dev_release(struct device *dev)
478 {
479 }
480 
481 static struct device rbd_root_dev = {
482 	.init_name =    "rbd",
483 	.release =      rbd_root_dev_release,
484 };
485 
486 static __printf(2, 3)
487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
488 {
489 	struct va_format vaf;
490 	va_list args;
491 
492 	va_start(args, fmt);
493 	vaf.fmt = fmt;
494 	vaf.va = &args;
495 
496 	if (!rbd_dev)
497 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
498 	else if (rbd_dev->disk)
499 		printk(KERN_WARNING "%s: %s: %pV\n",
500 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
501 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
502 		printk(KERN_WARNING "%s: image %s: %pV\n",
503 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
504 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
505 		printk(KERN_WARNING "%s: id %s: %pV\n",
506 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
507 	else	/* punt */
508 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
509 			RBD_DRV_NAME, rbd_dev, &vaf);
510 	va_end(args);
511 }
512 
513 #ifdef RBD_DEBUG
514 #define rbd_assert(expr)						\
515 		if (unlikely(!(expr))) {				\
516 			printk(KERN_ERR "\nAssertion failure in %s() "	\
517 						"at line %d:\n\n"	\
518 					"\trbd_assert(%s);\n\n",	\
519 					__func__, __LINE__, #expr);	\
520 			BUG();						\
521 		}
522 #else /* !RBD_DEBUG */
523 #  define rbd_assert(expr)	((void) 0)
524 #endif /* !RBD_DEBUG */
525 
526 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
527 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
528 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
529 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
530 
531 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
533 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
534 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
535 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
536 					u64 snap_id);
537 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
538 				u8 *order, u64 *snap_size);
539 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
540 		u64 *snap_features);
541 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
542 
543 static int rbd_open(struct block_device *bdev, fmode_t mode)
544 {
545 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
546 	bool removing = false;
547 
548 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
549 		return -EROFS;
550 
551 	spin_lock_irq(&rbd_dev->lock);
552 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
553 		removing = true;
554 	else
555 		rbd_dev->open_count++;
556 	spin_unlock_irq(&rbd_dev->lock);
557 	if (removing)
558 		return -ENOENT;
559 
560 	(void) get_device(&rbd_dev->dev);
561 
562 	return 0;
563 }
564 
565 static void rbd_release(struct gendisk *disk, fmode_t mode)
566 {
567 	struct rbd_device *rbd_dev = disk->private_data;
568 	unsigned long open_count_before;
569 
570 	spin_lock_irq(&rbd_dev->lock);
571 	open_count_before = rbd_dev->open_count--;
572 	spin_unlock_irq(&rbd_dev->lock);
573 	rbd_assert(open_count_before > 0);
574 
575 	put_device(&rbd_dev->dev);
576 }
577 
578 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
579 {
580 	int ret = 0;
581 	int val;
582 	bool ro;
583 	bool ro_changed = false;
584 
585 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
586 	if (get_user(val, (int __user *)(arg)))
587 		return -EFAULT;
588 
589 	ro = val ? true : false;
590 	/* Snapshot doesn't allow to write*/
591 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
592 		return -EROFS;
593 
594 	spin_lock_irq(&rbd_dev->lock);
595 	/* prevent others open this device */
596 	if (rbd_dev->open_count > 1) {
597 		ret = -EBUSY;
598 		goto out;
599 	}
600 
601 	if (rbd_dev->mapping.read_only != ro) {
602 		rbd_dev->mapping.read_only = ro;
603 		ro_changed = true;
604 	}
605 
606 out:
607 	spin_unlock_irq(&rbd_dev->lock);
608 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
609 	if (ret == 0 && ro_changed)
610 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
611 
612 	return ret;
613 }
614 
615 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
616 			unsigned int cmd, unsigned long arg)
617 {
618 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
619 	int ret = 0;
620 
621 	switch (cmd) {
622 	case BLKROSET:
623 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
624 		break;
625 	default:
626 		ret = -ENOTTY;
627 	}
628 
629 	return ret;
630 }
631 
632 #ifdef CONFIG_COMPAT
633 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
634 				unsigned int cmd, unsigned long arg)
635 {
636 	return rbd_ioctl(bdev, mode, cmd, arg);
637 }
638 #endif /* CONFIG_COMPAT */
639 
640 static const struct block_device_operations rbd_bd_ops = {
641 	.owner			= THIS_MODULE,
642 	.open			= rbd_open,
643 	.release		= rbd_release,
644 	.ioctl			= rbd_ioctl,
645 #ifdef CONFIG_COMPAT
646 	.compat_ioctl		= rbd_compat_ioctl,
647 #endif
648 };
649 
650 /*
651  * Initialize an rbd client instance.  Success or not, this function
652  * consumes ceph_opts.  Caller holds client_mutex.
653  */
654 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
655 {
656 	struct rbd_client *rbdc;
657 	int ret = -ENOMEM;
658 
659 	dout("%s:\n", __func__);
660 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
661 	if (!rbdc)
662 		goto out_opt;
663 
664 	kref_init(&rbdc->kref);
665 	INIT_LIST_HEAD(&rbdc->node);
666 
667 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
668 	if (IS_ERR(rbdc->client))
669 		goto out_rbdc;
670 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
671 
672 	ret = ceph_open_session(rbdc->client);
673 	if (ret < 0)
674 		goto out_client;
675 
676 	spin_lock(&rbd_client_list_lock);
677 	list_add_tail(&rbdc->node, &rbd_client_list);
678 	spin_unlock(&rbd_client_list_lock);
679 
680 	dout("%s: rbdc %p\n", __func__, rbdc);
681 
682 	return rbdc;
683 out_client:
684 	ceph_destroy_client(rbdc->client);
685 out_rbdc:
686 	kfree(rbdc);
687 out_opt:
688 	if (ceph_opts)
689 		ceph_destroy_options(ceph_opts);
690 	dout("%s: error %d\n", __func__, ret);
691 
692 	return ERR_PTR(ret);
693 }
694 
695 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
696 {
697 	kref_get(&rbdc->kref);
698 
699 	return rbdc;
700 }
701 
702 /*
703  * Find a ceph client with specific addr and configuration.  If
704  * found, bump its reference count.
705  */
706 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
707 {
708 	struct rbd_client *client_node;
709 	bool found = false;
710 
711 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
712 		return NULL;
713 
714 	spin_lock(&rbd_client_list_lock);
715 	list_for_each_entry(client_node, &rbd_client_list, node) {
716 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
717 			__rbd_get_client(client_node);
718 
719 			found = true;
720 			break;
721 		}
722 	}
723 	spin_unlock(&rbd_client_list_lock);
724 
725 	return found ? client_node : NULL;
726 }
727 
728 /*
729  * (Per device) rbd map options
730  */
731 enum {
732 	Opt_queue_depth,
733 	Opt_last_int,
734 	/* int args above */
735 	Opt_last_string,
736 	/* string args above */
737 	Opt_read_only,
738 	Opt_read_write,
739 	Opt_err
740 };
741 
742 static match_table_t rbd_opts_tokens = {
743 	{Opt_queue_depth, "queue_depth=%d"},
744 	/* int args above */
745 	/* string args above */
746 	{Opt_read_only, "read_only"},
747 	{Opt_read_only, "ro"},		/* Alternate spelling */
748 	{Opt_read_write, "read_write"},
749 	{Opt_read_write, "rw"},		/* Alternate spelling */
750 	{Opt_err, NULL}
751 };
752 
753 struct rbd_options {
754 	int	queue_depth;
755 	bool	read_only;
756 };
757 
758 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
759 #define RBD_READ_ONLY_DEFAULT	false
760 
761 static int parse_rbd_opts_token(char *c, void *private)
762 {
763 	struct rbd_options *rbd_opts = private;
764 	substring_t argstr[MAX_OPT_ARGS];
765 	int token, intval, ret;
766 
767 	token = match_token(c, rbd_opts_tokens, argstr);
768 	if (token < Opt_last_int) {
769 		ret = match_int(&argstr[0], &intval);
770 		if (ret < 0) {
771 			pr_err("bad mount option arg (not int) at '%s'\n", c);
772 			return ret;
773 		}
774 		dout("got int token %d val %d\n", token, intval);
775 	} else if (token > Opt_last_int && token < Opt_last_string) {
776 		dout("got string token %d val %s\n", token, argstr[0].from);
777 	} else {
778 		dout("got token %d\n", token);
779 	}
780 
781 	switch (token) {
782 	case Opt_queue_depth:
783 		if (intval < 1) {
784 			pr_err("queue_depth out of range\n");
785 			return -EINVAL;
786 		}
787 		rbd_opts->queue_depth = intval;
788 		break;
789 	case Opt_read_only:
790 		rbd_opts->read_only = true;
791 		break;
792 	case Opt_read_write:
793 		rbd_opts->read_only = false;
794 		break;
795 	default:
796 		/* libceph prints "bad option" msg */
797 		return -EINVAL;
798 	}
799 
800 	return 0;
801 }
802 
803 static char* obj_op_name(enum obj_operation_type op_type)
804 {
805 	switch (op_type) {
806 	case OBJ_OP_READ:
807 		return "read";
808 	case OBJ_OP_WRITE:
809 		return "write";
810 	case OBJ_OP_DISCARD:
811 		return "discard";
812 	default:
813 		return "???";
814 	}
815 }
816 
817 /*
818  * Get a ceph client with specific addr and configuration, if one does
819  * not exist create it.  Either way, ceph_opts is consumed by this
820  * function.
821  */
822 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
823 {
824 	struct rbd_client *rbdc;
825 
826 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
827 	rbdc = rbd_client_find(ceph_opts);
828 	if (rbdc)	/* using an existing client */
829 		ceph_destroy_options(ceph_opts);
830 	else
831 		rbdc = rbd_client_create(ceph_opts);
832 	mutex_unlock(&client_mutex);
833 
834 	return rbdc;
835 }
836 
837 /*
838  * Destroy ceph client
839  *
840  * Caller must hold rbd_client_list_lock.
841  */
842 static void rbd_client_release(struct kref *kref)
843 {
844 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
845 
846 	dout("%s: rbdc %p\n", __func__, rbdc);
847 	spin_lock(&rbd_client_list_lock);
848 	list_del(&rbdc->node);
849 	spin_unlock(&rbd_client_list_lock);
850 
851 	ceph_destroy_client(rbdc->client);
852 	kfree(rbdc);
853 }
854 
855 /*
856  * Drop reference to ceph client node. If it's not referenced anymore, release
857  * it.
858  */
859 static void rbd_put_client(struct rbd_client *rbdc)
860 {
861 	if (rbdc)
862 		kref_put(&rbdc->kref, rbd_client_release);
863 }
864 
865 static bool rbd_image_format_valid(u32 image_format)
866 {
867 	return image_format == 1 || image_format == 2;
868 }
869 
870 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
871 {
872 	size_t size;
873 	u32 snap_count;
874 
875 	/* The header has to start with the magic rbd header text */
876 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
877 		return false;
878 
879 	/* The bio layer requires at least sector-sized I/O */
880 
881 	if (ondisk->options.order < SECTOR_SHIFT)
882 		return false;
883 
884 	/* If we use u64 in a few spots we may be able to loosen this */
885 
886 	if (ondisk->options.order > 8 * sizeof (int) - 1)
887 		return false;
888 
889 	/*
890 	 * The size of a snapshot header has to fit in a size_t, and
891 	 * that limits the number of snapshots.
892 	 */
893 	snap_count = le32_to_cpu(ondisk->snap_count);
894 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
895 	if (snap_count > size / sizeof (__le64))
896 		return false;
897 
898 	/*
899 	 * Not only that, but the size of the entire the snapshot
900 	 * header must also be representable in a size_t.
901 	 */
902 	size -= snap_count * sizeof (__le64);
903 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
904 		return false;
905 
906 	return true;
907 }
908 
909 /*
910  * Fill an rbd image header with information from the given format 1
911  * on-disk header.
912  */
913 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
914 				 struct rbd_image_header_ondisk *ondisk)
915 {
916 	struct rbd_image_header *header = &rbd_dev->header;
917 	bool first_time = header->object_prefix == NULL;
918 	struct ceph_snap_context *snapc;
919 	char *object_prefix = NULL;
920 	char *snap_names = NULL;
921 	u64 *snap_sizes = NULL;
922 	u32 snap_count;
923 	size_t size;
924 	int ret = -ENOMEM;
925 	u32 i;
926 
927 	/* Allocate this now to avoid having to handle failure below */
928 
929 	if (first_time) {
930 		size_t len;
931 
932 		len = strnlen(ondisk->object_prefix,
933 				sizeof (ondisk->object_prefix));
934 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
935 		if (!object_prefix)
936 			return -ENOMEM;
937 		memcpy(object_prefix, ondisk->object_prefix, len);
938 		object_prefix[len] = '\0';
939 	}
940 
941 	/* Allocate the snapshot context and fill it in */
942 
943 	snap_count = le32_to_cpu(ondisk->snap_count);
944 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
945 	if (!snapc)
946 		goto out_err;
947 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
948 	if (snap_count) {
949 		struct rbd_image_snap_ondisk *snaps;
950 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
951 
952 		/* We'll keep a copy of the snapshot names... */
953 
954 		if (snap_names_len > (u64)SIZE_MAX)
955 			goto out_2big;
956 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
957 		if (!snap_names)
958 			goto out_err;
959 
960 		/* ...as well as the array of their sizes. */
961 
962 		size = snap_count * sizeof (*header->snap_sizes);
963 		snap_sizes = kmalloc(size, GFP_KERNEL);
964 		if (!snap_sizes)
965 			goto out_err;
966 
967 		/*
968 		 * Copy the names, and fill in each snapshot's id
969 		 * and size.
970 		 *
971 		 * Note that rbd_dev_v1_header_info() guarantees the
972 		 * ondisk buffer we're working with has
973 		 * snap_names_len bytes beyond the end of the
974 		 * snapshot id array, this memcpy() is safe.
975 		 */
976 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
977 		snaps = ondisk->snaps;
978 		for (i = 0; i < snap_count; i++) {
979 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
980 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
981 		}
982 	}
983 
984 	/* We won't fail any more, fill in the header */
985 
986 	if (first_time) {
987 		header->object_prefix = object_prefix;
988 		header->obj_order = ondisk->options.order;
989 		header->crypt_type = ondisk->options.crypt_type;
990 		header->comp_type = ondisk->options.comp_type;
991 		/* The rest aren't used for format 1 images */
992 		header->stripe_unit = 0;
993 		header->stripe_count = 0;
994 		header->features = 0;
995 	} else {
996 		ceph_put_snap_context(header->snapc);
997 		kfree(header->snap_names);
998 		kfree(header->snap_sizes);
999 	}
1000 
1001 	/* The remaining fields always get updated (when we refresh) */
1002 
1003 	header->image_size = le64_to_cpu(ondisk->image_size);
1004 	header->snapc = snapc;
1005 	header->snap_names = snap_names;
1006 	header->snap_sizes = snap_sizes;
1007 
1008 	return 0;
1009 out_2big:
1010 	ret = -EIO;
1011 out_err:
1012 	kfree(snap_sizes);
1013 	kfree(snap_names);
1014 	ceph_put_snap_context(snapc);
1015 	kfree(object_prefix);
1016 
1017 	return ret;
1018 }
1019 
1020 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1021 {
1022 	const char *snap_name;
1023 
1024 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1025 
1026 	/* Skip over names until we find the one we are looking for */
1027 
1028 	snap_name = rbd_dev->header.snap_names;
1029 	while (which--)
1030 		snap_name += strlen(snap_name) + 1;
1031 
1032 	return kstrdup(snap_name, GFP_KERNEL);
1033 }
1034 
1035 /*
1036  * Snapshot id comparison function for use with qsort()/bsearch().
1037  * Note that result is for snapshots in *descending* order.
1038  */
1039 static int snapid_compare_reverse(const void *s1, const void *s2)
1040 {
1041 	u64 snap_id1 = *(u64 *)s1;
1042 	u64 snap_id2 = *(u64 *)s2;
1043 
1044 	if (snap_id1 < snap_id2)
1045 		return 1;
1046 	return snap_id1 == snap_id2 ? 0 : -1;
1047 }
1048 
1049 /*
1050  * Search a snapshot context to see if the given snapshot id is
1051  * present.
1052  *
1053  * Returns the position of the snapshot id in the array if it's found,
1054  * or BAD_SNAP_INDEX otherwise.
1055  *
1056  * Note: The snapshot array is in kept sorted (by the osd) in
1057  * reverse order, highest snapshot id first.
1058  */
1059 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1060 {
1061 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1062 	u64 *found;
1063 
1064 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1065 				sizeof (snap_id), snapid_compare_reverse);
1066 
1067 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1068 }
1069 
1070 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1071 					u64 snap_id)
1072 {
1073 	u32 which;
1074 	const char *snap_name;
1075 
1076 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1077 	if (which == BAD_SNAP_INDEX)
1078 		return ERR_PTR(-ENOENT);
1079 
1080 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1081 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1082 }
1083 
1084 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1085 {
1086 	if (snap_id == CEPH_NOSNAP)
1087 		return RBD_SNAP_HEAD_NAME;
1088 
1089 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1090 	if (rbd_dev->image_format == 1)
1091 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1092 
1093 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1094 }
1095 
1096 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1097 				u64 *snap_size)
1098 {
1099 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1100 	if (snap_id == CEPH_NOSNAP) {
1101 		*snap_size = rbd_dev->header.image_size;
1102 	} else if (rbd_dev->image_format == 1) {
1103 		u32 which;
1104 
1105 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1106 		if (which == BAD_SNAP_INDEX)
1107 			return -ENOENT;
1108 
1109 		*snap_size = rbd_dev->header.snap_sizes[which];
1110 	} else {
1111 		u64 size = 0;
1112 		int ret;
1113 
1114 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1115 		if (ret)
1116 			return ret;
1117 
1118 		*snap_size = size;
1119 	}
1120 	return 0;
1121 }
1122 
1123 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1124 			u64 *snap_features)
1125 {
1126 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1127 	if (snap_id == CEPH_NOSNAP) {
1128 		*snap_features = rbd_dev->header.features;
1129 	} else if (rbd_dev->image_format == 1) {
1130 		*snap_features = 0;	/* No features for format 1 */
1131 	} else {
1132 		u64 features = 0;
1133 		int ret;
1134 
1135 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1136 		if (ret)
1137 			return ret;
1138 
1139 		*snap_features = features;
1140 	}
1141 	return 0;
1142 }
1143 
1144 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1145 {
1146 	u64 snap_id = rbd_dev->spec->snap_id;
1147 	u64 size = 0;
1148 	u64 features = 0;
1149 	int ret;
1150 
1151 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1152 	if (ret)
1153 		return ret;
1154 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1155 	if (ret)
1156 		return ret;
1157 
1158 	rbd_dev->mapping.size = size;
1159 	rbd_dev->mapping.features = features;
1160 
1161 	return 0;
1162 }
1163 
1164 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1165 {
1166 	rbd_dev->mapping.size = 0;
1167 	rbd_dev->mapping.features = 0;
1168 }
1169 
1170 static void rbd_segment_name_free(const char *name)
1171 {
1172 	/* The explicit cast here is needed to drop the const qualifier */
1173 
1174 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1175 }
1176 
1177 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1178 {
1179 	char *name;
1180 	u64 segment;
1181 	int ret;
1182 	char *name_format;
1183 
1184 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1185 	if (!name)
1186 		return NULL;
1187 	segment = offset >> rbd_dev->header.obj_order;
1188 	name_format = "%s.%012llx";
1189 	if (rbd_dev->image_format == 2)
1190 		name_format = "%s.%016llx";
1191 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1192 			rbd_dev->header.object_prefix, segment);
1193 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1194 		pr_err("error formatting segment name for #%llu (%d)\n",
1195 			segment, ret);
1196 		rbd_segment_name_free(name);
1197 		name = NULL;
1198 	}
1199 
1200 	return name;
1201 }
1202 
1203 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1204 {
1205 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1206 
1207 	return offset & (segment_size - 1);
1208 }
1209 
1210 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1211 				u64 offset, u64 length)
1212 {
1213 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1214 
1215 	offset &= segment_size - 1;
1216 
1217 	rbd_assert(length <= U64_MAX - offset);
1218 	if (offset + length > segment_size)
1219 		length = segment_size - offset;
1220 
1221 	return length;
1222 }
1223 
1224 /*
1225  * returns the size of an object in the image
1226  */
1227 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1228 {
1229 	return 1 << header->obj_order;
1230 }
1231 
1232 /*
1233  * bio helpers
1234  */
1235 
1236 static void bio_chain_put(struct bio *chain)
1237 {
1238 	struct bio *tmp;
1239 
1240 	while (chain) {
1241 		tmp = chain;
1242 		chain = chain->bi_next;
1243 		bio_put(tmp);
1244 	}
1245 }
1246 
1247 /*
1248  * zeros a bio chain, starting at specific offset
1249  */
1250 static void zero_bio_chain(struct bio *chain, int start_ofs)
1251 {
1252 	struct bio_vec bv;
1253 	struct bvec_iter iter;
1254 	unsigned long flags;
1255 	void *buf;
1256 	int pos = 0;
1257 
1258 	while (chain) {
1259 		bio_for_each_segment(bv, chain, iter) {
1260 			if (pos + bv.bv_len > start_ofs) {
1261 				int remainder = max(start_ofs - pos, 0);
1262 				buf = bvec_kmap_irq(&bv, &flags);
1263 				memset(buf + remainder, 0,
1264 				       bv.bv_len - remainder);
1265 				flush_dcache_page(bv.bv_page);
1266 				bvec_kunmap_irq(buf, &flags);
1267 			}
1268 			pos += bv.bv_len;
1269 		}
1270 
1271 		chain = chain->bi_next;
1272 	}
1273 }
1274 
1275 /*
1276  * similar to zero_bio_chain(), zeros data defined by a page array,
1277  * starting at the given byte offset from the start of the array and
1278  * continuing up to the given end offset.  The pages array is
1279  * assumed to be big enough to hold all bytes up to the end.
