1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/decode.h> 35 #include <linux/parser.h> 36 #include <linux/bsearch.h> 37 38 #include <linux/kernel.h> 39 #include <linux/device.h> 40 #include <linux/module.h> 41 #include <linux/blk-mq.h> 42 #include <linux/fs.h> 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/idr.h> 46 #include <linux/workqueue.h> 47 48 #include "rbd_types.h" 49 50 #define RBD_DEBUG /* Activate rbd_assert() calls */ 51 52 /* 53 * The basic unit of block I/O is a sector. It is interpreted in a 54 * number of contexts in Linux (blk, bio, genhd), but the default is 55 * universally 512 bytes. These symbols are just slightly more 56 * meaningful than the bare numbers they represent. 57 */ 58 #define SECTOR_SHIFT 9 59 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 60 61 /* 62 * Increment the given counter and return its updated value. 63 * If the counter is already 0 it will not be incremented. 64 * If the counter is already at its maximum value returns 65 * -EINVAL without updating it. 66 */ 67 static int atomic_inc_return_safe(atomic_t *v) 68 { 69 unsigned int counter; 70 71 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 72 if (counter <= (unsigned int)INT_MAX) 73 return (int)counter; 74 75 atomic_dec(v); 76 77 return -EINVAL; 78 } 79 80 /* Decrement the counter. Return the resulting value, or -EINVAL */ 81 static int atomic_dec_return_safe(atomic_t *v) 82 { 83 int counter; 84 85 counter = atomic_dec_return(v); 86 if (counter >= 0) 87 return counter; 88 89 atomic_inc(v); 90 91 return -EINVAL; 92 } 93 94 #define RBD_DRV_NAME "rbd" 95 96 #define RBD_MINORS_PER_MAJOR 256 97 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 98 99 #define RBD_MAX_PARENT_CHAIN_LEN 16 100 101 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 102 #define RBD_MAX_SNAP_NAME_LEN \ 103 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 104 105 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 106 107 #define RBD_SNAP_HEAD_NAME "-" 108 109 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 110 111 /* This allows a single page to hold an image name sent by OSD */ 112 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 113 #define RBD_IMAGE_ID_LEN_MAX 64 114 115 #define RBD_OBJ_PREFIX_LEN_MAX 64 116 117 /* Feature bits */ 118 119 #define RBD_FEATURE_LAYERING (1<<0) 120 #define RBD_FEATURE_STRIPINGV2 (1<<1) 121 #define RBD_FEATURES_ALL \ 122 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2) 123 124 /* Features supported by this (client software) implementation. */ 125 126 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 127 128 /* 129 * An RBD device name will be "rbd#", where the "rbd" comes from 130 * RBD_DRV_NAME above, and # is a unique integer identifier. 131 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big 132 * enough to hold all possible device names. 133 */ 134 #define DEV_NAME_LEN 32 135 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1) 136 137 /* 138 * block device image metadata (in-memory version) 139 */ 140 struct rbd_image_header { 141 /* These six fields never change for a given rbd image */ 142 char *object_prefix; 143 __u8 obj_order; 144 __u8 crypt_type; 145 __u8 comp_type; 146 u64 stripe_unit; 147 u64 stripe_count; 148 u64 features; /* Might be changeable someday? */ 149 150 /* The remaining fields need to be updated occasionally */ 151 u64 image_size; 152 struct ceph_snap_context *snapc; 153 char *snap_names; /* format 1 only */ 154 u64 *snap_sizes; /* format 1 only */ 155 }; 156 157 /* 158 * An rbd image specification. 159 * 160 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 161 * identify an image. Each rbd_dev structure includes a pointer to 162 * an rbd_spec structure that encapsulates this identity. 163 * 164 * Each of the id's in an rbd_spec has an associated name. For a 165 * user-mapped image, the names are supplied and the id's associated 166 * with them are looked up. For a layered image, a parent image is 167 * defined by the tuple, and the names are looked up. 168 * 169 * An rbd_dev structure contains a parent_spec pointer which is 170 * non-null if the image it represents is a child in a layered 171 * image. This pointer will refer to the rbd_spec structure used 172 * by the parent rbd_dev for its own identity (i.e., the structure 173 * is shared between the parent and child). 174 * 175 * Since these structures are populated once, during the discovery 176 * phase of image construction, they are effectively immutable so 177 * we make no effort to synchronize access to them. 178 * 179 * Note that code herein does not assume the image name is known (it 180 * could be a null pointer). 