xref: /openbmc/linux/drivers/block/rbd.c (revision 09fe05c5)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341 
342 	struct list_head	lock_item;
343 	struct list_head	object_extents;	/* obj_req.ex structs */
344 
345 	struct mutex		state_mutex;
346 	struct pending_result	pending;
347 	struct work_struct	work;
348 	int			work_result;
349 };
350 
351 #define for_each_obj_request(ireq, oreq) \
352 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355 
356 enum rbd_watch_state {
357 	RBD_WATCH_STATE_UNREGISTERED,
358 	RBD_WATCH_STATE_REGISTERED,
359 	RBD_WATCH_STATE_ERROR,
360 };
361 
362 enum rbd_lock_state {
363 	RBD_LOCK_STATE_UNLOCKED,
364 	RBD_LOCK_STATE_LOCKED,
365 	RBD_LOCK_STATE_RELEASING,
366 };
367 
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 	u64 gid;
371 	u64 handle;
372 };
373 
374 struct rbd_mapping {
375 	u64                     size;
376 };
377 
378 /*
379  * a single device
380  */
381 struct rbd_device {
382 	int			dev_id;		/* blkdev unique id */
383 
384 	int			major;		/* blkdev assigned major */
385 	int			minor;
386 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387 
388 	u32			image_format;	/* Either 1 or 2 */
389 	struct rbd_client	*rbd_client;
390 
391 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392 
393 	spinlock_t		lock;		/* queue, flags, open_count */
394 
395 	struct rbd_image_header	header;
396 	unsigned long		flags;		/* possibly lock protected */
397 	struct rbd_spec		*spec;
398 	struct rbd_options	*opts;
399 	char			*config_info;	/* add{,_single_major} string */
400 
401 	struct ceph_object_id	header_oid;
402 	struct ceph_object_locator header_oloc;
403 
404 	struct ceph_file_layout	layout;		/* used for all rbd requests */
405 
406 	struct mutex		watch_mutex;
407 	enum rbd_watch_state	watch_state;
408 	struct ceph_osd_linger_request *watch_handle;
409 	u64			watch_cookie;
410 	struct delayed_work	watch_dwork;
411 
412 	struct rw_semaphore	lock_rwsem;
413 	enum rbd_lock_state	lock_state;
414 	char			lock_cookie[32];
415 	struct rbd_client_id	owner_cid;
416 	struct work_struct	acquired_lock_work;
417 	struct work_struct	released_lock_work;
418 	struct delayed_work	lock_dwork;
419 	struct work_struct	unlock_work;
420 	spinlock_t		lock_lists_lock;
421 	struct list_head	acquiring_list;
422 	struct list_head	running_list;
423 	struct completion	acquire_wait;
424 	int			acquire_err;
425 	struct completion	releasing_wait;
426 
427 	spinlock_t		object_map_lock;
428 	u8			*object_map;
429 	u64			object_map_size;	/* in objects */
430 	u64			object_map_flags;
431 
432 	struct workqueue_struct	*task_wq;
433 
434 	struct rbd_spec		*parent_spec;
435 	u64			parent_overlap;
436 	atomic_t		parent_ref;
437 	struct rbd_device	*parent;
438 
439 	/* Block layer tags. */
440 	struct blk_mq_tag_set	tag_set;
441 
442 	/* protects updating the header */
443 	struct rw_semaphore     header_rwsem;
444 
445 	struct rbd_mapping	mapping;
446 
447 	struct list_head	node;
448 
449 	/* sysfs related */
450 	struct device		dev;
451 	unsigned long		open_count;	/* protected by lock */
452 };
453 
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460 	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462 	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464 
465 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466 
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469 
470 static LIST_HEAD(rbd_client_list);		/* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472 
473 /* Slab caches for frequently-allocated structures */
474 
475 static struct kmem_cache	*rbd_img_request_cache;
476 static struct kmem_cache	*rbd_obj_request_cache;
477 
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480 
481 static struct workqueue_struct *rbd_wq;
482 
483 static struct ceph_snap_context rbd_empty_snapc = {
484 	.nref = REFCOUNT_INIT(1),
485 };
486 
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493 
494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(const struct bus_type *bus, const char *buf,
496 			    size_t count);
497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
498 				      size_t count);
499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
500 					 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502 
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507 
508 static int minor_to_rbd_dev_id(int minor)
509 {
510 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512 
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517 
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522 
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 	lockdep_assert_held(&rbd_dev->lock_rwsem);
526 
527 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530 
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 	bool is_lock_owner;
534 
535 	down_read(&rbd_dev->lock_rwsem);
536 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 	up_read(&rbd_dev->lock_rwsem);
538 	return is_lock_owner;
539 }
540 
541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf)
542 {
543 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545 
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551 
552 static struct attribute *rbd_bus_attrs[] = {
553 	&bus_attr_add.attr,
554 	&bus_attr_remove.attr,
555 	&bus_attr_add_single_major.attr,
556 	&bus_attr_remove_single_major.attr,
557 	&bus_attr_supported_features.attr,
558 	NULL,
559 };
560 
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 				  struct attribute *attr, int index)
563 {
564 	if (!single_major &&
565 	    (attr == &bus_attr_add_single_major.attr ||
566 	     attr == &bus_attr_remove_single_major.attr))
567 		return 0;
568 
569 	return attr->mode;
570 }
571 
572 static const struct attribute_group rbd_bus_group = {
573 	.attrs = rbd_bus_attrs,
574 	.is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577 
578 static struct bus_type rbd_bus_type = {
579 	.name		= "rbd",
580 	.bus_groups	= rbd_bus_groups,
581 };
582 
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586 
587 static struct device rbd_root_dev = {
588 	.init_name =    "rbd",
589 	.release =      rbd_root_dev_release,
590 };
591 
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 
602 	if (!rbd_dev)
603 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 	else if (rbd_dev->disk)
605 		printk(KERN_WARNING "%s: %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 		printk(KERN_WARNING "%s: image %s: %pV\n",
609 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 		printk(KERN_WARNING "%s: id %s: %pV\n",
612 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 	else	/* punt */
614 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 			RBD_DRV_NAME, rbd_dev, &vaf);
616 	va_end(args);
617 }
618 
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)						\
621 		if (unlikely(!(expr))) {				\
622 			printk(KERN_ERR "\nAssertion failure in %s() "	\
623 						"at line %d:\n\n"	\
624 					"\trbd_assert(%s);\n\n",	\
625 					__func__, __LINE__, #expr);	\
626 			BUG();						\
627 		}
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)	((void) 0)
630 #endif /* !RBD_DEBUG */
631 
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633 
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
639 					u64 snap_id);
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641 				u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
643 
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
646 
647 /*
648  * Return true if nothing else is pending.
649  */
650 static bool pending_result_dec(struct pending_result *pending, int *result)
651 {
652 	rbd_assert(pending->num_pending > 0);
653 
654 	if (*result && !pending->result)
655 		pending->result = *result;
656 	if (--pending->num_pending)
657 		return false;
658 
659 	*result = pending->result;
660 	return true;
661 }
662 
663 static int rbd_open(struct block_device *bdev, fmode_t mode)
664 {
665 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
666 	bool removing = false;
667 
668 	spin_lock_irq(&rbd_dev->lock);
669 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
670 		removing = true;
671 	else
672 		rbd_dev->open_count++;
673 	spin_unlock_irq(&rbd_dev->lock);
674 	if (removing)
675 		return -ENOENT;
676 
677 	(void) get_device(&rbd_dev->dev);
678 
679 	return 0;
680 }
681 
682 static void rbd_release(struct gendisk *disk, fmode_t mode)
683 {
684 	struct rbd_device *rbd_dev = disk->private_data;
685 	unsigned long open_count_before;
686 
687 	spin_lock_irq(&rbd_dev->lock);
688 	open_count_before = rbd_dev->open_count--;
689 	spin_unlock_irq(&rbd_dev->lock);
690 	rbd_assert(open_count_before > 0);
691 
692 	put_device(&rbd_dev->dev);
693 }
694 
695 static const struct block_device_operations rbd_bd_ops = {
696 	.owner			= THIS_MODULE,
697 	.open			= rbd_open,
698 	.release		= rbd_release,
699 };
700 
701 /*
702  * Initialize an rbd client instance.  Success or not, this function
703  * consumes ceph_opts.  Caller holds client_mutex.
704  */
705 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
706 {
707 	struct rbd_client *rbdc;
708 	int ret = -ENOMEM;
709 
710 	dout("%s:\n", __func__);
711 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
712 	if (!rbdc)
713 		goto out_opt;
714 
715 	kref_init(&rbdc->kref);
716 	INIT_LIST_HEAD(&rbdc->node);
717 
718 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
719 	if (IS_ERR(rbdc->client))
720 		goto out_rbdc;
721 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
722 
723 	ret = ceph_open_session(rbdc->client);
724 	if (ret < 0)
725 		goto out_client;
726 
727 	spin_lock(&rbd_client_list_lock);
728 	list_add_tail(&rbdc->node, &rbd_client_list);
729 	spin_unlock(&rbd_client_list_lock);
730 
731 	dout("%s: rbdc %p\n", __func__, rbdc);
732 
733 	return rbdc;
734 out_client:
735 	ceph_destroy_client(rbdc->client);
736 out_rbdc:
737 	kfree(rbdc);
738 out_opt:
739 	if (ceph_opts)
740 		ceph_destroy_options(ceph_opts);
741 	dout("%s: error %d\n", __func__, ret);
742 
743 	return ERR_PTR(ret);
744 }
745 
746 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
747 {
748 	kref_get(&rbdc->kref);
749 
750 	return rbdc;
751 }
752 
753 /*
754  * Find a ceph client with specific addr and configuration.  If
755  * found, bump its reference count.
756  */
757 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
758 {
759 	struct rbd_client *rbdc = NULL, *iter;
760 
761 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
762 		return NULL;
763 
764 	spin_lock(&rbd_client_list_lock);
765 	list_for_each_entry(iter, &rbd_client_list, node) {
766 		if (!ceph_compare_options(ceph_opts, iter->client)) {
767 			__rbd_get_client(iter);
768 
769 			rbdc = iter;
770 			break;
771 		}
772 	}
773 	spin_unlock(&rbd_client_list_lock);
774 
775 	return rbdc;
776 }
777 
778 /*
779  * (Per device) rbd map options
780  */
781 enum {
782 	Opt_queue_depth,
783 	Opt_alloc_size,
784 	Opt_lock_timeout,
785 	/* int args above */
786 	Opt_pool_ns,
787 	Opt_compression_hint,
788 	/* string args above */
789 	Opt_read_only,
790 	Opt_read_write,
791 	Opt_lock_on_read,
792 	Opt_exclusive,
793 	Opt_notrim,
794 };
795 
796 enum {
797 	Opt_compression_hint_none,
798 	Opt_compression_hint_compressible,
799 	Opt_compression_hint_incompressible,
800 };
801 
802 static const struct constant_table rbd_param_compression_hint[] = {
803 	{"none",		Opt_compression_hint_none},
804 	{"compressible",	Opt_compression_hint_compressible},
805 	{"incompressible",	Opt_compression_hint_incompressible},
806 	{}
807 };
808 
809 static const struct fs_parameter_spec rbd_parameters[] = {
810 	fsparam_u32	("alloc_size",			Opt_alloc_size),
811 	fsparam_enum	("compression_hint",		Opt_compression_hint,
812 			 rbd_param_compression_hint),
813 	fsparam_flag	("exclusive",			Opt_exclusive),
814 	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
815 	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
816 	fsparam_flag	("notrim",			Opt_notrim),
817 	fsparam_string	("_pool_ns",			Opt_pool_ns),
818 	fsparam_u32	("queue_depth",			Opt_queue_depth),
819 	fsparam_flag	("read_only",			Opt_read_only),
820 	fsparam_flag	("read_write",			Opt_read_write),
821 	fsparam_flag	("ro",				Opt_read_only),
822 	fsparam_flag	("rw",				Opt_read_write),
823 	{}
824 };
825 
826 struct rbd_options {
827 	int	queue_depth;
828 	int	alloc_size;
829 	unsigned long	lock_timeout;
830 	bool	read_only;
831 	bool	lock_on_read;
832 	bool	exclusive;
833 	bool	trim;
834 
835 	u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
836 };
837 
838 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_DEFAULT_RQ
839 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
840 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
841 #define RBD_READ_ONLY_DEFAULT	false
842 #define RBD_LOCK_ON_READ_DEFAULT false
843 #define RBD_EXCLUSIVE_DEFAULT	false
844 #define RBD_TRIM_DEFAULT	true
845 
846 struct rbd_parse_opts_ctx {
847 	struct rbd_spec		*spec;
848 	struct ceph_options	*copts;
849 	struct rbd_options	*opts;
850 };
851 
852 static char* obj_op_name(enum obj_operation_type op_type)
853 {
854 	switch (op_type) {
855 	case OBJ_OP_READ:
856 		return "read";
857 	case OBJ_OP_WRITE:
858 		return "write";
859 	case OBJ_OP_DISCARD:
860 		return "discard";
861 	case OBJ_OP_ZEROOUT:
862 		return "zeroout";
863 	default:
864 		return "???";
865 	}
866 }
867 
868 /*
869  * Destroy ceph client
870  *
871  * Caller must hold rbd_client_list_lock.
872  */
873 static void rbd_client_release(struct kref *kref)
874 {
875 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
876 
877 	dout("%s: rbdc %p\n", __func__, rbdc);
878 	spin_lock(&rbd_client_list_lock);
879 	list_del(&rbdc->node);
880 	spin_unlock(&rbd_client_list_lock);
881 
882 	ceph_destroy_client(rbdc->client);
883 	kfree(rbdc);
884 }
885 
886 /*
887  * Drop reference to ceph client node. If it's not referenced anymore, release
888  * it.
889  */
890 static void rbd_put_client(struct rbd_client *rbdc)
891 {
892 	if (rbdc)
893 		kref_put(&rbdc->kref, rbd_client_release);
894 }
895 
896 /*
897  * Get a ceph client with specific addr and configuration, if one does
898  * not exist create it.  Either way, ceph_opts is consumed by this
899  * function.
900  */
901 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
902 {
903 	struct rbd_client *rbdc;
904 	int ret;
905 
906 	mutex_lock(&client_mutex);
907 	rbdc = rbd_client_find(ceph_opts);
908 	if (rbdc) {
909 		ceph_destroy_options(ceph_opts);
910 
911 		/*
912 		 * Using an existing client.  Make sure ->pg_pools is up to
913 		 * date before we look up the pool id in do_rbd_add().
914 		 */
915 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
916 					rbdc->client->options->mount_timeout);
917 		if (ret) {
918 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
919 			rbd_put_client(rbdc);
920 			rbdc = ERR_PTR(ret);
921 		}
922 	} else {
923 		rbdc = rbd_client_create(ceph_opts);
924 	}
925 	mutex_unlock(&client_mutex);
926 
927 	return rbdc;
928 }
929 
930 static bool rbd_image_format_valid(u32 image_format)
931 {
932 	return image_format == 1 || image_format == 2;
933 }
934 
935 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
936 {
937 	size_t size;
938 	u32 snap_count;
939 
940 	/* The header has to start with the magic rbd header text */
941 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
942 		return false;
943 
944 	/* The bio layer requires at least sector-sized I/O */
945 
946 	if (ondisk->options.order < SECTOR_SHIFT)
947 		return false;
948 
949 	/* If we use u64 in a few spots we may be able to loosen this */
950 
951 	if (ondisk->options.order > 8 * sizeof (int) - 1)
952 		return false;
953 
954 	/*
955 	 * The size of a snapshot header has to fit in a size_t, and
956 	 * that limits the number of snapshots.
957 	 */
958 	snap_count = le32_to_cpu(ondisk->snap_count);
959 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
960 	if (snap_count > size / sizeof (__le64))
961 		return false;
962 
963 	/*
964 	 * Not only that, but the size of the entire the snapshot
965 	 * header must also be representable in a size_t.
966 	 */
967 	size -= snap_count * sizeof (__le64);
968 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
969 		return false;
970 
971 	return true;
972 }
973 
974 /*
975  * returns the size of an object in the image
976  */
977 static u32 rbd_obj_bytes(struct rbd_image_header *header)
978 {
979 	return 1U << header->obj_order;
980 }
981 
982 static void rbd_init_layout(struct rbd_device *rbd_dev)
983 {
984 	if (rbd_dev->header.stripe_unit == 0 ||
985 	    rbd_dev->header.stripe_count == 0) {
986 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
987 		rbd_dev->header.stripe_count = 1;
988 	}
989 
990 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
991 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
992 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
993 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
994 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
995 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
996 }
997 
998 /*
999  * Fill an rbd image header with information from the given format 1
1000  * on-disk header.
1001  */
1002 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1003 				 struct rbd_image_header_ondisk *ondisk)
1004 {
1005 	struct rbd_image_header *header = &rbd_dev->header;
1006 	bool first_time = header->object_prefix == NULL;
1007 	struct ceph_snap_context *snapc;
1008 	char *object_prefix = NULL;
1009 	char *snap_names = NULL;
1010 	u64 *snap_sizes = NULL;
1011 	u32 snap_count;
1012 	int ret = -ENOMEM;
1013 	u32 i;
1014 
1015 	/* Allocate this now to avoid having to handle failure below */
1016 
1017 	if (first_time) {
1018 		object_prefix = kstrndup(ondisk->object_prefix,
1019 					 sizeof(ondisk->object_prefix),
1020 					 GFP_KERNEL);
1021 		if (!object_prefix)
1022 			return -ENOMEM;
1023 	}
1024 
1025 	/* Allocate the snapshot context and fill it in */
1026 
1027 	snap_count = le32_to_cpu(ondisk->snap_count);
1028 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1029 	if (!snapc)
1030 		goto out_err;
1031 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1032 	if (snap_count) {
1033 		struct rbd_image_snap_ondisk *snaps;
1034 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1035 
1036 		/* We'll keep a copy of the snapshot names... */
1037 
1038 		if (snap_names_len > (u64)SIZE_MAX)
1039 			goto out_2big;
1040 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1041 		if (!snap_names)
1042 			goto out_err;
1043 
1044 		/* ...as well as the array of their sizes. */
1045 		snap_sizes = kmalloc_array(snap_count,
1046 					   sizeof(*header->snap_sizes),
1047 					   GFP_KERNEL);
1048 		if (!snap_sizes)
1049 			goto out_err;
1050 
1051 		/*
1052 		 * Copy the names, and fill in each snapshot's id
1053 		 * and size.
1054 		 *
1055 		 * Note that rbd_dev_v1_header_info() guarantees the
1056 		 * ondisk buffer we're working with has
1057 		 * snap_names_len bytes beyond the end of the
1058 		 * snapshot id array, this memcpy() is safe.
1059 		 */
1060 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1061 		snaps = ondisk->snaps;
1062 		for (i = 0; i < snap_count; i++) {
1063 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1064 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1065 		}
1066 	}
1067 
1068 	/* We won't fail any more, fill in the header */
1069 
1070 	if (first_time) {
1071 		header->object_prefix = object_prefix;
1072 		header->obj_order = ondisk->options.order;
1073 		rbd_init_layout(rbd_dev);
1074 	} else {
1075 		ceph_put_snap_context(header->snapc);
1076 		kfree(header->snap_names);
1077 		kfree(header->snap_sizes);
1078 	}
1079 
1080 	/* The remaining fields always get updated (when we refresh) */
1081 
1082 	header->image_size = le64_to_cpu(ondisk->image_size);
1083 	header->snapc = snapc;
1084 	header->snap_names = snap_names;
1085 	header->snap_sizes = snap_sizes;
1086 
1087 	return 0;
1088 out_2big:
1089 	ret = -EIO;
1090 out_err:
1091 	kfree(snap_sizes);
1092 	kfree(snap_names);
1093 	ceph_put_snap_context(snapc);
1094 	kfree(object_prefix);
1095 
1096 	return ret;
1097 }
1098 
1099 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1100 {
1101 	const char *snap_name;
1102 
1103 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1104 
1105 	/* Skip over names until we find the one we are looking for */
1106 
1107 	snap_name = rbd_dev->header.snap_names;
1108 	while (which--)
1109 		snap_name += strlen(snap_name) + 1;
1110 
1111 	return kstrdup(snap_name, GFP_KERNEL);
1112 }
1113 
1114 /*
1115  * Snapshot id comparison function for use with qsort()/bsearch().
1116  * Note that result is for snapshots in *descending* order.
1117  */
1118 static int snapid_compare_reverse(const void *s1, const void *s2)
1119 {
1120 	u64 snap_id1 = *(u64 *)s1;
1121 	u64 snap_id2 = *(u64 *)s2;
1122 
1123 	if (snap_id1 < snap_id2)
1124 		return 1;
1125 	return snap_id1 == snap_id2 ? 0 : -1;
1126 }
1127 
1128 /*
1129  * Search a snapshot context to see if the given snapshot id is
1130  * present.
1131  *
1132  * Returns the position of the snapshot id in the array if it's found,
1133  * or BAD_SNAP_INDEX otherwise.
1134  *
1135  * Note: The snapshot array is in kept sorted (by the osd) in
1136  * reverse order, highest snapshot id first.
1137  */
1138 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1139 {
1140 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1141 	u64 *found;
1142 
1143 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1144 				sizeof (snap_id), snapid_compare_reverse);
1145 
1146 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1147 }
1148 
1149 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1150 					u64 snap_id)
1151 {
1152 	u32 which;
1153 	const char *snap_name;
1154 
1155 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1156 	if (which == BAD_SNAP_INDEX)
1157 		return ERR_PTR(-ENOENT);
1158 
1159 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1160 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1161 }
1162 
1163 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1164 {
1165 	if (snap_id == CEPH_NOSNAP)
1166 		return RBD_SNAP_HEAD_NAME;
1167 
1168 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1169 	if (rbd_dev->image_format == 1)
1170 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1171 
1172 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1173 }
1174 
1175 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1176 				u64 *snap_size)
1177 {
1178 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1179 	if (snap_id == CEPH_NOSNAP) {
1180 		*snap_size = rbd_dev->header.image_size;
1181 	} else if (rbd_dev->image_format == 1) {
1182 		u32 which;
1183 
1184 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1185 		if (which == BAD_SNAP_INDEX)
1186 			return -ENOENT;
1187 
1188 		*snap_size = rbd_dev->header.snap_sizes[which];
1189 	} else {
1190 		u64 size = 0;
1191 		int ret;
1192 
1193 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1194 		if (ret)
1195 			return ret;
1196 
1197 		*snap_size = size;
1198 	}
1199 	return 0;
1200 }
1201 
1202 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1203 {
1204 	u64 snap_id = rbd_dev->spec->snap_id;
1205 	u64 size = 0;
1206 	int ret;
1207 
1208 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1209 	if (ret)
1210 		return ret;
1211 
1212 	rbd_dev->mapping.size = size;
1213 	return 0;
1214 }
1215 
1216 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1217 {
1218 	rbd_dev->mapping.size = 0;
1219 }
1220 
1221 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1222 {
1223 	struct ceph_bio_iter it = *bio_pos;
1224 
1225 	ceph_bio_iter_advance(&it, off);
1226 	ceph_bio_iter_advance_step(&it, bytes, ({
1227 		memzero_bvec(&bv);
1228 	}));
1229 }
1230 
1231 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1232 {
1233 	struct ceph_bvec_iter it = *bvec_pos;
1234 
1235 	ceph_bvec_iter_advance(&it, off);
1236 	ceph_bvec_iter_advance_step(&it, bytes, ({
1237 		memzero_bvec(&bv);
1238 	}));
1239 }
1240 
1241 /*
1242  * Zero a range in @obj_req data buffer defined by a bio (list) or
1243  * (private) bio_vec array.
1244  *
1245  * @off is relative to the start of the data buffer.