1280  */
1281 static void zero_pages(struct page **pages, u64 offset, u64 end)
1282 {
1283 	struct page **page = &pages[offset >> PAGE_SHIFT];
1284 
1285 	rbd_assert(end > offset);
1286 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1287 	while (offset < end) {
1288 		size_t page_offset;
1289 		size_t length;
1290 		unsigned long flags;
1291 		void *kaddr;
1292 
1293 		page_offset = offset & ~PAGE_MASK;
1294 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1295 		local_irq_save(flags);
1296 		kaddr = kmap_atomic(*page);
1297 		memset(kaddr + page_offset, 0, length);
1298 		flush_dcache_page(*page);
1299 		kunmap_atomic(kaddr);
1300 		local_irq_restore(flags);
1301 
1302 		offset += length;
1303 		page++;
1304 	}
1305 }
1306 
1307 /*
1308  * Clone a portion of a bio, starting at the given byte offset
1309  * and continuing for the number of bytes indicated.
1310  */
1311 static struct bio *bio_clone_range(struct bio *bio_src,
1312 					unsigned int offset,
1313 					unsigned int len,
1314 					gfp_t gfpmask)
1315 {
1316 	struct bio *bio;
1317 
1318 	bio = bio_clone(bio_src, gfpmask);
1319 	if (!bio)
1320 		return NULL;	/* ENOMEM */
1321 
1322 	bio_advance(bio, offset);
1323 	bio->bi_iter.bi_size = len;
1324 
1325 	return bio;
1326 }
1327 
1328 /*
1329  * Clone a portion of a bio chain, starting at the given byte offset
1330  * into the first bio in the source chain and continuing for the
1331  * number of bytes indicated.  The result is another bio chain of
1332  * exactly the given length, or a null pointer on error.
1333  *
1334  * The bio_src and offset parameters are both in-out.  On entry they
1335  * refer to the first source bio and the offset into that bio where
1336  * the start of data to be cloned is located.
1337  *
1338  * On return, bio_src is updated to refer to the bio in the source
1339  * chain that contains first un-cloned byte, and *offset will
1340  * contain the offset of that byte within that bio.
1341  */
1342 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1343 					unsigned int *offset,
1344 					unsigned int len,
1345 					gfp_t gfpmask)
1346 {
1347 	struct bio *bi = *bio_src;
1348 	unsigned int off = *offset;
1349 	struct bio *chain = NULL;
1350 	struct bio **end;
1351 
1352 	/* Build up a chain of clone bios up to the limit */
1353 
1354 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1355 		return NULL;		/* Nothing to clone */
1356 
1357 	end = &chain;
1358 	while (len) {
1359 		unsigned int bi_size;
1360 		struct bio *bio;
1361 
1362 		if (!bi) {
1363 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1364 			goto out_err;	/* EINVAL; ran out of bio's */
1365 		}
1366 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1367 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1368 		if (!bio)
1369 			goto out_err;	/* ENOMEM */
1370 
1371 		*end = bio;
1372 		end = &bio->bi_next;
1373 
1374 		off += bi_size;
1375 		if (off == bi->bi_iter.bi_size) {
1376 			bi = bi->bi_next;
1377 			off = 0;
1378 		}
1379 		len -= bi_size;
1380 	}
1381 	*bio_src = bi;
1382 	*offset = off;
1383 
1384 	return chain;
1385 out_err:
1386 	bio_chain_put(chain);
1387 
1388 	return NULL;
1389 }
1390 
1391 /*
1392  * The default/initial value for all object request flags is 0.  For
1393  * each flag, once its value is set to 1 it is never reset to 0
1394  * again.
1395  */
1396 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1397 {
1398 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1399 		struct rbd_device *rbd_dev;
1400 
1401 		rbd_dev = obj_request->img_request->rbd_dev;
1402 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1403 			obj_request);
1404 	}
1405 }
1406 
1407 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1408 {
1409 	smp_mb();
1410 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1411 }
1412 
1413 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1414 {
1415 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1416 		struct rbd_device *rbd_dev = NULL;
1417 
1418 		if (obj_request_img_data_test(obj_request))
1419 			rbd_dev = obj_request->img_request->rbd_dev;
1420 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1421 			obj_request);
1422 	}
1423 }
1424 
1425 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1426 {
1427 	smp_mb();
1428 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1429 }
1430 
1431 /*
1432  * This sets the KNOWN flag after (possibly) setting the EXISTS
1433  * flag.  The latter is set based on the "exists" value provided.
1434  *
1435  * Note that for our purposes once an object exists it never goes
1436  * away again.  It's possible that the response from two existence
1437  * checks are separated by the creation of the target object, and
1438  * the first ("doesn't exist") response arrives *after* the second
1439  * ("does exist").  In that case we ignore the second one.
1440  */
1441 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1442 				bool exists)
1443 {
1444 	if (exists)
1445 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1446 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1447 	smp_mb();
1448 }
1449 
1450 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1451 {
1452 	smp_mb();
1453 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1454 }
1455 
1456 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1457 {
1458 	smp_mb();
1459 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1460 }
1461 
1462 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1463 {
1464 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1465 
1466 	return obj_request->img_offset <
1467 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1468 }
1469 
1470 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1471 {
1472 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1473 		atomic_read(&obj_request->kref.refcount));
1474 	kref_get(&obj_request->kref);
1475 }
1476 
1477 static void rbd_obj_request_destroy(struct kref *kref);
1478 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1479 {
1480 	rbd_assert(obj_request != NULL);
1481 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1482 		atomic_read(&obj_request->kref.refcount));
1483 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1484 }
1485 
1486 static void rbd_img_request_get(struct rbd_img_request *img_request)
1487 {
1488 	dout("%s: img %p (was %d)\n", __func__, img_request,
1489 	     atomic_read(&img_request->kref.refcount));
1490 	kref_get(&img_request->kref);
1491 }
1492 
1493 static bool img_request_child_test(struct rbd_img_request *img_request);
1494 static void rbd_parent_request_destroy(struct kref *kref);
1495 static void rbd_img_request_destroy(struct kref *kref);
1496 static void rbd_img_request_put(struct rbd_img_request *img_request)
1497 {
1498 	rbd_assert(img_request != NULL);
1499 	dout("%s: img %p (was %d)\n", __func__, img_request,
1500 		atomic_read(&img_request->kref.refcount));
1501 	if (img_request_child_test(img_request))
1502 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1503 	else
1504 		kref_put(&img_request->kref, rbd_img_request_destroy);
1505 }
1506 
1507 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1508 					struct rbd_obj_request *obj_request)
1509 {
1510 	rbd_assert(obj_request->img_request == NULL);
1511 
1512 	/* Image request now owns object's original reference */
1513 	obj_request->img_request = img_request;
1514 	obj_request->which = img_request->obj_request_count;
1515 	rbd_assert(!obj_request_img_data_test(obj_request));
1516 	obj_request_img_data_set(obj_request);
1517 	rbd_assert(obj_request->which != BAD_WHICH);
1518 	img_request->obj_request_count++;
1519 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1520 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1521 		obj_request->which);
1522 }
1523 
1524 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1525 					struct rbd_obj_request *obj_request)
1526 {
1527 	rbd_assert(obj_request->which != BAD_WHICH);
1528 
1529 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1530 		obj_request->which);
1531 	list_del(&obj_request->links);
1532 	rbd_assert(img_request->obj_request_count > 0);
1533 	img_request->obj_request_count--;
1534 	rbd_assert(obj_request->which == img_request->obj_request_count);
1535 	obj_request->which = BAD_WHICH;
1536 	rbd_assert(obj_request_img_data_test(obj_request));
1537 	rbd_assert(obj_request->img_request == img_request);
1538 	obj_request->img_request = NULL;
1539 	obj_request->callback = NULL;
1540 	rbd_obj_request_put(obj_request);
1541 }
1542 
1543 static bool obj_request_type_valid(enum obj_request_type type)
1544 {
1545 	switch (type) {
1546 	case OBJ_REQUEST_NODATA:
1547 	case OBJ_REQUEST_BIO:
1548 	case OBJ_REQUEST_PAGES:
1549 		return true;
1550 	default:
1551 		return false;
1552 	}
1553 }
1554 
1555 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1556 				struct rbd_obj_request *obj_request)
1557 {
1558 	dout("%s %p\n", __func__, obj_request);
1559 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1560 }
1561 
1562 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1563 {
1564 	dout("%s %p\n", __func__, obj_request);
1565 	ceph_osdc_cancel_request(obj_request->osd_req);
1566 }
1567 
1568 /*
1569  * Wait for an object request to complete.  If interrupted, cancel the
1570  * underlying osd request.
1571  *
1572  * @timeout: in jiffies, 0 means "wait forever"
1573  */
1574 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1575 				  unsigned long timeout)
1576 {
1577 	long ret;
1578 
1579 	dout("%s %p\n", __func__, obj_request);
1580 	ret = wait_for_completion_interruptible_timeout(
1581 					&obj_request->completion,
1582 					ceph_timeout_jiffies(timeout));
1583 	if (ret <= 0) {
1584 		if (ret == 0)
1585 			ret = -ETIMEDOUT;
1586 		rbd_obj_request_end(obj_request);
1587 	} else {
1588 		ret = 0;
1589 	}
1590 
1591 	dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1592 	return ret;
1593 }
1594 
1595 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1596 {
1597 	return __rbd_obj_request_wait(obj_request, 0);
1598 }
1599 
1600 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1601 					unsigned long timeout)
1602 {
1603 	return __rbd_obj_request_wait(obj_request, timeout);
1604 }
1605 
1606 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1607 {
1608 
1609 	dout("%s: img %p\n", __func__, img_request);
1610 
1611 	/*
1612 	 * If no error occurred, compute the aggregate transfer
1613 	 * count for the image request.  We could instead use
1614 	 * atomic64_cmpxchg() to update it as each object request
1615 	 * completes; not clear which way is better off hand.
1616 	 */
1617 	if (!img_request->result) {
1618 		struct rbd_obj_request *obj_request;
1619 		u64 xferred = 0;
1620 
1621 		for_each_obj_request(img_request, obj_request)
1622 			xferred += obj_request->xferred;
1623 		img_request->xferred = xferred;
1624 	}
1625 
1626 	if (img_request->callback)
1627 		img_request->callback(img_request);
1628 	else
1629 		rbd_img_request_put(img_request);
1630 }
1631 
1632 /*
1633  * The default/initial value for all image request flags is 0.  Each
1634  * is conditionally set to 1 at image request initialization time
1635  * and currently never change thereafter.
1636  */
1637 static void img_request_write_set(struct rbd_img_request *img_request)
1638 {
1639 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1640 	smp_mb();
1641 }
1642 
1643 static bool img_request_write_test(struct rbd_img_request *img_request)
1644 {
1645 	smp_mb();
1646 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1647 }
1648 
1649 /*
1650  * Set the discard flag when the img_request is an discard request
1651  */
1652 static void img_request_discard_set(struct rbd_img_request *img_request)
1653 {
1654 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1655 	smp_mb();
1656 }
1657 
1658 static bool img_request_discard_test(struct rbd_img_request *img_request)
1659 {
1660 	smp_mb();
1661 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1662 }
1663 
1664 static void img_request_child_set(struct rbd_img_request *img_request)
1665 {
1666 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1667 	smp_mb();
1668 }
1669 
1670 static void img_request_child_clear(struct rbd_img_request *img_request)
1671 {
1672 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1673 	smp_mb();
1674 }
1675 
1676 static bool img_request_child_test(struct rbd_img_request *img_request)
1677 {
1678 	smp_mb();
1679 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1680 }
1681 
1682 static void img_request_layered_set(struct rbd_img_request *img_request)
1683 {
1684 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1685 	smp_mb();
1686 }
1687 
1688 static void img_request_layered_clear(struct rbd_img_request *img_request)
1689 {
1690 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1691 	smp_mb();
1692 }
1693 
1694 static bool img_request_layered_test(struct rbd_img_request *img_request)
1695 {
1696 	smp_mb();
1697 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1698 }
1699 
1700 static enum obj_operation_type
1701 rbd_img_request_op_type(struct rbd_img_request *img_request)
1702 {
1703 	if (img_request_write_test(img_request))
1704 		return OBJ_OP_WRITE;
1705 	else if (img_request_discard_test(img_request))
1706 		return OBJ_OP_DISCARD;
1707 	else
1708 		return OBJ_OP_READ;
1709 }
1710 
1711 static void
1712 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1713 {
1714 	u64 xferred = obj_request->xferred;
1715 	u64 length = obj_request->length;
1716 
1717 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1718 		obj_request, obj_request->img_request, obj_request->result,
1719 		xferred, length);
1720 	/*
1721 	 * ENOENT means a hole in the image.  We zero-fill the entire
1722 	 * length of the request.  A short read also implies zero-fill
1723 	 * to the end of the request.  An error requires the whole
1724 	 * length of the request to be reported finished with an error
1725 	 * to the block layer.  In each case we update the xferred
1726 	 * count to indicate the whole request was satisfied.
1727 	 */
1728 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1729 	if (obj_request->result == -ENOENT) {
1730 		if (obj_request->type == OBJ_REQUEST_BIO)
1731 			zero_bio_chain(obj_request->bio_list, 0);
1732 		else
1733 			zero_pages(obj_request->pages, 0, length);
1734 		obj_request->result = 0;
1735 	} else if (xferred < length && !obj_request->result) {
1736 		if (obj_request->type == OBJ_REQUEST_BIO)
1737 			zero_bio_chain(obj_request->bio_list, xferred);
1738 		else
1739 			zero_pages(obj_request->pages, xferred, length);
1740 	}
1741 	obj_request->xferred = length;
1742 	obj_request_done_set(obj_request);
1743 }
1744 
1745 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1746 {
1747 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1748 		obj_request->callback);
1749 	if (obj_request->callback)
1750 		obj_request->callback(obj_request);
1751 	else
1752 		complete_all(&obj_request->completion);
1753 }
1754 
1755 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1756 {
1757 	dout("%s: obj %p\n", __func__, obj_request);
1758 	obj_request_done_set(obj_request);
1759 }
1760 
1761 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1762 {
1763 	struct rbd_img_request *img_request = NULL;
1764 	struct rbd_device *rbd_dev = NULL;
1765 	bool layered = false;
1766 
1767 	if (obj_request_img_data_test(obj_request)) {
1768 		img_request = obj_request->img_request;
1769 		layered = img_request && img_request_layered_test(img_request);
1770 		rbd_dev = img_request->rbd_dev;
1771 	}
1772 
1773 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1774 		obj_request, img_request, obj_request->result,
1775 		obj_request->xferred, obj_request->length);
1776 	if (layered && obj_request->result == -ENOENT &&
1777 			obj_request->img_offset < rbd_dev->parent_overlap)
1778 		rbd_img_parent_read(obj_request);
1779 	else if (img_request)
1780 		rbd_img_obj_request_read_callback(obj_request);
1781 	else
1782 		obj_request_done_set(obj_request);
1783 }
1784 
1785 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1786 {
1787 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1788 		obj_request->result, obj_request->length);
1789 	/*
1790 	 * There is no such thing as a successful short write.  Set
1791 	 * it to our originally-requested length.
1792 	 */
1793 	obj_request->xferred = obj_request->length;
1794 	obj_request_done_set(obj_request);
1795 }
1796 
1797 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1798 {
1799 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1800 		obj_request->result, obj_request->length);
1801 	/*
1802 	 * There is no such thing as a successful short discard.  Set
1803 	 * it to our originally-requested length.
1804 	 */
1805 	obj_request->xferred = obj_request->length;
1806 	/* discarding a non-existent object is not a problem */
1807 	if (obj_request->result == -ENOENT)
1808 		obj_request->result = 0;
1809 	obj_request_done_set(obj_request);
1810 }
1811 
1812 /*
1813  * For a simple stat call there's nothing to do.  We'll do more if
1814  * this is part of a write sequence for a layered image.
1815  */
1816 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1817 {
1818 	dout("%s: obj %p\n", __func__, obj_request);
1819 	obj_request_done_set(obj_request);
1820 }
1821 
1822 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1823 {
1824 	dout("%s: obj %p\n", __func__, obj_request);
1825 
1826 	if (obj_request_img_data_test(obj_request))
1827 		rbd_osd_copyup_callback(obj_request);
1828 	else
1829 		obj_request_done_set(obj_request);
1830 }
1831 
1832 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1833 				struct ceph_msg *msg)
1834 {
1835 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1836 	u16 opcode;
1837 
1838 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1839 	rbd_assert(osd_req == obj_request->osd_req);
1840 	if (obj_request_img_data_test(obj_request)) {
1841 		rbd_assert(obj_request->img_request);
1842 		rbd_assert(obj_request->which != BAD_WHICH);
1843 	} else {
1844 		rbd_assert(obj_request->which == BAD_WHICH);
1845 	}
1846 
1847 	if (osd_req->r_result < 0)
1848 		obj_request->result = osd_req->r_result;
1849 
1850 	/*
1851 	 * We support a 64-bit length, but ultimately it has to be
1852 	 * passed to the block layer, which just supports a 32-bit
1853 	 * length field.