181 */ 182 struct rbd_spec { 183 u64 pool_id; 184 const char *pool_name; 185 186 const char *image_id; 187 const char *image_name; 188 189 u64 snap_id; 190 const char *snap_name; 191 192 struct kref kref; 193 }; 194 195 /* 196 * an instance of the client. multiple devices may share an rbd client. 197 */ 198 struct rbd_client { 199 struct ceph_client *client; 200 struct kref kref; 201 struct list_head node; 202 }; 203 204 struct rbd_img_request; 205 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 206 207 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 208 209 struct rbd_obj_request; 210 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 211 212 enum obj_request_type { 213 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 214 }; 215 216 enum obj_operation_type { 217 OBJ_OP_WRITE, 218 OBJ_OP_READ, 219 OBJ_OP_DISCARD, 220 }; 221 222 enum obj_req_flags { 223 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 224 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 225 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 226 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 227 }; 228 229 struct rbd_obj_request { 230 const char *object_name; 231 u64 offset; /* object start byte */ 232 u64 length; /* bytes from offset */ 233 unsigned long flags; 234 235 /* 236 * An object request associated with an image will have its 237 * img_data flag set; a standalone object request will not. 238 * 239 * A standalone object request will have which == BAD_WHICH 240 * and a null obj_request pointer. 241 * 242 * An object request initiated in support of a layered image 243 * object (to check for its existence before a write) will 244 * have which == BAD_WHICH and a non-null obj_request pointer. 245 * 246 * Finally, an object request for rbd image data will have 247 * which != BAD_WHICH, and will have a non-null img_request 248 * pointer. The value of which will be in the range 249 * 0..(img_request->obj_request_count-1). 250 */ 251 union { 252 struct rbd_obj_request *obj_request; /* STAT op */ 253 struct { 254 struct rbd_img_request *img_request; 255 u64 img_offset; 256 /* links for img_request->obj_requests list */ 257 struct list_head links; 258 }; 259 }; 260 u32 which; /* posn image request list */ 261 262 enum obj_request_type type; 263 union { 264 struct bio *bio_list; 265 struct { 266 struct page **pages; 267 u32 page_count; 268 }; 269 }; 270 struct page **copyup_pages; 271 u32 copyup_page_count; 272 273 struct ceph_osd_request *osd_req; 274 275 u64 xferred; /* bytes transferred */ 276 int result; 277 278 rbd_obj_callback_t callback; 279 struct completion completion; 280 281 struct kref kref; 282 }; 283 284 enum img_req_flags { 285 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 286 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 287 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 288 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */ 289 }; 290 291 struct rbd_img_request { 292 struct rbd_device *rbd_dev; 293 u64 offset; /* starting image byte offset */ 294 u64 length; /* byte count from offset */ 295 unsigned long flags; 296 union { 297 u64 snap_id; /* for reads */ 298 struct ceph_snap_context *snapc; /* for writes */ 299 }; 300 union { 301 struct request *rq; /* block request */ 302 struct rbd_obj_request *obj_request; /* obj req initiator */ 303 }; 304 struct page **copyup_pages; 305 u32 copyup_page_count; 306 spinlock_t completion_lock;/* protects next_completion */ 307 u32 next_completion; 308 rbd_img_callback_t callback; 309 u64 xferred;/* aggregate bytes transferred */ 310 int result; /* first nonzero obj_request result */ 311 312 u32 obj_request_count; 313 struct list_head obj_requests; /* rbd_obj_request structs */ 314 315 struct kref kref; 316 }; 317 318 #define for_each_obj_request(ireq, oreq) \ 319 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 320 #define for_each_obj_request_from(ireq, oreq) \ 321 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 322 #define for_each_obj_request_safe(ireq, oreq, n) \ 323 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 324 325 struct rbd_mapping { 326 u64 size; 327 u64 features; 328 bool read_only; 329 }; 330 331 /* 332 * a single device 333 */ 334 struct rbd_device { 335 int dev_id; /* blkdev unique id */ 336 337 int major; /* blkdev assigned major */ 338 int minor; 339 