1246  */
1247 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1248 			       u32 bytes)
1249 {
1250 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1251 
1252 	switch (obj_req->img_request->data_type) {
1253 	case OBJ_REQUEST_BIO:
1254 		zero_bios(&obj_req->bio_pos, off, bytes);
1255 		break;
1256 	case OBJ_REQUEST_BVECS:
1257 	case OBJ_REQUEST_OWN_BVECS:
1258 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1259 		break;
1260 	default:
1261 		BUG();
1262 	}
1263 }
1264 
1265 static void rbd_obj_request_destroy(struct kref *kref);
1266 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1267 {
1268 	rbd_assert(obj_request != NULL);
1269 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1270 		kref_read(&obj_request->kref));
1271 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1272 }
1273 
1274 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1275 					struct rbd_obj_request *obj_request)
1276 {
1277 	rbd_assert(obj_request->img_request == NULL);
1278 
1279 	/* Image request now owns object's original reference */
1280 	obj_request->img_request = img_request;
1281 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1282 }
1283 
1284 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1285 					struct rbd_obj_request *obj_request)
1286 {
1287 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1288 	list_del(&obj_request->ex.oe_item);
1289 	rbd_assert(obj_request->img_request == img_request);
1290 	rbd_obj_request_put(obj_request);
1291 }
1292 
1293 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1294 {
1295 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1296 
1297 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1298 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1299 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1300 	ceph_osdc_start_request(osd_req->r_osdc, osd_req);
1301 }
1302 
1303 /*
1304  * The default/initial value for all image request flags is 0.  Each
1305  * is conditionally set to 1 at image request initialization time
1306  * and currently never change thereafter.
1307  */
1308 static void img_request_layered_set(struct rbd_img_request *img_request)
1309 {
1310 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1311 }
1312 
1313 static bool img_request_layered_test(struct rbd_img_request *img_request)
1314 {
1315 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1316 }
1317 
1318 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1319 {
1320 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1321 
1322 	return !obj_req->ex.oe_off &&
1323 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1324 }
1325 
1326 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1327 {
1328 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1329 
1330 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1331 					rbd_dev->layout.object_size;
1332 }
1333 
1334 /*
1335  * Must be called after rbd_obj_calc_img_extents().
1336  */
1337 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1338 {
1339 	if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1340 		dout("%s %p objno %llu discard\n", __func__, obj_req,
1341 		     obj_req->ex.oe_objno);
1342 		return;
1343 	}
1344 
1345 	if (!obj_req->num_img_extents) {
1346 		dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1347 		     obj_req->ex.oe_objno);
1348 		return;
1349 	}
1350 
1351 	if (rbd_obj_is_entire(obj_req) &&
1352 	    !obj_req->img_request->snapc->num_snaps) {
1353 		dout("%s %p objno %llu entire\n", __func__, obj_req,
1354 		     obj_req->ex.oe_objno);
1355 		return;
1356 	}
1357 
1358 	obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1359 }
1360 
1361 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1362 {
1363 	return ceph_file_extents_bytes(obj_req->img_extents,
1364 				       obj_req->num_img_extents);
1365 }
1366 
1367 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1368 {
1369 	switch (img_req->op_type) {
1370 	case OBJ_OP_READ:
1371 		return false;
1372 	case OBJ_OP_WRITE:
1373 	case OBJ_OP_DISCARD:
1374 	case OBJ_OP_ZEROOUT:
1375 		return true;
1376 	default:
1377 		BUG();
1378 	}
1379 }
1380 
1381 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1382 {
1383 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1384 	int result;
1385 
1386 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1387 	     osd_req->r_result, obj_req);
1388 
1389 	/*
1390 	 * Writes aren't allowed to return a data payload.  In some
1391 	 * guarded write cases (e.g. stat + zero on an empty object)
1392 	 * a stat response makes it through, but we don't care.
1393 	 */
1394 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1395 		result = 0;
1396 	else
1397 		result = osd_req->r_result;
1398 
1399 	rbd_obj_handle_request(obj_req, result);
1400 }
1401 
1402 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1403 {
1404 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1405 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1406 	struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1407 
1408 	osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1409 	osd_req->r_snapid = obj_request->img_request->snap_id;
1410 }
1411 
1412 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1413 {
1414 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1415 
1416 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1417 	ktime_get_real_ts64(&osd_req->r_mtime);
1418 	osd_req->r_data_offset = obj_request->ex.oe_off;
1419 }
1420 
1421 static struct ceph_osd_request *
1422 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1423 			  struct ceph_snap_context *snapc, int num_ops)
1424 {
1425 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1426 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1427 	struct ceph_osd_request *req;
1428 	const char *name_format = rbd_dev->image_format == 1 ?
1429 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1430 	int ret;
1431 
1432 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1433 	if (!req)
1434 		return ERR_PTR(-ENOMEM);
1435 
1436 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1437 	req->r_callback = rbd_osd_req_callback;
1438 	req->r_priv = obj_req;
1439 
1440 	/*
1441 	 * Data objects may be stored in a separate pool, but always in
1442 	 * the same namespace in that pool as the header in its pool.
1443 	 */
1444 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1445 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1446 
1447 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1448 			       rbd_dev->header.object_prefix,
1449 			       obj_req->ex.oe_objno);
1450 	if (ret)
1451 		return ERR_PTR(ret);
1452 
1453 	return req;
1454 }
1455 
1456 static struct ceph_osd_request *
1457 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1458 {
1459 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1460 					 num_ops);
1461 }
1462 
1463 static struct rbd_obj_request *rbd_obj_request_create(void)
1464 {
1465 	struct rbd_obj_request *obj_request;
1466 
1467 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1468 	if (!obj_request)
1469 		return NULL;
1470 
1471 	ceph_object_extent_init(&obj_request->ex);
1472 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1473 	mutex_init(&obj_request->state_mutex);
1474 	kref_init(&obj_request->kref);
1475 
1476 	dout("%s %p\n", __func__, obj_request);
1477 	return obj_request;
1478 }
1479 
1480 static void rbd_obj_request_destroy(struct kref *kref)
1481 {
1482 	struct rbd_obj_request *obj_request;
1483 	struct ceph_osd_request *osd_req;
1484 	u32 i;
1485 
1486 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1487 
1488 	dout("%s: obj %p\n", __func__, obj_request);
1489 
1490 	while (!list_empty(&obj_request->osd_reqs)) {
1491 		osd_req = list_first_entry(&obj_request->osd_reqs,
1492 				    struct ceph_osd_request, r_private_item);
1493 		list_del_init(&osd_req->r_private_item);
1494 		ceph_osdc_put_request(osd_req);
1495 	}
1496 
1497 	switch (obj_request->img_request->data_type) {
1498 	case OBJ_REQUEST_NODATA:
1499 	case OBJ_REQUEST_BIO:
1500 	case OBJ_REQUEST_BVECS:
1501 		break;		/* Nothing to do */
1502 	case OBJ_REQUEST_OWN_BVECS:
1503 		kfree(obj_request->bvec_pos.bvecs);
1504 		break;
1505 	default:
1506 		BUG();
1507 	}
1508 
1509 	kfree(obj_request->img_extents);
1510 	if (obj_request->copyup_bvecs) {
1511 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1512 			if (obj_request->copyup_bvecs[i].bv_page)
1513 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1514 		}
1515 		kfree(obj_request->copyup_bvecs);
1516 	}
1517 
1518 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1519 }
1520 
1521 /* It's OK to call this for a device with no parent */
1522 
1523 static void rbd_spec_put(struct rbd_spec *spec);
1524 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1525 {
1526 	rbd_dev_remove_parent(rbd_dev);
1527 	rbd_spec_put(rbd_dev->parent_spec);
1528 	rbd_dev->parent_spec = NULL;
1529 	rbd_dev->parent_overlap = 0;
1530 }
1531 
1532 /*
1533  * Parent image reference counting is used to determine when an
1534  * image's parent fields can be safely torn down--after there are no
1535  * more in-flight requests to the parent image.  When the last
1536  * reference is dropped, cleaning them up is safe.
1537  */
1538 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1539 {
1540 	int counter;
1541 
1542 	if (!rbd_dev->parent_spec)
1543 		return;
1544 
1545 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1546 	if (counter > 0)
1547 		return;
1548 
1549 	/* Last reference; clean up parent data structures */
1550 
1551 	if (!counter)
1552 		rbd_dev_unparent(rbd_dev);
1553 	else
1554 		rbd_warn(rbd_dev, "parent reference underflow");
1555 }
1556 
1557 /*
1558  * If an image has a non-zero parent overlap, get a reference to its
1559  * parent.
1560  *
1561  * Returns true if the rbd device has a parent with a non-zero
1562  * overlap and a reference for it was successfully taken, or
1563  * false otherwise.
1564  */
1565 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1566 {
1567 	int counter = 0;
1568 
1569 	if (!rbd_dev->parent_spec)
1570 		return false;
1571 
1572 	if (rbd_dev->parent_overlap)
1573 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1574 
1575 	if (counter < 0)
1576 		rbd_warn(rbd_dev, "parent reference overflow");
1577 
1578 	return counter > 0;
1579 }
1580 
1581 static void rbd_img_request_init(struct rbd_img_request *img_request,
1582 				 struct rbd_device *rbd_dev,
1583 				 enum obj_operation_type op_type)
1584 {
1585 	memset(img_request, 0, sizeof(*img_request));
1586 
1587 	img_request->rbd_dev = rbd_dev;
1588 	img_request->op_type = op_type;
1589 
1590 	INIT_LIST_HEAD(&img_request->lock_item);
1591 	INIT_LIST_HEAD(&img_request->object_extents);
1592 	mutex_init(&img_request->state_mutex);
1593 }
1594 
1595 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1596 {
1597 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1598 
1599 	lockdep_assert_held(&rbd_dev->header_rwsem);
1600 
1601 	if (rbd_img_is_write(img_req))
1602 		img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1603 	else
1604 		img_req->snap_id = rbd_dev->spec->snap_id;
1605 
1606 	if (rbd_dev_parent_get(rbd_dev))
1607 		img_request_layered_set(img_req);
1608 }
1609 
1610 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1611 {
1612 	struct rbd_obj_request *obj_request;
1613 	struct rbd_obj_request *next_obj_request;
1614 
1615 	dout("%s: img %p\n", __func__, img_request);
1616 
1617 	WARN_ON(!list_empty(&img_request->lock_item));
1618 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1619 		rbd_img_obj_request_del(img_request, obj_request);
1620 
1621 	if (img_request_layered_test(img_request))
1622 		rbd_dev_parent_put(img_request->rbd_dev);
1623 
1624 	if (rbd_img_is_write(img_request))
1625 		ceph_put_snap_context(img_request->snapc);
1626 
1627 	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1628 		kmem_cache_free(rbd_img_request_cache, img_request);
1629 }
1630 
1631 #define BITS_PER_OBJ	2
1632 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1633 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1634 
1635 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1636 				   u64 *index, u8 *shift)
1637 {
1638 	u32 off;
1639 
1640 	rbd_assert(objno < rbd_dev->object_map_size);
1641 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1642 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1643 }
1644 
1645 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1646 {
1647 	u64 index;
1648 	u8 shift;
1649 
1650 	lockdep_assert_held(&rbd_dev->object_map_lock);
1651 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1652 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1653 }
1654 
1655 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1656 {
1657 	u64 index;
1658 	u8 shift;
1659 	u8 *p;
1660 
1661 	lockdep_assert_held(&rbd_dev->object_map_lock);
1662 	rbd_assert(!(val & ~OBJ_MASK));
1663 
1664 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1665 	p = &rbd_dev->object_map[index];
1666 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1667 }
1668 
1669 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1670 {
1671 	u8 state;
1672 
1673 	spin_lock(&rbd_dev->object_map_lock);
1674 	state = __rbd_object_map_get(rbd_dev, objno);
1675 	spin_unlock(&rbd_dev->object_map_lock);
1676 	return state;
1677 }
1678 
1679 static bool use_object_map(struct rbd_device *rbd_dev)
1680 {
1681 	/*
1682 	 * An image mapped read-only can't use the object map -- it isn't
1683 	 * loaded because the header lock isn't acquired.  Someone else can
1684 	 * write to the image and update the object map behind our back.
1685 	 *
1686 	 * A snapshot can't be written to, so using the object map is always
1687 	 * safe.
1688 	 */
1689 	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1690 		return false;
1691 
1692 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1693 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1694 }
1695 
1696 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1697 {
1698 	u8 state;
1699 
1700 	/* fall back to default logic if object map is disabled or invalid */
1701 	if (!use_object_map(rbd_dev))
1702 		return true;
1703 
1704 	state = rbd_object_map_get(rbd_dev, objno);
1705 	return state != OBJECT_NONEXISTENT;
1706 }
1707 
1708 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1709 				struct ceph_object_id *oid)
1710 {
1711 	if (snap_id == CEPH_NOSNAP)
1712 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1713 				rbd_dev->spec->image_id);
1714 	else
1715 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1716 				rbd_dev->spec->image_id, snap_id);
1717 }
1718 
1719 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1720 {
1721 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1722 	CEPH_DEFINE_OID_ONSTACK(oid);
1723 	u8 lock_type;
1724 	char *lock_tag;
1725 	struct ceph_locker *lockers;
1726 	u32 num_lockers;
1727 	bool broke_lock = false;
1728 	int ret;
1729 
1730 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1731 
1732 again:
1733 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1734 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1735 	if (ret != -EBUSY || broke_lock) {
1736 		if (ret == -EEXIST)
1737 			ret = 0; /* already locked by myself */
1738 		if (ret)
1739 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1740 		return ret;
1741 	}
1742 
1743 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1744 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1745 				 &lockers, &num_lockers);
1746 	if (ret) {
1747 		if (ret == -ENOENT)
1748 			goto again;
1749 
1750 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1751 		return ret;
1752 	}
1753 
1754 	kfree(lock_tag);
1755 	if (num_lockers == 0)
1756 		goto again;
1757 
1758 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1759 		 ENTITY_NAME(lockers[0].id.name));
1760 
1761 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1762 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1763 				  &lockers[0].id.name);
1764 	ceph_free_lockers(lockers, num_lockers);
1765 	if (ret) {
1766 		if (ret == -ENOENT)
1767 			goto again;
1768 
1769 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1770 		return ret;
1771 	}
1772 
1773 	broke_lock = true;
1774 	goto again;
1775 }
1776 
1777 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1778 {
1779 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1780 	CEPH_DEFINE_OID_ONSTACK(oid);
1781 	int ret;
1782 
1783 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1784 
1785 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1786 			      "");
1787 	if (ret && ret != -ENOENT)
1788 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1789 }
1790 
1791 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1792 {
1793 	u8 struct_v;
1794 	u32 struct_len;
1795 	u32 header_len;
1796 	void *header_end;
1797 	int ret;
1798 
1799 	ceph_decode_32_safe(p, end, header_len, e_inval);
1800 	header_end = *p + header_len;
1801 
1802 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1803 				  &struct_len);
1804 	if (ret)
1805 		return ret;
1806 
1807 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1808 
1809 	*p = header_end;
1810 	return 0;
1811 
1812 e_inval:
1813 	return -EINVAL;
1814 }
1815 
1816 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1817 {
1818 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1819 	CEPH_DEFINE_OID_ONSTACK(oid);
1820 	struct page **pages;
1821 	void *p, *end;
1822 	size_t reply_len;
1823 	u64 num_objects;
1824 	u64 object_map_bytes;
1825 	u64 object_map_size;
1826 	int num_pages;
1827 	int ret;
1828 
1829 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1830 
1831 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1832 					   rbd_dev->mapping.size);
1833 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1834 					    BITS_PER_BYTE);
1835 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1836 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1837 	if (IS_ERR(pages))
1838 		return PTR_ERR(pages);
1839 
1840 	reply_len = num_pages * PAGE_SIZE;
1841 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1842 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1843 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1844 			     NULL, 0, pages, &reply_len);
1845 	if (ret)
1846 		goto out;
1847 
1848 	p = page_address(pages[0]);
1849 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1850 	ret = decode_object_map_header(&p, end, &object_map_size);
1851 	if (ret)
1852 		goto out;
1853 
1854 	if (object_map_size != num_objects) {
1855 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1856 			 object_map_size, num_objects);
1857 		ret = -EINVAL;
1858 		goto out;
1859 	}
1860 
1861 	if (offset_in_page(p) + object_map_bytes > reply_len) {
1862 		ret = -EINVAL;
1863 		goto out;
1864 	}
1865 
1866 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1867 	if (!rbd_dev->object_map) {
1868 		ret = -ENOMEM;
1869 		goto out;
1870 	}
1871 
1872 	rbd_dev->object_map_size = object_map_size;
1873 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1874 				   offset_in_page(p), object_map_bytes);
1875 
1876 out:
1877 	ceph_release_page_vector(pages, num_pages);
1878 	return ret;
1879 }
1880 
1881 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1882 {
1883 	kvfree(rbd_dev->object_map);
1884 	rbd_dev->object_map = NULL;
1885 	rbd_dev->object_map_size = 0;
1886 }
1887 
1888 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1889 {
1890 	int ret;
1891 
1892 	ret = __rbd_object_map_load(rbd_dev);
1893 	if (ret)
1894 		return ret;
1895 
1896 	ret = rbd_dev_v2_get_flags(rbd_dev);
1897 	if (ret) {
1898 		rbd_object_map_free(rbd_dev);
1899 		return ret;
1900 	}
1901 
1902 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1903 		rbd_warn(rbd_dev, "object map is invalid");
1904 
1905 	return 0;
1906 }
1907 
1908 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1909 {
1910 	int ret;
1911 
1912 	ret = rbd_object_map_lock(rbd_dev);
1913 	if (ret)
1914 		return ret;
1915 
1916 	ret = rbd_object_map_load(rbd_dev);
1917 	if (ret) {
1918 		rbd_object_map_unlock(rbd_dev);
1919 		return ret;
1920 	}
1921 
1922 	return 0;
1923 }
1924 
1925 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1926 {
1927 	rbd_object_map_free(rbd_dev);
1928 	rbd_object_map_unlock(rbd_dev);
1929 }
1930 
1931 /*
1932  * This function needs snap_id (or more precisely just something to
1933  * distinguish between HEAD and snapshot object maps), new_state and
1934  * current_state that were passed to rbd_object_map_update().
1935  *
1936  * To avoid allocating and stashing a context we piggyback on the OSD
1937  * request.  A HEAD update has two ops (assert_locked).  For new_state
1938  * and current_state we decode our own object_map_update op, encoded in
1939  * rbd_cls_object_map_update().
1940  */
1941 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1942 					struct ceph_osd_request *osd_req)
1943 {
1944 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1945 	struct ceph_osd_data *osd_data;
1946 	u64 objno;
1947 	u8 state, new_state, current_state;
1948 	bool has_current_state;
1949 	void *p;
1950 
1951 	if (osd_req->r_result)
1952 		return osd_req->r_result;
1953 
1954 	/*
1955 	 * Nothing to do for a snapshot object map.
1956 	 */
1957 	if (osd_req->r_num_ops == 1)
1958 		return 0;
1959 
1960 	/*
1961 	 * Update in-memory HEAD object map.
1962 	 */
1963 	rbd_assert(osd_req->r_num_ops == 2);
1964 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1965 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1966 
1967 	p = page_address(osd_data->pages[0]);
1968 	objno = ceph_decode_64(&p);
1969 	rbd_assert(objno == obj_req->ex.oe_objno);
1970 	rbd_assert(ceph_decode_64(&p) == objno + 1);
1971 	new_state = ceph_decode_8(&p);
1972 	has_current_state = ceph_decode_8(&p);
1973 	if (has_current_state)
1974 		current_state = ceph_decode_8(&p);
1975 
1976 	spin_lock(&rbd_dev->object_map_lock);
1977 	state = __rbd_object_map_get(rbd_dev, objno);
1978 	if (!has_current_state || current_state == state ||
1979 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1980 		__rbd_object_map_set(rbd_dev, objno, new_state);
1981 	spin_unlock(&rbd_dev->object_map_lock);
1982 
1983 	return 0;
1984 }
1985 
1986 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1987 {
1988 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1989 	int result;
1990 
1991 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1992 	     osd_req->r_result, obj_req);
1993 
1994 	result = rbd_object_map_update_finish(obj_req, osd_req);
1995 	rbd_obj_handle_request(obj_req, result);
1996 }
1997 
1998 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
1999 {
2000 	u8 state = rbd_object_map_get(rbd_dev, objno);
2001 
2002 	if (state == new_state ||
2003 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2004 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2005 		return false;
2006 
2007 	return true;
2008 }
2009 
2010 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2011 				     int which, u64 objno, u8 new_state,
2012 				     const u8 *current_state)
2013 {
2014 	struct page **pages;
2015 	void *p, *start;
2016 	int ret;
2017 
2018 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2019 	if (ret)
2020 		return ret;
2021 
2022 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2023 	if (IS_ERR(pages))
2024 		return PTR_ERR(pages);
2025 
2026 	p = start = page_address(pages[0]);
2027 	ceph_encode_64(&p, objno);
2028 	ceph_encode_64(&p, objno + 1);
2029 	ceph_encode_8(&p, new_state);
2030 	if (current_state) {
2031 		ceph_encode_8(&p, 1);
2032 		ceph_encode_8(&p, *current_state);
2033 	} else {
2034 		ceph_encode_8(&p, 0);
2035 	}
2036 
2037 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2038 					  false, true);
2039 	return 0;
2040 }
2041 
2042 /*
2043  * Return:
2044  *   0 - object map update sent
2045  *   1 - object map update isn't needed
2046  *  <0 - error
2047  */
2048 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2049 				 u8 new_state, const u8 *current_state)
2050 {
2051 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2052 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2053 	struct ceph_osd_request *req;
2054 	int num_ops = 1;
2055 	int which = 0;
2056 	int ret;
2057 
2058 	if (snap_id == CEPH_NOSNAP) {
2059 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2060 			return 1;
2061 
2062 		num_ops++; /* assert_locked */
2063 	}
2064 
2065 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2066 	if (!req)
2067 		return -ENOMEM;
2068 
2069 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2070 	req->r_callback = rbd_object_map_callback;
2071 	req->r_priv = obj_req;
2072 
2073 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2074 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2075 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2076 	ktime_get_real_ts64(&req->r_mtime);
2077 
2078 	if (snap_id == CEPH_NOSNAP) {
2079 		/*
2080 		 * Protect against possible race conditions during lock
2081 		 * ownership transitions.
2082 		 */
2083 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2084 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2085 		if (ret)
2086 			return ret;
2087 	}
2088 
2089 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2090 					new_state, current_state);
2091 	if (ret)
2092 		return ret;
2093 
2094 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2095 	if (ret)
2096 		return ret;
2097 
2098 	ceph_osdc_start_request(osdc, req);
2099 	return 0;
2100 }
2101 
2102 static void prune_extents(struct ceph_file_extent *img_extents,
2103 			  u32 *num_img_extents, u64 overlap)
2104 {
2105 	u32 cnt = *num_img_extents;
2106 
2107 	/* drop extents completely beyond the overlap */
2108 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2109 		cnt--;
2110 
2111 	if (cnt) {
2112 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2113 
2114 		/* trim final overlapping extent */
2115 		if (ex->fe_off + ex->fe_len > overlap)
2116 			ex->fe_len = overlap - ex->fe_off;
2117 	}
2118 
2119 	*num_img_extents = cnt;
2120 }
2121 
2122 /*
2123  * Determine the byte range(s) covered by either just the object extent
2124  * or the entire object in the parent image.