1854 	 */
1855 	obj_request->xferred = osd_req->r_ops[0].outdata_len;
1856 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1857 
1858 	opcode = osd_req->r_ops[0].op;
1859 	switch (opcode) {
1860 	case CEPH_OSD_OP_READ:
1861 		rbd_osd_read_callback(obj_request);
1862 		break;
1863 	case CEPH_OSD_OP_SETALLOCHINT:
1864 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1865 			   osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1866 		/* fall through */
1867 	case CEPH_OSD_OP_WRITE:
1868 	case CEPH_OSD_OP_WRITEFULL:
1869 		rbd_osd_write_callback(obj_request);
1870 		break;
1871 	case CEPH_OSD_OP_STAT:
1872 		rbd_osd_stat_callback(obj_request);
1873 		break;
1874 	case CEPH_OSD_OP_DELETE:
1875 	case CEPH_OSD_OP_TRUNCATE:
1876 	case CEPH_OSD_OP_ZERO:
1877 		rbd_osd_discard_callback(obj_request);
1878 		break;
1879 	case CEPH_OSD_OP_CALL:
1880 		rbd_osd_call_callback(obj_request);
1881 		break;
1882 	case CEPH_OSD_OP_NOTIFY_ACK:
1883 	case CEPH_OSD_OP_WATCH:
1884 		rbd_osd_trivial_callback(obj_request);
1885 		break;
1886 	default:
1887 		rbd_warn(NULL, "%s: unsupported op %hu",
1888 			obj_request->object_name, (unsigned short) opcode);
1889 		break;
1890 	}
1891 
1892 	if (obj_request_done_test(obj_request))
1893 		rbd_obj_request_complete(obj_request);
1894 }
1895 
1896 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1897 {
1898 	struct rbd_img_request *img_request = obj_request->img_request;
1899 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1900 	u64 snap_id;
1901 
1902 	rbd_assert(osd_req != NULL);
1903 
1904 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1905 	ceph_osdc_build_request(osd_req, obj_request->offset,
1906 			NULL, snap_id, NULL);
1907 }
1908 
1909 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1910 {
1911 	struct rbd_img_request *img_request = obj_request->img_request;
1912 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1913 	struct ceph_snap_context *snapc;
1914 	struct timespec mtime = CURRENT_TIME;
1915 
1916 	rbd_assert(osd_req != NULL);
1917 
1918 	snapc = img_request ? img_request->snapc : NULL;
1919 	ceph_osdc_build_request(osd_req, obj_request->offset,
1920 			snapc, CEPH_NOSNAP, &mtime);
1921 }
1922 
1923 /*
1924  * Create an osd request.  A read request has one osd op (read).
1925  * A write request has either one (watch) or two (hint+write) osd ops.
1926  * (All rbd data writes are prefixed with an allocation hint op, but
1927  * technically osd watch is a write request, hence this distinction.)
1928  */
1929 static struct ceph_osd_request *rbd_osd_req_create(
1930 					struct rbd_device *rbd_dev,
1931 					enum obj_operation_type op_type,
1932 					unsigned int num_ops,
1933 					struct rbd_obj_request *obj_request)
1934 {
1935 	struct ceph_snap_context *snapc = NULL;
1936 	struct ceph_osd_client *osdc;
1937 	struct ceph_osd_request *osd_req;
1938 
1939 	if (obj_request_img_data_test(obj_request) &&
1940 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1941 		struct rbd_img_request *img_request = obj_request->img_request;
1942 		if (op_type == OBJ_OP_WRITE) {
1943 			rbd_assert(img_request_write_test(img_request));
1944 		} else {
1945 			rbd_assert(img_request_discard_test(img_request));
1946 		}
1947 		snapc = img_request->snapc;
1948 	}
1949 
1950 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1951 
1952 	/* Allocate and initialize the request, for the num_ops ops */
1953 
1954 	osdc = &rbd_dev->rbd_client->client->osdc;
1955 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1956 					  GFP_NOIO);
1957 	if (!osd_req)
1958 		return NULL;	/* ENOMEM */
1959 
1960 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1961 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1962 	else
1963 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1964 
1965 	osd_req->r_callback = rbd_osd_req_callback;
1966 	osd_req->r_priv = obj_request;
1967 
1968 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1969 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1970 
1971 	return osd_req;
1972 }
1973 
1974 /*
1975  * Create a copyup osd request based on the information in the object
1976  * request supplied.  A copyup request has two or three osd ops, a
1977  * copyup method call, potentially a hint op, and a write or truncate
1978  * or zero op.
1979  */
1980 static struct ceph_osd_request *
1981 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1982 {
1983 	struct rbd_img_request *img_request;
1984 	struct ceph_snap_context *snapc;
1985 	struct rbd_device *rbd_dev;
1986 	struct ceph_osd_client *osdc;
1987 	struct ceph_osd_request *osd_req;
1988 	int num_osd_ops = 3;
1989 
1990 	rbd_assert(obj_request_img_data_test(obj_request));
1991 	img_request = obj_request->img_request;
1992 	rbd_assert(img_request);
1993 	rbd_assert(img_request_write_test(img_request) ||
1994 			img_request_discard_test(img_request));
1995 
1996 	if (img_request_discard_test(img_request))
1997 		num_osd_ops = 2;
1998 
1999 	/* Allocate and initialize the request, for all the ops */
2000 
2001 	snapc = img_request->snapc;
2002 	rbd_dev = img_request->rbd_dev;
2003 	osdc = &rbd_dev->rbd_client->client->osdc;
2004 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2005 						false, GFP_NOIO);
2006 	if (!osd_req)
2007 		return NULL;	/* ENOMEM */
2008 
2009 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2010 	osd_req->r_callback = rbd_osd_req_callback;
2011 	osd_req->r_priv = obj_request;
2012 
2013 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
2014 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
2015 
2016 	return osd_req;
2017 }
2018 
2019 
2020 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2021 {
2022 	ceph_osdc_put_request(osd_req);
2023 }
2024 
2025 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2026 
2027 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2028 						u64 offset, u64 length,
2029 						enum obj_request_type type)
2030 {
2031 	struct rbd_obj_request *obj_request;
2032 	size_t size;
2033 	char *name;
2034 
2035 	rbd_assert(obj_request_type_valid(type));
2036 
2037 	size = strlen(object_name) + 1;
2038 	name = kmalloc(size, GFP_NOIO);
2039 	if (!name)
2040 		return NULL;
2041 
2042 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2043 	if (!obj_request) {
2044 		kfree(name);
2045 		return NULL;
2046 	}
2047 
2048 	obj_request->object_name = memcpy(name, object_name, size);
2049 	obj_request->offset = offset;
2050 	obj_request->length = length;
2051 	obj_request->flags = 0;
2052 	obj_request->which = BAD_WHICH;
2053 	obj_request->type = type;
2054 	INIT_LIST_HEAD(&obj_request->links);
2055 	init_completion(&obj_request->completion);
2056 	kref_init(&obj_request->kref);
2057 
2058 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2059 		offset, length, (int)type, obj_request);
2060 
2061 	return obj_request;
2062 }
2063 
2064 static void rbd_obj_request_destroy(struct kref *kref)
2065 {
2066 	struct rbd_obj_request *obj_request;
2067 
2068 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2069 
2070 	dout("%s: obj %p\n", __func__, obj_request);
2071 
2072 	rbd_assert(obj_request->img_request == NULL);
2073 	rbd_assert(obj_request->which == BAD_WHICH);
2074 
2075 	if (obj_request->osd_req)
2076 		rbd_osd_req_destroy(obj_request->osd_req);
2077 
2078 	rbd_assert(obj_request_type_valid(obj_request->type));
2079 	switch (obj_request->type) {
2080 	case OBJ_REQUEST_NODATA:
2081 		break;		/* Nothing to do */
2082 	case OBJ_REQUEST_BIO:
2083 		if (obj_request->bio_list)
2084 			bio_chain_put(obj_request->bio_list);
2085 		break;
2086 	case OBJ_REQUEST_PAGES:
2087 		if (obj_request->pages)
2088 			ceph_release_page_vector(obj_request->pages,
2089 						obj_request->page_count);
2090 		break;
2091 	}
2092 
2093 	kfree(obj_request->object_name);
2094 	obj_request->object_name = NULL;
2095 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2096 }
2097 
2098 /* It's OK to call this for a device with no parent */
2099 
2100 static void rbd_spec_put(struct rbd_spec *spec);
2101 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2102 {
2103 	rbd_dev_remove_parent(rbd_dev);
2104 	rbd_spec_put(rbd_dev->parent_spec);
2105 	rbd_dev->parent_spec = NULL;
2106 	rbd_dev->parent_overlap = 0;
2107 }
2108 
2109 /*
2110  * Parent image reference counting is used to determine when an
2111  * image's parent fields can be safely torn down--after there are no
2112  * more in-flight requests to the parent image.  When the last
2113  * reference is dropped, cleaning them up is safe.
2114  */
2115 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2116 {
2117 	int counter;
2118 
2119 	if (!rbd_dev->parent_spec)
2120 		return;
2121 
2122 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2123 	if (counter > 0)
2124 		return;
2125 
2126 	/* Last reference; clean up parent data structures */
2127 
2128 	if (!counter)
2129 		rbd_dev_unparent(rbd_dev);
2130 	else
2131 		rbd_warn(rbd_dev, "parent reference underflow");
2132 }
2133 
2134 /*
2135  * If an image has a non-zero parent overlap, get a reference to its
2136  * parent.
2137  *
2138  * Returns true if the rbd device has a parent with a non-zero
2139  * overlap and a reference for it was successfully taken, or
2140  * false otherwise.
2141  */
2142 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2143 {
2144 	int counter = 0;
2145 
2146 	if (!rbd_dev->parent_spec)
2147 		return false;
2148 
2149 	down_read(&rbd_dev->header_rwsem);
2150 	if (rbd_dev->parent_overlap)
2151 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2152 	up_read(&rbd_dev->header_rwsem);
2153 
2154 	if (counter < 0)
2155 		rbd_warn(rbd_dev, "parent reference overflow");
2156 
2157 	return counter > 0;
2158 }
2159 
2160 /*
2161  * Caller is responsible for filling in the list of object requests
2162  * that comprises the image request, and the Linux request pointer
2163  * (if there is one).
2164  */
2165 static struct rbd_img_request *rbd_img_request_create(
2166 					struct rbd_device *rbd_dev,
2167 					u64 offset, u64 length,
2168 					enum obj_operation_type op_type,
2169 					struct ceph_snap_context *snapc)
2170 {
2171 	struct rbd_img_request *img_request;
2172 
2173 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2174 	if (!img_request)
2175 		return NULL;
2176 
2177 	img_request->rq = NULL;
2178 	img_request->rbd_dev = rbd_dev;
2179 	img_request->offset = offset;
2180 	img_request->length = length;
2181 	img_request->flags = 0;
2182 	if (op_type == OBJ_OP_DISCARD) {
2183 		img_request_discard_set(img_request);
2184 		img_request->snapc = snapc;
2185 	} else if (op_type == OBJ_OP_WRITE) {
2186 		img_request_write_set(img_request);
2187 		img_request->snapc = snapc;
2188 	} else {
2189 		img_request->snap_id = rbd_dev->spec->snap_id;
2190 	}
2191 	if (rbd_dev_parent_get(rbd_dev))
2192 		img_request_layered_set(img_request);
2193 	spin_lock_init(&img_request->completion_lock);
2194 	img_request->next_completion = 0;
2195 	img_request->callback = NULL;
2196 	img_request->result = 0;
2197 	img_request->obj_request_count = 0;
2198 	INIT_LIST_HEAD(&img_request->obj_requests);
2199 	kref_init(&img_request->kref);
2200 
2201 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2202 		obj_op_name(op_type), offset, length, img_request);
2203 
2204 	return img_request;
2205 }
2206 
2207 static void rbd_img_request_destroy(struct kref *kref)
2208 {
2209 	struct rbd_img_request *img_request;
2210 	struct rbd_obj_request *obj_request;
2211 	struct rbd_obj_request *next_obj_request;
2212 
2213 	img_request = container_of(kref, struct rbd_img_request, kref);
2214 
2215 	dout("%s: img %p\n", __func__, img_request);
2216 
2217 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2218 		rbd_img_obj_request_del(img_request, obj_request);
2219 	rbd_assert(img_request->obj_request_count == 0);
2220 
2221 	if (img_request_layered_test(img_request)) {
2222 		img_request_layered_clear(img_request);
2223 		rbd_dev_parent_put(img_request->rbd_dev);
2224 	}
2225 
2226 	if (img_request_write_test(img_request) ||
2227 		img_request_discard_test(img_request))
2228 		ceph_put_snap_context(img_request->snapc);
2229 
2230 	kmem_cache_free(rbd_img_request_cache, img_request);
2231 }
2232 
2233 static struct rbd_img_request *rbd_parent_request_create(
2234 					struct rbd_obj_request *obj_request,
2235 					u64 img_offset, u64 length)
2236 {
2237 	struct rbd_img_request *parent_request;
2238 	struct rbd_device *rbd_dev;
2239 
2240 	rbd_assert(obj_request->img_request);
2241 	rbd_dev = obj_request->img_request->rbd_dev;
2242 
2243 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2244 						length, OBJ_OP_READ, NULL);
2245 	if (!parent_request)
2246 		return NULL;
2247 
2248 	img_request_child_set(parent_request);
2249 	rbd_obj_request_get(obj_request);
2250 	parent_request->obj_request = obj_request;
2251 
2252 	return parent_request;
2253 }
2254 
2255 static void rbd_parent_request_destroy(struct kref *kref)
2256 {
2257 	struct rbd_img_request *parent_request;
2258 	struct rbd_obj_request *orig_request;
2259 
2260 	parent_request = container_of(kref, struct rbd_img_request, kref);
2261 	orig_request = parent_request->obj_request;
2262 
2263 	parent_request->obj_request = NULL;
2264 	rbd_obj_request_put(orig_request);
2265 	img_request_child_clear(parent_request);
2266 
2267 	rbd_img_request_destroy(kref);
2268 }
2269 
2270 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2271 {
2272 	struct rbd_img_request *img_request;
2273 	unsigned int xferred;
2274 	int result;
2275 	bool more;
2276 
2277 	rbd_assert(obj_request_img_data_test(obj_request));
2278 	img_request = obj_request->img_request;
2279 
2280 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2281 	xferred = (unsigned int)obj_request->xferred;
2282 	result = obj_request->result;
2283 	if (result) {
2284 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2285 		enum obj_operation_type op_type;
2286 
2287 		if (img_request_discard_test(img_request))
2288 			op_type = OBJ_OP_DISCARD;
2289 		else if (img_request_write_test(img_request))
2290 			op_type = OBJ_OP_WRITE;
2291 		else
2292 			op_type = OBJ_OP_READ;
2293 
2294 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2295 			obj_op_name(op_type), obj_request->length,
2296 			obj_request->img_offset, obj_request->offset);
2297 		rbd_warn(rbd_dev, "  result %d xferred %x",
2298 			result, xferred);
2299 		if (!img_request->result)
2300 			img_request->result = result;
2301 		/*
2302 		 * Need to end I/O on the entire obj_request worth of
2303 		 * bytes in case of error.
2304 		 */
2305 		xferred = obj_request->length;
2306 	}
2307 
2308 	/* Image object requests don't own their page array */
2309 
2310 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2311 		obj_request->pages = NULL;
2312 		obj_request->page_count = 0;
2313 	}
2314 
2315 	if (img_request_child_test(img_request)) {
2316 		rbd_assert(img_request->obj_request != NULL);
2317 		more = obj_request->which < img_request->obj_request_count - 1;
2318 	} else {
2319 		rbd_assert(img_request->rq != NULL);
2320 
2321 		more = blk_update_request(img_request->rq, result, xferred);
2322 		if (!more)
2323 			__blk_mq_end_request(img_request->rq, result);
2324 	}
2325 
2326 	return more;
2327 }
2328 
2329 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2330 {
2331 	struct rbd_img_request *img_request;
2332 	u32 which = obj_request->which;
2333 	bool more = true;
2334 
2335 	rbd_assert(obj_request_img_data_test(obj_request));
2336 	img_request = obj_request->img_request;
2337 
2338 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2339 	rbd_assert(img_request != NULL);
2340 	rbd_assert(img_request->obj_request_count > 0);
2341 	rbd_assert(which != BAD_WHICH);
2342 	rbd_assert(which < img_request->obj_request_count);
2343 
2344 	spin_lock_irq(&img_request->completion_lock);
2345 	if (which != img_request->next_completion)
2346 		goto out;
2347 
2348 	for_each_obj_request_from(img_request, obj_request) {
2349 		rbd_assert(more);
2350 		rbd_assert(which < img_request->obj_request_count);
2351 
2352 		if (!obj_request_done_test(obj_request))
2353 			break;
2354 		more = rbd_img_obj_end_request(obj_request);
2355 		which++;
2356 	}
2357 
2358 	rbd_assert(more ^ (which == img_request->obj_request_count));
2359 	img_request->next_completion = which;
2360 out:
2361 	spin_unlock_irq(&img_request->completion_lock);
2362 	rbd_img_request_put(img_request);
2363 
2364 	if (!more)
2365 		rbd_img_request_complete(img_request);
2366 }
2367 
2368 /*
2369  * Add individual osd ops to the given ceph_osd_request and prepare
2370  * them for submission. num_ops is the current number of
2371  * osd operations already to the object request.
2372  */
2373 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2374 				struct ceph_osd_request *osd_request,
2375 				enum obj_operation_type op_type,
2376 				unsigned int num_ops)
2377 {
2378 	struct rbd_img_request *img_request = obj_request->img_request;
2379 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2380 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2381 	u64 offset = obj_request->offset;
2382 	u64 length = obj_request->length;
2383 	u64 img_end;
2384 	u16 opcode;
2385 
2386 	if (op_type == OBJ_OP_DISCARD) {
2387 		if (!offset && length == object_size &&
2388 		    (!img_request_layered_test(img_request) ||
2389 		     !obj_request_overlaps_parent(obj_request))) {
2390 			opcode = CEPH_OSD_OP_DELETE;
2391 		} else if ((offset + length == object_size)) {
2392 			opcode = CEPH_OSD_OP_TRUNCATE;
2393 		} else {
2394 			down_read(&rbd_dev->header_rwsem);
2395 			img_end = rbd_dev->header.image_size;
2396 			up_read(&rbd_dev->header_rwsem);
2397 
2398 			if (obj_request->img_offset + length == img_end)
2399 				opcode = CEPH_OSD_OP_TRUNCATE;
2400 			else
2401 				opcode = CEPH_OSD_OP_ZERO;
2402 		}
2403 	} else if (op_type == OBJ_OP_WRITE) {
2404 		if (!offset && length == object_size)
2405 			opcode = CEPH_OSD_OP_WRITEFULL;
2406 		else
2407 			opcode = CEPH_OSD_OP_WRITE;
2408 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2409 					object_size, object_size);
2410 		num_ops++;
2411 	} else {
2412 		opcode = CEPH_OSD_OP_READ;
2413 	}
2414 
2415 	if (opcode == CEPH_OSD_OP_DELETE)
2416 		osd_req_op_init(osd_request, num_ops, opcode, 0);
2417 	else
2418 		osd_req_op_extent_init(osd_request, num_ops, opcode,
2419 				       offset, length, 0, 0);
2420 
2421 	if (obj_request->type == OBJ_REQUEST_BIO)
2422 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2423 					obj_request->bio_list, length);
2424 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2425 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2426 					obj_request->pages, length,
2427 					offset & ~PAGE_MASK, false, false);
2428 
2429 	/* Discards are also writes */
2430 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2431 		rbd_osd_req_format_write(obj_request);
2432 	else
2433 		rbd_osd_req_format_read(obj_request);
2434 }
2435 
2436 /*
2437  * Split up an image request into one or more object requests, each
2438  * to a different object.  The "type" parameter indicates whether
2439  * "data_desc" is the pointer to the head of a list of bio
2440  * structures, or the base of a page array.  In either case this
2441  * function assumes data_desc describes memory sufficient to hold
2442  * all data described by the image request.