struct gendisk *disk; /* blkdev's gendisk and rq */ 340 341 u32 image_format; /* Either 1 or 2 */ 342 struct rbd_client *rbd_client; 343 344 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 345 346 spinlock_t lock; /* queue, flags, open_count */ 347 348 struct rbd_image_header header; 349 unsigned long flags; /* possibly lock protected */ 350 struct rbd_spec *spec; 351 struct rbd_options *opts; 352 353 char *header_name; 354 355 struct ceph_file_layout layout; 356 357 struct ceph_osd_event *watch_event; 358 struct rbd_obj_request *watch_request; 359 360 struct rbd_spec *parent_spec; 361 u64 parent_overlap; 362 atomic_t parent_ref; 363 struct rbd_device *parent; 364 365 /* Block layer tags. */ 366 struct blk_mq_tag_set tag_set; 367 368 /* protects updating the header */ 369 struct rw_semaphore header_rwsem; 370 371 struct rbd_mapping mapping; 372 373 struct list_head node; 374 375 /* sysfs related */ 376 struct device dev; 377 unsigned long open_count; /* protected by lock */ 378 }; 379 380 /* 381 * Flag bits for rbd_dev->flags. If atomicity is required, 382 * rbd_dev->lock is used to protect access. 383 * 384 * Currently, only the "removing" flag (which is coupled with the 385 * "open_count" field) requires atomic access. 386 */ 387 enum rbd_dev_flags { 388 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 389 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 390 }; 391 392 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 393 394 static LIST_HEAD(rbd_dev_list); /* devices */ 395 static DEFINE_SPINLOCK(rbd_dev_list_lock); 396 397 static LIST_HEAD(rbd_client_list); /* clients */ 398 static DEFINE_SPINLOCK(rbd_client_list_lock); 399 400 /* Slab caches for frequently-allocated structures */ 401 402 static struct kmem_cache *rbd_img_request_cache; 403 static struct kmem_cache *rbd_obj_request_cache; 404 static struct kmem_cache *rbd_segment_name_cache; 405 406 static int rbd_major; 407 static DEFINE_IDA(rbd_dev_id_ida); 408 409 static struct workqueue_struct *rbd_wq; 410 411 /* 412 * Default to false for now, as single-major requires >= 0.75 version of 413 * userspace rbd utility. 414 */ 415 static bool single_major = false; 416 module_param(single_major, bool, S_IRUGO); 417 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)"); 418 419 static int rbd_img_request_submit(struct rbd_img_request *img_request); 420 421 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 422 size_t count); 423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 424 size_t count); 425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 426 size_t count); 427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 428 size_t count); 429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 430 static void rbd_spec_put(struct rbd_spec *spec); 431 432 static int rbd_dev_id_to_minor(int dev_id) 433 { 434 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 435 } 436 437 static int minor_to_rbd_dev_id(int minor) 438 { 439 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 440 } 441 442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add); 443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove); 444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major); 445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major); 446 447 static struct attribute *rbd_bus_attrs[] = { 448 &bus_attr_add.attr, 449 &bus_attr_remove.attr, 450 &bus_attr_add_single_major.attr, 451 &bus_attr_remove_single_major.attr, 452 NULL, 453 }; 454 455 static umode_t rbd_bus_is_visible(struct kobject *kobj, 456 struct attribute *attr, int index) 457 { 458 if (!single_major && 459 (attr == &bus_attr_add_single_major.attr || 460 attr == &bus_attr_remove_single_major.attr)) 461 return 0; 462 463 return attr->mode; 464 } 465 466 static const struct attribute_group rbd_bus_group = { 467 .attrs = rbd_bus_attrs, 468 .is_visible = rbd_bus_is_visible, 469 }; 470 __ATTRIBUTE_GROUPS(rbd_bus); 471 472 static struct bus_type rbd_bus_type = { 473 .name = "rbd", 474 .bus_groups = rbd_bus_groups, 475 }; 476 477 static void rbd_root_dev_release(struct device *dev) 478 { 479 } 480 481 static struct device rbd_root_dev = { 482 .init_name = "rbd", 483 .release = rbd_root_dev_release, 484 }; 485 486 static __printf(2, 3) 487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 488 { 489 struct va_format vaf; 490 va_list args; 491 492 va_start(args, fmt); 493 vaf.fmt = fmt; 494 vaf.va = &args; 495 496 if (!rbd_dev) 497 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 498 else if (rbd_dev->disk) 499 printk(KERN_WARNING "%s: %s: %pV\n", 500 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 501 else if (rbd_dev->spec && rbd_dev->spec->image_name) 502 printk(KERN_WARNING "%s: image %s: %pV\n", 503 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 504 else if (rbd_dev->spec && rbd_dev->spec->image_id) 505 printk(KERN_WARNING "%s: id %s: %pV\n", 506 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 507 else /* punt */ 508 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 509 RBD_DRV_NAME, rbd_dev, &vaf); 510 va_end(args); 511 } 512 513 #ifdef RBD_DEBUG 514 #define rbd_assert(expr) \ 515 if (unlikely(!