2125  */
2126 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2127 				    bool entire)
2128 {
2129 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2130 	int ret;
2131 
2132 	if (!rbd_dev->parent_overlap)
2133 		return 0;
2134 
2135 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2136 				  entire ? 0 : obj_req->ex.oe_off,
2137 				  entire ? rbd_dev->layout.object_size :
2138 							obj_req->ex.oe_len,
2139 				  &obj_req->img_extents,
2140 				  &obj_req->num_img_extents);
2141 	if (ret)
2142 		return ret;
2143 
2144 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2145 		      rbd_dev->parent_overlap);
2146 	return 0;
2147 }
2148 
2149 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2150 {
2151 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2152 
2153 	switch (obj_req->img_request->data_type) {
2154 	case OBJ_REQUEST_BIO:
2155 		osd_req_op_extent_osd_data_bio(osd_req, which,
2156 					       &obj_req->bio_pos,
2157 					       obj_req->ex.oe_len);
2158 		break;
2159 	case OBJ_REQUEST_BVECS:
2160 	case OBJ_REQUEST_OWN_BVECS:
2161 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2162 							obj_req->ex.oe_len);
2163 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2164 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2165 						    &obj_req->bvec_pos);
2166 		break;
2167 	default:
2168 		BUG();
2169 	}
2170 }
2171 
2172 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2173 {
2174 	struct page **pages;
2175 
2176 	/*
2177 	 * The response data for a STAT call consists of:
2178 	 *     le64 length;
2179 	 *     struct {
2180 	 *         le32 tv_sec;
2181 	 *         le32 tv_nsec;
2182 	 *     } mtime;
2183 	 */
2184 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2185 	if (IS_ERR(pages))
2186 		return PTR_ERR(pages);
2187 
2188 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2189 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2190 				     8 + sizeof(struct ceph_timespec),
2191 				     0, false, true);
2192 	return 0;
2193 }
2194 
2195 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2196 				u32 bytes)
2197 {
2198 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2199 	int ret;
2200 
2201 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2202 	if (ret)
2203 		return ret;
2204 
2205 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2206 					  obj_req->copyup_bvec_count, bytes);
2207 	return 0;
2208 }
2209 
2210 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2211 {
2212 	obj_req->read_state = RBD_OBJ_READ_START;
2213 	return 0;
2214 }
2215 
2216 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2217 				      int which)
2218 {
2219 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2220 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2221 	u16 opcode;
2222 
2223 	if (!use_object_map(rbd_dev) ||
2224 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2225 		osd_req_op_alloc_hint_init(osd_req, which++,
2226 					   rbd_dev->layout.object_size,
2227 					   rbd_dev->layout.object_size,
2228 					   rbd_dev->opts->alloc_hint_flags);
2229 	}
2230 
2231 	if (rbd_obj_is_entire(obj_req))
2232 		opcode = CEPH_OSD_OP_WRITEFULL;
2233 	else
2234 		opcode = CEPH_OSD_OP_WRITE;
2235 
2236 	osd_req_op_extent_init(osd_req, which, opcode,
2237 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2238 	rbd_osd_setup_data(osd_req, which);
2239 }
2240 
2241 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2242 {
2243 	int ret;
2244 
2245 	/* reverse map the entire object onto the parent */
2246 	ret = rbd_obj_calc_img_extents(obj_req, true);
2247 	if (ret)
2248 		return ret;
2249 
2250 	obj_req->write_state = RBD_OBJ_WRITE_START;
2251 	return 0;
2252 }
2253 
2254 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2255 {
2256 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2257 					  CEPH_OSD_OP_ZERO;
2258 }
2259 
2260 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2261 					int which)
2262 {
2263 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2264 
2265 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2266 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2267 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2268 	} else {
2269 		osd_req_op_extent_init(osd_req, which,
2270 				       truncate_or_zero_opcode(obj_req),
2271 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2272 				       0, 0);
2273 	}
2274 }
2275 
2276 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2277 {
2278 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2279 	u64 off, next_off;
2280 	int ret;
2281 
2282 	/*
2283 	 * Align the range to alloc_size boundary and punt on discards
2284 	 * that are too small to free up any space.
2285 	 *
2286 	 * alloc_size == object_size && is_tail() is a special case for
2287 	 * filestore with filestore_punch_hole = false, needed to allow
2288 	 * truncate (in addition to delete).
2289 	 */
2290 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2291 	    !rbd_obj_is_tail(obj_req)) {
2292 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2293 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2294 				      rbd_dev->opts->alloc_size);
2295 		if (off >= next_off)
2296 			return 1;
2297 
2298 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2299 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2300 		     off, next_off - off);
2301 		obj_req->ex.oe_off = off;
2302 		obj_req->ex.oe_len = next_off - off;
2303 	}
2304 
2305 	/* reverse map the entire object onto the parent */
2306 	ret = rbd_obj_calc_img_extents(obj_req, true);
2307 	if (ret)
2308 		return ret;
2309 
2310 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2311 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2312 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2313 
2314 	obj_req->write_state = RBD_OBJ_WRITE_START;
2315 	return 0;
2316 }
2317 
2318 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2319 					int which)
2320 {
2321 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2322 	u16 opcode;
2323 
2324 	if (rbd_obj_is_entire(obj_req)) {
2325 		if (obj_req->num_img_extents) {
2326 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2327 				osd_req_op_init(osd_req, which++,
2328 						CEPH_OSD_OP_CREATE, 0);
2329 			opcode = CEPH_OSD_OP_TRUNCATE;
2330 		} else {
2331 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2332 			osd_req_op_init(osd_req, which++,
2333 					CEPH_OSD_OP_DELETE, 0);
2334 			opcode = 0;
2335 		}
2336 	} else {
2337 		opcode = truncate_or_zero_opcode(obj_req);
2338 	}
2339 
2340 	if (opcode)
2341 		osd_req_op_extent_init(osd_req, which, opcode,
2342 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2343 				       0, 0);
2344 }
2345 
2346 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2347 {
2348 	int ret;
2349 
2350 	/* reverse map the entire object onto the parent */
2351 	ret = rbd_obj_calc_img_extents(obj_req, true);
2352 	if (ret)
2353 		return ret;
2354 
2355 	if (!obj_req->num_img_extents) {
2356 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2357 		if (rbd_obj_is_entire(obj_req))
2358 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2359 	}
2360 
2361 	obj_req->write_state = RBD_OBJ_WRITE_START;
2362 	return 0;
2363 }
2364 
2365 static int count_write_ops(struct rbd_obj_request *obj_req)
2366 {
2367 	struct rbd_img_request *img_req = obj_req->img_request;
2368 
2369 	switch (img_req->op_type) {
2370 	case OBJ_OP_WRITE:
2371 		if (!use_object_map(img_req->rbd_dev) ||
2372 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2373 			return 2; /* setallochint + write/writefull */
2374 
2375 		return 1; /* write/writefull */
2376 	case OBJ_OP_DISCARD:
2377 		return 1; /* delete/truncate/zero */
2378 	case OBJ_OP_ZEROOUT:
2379 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2380 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2381 			return 2; /* create + truncate */
2382 
2383 		return 1; /* delete/truncate/zero */
2384 	default:
2385 		BUG();
2386 	}
2387 }
2388 
2389 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2390 				    int which)
2391 {
2392 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2393 
2394 	switch (obj_req->img_request->op_type) {
2395 	case OBJ_OP_WRITE:
2396 		__rbd_osd_setup_write_ops(osd_req, which);
2397 		break;
2398 	case OBJ_OP_DISCARD:
2399 		__rbd_osd_setup_discard_ops(osd_req, which);
2400 		break;
2401 	case OBJ_OP_ZEROOUT:
2402 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2403 		break;
2404 	default:
2405 		BUG();
2406 	}
2407 }
2408 
2409 /*
2410  * Prune the list of object requests (adjust offset and/or length, drop
2411  * redundant requests).  Prepare object request state machines and image
2412  * request state machine for execution.
2413  */
2414 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2415 {
2416 	struct rbd_obj_request *obj_req, *next_obj_req;
2417 	int ret;
2418 
2419 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2420 		switch (img_req->op_type) {
2421 		case OBJ_OP_READ:
2422 			ret = rbd_obj_init_read(obj_req);
2423 			break;
2424 		case OBJ_OP_WRITE:
2425 			ret = rbd_obj_init_write(obj_req);
2426 			break;
2427 		case OBJ_OP_DISCARD:
2428 			ret = rbd_obj_init_discard(obj_req);
2429 			break;
2430 		case OBJ_OP_ZEROOUT:
2431 			ret = rbd_obj_init_zeroout(obj_req);
2432 			break;
2433 		default:
2434 			BUG();
2435 		}
2436 		if (ret < 0)
2437 			return ret;
2438 		if (ret > 0) {
2439 			rbd_img_obj_request_del(img_req, obj_req);
2440 			continue;
2441 		}
2442 	}
2443 
2444 	img_req->state = RBD_IMG_START;
2445 	return 0;
2446 }
2447 
2448 union rbd_img_fill_iter {
2449 	struct ceph_bio_iter	bio_iter;
2450 	struct ceph_bvec_iter	bvec_iter;
2451 };
2452 
2453 struct rbd_img_fill_ctx {
2454 	enum obj_request_type	pos_type;
2455 	union rbd_img_fill_iter	*pos;
2456 	union rbd_img_fill_iter	iter;
2457 	ceph_object_extent_fn_t	set_pos_fn;
2458 	ceph_object_extent_fn_t	count_fn;
2459 	ceph_object_extent_fn_t	copy_fn;
2460 };
2461 
2462 static struct ceph_object_extent *alloc_object_extent(void *arg)
2463 {
2464 	struct rbd_img_request *img_req = arg;
2465 	struct rbd_obj_request *obj_req;
2466 
2467 	obj_req = rbd_obj_request_create();
2468 	if (!obj_req)
2469 		return NULL;
2470 
2471 	rbd_img_obj_request_add(img_req, obj_req);
2472 	return &obj_req->ex;
2473 }
2474 
2475 /*
2476  * While su != os && sc == 1 is technically not fancy (it's the same
2477  * layout as su == os && sc == 1), we can't use the nocopy path for it
2478  * because ->set_pos_fn() should be called only once per object.
2479  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2480  * treat su != os && sc == 1 as fancy.
2481  */
2482 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2483 {
2484 	return l->stripe_unit != l->object_size;
2485 }
2486 
2487 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2488 				       struct ceph_file_extent *img_extents,
2489 				       u32 num_img_extents,
2490 				       struct rbd_img_fill_ctx *fctx)
2491 {
2492 	u32 i;
2493 	int ret;
2494 
2495 	img_req->data_type = fctx->pos_type;
2496 
2497 	/*
2498 	 * Create object requests and set each object request's starting
2499 	 * position in the provided bio (list) or bio_vec array.
2500 	 */
2501 	fctx->iter = *fctx->pos;
2502 	for (i = 0; i < num_img_extents; i++) {
2503 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2504 					   img_extents[i].fe_off,
2505 					   img_extents[i].fe_len,
2506 					   &img_req->object_extents,
2507 					   alloc_object_extent, img_req,
2508 					   fctx->set_pos_fn, &fctx->iter);
2509 		if (ret)
2510 			return ret;
2511 	}
2512 
2513 	return __rbd_img_fill_request(img_req);
2514 }
2515 
2516 /*
2517  * Map a list of image extents to a list of object extents, create the
2518  * corresponding object requests (normally each to a different object,
2519  * but not always) and add them to @img_req.  For each object request,
2520  * set up its data descriptor to point to the corresponding chunk(s) of
2521  * @fctx->pos data buffer.
2522  *
2523  * Because ceph_file_to_extents() will merge adjacent object extents
2524  * together, each object request's data descriptor may point to multiple
2525  * different chunks of @fctx->pos data buffer.
2526  *
2527  * @fctx->pos data buffer is assumed to be large enough.
2528  */
2529 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2530 				struct ceph_file_extent *img_extents,
2531 				u32 num_img_extents,
2532 				struct rbd_img_fill_ctx *fctx)
2533 {
2534 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2535 	struct rbd_obj_request *obj_req;
2536 	u32 i;
2537 	int ret;
2538 
2539 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2540 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2541 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2542 						   num_img_extents, fctx);
2543 
2544 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2545 
2546 	/*
2547 	 * Create object requests and determine ->bvec_count for each object
2548 	 * request.  Note that ->bvec_count sum over all object requests may
2549 	 * be greater than the number of bio_vecs in the provided bio (list)
2550 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2551 	 * stripe unit boundaries.
2552 	 */
2553 	fctx->iter = *fctx->pos;
2554 	for (i = 0; i < num_img_extents; i++) {
2555 		ret = ceph_file_to_extents(&rbd_dev->layout,
2556 					   img_extents[i].fe_off,
2557 					   img_extents[i].fe_len,
2558 					   &img_req->object_extents,
2559 					   alloc_object_extent, img_req,
2560 					   fctx->count_fn, &fctx->iter);
2561 		if (ret)
2562 			return ret;
2563 	}
2564 
2565 	for_each_obj_request(img_req, obj_req) {
2566 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2567 					      sizeof(*obj_req->bvec_pos.bvecs),
2568 					      GFP_NOIO);
2569 		if (!obj_req->bvec_pos.bvecs)
2570 			return -ENOMEM;
2571 	}
2572 
2573 	/*
2574 	 * Fill in each object request's private bio_vec array, splitting and
2575 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2576 	 */
2577 	fctx->iter = *fctx->pos;
2578 	for (i = 0; i < num_img_extents; i++) {
2579 		ret = ceph_iterate_extents(&rbd_dev->layout,
2580 					   img_extents[i].fe_off,
2581 					   img_extents[i].fe_len,
2582 					   &img_req->object_extents,
2583 					   fctx->copy_fn, &fctx->iter);
2584 		if (ret)
2585 			return ret;
2586 	}
2587 
2588 	return __rbd_img_fill_request(img_req);
2589 }
2590 
2591 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2592 			       u64 off, u64 len)
2593 {
2594 	struct ceph_file_extent ex = { off, len };
2595 	union rbd_img_fill_iter dummy = {};
2596 	struct rbd_img_fill_ctx fctx = {
2597 		.pos_type = OBJ_REQUEST_NODATA,
2598 		.pos = &dummy,
2599 	};
2600 
2601 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2602 }
2603 
2604 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2605 {
2606 	struct rbd_obj_request *obj_req =
2607 	    container_of(ex, struct rbd_obj_request, ex);
2608 	struct ceph_bio_iter *it = arg;
2609 
2610 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2611 	obj_req->bio_pos = *it;
2612 	ceph_bio_iter_advance(it, bytes);
2613 }
2614 
2615 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2616 {
2617 	struct rbd_obj_request *obj_req =
2618 	    container_of(ex, struct rbd_obj_request, ex);
2619 	struct ceph_bio_iter *it = arg;
2620 
2621 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2622 	ceph_bio_iter_advance_step(it, bytes, ({
2623 		obj_req->bvec_count++;
2624 	}));
2625 
2626 }
2627 
2628 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2629 {
2630 	struct rbd_obj_request *obj_req =
2631 	    container_of(ex, struct rbd_obj_request, ex);
2632 	struct ceph_bio_iter *it = arg;
2633 
2634 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2635 	ceph_bio_iter_advance_step(it, bytes, ({
2636 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2637 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2638 	}));
2639 }
2640 
2641 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2642 				   struct ceph_file_extent *img_extents,
2643 				   u32 num_img_extents,
2644 				   struct ceph_bio_iter *bio_pos)
2645 {
2646 	struct rbd_img_fill_ctx fctx = {
2647 		.pos_type = OBJ_REQUEST_BIO,
2648 		.pos = (union rbd_img_fill_iter *)bio_pos,
2649 		.set_pos_fn = set_bio_pos,
2650 		.count_fn = count_bio_bvecs,
2651 		.copy_fn = copy_bio_bvecs,
2652 	};
2653 
2654 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2655 				    &fctx);
2656 }
2657 
2658 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2659 				 u64 off, u64 len, struct bio *bio)
2660 {
2661 	struct ceph_file_extent ex = { off, len };
2662 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2663 
2664 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2665 }
2666 
2667 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2668 {
2669 	struct rbd_obj_request *obj_req =
2670 	    container_of(ex, struct rbd_obj_request, ex);
2671 	struct ceph_bvec_iter *it = arg;
2672 
2673 	obj_req->bvec_pos = *it;
2674 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2675 	ceph_bvec_iter_advance(it, bytes);
2676 }
2677 
2678 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2679 {
2680 	struct rbd_obj_request *obj_req =
2681 	    container_of(ex, struct rbd_obj_request, ex);
2682 	struct ceph_bvec_iter *it = arg;
2683 
2684 	ceph_bvec_iter_advance_step(it, bytes, ({
2685 		obj_req->bvec_count++;
2686 	}));
2687 }
2688 
2689 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2690 {
2691 	struct rbd_obj_request *obj_req =
2692 	    container_of(ex, struct rbd_obj_request, ex);
2693 	struct ceph_bvec_iter *it = arg;
2694 
2695 	ceph_bvec_iter_advance_step(it, bytes, ({
2696 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2697 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2698 	}));
2699 }
2700 
2701 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2702 				     struct ceph_file_extent *img_extents,
2703 				     u32 num_img_extents,
2704 				     struct ceph_bvec_iter *bvec_pos)
2705 {
2706 	struct rbd_img_fill_ctx fctx = {
2707 		.pos_type = OBJ_REQUEST_BVECS,
2708 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2709 		.set_pos_fn = set_bvec_pos,
2710 		.count_fn = count_bvecs,
2711 		.copy_fn = copy_bvecs,
2712 	};
2713 
2714 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2715 				    &fctx);
2716 }
2717 
2718 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2719 				   struct ceph_file_extent *img_extents,
2720 				   u32 num_img_extents,
2721 				   struct bio_vec *bvecs)
2722 {
2723 	struct ceph_bvec_iter it = {
2724 		.bvecs = bvecs,
2725 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2726 							     num_img_extents) },
2727 	};
2728 
2729 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2730 					 &it);
2731 }
2732 
2733 static void rbd_img_handle_request_work(struct work_struct *work)
2734 {
2735 	struct rbd_img_request *img_req =
2736 	    container_of(work, struct rbd_img_request, work);
2737 
2738 	rbd_img_handle_request(img_req, img_req->work_result);
2739 }
2740 
2741 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2742 {
2743 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2744 	img_req->work_result = result;
2745 	queue_work(rbd_wq, &img_req->work);
2746 }
2747 
2748 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2749 {
2750 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2751 
2752 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2753 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2754 		return true;
2755 	}
2756 
2757 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2758 	     obj_req->ex.oe_objno);
2759 	return false;
2760 }
2761 
2762 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2763 {
2764 	struct ceph_osd_request *osd_req;
2765 	int ret;
2766 
2767 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2768 	if (IS_ERR(osd_req))
2769 		return PTR_ERR(osd_req);
2770 
2771 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2772 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2773 	rbd_osd_setup_data(osd_req, 0);
2774 	rbd_osd_format_read(osd_req);
2775 
2776 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2777 	if (ret)
2778 		return ret;
2779 
2780 	rbd_osd_submit(osd_req);
2781 	return 0;
2782 }
2783 
2784 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2785 {
2786 	struct rbd_img_request *img_req = obj_req->img_request;
2787 	struct rbd_device *parent = img_req->rbd_dev->parent;
2788 	struct rbd_img_request *child_img_req;
2789 	int ret;
2790 
2791 	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2792 	if (!child_img_req)
2793 		return -ENOMEM;
2794 
2795 	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2796 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2797 	child_img_req->obj_request = obj_req;
2798 
2799 	down_read(&parent->header_rwsem);
2800 	rbd_img_capture_header(child_img_req);
2801 	up_read(&parent->header_rwsem);
2802 
2803 	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2804 	     obj_req);
2805 
2806 	if (!rbd_img_is_write(img_req)) {
2807 		switch (img_req->data_type) {
2808 		case OBJ_REQUEST_BIO:
2809 			ret = __rbd_img_fill_from_bio(child_img_req,
2810 						      obj_req->img_extents,
2811 						      obj_req->num_img_extents,
2812 						      &obj_req->bio_pos);
2813 			break;
2814 		case OBJ_REQUEST_BVECS:
2815 		case OBJ_REQUEST_OWN_BVECS:
2816 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2817 						      obj_req->img_extents,
2818 						      obj_req->num_img_extents,
2819 						      &obj_req->bvec_pos);
2820 			break;
2821 		default:
2822 			BUG();
2823 		}
2824 	} else {
2825 		ret = rbd_img_fill_from_bvecs(child_img_req,
2826 					      obj_req->img_extents,
2827 					      obj_req->num_img_extents,
2828 					      obj_req->copyup_bvecs);
2829 	}
2830 	if (ret) {
2831 		rbd_img_request_destroy(child_img_req);
2832 		return ret;
2833 	}
2834 
2835 	/* avoid parent chain recursion */
2836 	rbd_img_schedule(child_img_req, 0);
2837 	return 0;
2838 }
2839 
2840 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2841 {
2842 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2843 	int ret;
2844 
2845 again:
2846 	switch (obj_req->read_state) {
2847 	case RBD_OBJ_READ_START:
2848 		rbd_assert(!*result);
2849 
2850 		if (!rbd_obj_may_exist(obj_req)) {
2851 			*result = -ENOENT;
2852 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2853 			goto again;
2854 		}
2855 
2856 		ret = rbd_obj_read_object(obj_req);
2857 		if (ret) {
2858 			*result = ret;
2859 			return true;
2860 		}
2861 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2862 		return false;
2863 	case RBD_OBJ_READ_OBJECT:
2864 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2865 			/* reverse map this object extent onto the parent */
2866 			ret = rbd_obj_calc_img_extents(obj_req, false);
2867 			if (ret) {
2868 				*result = ret;
2869 				return true;
2870 			}
2871 			if (obj_req->num_img_extents) {
2872 				ret = rbd_obj_read_from_parent(obj_req);
2873 				if (ret) {
2874 					*result = ret;
2875 					return true;
2876 				}
2877 				obj_req->read_state = RBD_OBJ_READ_PARENT;
2878 				return false;
2879 			}
2880 		}
2881 
2882 		/*
2883 		 * -ENOENT means a hole in the image -- zero-fill the entire
2884 		 * length of the request.  A short read also implies zero-fill
2885 		 * to the end of the request.
2886 		 */
2887 		if (*result == -ENOENT) {
2888 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2889 			*result = 0;
2890 		} else if (*result >= 0) {
2891 			if (*result < obj_req->ex.oe_len)
2892 				rbd_obj_zero_range(obj_req, *result,
2893 						obj_req->ex.oe_len - *result);
2894 			else
2895 				rbd_assert(*result == obj_req->ex.oe_len);
2896 			*result = 0;
2897 		}
2898 		return true;
2899 	case RBD_OBJ_READ_PARENT:
2900 		/*
2901 		 * The parent image is read only up to the overlap -- zero-fill
2902 		 * from the overlap to the end of the request.
2903 		 */
2904 		if (!*result) {
2905 			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2906 
2907 			if (obj_overlap < obj_req->ex.oe_len)
2908 				rbd_obj_zero_range(obj_req, obj_overlap,
2909 					    obj_req->ex.oe_len - obj_overlap);
2910 		}
2911 		return true;
2912 	default:
2913 		BUG();
2914 	}
2915 }
2916 
2917 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2918 {
2919 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2920 
2921 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2922 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2923 
2924 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2925 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2926 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2927 		return true;
2928 	}
2929 
2930 	return false;
2931 }
2932 
2933 /*
2934  * Return:
2935  *   0 - object map update sent
2936  *   1 - object map update isn't needed
2937  *  <0 - error
2938  */
2939 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2940 {
2941 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2942 	u8 new_state;
2943 
2944 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2945 		return 1;
2946 
2947 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2948 		new_state = OBJECT_PENDING;
2949 	else
2950 		new_state = OBJECT_EXISTS;
2951 
2952 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2953 }
2954 
2955 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2956 {
2957 	struct ceph_osd_request *osd_req;
2958 	int num_ops = count_write_ops(obj_req);
2959 	int which = 0;
2960 	int ret;
2961 
2962 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2963 		num_ops++; /* stat */
2964 
2965 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2966 	if (IS_ERR(osd_req))
2967 		return PTR_ERR(osd_req);
2968 
2969 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2970 		ret = rbd_osd_setup_stat(osd_req, which++);
2971 		if (ret)
2972 			return ret;
2973 	}
2974 
2975 	rbd_osd_setup_write_ops(osd_req, which);
2976 	rbd_osd_format_write(osd_req);
2977 
2978 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2979 	if (ret)
2980 		return ret;
2981 
2982 	rbd_osd_submit(osd_req);
2983 	return 0;
2984 }
2985 
2986 /*
2987  * copyup_bvecs pages are never highmem pages
2988  */
2989 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2990 {
2991 	struct ceph_bvec_iter it = {
2992 		.bvecs = bvecs,
2993 		.iter = { .bi_size = bytes },
2994 	};
2995 
2996 	ceph_bvec_iter_advance_step(&it, bytes, ({
2997 		if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
2998 			return false;
2999 	}));
3000 	return true;
3001 }
3002 
3003 #define MODS_ONLY	U32_MAX
3004 
3005 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3006 				      u32 bytes)
3007 {
3008 	struct ceph_osd_request *osd_req;
3009 	int ret;
3010 
3011 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3012 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3013 
3014 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3015 	if (IS_ERR(osd_req))
3016 		return PTR_ERR(osd_req);
3017 
3018 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3019 	if (ret)
3020 		return ret;
3021 
3022 	rbd_osd_format_write(osd_req);
3023 
3024 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3025 	if (ret)
3026 		return ret;
3027 
3028 	rbd_osd_submit(osd_req);
3029 	return 0;
3030 }
3031 
3032 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3033 					u32 bytes)
3034 {
3035 	struct ceph_osd_request *osd_req;
3036 	int num_ops = count_write_ops(obj_req);
3037 	int which = 0;
3038 	int ret;
3039 
3040 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3041 
3042 	if (bytes != MODS_ONLY)
3043 		num_ops++; /* copyup */
3044 
3045 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3046 	if (IS_ERR(osd_req))
3047 		return PTR_ERR(osd_req);
3048 
3049 	if (bytes != MODS_ONLY) {
3050 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3051 		if (ret)
3052 			return ret;
3053 	}
3054 
3055 	rbd_osd_setup_write_ops(osd_req, which);
3056 	rbd_osd_format_write(osd_req);
3057 
3058 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3059 	if (ret)
3060 		return ret;
3061 
3062 	rbd_osd_submit(osd_req);
3063 	return 0;
3064 }
3065 
3066 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3067 {
3068 	u32 i;
3069 
3070 	rbd_assert(!obj_req->copyup_bvecs);
3071 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3072 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3073 					sizeof(*obj_req->copyup_bvecs),
3074 					GFP_NOIO);
3075 	if (!obj_req->copyup_bvecs)
3076 		return -ENOMEM;
3077 
3078 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3079 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3080 		struct page *page = alloc_page(GFP_NOIO);
3081 
3082 		if (!page)
3083 			return -ENOMEM;
3084 
3085 		bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0);
3086 		obj_overlap -= len;
3087 	}
3088 
3089 	rbd_assert(!obj_overlap);
3090 	return 0;
3091 }
3092 
3093 /*
3094  * The target object doesn't exist.  Read the data for the entire
3095  * target object up to the overlap point (if any) from the parent,
3096  * so we can use it for a copyup.