2443  */
2444 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2445 					enum obj_request_type type,
2446 					void *data_desc)
2447 {
2448 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2449 	struct rbd_obj_request *obj_request = NULL;
2450 	struct rbd_obj_request *next_obj_request;
2451 	struct bio *bio_list = NULL;
2452 	unsigned int bio_offset = 0;
2453 	struct page **pages = NULL;
2454 	enum obj_operation_type op_type;
2455 	u64 img_offset;
2456 	u64 resid;
2457 
2458 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2459 		(int)type, data_desc);
2460 
2461 	img_offset = img_request->offset;
2462 	resid = img_request->length;
2463 	rbd_assert(resid > 0);
2464 	op_type = rbd_img_request_op_type(img_request);
2465 
2466 	if (type == OBJ_REQUEST_BIO) {
2467 		bio_list = data_desc;
2468 		rbd_assert(img_offset ==
2469 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2470 	} else if (type == OBJ_REQUEST_PAGES) {
2471 		pages = data_desc;
2472 	}
2473 
2474 	while (resid) {
2475 		struct ceph_osd_request *osd_req;
2476 		const char *object_name;
2477 		u64 offset;
2478 		u64 length;
2479 
2480 		object_name = rbd_segment_name(rbd_dev, img_offset);
2481 		if (!object_name)
2482 			goto out_unwind;
2483 		offset = rbd_segment_offset(rbd_dev, img_offset);
2484 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2485 		obj_request = rbd_obj_request_create(object_name,
2486 						offset, length, type);
2487 		/* object request has its own copy of the object name */
2488 		rbd_segment_name_free(object_name);
2489 		if (!obj_request)
2490 			goto out_unwind;
2491 
2492 		/*
2493 		 * set obj_request->img_request before creating the
2494 		 * osd_request so that it gets the right snapc
2495 		 */
2496 		rbd_img_obj_request_add(img_request, obj_request);
2497 
2498 		if (type == OBJ_REQUEST_BIO) {
2499 			unsigned int clone_size;
2500 
2501 			rbd_assert(length <= (u64)UINT_MAX);
2502 			clone_size = (unsigned int)length;
2503 			obj_request->bio_list =
2504 					bio_chain_clone_range(&bio_list,
2505 								&bio_offset,
2506 								clone_size,
2507 								GFP_NOIO);
2508 			if (!obj_request->bio_list)
2509 				goto out_unwind;
2510 		} else if (type == OBJ_REQUEST_PAGES) {
2511 			unsigned int page_count;
2512 
2513 			obj_request->pages = pages;
2514 			page_count = (u32)calc_pages_for(offset, length);
2515 			obj_request->page_count = page_count;
2516 			if ((offset + length) & ~PAGE_MASK)
2517 				page_count--;	/* more on last page */
2518 			pages += page_count;
2519 		}
2520 
2521 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2522 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2523 					obj_request);
2524 		if (!osd_req)
2525 			goto out_unwind;
2526 
2527 		obj_request->osd_req = osd_req;
2528 		obj_request->callback = rbd_img_obj_callback;
2529 		obj_request->img_offset = img_offset;
2530 
2531 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2532 
2533 		rbd_img_request_get(img_request);
2534 
2535 		img_offset += length;
2536 		resid -= length;
2537 	}
2538 
2539 	return 0;
2540 
2541 out_unwind:
2542 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2543 		rbd_img_obj_request_del(img_request, obj_request);
2544 
2545 	return -ENOMEM;
2546 }
2547 
2548 static void
2549 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2550 {
2551 	struct rbd_img_request *img_request;
2552 	struct rbd_device *rbd_dev;
2553 	struct page **pages;
2554 	u32 page_count;
2555 
2556 	dout("%s: obj %p\n", __func__, obj_request);
2557 
2558 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2559 		obj_request->type == OBJ_REQUEST_NODATA);
2560 	rbd_assert(obj_request_img_data_test(obj_request));
2561 	img_request = obj_request->img_request;
2562 	rbd_assert(img_request);
2563 
2564 	rbd_dev = img_request->rbd_dev;
2565 	rbd_assert(rbd_dev);
2566 
2567 	pages = obj_request->copyup_pages;
2568 	rbd_assert(pages != NULL);
2569 	obj_request->copyup_pages = NULL;
2570 	page_count = obj_request->copyup_page_count;
2571 	rbd_assert(page_count);
2572 	obj_request->copyup_page_count = 0;
2573 	ceph_release_page_vector(pages, page_count);
2574 
2575 	/*
2576 	 * We want the transfer count to reflect the size of the
2577 	 * original write request.  There is no such thing as a
2578 	 * successful short write, so if the request was successful
2579 	 * we can just set it to the originally-requested length.
2580 	 */
2581 	if (!obj_request->result)
2582 		obj_request->xferred = obj_request->length;
2583 
2584 	obj_request_done_set(obj_request);
2585 }
2586 
2587 static void
2588 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2589 {
2590 	struct rbd_obj_request *orig_request;
2591 	struct ceph_osd_request *osd_req;
2592 	struct ceph_osd_client *osdc;
2593 	struct rbd_device *rbd_dev;
2594 	struct page **pages;
2595 	enum obj_operation_type op_type;
2596 	u32 page_count;
2597 	int img_result;
2598 	u64 parent_length;
2599 
2600 	rbd_assert(img_request_child_test(img_request));
2601 
2602 	/* First get what we need from the image request */
2603 
2604 	pages = img_request->copyup_pages;
2605 	rbd_assert(pages != NULL);
2606 	img_request->copyup_pages = NULL;
2607 	page_count = img_request->copyup_page_count;
2608 	rbd_assert(page_count);
2609 	img_request->copyup_page_count = 0;
2610 
2611 	orig_request = img_request->obj_request;
2612 	rbd_assert(orig_request != NULL);
2613 	rbd_assert(obj_request_type_valid(orig_request->type));
2614 	img_result = img_request->result;
2615 	parent_length = img_request->length;
2616 	rbd_assert(parent_length == img_request->xferred);
2617 	rbd_img_request_put(img_request);
2618 
2619 	rbd_assert(orig_request->img_request);
2620 	rbd_dev = orig_request->img_request->rbd_dev;
2621 	rbd_assert(rbd_dev);
2622 
2623 	/*
2624 	 * If the overlap has become 0 (most likely because the
2625 	 * image has been flattened) we need to free the pages
2626 	 * and re-submit the original write request.
2627 	 */
2628 	if (!rbd_dev->parent_overlap) {
2629 		struct ceph_osd_client *osdc;
2630 
2631 		ceph_release_page_vector(pages, page_count);
2632 		osdc = &rbd_dev->rbd_client->client->osdc;
2633 		img_result = rbd_obj_request_submit(osdc, orig_request);
2634 		if (!img_result)
2635 			return;
2636 	}
2637 
2638 	if (img_result)
2639 		goto out_err;
2640 
2641 	/*
2642 	 * The original osd request is of no use to use any more.
2643 	 * We need a new one that can hold the three ops in a copyup
2644 	 * request.  Allocate the new copyup osd request for the
2645 	 * original request, and release the old one.
2646 	 */
2647 	img_result = -ENOMEM;
2648 	osd_req = rbd_osd_req_create_copyup(orig_request);
2649 	if (!osd_req)
2650 		goto out_err;
2651 	rbd_osd_req_destroy(orig_request->osd_req);
2652 	orig_request->osd_req = osd_req;
2653 	orig_request->copyup_pages = pages;
2654 	orig_request->copyup_page_count = page_count;
2655 
2656 	/* Initialize the copyup op */
2657 
2658 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2659 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2660 						false, false);
2661 
2662 	/* Add the other op(s) */
2663 
2664 	op_type = rbd_img_request_op_type(orig_request->img_request);
2665 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2666 
2667 	/* All set, send it off. */
2668 
2669 	osdc = &rbd_dev->rbd_client->client->osdc;
2670 	img_result = rbd_obj_request_submit(osdc, orig_request);
2671 	if (!img_result)
2672 		return;
2673 out_err:
2674 	/* Record the error code and complete the request */
2675 
2676 	orig_request->result = img_result;
2677 	orig_request->xferred = 0;
2678 	obj_request_done_set(orig_request);
2679 	rbd_obj_request_complete(orig_request);
2680 }
2681 
2682 /*
2683  * Read from the parent image the range of data that covers the
2684  * entire target of the given object request.  This is used for
2685  * satisfying a layered image write request when the target of an
2686  * object request from the image request does not exist.
2687  *
2688  * A page array big enough to hold the returned data is allocated
2689  * and supplied to rbd_img_request_fill() as the "data descriptor."
2690  * When the read completes, this page array will be transferred to
2691  * the original object request for the copyup operation.
2692  *
2693  * If an error occurs, record it as the result of the original
2694  * object request and mark it done so it gets completed.
2695  */
2696 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2697 {
2698 	struct rbd_img_request *img_request = NULL;
2699 	struct rbd_img_request *parent_request = NULL;
2700 	struct rbd_device *rbd_dev;
2701 	u64 img_offset;
2702 	u64 length;
2703 	struct page **pages = NULL;
2704 	u32 page_count;
2705 	int result;
2706 
2707 	rbd_assert(obj_request_img_data_test(obj_request));
2708 	rbd_assert(obj_request_type_valid(obj_request->type));
2709 
2710 	img_request = obj_request->img_request;
2711 	rbd_assert(img_request != NULL);
2712 	rbd_dev = img_request->rbd_dev;
2713 	rbd_assert(rbd_dev->parent != NULL);
2714 
2715 	/*
2716 	 * Determine the byte range covered by the object in the
2717 	 * child image to which the original request was to be sent.
2718 	 */
2719 	img_offset = obj_request->img_offset - obj_request->offset;
2720 	length = (u64)1 << rbd_dev->header.obj_order;
2721 
2722 	/*
2723 	 * There is no defined parent data beyond the parent
2724 	 * overlap, so limit what we read at that boundary if
2725 	 * necessary.
2726 	 */
2727 	if (img_offset + length > rbd_dev->parent_overlap) {
2728 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2729 		length = rbd_dev->parent_overlap - img_offset;
2730 	}
2731 
2732 	/*
2733 	 * Allocate a page array big enough to receive the data read
2734 	 * from the parent.
2735 	 */
2736 	page_count = (u32)calc_pages_for(0, length);
2737 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2738 	if (IS_ERR(pages)) {
2739 		result = PTR_ERR(pages);
2740 		pages = NULL;
2741 		goto out_err;
2742 	}
2743 
2744 	result = -ENOMEM;
2745 	parent_request = rbd_parent_request_create(obj_request,
2746 						img_offset, length);
2747 	if (!parent_request)
2748 		goto out_err;
2749 
2750 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2751 	if (result)
2752 		goto out_err;
2753 	parent_request->copyup_pages = pages;
2754 	parent_request->copyup_page_count = page_count;
2755 
2756 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2757 	result = rbd_img_request_submit(parent_request);
2758 	if (!result)
2759 		return 0;
2760 
2761 	parent_request->copyup_pages = NULL;
2762 	parent_request->copyup_page_count = 0;
2763 	parent_request->obj_request = NULL;
2764 	rbd_obj_request_put(obj_request);
2765 out_err:
2766 	if (pages)
2767 		ceph_release_page_vector(pages, page_count);
2768 	if (parent_request)
2769 		rbd_img_request_put(parent_request);
2770 	obj_request->result = result;
2771 	obj_request->xferred = 0;
2772 	obj_request_done_set(obj_request);
2773 
2774 	return result;
2775 }
2776 
2777 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2778 {
2779 	struct rbd_obj_request *orig_request;
2780 	struct rbd_device *rbd_dev;
2781 	int result;
2782 
2783 	rbd_assert(!obj_request_img_data_test(obj_request));
2784 
2785 	/*
2786 	 * All we need from the object request is the original
2787 	 * request and the result of the STAT op.  Grab those, then
2788 	 * we're done with the request.
2789 	 */
2790 	orig_request = obj_request->obj_request;
2791 	obj_request->obj_request = NULL;
2792 	rbd_obj_request_put(orig_request);
2793 	rbd_assert(orig_request);
2794 	rbd_assert(orig_request->img_request);
2795 
2796 	result = obj_request->result;
2797 	obj_request->result = 0;
2798 
2799 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2800 		obj_request, orig_request, result,
2801 		obj_request->xferred, obj_request->length);
2802 	rbd_obj_request_put(obj_request);
2803 
2804 	/*
2805 	 * If the overlap has become 0 (most likely because the
2806 	 * image has been flattened) we need to free the pages
2807 	 * and re-submit the original write request.
2808 	 */
2809 	rbd_dev = orig_request->img_request->rbd_dev;
2810 	if (!rbd_dev->parent_overlap) {
2811 		struct ceph_osd_client *osdc;
2812 
2813 		osdc = &rbd_dev->rbd_client->client->osdc;
2814 		result = rbd_obj_request_submit(osdc, orig_request);
2815 		if (!result)
2816 			return;
2817 	}
2818 
2819 	/*
2820 	 * Our only purpose here is to determine whether the object
2821 	 * exists, and we don't want to treat the non-existence as
2822 	 * an error.  If something else comes back, transfer the
2823 	 * error to the original request and complete it now.
2824 	 */
2825 	if (!result) {
2826 		obj_request_existence_set(orig_request, true);
2827 	} else if (result == -ENOENT) {
2828 		obj_request_existence_set(orig_request, false);
2829 	} else if (result) {
2830 		orig_request->result = result;
2831 		goto out;
2832 	}
2833 
2834 	/*
2835 	 * Resubmit the original request now that we have recorded
2836 	 * whether the target object exists.
2837 	 */
2838 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2839 out:
2840 	if (orig_request->result)
2841 		rbd_obj_request_complete(orig_request);
2842 }
2843 
2844 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2845 {
2846 	struct rbd_obj_request *stat_request;
2847 	struct rbd_device *rbd_dev;
2848 	struct ceph_osd_client *osdc;
2849 	struct page **pages = NULL;
2850 	u32 page_count;
2851 	size_t size;
2852 	int ret;
2853 
2854 	/*
2855 	 * The response data for a STAT call consists of:
2856 	 *     le64 length;
2857 	 *     struct {
2858 	 *         le32 tv_sec;
2859 	 *         le32 tv_nsec;
2860 	 *     } mtime;
2861 	 */
2862 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2863 	page_count = (u32)calc_pages_for(0, size);
2864 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2865 	if (IS_ERR(pages))
2866 		return PTR_ERR(pages);
2867 
2868 	ret = -ENOMEM;
2869 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2870 							OBJ_REQUEST_PAGES);
2871 	if (!stat_request)
2872 		goto out;
2873 
2874 	rbd_obj_request_get(obj_request);
2875 	stat_request->obj_request = obj_request;
2876 	stat_request->pages = pages;
2877 	stat_request->page_count = page_count;
2878 
2879 	rbd_assert(obj_request->img_request);
2880 	rbd_dev = obj_request->img_request->rbd_dev;
2881 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2882 						   stat_request);
2883 	if (!stat_request->osd_req)
2884 		goto out;
2885 	stat_request->callback = rbd_img_obj_exists_callback;
2886 
2887 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2888 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2889 					false, false);
2890 	rbd_osd_req_format_read(stat_request);
2891 
2892 	osdc = &rbd_dev->rbd_client->client->osdc;
2893 	ret = rbd_obj_request_submit(osdc, stat_request);
2894 out:
2895 	if (ret)
2896 		rbd_obj_request_put(obj_request);
2897 
2898 	return ret;
2899 }
2900 
2901 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2902 {
2903 	struct rbd_img_request *img_request;
2904 	struct rbd_device *rbd_dev;
2905 
2906 	rbd_assert(obj_request_img_data_test(obj_request));
2907 
2908 	img_request = obj_request->img_request;
2909 	rbd_assert(img_request);
2910 	rbd_dev = img_request->rbd_dev;
2911 
2912 	/* Reads */
2913 	if (!img_request_write_test(img_request) &&
2914 	    !img_request_discard_test(img_request))
2915 		return true;
2916 
2917 	/* Non-layered writes */
2918 	if (!img_request_layered_test(img_request))
2919 		return true;
2920 
2921 	/*
2922 	 * Layered writes outside of the parent overlap range don't
2923 	 * share any data with the parent.
2924 	 */
2925 	if (!obj_request_overlaps_parent(obj_request))
2926 		return true;
2927 
2928 	/*
2929 	 * Entire-object layered writes - we will overwrite whatever
2930 	 * parent data there is anyway.
2931 	 */
2932 	if (!obj_request->offset &&
2933 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2934 		return true;
2935 
2936 	/*
2937 	 * If the object is known to already exist, its parent data has
2938 	 * already been copied.
2939 	 */
2940 	if (obj_request_known_test(obj_request) &&
2941 	    obj_request_exists_test(obj_request))
2942 		return true;
2943 
2944 	return false;
2945 }
2946 
2947 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2948 {
2949 	if (img_obj_request_simple(obj_request)) {
2950 		struct rbd_device *rbd_dev;
2951 		struct ceph_osd_client *osdc;
2952 
2953 		rbd_dev = obj_request->img_request->rbd_dev;
2954 		osdc = &rbd_dev->rbd_client->client->osdc;
2955 
2956 		return rbd_obj_request_submit(osdc, obj_request);
2957 	}
2958 
2959 	/*
2960 	 * It's a layered write.  The target object might exist but
2961 	 * we may not know that yet.  If we know it doesn't exist,
2962 	 * start by reading the data for the full target object from
2963 	 * the parent so we can use it for a copyup to the target.
2964 	 */
2965 	if (obj_request_known_test(obj_request))
2966 		return rbd_img_obj_parent_read_full(obj_request);
2967 
2968 	/* We don't know whether the target exists.  Go find out. */
2969 
2970 	return rbd_img_obj_exists_submit(obj_request);
2971 }
2972 
2973 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2974 {
2975 	struct rbd_obj_request *obj_request;
2976 	struct rbd_obj_request *next_obj_request;
2977 
2978 	dout("%s: img %p\n", __func__, img_request);
2979 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2980 		int ret;
2981 
2982 		ret = rbd_img_obj_request_submit(obj_request);
2983 		if (ret)
2984 			return ret;
2985 	}
2986 
2987 	return 0;
2988 }
2989 
2990 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2991 {
2992 	struct rbd_obj_request *obj_request;
2993 	struct rbd_device *rbd_dev;
2994 	u64 obj_end;
2995 	u64 img_xferred;
2996 	int img_result;
2997 
2998 	rbd_assert(img_request_child_test(img_request));
2999 
3000 	/* First get what we need from the image request and release it */
3001 
3002 	obj_request = img_request->obj_request;
3003 	img_xferred = img_request->xferred;
3004 	img_result = img_request->result;
3005 	rbd_img_request_put(img_request);
3006 
3007 	/*
3008 	 * If the overlap has become 0 (most likely because the
3009 	 * image has been flattened) we need to re-submit the
3010 	 * original request.
3011 	 */
3012 	rbd_assert(obj_request);
3013 	rbd_assert(obj_request->img_request);
3014 	rbd_dev = obj_request->img_request->rbd_dev;
3015 	if (!rbd_dev->parent_overlap) {
3016 		struct ceph_osd_client *osdc;
3017 
3018 		osdc = &rbd_dev->rbd_client->client->osdc;
3019 		img_result = rbd_obj_request_submit(osdc, obj_request);
3020 		if (!img_result)
3021 			return;
3022 	}
3023 
3024 	obj_request->result = img_result;
3025 	if (obj_request->result)
3026 		goto out;
3027 
3028 	/*
3029 	 * We need to zero anything beyond the parent overlap
3030 	 * boundary.  Since rbd_img_obj_request_read_callback()
3031 	 * will zero anything beyond the end of a short read, an
3032 	 * easy way to do this is to pretend the data from the
3033 	 * parent came up short--ending at the overlap boundary.
3034 	 */
3035 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3036 	obj_end = obj_request->img_offset + obj_request->length;
3037 	if (obj_end > rbd_dev->parent_overlap) {
3038 		u64 xferred = 0;
3039 
3040 		if (obj_request->img_offset < rbd_dev->parent_overlap)
3041 			xferred = rbd_dev->parent_overlap -
3042 					obj_request->img_offset;
3043 
3044 		obj_request->xferred = min(img_xferred, xferred);
3045 	} else {
3046 		obj_request->xferred = img_xferred;
3047 	}
3048 out:
3049 	rbd_img_obj_request_read_callback(obj_request);
3050 	rbd_obj_request_complete(obj_request);
3051 }
3052 
3053 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3054 {
3055 	struct rbd_img_request *img_request;
3056 	int result;
3057 
3058 	rbd_assert(obj_request_img_data_test(obj_request));
3059 	rbd_assert(obj_request->img_request != NULL);
3060 	rbd_assert(obj_request->result == (s32) -ENOENT);
3061 	rbd_assert(obj_request_type_valid(obj_request->type));
3062 
3063 	/* rbd_read_finish(obj_request, obj_request->length); */
3064 	img_request = rbd_parent_request_create(obj_request,
3065 						obj_request->img_offset,
3066 						obj_request->length);
3067 	result = -ENOMEM;
3068 	if (!img_request)
3069 		goto out_err;
3070 
3071 	if (obj_request->type == OBJ_REQUEST_BIO)
3072 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3073 						obj_request->bio_list);
3074 	else
3075 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3076 						obj_request->pages);
3077 	if (result)
3078 		goto out_err;
3079 
3080 	img_request->callback = rbd_img_parent_read_callback;
3081 	result = rbd_img_request_submit(img_request);
3082 	if (result)
3083 		goto out_err;
3084 
3085 	return;
3086 out_err:
3087 	if (img_request)
3088 		rbd_img_request_put(img_request);
3089 	obj_request->result = result;
3090 	obj_request->xferred = 0;
3091 	obj_request_done_set(obj_request);
3092 }
3093 
3094 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3095 {
3096 	struct rbd_obj_request *obj_request;
3097 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3098 	int ret;
3099 
3100 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3101 							OBJ_REQUEST_NODATA);
3102 	if (!obj_request)
3103 		return -ENOMEM;
3104 
3105 	ret = -ENOMEM;
3106 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3107 						  obj_request);
3108 	if (!obj_request->osd_req)
3109 		goto out;
3110 
3111 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3112 					notify_id, 0, 0);
3113 	rbd_osd_req_format_read(obj_request);
3114 
3115 	ret = rbd_obj_request_submit(osdc, obj_request);
3116 	if (ret)
3117 		goto out;
3118 	ret = rbd_obj_request_wait(obj_request);
3119 out:
3120 	rbd_obj_request_put(obj_request);
3121 
3122 	return ret;
3123 }
3124 
3125 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3126 {
3127 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
3128 	int ret;
3129 
3130 	if (!rbd_dev)
3131 		return;
3132 
3133 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3134 		rbd_dev->header_name, (unsigned long long)notify_id,
3135 		(unsigned int)opcode);
3136 
3137 	/*
3138 	 * Until adequate refresh error handling is in place, there is
3139 	 * not much we can do here, except warn.