(expr))) { \ 516 printk(KERN_ERR "\nAssertion failure in %s() " \ 517 "at line %d:\n\n" \ 518 "\trbd_assert(%s);\n\n", \ 519 __func__, __LINE__, #expr); \ 520 BUG(); \ 521 } 522 #else /* !RBD_DEBUG */ 523 # define rbd_assert(expr) ((void) 0) 524 #endif /* !RBD_DEBUG */ 525 526 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request); 527 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 528 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 529 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 530 531 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 532 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 533 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 534 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 535 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 536 u64 snap_id); 537 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 538 u8 *order, u64 *snap_size); 539 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 540 u64 *snap_features); 541 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name); 542 543 static int rbd_open(struct block_device *bdev, fmode_t mode) 544 { 545 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 546 bool removing = false; 547 548 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only) 549 return -EROFS; 550 551 spin_lock_irq(&rbd_dev->lock); 552 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 553 removing = true; 554 else 555 rbd_dev->open_count++; 556 spin_unlock_irq(&rbd_dev->lock); 557 if (removing) 558 return -ENOENT; 559 560 (void) get_device(&rbd_dev->dev); 561 562 return 0; 563 } 564 565 static void rbd_release(struct gendisk *disk, fmode_t mode) 566 { 567 struct rbd_device *rbd_dev = disk->private_data; 568 unsigned long open_count_before; 569 570 spin_lock_irq(&rbd_dev->lock); 571 open_count_before = rbd_dev->open_count--; 572 spin_unlock_irq(&rbd_dev->lock); 573 rbd_assert(open_count_before > 0); 574 575 put_device(&rbd_dev->dev); 576 } 577 578 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 579 { 580 int ret = 0; 581 int val; 582 bool ro; 583 bool ro_changed = false; 584 585 /* get_user() may sleep, so call it before taking rbd_dev->lock */ 586 if (get_user(val, (int __user *)(arg))) 587 return -EFAULT; 588 589 ro = val ? true : false; 590 /* Snapshot doesn't allow to write*/ 591 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 592 return -EROFS; 593 594 spin_lock_irq(&rbd_dev->lock); 595 /* prevent others open this device */ 596 if (rbd_dev->open_count > 1) { 597 ret = -EBUSY; 598 goto out; 599 } 600 601 if (rbd_dev->mapping.read_only != ro) { 602 rbd_dev->mapping.read_only = ro; 603 ro_changed = true; 604 } 605 606 out: 607 spin_unlock_irq(&rbd_dev->lock); 608 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */ 609 if (ret == 0 && ro_changed) 610 set_disk_ro(rbd_dev->disk, ro ? 1 : 0); 611 612 return ret; 613 } 614 615 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 616 unsigned int cmd, unsigned long arg) 617 { 618 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 619 int ret = 0; 620 621 switch (cmd) { 622 case BLKROSET: 623 ret = rbd_ioctl_set_ro(rbd_dev, arg); 624 break; 625 default: 626 ret = -ENOTTY; 627 } 628 629 return ret; 630 } 631 632 #ifdef CONFIG_COMPAT 633 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 634 unsigned int cmd, unsigned long arg) 635 { 636 return rbd_ioctl(bdev, mode, cmd, arg); 637 } 638 #endif /* CONFIG_COMPAT */ 639 640 static const struct block_device_operations rbd_bd_ops = { 641 .owner = THIS_MODULE, 642 .open = rbd_open, 643 .release = rbd_release, 644 .ioctl = rbd_ioctl, 645 #ifdef CONFIG_COMPAT 646 .compat_ioctl = rbd_compat_ioctl, 647 #endif 648 }; 649 650 /* 651 * Initialize an rbd client instance. Success or not, this function 652 * consumes ceph_opts. Caller holds client_mutex. 