3097  */
3098 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3099 {
3100 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3101 	int ret;
3102 
3103 	rbd_assert(obj_req->num_img_extents);
3104 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3105 		      rbd_dev->parent_overlap);
3106 	if (!obj_req->num_img_extents) {
3107 		/*
3108 		 * The overlap has become 0 (most likely because the
3109 		 * image has been flattened).  Re-submit the original write
3110 		 * request -- pass MODS_ONLY since the copyup isn't needed
3111 		 * anymore.
3112 		 */
3113 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3114 	}
3115 
3116 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3117 	if (ret)
3118 		return ret;
3119 
3120 	return rbd_obj_read_from_parent(obj_req);
3121 }
3122 
3123 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3124 {
3125 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3126 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3127 	u8 new_state;
3128 	u32 i;
3129 	int ret;
3130 
3131 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3132 
3133 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3134 		return;
3135 
3136 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3137 		return;
3138 
3139 	for (i = 0; i < snapc->num_snaps; i++) {
3140 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3141 		    i + 1 < snapc->num_snaps)
3142 			new_state = OBJECT_EXISTS_CLEAN;
3143 		else
3144 			new_state = OBJECT_EXISTS;
3145 
3146 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3147 					    new_state, NULL);
3148 		if (ret < 0) {
3149 			obj_req->pending.result = ret;
3150 			return;
3151 		}
3152 
3153 		rbd_assert(!ret);
3154 		obj_req->pending.num_pending++;
3155 	}
3156 }
3157 
3158 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3159 {
3160 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3161 	int ret;
3162 
3163 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3164 
3165 	/*
3166 	 * Only send non-zero copyup data to save some I/O and network
3167 	 * bandwidth -- zero copyup data is equivalent to the object not
3168 	 * existing.
3169 	 */
3170 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3171 		bytes = 0;
3172 
3173 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3174 		/*
3175 		 * Send a copyup request with an empty snapshot context to
3176 		 * deep-copyup the object through all existing snapshots.
3177 		 * A second request with the current snapshot context will be
3178 		 * sent for the actual modification.
3179 		 */
3180 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3181 		if (ret) {
3182 			obj_req->pending.result = ret;
3183 			return;
3184 		}
3185 
3186 		obj_req->pending.num_pending++;
3187 		bytes = MODS_ONLY;
3188 	}
3189 
3190 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3191 	if (ret) {
3192 		obj_req->pending.result = ret;
3193 		return;
3194 	}
3195 
3196 	obj_req->pending.num_pending++;
3197 }
3198 
3199 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3200 {
3201 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3202 	int ret;
3203 
3204 again:
3205 	switch (obj_req->copyup_state) {
3206 	case RBD_OBJ_COPYUP_START:
3207 		rbd_assert(!*result);
3208 
3209 		ret = rbd_obj_copyup_read_parent(obj_req);
3210 		if (ret) {
3211 			*result = ret;
3212 			return true;
3213 		}
3214 		if (obj_req->num_img_extents)
3215 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3216 		else
3217 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3218 		return false;
3219 	case RBD_OBJ_COPYUP_READ_PARENT:
3220 		if (*result)
3221 			return true;
3222 
3223 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3224 				  rbd_obj_img_extents_bytes(obj_req))) {
3225 			dout("%s %p detected zeros\n", __func__, obj_req);
3226 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3227 		}
3228 
3229 		rbd_obj_copyup_object_maps(obj_req);
3230 		if (!obj_req->pending.num_pending) {
3231 			*result = obj_req->pending.result;
3232 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3233 			goto again;
3234 		}
3235 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3236 		return false;
3237 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3238 		if (!pending_result_dec(&obj_req->pending, result))
3239 			return false;
3240 		fallthrough;
3241 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3242 		if (*result) {
3243 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3244 				 *result);
3245 			return true;
3246 		}
3247 
3248 		rbd_obj_copyup_write_object(obj_req);
3249 		if (!obj_req->pending.num_pending) {
3250 			*result = obj_req->pending.result;
3251 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3252 			goto again;
3253 		}
3254 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3255 		return false;
3256 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3257 		if (!pending_result_dec(&obj_req->pending, result))
3258 			return false;
3259 		fallthrough;
3260 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3261 		return true;
3262 	default:
3263 		BUG();
3264 	}
3265 }
3266 
3267 /*
3268  * Return:
3269  *   0 - object map update sent
3270  *   1 - object map update isn't needed
3271  *  <0 - error
3272  */
3273 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3274 {
3275 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3276 	u8 current_state = OBJECT_PENDING;
3277 
3278 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3279 		return 1;
3280 
3281 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3282 		return 1;
3283 
3284 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3285 				     &current_state);
3286 }
3287 
3288 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3289 {
3290 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3291 	int ret;
3292 
3293 again:
3294 	switch (obj_req->write_state) {
3295 	case RBD_OBJ_WRITE_START:
3296 		rbd_assert(!*result);
3297 
3298 		rbd_obj_set_copyup_enabled(obj_req);
3299 		if (rbd_obj_write_is_noop(obj_req))
3300 			return true;
3301 
3302 		ret = rbd_obj_write_pre_object_map(obj_req);
3303 		if (ret < 0) {
3304 			*result = ret;
3305 			return true;
3306 		}
3307 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3308 		if (ret > 0)
3309 			goto again;
3310 		return false;
3311 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3312 		if (*result) {
3313 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3314 				 *result);
3315 			return true;
3316 		}
3317 		ret = rbd_obj_write_object(obj_req);
3318 		if (ret) {
3319 			*result = ret;
3320 			return true;
3321 		}
3322 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3323 		return false;
3324 	case RBD_OBJ_WRITE_OBJECT:
3325 		if (*result == -ENOENT) {
3326 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3327 				*result = 0;
3328 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3329 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3330 				goto again;
3331 			}
3332 			/*
3333 			 * On a non-existent object:
3334 			 *   delete - -ENOENT, truncate/zero - 0
3335 			 */
3336 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3337 				*result = 0;
3338 		}
3339 		if (*result)
3340 			return true;
3341 
3342 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3343 		goto again;
3344 	case __RBD_OBJ_WRITE_COPYUP:
3345 		if (!rbd_obj_advance_copyup(obj_req, result))
3346 			return false;
3347 		fallthrough;
3348 	case RBD_OBJ_WRITE_COPYUP:
3349 		if (*result) {
3350 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3351 			return true;
3352 		}
3353 		ret = rbd_obj_write_post_object_map(obj_req);
3354 		if (ret < 0) {
3355 			*result = ret;
3356 			return true;
3357 		}
3358 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3359 		if (ret > 0)
3360 			goto again;
3361 		return false;
3362 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3363 		if (*result)
3364 			rbd_warn(rbd_dev, "post object map update failed: %d",
3365 				 *result);
3366 		return true;
3367 	default:
3368 		BUG();
3369 	}
3370 }
3371 
3372 /*
3373  * Return true if @obj_req is completed.
3374  */
3375 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3376 				     int *result)
3377 {
3378 	struct rbd_img_request *img_req = obj_req->img_request;
3379 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3380 	bool done;
3381 
3382 	mutex_lock(&obj_req->state_mutex);
3383 	if (!rbd_img_is_write(img_req))
3384 		done = rbd_obj_advance_read(obj_req, result);
3385 	else
3386 		done = rbd_obj_advance_write(obj_req, result);
3387 	mutex_unlock(&obj_req->state_mutex);
3388 
3389 	if (done && *result) {
3390 		rbd_assert(*result < 0);
3391 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3392 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3393 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3394 	}
3395 	return done;
3396 }
3397 
3398 /*
3399  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3400  * recursion.
3401  */
3402 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3403 {
3404 	if (__rbd_obj_handle_request(obj_req, &result))
3405 		rbd_img_handle_request(obj_req->img_request, result);
3406 }
3407 
3408 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3409 {
3410 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3411 
3412 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3413 		return false;
3414 
3415 	if (rbd_is_ro(rbd_dev))
3416 		return false;
3417 
3418 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3419 	if (rbd_dev->opts->lock_on_read ||
3420 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3421 		return true;
3422 
3423 	return rbd_img_is_write(img_req);
3424 }
3425 
3426 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3427 {
3428 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3429 	bool locked;
3430 
3431 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3432 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3433 	spin_lock(&rbd_dev->lock_lists_lock);
3434 	rbd_assert(list_empty(&img_req->lock_item));
3435 	if (!locked)
3436 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3437 	else
3438 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3439 	spin_unlock(&rbd_dev->lock_lists_lock);
3440 	return locked;
3441 }
3442 
3443 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3444 {
3445 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3446 	bool need_wakeup;
3447 
3448 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3449 	spin_lock(&rbd_dev->lock_lists_lock);
3450 	rbd_assert(!list_empty(&img_req->lock_item));
3451 	list_del_init(&img_req->lock_item);
3452 	need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3453 		       list_empty(&rbd_dev->running_list));
3454 	spin_unlock(&rbd_dev->lock_lists_lock);
3455 	if (need_wakeup)
3456 		complete(&rbd_dev->releasing_wait);
3457 }
3458 
3459 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3460 {
3461 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3462 
3463 	if (!need_exclusive_lock(img_req))
3464 		return 1;
3465 
3466 	if (rbd_lock_add_request(img_req))
3467 		return 1;
3468 
3469 	if (rbd_dev->opts->exclusive) {
3470 		WARN_ON(1); /* lock got released? */
3471 		return -EROFS;
3472 	}
3473 
3474 	/*
3475 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3476 	 * and cancel_delayed_work() in wake_lock_waiters().
3477 	 */
3478 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3479 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3480 	return 0;
3481 }
3482 
3483 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3484 {
3485 	struct rbd_obj_request *obj_req;
3486 
3487 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3488 
3489 	for_each_obj_request(img_req, obj_req) {
3490 		int result = 0;
3491 
3492 		if (__rbd_obj_handle_request(obj_req, &result)) {
3493 			if (result) {
3494 				img_req->pending.result = result;
3495 				return;
3496 			}
3497 		} else {
3498 			img_req->pending.num_pending++;
3499 		}
3500 	}
3501 }
3502 
3503 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3504 {
3505 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3506 	int ret;
3507 
3508 again:
3509 	switch (img_req->state) {
3510 	case RBD_IMG_START:
3511 		rbd_assert(!*result);
3512 
3513 		ret = rbd_img_exclusive_lock(img_req);
3514 		if (ret < 0) {
3515 			*result = ret;
3516 			return true;
3517 		}
3518 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3519 		if (ret > 0)
3520 			goto again;
3521 		return false;
3522 	case RBD_IMG_EXCLUSIVE_LOCK:
3523 		if (*result)
3524 			return true;
3525 
3526 		rbd_assert(!need_exclusive_lock(img_req) ||
3527 			   __rbd_is_lock_owner(rbd_dev));
3528 
3529 		rbd_img_object_requests(img_req);
3530 		if (!img_req->pending.num_pending) {
3531 			*result = img_req->pending.result;
3532 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3533 			goto again;
3534 		}
3535 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3536 		return false;
3537 	case __RBD_IMG_OBJECT_REQUESTS:
3538 		if (!pending_result_dec(&img_req->pending, result))
3539 			return false;
3540 		fallthrough;
3541 	case RBD_IMG_OBJECT_REQUESTS:
3542 		return true;
3543 	default:
3544 		BUG();
3545 	}
3546 }
3547 
3548 /*
3549  * Return true if @img_req is completed.
3550  */
3551 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3552 				     int *result)
3553 {
3554 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3555 	bool done;
3556 
3557 	if (need_exclusive_lock(img_req)) {
3558 		down_read(&rbd_dev->lock_rwsem);
3559 		mutex_lock(&img_req->state_mutex);
3560 		done = rbd_img_advance(img_req, result);
3561 		if (done)
3562 			rbd_lock_del_request(img_req);
3563 		mutex_unlock(&img_req->state_mutex);
3564 		up_read(&rbd_dev->lock_rwsem);
3565 	} else {
3566 		mutex_lock(&img_req->state_mutex);
3567 		done = rbd_img_advance(img_req, result);
3568 		mutex_unlock(&img_req->state_mutex);
3569 	}
3570 
3571 	if (done && *result) {
3572 		rbd_assert(*result < 0);
3573 		rbd_warn(rbd_dev, "%s%s result %d",
3574 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3575 		      obj_op_name(img_req->op_type), *result);
3576 	}
3577 	return done;
3578 }
3579 
3580 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3581 {
3582 again:
3583 	if (!__rbd_img_handle_request(img_req, &result))
3584 		return;
3585 
3586 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3587 		struct rbd_obj_request *obj_req = img_req->obj_request;
3588 
3589 		rbd_img_request_destroy(img_req);
3590 		if (__rbd_obj_handle_request(obj_req, &result)) {
3591 			img_req = obj_req->img_request;
3592 			goto again;
3593 		}
3594 	} else {
3595 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3596 
3597 		rbd_img_request_destroy(img_req);
3598 		blk_mq_end_request(rq, errno_to_blk_status(result));
3599 	}
3600 }
3601 
3602 static const struct rbd_client_id rbd_empty_cid;
3603 
3604 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3605 			  const struct rbd_client_id *rhs)
3606 {
3607 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3608 }
3609 
3610 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3611 {
3612 	struct rbd_client_id cid;
3613 
3614 	mutex_lock(&rbd_dev->watch_mutex);
3615 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3616 	cid.handle = rbd_dev->watch_cookie;
3617 	mutex_unlock(&rbd_dev->watch_mutex);
3618 	return cid;
3619 }
3620 
3621 /*
3622  * lock_rwsem must be held for write
3623  */
3624 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3625 			      const struct rbd_client_id *cid)
3626 {
3627 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3628 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3629 	     cid->gid, cid->handle);
3630 	rbd_dev->owner_cid = *cid; /* struct */
3631 }
3632 
3633 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3634 {
3635 	mutex_lock(&rbd_dev->watch_mutex);
3636 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3637 	mutex_unlock(&rbd_dev->watch_mutex);
3638 }
3639 
3640 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3641 {
3642 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3643 
3644 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3645 	strcpy(rbd_dev->lock_cookie, cookie);
3646 	rbd_set_owner_cid(rbd_dev, &cid);
3647 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3648 }
3649 
3650 /*
3651  * lock_rwsem must be held for write
3652  */
3653 static int rbd_lock(struct rbd_device *rbd_dev)
3654 {
3655 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3656 	char cookie[32];
3657 	int ret;
3658 
3659 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3660 		rbd_dev->lock_cookie[0] != '\0');
3661 
3662 	format_lock_cookie(rbd_dev, cookie);
3663 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3664 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3665 			    RBD_LOCK_TAG, "", 0);
3666 	if (ret)
3667 		return ret;
3668 
3669 	__rbd_lock(rbd_dev, cookie);
3670 	return 0;
3671 }
3672 
3673 /*
3674  * lock_rwsem must be held for write
3675  */
3676 static void rbd_unlock(struct rbd_device *rbd_dev)
3677 {
3678 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3679 	int ret;
3680 
3681 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3682 		rbd_dev->lock_cookie[0] == '\0');
3683 
3684 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3685 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3686 	if (ret && ret != -ENOENT)
3687 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3688 
3689 	/* treat errors as the image is unlocked */
3690 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3691 	rbd_dev->lock_cookie[0] = '\0';
3692 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3693 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3694 }
3695 
3696 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3697 				enum rbd_notify_op notify_op,
3698 				struct page ***preply_pages,
3699 				size_t *preply_len)
3700 {
3701 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3702 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3703 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3704 	int buf_size = sizeof(buf);
3705 	void *p = buf;
3706 
3707 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3708 
3709 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3710 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3711 	ceph_encode_32(&p, notify_op);
3712 	ceph_encode_64(&p, cid.gid);
3713 	ceph_encode_64(&p, cid.handle);
3714 
3715 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3716 				&rbd_dev->header_oloc, buf, buf_size,
3717 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3718 }
3719 
3720 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3721 			       enum rbd_notify_op notify_op)
3722 {
3723 	__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3724 }
3725 
3726 static void rbd_notify_acquired_lock(struct work_struct *work)
3727 {
3728 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3729 						  acquired_lock_work);
3730 
3731 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3732 }
3733 
3734 static void rbd_notify_released_lock(struct work_struct *work)
3735 {
3736 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3737 						  released_lock_work);
3738 
3739 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3740 }
3741 
3742 static int rbd_request_lock(struct rbd_device *rbd_dev)
3743 {
3744 	struct page **reply_pages;
3745 	size_t reply_len;
3746 	bool lock_owner_responded = false;
3747 	int ret;
3748 
3749 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3750 
3751 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3752 				   &reply_pages, &reply_len);
3753 	if (ret && ret != -ETIMEDOUT) {
3754 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3755 		goto out;
3756 	}
3757 
3758 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3759 		void *p = page_address(reply_pages[0]);
3760 		void *const end = p + reply_len;
3761 		u32 n;
3762 
3763 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3764 		while (n--) {
3765 			u8 struct_v;
3766 			u32 len;
3767 
3768 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3769 			p += 8 + 8; /* skip gid and cookie */
3770 
3771 			ceph_decode_32_safe(&p, end, len, e_inval);
3772 			if (!len)
3773 				continue;
3774 
3775 			if (lock_owner_responded) {
3776 				rbd_warn(rbd_dev,
3777 					 "duplicate lock owners detected");
3778 				ret = -EIO;
3779 				goto out;
3780 			}
3781 
3782 			lock_owner_responded = true;
3783 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3784 						  &struct_v, &len);
3785 			if (ret) {
3786 				rbd_warn(rbd_dev,
3787 					 "failed to decode ResponseMessage: %d",
3788 					 ret);
3789 				goto e_inval;
3790 			}
3791 
3792 			ret = ceph_decode_32(&p);
3793 		}
3794 	}
3795 
3796 	if (!lock_owner_responded) {
3797 		rbd_warn(rbd_dev, "no lock owners detected");
3798 		ret = -ETIMEDOUT;
3799 	}
3800 
3801 out:
3802 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3803 	return ret;
3804 
3805 e_inval:
3806 	ret = -EINVAL;
3807 	goto out;
3808 }
3809 
3810 /*
3811  * Either image request state machine(s) or rbd_add_acquire_lock()
3812  * (i.e. "rbd map").
3813  */
3814 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3815 {
3816 	struct rbd_img_request *img_req;
3817 
3818 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3819 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3820 
3821 	cancel_delayed_work(&rbd_dev->lock_dwork);
3822 	if (!completion_done(&rbd_dev->acquire_wait)) {
3823 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3824 			   list_empty(&rbd_dev->running_list));
3825 		rbd_dev->acquire_err = result;
3826 		complete_all(&rbd_dev->acquire_wait);
3827 		return;
3828 	}
3829 
3830 	list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3831 		mutex_lock(&img_req->state_mutex);
3832 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3833 		rbd_img_schedule(img_req, result);
3834 		mutex_unlock(&img_req->state_mutex);
3835 	}
3836 
3837 	list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3838 }
3839 
3840 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3841 			       struct ceph_locker **lockers, u32 *num_lockers)
3842 {
3843 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3844 	u8 lock_type;
3845 	char *lock_tag;
3846 	int ret;
3847 
3848 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3849 
3850 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3851 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3852 				 &lock_type, &lock_tag, lockers, num_lockers);
3853 	if (ret)
3854 		return ret;
3855 
3856 	if (*num_lockers == 0) {
3857 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3858 		goto out;
3859 	}
3860 
3861 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3862 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3863 			 lock_tag);
3864 		ret = -EBUSY;
3865 		goto out;
3866 	}
3867 
3868 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
3869 		rbd_warn(rbd_dev, "shared lock type detected");
3870 		ret = -EBUSY;
3871 		goto out;
3872 	}
3873 
3874 	if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3875 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3876 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3877 			 (*lockers)[0].id.cookie);
3878 		ret = -EBUSY;
3879 		goto out;
3880 	}
3881 
3882 out:
3883 	kfree(lock_tag);
3884 	return ret;
3885 }
3886 
3887 static int find_watcher(struct rbd_device *rbd_dev,
3888 			const struct ceph_locker *locker)
3889 {
3890 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3891 	struct ceph_watch_item *watchers;
3892 	u32 num_watchers;
3893 	u64 cookie;
3894 	int i;
3895 	int ret;
3896 
3897 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3898 				      &rbd_dev->header_oloc, &watchers,
3899 				      &num_watchers);
3900 	if (ret)
3901 		return ret;
3902 
3903 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3904 	for (i = 0; i < num_watchers; i++) {
3905 		/*
3906 		 * Ignore addr->type while comparing.  This mimics
3907 		 * entity_addr_t::get_legacy_str() + strcmp().
3908 		 */
3909 		if (ceph_addr_equal_no_type(&watchers[i].addr,
3910 					    &locker->info.addr) &&
3911 		    watchers[i].cookie == cookie) {
3912 			struct rbd_client_id cid = {
3913 				.gid = le64_to_cpu(watchers[i].name.num),
3914 				.handle = cookie,
3915 			};
3916 
3917 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3918 			     rbd_dev, cid.gid, cid.handle);
3919 			rbd_set_owner_cid(rbd_dev, &cid);
3920 			ret = 1;
3921 			goto out;
3922 		}
3923 	}
3924 
3925 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3926 	ret = 0;
3927 out:
3928 	kfree(watchers);
3929 	return ret;
3930 }
3931 
3932 /*
3933  * lock_rwsem must be held for write
3934  */
3935 static int rbd_try_lock(struct rbd_device *rbd_dev)
3936 {
3937 	struct ceph_client *client = rbd_dev->rbd_client->client;
3938 	struct ceph_locker *lockers;
3939 	u32 num_lockers;
3940 	int ret;
3941 
3942 	for (;;) {
3943 		ret = rbd_lock(rbd_dev);
3944 		if (ret != -EBUSY)
3945 			return ret;
3946 
3947 		/* determine if the current lock holder is still alive */
3948 		ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3949 		if (ret)
3950 			return ret;
3951 
3952 		if (num_lockers == 0)
3953 			goto again;
3954 
3955 		ret = find_watcher(rbd_dev, lockers);
3956 		if (ret)
3957 			goto out; /* request lock or error */
3958 
3959 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
3960 			 ENTITY_NAME(lockers[0].id.name));
3961 
3962 		ret = ceph_monc_blocklist_add(&client->monc,
3963 					      &lockers[0].info.addr);
3964 		if (ret) {
3965 			rbd_warn(rbd_dev, "blocklist of %s%llu failed: %d",
3966 				 ENTITY_NAME(lockers[0].id.name), ret);
3967 			goto out;
3968 		}
3969 
3970 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3971 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3972 					  lockers[0].id.cookie,
3973 					  &lockers[0].id.name);
3974 		if (ret && ret != -ENOENT)
3975 			goto out;
3976 
3977 again:
3978 		ceph_free_lockers(lockers, num_lockers);
3979 	}
3980 
3981 out:
3982 	ceph_free_lockers(lockers, num_lockers);
3983 	return ret;
3984 }
3985 
3986 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
3987 {
3988 	int ret;
3989 
3990 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
3991 		ret = rbd_object_map_open(rbd_dev);
3992 		if (ret)
3993 			return ret;
3994 	}
3995 
3996 	return 0;
3997 }
3998 
3999 /*
4000  * Return:
4001  *   0 - lock acquired
4002  *   1 - caller should call rbd_request_lock()
4003  *  <0 - error
4004  */
4005 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4006 {
4007 	int ret;
4008 
4009 	down_read(&rbd_dev->lock_rwsem);
4010 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4011 	     rbd_dev->lock_state);
4012 	if (__rbd_is_lock_owner(rbd_dev)) {
4013 		up_read(&rbd_dev->lock_rwsem);
4014 		return 0;
4015 	}
4016 
4017 	up_read(&rbd_dev->lock_rwsem);
4018 	down_write(&rbd_dev->lock_rwsem);
4019 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4020 	     rbd_dev->lock_state);
4021 	if (__rbd_is_lock_owner(rbd_dev)) {
4022 		up_write(&rbd_dev->lock_rwsem);
4023 		return 0;
4024 	}
4025 
4026 	ret = rbd_try_lock(rbd_dev);
4027 	if (ret < 0) {
4028 		rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4029 		if (ret == -EBLOCKLISTED)
4030 			goto out;
4031 
4032 		ret = 1; /* request lock anyway */
4033 	}
4034 	if (ret > 0) {
4035 		up_write(&rbd_dev->lock_rwsem);
4036 		return ret;
4037 	}
4038 
4039 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4040 	rbd_assert(list_empty(&rbd_dev->running_list));
4041 
4042 	ret = rbd_post_acquire_action(rbd_dev);
4043 	if (ret) {
4044 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4045 		/*
4046 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4047 		 * rbd_lock_add_request() would let the request through,
4048 		 * assuming that e.g. object map is locked and loaded.