3140 	 *
3141 	 * See http://tracker.ceph.com/issues/5040
3142 	 */
3143 	ret = rbd_dev_refresh(rbd_dev);
3144 	if (ret)
3145 		rbd_warn(rbd_dev, "refresh failed: %d", ret);
3146 
3147 	ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3148 	if (ret)
3149 		rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3150 }
3151 
3152 /*
3153  * Send a (un)watch request and wait for the ack.  Return a request
3154  * with a ref held on success or error.
3155  */
3156 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3157 						struct rbd_device *rbd_dev,
3158 						bool watch)
3159 {
3160 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3161 	struct ceph_options *opts = osdc->client->options;
3162 	struct rbd_obj_request *obj_request;
3163 	int ret;
3164 
3165 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3166 					     OBJ_REQUEST_NODATA);
3167 	if (!obj_request)
3168 		return ERR_PTR(-ENOMEM);
3169 
3170 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3171 						  obj_request);
3172 	if (!obj_request->osd_req) {
3173 		ret = -ENOMEM;
3174 		goto out;
3175 	}
3176 
3177 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3178 			      rbd_dev->watch_event->cookie, 0, watch);
3179 	rbd_osd_req_format_write(obj_request);
3180 
3181 	if (watch)
3182 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3183 
3184 	ret = rbd_obj_request_submit(osdc, obj_request);
3185 	if (ret)
3186 		goto out;
3187 
3188 	ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3189 	if (ret)
3190 		goto out;
3191 
3192 	ret = obj_request->result;
3193 	if (ret) {
3194 		if (watch)
3195 			rbd_obj_request_end(obj_request);
3196 		goto out;
3197 	}
3198 
3199 	return obj_request;
3200 
3201 out:
3202 	rbd_obj_request_put(obj_request);
3203 	return ERR_PTR(ret);
3204 }
3205 
3206 /*
3207  * Initiate a watch request, synchronously.
3208  */
3209 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3210 {
3211 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3212 	struct rbd_obj_request *obj_request;
3213 	int ret;
3214 
3215 	rbd_assert(!rbd_dev->watch_event);
3216 	rbd_assert(!rbd_dev->watch_request);
3217 
3218 	ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3219 				     &rbd_dev->watch_event);
3220 	if (ret < 0)
3221 		return ret;
3222 
3223 	obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3224 	if (IS_ERR(obj_request)) {
3225 		ceph_osdc_cancel_event(rbd_dev->watch_event);
3226 		rbd_dev->watch_event = NULL;
3227 		return PTR_ERR(obj_request);
3228 	}
3229 
3230 	/*
3231 	 * A watch request is set to linger, so the underlying osd
3232 	 * request won't go away until we unregister it.  We retain
3233 	 * a pointer to the object request during that time (in
3234 	 * rbd_dev->watch_request), so we'll keep a reference to it.
3235 	 * We'll drop that reference after we've unregistered it in
3236 	 * rbd_dev_header_unwatch_sync().
3237 	 */
3238 	rbd_dev->watch_request = obj_request;
3239 
3240 	return 0;
3241 }
3242 
3243 /*
3244  * Tear down a watch request, synchronously.
3245  */
3246 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3247 {
3248 	struct rbd_obj_request *obj_request;
3249 
3250 	rbd_assert(rbd_dev->watch_event);
3251 	rbd_assert(rbd_dev->watch_request);
3252 
3253 	rbd_obj_request_end(rbd_dev->watch_request);
3254 	rbd_obj_request_put(rbd_dev->watch_request);
3255 	rbd_dev->watch_request = NULL;
3256 
3257 	obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3258 	if (!IS_ERR(obj_request))
3259 		rbd_obj_request_put(obj_request);
3260 	else
3261 		rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3262 			 PTR_ERR(obj_request));
3263 
3264 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3265 	rbd_dev->watch_event = NULL;
3266 }
3267 
3268 /*
3269  * Synchronous osd object method call.  Returns the number of bytes
3270  * returned in the outbound buffer, or a negative error code.
3271  */
3272 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3273 			     const char *object_name,
3274 			     const char *class_name,
3275 			     const char *method_name,
3276 			     const void *outbound,
3277 			     size_t outbound_size,
3278 			     void *inbound,
3279 			     size_t inbound_size)
3280 {
3281 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3282 	struct rbd_obj_request *obj_request;
3283 	struct page **pages;
3284 	u32 page_count;
3285 	int ret;
3286 
3287 	/*
3288 	 * Method calls are ultimately read operations.  The result
3289 	 * should placed into the inbound buffer provided.  They
3290 	 * also supply outbound data--parameters for the object
3291 	 * method.  Currently if this is present it will be a
3292 	 * snapshot id.
3293 	 */
3294 	page_count = (u32)calc_pages_for(0, inbound_size);
3295 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3296 	if (IS_ERR(pages))
3297 		return PTR_ERR(pages);
3298 
3299 	ret = -ENOMEM;
3300 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3301 							OBJ_REQUEST_PAGES);
3302 	if (!obj_request)
3303 		goto out;
3304 
3305 	obj_request->pages = pages;
3306 	obj_request->page_count = page_count;
3307 
3308 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3309 						  obj_request);
3310 	if (!obj_request->osd_req)
3311 		goto out;
3312 
3313 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3314 					class_name, method_name);
3315 	if (outbound_size) {
3316 		struct ceph_pagelist *pagelist;
3317 
3318 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3319 		if (!pagelist)
3320 			goto out;
3321 
3322 		ceph_pagelist_init(pagelist);
3323 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3324 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3325 						pagelist);
3326 	}
3327 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3328 					obj_request->pages, inbound_size,
3329 					0, false, false);
3330 	rbd_osd_req_format_read(obj_request);
3331 
3332 	ret = rbd_obj_request_submit(osdc, obj_request);
3333 	if (ret)
3334 		goto out;
3335 	ret = rbd_obj_request_wait(obj_request);
3336 	if (ret)
3337 		goto out;
3338 
3339 	ret = obj_request->result;
3340 	if (ret < 0)
3341 		goto out;
3342 
3343 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3344 	ret = (int)obj_request->xferred;
3345 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3346 out:
3347 	if (obj_request)
3348 		rbd_obj_request_put(obj_request);
3349 	else
3350 		ceph_release_page_vector(pages, page_count);
3351 
3352 	return ret;
3353 }
3354 
3355 static void rbd_queue_workfn(struct work_struct *work)
3356 {
3357 	struct request *rq = blk_mq_rq_from_pdu(work);
3358 	struct rbd_device *rbd_dev = rq->q->queuedata;
3359 	struct rbd_img_request *img_request;
3360 	struct ceph_snap_context *snapc = NULL;
3361 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3362 	u64 length = blk_rq_bytes(rq);
3363 	enum obj_operation_type op_type;
3364 	u64 mapping_size;
3365 	int result;
3366 
3367 	if (rq->cmd_type != REQ_TYPE_FS) {
3368 		dout("%s: non-fs request type %d\n", __func__,
3369 			(int) rq->cmd_type);
3370 		result = -EIO;
3371 		goto err;
3372 	}
3373 
3374 	if (rq->cmd_flags & REQ_DISCARD)
3375 		op_type = OBJ_OP_DISCARD;
3376 	else if (rq->cmd_flags & REQ_WRITE)
3377 		op_type = OBJ_OP_WRITE;
3378 	else
3379 		op_type = OBJ_OP_READ;
3380 
3381 	/* Ignore/skip any zero-length requests */
3382 
3383 	if (!length) {
3384 		dout("%s: zero-length request\n", __func__);
3385 		result = 0;
3386 		goto err_rq;
3387 	}
3388 
3389 	/* Only reads are allowed to a read-only device */
3390 
3391 	if (op_type != OBJ_OP_READ) {
3392 		if (rbd_dev->mapping.read_only) {
3393 			result = -EROFS;
3394 			goto err_rq;
3395 		}
3396 		rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3397 	}
3398 
3399 	/*
3400 	 * Quit early if the mapped snapshot no longer exists.  It's
3401 	 * still possible the snapshot will have disappeared by the
3402 	 * time our request arrives at the osd, but there's no sense in
3403 	 * sending it if we already know.
3404 	 */
3405 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3406 		dout("request for non-existent snapshot");
3407 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3408 		result = -ENXIO;
3409 		goto err_rq;
3410 	}
3411 
3412 	if (offset && length > U64_MAX - offset + 1) {
3413 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3414 			 length);
3415 		result = -EINVAL;
3416 		goto err_rq;	/* Shouldn't happen */
3417 	}
3418 
3419 	blk_mq_start_request(rq);
3420 
3421 	down_read(&rbd_dev->header_rwsem);
3422 	mapping_size = rbd_dev->mapping.size;
3423 	if (op_type != OBJ_OP_READ) {
3424 		snapc = rbd_dev->header.snapc;
3425 		ceph_get_snap_context(snapc);
3426 	}
3427 	up_read(&rbd_dev->header_rwsem);
3428 
3429 	if (offset + length > mapping_size) {
3430 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3431 			 length, mapping_size);
3432 		result = -EIO;
3433 		goto err_rq;
3434 	}
3435 
3436 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3437 					     snapc);
3438 	if (!img_request) {
3439 		result = -ENOMEM;
3440 		goto err_rq;
3441 	}
3442 	img_request->rq = rq;
3443 	snapc = NULL; /* img_request consumes a ref */
3444 
3445 	if (op_type == OBJ_OP_DISCARD)
3446 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3447 					      NULL);
3448 	else
3449 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3450 					      rq->bio);
3451 	if (result)
3452 		goto err_img_request;
3453 
3454 	result = rbd_img_request_submit(img_request);
3455 	if (result)
3456 		goto err_img_request;
3457 
3458 	return;
3459 
3460 err_img_request:
3461 	rbd_img_request_put(img_request);
3462 err_rq:
3463 	if (result)
3464 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3465 			 obj_op_name(op_type), length, offset, result);
3466 	ceph_put_snap_context(snapc);
3467 err:
3468 	blk_mq_end_request(rq, result);
3469 }
3470 
3471 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3472 		const struct blk_mq_queue_data *bd)
3473 {
3474 	struct request *rq = bd->rq;
3475 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3476 
3477 	queue_work(rbd_wq, work);
3478 	return BLK_MQ_RQ_QUEUE_OK;
3479 }
3480 
3481 static void rbd_free_disk(struct rbd_device *rbd_dev)
3482 {
3483 	struct gendisk *disk = rbd_dev->disk;
3484 
3485 	if (!disk)
3486 		return;
3487 
3488 	rbd_dev->disk = NULL;
3489 	if (disk->flags & GENHD_FL_UP) {
3490 		del_gendisk(disk);
3491 		if (disk->queue)
3492 			blk_cleanup_queue(disk->queue);
3493 		blk_mq_free_tag_set(&rbd_dev->tag_set);
3494 	}
3495 	put_disk(disk);
3496 }
3497 
3498 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3499 				const char *object_name,
3500 				u64 offset, u64 length, void *buf)
3501 
3502 {
3503 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3504 	struct rbd_obj_request *obj_request;
3505 	struct page **pages = NULL;
3506 	u32 page_count;
3507 	size_t size;
3508 	int ret;
3509 
3510 	page_count = (u32) calc_pages_for(offset, length);
3511 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3512 	if (IS_ERR(pages))
3513 		return PTR_ERR(pages);
3514 
3515 	ret = -ENOMEM;
3516 	obj_request = rbd_obj_request_create(object_name, offset, length,
3517 							OBJ_REQUEST_PAGES);
3518 	if (!obj_request)
3519 		goto out;
3520 
3521 	obj_request->pages = pages;
3522 	obj_request->page_count = page_count;
3523 
3524 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3525 						  obj_request);
3526 	if (!obj_request->osd_req)
3527 		goto out;
3528 
3529 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3530 					offset, length, 0, 0);
3531 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3532 					obj_request->pages,
3533 					obj_request->length,
3534 					obj_request->offset & ~PAGE_MASK,
3535 					false, false);
3536 	rbd_osd_req_format_read(obj_request);
3537 
3538 	ret = rbd_obj_request_submit(osdc, obj_request);
3539 	if (ret)
3540 		goto out;
3541 	ret = rbd_obj_request_wait(obj_request);
3542 	if (ret)
3543 		goto out;
3544 
3545 	ret = obj_request->result;
3546 	if (ret < 0)
3547 		goto out;
3548 
3549 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3550 	size = (size_t) obj_request->xferred;
3551 	ceph_copy_from_page_vector(pages, buf, 0, size);
3552 	rbd_assert(size <= (size_t)INT_MAX);
3553 	ret = (int)size;
3554 out:
3555 	if (obj_request)
3556 		rbd_obj_request_put(obj_request);
3557 	else
3558 		ceph_release_page_vector(pages, page_count);
3559 
3560 	return ret;
3561 }
3562 
3563 /*
3564  * Read the complete header for the given rbd device.  On successful
3565  * return, the rbd_dev->header field will contain up-to-date
3566  * information about the image.
3567  */
3568 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3569 {
3570 	struct rbd_image_header_ondisk *ondisk = NULL;
3571 	u32 snap_count = 0;
3572 	u64 names_size = 0;
3573 	u32 want_count;
3574 	int ret;
3575 
3576 	/*
3577 	 * The complete header will include an array of its 64-bit
3578 	 * snapshot ids, followed by the names of those snapshots as
3579 	 * a contiguous block of NUL-terminated strings.  Note that
3580 	 * the number of snapshots could change by the time we read
3581 	 * it in, in which case we re-read it.
3582 	 */
3583 	do {
3584 		size_t size;
3585 
3586 		kfree(ondisk);
3587 
3588 		size = sizeof (*ondisk);
3589 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3590 		size += names_size;
3591 		ondisk = kmalloc(size, GFP_KERNEL);
3592 		if (!ondisk)
3593 			return -ENOMEM;
3594 
3595 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3596 				       0, size, ondisk);
3597 		if (ret < 0)
3598 			goto out;
3599 		if ((size_t)ret < size) {
3600 			ret = -ENXIO;
3601 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3602 				size, ret);
3603 			goto out;
3604 		}
3605 		if (!rbd_dev_ondisk_valid(ondisk)) {
3606 			ret = -ENXIO;
3607 			rbd_warn(rbd_dev, "invalid header");
3608 			goto out;
3609 		}
3610 
3611 		names_size = le64_to_cpu(ondisk->snap_names_len);
3612 		want_count = snap_count;
3613 		snap_count = le32_to_cpu(ondisk->snap_count);
3614 	} while (snap_count != want_count);
3615 
3616 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3617 out:
3618 	kfree(ondisk);
3619 
3620 	return ret;
3621 }
3622 
3623 /*
3624  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3625  * has disappeared from the (just updated) snapshot context.
3626  */
3627 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3628 {
3629 	u64 snap_id;
3630 
3631 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3632 		return;
3633 
3634 	snap_id = rbd_dev->spec->snap_id;
3635 	if (snap_id == CEPH_NOSNAP)
3636 		return;
3637 
3638 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3639 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3640 }
3641 
3642 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3643 {
3644 	sector_t size;
3645 	bool removing;
3646 
3647 	/*
3648 	 * Don't hold the lock while doing disk operations,
3649 	 * or lock ordering will conflict with the bdev mutex via:
3650 	 * rbd_add() -> blkdev_get() -> rbd_open()
3651 	 */
3652 	spin_lock_irq(&rbd_dev->lock);
3653 	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3654 	spin_unlock_irq(&rbd_dev->lock);
3655 	/*
3656 	 * If the device is being removed, rbd_dev->disk has
3657 	 * been destroyed, so don't try to update its size
3658 	 */
3659 	if (!removing) {
3660 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3661 		dout("setting size to %llu sectors", (unsigned long long)size);
3662 		set_capacity(rbd_dev->disk, size);
3663 		revalidate_disk(rbd_dev->disk);
3664 	}
3665 }
3666 
3667 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3668 {
3669 	u64 mapping_size;
3670 	int ret;
3671 
3672 	down_write(&rbd_dev->header_rwsem);
3673 	mapping_size = rbd_dev->mapping.size;
3674 
3675 	ret = rbd_dev_header_info(rbd_dev);
3676 	if (ret)
3677 		goto out;
3678 
3679 	/*
3680 	 * If there is a parent, see if it has disappeared due to the
3681 	 * mapped image getting flattened.
3682 	 */
3683 	if (rbd_dev->parent) {
3684 		ret = rbd_dev_v2_parent_info(rbd_dev);
3685 		if (ret)
3686 			goto out;
3687 	}
3688 
3689 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3690 		rbd_dev->mapping.size = rbd_dev->header.image_size;
3691 	} else {
3692 		/* validate mapped snapshot's EXISTS flag */
3693 		rbd_exists_validate(rbd_dev);
3694 	}
3695 
3696 out:
3697 	up_write(&rbd_dev->header_rwsem);
3698 	if (!ret && mapping_size != rbd_dev->mapping.size)
3699 		rbd_dev_update_size(rbd_dev);
3700 
3701 	return ret;
3702 }
3703 
3704 static int rbd_init_request(void *data, struct request *rq,
3705 		unsigned int hctx_idx, unsigned int request_idx,
3706 		unsigned int numa_node)
3707 {
3708 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3709 
3710 	INIT_WORK(work, rbd_queue_workfn);
3711 	return 0;
3712 }
3713 
3714 static struct blk_mq_ops rbd_mq_ops = {
3715 	.queue_rq	= rbd_queue_rq,
3716 	.map_queue	= blk_mq_map_queue,
3717 	.init_request	= rbd_init_request,
3718 };
3719 
3720 static int rbd_init_disk(struct rbd_device *rbd_dev)
3721 {
3722 	struct gendisk *disk;
3723 	struct request_queue *q;
3724 	u64 segment_size;
3725 	int err;
3726 
3727 	/* create gendisk info */
3728 	disk = alloc_disk(single_major ?