4049 		 */
4050 		rbd_unlock(rbd_dev);
4051 	}
4052 
4053 out:
4054 	wake_lock_waiters(rbd_dev, ret);
4055 	up_write(&rbd_dev->lock_rwsem);
4056 	return ret;
4057 }
4058 
4059 static void rbd_acquire_lock(struct work_struct *work)
4060 {
4061 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4062 					    struct rbd_device, lock_dwork);
4063 	int ret;
4064 
4065 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4066 again:
4067 	ret = rbd_try_acquire_lock(rbd_dev);
4068 	if (ret <= 0) {
4069 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4070 		return;
4071 	}
4072 
4073 	ret = rbd_request_lock(rbd_dev);
4074 	if (ret == -ETIMEDOUT) {
4075 		goto again; /* treat this as a dead client */
4076 	} else if (ret == -EROFS) {
4077 		rbd_warn(rbd_dev, "peer will not release lock");
4078 		down_write(&rbd_dev->lock_rwsem);
4079 		wake_lock_waiters(rbd_dev, ret);
4080 		up_write(&rbd_dev->lock_rwsem);
4081 	} else if (ret < 0) {
4082 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4083 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4084 				 RBD_RETRY_DELAY);
4085 	} else {
4086 		/*
4087 		 * lock owner acked, but resend if we don't see them
4088 		 * release the lock
4089 		 */
4090 		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4091 		     rbd_dev);
4092 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4093 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4094 	}
4095 }
4096 
4097 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4098 {
4099 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4100 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4101 
4102 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4103 		return false;
4104 
4105 	/*
4106 	 * Ensure that all in-flight IO is flushed.
4107 	 */
4108 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4109 	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4110 	if (list_empty(&rbd_dev->running_list))
4111 		return true;
4112 
4113 	up_write(&rbd_dev->lock_rwsem);
4114 	wait_for_completion(&rbd_dev->releasing_wait);
4115 
4116 	down_write(&rbd_dev->lock_rwsem);
4117 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4118 		return false;
4119 
4120 	rbd_assert(list_empty(&rbd_dev->running_list));
4121 	return true;
4122 }
4123 
4124 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4125 {
4126 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4127 		rbd_object_map_close(rbd_dev);
4128 }
4129 
4130 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4131 {
4132 	rbd_assert(list_empty(&rbd_dev->running_list));
4133 
4134 	rbd_pre_release_action(rbd_dev);
4135 	rbd_unlock(rbd_dev);
4136 }
4137 
4138 /*
4139  * lock_rwsem must be held for write
4140  */
4141 static void rbd_release_lock(struct rbd_device *rbd_dev)
4142 {
4143 	if (!rbd_quiesce_lock(rbd_dev))
4144 		return;
4145 
4146 	__rbd_release_lock(rbd_dev);
4147 
4148 	/*
4149 	 * Give others a chance to grab the lock - we would re-acquire
4150 	 * almost immediately if we got new IO while draining the running
4151 	 * list otherwise.  We need to ack our own notifications, so this
4152 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4153 	 * way of maybe_kick_acquire().
4154 	 */
4155 	cancel_delayed_work(&rbd_dev->lock_dwork);
4156 }
4157 
4158 static void rbd_release_lock_work(struct work_struct *work)
4159 {
4160 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4161 						  unlock_work);
4162 
4163 	down_write(&rbd_dev->lock_rwsem);
4164 	rbd_release_lock(rbd_dev);
4165 	up_write(&rbd_dev->lock_rwsem);
4166 }
4167 
4168 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4169 {
4170 	bool have_requests;
4171 
4172 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4173 	if (__rbd_is_lock_owner(rbd_dev))
4174 		return;
4175 
4176 	spin_lock(&rbd_dev->lock_lists_lock);
4177 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4178 	spin_unlock(&rbd_dev->lock_lists_lock);
4179 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4180 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4181 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4182 	}
4183 }
4184 
4185 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4186 				     void **p)
4187 {
4188 	struct rbd_client_id cid = { 0 };
4189 
4190 	if (struct_v >= 2) {
4191 		cid.gid = ceph_decode_64(p);
4192 		cid.handle = ceph_decode_64(p);
4193 	}
4194 
4195 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4196 	     cid.handle);
4197 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4198 		down_write(&rbd_dev->lock_rwsem);
4199 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4200 			dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4201 			     __func__, rbd_dev, cid.gid, cid.handle);
4202 		} else {
4203 			rbd_set_owner_cid(rbd_dev, &cid);
4204 		}
4205 		downgrade_write(&rbd_dev->lock_rwsem);
4206 	} else {
4207 		down_read(&rbd_dev->lock_rwsem);
4208 	}
4209 
4210 	maybe_kick_acquire(rbd_dev);
4211 	up_read(&rbd_dev->lock_rwsem);
4212 }
4213 
4214 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4215 				     void **p)
4216 {
4217 	struct rbd_client_id cid = { 0 };
4218 
4219 	if (struct_v >= 2) {
4220 		cid.gid = ceph_decode_64(p);
4221 		cid.handle = ceph_decode_64(p);
4222 	}
4223 
4224 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4225 	     cid.handle);
4226 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4227 		down_write(&rbd_dev->lock_rwsem);
4228 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4229 			dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4230 			     __func__, rbd_dev, cid.gid, cid.handle,
4231 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4232 		} else {
4233 			rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4234 		}
4235 		downgrade_write(&rbd_dev->lock_rwsem);
4236 	} else {
4237 		down_read(&rbd_dev->lock_rwsem);
4238 	}
4239 
4240 	maybe_kick_acquire(rbd_dev);
4241 	up_read(&rbd_dev->lock_rwsem);
4242 }
4243 
4244 /*
4245  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4246  * ResponseMessage is needed.
4247  */
4248 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4249 				   void **p)
4250 {
4251 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4252 	struct rbd_client_id cid = { 0 };
4253 	int result = 1;
4254 
4255 	if (struct_v >= 2) {
4256 		cid.gid = ceph_decode_64(p);
4257 		cid.handle = ceph_decode_64(p);
4258 	}
4259 
4260 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4261 	     cid.handle);
4262 	if (rbd_cid_equal(&cid, &my_cid))
4263 		return result;
4264 
4265 	down_read(&rbd_dev->lock_rwsem);
4266 	if (__rbd_is_lock_owner(rbd_dev)) {
4267 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4268 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4269 			goto out_unlock;
4270 
4271 		/*
4272 		 * encode ResponseMessage(0) so the peer can detect
4273 		 * a missing owner
4274 		 */
4275 		result = 0;
4276 
4277 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4278 			if (!rbd_dev->opts->exclusive) {
4279 				dout("%s rbd_dev %p queueing unlock_work\n",
4280 				     __func__, rbd_dev);
4281 				queue_work(rbd_dev->task_wq,
4282 					   &rbd_dev->unlock_work);
4283 			} else {
4284 				/* refuse to release the lock */
4285 				result = -EROFS;
4286 			}
4287 		}
4288 	}
4289 
4290 out_unlock:
4291 	up_read(&rbd_dev->lock_rwsem);
4292 	return result;
4293 }
4294 
4295 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4296 				     u64 notify_id, u64 cookie, s32 *result)
4297 {
4298 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4299 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4300 	int buf_size = sizeof(buf);
4301 	int ret;
4302 
4303 	if (result) {
4304 		void *p = buf;
4305 
4306 		/* encode ResponseMessage */
4307 		ceph_start_encoding(&p, 1, 1,
4308 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4309 		ceph_encode_32(&p, *result);
4310 	} else {
4311 		buf_size = 0;
4312 	}
4313 
4314 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4315 				   &rbd_dev->header_oloc, notify_id, cookie,
4316 				   buf, buf_size);
4317 	if (ret)
4318 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4319 }
4320 
4321 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4322 				   u64 cookie)
4323 {
4324 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4325 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4326 }
4327 
4328 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4329 					  u64 notify_id, u64 cookie, s32 result)
4330 {
4331 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4332 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4333 }
4334 
4335 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4336 			 u64 notifier_id, void *data, size_t data_len)
4337 {
4338 	struct rbd_device *rbd_dev = arg;
4339 	void *p = data;
4340 	void *const end = p + data_len;
4341 	u8 struct_v = 0;
4342 	u32 len;
4343 	u32 notify_op;
4344 	int ret;
4345 
4346 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4347 	     __func__, rbd_dev, cookie, notify_id, data_len);
4348 	if (data_len) {
4349 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4350 					  &struct_v, &len);
4351 		if (ret) {
4352 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4353 				 ret);
4354 			return;
4355 		}
4356 
4357 		notify_op = ceph_decode_32(&p);
4358 	} else {
4359 		/* legacy notification for header updates */
4360 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4361 		len = 0;
4362 	}
4363 
4364 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4365 	switch (notify_op) {
4366 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4367 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4368 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4369 		break;
4370 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4371 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4372 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4373 		break;
4374 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4375 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4376 		if (ret <= 0)
4377 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4378 						      cookie, ret);
4379 		else
4380 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4381 		break;
4382 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4383 		ret = rbd_dev_refresh(rbd_dev);
4384 		if (ret)
4385 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4386 
4387 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4388 		break;
4389 	default:
4390 		if (rbd_is_lock_owner(rbd_dev))
4391 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4392 						      cookie, -EOPNOTSUPP);
4393 		else
4394 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4395 		break;
4396 	}
4397 }
4398 
4399 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4400 
4401 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4402 {
4403 	struct rbd_device *rbd_dev = arg;
4404 
4405 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4406 
4407 	down_write(&rbd_dev->lock_rwsem);
4408 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4409 	up_write(&rbd_dev->lock_rwsem);
4410 
4411 	mutex_lock(&rbd_dev->watch_mutex);
4412 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4413 		__rbd_unregister_watch(rbd_dev);
4414 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4415 
4416 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4417 	}
4418 	mutex_unlock(&rbd_dev->watch_mutex);
4419 }
4420 
4421 /*
4422  * watch_mutex must be locked
4423  */
4424 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4425 {
4426 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4427 	struct ceph_osd_linger_request *handle;
4428 
4429 	rbd_assert(!rbd_dev->watch_handle);
4430 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4431 
4432 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4433 				 &rbd_dev->header_oloc, rbd_watch_cb,
4434 				 rbd_watch_errcb, rbd_dev);
4435 	if (IS_ERR(handle))
4436 		return PTR_ERR(handle);
4437 
4438 	rbd_dev->watch_handle = handle;
4439 	return 0;
4440 }
4441 
4442 /*
4443  * watch_mutex must be locked
4444  */
4445 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4446 {
4447 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4448 	int ret;
4449 
4450 	rbd_assert(rbd_dev->watch_handle);
4451 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4452 
4453 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4454 	if (ret)
4455 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4456 
4457 	rbd_dev->watch_handle = NULL;
4458 }
4459 
4460 static int rbd_register_watch(struct rbd_device *rbd_dev)
4461 {
4462 	int ret;
4463 
4464 	mutex_lock(&rbd_dev->watch_mutex);
4465 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4466 	ret = __rbd_register_watch(rbd_dev);
4467 	if (ret)
4468 		goto out;
4469 
4470 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4471 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4472 
4473 out:
4474 	mutex_unlock(&rbd_dev->watch_mutex);
4475 	return ret;
4476 }
4477 
4478 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4479 {
4480 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4481 
4482 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4483 	cancel_work_sync(&rbd_dev->released_lock_work);
4484 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4485 	cancel_work_sync(&rbd_dev->unlock_work);
4486 }
4487 
4488 /*
4489  * header_rwsem must not be held to avoid a deadlock with
4490  * rbd_dev_refresh() when flushing notifies.
4491  */
4492 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4493 {
4494 	cancel_tasks_sync(rbd_dev);
4495 
4496 	mutex_lock(&rbd_dev->watch_mutex);
4497 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4498 		__rbd_unregister_watch(rbd_dev);
4499 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4500 	mutex_unlock(&rbd_dev->watch_mutex);
4501 
4502 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4503 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4504 }
4505 
4506 /*
4507  * lock_rwsem must be held for write
4508  */
4509 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4510 {
4511 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4512 	char cookie[32];
4513 	int ret;
4514 
4515 	if (!rbd_quiesce_lock(rbd_dev))
4516 		return;
4517 
4518 	format_lock_cookie(rbd_dev, cookie);
4519 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4520 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4521 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4522 				  RBD_LOCK_TAG, cookie);
4523 	if (ret) {
4524 		if (ret != -EOPNOTSUPP)
4525 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4526 				 ret);
4527 
4528 		/*
4529 		 * Lock cookie cannot be updated on older OSDs, so do
4530 		 * a manual release and queue an acquire.
4531 		 */
4532 		__rbd_release_lock(rbd_dev);
4533 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4534 	} else {
4535 		__rbd_lock(rbd_dev, cookie);
4536 		wake_lock_waiters(rbd_dev, 0);
4537 	}
4538 }
4539 
4540 static void rbd_reregister_watch(struct work_struct *work)
4541 {
4542 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4543 					    struct rbd_device, watch_dwork);
4544 	int ret;
4545 
4546 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4547 
4548 	mutex_lock(&rbd_dev->watch_mutex);
4549 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4550 		mutex_unlock(&rbd_dev->watch_mutex);
4551 		return;
4552 	}
4553 
4554 	ret = __rbd_register_watch(rbd_dev);
4555 	if (ret) {
4556 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4557 		if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4558 			queue_delayed_work(rbd_dev->task_wq,
4559 					   &rbd_dev->watch_dwork,
4560 					   RBD_RETRY_DELAY);
4561 			mutex_unlock(&rbd_dev->watch_mutex);
4562 			return;
4563 		}
4564 
4565 		mutex_unlock(&rbd_dev->watch_mutex);
4566 		down_write(&rbd_dev->lock_rwsem);
4567 		wake_lock_waiters(rbd_dev, ret);
4568 		up_write(&rbd_dev->lock_rwsem);
4569 		return;
4570 	}
4571 
4572 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4573 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4574 	mutex_unlock(&rbd_dev->watch_mutex);
4575 
4576 	down_write(&rbd_dev->lock_rwsem);
4577 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4578 		rbd_reacquire_lock(rbd_dev);
4579 	up_write(&rbd_dev->lock_rwsem);
4580 
4581 	ret = rbd_dev_refresh(rbd_dev);
4582 	if (ret)
4583 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4584 }
4585 
4586 /*
4587  * Synchronous osd object method call.  Returns the number of bytes
4588  * returned in the outbound buffer, or a negative error code.
4589  */
4590 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4591 			     struct ceph_object_id *oid,
4592 			     struct ceph_object_locator *oloc,
4593 			     const char *method_name,
4594 			     const void *outbound,
4595 			     size_t outbound_size,
4596 			     void *inbound,
4597 			     size_t inbound_size)
4598 {
4599 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4600 	struct page *req_page = NULL;
4601 	struct page *reply_page;
4602 	int ret;
4603 
4604 	/*
4605 	 * Method calls are ultimately read operations.  The result
4606 	 * should placed into the inbound buffer provided.  They
4607 	 * also supply outbound data--parameters for the object
4608 	 * method.  Currently if this is present it will be a
4609 	 * snapshot id.
4610 	 */
4611 	if (outbound) {
4612 		if (outbound_size > PAGE_SIZE)
4613 			return -E2BIG;
4614 
4615 		req_page = alloc_page(GFP_KERNEL);
4616 		if (!req_page)
4617 			return -ENOMEM;
4618 
4619 		memcpy(page_address(req_page), outbound, outbound_size);
4620 	}
4621 
4622 	reply_page = alloc_page(GFP_KERNEL);
4623 	if (!reply_page) {
4624 		if (req_page)
4625 			__free_page(req_page);
4626 		return -ENOMEM;
4627 	}
4628 
4629 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4630 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4631 			     &reply_page, &inbound_size);
4632 	if (!ret) {
4633 		memcpy(inbound, page_address(reply_page), inbound_size);
4634 		ret = inbound_size;
4635 	}
4636 
4637 	if (req_page)
4638 		__free_page(req_page);
4639 	__free_page(reply_page);
4640 	return ret;
4641 }
4642 
4643 static void rbd_queue_workfn(struct work_struct *work)
4644 {
4645 	struct rbd_img_request *img_request =
4646 	    container_of(work, struct rbd_img_request, work);
4647 	struct rbd_device *rbd_dev = img_request->rbd_dev;
4648 	enum obj_operation_type op_type = img_request->op_type;
4649 	struct request *rq = blk_mq_rq_from_pdu(img_request);
4650 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4651 	u64 length = blk_rq_bytes(rq);
4652 	u64 mapping_size;
4653 	int result;
4654 
4655 	/* Ignore/skip any zero-length requests */
4656 	if (!length) {
4657 		dout("%s: zero-length request\n", __func__);
4658 		result = 0;
4659 		goto err_img_request;
4660 	}
4661 
4662 	blk_mq_start_request(rq);
4663 
4664 	down_read(&rbd_dev->header_rwsem);
4665 	mapping_size = rbd_dev->mapping.size;
4666 	rbd_img_capture_header(img_request);
4667 	up_read(&rbd_dev->header_rwsem);
4668 
4669 	if (offset + length > mapping_size) {
4670 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4671 			 length, mapping_size);
4672 		result = -EIO;
4673 		goto err_img_request;
4674 	}
4675 
4676 	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4677 	     img_request, obj_op_name(op_type), offset, length);
4678 
4679 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4680 		result = rbd_img_fill_nodata(img_request, offset, length);
4681 	else
4682 		result = rbd_img_fill_from_bio(img_request, offset, length,
4683 					       rq->bio);
4684 	if (result)
4685 		goto err_img_request;
4686 
4687 	rbd_img_handle_request(img_request, 0);
4688 	return;
4689 
4690 err_img_request:
4691 	rbd_img_request_destroy(img_request);
4692 	if (result)
4693 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4694 			 obj_op_name(op_type), length, offset, result);
4695 	blk_mq_end_request(rq, errno_to_blk_status(result));
4696 }
4697 
4698 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4699 		const struct blk_mq_queue_data *bd)
4700 {
4701 	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4702 	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4703 	enum obj_operation_type op_type;
4704 
4705 	switch (req_op(bd->rq)) {
4706 	case REQ_OP_DISCARD:
4707 		op_type = OBJ_OP_DISCARD;
4708 		break;
4709 	case REQ_OP_WRITE_ZEROES:
4710 		op_type = OBJ_OP_ZEROOUT;
4711 		break;
4712 	case REQ_OP_WRITE:
4713 		op_type = OBJ_OP_WRITE;
4714 		break;
4715 	case REQ_OP_READ:
4716 		op_type = OBJ_OP_READ;
4717 		break;
4718 	default:
4719 		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4720 		return BLK_STS_IOERR;
4721 	}
4722 
4723 	rbd_img_request_init(img_req, rbd_dev, op_type);
4724 
4725 	if (rbd_img_is_write(img_req)) {
4726 		if (rbd_is_ro(rbd_dev)) {
4727 			rbd_warn(rbd_dev, "%s on read-only mapping",
4728 				 obj_op_name(img_req->op_type));
4729 			return BLK_STS_IOERR;
4730 		}
4731 		rbd_assert(!rbd_is_snap(rbd_dev));
4732 	}
4733 
4734 	INIT_WORK(&img_req->work, rbd_queue_workfn);
4735 	queue_work(rbd_wq, &img_req->work);
4736 	return BLK_STS_OK;
4737 }
4738 
4739 static void rbd_free_disk(struct rbd_device *rbd_dev)
4740 {
4741 	put_disk(rbd_dev->disk);
4742 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4743 	rbd_dev->disk = NULL;
4744 }
4745 
4746 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4747 			     struct ceph_object_id *oid,
4748 			     struct ceph_object_locator *oloc,
4749 			     void *buf, int buf_len)
4750 
4751 {
4752 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4753 	struct ceph_osd_request *req;
4754 	struct page **pages;
4755 	int num_pages = calc_pages_for(0, buf_len);
4756 	int ret;
4757 
4758 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4759 	if (!req)
4760 		return -ENOMEM;
4761 
4762 	ceph_oid_copy(&req->r_base_oid, oid);
4763 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4764 	req->r_flags = CEPH_OSD_FLAG_READ;
4765 
4766 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4767 	if (IS_ERR(pages)) {
4768 		ret = PTR_ERR(pages);
4769 		goto out_req;
4770 	}
4771 
4772 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4773 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4774 					 true);
4775 
4776 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4777 	if (ret)
4778 		goto out_req;
4779 
4780 	ceph_osdc_start_request(osdc, req);
4781 	ret = ceph_osdc_wait_request(osdc, req);
4782 	if (ret >= 0)
4783 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4784 
4785 out_req:
4786 	ceph_osdc_put_request(req);
4787 	return ret;
4788 }
4789 
4790 /*
4791  * Read the complete header for the given rbd device.  On successful
4792  * return, the rbd_dev->header field will contain up-to-date
4793  * information about the image.
4794  */
4795 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4796 {
4797 	struct rbd_image_header_ondisk *ondisk = NULL;
4798 	u32 snap_count = 0;
4799 	u64 names_size = 0;
4800 	u32 want_count;
4801 	int ret;
4802 
4803 	/*
4804 	 * The complete header will include an array of its 64-bit
4805 	 * snapshot ids, followed by the names of those snapshots as
4806 	 * a contiguous block of NUL-terminated strings.  Note that
4807 	 * the number of snapshots could change by the time we read
4808 	 * it in, in which case we re-read it.
4809 	 */
4810 	do {
4811 		size_t size;
4812 
4813 		kfree(ondisk);
4814 
4815 		size = sizeof (*ondisk);
4816 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4817 		size += names_size;
4818 		ondisk = kmalloc(size, GFP_KERNEL);
4819 		if (!ondisk)
4820 			return -ENOMEM;
4821 
4822 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4823 					&rbd_dev->header_oloc, ondisk, size);
4824 		if (ret < 0)
4825 			goto out;
4826 		if ((size_t)ret < size) {
4827 			ret = -ENXIO;
4828 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4829 				size, ret);
4830 			goto out;
4831 		}
4832 		if (!rbd_dev_ondisk_valid(ondisk)) {
4833 			ret = -ENXIO;
4834 			rbd_warn(rbd_dev, "invalid header");
4835 			goto out;
4836 		}
4837 
4838 		names_size = le64_to_cpu(ondisk->snap_names_len);
4839 		want_count = snap_count;
4840 		snap_count = le32_to_cpu(ondisk->snap_count);
4841 	} while (snap_count != want_count);
4842 
4843 	ret = rbd_header_from_disk(rbd_dev, ondisk);
4844 out:
4845 	kfree(ondisk);
4846 
4847 	return ret;
4848 }
4849 
4850 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4851 {
4852 	sector_t size;
4853 
4854 	/*
4855 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4856 	 * try to update its size.  If REMOVING is set, updating size
4857 	 * is just useless work since the device can't be opened.
4858 	 */
4859 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4860 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4861 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4862 		dout("setting size to %llu sectors", (unsigned long long)size);
4863 		set_capacity_and_notify(rbd_dev->disk, size);
4864 	}
4865 }
4866 
4867 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4868 {
4869 	u64 mapping_size;
4870 	int ret;
4871 
4872 	down_write(&rbd_dev->header_rwsem);
4873 	mapping_size = rbd_dev->mapping.size;
4874 
4875 	ret = rbd_dev_header_info(rbd_dev);
4876 	if (ret)
4877 		goto out;
4878 
4879 	/*
4880 	 * If there is a parent, see if it has disappeared due to the
4881 	 * mapped image getting flattened.
4882 	 */
4883 	if (rbd_dev->parent) {
4884 		ret = rbd_dev_v2_parent_info(rbd_dev);
4885 		if (ret)
4886 			goto out;
4887 	}
4888 
4889 	rbd_assert(!rbd_is_snap(rbd_dev));
4890 	rbd_dev->mapping.size = rbd_dev->header.image_size;
4891 
4892 out:
4893 	up_write(&rbd_dev->header_rwsem);
4894 	if (!ret && mapping_size != rbd_dev->mapping.size)
4895 		rbd_dev_update_size(rbd_dev);
4896 
4897 	return ret;
4898 }
4899 
4900 static const struct blk_mq_ops rbd_mq_ops = {
4901 	.queue_rq	= rbd_queue_rq,
4902 };
4903 
4904 static int rbd_init_disk(struct rbd_device *rbd_dev)
4905 {
4906 	struct gendisk *disk;
4907 	struct request_queue *q;
4908 	unsigned int objset_bytes =
4909 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4910 	int err;
4911 
4912 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4913 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4914 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4915 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4916 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4917 	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4918 	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4919 
4920 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4921 	if (err)
4922 		return err;
4923 
4924 	disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev);
4925 	if (IS_ERR(disk)) {
4926 		err = PTR_ERR(disk);
4927 		goto out_tag_set;
4928 	}
4929 	q = disk->queue;
4930 
4931 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4932 		 rbd_dev->dev_id);
4933 	disk->major = rbd_dev->major;
4934 	disk->first_minor = rbd_dev->minor;
4935 	if (single_major)
4936 		disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4937 	else
4938 		disk->minors = RBD_MINORS_PER_MAJOR;
4939 	disk->fops = &rbd_bd_ops;
4940 	disk->private_data = rbd_dev;
4941 
4942 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4943 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4944 
4945 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4946 	q->limits.max_sectors = queue_max_hw_sectors(q);
4947 	blk_queue_max_segments(q, USHRT_MAX);
4948 	blk_queue_max_segment_size(q, UINT_MAX);
4949 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4950 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
4951 
4952 	if (rbd_dev->opts->trim) {
4953 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
4954 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4955 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4956 	}
4957 
4958 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4959 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
4960 
4961 	rbd_dev->disk = disk;
4962 
4963 	return 0;
4964 out_tag_set:
4965 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4966 	return err;
4967 }
4968 
4969 /*
4970   sysfs
4971 */
4972 
4973 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4974 {
4975 	return container_of(dev, struct rbd_device, dev);
4976 }
4977 
4978 static ssize_t rbd_size_show(struct device *dev,
4979 			     struct device_attribute *attr, char *buf)
4980 {
4981 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4982 
4983 	return sprintf(buf, "%llu\n",
4984 		(unsigned long long)rbd_dev->mapping.size);
4985 }
4986 
4987 static ssize_t rbd_features_show(struct device *dev,
4988 			     struct device_attribute *attr, char *buf)
4989 {
4990 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4991 
4992 	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
4993 }
4994 
4995 static ssize_t rbd_major_show(struct device *dev,
4996 			      struct device_attribute *attr, char *buf)
4997 {
4998 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4999 
5000 	if (rbd_dev->major)
5001 		return sprintf(buf, "%d\n", rbd_dev->major);
5002 
5003 	return sprintf(buf, "(none)\n");
5004 }
5005 
5006 static ssize_t rbd_minor_show(struct device *dev,
5007 			      struct device_attribute *attr, char *buf)
5008 {
5009 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5010 
5011 	return sprintf(buf, "%d\n", rbd_dev->minor);
5012 }
5013 
5014 static ssize_t rbd_client_addr_show(struct device *dev,
5015 				    struct device_attribute *attr, char *buf)
5016 {
5017 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5018 	struct ceph_entity_addr *client_addr =
5019 	    ceph_client_addr(rbd_dev->rbd_client->client);
5020 
5021 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5022 		       le32_to_cpu(client_addr->nonce));
5023 }
5024 
5025 static ssize_t rbd_client_id_show(struct device *dev,
5026 				  struct device_attribute *attr, char *buf)
5027 {
5028 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5029 
5030 	return sprintf(buf, "client%lld\n",
5031 		       ceph_client_gid(rbd_dev->rbd_client->client));
5032 }
5033 
5034 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5035 				     struct device_attribute *attr, char *buf)
5036 {
5037 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5038 
5039 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5040 }
5041 
5042 static ssize_t rbd_config_info_show(struct device *dev,
5043 				    struct device_attribute *attr, char *buf)
5044 {
5045 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5046 
5047 	if (!capable(CAP_SYS_ADMIN))
5048 		return -EPERM;
5049 
5050 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5051 }
5052 
5053 static ssize_t rbd_pool_show(struct device *dev,
5054 			     struct device_attribute *attr, char *buf)
5055 {
5056 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5057 
5058 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5059 }
5060 
5061 static ssize_t rbd_pool_id_show(struct device *dev,
5062 			     struct device_attribute *attr, char *buf)
5063 {
5064 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5065 
5066 	return sprintf(buf, "%llu\n",
5067 			(unsigned long long) rbd_dev->spec->pool_id);
5068 }
5069 
5070 static ssize_t rbd_pool_ns_show(struct device *dev,
5071 				struct device_attribute *attr, char *buf)
5072 {
5073 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5074 
5075 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5076 }
5077 
5078 static ssize_t rbd_name_show(struct device *dev,
5079 			     struct device_attribute *attr, char *buf)
5080 {
5081 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5082 
5083 	if (rbd_dev->spec->image_name)
5084 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5085 
5086 	return sprintf(buf, "(unknown)\n");
5087 }
5088 
5089 static ssize_t rbd_image_id_show(struct device *dev,
5090 			     struct device_attribute *attr, char *buf)
5091 {
5092 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5093 
5094 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5095 }
5096 
5097 /*
5098  * Shows the name of the currently-mapped snapshot (or
5099  * RBD_SNAP_HEAD_NAME for the base image).
5100  */
5101 static ssize_t rbd_snap_show(struct device *dev,
5102 			     struct device_attribute *attr,
5103 			     char *buf)
5104 {
5105 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5106 
5107 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5108 }
5109 
5110 static ssize_t rbd_snap_id_show(struct device *dev,
5111 				struct device_attribute *attr, char *buf)
5112 {
5113 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5114 
5115 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5116 }
5117 
5118 /*
5119  * For a v2 image, shows the chain of parent images, separated by empty
5120  * lines.  For v1 images or if there is no parent, shows "(no parent
5121  * image)".
5122  */
5123 static ssize_t rbd_parent_show(struct device *dev,
5124 			       struct device_attribute *attr,
5125 			       char *buf)
5126 {
5127 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5128 	ssize_t count = 0;
5129 
5130 	if (!rbd_dev->parent)
5131 		return sprintf(buf, "(no parent image)\n");
5132 
5133 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5134 		struct rbd_spec *spec = rbd_dev->parent_spec;
5135 
5136 		count += sprintf(&buf[count], "%s"
5137 			    "pool_id %llu\npool_name %s\n"
5138 			    "pool_ns %s\n"
5139 			    "image_id %s\nimage_name %s\n"
5140 			    "snap_id %llu\nsnap_name %s\n"
5141 			    "overlap %llu\n",
5142 			    !count ? "" : "\n", /* first? */
5143 			    spec->pool_id, spec->pool_name,
5144 			    spec->pool_ns ?: "",
5145 			    spec->image_id, spec->image_name ?: "(unknown)",
5146 			    spec->snap_id, spec->snap_name,
5147 			    rbd_dev->parent_overlap);
5148 	}
5149 
5150 	return count;
5151 }
5152 
5153 static ssize_t rbd_image_refresh(struct device *dev,
5154 				 struct device_attribute *attr,
5155 				 const char *buf,
5156 				 size_t size)
5157 {
5158 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5159 	int ret;
5160 
5161 	if (!capable(CAP_SYS_ADMIN))
5162 		return -EPERM;
5163 
5164 	ret = rbd_dev_refresh(rbd_dev);
5165 	if (ret)
5166 		return ret;
5167 
5168 	return size;
5169 }
5170 
5171 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5172 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5173 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5174 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5175 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5176 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5177 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5178 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5179 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5180 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5181 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5182 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5183 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5184 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5185 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5186 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5187 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5188 
5189 static struct attribute *rbd_attrs[] = {
5190 	&dev_attr_size.attr,
5191 	&dev_attr_features.attr,
5192 	&dev_attr_major.attr,
5193 	&dev_attr_minor.attr,
5194 	&dev_attr_client_addr.attr,
5195 	&dev_attr_client_id.attr,
5196 	&dev_attr_cluster_fsid.attr,
5197 	&dev_attr_config_info.attr,
5198 	&dev_attr_pool.attr,
5199 	&dev_attr_pool_id.attr,
5200 	&dev_attr_pool_ns.attr,
5201 	&dev_attr_name.attr,
5202 	&dev_attr_image_id.attr,
5203 	&dev_attr_current_snap.attr,
5204 	&dev_attr_snap_id.attr,
5205 	&dev_attr_parent.attr,
5206 	&dev_attr_refresh.attr,
5207 	NULL
5208 };
5209 
5210 static struct attribute_group rbd_attr_group = {
5211 	.attrs = rbd_attrs,
5212 };
5213 
5214 static const struct attribute_group *rbd_attr_groups[] = {
5215 	&rbd_attr_group,
5216 	NULL
5217 };
5218 
5219 static void rbd_dev_release(struct device *dev);
5220 
5221 static const struct device_type rbd_device_type = {
5222 	.name		= "rbd",
5223 	.groups		= rbd_attr_groups,
5224 	.release	= rbd_dev_release,
5225 };
5226 
5227 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5228 {
5229 	kref_get(&spec->kref);
5230 
5231 	return spec;
5232 }
5233 
5234 static void rbd_spec_free(struct kref *kref);
5235 static void rbd_spec_put(struct rbd_spec *spec)
5236 {
5237 	if (spec)
5238 		kref_put(&spec->kref, rbd_spec_free);
5239 }
5240 
5241 static struct rbd_spec *rbd_spec_alloc(void)
5242 {
5243 	struct rbd_spec *spec;
5244 
5245 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5246 	if (!spec)
5247 		return NULL;
5248 
5249 	spec->pool_id = CEPH_NOPOOL;
5250 	spec->snap_id = CEPH_NOSNAP;
5251 	kref_init(&spec->kref);
5252 
5253 	return spec;
5254 }
5255 
5256 static void rbd_spec_free(struct kref *kref)
5257 {
5258 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5259 
5260 	kfree(spec->pool_name);
5261 	kfree(spec->pool_ns);
5262 	kfree(spec->image_id);
5263 	kfree(spec->image_name);
5264 	kfree(spec->snap_name);
5265 	kfree(spec);
5266 }
5267 
5268 static void rbd_dev_free(struct rbd_device *rbd_dev)
5269 {
5270 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5271 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5272 
5273 	ceph_oid_destroy(&rbd_dev->header_oid);
5274 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5275 	kfree(rbd_dev->config_info);
5276 
5277 	rbd_put_client(rbd_dev->rbd_client);
5278 	rbd_spec_put(rbd_dev->spec);
5279 	kfree(rbd_dev->opts);
5280 	kfree(rbd_dev);
5281 }
5282 
5283 static void rbd_dev_release(struct device *dev)
5284 {
5285 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5286 	bool need_put = !!rbd_dev->opts;
5287 
5288 	if (need_put) {
5289 		destroy_workqueue(rbd_dev->task_wq);
5290 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5291 	}
5292 
5293 	rbd_dev_free(rbd_dev);
5294 
5295 	/*
5296 	 * This is racy, but way better than putting module outside of
5297 	 * the release callback.  The race window is pretty small, so
5298 	 * doing something similar to dm (dm-builtin.c) is overkill.
5299 	 */
5300 	if (need_put)
5301 		module_put(THIS_MODULE);
5302 }
5303 
5304 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5305 {
5306 	struct rbd_device *rbd_dev;
5307 
5308 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5309 	if (!rbd_dev)
5310 		return NULL;
5311 
5312 	spin_lock_init(&rbd_dev->lock);
5313 	INIT_LIST_HEAD(&rbd_dev->node);
5314 	init_rwsem(&rbd_dev->header_rwsem);
5315 
5316 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5317 	ceph_oid_init(&rbd_dev->header_oid);
5318 	rbd_dev->header_oloc.pool = spec->pool_id;
5319 	if (spec->pool_ns) {
5320 		WARN_ON(!*spec->pool_ns);
5321 		rbd_dev->header_oloc.pool_ns =
5322 		    ceph_find_or_create_string(spec->pool_ns,
5323 					       strlen(spec->pool_ns));
5324 	}
5325 
5326 	mutex_init(&rbd_dev->watch_mutex);
5327 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5328 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5329 
5330 	init_rwsem(&rbd_dev->lock_rwsem);
5331 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5332 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5333 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5334 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5335 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5336 	spin_lock_init(&rbd_dev->lock_lists_lock);
5337 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5338 	INIT_LIST_HEAD(&rbd_dev->running_list);
5339 	init_completion(&rbd_dev->acquire_wait);
5340 	init_completion(&rbd_dev->releasing_wait);
5341 
5342 	spin_lock_init(&rbd_dev->object_map_lock);
5343 
5344 	rbd_dev->dev.bus = &rbd_bus_type;
5345 	rbd_dev->dev.type = &rbd_device_type;
5346 	rbd_dev->dev.parent = &rbd_root_dev;
5347 	device_initialize(&rbd_dev->dev);
5348 
5349 	return rbd_dev;
5350 }
5351 
5352 /*
5353  * Create a mapping rbd_dev.
5354  */
5355 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5356 					 struct rbd_spec *spec,
5357 					 struct rbd_options *opts)
5358 {
5359 	struct rbd_device *rbd_dev;
5360 
5361 	rbd_dev = __rbd_dev_create(spec);
5362 	if (!rbd_dev)
5363 		return NULL;
5364 
5365 	/* get an id and fill in device name */
5366 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5367 					 minor_to_rbd_dev_id(1 << MINORBITS),
5368 					 GFP_KERNEL);
5369 	if (rbd_dev->dev_id < 0)
5370 		goto fail_rbd_dev;
5371 
5372 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5373 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5374 						   rbd_dev->name);
5375 	if (!rbd_dev->task_wq)
5376 		goto fail_dev_id;
5377 
5378 	/* we have a ref from do_rbd_add() */
5379 	__module_get(THIS_MODULE);
5380 
5381 	rbd_dev->rbd_client = rbdc;
5382 	rbd_dev->spec = spec;
5383 	rbd_dev->opts = opts;
5384 
5385 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5386 	return rbd_dev;
5387 
5388 fail_dev_id:
5389 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5390 fail_rbd_dev:
5391 	rbd_dev_free(rbd_dev);
5392 	return NULL;
5393 }
5394 
5395 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5396 {
5397 	if (rbd_dev)
5398 		put_device(&rbd_dev->dev);
5399 }
5400 
5401 /*
5402  * Get the size and object order for an image snapshot, or if
5403  * snap_id is CEPH_NOSNAP, gets this information for the base
5404  * image.
5405  */
5406 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5407 				u8 *order, u64 *snap_size)
5408 {
5409 	__le64 snapid = cpu_to_le64(snap_id);
5410 	int ret;
5411 	struct {
5412 		u8 order;
5413 		__le64 size;
5414 	} __attribute__ ((packed)) size_buf = { 0 };
5415 
5416 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5417 				  &rbd_dev->header_oloc, "get_size",
5418 				  &snapid, sizeof(snapid),
5419 				  &size_buf, sizeof(size_buf));
5420 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5421 	if (ret < 0)
5422 		return ret;
5423 	if (ret < sizeof (size_buf))
5424 		return -ERANGE;
5425 
5426 	if (order) {
5427 		*order = size_buf.order;
5428 		dout("  order %u", (unsigned int)*order);
5429 	}
5430 	*snap_size = le64_to_cpu(size_buf.size);
5431 
5432 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5433 		(unsigned long long)snap_id,
5434 		(unsigned long long)*snap_size);
5435 
5436 	return 0;
5437 }
5438 
5439 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5440 {
5441 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5442 					&rbd_dev->header.obj_order,
5443 					&rbd_dev->header.image_size);
5444 }
5445 
5446 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5447 {
5448 	size_t size;
5449 	void *reply_buf;
5450 	int ret;
5451 	void *p;
5452 
5453 	/* Response will be an encoded string, which includes a length */
5454 	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5455 	reply_buf = kzalloc(size, GFP_KERNEL);
5456 	if (!reply_buf)
5457 		return -ENOMEM;
5458 
5459 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5460 				  &rbd_dev->header_oloc, "get_object_prefix",
5461 				  NULL, 0, reply_buf, size);
5462 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5463 	if (ret < 0)
5464 		goto out;
5465 
5466 	p = reply_buf;
5467 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5468 						p + ret, NULL, GFP_NOIO);
5469 	ret = 0;
5470 
5471 	if (IS_ERR(rbd_dev->header.object_prefix)) {
5472 		ret = PTR_ERR(rbd_dev->header.object_prefix);
5473 		rbd_dev->header.object_prefix = NULL;
5474 	} else {
5475 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5476 	}
5477 out:
5478 	kfree(reply_buf);
5479 
5480 	return ret;
5481 }
5482 
5483 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5484 				     bool read_only, u64 *snap_features)
5485 {
5486 	struct {
5487 		__le64 snap_id;
5488 		u8 read_only;
5489 	} features_in;
5490 	struct {
5491 		__le64 features;
5492 		__le64 incompat;
5493 	} __attribute__ ((packed)) features_buf = { 0 };
5494 	u64 unsup;
5495 	int ret;
5496 
5497 	features_in.snap_id = cpu_to_le64(snap_id);
5498 	features_in.read_only = read_only;
5499 
5500 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5501 				  &rbd_dev->header_oloc, "get_features",
5502 				  &features_in, sizeof(features_in),
5503 				  &features_buf, sizeof(features_buf));
5504 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5505 	if (ret < 0)
5506 		return ret;
5507 	if (ret < sizeof (features_buf))
5508 		return -ERANGE;
5509 
5510 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5511 	if (unsup) {
5512 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5513 			 unsup);
5514 		return -ENXIO;
5515 	}
5516 
5517 	*snap_features = le64_to_cpu(features_buf.features);
5518 
5519 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5520 		(unsigned long long)snap_id,
5521 		(unsigned long long)*snap_features,
5522 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5523 
5524 	return 0;
5525 }
5526 
5527 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5528 {
5529 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5530 					 rbd_is_ro(rbd_dev),
5531 					 &rbd_dev->header.features);
5532 }
5533 
5534 /*
5535  * These are generic image flags, but since they are used only for
5536  * object map, store them in rbd_dev->object_map_flags.
5537  *
5538  * For the same reason, this function is called only on object map
5539  * (re)load and not on header refresh.
5540  */
5541 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5542 {
5543 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5544 	__le64 flags;
5545 	int ret;
5546 
5547 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5548 				  &rbd_dev->header_oloc, "get_flags",
5549 				  &snapid, sizeof(snapid),
5550 				  &flags, sizeof(flags));
5551 	if (ret < 0)
5552 		return ret;
5553 	if (ret < sizeof(flags))
5554 		return -EBADMSG;
5555 
5556 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5557 	return 0;
5558 }
5559 
5560 struct parent_image_info {
5561 	u64		pool_id;
5562 	const char	*pool_ns;
5563 	const char	*image_id;
5564 	u64		snap_id;
5565 
5566 	bool		has_overlap;
5567 	u64		overlap;
5568 };
5569 
5570 /*
5571  * The caller is responsible for @pii.
5572  */
5573 static int decode_parent_image_spec(void **p, void *end,
5574 				    struct parent_image_info *pii)
5575 {
5576 	u8 struct_v;
5577 	u32 struct_len;
5578 	int ret;
5579 
5580 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5581 				  &struct_v, &struct_len);
5582 	if (ret)
5583 		return ret;
5584 
5585 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5586 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5587 	if (IS_ERR(pii->pool_ns)) {
5588 		ret = PTR_ERR(pii->pool_ns);
5589 		pii->pool_ns = NULL;
5590 		return ret;
5591 	}
5592 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5593 	if (IS_ERR(pii->image_id)) {
5594 		ret = PTR_ERR(pii->image_id);
5595 		pii->image_id = NULL;
5596 		return ret;
5597 	}
5598 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5599 	return 0;
5600 
5601 e_inval:
5602 	return -EINVAL;
5603 }
5604 
5605 static int __get_parent_info(struct rbd_device *rbd_dev,
5606 			     struct page *req_page,
5607 			     struct page *reply_page,
5608 			     struct parent_image_info *pii)
5609 {
5610 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5611 	size_t reply_len = PAGE_SIZE;
5612 	void *p, *end;
5613 	int ret;
5614 
5615 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5616 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5617 			     req_page, sizeof(u64), &reply_page, &reply_len);
5618 	if (ret)
5619 		return ret == -EOPNOTSUPP ? 1 : ret;
5620 
5621 	p = page_address(reply_page);
5622 	end = p + reply_len;
5623 	ret = decode_parent_image_spec(&p, end, pii);
5624 	if (ret)
5625 		return ret;
5626 
5627 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5628 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5629 			     req_page, sizeof(u64), &reply_page, &reply_len);
5630 	if (ret)
5631 		return ret;
5632 
5633 	p = page_address(reply_page);
5634 	end = p + reply_len;
5635 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5636 	if (pii->has_overlap)
5637 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5638 
5639 	return 0;
5640 
5641 e_inval:
5642 	return -EINVAL;
5643 }
5644 
5645 /*
5646  * The caller is responsible for @pii.
5647  */
5648 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5649 				    struct page *req_page,
5650 				    struct page *reply_page,
5651 				    struct parent_image_info *pii)
5652 {
5653 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5654 	size_t reply_len = PAGE_SIZE;
5655 	void *p, *end;
5656 	int ret;
5657 
5658 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5659 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5660 			     req_page, sizeof(u64), &reply_page, &reply_len);
5661 	if (ret)
5662 		return ret;
5663 
5664 	p = page_address(reply_page);
5665 	end = p + reply_len;
5666 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5667 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5668 	if (IS_ERR(pii->image_id)) {
5669 		ret = PTR_ERR(pii->image_id);
5670 		pii->image_id = NULL;
5671 		return ret;
5672 	}
5673 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5674 	pii->has_overlap = true;
5675 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5676 
5677 	return 0;
5678 
5679 e_inval:
5680 	return -EINVAL;
5681 }
5682 
5683 static int get_parent_info(struct rbd_device *rbd_dev,
5684 			   struct parent_image_info *pii)
5685 {
5686 	struct page *req_page, *reply_page;
5687 	void *p;
5688 	int ret;
5689 
5690 	req_page = alloc_page(GFP_KERNEL);
5691 	if (!req_page)
5692 		return -ENOMEM;
5693 
5694 	reply_page = alloc_page(GFP_KERNEL);
5695 	if (!reply_page) {
5696 		__free_page(req_page);
5697 		return -ENOMEM;
5698 	}
5699 
5700 	p = page_address(req_page);
5701 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5702 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5703 	if (ret > 0)
5704 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5705 					       pii);
5706 
5707 	__free_page(req_page);
5708 	__free_page(reply_page);
5709 	return ret;
5710 }
5711 
5712 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5713 {
5714 	struct rbd_spec *parent_spec;
5715 	struct parent_image_info pii = { 0 };
5716 	int ret;
5717 
5718 	parent_spec = rbd_spec_alloc();
5719 	if (!parent_spec)
5720 		return -ENOMEM;
5721 
5722 	ret = get_parent_info(rbd_dev, &pii);
5723 	if (ret)
5724 		goto out_err;
5725 
5726 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5727 	     __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5728 	     pii.has_overlap, pii.overlap);
5729 
5730 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5731 		/*
5732 		 * Either the parent never existed, or we have
5733 		 * record of it but the image got flattened so it no
5734 		 * longer has a parent.  When the parent of a
5735 		 * layered image disappears we immediately set the
5736 		 * overlap to 0.  The effect of this is that all new
5737 		 * requests will be treated as if the image had no
5738 		 * parent.