3729 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3730 			  RBD_MINORS_PER_MAJOR);
3731 	if (!disk)
3732 		return -ENOMEM;
3733 
3734 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3735 		 rbd_dev->dev_id);
3736 	disk->major = rbd_dev->major;
3737 	disk->first_minor = rbd_dev->minor;
3738 	if (single_major)
3739 		disk->flags |= GENHD_FL_EXT_DEVT;
3740 	disk->fops = &rbd_bd_ops;
3741 	disk->private_data = rbd_dev;
3742 
3743 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3744 	rbd_dev->tag_set.ops = &rbd_mq_ops;
3745 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3746 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3747 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3748 	rbd_dev->tag_set.nr_hw_queues = 1;
3749 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3750 
3751 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3752 	if (err)
3753 		goto out_disk;
3754 
3755 	q = blk_mq_init_queue(&rbd_dev->tag_set);
3756 	if (IS_ERR(q)) {
3757 		err = PTR_ERR(q);
3758 		goto out_tag_set;
3759 	}
3760 
3761 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3762 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3763 
3764 	/* set io sizes to object size */
3765 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3766 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3767 	q->limits.max_sectors = queue_max_hw_sectors(q);
3768 	blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3769 	blk_queue_max_segment_size(q, segment_size);
3770 	blk_queue_io_min(q, segment_size);
3771 	blk_queue_io_opt(q, segment_size);
3772 
3773 	/* enable the discard support */
3774 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3775 	q->limits.discard_granularity = segment_size;
3776 	q->limits.discard_alignment = segment_size;
3777 	blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
3778 	q->limits.discard_zeroes_data = 1;
3779 
3780 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3781 		q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
3782 
3783 	disk->queue = q;
3784 
3785 	q->queuedata = rbd_dev;
3786 
3787 	rbd_dev->disk = disk;
3788 
3789 	return 0;
3790 out_tag_set:
3791 	blk_mq_free_tag_set(&rbd_dev->tag_set);
3792 out_disk:
3793 	put_disk(disk);
3794 	return err;
3795 }
3796 
3797 /*
3798   sysfs
3799 */
3800 
3801 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3802 {
3803 	return container_of(dev, struct rbd_device, dev);
3804 }
3805 
3806 static ssize_t rbd_size_show(struct device *dev,
3807 			     struct device_attribute *attr, char *buf)
3808 {
3809 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3810 
3811 	return sprintf(buf, "%llu\n",
3812 		(unsigned long long)rbd_dev->mapping.size);
3813 }
3814 
3815 /*
3816  * Note this shows the features for whatever's mapped, which is not
3817  * necessarily the base image.
3818  */
3819 static ssize_t rbd_features_show(struct device *dev,
3820 			     struct device_attribute *attr, char *buf)
3821 {
3822 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3823 
3824 	return sprintf(buf, "0x%016llx\n",
3825 			(unsigned long long)rbd_dev->mapping.features);
3826 }
3827 
3828 static ssize_t rbd_major_show(struct device *dev,
3829 			      struct device_attribute *attr, char *buf)
3830 {
3831 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3832 
3833 	if (rbd_dev->major)
3834 		return sprintf(buf, "%d\n", rbd_dev->major);
3835 
3836 	return sprintf(buf, "(none)\n");
3837 }
3838 
3839 static ssize_t rbd_minor_show(struct device *dev,
3840 			      struct device_attribute *attr, char *buf)
3841 {
3842 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3843 
3844 	return sprintf(buf, "%d\n", rbd_dev->minor);
3845 }
3846 
3847 static ssize_t rbd_client_id_show(struct device *dev,
3848 				  struct device_attribute *attr, char *buf)
3849 {
3850 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3851 
3852 	return sprintf(buf, "client%lld\n",
3853 			ceph_client_id(rbd_dev->rbd_client->client));
3854 }
3855 
3856 static ssize_t rbd_pool_show(struct device *dev,
3857 			     struct device_attribute *attr, char *buf)
3858 {
3859 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3860 
3861 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3862 }
3863 
3864 static ssize_t rbd_pool_id_show(struct device *dev,
3865 			     struct device_attribute *attr, char *buf)
3866 {
3867 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3868 
3869 	return sprintf(buf, "%llu\n",
3870 			(unsigned long long) rbd_dev->spec->pool_id);
3871 }
3872 
3873 static ssize_t rbd_name_show(struct device *dev,
3874 			     struct device_attribute *attr, char *buf)
3875 {
3876 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3877 
3878 	if (rbd_dev->spec->image_name)
3879 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3880 
3881 	return sprintf(buf, "(unknown)\n");
3882 }
3883 
3884 static ssize_t rbd_image_id_show(struct device *dev,
3885 			     struct device_attribute *attr, char *buf)
3886 {
3887 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3888 
3889 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3890 }
3891 
3892 /*
3893  * Shows the name of the currently-mapped snapshot (or
3894  * RBD_SNAP_HEAD_NAME for the base image).
3895  */
3896 static ssize_t rbd_snap_show(struct device *dev,
3897 			     struct device_attribute *attr,
3898 			     char *buf)
3899 {
3900 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3901 
3902 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3903 }
3904 
3905 /*
3906  * For a v2 image, shows the chain of parent images, separated by empty
3907  * lines.  For v1 images or if there is no parent, shows "(no parent
3908  * image)".
3909  */
3910 static ssize_t rbd_parent_show(struct device *dev,
3911 			       struct device_attribute *attr,
3912 			       char *buf)
3913 {
3914 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3915 	ssize_t count = 0;
3916 
3917 	if (!rbd_dev->parent)
3918 		return sprintf(buf, "(no parent image)\n");
3919 
3920 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3921 		struct rbd_spec *spec = rbd_dev->parent_spec;
3922 
3923 		count += sprintf(&buf[count], "%s"
3924 			    "pool_id %llu\npool_name %s\n"
3925 			    "image_id %s\nimage_name %s\n"
3926 			    "snap_id %llu\nsnap_name %s\n"
3927 			    "overlap %llu\n",
3928 			    !count ? "" : "\n", /* first? */
3929 			    spec->pool_id, spec->pool_name,
3930 			    spec->image_id, spec->image_name ?: "(unknown)",
3931 			    spec->snap_id, spec->snap_name,
3932 			    rbd_dev->parent_overlap);
3933 	}
3934 
3935 	return count;
3936 }
3937 
3938 static ssize_t rbd_image_refresh(struct device *dev,
3939 				 struct device_attribute *attr,
3940 				 const char *buf,
3941 				 size_t size)
3942 {
3943 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3944 	int ret;
3945 
3946 	ret = rbd_dev_refresh(rbd_dev);
3947 	if (ret)
3948 		return ret;
3949 
3950 	return size;
3951 }
3952 
3953 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3954 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3955 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3956 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3957 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3958 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3959 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3960 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3961 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3962 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3963 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3964 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3965 
3966 static struct attribute *rbd_attrs[] = {
3967 	&dev_attr_size.attr,
3968 	&dev_attr_features.attr,
3969 	&dev_attr_major.attr,
3970 	&dev_attr_minor.attr,
3971 	&dev_attr_client_id.attr,
3972 	&dev_attr_pool.attr,
3973 	&dev_attr_pool_id.attr,
3974 	&dev_attr_name.attr,
3975 	&dev_attr_image_id.attr,
3976 	&dev_attr_current_snap.attr,
3977 	&dev_attr_parent.attr,
3978 	&dev_attr_refresh.attr,
3979 	NULL
3980 };
3981 
3982 static struct attribute_group rbd_attr_group = {
3983 	.attrs = rbd_attrs,
3984 };
3985 
3986 static const struct attribute_group *rbd_attr_groups[] = {
3987 	&rbd_attr_group,
3988 	NULL
3989 };
3990 
3991 static void rbd_dev_release(struct device *dev);
3992 
3993 static struct device_type rbd_device_type = {
3994 	.name		= "rbd",
3995 	.groups		= rbd_attr_groups,
3996 	.release	= rbd_dev_release,
3997 };
3998 
3999 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4000 {
4001 	kref_get(&spec->kref);
4002 
4003 	return spec;
4004 }
4005 
4006 static void rbd_spec_free(struct kref *kref);
4007 static void rbd_spec_put(struct rbd_spec *spec)
4008 {
4009 	if (spec)
4010 		kref_put(&spec->kref, rbd_spec_free);
4011 }
4012 
4013 static struct rbd_spec *rbd_spec_alloc(void)
4014 {
4015 	struct rbd_spec *spec;
4016 
4017 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4018 	if (!spec)
4019 		return NULL;
4020 
4021 	spec->pool_id = CEPH_NOPOOL;
4022 	spec->snap_id = CEPH_NOSNAP;
4023 	kref_init(&spec->kref);
4024 
4025 	return spec;
4026 }
4027 
4028 static void rbd_spec_free(struct kref *kref)
4029 {
4030 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4031 
4032 	kfree(spec->pool_name);
4033 	kfree(spec->image_id);
4034 	kfree(spec->image_name);
4035 	kfree(spec->snap_name);
4036 	kfree(spec);
4037 }
4038 
4039 static void rbd_dev_release(struct device *dev)
4040 {
4041 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4042 	bool need_put = !!rbd_dev->opts;
4043 
4044 	rbd_put_client(rbd_dev->rbd_client);
4045 	rbd_spec_put(rbd_dev->spec);
4046 	kfree(rbd_dev->opts);
4047 	kfree(rbd_dev);
4048 
4049 	/*
4050 	 * This is racy, but way better than putting module outside of
4051 	 * the release callback.  The race window is pretty small, so
4052 	 * doing something similar to dm (dm-builtin.c) is overkill.
4053 	 */
4054 	if (need_put)
4055 		module_put(THIS_MODULE);
4056 }
4057 
4058 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4059 					 struct rbd_spec *spec,
4060 					 struct rbd_options *opts)
4061 {
4062 	struct rbd_device *rbd_dev;
4063 
4064 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4065 	if (!rbd_dev)
4066 		return NULL;
4067 
4068 	spin_lock_init(&rbd_dev->lock);
4069 	rbd_dev->flags = 0;
4070 	atomic_set(&rbd_dev->parent_ref, 0);
4071 	INIT_LIST_HEAD(&rbd_dev->node);
4072 	init_rwsem(&rbd_dev->header_rwsem);
4073 
4074 	rbd_dev->dev.bus = &rbd_bus_type;
4075 	rbd_dev->dev.type = &rbd_device_type;
4076 	rbd_dev->dev.parent = &rbd_root_dev;
4077 	device_initialize(&rbd_dev->dev);
4078 
4079 	rbd_dev->rbd_client = rbdc;
4080 	rbd_dev->spec = spec;
4081 	rbd_dev->opts = opts;
4082 
4083 	/* Initialize the layout used for all rbd requests */
4084 
4085 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4086 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4087 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4088 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4089 
4090 	/*
4091 	 * If this is a mapping rbd_dev (as opposed to a parent one),
4092 	 * pin our module.  We have a ref from do_rbd_add(), so use
4093 	 * __module_get().
4094 	 */
4095 	if (rbd_dev->opts)
4096 		__module_get(THIS_MODULE);
4097 
4098 	return rbd_dev;
4099 }
4100 
4101 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4102 {
4103 	if (rbd_dev)
4104 		put_device(&rbd_dev->dev);
4105 }
4106 
4107 /*
4108  * Get the size and object order for an image snapshot, or if
4109  * snap_id is CEPH_NOSNAP, gets this information for the base
4110  * image.
4111  */
4112 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4113 				u8 *order, u64 *snap_size)
4114 {
4115 	__le64 snapid = cpu_to_le64(snap_id);
4116 	int ret;
4117 	struct {
4118 		u8 order;
4119 		__le64 size;
4120 	} __attribute__ ((packed)) size_buf = { 0 };
4121 
4122 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4123 				"rbd", "get_size",
4124 				&snapid, sizeof (snapid),
4125 				&size_buf, sizeof (size_buf));
4126 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4127 	if (ret < 0)
4128 		return ret;
4129 	if (ret < sizeof (size_buf))
4130 		return -ERANGE;
4131 
4132 	if (order) {
4133 		*order = size_buf.order;
4134 		dout("  order %u", (unsigned int)*order);
4135 	}
4136 	*snap_size = le64_to_cpu(size_buf.size);
4137 
4138 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4139 		(unsigned long long)snap_id,
4140 		(unsigned long long)*snap_size);
4141 
4142 	return 0;
4143 }
4144 
4145 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4146 {
4147 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4148 					&rbd_dev->header.obj_order,
4149 					&rbd_dev->header.image_size);
4150 }
4151 
4152 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4153 {
4154 	void *reply_buf;
4155 	int ret;
4156 	void *p;
4157 
4158 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4159 	if (!reply_buf)
4160 		return -ENOMEM;
4161 
4162 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4163 				"rbd", "get_object_prefix", NULL, 0,
4164 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4165 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4166 	if (ret < 0)
4167 		goto out;
4168 
4169 	p = reply_buf;
4170 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4171 						p + ret, NULL, GFP_NOIO);
4172 	ret = 0;
4173 
4174 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4175 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4176 		rbd_dev->header.object_prefix = NULL;
4177 	} else {
4178 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4179 	}
4180 out:
4181 	kfree(reply_buf);
4182 
4183 	return ret;
4184 }
4185 
4186 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4187 		u64 *snap_features)
4188 {
4189 	__le64 snapid = cpu_to_le64(snap_id);
4190 	struct {
4191 		__le64 features;
4192 		__le64 incompat;
4193 	} __attribute__ ((packed)) features_buf = { 0 };
4194 	u64 incompat;
4195 	int ret;
4196 
4197 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4198 				"rbd", "get_features",
4199 				&snapid, sizeof (snapid),
4200 				&features_buf, sizeof (features_buf));
4201 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4202 	if (ret < 0)
4203 		return ret;
4204 	if (ret < sizeof (features_buf))
4205 		return -ERANGE;
4206 
4207 	incompat = le64_to_cpu(features_buf.incompat);
4208 	if (incompat & ~RBD_FEATURES_SUPPORTED)
4209 		return -ENXIO;
4210 
4211 	*snap_features = le64_to_cpu(features_buf.features);
4212 
4213 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4214 		(unsigned long long)snap_id,
4215 		(unsigned long long)*snap_features,
4216 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4217 
4218 	return 0;
4219 }
4220 
4221 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4222 {
4223 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4224 						&rbd_dev->header.features);
4225 }
4226 
4227 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4228 {
4229 	struct rbd_spec *parent_spec;
4230 	size_t size;
4231 	void *reply_buf = NULL;
4232 	__le64 snapid;
4233 	void *p;
4234 	void *end;
4235 	u64 pool_id;
4236 	char *image_id;
4237 	u64 snap_id;
4238 	u64 overlap;
4239 	int ret;
4240 
4241 	parent_spec = rbd_spec_alloc();
4242 	if (!parent_spec)
4243 		return -ENOMEM;
4244 
4245 	size = sizeof (__le64) +				/* pool_id */
4246 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4247 		sizeof (__le64) +				/* snap_id */
4248 		sizeof (__le64);				/* overlap */
4249 	reply_buf = kmalloc(size, GFP_KERNEL);
4250 	if (!reply_buf) {
4251 		ret = -ENOMEM;
4252 		goto out_err;
4253 	}
4254 
4255 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4256 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4257 				"rbd", "get_parent",
4258 				&snapid, sizeof (snapid),
4259 				reply_buf, size);
4260 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4261 	if (ret < 0)
4262 		goto out_err;
4263 
4264 	p = reply_buf;
4265 	end = reply_buf + ret;
4266 	ret = -ERANGE;
4267 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4268 	if (pool_id == CEPH_NOPOOL) {
4269 		/*
4270 		 * Either the parent never existed, or we have
4271 		 * record of it but the image got flattened so it no
4272 		 * longer has a parent.  When the parent of a
4273 		 * layered image disappears we immediately set the
4274 		 * overlap to 0.  The effect of this is that all new
4275 		 * requests will be treated as if the image had no
4276 		 * parent.
4277 		 */
4278 		if (rbd_dev->parent_overlap) {
4279 			rbd_dev->parent_overlap = 0;
4280 			rbd_dev_parent_put(rbd_dev);
4281 			pr_info("%s: clone image has been flattened\n",
4282 				rbd_dev->disk->disk_name);
4283 		}
4284 
4285 		goto out;	/* No parent?  No problem. */
4286 	}
4287 
4288 	/* The ceph file layout needs to fit pool id in 32 bits */
4289 
4290 	ret = -EIO;
4291 	if (pool_id > (u64)U32_MAX) {
4292 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4293 			(unsigned long long)pool_id, U32_MAX);
4294 		goto out_err;
4295 	}
4296 
4297 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4298 	if (IS_ERR(image_id)) {
4299 		ret = PTR_ERR(image_id);
4300 		goto out_err;
4301 	}
4302 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4303 	ceph_decode_64_safe(&p, end, overlap, out_err);
4304 
4305 	/*
4306 	 * The parent won't change (except when the clone is
4307 	 * flattened, already handled that).  So we only need to
4308 	 * record the parent spec we have not already done so.
4309 	 */
4310 	if (!rbd_dev->parent_spec) {
4311 		parent_spec->pool_id = pool_id;
4312 		parent_spec->image_id = image_id;
4313 		parent_spec->snap_id = snap_id;
4314 		rbd_dev->parent_spec = parent_spec;
4315 		parent_spec = NULL;	/* rbd_dev now owns this */
4316 	} else {
4317 		kfree(image_id);
4318 	}
4319 
4320 	/*
4321 	 * We always update the parent overlap.  If it's zero we issue
4322 	 * a warning, as we will proceed as if there was no parent.
4323 	 */
4324 	if (!overlap) {
4325 		if (parent_spec) {
4326 			/* refresh, careful to warn just once */
4327 			if (rbd_dev->parent_overlap)
4328 				rbd_warn(rbd_dev,
4329 				    "clone now standalone (overlap became 0)");
4330 		} else {
4331 			/* initial probe */
4332 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4333 		}
4334 	}
4335 	rbd_dev->parent_overlap = overlap;
4336 
4337 out:
4338 	ret = 0;
4339 out_err:
4340 	kfree(reply_buf);
4341 	rbd_spec_put(parent_spec);
4342 
4343 	return ret;
4344 }
4345 
4346 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4347 {
4348 	struct {
4349 		__le64 stripe_unit;
4350 		__le64 stripe_count;
4351 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4352 	size_t size = sizeof (striping_info_buf);
4353 	void *p;
4354 	u64 obj_size;
4355 	u64 stripe_unit;
4356 	u64 stripe_count;
4357 	int ret;
4358 
4359 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4360 				"rbd", "get_stripe_unit_count", NULL, 0,
4361 				(char *)&striping_info_buf, size);
4362 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4363 	if (ret < 0)
4364 		return ret;
4365 	if (ret < size)
4366 		return -ERANGE;
4367 
4368 	/*
4369 	 * We don't actually support the "fancy striping" feature
4370 	 * (STRIPINGV2) yet, but if the striping sizes are the
4371 	 * defaults the behavior is the same as before.  So find
4372 	 * out, and only fail if the image has non-default values.
4373 	 */
4374 	ret = -EINVAL;
4375 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4376 	p = &striping_info_buf;
4377 	stripe_unit = ceph_decode_64(&p);
4378 	if (stripe_unit != obj_size) {
4379 		rbd_warn(rbd_dev, "unsupported stripe unit "
4380 				"(got %llu want %llu)",
4381 				stripe_unit, obj_size);
4382 		return -EINVAL;
4383 	}
4384 	stripe_count = ceph_decode_64(&p);
4385 	if (stripe_count != 1) {
4386 		rbd_warn(rbd_dev, "unsupported stripe count "
4387 				"(got %llu want 1)", stripe_count);
4388 		return -EINVAL;
4389 	}
4390 	rbd_dev->header.stripe_unit = stripe_unit;
4391 	rbd_dev->header.stripe_count = stripe_count;
4392 
4393 	return 0;
4394 }
4395 
4396 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4397 {
4398 	size_t image_id_size;
4399 	char *image_id;
4400 	void *p;
4401 	void *end;
4402 	size_t size;
4403 	void *reply_buf = NULL;
4404 	size_t len = 0;
4405 	char *image_name = NULL;
4406 	int ret;
4407 
4408 	rbd_assert(!rbd_dev->spec->image_name);
4409 
4410 	len = strlen(rbd_dev->spec->image_id);
4411 	image_id_size = sizeof (__le32) + len;
4412 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4413 	if (!image_id)
4414 		return NULL;
4415 
4416 	p = image_id;
4417 	end = image_id + image_id_size;
4418 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4419 
4420 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4421 	reply_buf = kmalloc(size, GFP_KERNEL);
4422 	if (!reply_buf)
4423 		goto out;
4424 
4425 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4426 				"rbd", "dir_get_name",
4427 				image_id, image_id_size,
4428 				reply_buf, size);
4429 	if (ret < 0)
4430 		goto out;
4431 	p = reply_buf;
4432 	end = reply_buf + ret;
4433 
4434 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4435 	if (IS_ERR(image_name))
4436 		image_name = NULL;
4437 	else
4438 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4439 out:
4440 	kfree(reply_buf);
4441 	kfree(image_id);
4442 
4443 	return image_name;
4444 }
4445 
4446 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4447 {
4448 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4449 	const char *snap_name;
4450 	u32 which = 0;
4451 
4452 	/* Skip over names until we find the one we are looking for */
4453 
4454 	snap_name = rbd_dev->header.snap_names;
4455 	while (which < snapc->num_snaps) {
4456 		if (!strcmp(name, snap_name))
4457 			return snapc->snaps[which];
4458 		snap_name += strlen(snap_name) + 1;
4459 		which++;
4460 	}
4461 	return CEPH_NOSNAP;
4462 }
4463 
4464 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4465 {
4466 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4467 	u32 which;
4468 	bool found = false;
4469 	u64 snap_id;
4470 
4471 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4472 		const char *snap_name;
4473 
4474 		snap_id = snapc->snaps[which];
4475 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4476 		if (IS_ERR(snap_name)) {
4477 			/* ignore no-longer existing snapshots */
4478 			if (PTR_ERR(snap_name) == -ENOENT)
4479 				continue;
4480 			else
4481 				break;
4482 		}
4483 		found = !strcmp(name, snap_name);
4484 		kfree(snap_name);
4485 	}
4486 	return found ? snap_id : CEPH_NOSNAP;
4487 }
4488 
4489 /*
4490  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4491  * no snapshot by that name is found, or if an error occurs.