5739 		 *
5740 		 * If !pii.has_overlap, the parent image spec is not
5741 		 * applicable.  It's there to avoid duplication in each
5742 		 * snapshot record.
5743 		 */
5744 		if (rbd_dev->parent_overlap) {
5745 			rbd_dev->parent_overlap = 0;
5746 			rbd_dev_parent_put(rbd_dev);
5747 			pr_info("%s: clone image has been flattened\n",
5748 				rbd_dev->disk->disk_name);
5749 		}
5750 
5751 		goto out;	/* No parent?  No problem. */
5752 	}
5753 
5754 	/* The ceph file layout needs to fit pool id in 32 bits */
5755 
5756 	ret = -EIO;
5757 	if (pii.pool_id > (u64)U32_MAX) {
5758 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5759 			(unsigned long long)pii.pool_id, U32_MAX);
5760 		goto out_err;
5761 	}
5762 
5763 	/*
5764 	 * The parent won't change (except when the clone is
5765 	 * flattened, already handled that).  So we only need to
5766 	 * record the parent spec we have not already done so.
5767 	 */
5768 	if (!rbd_dev->parent_spec) {
5769 		parent_spec->pool_id = pii.pool_id;
5770 		if (pii.pool_ns && *pii.pool_ns) {
5771 			parent_spec->pool_ns = pii.pool_ns;
5772 			pii.pool_ns = NULL;
5773 		}
5774 		parent_spec->image_id = pii.image_id;
5775 		pii.image_id = NULL;
5776 		parent_spec->snap_id = pii.snap_id;
5777 
5778 		rbd_dev->parent_spec = parent_spec;
5779 		parent_spec = NULL;	/* rbd_dev now owns this */
5780 	}
5781 
5782 	/*
5783 	 * We always update the parent overlap.  If it's zero we issue
5784 	 * a warning, as we will proceed as if there was no parent.
5785 	 */
5786 	if (!pii.overlap) {
5787 		if (parent_spec) {
5788 			/* refresh, careful to warn just once */
5789 			if (rbd_dev->parent_overlap)
5790 				rbd_warn(rbd_dev,
5791 				    "clone now standalone (overlap became 0)");
5792 		} else {
5793 			/* initial probe */
5794 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5795 		}
5796 	}
5797 	rbd_dev->parent_overlap = pii.overlap;
5798 
5799 out:
5800 	ret = 0;
5801 out_err:
5802 	kfree(pii.pool_ns);
5803 	kfree(pii.image_id);
5804 	rbd_spec_put(parent_spec);
5805 	return ret;
5806 }
5807 
5808 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5809 {
5810 	struct {
5811 		__le64 stripe_unit;
5812 		__le64 stripe_count;
5813 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5814 	size_t size = sizeof (striping_info_buf);
5815 	void *p;
5816 	int ret;
5817 
5818 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5819 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5820 				NULL, 0, &striping_info_buf, size);
5821 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5822 	if (ret < 0)
5823 		return ret;
5824 	if (ret < size)
5825 		return -ERANGE;
5826 
5827 	p = &striping_info_buf;
5828 	rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5829 	rbd_dev->header.stripe_count = ceph_decode_64(&p);
5830 	return 0;
5831 }
5832 
5833 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5834 {
5835 	__le64 data_pool_id;
5836 	int ret;
5837 
5838 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5839 				  &rbd_dev->header_oloc, "get_data_pool",
5840 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
5841 	if (ret < 0)
5842 		return ret;
5843 	if (ret < sizeof(data_pool_id))
5844 		return -EBADMSG;
5845 
5846 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5847 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5848 	return 0;
5849 }
5850 
5851 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5852 {
5853 	CEPH_DEFINE_OID_ONSTACK(oid);
5854 	size_t image_id_size;
5855 	char *image_id;
5856 	void *p;
5857 	void *end;
5858 	size_t size;
5859 	void *reply_buf = NULL;
5860 	size_t len = 0;
5861 	char *image_name = NULL;
5862 	int ret;
5863 
5864 	rbd_assert(!rbd_dev->spec->image_name);
5865 
5866 	len = strlen(rbd_dev->spec->image_id);
5867 	image_id_size = sizeof (__le32) + len;
5868 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5869 	if (!image_id)
5870 		return NULL;
5871 
5872 	p = image_id;
5873 	end = image_id + image_id_size;
5874 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5875 
5876 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5877 	reply_buf = kmalloc(size, GFP_KERNEL);
5878 	if (!reply_buf)
5879 		goto out;
5880 
5881 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5882 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5883 				  "dir_get_name", image_id, image_id_size,
5884 				  reply_buf, size);
5885 	if (ret < 0)
5886 		goto out;
5887 	p = reply_buf;
5888 	end = reply_buf + ret;
5889 
5890 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5891 	if (IS_ERR(image_name))
5892 		image_name = NULL;
5893 	else
5894 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5895 out:
5896 	kfree(reply_buf);
5897 	kfree(image_id);
5898 
5899 	return image_name;
5900 }
5901 
5902 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5903 {
5904 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5905 	const char *snap_name;
5906 	u32 which = 0;
5907 
5908 	/* Skip over names until we find the one we are looking for */
5909 
5910 	snap_name = rbd_dev->header.snap_names;
5911 	while (which < snapc->num_snaps) {
5912 		if (!strcmp(name, snap_name))
5913 			return snapc->snaps[which];
5914 		snap_name += strlen(snap_name) + 1;
5915 		which++;
5916 	}
5917 	return CEPH_NOSNAP;
5918 }
5919 
5920 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5921 {
5922 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5923 	u32 which;
5924 	bool found = false;
5925 	u64 snap_id;
5926 
5927 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5928 		const char *snap_name;
5929 
5930 		snap_id = snapc->snaps[which];
5931 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5932 		if (IS_ERR(snap_name)) {
5933 			/* ignore no-longer existing snapshots */
5934 			if (PTR_ERR(snap_name) == -ENOENT)
5935 				continue;
5936 			else
5937 				break;
5938 		}
5939 		found = !strcmp(name, snap_name);
5940 		kfree(snap_name);
5941 	}
5942 	return found ? snap_id : CEPH_NOSNAP;
5943 }
5944 
5945 /*
5946  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5947  * no snapshot by that name is found, or if an error occurs.
5948  */
5949 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5950 {
5951 	if (rbd_dev->image_format == 1)
5952 		return rbd_v1_snap_id_by_name(rbd_dev, name);
5953 
5954 	return rbd_v2_snap_id_by_name(rbd_dev, name);
5955 }
5956 
5957 /*
5958  * An image being mapped will have everything but the snap id.
5959  */
5960 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5961 {
5962 	struct rbd_spec *spec = rbd_dev->spec;
5963 
5964 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5965 	rbd_assert(spec->image_id && spec->image_name);
5966 	rbd_assert(spec->snap_name);
5967 
5968 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5969 		u64 snap_id;
5970 
5971 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5972 		if (snap_id == CEPH_NOSNAP)
5973 			return -ENOENT;
5974 
5975 		spec->snap_id = snap_id;
5976 	} else {
5977 		spec->snap_id = CEPH_NOSNAP;
5978 	}
5979 
5980 	return 0;
5981 }
5982 
5983 /*
5984  * A parent image will have all ids but none of the names.
5985  *
5986  * All names in an rbd spec are dynamically allocated.  It's OK if we
5987  * can't figure out the name for an image id.
5988  */
5989 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5990 {
5991 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5992 	struct rbd_spec *spec = rbd_dev->spec;
5993 	const char *pool_name;
5994 	const char *image_name;
5995 	const char *snap_name;
5996 	int ret;
5997 
5998 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
5999 	rbd_assert(spec->image_id);
6000 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6001 
6002 	/* Get the pool name; we have to make our own copy of this */
6003 
6004 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6005 	if (!pool_name) {
6006 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6007 		return -EIO;
6008 	}
6009 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6010 	if (!pool_name)
6011 		return -ENOMEM;
6012 
6013 	/* Fetch the image name; tolerate failure here */
6014 
6015 	image_name = rbd_dev_image_name(rbd_dev);
6016 	if (!image_name)
6017 		rbd_warn(rbd_dev, "unable to get image name");
6018 
6019 	/* Fetch the snapshot name */
6020 
6021 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6022 	if (IS_ERR(snap_name)) {
6023 		ret = PTR_ERR(snap_name);
6024 		goto out_err;
6025 	}
6026 
6027 	spec->pool_name = pool_name;
6028 	spec->image_name = image_name;
6029 	spec->snap_name = snap_name;
6030 
6031 	return 0;
6032 
6033 out_err:
6034 	kfree(image_name);
6035 	kfree(pool_name);
6036 	return ret;
6037 }
6038 
6039 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6040 {
6041 	size_t size;
6042 	int ret;
6043 	void *reply_buf;
6044 	void *p;
6045 	void *end;
6046 	u64 seq;
6047 	u32 snap_count;
6048 	struct ceph_snap_context *snapc;
6049 	u32 i;
6050 
6051 	/*
6052 	 * We'll need room for the seq value (maximum snapshot id),
6053 	 * snapshot count, and array of that many snapshot ids.
6054 	 * For now we have a fixed upper limit on the number we're
6055 	 * prepared to receive.
6056 	 */
6057 	size = sizeof (__le64) + sizeof (__le32) +
6058 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6059 	reply_buf = kzalloc(size, GFP_KERNEL);
6060 	if (!reply_buf)
6061 		return -ENOMEM;
6062 
6063 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6064 				  &rbd_dev->header_oloc, "get_snapcontext",
6065 				  NULL, 0, reply_buf, size);
6066 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6067 	if (ret < 0)
6068 		goto out;
6069 
6070 	p = reply_buf;
6071 	end = reply_buf + ret;
6072 	ret = -ERANGE;
6073 	ceph_decode_64_safe(&p, end, seq, out);
6074 	ceph_decode_32_safe(&p, end, snap_count, out);
6075 
6076 	/*
6077 	 * Make sure the reported number of snapshot ids wouldn't go
6078 	 * beyond the end of our buffer.  But before checking that,
6079 	 * make sure the computed size of the snapshot context we
6080 	 * allocate is representable in a size_t.
6081 	 */
6082 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6083 				 / sizeof (u64)) {
6084 		ret = -EINVAL;
6085 		goto out;
6086 	}
6087 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6088 		goto out;
6089 	ret = 0;
6090 
6091 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6092 	if (!snapc) {
6093 		ret = -ENOMEM;
6094 		goto out;
6095 	}
6096 	snapc->seq = seq;
6097 	for (i = 0; i < snap_count; i++)
6098 		snapc->snaps[i] = ceph_decode_64(&p);
6099 
6100 	ceph_put_snap_context(rbd_dev->header.snapc);
6101 	rbd_dev->header.snapc = snapc;
6102 
6103 	dout("  snap context seq = %llu, snap_count = %u\n",
6104 		(unsigned long long)seq, (unsigned int)snap_count);
6105 out:
6106 	kfree(reply_buf);
6107 
6108 	return ret;
6109 }
6110 
6111 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6112 					u64 snap_id)
6113 {
6114 	size_t size;
6115 	void *reply_buf;
6116 	__le64 snapid;
6117 	int ret;
6118 	void *p;
6119 	void *end;
6120 	char *snap_name;
6121 
6122 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6123 	reply_buf = kmalloc(size, GFP_KERNEL);
6124 	if (!reply_buf)
6125 		return ERR_PTR(-ENOMEM);
6126 
6127 	snapid = cpu_to_le64(snap_id);
6128 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6129 				  &rbd_dev->header_oloc, "get_snapshot_name",
6130 				  &snapid, sizeof(snapid), reply_buf, size);
6131 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6132 	if (ret < 0) {
6133 		snap_name = ERR_PTR(ret);
6134 		goto out;
6135 	}
6136 
6137 	p = reply_buf;
6138 	end = reply_buf + ret;
6139 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6140 	if (IS_ERR(snap_name))
6141 		goto out;
6142 
6143 	dout("  snap_id 0x%016llx snap_name = %s\n",
6144 		(unsigned long long)snap_id, snap_name);
6145 out:
6146 	kfree(reply_buf);
6147 
6148 	return snap_name;
6149 }
6150 
6151 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6152 {
6153 	bool first_time = rbd_dev->header.object_prefix == NULL;
6154 	int ret;
6155 
6156 	ret = rbd_dev_v2_image_size(rbd_dev);
6157 	if (ret)
6158 		return ret;
6159 
6160 	if (first_time) {
6161 		ret = rbd_dev_v2_header_onetime(rbd_dev);
6162 		if (ret)
6163 			return ret;
6164 	}
6165 
6166 	ret = rbd_dev_v2_snap_context(rbd_dev);
6167 	if (ret && first_time) {
6168 		kfree(rbd_dev->header.object_prefix);
6169 		rbd_dev->header.object_prefix = NULL;
6170 	}
6171 
6172 	return ret;
6173 }
6174 
6175 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6176 {
6177 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6178 
6179 	if (rbd_dev->image_format == 1)
6180 		return rbd_dev_v1_header_info(rbd_dev);
6181 
6182 	return rbd_dev_v2_header_info(rbd_dev);
6183 }
6184 
6185 /*
6186  * Skips over white space at *buf, and updates *buf to point to the
6187  * first found non-space character (if any). Returns the length of
6188  * the token (string of non-white space characters) found.  Note
6189  * that *buf must be terminated with '\0'.
6190  */
6191 static inline size_t next_token(const char **buf)
6192 {
6193         /*
6194         * These are the characters that produce nonzero for
6195         * isspace() in the "C" and "POSIX" locales.
6196         */
6197 	static const char spaces[] = " \f\n\r\t\v";
6198 
6199         *buf += strspn(*buf, spaces);	/* Find start of token */
6200 
6201 	return strcspn(*buf, spaces);   /* Return token length */
6202 }
6203 
6204 /*
6205  * Finds the next token in *buf, dynamically allocates a buffer big
6206  * enough to hold a copy of it, and copies the token into the new
6207  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6208  * that a duplicate buffer is created even for a zero-length token.
6209  *
6210  * Returns a pointer to the newly-allocated duplicate, or a null
6211  * pointer if memory for the duplicate was not available.  If
6212  * the lenp argument is a non-null pointer, the length of the token
6213  * (not including the '\0') is returned in *lenp.
6214  *
6215  * If successful, the *buf pointer will be updated to point beyond
6216  * the end of the found token.
6217  *
6218  * Note: uses GFP_KERNEL for allocation.
6219  */
6220 static inline char *dup_token(const char **buf, size_t *lenp)
6221 {
6222 	char *dup;
6223 	size_t len;
6224 
6225 	len = next_token(buf);
6226 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6227 	if (!dup)
6228 		return NULL;
6229 	*(dup + len) = '\0';
6230 	*buf += len;
6231 
6232 	if (lenp)
6233 		*lenp = len;
6234 
6235 	return dup;
6236 }
6237 
6238 static int rbd_parse_param(struct fs_parameter *param,
6239 			    struct rbd_parse_opts_ctx *pctx)
6240 {
6241 	struct rbd_options *opt = pctx->opts;
6242 	struct fs_parse_result result;
6243 	struct p_log log = {.prefix = "rbd"};
6244 	int token, ret;
6245 
6246 	ret = ceph_parse_param(param, pctx->copts, NULL);
6247 	if (ret != -ENOPARAM)
6248 		return ret;
6249 
6250 	token = __fs_parse(&log, rbd_parameters, param, &result);
6251 	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6252 	if (token < 0) {
6253 		if (token == -ENOPARAM)
6254 			return inval_plog(&log, "Unknown parameter '%s'",
6255 					  param->key);
6256 		return token;
6257 	}
6258 
6259 	switch (token) {
6260 	case Opt_queue_depth:
6261 		if (result.uint_32 < 1)
6262 			goto out_of_range;
6263 		opt->queue_depth = result.uint_32;
6264 		break;
6265 	case Opt_alloc_size:
6266 		if (result.uint_32 < SECTOR_SIZE)
6267 			goto out_of_range;
6268 		if (!is_power_of_2(result.uint_32))
6269 			return inval_plog(&log, "alloc_size must be a power of 2");
6270 		opt->alloc_size = result.uint_32;
6271 		break;
6272 	case Opt_lock_timeout:
6273 		/* 0 is "wait forever" (i.e. infinite timeout) */
6274 		if (result.uint_32 > INT_MAX / 1000)
6275 			goto out_of_range;
6276 		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6277 		break;
6278 	case Opt_pool_ns:
6279 		kfree(pctx->spec->pool_ns);
6280 		pctx->spec->pool_ns = param->string;
6281 		param->string = NULL;
6282 		break;
6283 	case Opt_compression_hint:
6284 		switch (result.uint_32) {
6285 		case Opt_compression_hint_none:
6286 			opt->alloc_hint_flags &=
6287 			    ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6288 			      CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6289 			break;
6290 		case Opt_compression_hint_compressible:
6291 			opt->alloc_hint_flags |=
6292 			    CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6293 			opt->alloc_hint_flags &=
6294 			    ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6295 			break;
6296 		case Opt_compression_hint_incompressible:
6297 			opt->alloc_hint_flags |=
6298 			    CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6299 			opt->alloc_hint_flags &=
6300 			    ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6301 			break;
6302 		default:
6303 			BUG();
6304 		}
6305 		break;
6306 	case Opt_read_only:
6307 		opt->read_only = true;
6308 		break;
6309 	case Opt_read_write:
6310 		opt->read_only = false;
6311 		break;
6312 	case Opt_lock_on_read:
6313 		opt->lock_on_read = true;
6314 		break;
6315 	case Opt_exclusive:
6316 		opt->exclusive = true;
6317 		break;
6318 	case Opt_notrim:
6319 		opt->trim = false;
6320 		break;
6321 	default:
6322 		BUG();
6323 	}
6324 
6325 	return 0;
6326 
6327 out_of_range:
6328 	return inval_plog(&log, "%s out of range", param->key);
6329 }
6330 
6331 /*
6332  * This duplicates most of generic_parse_monolithic(), untying it from
6333  * fs_context and skipping standard superblock and security options.
6334  */
6335 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6336 {
6337 	char *key;
6338 	int ret = 0;
6339 
6340 	dout("%s '%s'\n", __func__, options);
6341 	while ((key = strsep(&options, ",")) != NULL) {
6342 		if (*key) {
6343 			struct fs_parameter param = {
6344 				.key	= key,
6345 				.type	= fs_value_is_flag,
6346 			};
6347 			char *value = strchr(key, '=');
6348 			size_t v_len = 0;
6349 
6350 			if (value) {
6351 				if (value == key)
6352 					continue;
6353 				*value++ = 0;
6354 				v_len = strlen(value);
6355 				param.string = kmemdup_nul(value, v_len,
6356 							   GFP_KERNEL);
6357 				if (!param.string)
6358 					return -ENOMEM;
6359 				param.type = fs_value_is_string;
6360 			}
6361 			param.size = v_len;
6362 
6363 			ret = rbd_parse_param(&param, pctx);
6364 			kfree(param.string);
6365 			if (ret)
6366 				break;
6367 		}
6368 	}
6369 
6370 	return ret;
6371 }
6372 
6373 /*
6374  * Parse the options provided for an "rbd add" (i.e., rbd image
6375  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6376  * and the data written is passed here via a NUL-terminated buffer.
6377  * Returns 0 if successful or an error code otherwise.
6378  *
6379  * The information extracted from these options is recorded in
6380  * the other parameters which return dynamically-allocated
6381  * structures:
6382  *  ceph_opts
6383  *      The address of a pointer that will refer to a ceph options
6384  *      structure.  Caller must release the returned pointer using
6385  *      ceph_destroy_options() when it is no longer needed.
6386  *  rbd_opts
6387  *	Address of an rbd options pointer.  Fully initialized by
6388  *	this function; caller must release with kfree().
6389  *  spec
6390  *	Address of an rbd image specification pointer.  Fully
6391  *	initialized by this function based on parsed options.
6392  *	Caller must release with rbd_spec_put().
6393  *
6394  * The options passed take this form:
6395  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6396  * where:
6397  *  <mon_addrs>
6398  *      A comma-separated list of one or more monitor addresses.
6399  *      A monitor address is an ip address, optionally followed
6400  *      by a port number (separated by a colon).
6401  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6402  *  <options>
6403  *      A comma-separated list of ceph and/or rbd options.
6404  *  <pool_name>
6405  *      The name of the rados pool containing the rbd image.
6406  *  <image_name>
6407  *      The name of the image in that pool to map.
6408  *  <snap_id>
6409  *      An optional snapshot id.  If provided, the mapping will
6410  *      present data from the image at the time that snapshot was
6411  *      created.  The image head is used if no snapshot id is
6412  *      provided.  Snapshot mappings are always read-only.
6413  */
6414 static int rbd_add_parse_args(const char *buf,
6415 				struct ceph_options **ceph_opts,
6416 				struct rbd_options **opts,
6417 				struct rbd_spec **rbd_spec)
6418 {
6419 	size_t len;
6420 	char *options;
6421 	const char *mon_addrs;
6422 	char *snap_name;
6423 	size_t mon_addrs_size;
6424 	struct rbd_parse_opts_ctx pctx = { 0 };
6425 	int ret;
6426 
6427 	/* The first four tokens are required */
6428 
6429 	len = next_token(&buf);
6430 	if (!len) {
6431 		rbd_warn(NULL, "no monitor address(es) provided");
6432 		return -EINVAL;
6433 	}
6434 	mon_addrs = buf;
6435 	mon_addrs_size = len;
6436 	buf += len;
6437 
6438 	ret = -EINVAL;
6439 	options = dup_token(&buf, NULL);
6440 	if (!options)
6441 		return -ENOMEM;
6442 	if (!*options) {
6443 		rbd_warn(NULL, "no options provided");
6444 		goto out_err;
6445 	}
6446 
6447 	pctx.spec = rbd_spec_alloc();
6448 	if (!pctx.spec)
6449 		goto out_mem;
6450 
6451 	pctx.spec->pool_name = dup_token(&buf, NULL);
6452 	if (!pctx.spec->pool_name)
6453 		goto out_mem;
6454 	if (!*pctx.spec->pool_name) {
6455 		rbd_warn(NULL, "no pool name provided");
6456 		goto out_err;
6457 	}
6458 
6459 	pctx.spec->image_name = dup_token(&buf, NULL);
6460 	if (!pctx.spec->image_name)
6461 		goto out_mem;
6462 	if (!*pctx.spec->image_name) {
6463 		rbd_warn(NULL, "no image name provided");
6464 		goto out_err;
6465 	}
6466 
6467 	/*
6468 	 * Snapshot name is optional; default is to use "-"
6469 	 * (indicating the head/no snapshot).
6470 	 */
6471 	len = next_token(&buf);
6472 	if (!len) {
6473 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6474 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6475 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6476 		ret = -ENAMETOOLONG;
6477 		goto out_err;
6478 	}
6479 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6480 	if (!snap_name)
6481 		goto out_mem;
6482 	*(snap_name + len) = '\0';
6483 	pctx.spec->snap_name = snap_name;
6484 
6485 	pctx.copts = ceph_alloc_options();
6486 	if (!pctx.copts)
6487 		goto out_mem;
6488 
6489 	/* Initialize all rbd options to the defaults */
6490 
6491 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6492 	if (!pctx.opts)
6493 		goto out_mem;
6494 
6495 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6496 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6497 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6498 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6499 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6500 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6501 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6502 
6503 	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL,
6504 				 ',');
6505 	if (ret)
6506 		goto out_err;
6507 
6508 	ret = rbd_parse_options(options, &pctx);
6509 	if (ret)
6510 		goto out_err;
6511 
6512 	*ceph_opts = pctx.copts;
6513 	*opts = pctx.opts;
6514 	*rbd_spec = pctx.spec;
6515 	kfree(options);
6516 	return 0;
6517 
6518 out_mem:
6519 	ret = -ENOMEM;
6520 out_err:
6521 	kfree(pctx.opts);
6522 	ceph_destroy_options(pctx.copts);
6523 	rbd_spec_put(pctx.spec);
6524 	kfree(options);
6525 	return ret;
6526 }
6527 
6528 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6529 {
6530 	down_write(&rbd_dev->lock_rwsem);
6531 	if (__rbd_is_lock_owner(rbd_dev))
6532 		__rbd_release_lock(rbd_dev);
6533 	up_write(&rbd_dev->lock_rwsem);
6534 }
6535 
6536 /*
6537  * If the wait is interrupted, an error is returned even if the lock
6538  * was successfully acquired.  rbd_dev_image_unlock() will release it
6539  * if needed.
6540  */
6541 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6542 {
6543 	long ret;
6544 
6545 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6546 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6547 			return 0;
6548 
6549 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6550 		return -EINVAL;
6551 	}
6552 
6553 	if (rbd_is_ro(rbd_dev))
6554 		return 0;
6555 
6556 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6557 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6558 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6559 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6560 	if (ret > 0) {
6561 		ret = rbd_dev->acquire_err;
6562 	} else {
6563 		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6564 		if (!ret)
6565 			ret = -ETIMEDOUT;
6566 	}
6567 
6568 	if (ret) {
6569 		rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6570 		return ret;
6571 	}
6572 
6573 	/*
6574 	 * The lock may have been released by now, unless automatic lock
6575 	 * transitions are disabled.
6576 	 */
6577 	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6578 	return 0;
6579 }
6580 
6581 /*
6582  * An rbd format 2 image has a unique identifier, distinct from the
6583  * name given to it by the user.  Internally, that identifier is
6584  * what's used to specify the names of objects related to the image.
6585  *
6586  * A special "rbd id" object is used to map an rbd image name to its
6587  * id.  If that object doesn't exist, then there is no v2 rbd image
6588  * with the supplied name.
6589  *
6590  * This function will record the given rbd_dev's image_id field if
6591  * it can be determined, and in that case will return 0.  If any
6592  * errors occur a negative errno will be returned and the rbd_dev's
6593  * image_id field will be unchanged (and should be NULL).
6594  */
6595 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6596 {
6597 	int ret;
6598 	size_t size;
6599 	CEPH_DEFINE_OID_ONSTACK(oid);
6600 	void *response;
6601 	char *image_id;
6602 
6603 	/*
6604 	 * When probing a parent image, the image id is already
6605 	 * known (and the image name likely is not).  There's no
6606 	 * need to fetch the image id again in this case.  We
6607 	 * do still need to set the image format though.
6608 	 */
6609 	if (rbd_dev->spec->image_id) {
6610 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6611 
6612 		return 0;
6613 	}
6614 
6615 	/*
6616 	 * First, see if the format 2 image id file exists, and if
6617 	 * so, get the image's persistent id from it.
6618 	 */
6619 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6620 			       rbd_dev->spec->image_name);
6621 	if (ret)
6622 		return ret;
6623 
6624 	dout("rbd id object name is %s\n", oid.name);
6625 
6626 	/* Response will be an encoded string, which includes a length */
6627 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6628 	response = kzalloc(size, GFP_NOIO);
6629 	if (!response) {
6630 		ret = -ENOMEM;
6631 		goto out;
6632 	}
6633 
6634 	/* If it doesn't exist we'll assume it's a format 1 image */
6635 
6636 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6637 				  "get_id", NULL, 0,
6638 				  response, size);
6639 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6640 	if (ret == -ENOENT) {
6641 		image_id = kstrdup("", GFP_KERNEL);
6642 		ret = image_id ? 0 : -ENOMEM;
6643 		if (!ret)
6644 			rbd_dev->image_format = 1;
6645 	} else if (ret >= 0) {
6646 		void *p = response;
6647 
6648 		image_id = ceph_extract_encoded_string(&p, p + ret,
6649 						NULL, GFP_NOIO);
6650 		ret = PTR_ERR_OR_ZERO(image_id);
6651 		if (!ret)
6652 			rbd_dev->image_format = 2;
6653 	}
6654 
6655 	if (!ret) {
6656 		rbd_dev->spec->image_id = image_id;
6657 		dout("image_id is %s\n", image_id);
6658 	}
6659 out:
6660 	kfree(response);
6661 	ceph_oid_destroy(&oid);
6662 	return ret;
6663 }
6664 
6665 /*
6666  * Undo whatever state changes are made by v1 or v2 header info
6667  * call.
6668  */
6669 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6670 {
6671 	struct rbd_image_header	*header;
6672 
6673 	rbd_dev_parent_put(rbd_dev);
6674 	rbd_object_map_free(rbd_dev);
6675 	rbd_dev_mapping_clear(rbd_dev);
6676 
6677 	/* Free dynamic fields from the header, then zero it out */
6678 
6679 	header = &rbd_dev->header;
6680 	ceph_put_snap_context(header->snapc);
6681 	kfree(header->snap_sizes);
6682 	kfree(header->snap_names);
6683 	kfree(header->object_prefix);
6684 	memset(header, 0, sizeof (*header));
6685 }
6686 
6687 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6688 {
6689 	int ret;
6690 
6691 	ret = rbd_dev_v2_object_prefix(rbd_dev);
6692 	if (ret)
6693 		goto out_err;
6694 
6695 	/*
6696 	 * Get the and check features for the image.  Currently the
6697 	 * features are assumed to never change.
6698 	 */
6699 	ret = rbd_dev_v2_features(rbd_dev);
6700 	if (ret)
6701 		goto out_err;
6702 
6703 	/* If the image supports fancy striping, get its parameters */
6704 
6705 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6706 		ret = rbd_dev_v2_striping_info(rbd_dev);
6707 		if (ret < 0)
6708 			goto out_err;
6709 	}
6710 
6711 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6712 		ret = rbd_dev_v2_data_pool(rbd_dev);
6713 		if (ret)
6714 			goto out_err;
6715 	}
6716 
6717 	rbd_init_layout(rbd_dev);
6718 	return 0;
6719 
6720 out_err:
6721 	rbd_dev->header.features = 0;
6722 	kfree(rbd_dev->header.object_prefix);
6723 	rbd_dev->header.object_prefix = NULL;
6724 	return ret;
6725 }
6726 
6727 /*
6728  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6729  * rbd_dev_image_probe() recursion depth, which means it's also the
6730  * length of the already discovered part of the parent chain.
6731  */
6732 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6733 {
6734 	struct rbd_device *parent = NULL;
6735 	int ret;
6736 
6737 	if (!rbd_dev->parent_spec)
6738 		return 0;
6739 
6740 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6741 		pr_info("parent chain is too long (%d)\n", depth);
6742 		ret = -EINVAL;
6743 		goto out_err;
6744 	}
6745 
6746 	parent = __rbd_dev_create(rbd_dev->parent_spec);
6747 	if (!parent) {
6748 		ret = -ENOMEM;
6749 		goto out_err;
6750 	}
6751 
6752 	/*
6753 	 * Images related by parent/child relationships always share
6754 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6755 	 */
6756 	parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6757 	parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6758 
6759 	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6760 
6761 	ret = rbd_dev_image_probe(parent, depth);
6762 	if (ret < 0)
6763 		goto out_err;
6764 
6765 	rbd_dev->parent = parent;
6766 	atomic_set(&rbd_dev->parent_ref, 1);
6767 	return 0;
6768 
6769 out_err:
6770 	rbd_dev_unparent(rbd_dev);
6771 	rbd_dev_destroy(parent);
6772 	return ret;
6773 }
6774 
6775 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6776 {
6777 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6778 	rbd_free_disk(rbd_dev);
6779 	if (!single_major)
6780 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6781 }
6782 
6783 /*
6784  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6785  * upon return.
6786  */
6787 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6788 {
6789 	int ret;
6790 
6791 	/* Record our major and minor device numbers. */
6792 
6793 	if (!single_major) {
6794 		ret = register_blkdev(0, rbd_dev->name);
6795 		if (ret < 0)
6796 			goto err_out_unlock;
6797 
6798 		rbd_dev->major = ret;
6799 		rbd_dev->minor = 0;
6800 	} else {
6801 		rbd_dev->major = rbd_major;
6802 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6803 	}
6804 
6805 	/* Set up the blkdev mapping. */
6806 
6807 	ret = rbd_init_disk(rbd_dev);
6808 	if (ret)
6809 		goto err_out_blkdev;
6810 
6811 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6812 	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6813 
6814 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6815 	if (ret)
6816 		goto err_out_disk;
6817 
6818 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6819 	up_write(&rbd_dev->header_rwsem);
6820 	return 0;
6821 
6822 err_out_disk:
6823 	rbd_free_disk(rbd_dev);
6824 err_out_blkdev:
6825 	if (!single_major)
6826 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6827 err_out_unlock:
6828 	up_write(&rbd_dev->header_rwsem);
6829 	return ret;
6830 }
6831 
6832 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6833 {
6834 	struct rbd_spec *spec = rbd_dev->spec;
6835 	int ret;
6836 
6837 	/* Record the header object name for this rbd image. */
6838 
6839 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6840 	if (rbd_dev->image_format == 1)
6841 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6842 				       spec->image_name, RBD_SUFFIX);
6843 	else
6844 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6845 				       RBD_HEADER_PREFIX, spec->image_id);
6846 
6847 	return ret;
6848 }
6849 
6850 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6851 {
6852 	if (!is_snap) {
6853 		pr_info("image %s/%s%s%s does not exist\n",
6854 			rbd_dev->spec->pool_name,
6855 			rbd_dev->spec->pool_ns ?: "",
6856 			rbd_dev->spec->pool_ns ? "/" : "",
6857 			rbd_dev->spec->image_name);
6858 	} else {
6859 		pr_info("snap %s/%s%s%s@%s does not exist\n",
6860 			rbd_dev->spec->pool_name,
6861 			rbd_dev->spec->pool_ns ?: "",
6862 			rbd_dev->spec->pool_ns ? "/" : "",
6863 			rbd_dev->spec->image_name,
6864 			rbd_dev->spec->snap_name);
6865 	}
6866 }
6867 
6868 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6869 {
6870 	if (!rbd_is_ro(rbd_dev))
6871 		rbd_unregister_watch(rbd_dev);
6872 
6873 	rbd_dev_unprobe(rbd_dev);
6874 	rbd_dev->image_format = 0;
6875 	kfree(rbd_dev->spec->image_id);
6876 	rbd_dev->spec->image_id = NULL;
6877 }
6878 
6879 /*
6880  * Probe for the existence of the header object for the given rbd
6881  * device.  If this image is the one being mapped (i.e., not a
6882  * parent), initiate a watch on its header object before using that
6883  * object to get detailed information about the rbd image.
6884  *
6885  * On success, returns with header_rwsem held for write if called
6886  * with @depth == 0.
6887  */
6888 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6889 {
6890 	bool need_watch = !rbd_is_ro(rbd_dev);
6891 	int ret;
6892 
6893 	/*
6894 	 * Get the id from the image id object.  Unless there's an
6895 	 * error, rbd_dev->spec->image_id will be filled in with
6896 	 * a dynamically-allocated string, and rbd_dev->image_format
6897 	 * will be set to either 1 or 2.
6898 	 */
6899 	ret = rbd_dev_image_id(rbd_dev);
6900 	if (ret)
6901 		return ret;
6902 
6903 	ret = rbd_dev_header_name(rbd_dev);
6904 	if (ret)
6905 		goto err_out_format;
6906 
6907 	if (need_watch) {
6908 		ret = rbd_register_watch(rbd_dev);
6909 		if (ret) {
6910 			if (ret == -ENOENT)
6911 				rbd_print_dne(rbd_dev, false);
6912 			goto err_out_format;
6913 		}
6914 	}
6915 
6916 	if (!depth)
6917 		down_write(&rbd_dev->header_rwsem);
6918 
6919 	ret = rbd_dev_header_info(rbd_dev);
6920 	if (ret) {
6921 		if (ret == -ENOENT && !need_watch)
6922 			rbd_print_dne(rbd_dev, false);
6923 		goto err_out_probe;
6924 	}
6925 
6926 	/*
6927 	 * If this image is the one being mapped, we have pool name and
6928 	 * id, image name and id, and snap name - need to fill snap id.
6929 	 * Otherwise this is a parent image, identified by pool, image
6930 	 * and snap ids - need to fill in names for those ids.
6931 	 */
6932 	if (!depth)
6933 		ret = rbd_spec_fill_snap_id(rbd_dev);
6934 	else
6935 		ret = rbd_spec_fill_names(rbd_dev);
6936 	if (ret) {
6937 		if (ret == -ENOENT)
6938 			rbd_print_dne(rbd_dev, true);
6939 		goto err_out_probe;
6940 	}
6941 
6942 	ret = rbd_dev_mapping_set(rbd_dev);
6943 	if (ret)
6944 		goto err_out_probe;
6945 
6946 	if (rbd_is_snap(rbd_dev) &&
6947 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6948 		ret = rbd_object_map_load(rbd_dev);
6949 		if (ret)
6950 			goto err_out_probe;
6951 	}
6952 
6953 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6954 		ret = rbd_dev_v2_parent_info(rbd_dev);
6955 		if (ret)
6956 			goto err_out_probe;
6957 	}
6958 
6959 	ret = rbd_dev_probe_parent(rbd_dev, depth);
6960 	if (ret)
6961 		goto err_out_probe;
6962 
6963 	dout("discovered format %u image, header name is %s\n",
6964 		rbd_dev->image_format, rbd_dev->header_oid.name);
6965 	return 0;
6966 
6967 err_out_probe:
6968 	if (!depth)
6969 		up_write(&rbd_dev->header_rwsem);
6970 	if (need_watch)
6971 		rbd_unregister_watch(rbd_dev);
6972 	rbd_dev_unprobe(rbd_dev);
6973 err_out_format:
6974 	rbd_dev->image_format = 0;
6975 	kfree(rbd_dev->spec->image_id);
6976 	rbd_dev->spec->image_id = NULL;
6977 	return ret;
6978 }
6979 
6980 static ssize_t do_rbd_add(const char *buf, size_t count)
6981 {
6982 	struct rbd_device *rbd_dev = NULL;
6983 	struct ceph_options *ceph_opts = NULL;
6984 	struct rbd_options *rbd_opts = NULL;
6985 	struct rbd_spec *spec = NULL;
6986 	struct rbd_client *rbdc;
6987 	int rc;
6988 
6989 	if (!capable(CAP_SYS_ADMIN))
6990 		return -EPERM;
6991 
6992 	if (!try_module_get(THIS_MODULE))
6993 		return -ENODEV;
6994 
6995 	/* parse add command */
6996 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6997 	if (rc < 0)
6998 		goto out;
6999 
7000 	rbdc = rbd_get_client(ceph_opts);
7001 	if (IS_ERR(rbdc)) {
7002 		rc = PTR_ERR(rbdc);
7003 		goto err_out_args;
7004 	}
7005 
7006 	/* pick the pool */
7007 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7008 	if (rc < 0) {
7009 		if (rc == -ENOENT)
7010 			pr_info("pool %s does not exist\n", spec->pool_name);
7011 		goto err_out_client;
7012 	}
7013 	spec->pool_id = (u64)rc;
7014 
7015 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7016 	if (!rbd_dev) {
7017 		rc = -ENOMEM;
7018 		goto err_out_client;
7019 	}
7020 	rbdc = NULL;		/* rbd_dev now owns this */
7021 	spec = NULL;		/* rbd_dev now owns this */
7022 	rbd_opts = NULL;	/* rbd_dev now owns this */
7023 
7024 	/* if we are mapping a snapshot it will be a read-only mapping */
7025 	if (rbd_dev->opts->read_only ||
7026 	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7027 		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7028 
7029 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7030 	if (!rbd_dev->config_info) {
7031 		rc = -ENOMEM;
7032 		goto err_out_rbd_dev;
7033 	}
7034 
7035 	rc = rbd_dev_image_probe(rbd_dev, 0);
7036 	if (rc < 0)
7037 		goto err_out_rbd_dev;
7038 
7039 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7040 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7041 			 rbd_dev->layout.object_size);
7042 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7043 	}
7044 
7045 	rc = rbd_dev_device_setup(rbd_dev);
7046 	if (rc)
7047 		goto err_out_image_probe;
7048 
7049 	rc = rbd_add_acquire_lock(rbd_dev);
7050 	if (rc)
7051 		goto err_out_image_lock;
7052 
7053 	/* Everything's ready.  Announce the disk to the world. */
7054 
7055 	rc = device_add(&rbd_dev->dev);
7056 	if (rc)
7057 		goto err_out_image_lock;
7058 
7059 	rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7060 	if (rc)
7061 		goto err_out_cleanup_disk;
7062 
7063 	spin_lock(&rbd_dev_list_lock);
7064 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7065 	spin_unlock(&rbd_dev_list_lock);
7066 
7067 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7068 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7069 		rbd_dev->header.features);
7070 	rc = count;
7071 out:
7072 	module_put(THIS_MODULE);
7073 	return rc;
7074 
7075 err_out_cleanup_disk:
7076 	rbd_free_disk(rbd_dev);
7077 err_out_image_lock:
7078 	rbd_dev_image_unlock(rbd_dev);
7079 	rbd_dev_device_release(rbd_dev);
7080 err_out_image_probe:
7081 	rbd_dev_image_release(rbd_dev);
7082 err_out_rbd_dev:
7083 	rbd_dev_destroy(rbd_dev);
7084 err_out_client:
7085 	rbd_put_client(rbdc);
7086 err_out_args:
7087 	rbd_spec_put(spec);
7088 	kfree(rbd_opts);
7089 	goto out;
7090 }
7091 
7092 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count)
7093 {
7094 	if (single_major)
7095 		return -EINVAL;
7096 
7097 	return do_rbd_add(buf, count);
7098 }
7099 
7100 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
7101 				      size_t count)
7102 {
7103 	return do_rbd_add(buf, count);
7104 }
7105 
7106 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7107 {
7108 	while (rbd_dev->parent) {
7109 		struct rbd_device *first = rbd_dev;
7110 		struct rbd_device *second = first->parent;
7111 		struct rbd_device *third;
7112 
7113 		/*
7114 		 * Follow to the parent with no grandparent and
7115 		 * remove it.
7116 		 */
7117 		while (second && (third = second->parent)) {
7118 			first = second;
7119 			second = third;
7120 		}
7121 		rbd_assert(second);
7122 		rbd_dev_image_release(second);
7123 		rbd_dev_destroy(second);
7124 		first->parent = NULL;
7125 		first->parent_overlap = 0;
7126 
7127 		rbd_assert(first->parent_spec);
7128 		rbd_spec_put(first->parent_spec);
7129 		first->parent_spec = NULL;
7130 	}
7131 }
7132 
7133 static ssize_t do_rbd_remove(const char *buf, size_t count)
7134 {
7135 	struct rbd_device *rbd_dev = NULL;
7136 	struct list_head *tmp;
7137 	int dev_id;
7138 	char opt_buf[6];
7139 	bool force = false;
7140 	int ret;
7141 
7142 	if (!capable(CAP_SYS_ADMIN))
7143 		return -EPERM;
7144 
7145 	dev_id = -1;
7146 	opt_buf[0] = '\0';
7147 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7148 	if (dev_id < 0) {
7149 		pr_err("dev_id out of range\n");
7150 		return -EINVAL;
7151 	}
7152 	if (opt_buf[0] != '\0') {
7153 		if (!strcmp(opt_buf, "force")) {
7154 			force = true;
7155 		} else {
7156 			pr_err("bad remove option at '%s'\n", opt_buf);
7157 			return -EINVAL;
7158 		}
7159 	}
7160 
7161 	ret = -ENOENT;
7162 	spin_lock(&rbd_dev_list_lock);
7163 	list_for_each(tmp, &rbd_dev_list) {
7164 		rbd_dev = list_entry(tmp, struct rbd_device, node);
7165 		if (rbd_dev->dev_id == dev_id) {
7166 			ret = 0;
7167 			break;
7168 		}
7169 	}
7170 	if (!ret) {
7171 		spin_lock_irq(&rbd_dev->lock);
7172 		if (rbd_dev->open_count && !force)
7173 			ret = -EBUSY;
7174 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7175 					  &rbd_dev->flags))
7176 			ret = -EINPROGRESS;
7177 		spin_unlock_irq(&rbd_dev->lock);
7178 	}
7179 	spin_unlock(&rbd_dev_list_lock);
7180 	if (ret)
7181 		return ret;
7182 
7183 	if (force) {
7184 		/*
7185 		 * Prevent new IO from being queued and wait for existing
7186 		 * IO to complete/fail.
7187 		 */
7188 		blk_mq_freeze_queue(rbd_dev->disk->queue);
7189 		blk_mark_disk_dead(rbd_dev->disk);
7190 	}
7191 
7192 	del_gendisk(rbd_dev->disk);
7193 	spin_lock(&rbd_dev_list_lock);
7194 	list_del_init(&rbd_dev->node);
7195 	spin_unlock(&rbd_dev_list_lock);
7196 	device_del(&rbd_dev->dev);
7197 
7198 	rbd_dev_image_unlock(rbd_dev);
7199 	rbd_dev_device_release(rbd_dev);
7200 	rbd_dev_image_release(rbd_dev);
7201 	rbd_dev_destroy(rbd_dev);
7202 	return count;
7203 }
7204 
7205 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count)
7206 {
7207 	if (single_major)
7208 		return -EINVAL;
7209 
7210 	return do_rbd_remove(buf, count);
7211 }
7212 
7213 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
7214 					 size_t count)
7215 {
7216 	return do_rbd_remove(buf, count);
7217 }
7218 
7219 /*
7220  * create control files in sysfs
7221  * /sys/bus/rbd/...
7222  */
7223 static int __init rbd_sysfs_init(void)
7224 {
7225 	int ret;
7226 
7227 	ret = device_register(&rbd_root_dev);
7228 	if (ret < 0) {
7229 		put_device(&rbd_root_dev);
7230 		return ret;
7231 	}
7232 
7233 	ret = bus_register(&rbd_bus_type);
7234 	if (ret < 0)
7235 		device_unregister(&rbd_root_dev);
7236 
7237 	return ret;
7238 }
7239 
7240 static void __exit rbd_sysfs_cleanup(void)
7241 {
7242 	bus_unregister(&rbd_bus_type);
7243 	device_unregister(&rbd_root_dev);
7244 }
7245 
7246 static int __init rbd_slab_init(void)
7247 {
7248 	rbd_assert(!rbd_img_request_cache);
7249 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7250 	if (!rbd_img_request_cache)
7251 		return -ENOMEM;
7252 
7253 	rbd_assert(!rbd_obj_request_cache);
7254 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7255 	if (!rbd_obj_request_cache)
7256 		goto out_err;
7257 
7258 	return 0;
7259 
7260 out_err:
7261 	kmem_cache_destroy(rbd_img_request_cache);
7262 	rbd_img_request_cache = NULL;
7263 	return -ENOMEM;
7264 }
7265 
7266 static void rbd_slab_exit(void)
7267 {
7268 	rbd_assert(rbd_obj_request_cache);
7269 	kmem_cache_destroy(rbd_obj_request_cache);
7270 	rbd_obj_request_cache = NULL;
7271 
7272 	rbd_assert(rbd_img_request_cache);
7273 	kmem_cache_destroy(rbd_img_request_cache);
7274 	rbd_img_request_cache = NULL;
7275 }
7276 
7277 static int __init rbd_init(void)
7278 {
7279 	int rc;
7280 
7281 	if (!libceph_compatible(NULL)) {
7282 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7283 		return -EINVAL;
7284 	}
7285 
7286 	rc = rbd_slab_init();
7287 	if (rc)
7288 		return rc;
7289 
7290 	/*
7291 	 * The number of active work items is limited by the number of
7292 	 * rbd devices * queue depth, so leave @max_active at default.
7293 	 */
7294 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7295 	if (!rbd_wq) {
7296 		rc = -ENOMEM;
7297 		goto err_out_slab;
7298 	}
7299 
7300 	if (single_major) {
7301 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7302 		if (rbd_major < 0) {
7303 			rc = rbd_major;
7304 			goto err_out_wq;
7305 		}
7306 	}
7307 
7308 	rc = rbd_sysfs_init();
7309 	if (rc)
7310 		goto err_out_blkdev;
7311 
7312 	if (single_major)
7313 		pr_info("loaded (major %d)\n", rbd_major);
7314 	else
7315 		pr_info("loaded\n");
7316 
7317 	return 0;
7318 
7319 err_out_blkdev:
7320 	if (single_major)
7321 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7322 err_out_wq:
7323 	destroy_workqueue(rbd_wq);
7324 err_out_slab:
7325 	rbd_slab_exit();
7326 	return rc;
7327 }
7328 
7329 static void __exit rbd_exit(void)
7330 {
7331 	ida_destroy(&rbd_dev_id_ida);
7332 	rbd_sysfs_cleanup();
7333 	if (single_major)
7334 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7335 	destroy_workqueue(rbd_wq);
7336 	rbd_slab_exit();
7337 }
7338 
7339 module_init(rbd_init);
7340 module_exit(rbd_exit);
7341 
7342 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7343 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7344 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7345 /* following authorship retained from original osdblk.c */
7346 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7347 
7348 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7349 MODULE_LICENSE("GPL");
7350