4492  */
4493 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4494 {
4495 	if (rbd_dev->image_format == 1)
4496 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4497 
4498 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4499 }
4500 
4501 /*
4502  * An image being mapped will have everything but the snap id.
4503  */
4504 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4505 {
4506 	struct rbd_spec *spec = rbd_dev->spec;
4507 
4508 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4509 	rbd_assert(spec->image_id && spec->image_name);
4510 	rbd_assert(spec->snap_name);
4511 
4512 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4513 		u64 snap_id;
4514 
4515 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4516 		if (snap_id == CEPH_NOSNAP)
4517 			return -ENOENT;
4518 
4519 		spec->snap_id = snap_id;
4520 	} else {
4521 		spec->snap_id = CEPH_NOSNAP;
4522 	}
4523 
4524 	return 0;
4525 }
4526 
4527 /*
4528  * A parent image will have all ids but none of the names.
4529  *
4530  * All names in an rbd spec are dynamically allocated.  It's OK if we
4531  * can't figure out the name for an image id.
4532  */
4533 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4534 {
4535 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4536 	struct rbd_spec *spec = rbd_dev->spec;
4537 	const char *pool_name;
4538 	const char *image_name;
4539 	const char *snap_name;
4540 	int ret;
4541 
4542 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
4543 	rbd_assert(spec->image_id);
4544 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
4545 
4546 	/* Get the pool name; we have to make our own copy of this */
4547 
4548 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4549 	if (!pool_name) {
4550 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4551 		return -EIO;
4552 	}
4553 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4554 	if (!pool_name)
4555 		return -ENOMEM;
4556 
4557 	/* Fetch the image name; tolerate failure here */
4558 
4559 	image_name = rbd_dev_image_name(rbd_dev);
4560 	if (!image_name)
4561 		rbd_warn(rbd_dev, "unable to get image name");
4562 
4563 	/* Fetch the snapshot name */
4564 
4565 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4566 	if (IS_ERR(snap_name)) {
4567 		ret = PTR_ERR(snap_name);
4568 		goto out_err;
4569 	}
4570 
4571 	spec->pool_name = pool_name;
4572 	spec->image_name = image_name;
4573 	spec->snap_name = snap_name;
4574 
4575 	return 0;
4576 
4577 out_err:
4578 	kfree(image_name);
4579 	kfree(pool_name);
4580 	return ret;
4581 }
4582 
4583 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4584 {
4585 	size_t size;
4586 	int ret;
4587 	void *reply_buf;
4588 	void *p;
4589 	void *end;
4590 	u64 seq;
4591 	u32 snap_count;
4592 	struct ceph_snap_context *snapc;
4593 	u32 i;
4594 
4595 	/*
4596 	 * We'll need room for the seq value (maximum snapshot id),
4597 	 * snapshot count, and array of that many snapshot ids.
4598 	 * For now we have a fixed upper limit on the number we're
4599 	 * prepared to receive.
4600 	 */
4601 	size = sizeof (__le64) + sizeof (__le32) +
4602 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4603 	reply_buf = kzalloc(size, GFP_KERNEL);
4604 	if (!reply_buf)
4605 		return -ENOMEM;
4606 
4607 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4608 				"rbd", "get_snapcontext", NULL, 0,
4609 				reply_buf, size);
4610 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4611 	if (ret < 0)
4612 		goto out;
4613 
4614 	p = reply_buf;
4615 	end = reply_buf + ret;
4616 	ret = -ERANGE;
4617 	ceph_decode_64_safe(&p, end, seq, out);
4618 	ceph_decode_32_safe(&p, end, snap_count, out);
4619 
4620 	/*
4621 	 * Make sure the reported number of snapshot ids wouldn't go
4622 	 * beyond the end of our buffer.  But before checking that,
4623 	 * make sure the computed size of the snapshot context we
4624 	 * allocate is representable in a size_t.
4625 	 */
4626 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4627 				 / sizeof (u64)) {
4628 		ret = -EINVAL;
4629 		goto out;
4630 	}
4631 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4632 		goto out;
4633 	ret = 0;
4634 
4635 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4636 	if (!snapc) {
4637 		ret = -ENOMEM;
4638 		goto out;
4639 	}
4640 	snapc->seq = seq;
4641 	for (i = 0; i < snap_count; i++)
4642 		snapc->snaps[i] = ceph_decode_64(&p);
4643 
4644 	ceph_put_snap_context(rbd_dev->header.snapc);
4645 	rbd_dev->header.snapc = snapc;
4646 
4647 	dout("  snap context seq = %llu, snap_count = %u\n",
4648 		(unsigned long long)seq, (unsigned int)snap_count);
4649 out:
4650 	kfree(reply_buf);
4651 
4652 	return ret;
4653 }
4654 
4655 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4656 					u64 snap_id)
4657 {
4658 	size_t size;
4659 	void *reply_buf;
4660 	__le64 snapid;
4661 	int ret;
4662 	void *p;
4663 	void *end;
4664 	char *snap_name;
4665 
4666 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4667 	reply_buf = kmalloc(size, GFP_KERNEL);
4668 	if (!reply_buf)
4669 		return ERR_PTR(-ENOMEM);
4670 
4671 	snapid = cpu_to_le64(snap_id);
4672 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4673 				"rbd", "get_snapshot_name",
4674 				&snapid, sizeof (snapid),
4675 				reply_buf, size);
4676 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4677 	if (ret < 0) {
4678 		snap_name = ERR_PTR(ret);
4679 		goto out;
4680 	}
4681 
4682 	p = reply_buf;
4683 	end = reply_buf + ret;
4684 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4685 	if (IS_ERR(snap_name))
4686 		goto out;
4687 
4688 	dout("  snap_id 0x%016llx snap_name = %s\n",
4689 		(unsigned long long)snap_id, snap_name);
4690 out:
4691 	kfree(reply_buf);
4692 
4693 	return snap_name;
4694 }
4695 
4696 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4697 {
4698 	bool first_time = rbd_dev->header.object_prefix == NULL;
4699 	int ret;
4700 
4701 	ret = rbd_dev_v2_image_size(rbd_dev);
4702 	if (ret)
4703 		return ret;
4704 
4705 	if (first_time) {
4706 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4707 		if (ret)
4708 			return ret;
4709 	}
4710 
4711 	ret = rbd_dev_v2_snap_context(rbd_dev);
4712 	if (ret && first_time) {
4713 		kfree(rbd_dev->header.object_prefix);
4714 		rbd_dev->header.object_prefix = NULL;
4715 	}
4716 
4717 	return ret;
4718 }
4719 
4720 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4721 {
4722 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4723 
4724 	if (rbd_dev->image_format == 1)
4725 		return rbd_dev_v1_header_info(rbd_dev);
4726 
4727 	return rbd_dev_v2_header_info(rbd_dev);
4728 }
4729 
4730 /*
4731  * Get a unique rbd identifier for the given new rbd_dev, and add
4732  * the rbd_dev to the global list.
4733  */
4734 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4735 {
4736 	int new_dev_id;
4737 
4738 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4739 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4740 				    GFP_KERNEL);
4741 	if (new_dev_id < 0)
4742 		return new_dev_id;
4743 
4744 	rbd_dev->dev_id = new_dev_id;
4745 
4746 	spin_lock(&rbd_dev_list_lock);
4747 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4748 	spin_unlock(&rbd_dev_list_lock);
4749 
4750 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4751 
4752 	return 0;
4753 }
4754 
4755 /*
4756  * Remove an rbd_dev from the global list, and record that its
4757  * identifier is no longer in use.
4758  */
4759 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4760 {
4761 	spin_lock(&rbd_dev_list_lock);
4762 	list_del_init(&rbd_dev->node);
4763 	spin_unlock(&rbd_dev_list_lock);
4764 
4765 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4766 
4767 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4768 }
4769 
4770 /*
4771  * Skips over white space at *buf, and updates *buf to point to the
4772  * first found non-space character (if any). Returns the length of
4773  * the token (string of non-white space characters) found.  Note
4774  * that *buf must be terminated with '\0'.
4775  */
4776 static inline size_t next_token(const char **buf)
4777 {
4778         /*
4779         * These are the characters that produce nonzero for
4780         * isspace() in the "C" and "POSIX" locales.
4781         */
4782         const char *spaces = " \f\n\r\t\v";
4783 
4784         *buf += strspn(*buf, spaces);	/* Find start of token */
4785 
4786 	return strcspn(*buf, spaces);   /* Return token length */
4787 }
4788 
4789 /*
4790  * Finds the next token in *buf, dynamically allocates a buffer big
4791  * enough to hold a copy of it, and copies the token into the new
4792  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4793  * that a duplicate buffer is created even for a zero-length token.
4794  *
4795  * Returns a pointer to the newly-allocated duplicate, or a null
4796  * pointer if memory for the duplicate was not available.  If
4797  * the lenp argument is a non-null pointer, the length of the token
4798  * (not including the '\0') is returned in *lenp.
4799  *
4800  * If successful, the *buf pointer will be updated to point beyond
4801  * the end of the found token.
4802  *
4803  * Note: uses GFP_KERNEL for allocation.
4804  */
4805 static inline char *dup_token(const char **buf, size_t *lenp)
4806 {
4807 	char *dup;
4808 	size_t len;
4809 
4810 	len = next_token(buf);
4811 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4812 	if (!dup)
4813 		return NULL;
4814 	*(dup + len) = '\0';
4815 	*buf += len;
4816 
4817 	if (lenp)
4818 		*lenp = len;
4819 
4820 	return dup;
4821 }
4822 
4823 /*
4824  * Parse the options provided for an "rbd add" (i.e., rbd image
4825  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4826  * and the data written is passed here via a NUL-terminated buffer.
4827  * Returns 0 if successful or an error code otherwise.
4828  *
4829  * The information extracted from these options is recorded in
4830  * the other parameters which return dynamically-allocated
4831  * structures:
4832  *  ceph_opts
4833  *      The address of a pointer that will refer to a ceph options
4834  *      structure.  Caller must release the returned pointer using
4835  *      ceph_destroy_options() when it is no longer needed.
4836  *  rbd_opts
4837  *	Address of an rbd options pointer.  Fully initialized by
4838  *	this function; caller must release with kfree().
4839  *  spec
4840  *	Address of an rbd image specification pointer.  Fully
4841  *	initialized by this function based on parsed options.
4842  *	Caller must release with rbd_spec_put().
4843  *
4844  * The options passed take this form:
4845  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4846  * where:
4847  *  <mon_addrs>
4848  *      A comma-separated list of one or more monitor addresses.
4849  *      A monitor address is an ip address, optionally followed
4850  *      by a port number (separated by a colon).
4851  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4852  *  <options>
4853  *      A comma-separated list of ceph and/or rbd options.
4854  *  <pool_name>
4855  *      The name of the rados pool containing the rbd image.
4856  *  <image_name>
4857  *      The name of the image in that pool to map.
4858  *  <snap_id>
4859  *      An optional snapshot id.  If provided, the mapping will
4860  *      present data from the image at the time that snapshot was
4861  *      created.  The image head is used if no snapshot id is
4862  *      provided.  Snapshot mappings are always read-only.
4863  */
4864 static int rbd_add_parse_args(const char *buf,
4865 				struct ceph_options **ceph_opts,
4866 				struct rbd_options **opts,
4867 				struct rbd_spec **rbd_spec)
4868 {
4869 	size_t len;
4870 	char *options;
4871 	const char *mon_addrs;
4872 	char *snap_name;
4873 	size_t mon_addrs_size;
4874 	struct rbd_spec *spec = NULL;
4875 	struct rbd_options *rbd_opts = NULL;
4876 	struct ceph_options *copts;
4877 	int ret;
4878 
4879 	/* The first four tokens are required */
4880 
4881 	len = next_token(&buf);
4882 	if (!len) {
4883 		rbd_warn(NULL, "no monitor address(es) provided");
4884 		return -EINVAL;
4885 	}
4886 	mon_addrs = buf;
4887 	mon_addrs_size = len + 1;
4888 	buf += len;
4889 
4890 	ret = -EINVAL;
4891 	options = dup_token(&buf, NULL);
4892 	if (!options)
4893 		return -ENOMEM;
4894 	if (!*options) {
4895 		rbd_warn(NULL, "no options provided");
4896 		goto out_err;
4897 	}
4898 
4899 	spec = rbd_spec_alloc();
4900 	if (!spec)
4901 		goto out_mem;
4902 
4903 	spec->pool_name = dup_token(&buf, NULL);
4904 	if (!spec->pool_name)
4905 		goto out_mem;
4906 	if (!*spec->pool_name) {
4907 		rbd_warn(NULL, "no pool name provided");
4908 		goto out_err;
4909 	}
4910 
4911 	spec->image_name = dup_token(&buf, NULL);
4912 	if (!spec->image_name)
4913 		goto out_mem;
4914 	if (!*spec->image_name) {
4915 		rbd_warn(NULL, "no image name provided");
4916 		goto out_err;
4917 	}
4918 
4919 	/*
4920 	 * Snapshot name is optional; default is to use "-"
4921 	 * (indicating the head/no snapshot).
4922 	 */
4923 	len = next_token(&buf);
4924 	if (!len) {
4925 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4926 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4927 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4928 		ret = -ENAMETOOLONG;
4929 		goto out_err;
4930 	}
4931 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4932 	if (!snap_name)
4933 		goto out_mem;
4934 	*(snap_name + len) = '\0';
4935 	spec->snap_name = snap_name;
4936 
4937 	/* Initialize all rbd options to the defaults */
4938 
4939 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4940 	if (!rbd_opts)
4941 		goto out_mem;
4942 
4943 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4944 	rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4945 
4946 	copts = ceph_parse_options(options, mon_addrs,
4947 					mon_addrs + mon_addrs_size - 1,
4948 					parse_rbd_opts_token, rbd_opts);
4949 	if (IS_ERR(copts)) {
4950 		ret = PTR_ERR(copts);
4951 		goto out_err;
4952 	}
4953 	kfree(options);
4954 
4955 	*ceph_opts = copts;
4956 	*opts = rbd_opts;
4957 	*rbd_spec = spec;
4958 
4959 	return 0;
4960 out_mem:
4961 	ret = -ENOMEM;
4962 out_err:
4963 	kfree(rbd_opts);
4964 	rbd_spec_put(spec);
4965 	kfree(options);
4966 
4967 	return ret;
4968 }
4969 
4970 /*
4971  * Return pool id (>= 0) or a negative error code.
4972  */
4973 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4974 {
4975 	struct ceph_options *opts = rbdc->client->options;
4976 	u64 newest_epoch;
4977 	int tries = 0;
4978 	int ret;
4979 
4980 again:
4981 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4982 	if (ret == -ENOENT && tries++ < 1) {
4983 		ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4984 					       &newest_epoch);
4985 		if (ret < 0)
4986 			return ret;
4987 
4988 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4989 			ceph_monc_request_next_osdmap(&rbdc->client->monc);
4990 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4991 						     newest_epoch,
4992 						     opts->mount_timeout);
4993 			goto again;
4994 		} else {
4995 			/* the osdmap we have is new enough */
4996 			return -ENOENT;
4997 		}
4998 	}
4999 
5000 	return ret;
5001 }
5002 
5003 /*
5004  * An rbd format 2 image has a unique identifier, distinct from the
5005  * name given to it by the user.  Internally, that identifier is
5006  * what's used to specify the names of objects related to the image.
5007  *
5008  * A special "rbd id" object is used to map an rbd image name to its
5009  * id.  If that object doesn't exist, then there is no v2 rbd image
5010  * with the supplied name.
5011  *
5012  * This function will record the given rbd_dev's image_id field if
5013  * it can be determined, and in that case will return 0.  If any
5014  * errors occur a negative errno will be returned and the rbd_dev's
5015  * image_id field will be unchanged (and should be NULL).
5016  */
5017 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5018 {
5019 	int ret;
5020 	size_t size;
5021 	char *object_name;
5022 	void *response;
5023 	char *image_id;
5024 
5025 	/*
5026 	 * When probing a parent image, the image id is already
5027 	 * known (and the image name likely is not).  There's no
5028 	 * need to fetch the image id again in this case.  We
5029 	 * do still need to set the image format though.
5030 	 */
5031 	if (rbd_dev->spec->image_id) {
5032 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5033 
5034 		return 0;
5035 	}
5036 
5037 	/*
5038 	 * First, see if the format 2 image id file exists, and if
5039 	 * so, get the image's persistent id from it.
5040 	 */
5041 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5042 	object_name = kmalloc(size, GFP_NOIO);
5043 	if (!object_name)
5044 		return -ENOMEM;
5045 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5046 	dout("rbd id object name is %s\n", object_name);
5047 
5048 	/* Response will be an encoded string, which includes a length */
5049 
5050 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5051 	response = kzalloc(size, GFP_NOIO);
5052 	if (!response) {
5053 		ret = -ENOMEM;
5054 		goto out;
5055 	}
5056 
5057 	/* If it doesn't exist we'll assume it's a format 1 image */
5058 
5059 	ret = rbd_obj_method_sync(rbd_dev, object_name,
5060 				"rbd", "get_id", NULL, 0,
5061 				response, RBD_IMAGE_ID_LEN_MAX);
5062 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5063 	if (ret == -ENOENT) {
5064 		image_id = kstrdup("", GFP_KERNEL);
5065 		ret = image_id ? 0 : -ENOMEM;
5066 		if (!ret)
5067 			rbd_dev->image_format = 1;
5068 	} else if (ret >= 0) {
5069 		void *p = response;
5070 
5071 		image_id = ceph_extract_encoded_string(&p, p + ret,
5072 						NULL, GFP_NOIO);
5073 		ret = PTR_ERR_OR_ZERO(image_id);
5074 		if (!ret)
5075 			rbd_dev->image_format = 2;
5076 	}
5077 
5078 	if (!ret) {
5079 		rbd_dev->spec->image_id = image_id;
5080 		dout("image_id is %s\n", image_id);
5081 	}
5082 out:
5083 	kfree(response);
5084 	kfree(object_name);
5085 
5086 	return ret;
5087 }
5088 
5089 /*
5090  * Undo whatever state changes are made by v1 or v2 header info
5091  * call.
5092  */
5093 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5094 {
5095 	struct rbd_image_header	*header;
5096 
5097 	rbd_dev_parent_put(rbd_dev);
5098 
5099 	/* Free dynamic fields from the header, then zero it out */
5100 
5101 	header = &rbd_dev->header;
5102 	ceph_put_snap_context(header->snapc);
5103 	kfree(header->snap_sizes);
5104 	kfree(header->snap_names);
5105 	kfree(header->object_prefix);
5106 	memset(header, 0, sizeof (*header));
5107 }
5108 
5109 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5110 {
5111 	int ret;
5112 
5113 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5114 	if (ret)
5115 		goto out_err;
5116 
5117 	/*
5118 	 * Get the and check features for the image.  Currently the
5119 	 * features are assumed to never change.
5120 	 */
5121 	ret = rbd_dev_v2_features(rbd_dev);
5122 	if (ret)
5123 		goto out_err;
5124 
5125 	/* If the image supports fancy striping, get its parameters */
5126 
5127 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5128 		ret = rbd_dev_v2_striping_info(rbd_dev);
5129 		if (ret < 0)
5130 			goto out_err;
5131 	}
5132 	/* No support for crypto and compression type format 2 images */
5133 
5134 	return 0;
5135 out_err:
5136 	rbd_dev->header.features = 0;
5137 	kfree(rbd_dev->header.object_prefix);
5138 	rbd_dev->header.object_prefix = NULL;
5139 
5140 	return ret;
5141 }
5142 
5143 /*
5144  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5145  * rbd_dev_image_probe() recursion depth, which means it's also the
5146  * length of the already discovered part of the parent chain.
5147  */
5148 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5149 {
5150 	struct rbd_device *parent = NULL;
5151 	int ret;
5152 
5153 	if (!rbd_dev->parent_spec)
5154 		return 0;
5155 
5156 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5157 		pr_info("parent chain is too long (%d)\n", depth);
5158 		ret = -EINVAL;
5159 		goto out_err;
5160 	}
5161 
5162 	parent = rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec,
5163 				NULL);
5164 	if (!parent) {
5165 		ret = -ENOMEM;
5166 		goto out_err;
5167 	}
5168 
5169 	/*
5170 	 * Images related by parent/child relationships always share
5171 	 * rbd_client and spec/parent_spec, so bump their refcounts.
5172 	 */
5173 	__rbd_get_client(rbd_dev->rbd_client);
5174 	rbd_spec_get(rbd_dev->parent_spec);
5175 
5176 	ret = rbd_dev_image_probe(parent, depth);
5177 	if (ret < 0)
5178 		goto out_err;
5179 
5180 	rbd_dev->parent = parent;
5181 	atomic_set(&rbd_dev->parent_ref, 1);
5182 	return 0;
5183 
5184 out_err:
5185 	rbd_dev_unparent(rbd_dev);
5186 	rbd_dev_destroy(parent);
5187 	return ret;
5188 }
5189 
5190 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5191 {
5192 	int ret;
5193 
5194 	/* Get an id and fill in device name. */
5195 
5196 	ret = rbd_dev_id_get(rbd_dev);
5197 	if (ret)
5198 		return ret;
5199 
5200 	BUILD_BUG_ON(DEV_NAME_LEN
5201 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5202 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5203 
5204 	/* Record our major and minor device numbers. */
5205 
5206 	if (!single_major) {
5207 		ret = register_blkdev(0, rbd_dev->name);
5208 		if (ret < 0)
5209 			goto err_out_id;
5210 
5211 		rbd_dev->major = ret;
5212 		rbd_dev->minor = 0;
5213 	} else {
5214 		rbd_dev->major = rbd_major;
5215 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5216 	}
5217 
5218 	/* Set up the blkdev mapping. */
5219 
5220 	ret = rbd_init_disk(rbd_dev);
5221 	if (ret)
5222 		goto err_out_blkdev;
5223 
5224 	ret = rbd_dev_mapping_set(rbd_dev);
5225 	if (ret)
5226 		goto err_out_disk;
5227 
5228 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5229 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5230 
5231 	dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5232 	ret = device_add(&rbd_dev->dev);
5233 	if (ret)
5234 		goto err_out_mapping;
5235 
5236 	/* Everything's ready.  Announce the disk to the world. */
5237 
5238 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5239 	add_disk(rbd_dev->disk);
5240 
5241 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5242 		(unsigned long long) rbd_dev->mapping.size);
5243 
5244 	return ret;
5245 
5246 err_out_mapping:
5247 	rbd_dev_mapping_clear(rbd_dev);
5248 err_out_disk:
5249 	rbd_free_disk(rbd_dev);
5250 err_out_blkdev:
5251 	if (!single_major)
5252 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5253 err_out_id:
5254 	rbd_dev_id_put(rbd_dev);
5255 	return ret;
5256 }
5257 
5258 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5259 {
5260 	struct rbd_spec *spec = rbd_dev->spec;
5261 	size_t size;
5262 
5263 	/* Record the header object name for this rbd image. */
5264 
5265 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5266 
5267 	if (rbd_dev->image_format == 1)
5268 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5269 	else
5270 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5271 
5272 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5273 	if (!rbd_dev->header_name)
5274 		return -ENOMEM;
5275 
5276 	if (rbd_dev->image_format == 1)
5277 		sprintf(rbd_dev->header_name, "%s%s",
5278 			spec->image_name, RBD_SUFFIX);
5279 	else
5280 		sprintf(rbd_dev->header_name, "%s%s",
5281 			RBD_HEADER_PREFIX, spec->image_id);
5282 	return 0;
5283 }
5284 
5285 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5286 {
5287 	rbd_dev_unprobe(rbd_dev);
5288 	kfree(rbd_dev->header_name);
5289 	rbd_dev->header_name = NULL;
5290 	rbd_dev->image_format = 0;
5291 	kfree(rbd_dev->spec->image_id);
5292 	rbd_dev->spec->image_id = NULL;
5293 
5294 	rbd_dev_destroy(rbd_dev);
5295 }
5296 
5297 /*
5298  * Probe for the existence of the header object for the given rbd
5299  * device.  If this image is the one being mapped (i.e., not a
5300  * parent), initiate a watch on its header object before using that
5301  * object to get detailed information about the rbd image.
5302  */
5303 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5304 {
5305 	int ret;
5306 
5307 	/*
5308 	 * Get the id from the image id object.  Unless there's an
5309 	 * error, rbd_dev->spec->image_id will be filled in with
5310 	 * a dynamically-allocated string, and rbd_dev->image_format
5311 	 * will be set to either 1 or 2.
5312 	 */
5313 	ret = rbd_dev_image_id(rbd_dev);
5314 	if (ret)
5315 		return ret;
5316 
5317 	ret = rbd_dev_header_name(rbd_dev);
5318 	if (ret)
5319 		goto err_out_format;
5320 
5321 	if (!depth) {
5322 		ret = rbd_dev_header_watch_sync(rbd_dev);
5323 		if (ret) {
5324 			if (ret == -ENOENT)
5325 				pr_info("image %s/%s does not exist\n",
5326 					rbd_dev->spec->pool_name,
5327 					rbd_dev->spec->image_name);
5328 			goto out_header_name;
5329 		}
5330 	}
5331 
5332 	ret = rbd_dev_header_info(rbd_dev);
5333 	if (ret)
5334 		goto err_out_watch;
5335 
5336 	/*
5337 	 * If this image is the one being mapped, we have pool name and
5338 	 * id, image name and id, and snap name - need to fill snap id.
5339 	 * Otherwise this is a parent image, identified by pool, image
5340 	 * and snap ids - need to fill in names for those ids.
5341 	 */
5342 	if (!depth)
5343 		ret = rbd_spec_fill_snap_id(rbd_dev);
5344 	else
5345 		ret = rbd_spec_fill_names(rbd_dev);
5346 	if (ret) {
5347 		if (ret == -ENOENT)
5348 			pr_info("snap %s/%s@%s does not exist\n",
5349 				rbd_dev->spec->pool_name,
5350 				rbd_dev->spec->image_name,
5351 				rbd_dev->spec->snap_name);
5352 		goto err_out_probe;
5353 	}
5354 
5355 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5356 		ret = rbd_dev_v2_parent_info(rbd_dev);
5357 		if (ret)
5358 			goto err_out_probe;
5359 
5360 		/*
5361 		 * Need to warn users if this image is the one being
5362 		 * mapped and has a parent.
5363 		 */
5364 		if (!depth && rbd_dev->parent_spec)
5365 			rbd_warn(rbd_dev,
5366 				 "WARNING: kernel layering is EXPERIMENTAL!");
5367 	}
5368 
5369 	ret = rbd_dev_probe_parent(rbd_dev, depth);
5370 	if (ret)
5371 		goto err_out_probe;
5372 
5373 	dout("discovered format %u image, header name is %s\n",
5374 		rbd_dev->image_format, rbd_dev->header_name);
5375 	return 0;
5376 
5377 err_out_probe:
5378 	rbd_dev_unprobe(rbd_dev);
5379 err_out_watch:
5380 	if (!depth)
5381 		rbd_dev_header_unwatch_sync(rbd_dev);
5382 out_header_name:
5383 	kfree(rbd_dev->header_name);
5384 	rbd_dev->header_name = NULL;
5385 err_out_format:
5386 	rbd_dev->image_format = 0;
5387 	kfree(rbd_dev->spec->image_id);
5388 	rbd_dev->spec->image_id = NULL;
5389 	return ret;
5390 }
5391 
5392 static ssize_t do_rbd_add(struct bus_type *bus,
5393 			  const char *buf,
5394 			  size_t count)
5395 {
5396 	struct rbd_device *rbd_dev = NULL;
5397 	struct ceph_options *ceph_opts = NULL;
5398 	struct rbd_options *rbd_opts = NULL;
5399 	struct rbd_spec *spec = NULL;
5400 	struct rbd_client *rbdc;
5401 	bool read_only;
5402 	int rc;
5403 
5404 	if (!try_module_get(THIS_MODULE))
5405 		return -ENODEV;
5406 
5407 	/* parse add command */
5408 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5409 	if (rc < 0)
5410 		goto out;
5411 
5412 	rbdc = rbd_get_client(ceph_opts);
5413 	if (IS_ERR(rbdc)) {
5414 		rc = PTR_ERR(rbdc);
5415 		goto err_out_args;
5416 	}
5417 
5418 	/* pick the pool */
5419 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5420 	if (rc < 0) {
5421 		if (rc == -ENOENT)
5422 			pr_info("pool %s does not exist\n", spec->pool_name);
5423 		goto err_out_client;
5424 	}
5425 	spec->pool_id = (u64)rc;
5426 
5427 	/* The ceph file layout needs to fit pool id in 32 bits */
5428 
5429 	if (spec->pool_id > (u64)U32_MAX) {
5430 		rbd_warn(NULL, "pool id too large (%llu > %u)",
5431 				(unsigned long long)spec->pool_id, U32_MAX);
5432 		rc = -EIO;
5433 		goto err_out_client;
5434 	}
5435 
5436 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5437 	if (!rbd_dev) {
5438 		rc = -ENOMEM;
5439 		goto err_out_client;
5440 	}
5441 	rbdc = NULL;		/* rbd_dev now owns this */
5442 	spec = NULL;		/* rbd_dev now owns this */
5443 	rbd_opts = NULL;	/* rbd_dev now owns this */
5444 
5445 	rc = rbd_dev_image_probe(rbd_dev, 0);
5446 	if (rc < 0)
5447 		goto err_out_rbd_dev;
5448 
5449 	/* If we are mapping a snapshot it must be marked read-only */
5450 
5451 	read_only = rbd_dev->opts->read_only;
5452 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5453 		read_only = true;
5454 	rbd_dev->mapping.read_only = read_only;
5455 
5456 	rc = rbd_dev_device_setup(rbd_dev);
5457 	if (rc) {
5458 		/*
5459 		 * rbd_dev_header_unwatch_sync() can't be moved into
5460 		 * rbd_dev_image_release() without refactoring, see
5461 		 * commit 1f3ef78861ac.
5462 		 */
5463 		rbd_dev_header_unwatch_sync(rbd_dev);
5464 		rbd_dev_image_release(rbd_dev);
5465 		goto out;
5466 	}
5467 
5468 	rc = count;
5469 out:
5470 	module_put(THIS_MODULE);
5471 	return rc;
5472 
5473 err_out_rbd_dev:
5474 	rbd_dev_destroy(rbd_dev);
5475 err_out_client:
5476 	rbd_put_client(rbdc);
5477 err_out_args:
5478 	rbd_spec_put(spec);
5479 	kfree(rbd_opts);
5480 	goto out;
5481 }
5482 
5483 static ssize_t rbd_add(struct bus_type *bus,
5484 		       const char *buf,
5485 		       size_t count)
5486 {
5487 	if (single_major)
5488 		return -EINVAL;
5489 
5490 	return do_rbd_add(bus, buf, count);
5491 }
5492 
5493 static ssize_t rbd_add_single_major(struct bus_type *bus,
5494 				    const char *buf,
5495 				    size_t count)
5496 {
5497 	return do_rbd_add(bus, buf, count);
5498 }
5499 
5500 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5501 {
5502 	rbd_free_disk(rbd_dev);
5503 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5504 	device_del(&rbd_dev->dev);
5505 	rbd_dev_mapping_clear(rbd_dev);
5506 	if (!single_major)
5507 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5508 	rbd_dev_id_put(rbd_dev);
5509 }
5510 
5511 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5512 {
5513 	while (rbd_dev->parent) {
5514 		struct rbd_device *first = rbd_dev;
5515 		struct rbd_device *second = first->parent;
5516 		struct rbd_device *third;
5517 
5518 		/*
5519 		 * Follow to the parent with no grandparent and
5520 		 * remove it.
5521 		 */
5522 		while (second && (third = second->parent)) {
5523 			first = second;
5524 			second = third;
5525 		}
5526 		rbd_assert(second);
5527 		rbd_dev_image_release(second);
5528 		first->parent = NULL;
5529 		first->parent_overlap = 0;
5530 
5531 		rbd_assert(first->parent_spec);
5532 		rbd_spec_put(first->parent_spec);
5533 		first->parent_spec = NULL;
5534 	}
5535 }
5536 
5537 static ssize_t do_rbd_remove(struct bus_type *bus,
5538 			     const char *buf,
5539 			     size_t count)
5540 {
5541 	struct rbd_device *rbd_dev = NULL;
5542 	struct list_head *tmp;
5543 	int dev_id;
5544 	unsigned long ul;
5545 	bool already = false;
5546 	int ret;
5547 
5548 	ret = kstrtoul(buf, 10, &ul);
5549 	if (ret)
5550 		return ret;
5551 
5552 	/* convert to int; abort if we lost anything in the conversion */
5553 	dev_id = (int)ul;
5554 	if (dev_id != ul)
5555 		return -EINVAL;
5556 
5557 	ret = -ENOENT;
5558 	spin_lock(&rbd_dev_list_lock);
5559 	list_for_each(tmp, &rbd_dev_list) {
5560 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5561 		if (rbd_dev->dev_id == dev_id) {
5562 			ret = 0;
5563 			break;
5564 		}
5565 	}
5566 	if (!ret) {
5567 		spin_lock_irq(&rbd_dev->lock);
5568 		if (rbd_dev->open_count)
5569 			ret = -EBUSY;
5570 		else
5571 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5572 							&rbd_dev->flags);
5573 		spin_unlock_irq(&rbd_dev->lock);
5574 	}
5575 	spin_unlock(&rbd_dev_list_lock);
5576 	if (ret < 0 || already)
5577 		return ret;
5578 
5579 	rbd_dev_header_unwatch_sync(rbd_dev);
5580 	/*
5581 	 * flush remaining watch callbacks - these must be complete
5582 	 * before the osd_client is shutdown
5583 	 */
5584 	dout("%s: flushing notifies", __func__);
5585 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5586 
5587 	/*
5588 	 * Don't free anything from rbd_dev->disk until after all
5589 	 * notifies are completely processed. Otherwise
5590 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5591 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5592 	 */
5593 	rbd_dev_device_release(rbd_dev);
5594 	rbd_dev_image_release(rbd_dev);
5595 
5596 	return count;
5597 }
5598 
5599 static ssize_t rbd_remove(struct bus_type *bus,
5600 			  const char *buf,
5601 			  size_t count)
5602 {
5603 	if (single_major)
5604 		return -EINVAL;
5605 
5606 	return do_rbd_remove(bus, buf, count);
5607 }
5608 
5609 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5610 				       const char *buf,
5611 				       size_t count)
5612 {
5613 	return do_rbd_remove(bus, buf, count);
5614 }
5615 
5616 /*
5617  * create control files in sysfs
5618  * /sys/bus/rbd/...
5619  */
5620 static int rbd_sysfs_init(void)
5621 {
5622 	int ret;
5623 
5624 	ret = device_register(&rbd_root_dev);
5625 	if (ret < 0)
5626 		return ret;
5627 
5628 	ret = bus_register(&rbd_bus_type);
5629 	if (ret < 0)
5630 		device_unregister(&rbd_root_dev);
5631 
5632 	return ret;
5633 }
5634 
5635 static void rbd_sysfs_cleanup(void)
5636 {
5637 	bus_unregister(&rbd_bus_type);
5638 	device_unregister(&rbd_root_dev);
5639 }
5640 
5641 static int rbd_slab_init(void)
5642 {
5643 	rbd_assert(!rbd_img_request_cache);
5644 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
5645 	if (!rbd_img_request_cache)
5646 		return -ENOMEM;
5647 
5648 	rbd_assert(!rbd_obj_request_cache);
5649 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
5650 	if (!rbd_obj_request_cache)
5651 		goto out_err;
5652 
5653 	rbd_assert(!rbd_segment_name_cache);
5654 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5655 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5656 	if (rbd_segment_name_cache)
5657 		return 0;
5658 out_err:
5659 	kmem_cache_destroy(rbd_obj_request_cache);
5660 	rbd_obj_request_cache = NULL;
5661 
5662 	kmem_cache_destroy(rbd_img_request_cache);
5663 	rbd_img_request_cache = NULL;
5664 
5665 	return -ENOMEM;
5666 }
5667 
5668 static void rbd_slab_exit(void)
5669 {
5670 	rbd_assert(rbd_segment_name_cache);
5671 	kmem_cache_destroy(rbd_segment_name_cache);
5672 	rbd_segment_name_cache = NULL;
5673 
5674 	rbd_assert(rbd_obj_request_cache);
5675 	kmem_cache_destroy(rbd_obj_request_cache);
5676 	rbd_obj_request_cache = NULL;
5677 
5678 	rbd_assert(rbd_img_request_cache);
5679 	kmem_cache_destroy(rbd_img_request_cache);
5680 	rbd_img_request_cache = NULL;
5681 }
5682 
5683 static int __init rbd_init(void)
5684 {
5685 	int rc;
5686 
5687 	if (!libceph_compatible(NULL)) {
5688 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5689 		return -EINVAL;
5690 	}
5691 
5692 	rc = rbd_slab_init();
5693 	if (rc)
5694 		return rc;
5695 
5696 	/*
5697 	 * The number of active work items is limited by the number of
5698 	 * rbd devices * queue depth, so leave @max_active at default.
5699 	 */
5700 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5701 	if (!rbd_wq) {
5702 		rc = -ENOMEM;
5703 		goto err_out_slab;
5704 	}
5705 
5706 	if (single_major) {
5707 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5708 		if (rbd_major < 0) {
5709 			rc = rbd_major;
5710 			goto err_out_wq;
5711 		}
5712 	}
5713 
5714 	rc = rbd_sysfs_init();
5715 	if (rc)
5716 		goto err_out_blkdev;
5717 
5718 	if (single_major)
5719 		pr_info("loaded (major %d)\n", rbd_major);
5720 	else
5721 		pr_info("loaded\n");
5722 
5723 	return 0;
5724 
5725 err_out_blkdev:
5726 	if (single_major)
5727 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5728 err_out_wq:
5729 	destroy_workqueue(rbd_wq);
5730 err_out_slab:
5731 	rbd_slab_exit();
5732 	return rc;
5733 }
5734 
5735 static void __exit rbd_exit(void)
5736 {
5737 	ida_destroy(&rbd_dev_id_ida);
5738 	rbd_sysfs_cleanup();
5739 	if (single_major)
5740 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5741 	destroy_workqueue(rbd_wq);
5742 	rbd_slab_exit();
5743 }
5744 
5745 module_init(rbd_init);
5746 module_exit(rbd_exit);
5747 
5748 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5749 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5750 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5751 /* following authorship retained from original osdblk.c */
5752 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5753 
5754 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5755 MODULE_LICENSE("GPL");
5756