653 */ 654 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 655 { 656 struct rbd_client *rbdc; 657 int ret = -ENOMEM; 658 659 dout("%s:\n", __func__); 660 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 661 if (!rbdc) 662 goto out_opt; 663 664 kref_init(&rbdc->kref); 665 INIT_LIST_HEAD(&rbdc->node); 666 667 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0); 668 if (IS_ERR(rbdc->client)) 669 goto out_rbdc; 670 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 671 672 ret = ceph_open_session(rbdc->client); 673 if (ret < 0) 674 goto out_client; 675 676 spin_lock(&rbd_client_list_lock); 677 list_add_tail(&rbdc->node, &rbd_client_list); 678 spin_unlock(&rbd_client_list_lock); 679 680 dout("%s: rbdc %p\n", __func__, rbdc); 681 682 return rbdc; 683 out_client: 684 ceph_destroy_client(rbdc->client); 685 out_rbdc: 686 kfree(rbdc); 687 out_opt: 688 if (ceph_opts) 689 ceph_destroy_options(ceph_opts); 690 dout("%s: error %d\n", __func__, ret); 691 692 return ERR_PTR(ret); 693 } 694 695 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 696 { 697 kref_get(&rbdc->kref); 698 699 return rbdc; 700 } 701 702 /* 703 * Find a ceph client with specific addr and configuration. If 704 * found, bump its reference count. 705 */ 706 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 707 { 708 struct rbd_client *client_node; 709 bool found = false; 710 711 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 712 return NULL; 713 714 spin_lock(&rbd_client_list_lock); 715 list_for_each_entry(client_node, &rbd_client_list, node) { 716 if (!ceph_compare_options(ceph_opts, client_node->client)) { 717 __rbd_get_client(client_node); 718 719 found = true; 720 break; 721 } 722 } 723 spin_unlock(&rbd_client_list_lock); 724 725 return found ? client_node : NULL; 726 } 727 728 /* 729 * (Per device) rbd map options 730 */ 731 enum { 732 Opt_queue_depth, 733 Opt_last_int, 734 /* int args above */ 735 Opt_last_string, 736 /* string args above */ 737 Opt_read_only, 738 Opt_read_write, 739 Opt_err 740 }; 741 742 static match_table_t rbd_opts_tokens = { 743 {Opt_queue_depth, "queue_depth=%d"}, 744 /* int args above */ 745 /* string args above */ 746 {Opt_read_only, "read_only"}, 747 {Opt_read_only, "ro"}, /* Alternate spelling */ 748 {Opt_read_write, "read_write"}, 749 {Opt_read_write, "rw"}, /* Alternate spelling */ 750 {Opt_err, NULL} 751 }; 752 753 struct rbd_options { 754 int queue_depth; 755 bool read_only; 756 }; 757 758 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ 759 #define RBD_READ_ONLY_DEFAULT false 760 761 static int parse_rbd_opts_token(char *c, void *private) 762 { 763 struct rbd_options *rbd_opts = private; 764 substring_t argstr[MAX_OPT_ARGS]; 765 int token, intval, ret; 766 767 token = match_token(c, rbd_opts_tokens, argstr); 768 if (token < Opt_last_int) { 769 ret = match_int(&argstr[0], &intval); 770 if (ret < 0) { 771 pr_err("bad mount option arg (not int) at '%s'\n", c); 772 return ret; 773 } 774 dout("got int token %d val %d\n", token, intval); 775 } else if (token > Opt_last_int && token < Opt_last_string) { 776 dout("got string token %d val %s\n", token, argstr[0].from); 777 } else { 778 dout("got token %d\n", token); 779 } 780 781 switch (token) { 782 case Opt_queue_depth: 783 if (intval < 1) { 784 pr_err("queue_depth out of range\n"); 785 return -EINVAL; 786 } 787 rbd_opts->queue_depth = intval; 788 break; 789 case Opt_read_only: 790 rbd_opts->read_only = true; 791 break; 792 case Opt_read_write: 793 rbd_opts->read_only = false; 794 break; 795 default: 796 /* libceph prints "bad option" msg */ 797 return -EINVAL; 798 } 799 800 return 0; 801 } 802 803 static char* obj_op_name(enum obj_operation_type op_type) 804 { 805 switch (op_type) { 806 case OBJ_OP_READ: 807 return "read"; 808 case OBJ_OP_WRITE: 809 return "write"; 810 case OBJ_OP_DISCARD: 811 return "discard"; 812 default: 813 return "???"; 814 } 815 } 816 817 /* 818 * Get a ceph client with specific addr and configuration, if one does 819 * not exist create it. Either way, ceph_opts is consumed by this 820 * function. 821 */ 822 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 823 { 824 struct rbd_client *rbdc; 825 826 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 827 rbdc = rbd_client_find(ceph_opts); 828 if (rbdc) /* using an existing client */ 829 ceph_destroy_options(ceph_opts); 830 else 831 rbdc = rbd_client_create(ceph_opts); 832 mutex_unlock(&client_mutex); 833 834 return rbdc; 835 } 836 837 /* 838 * Destroy ceph client 839 * 840 * Caller must hold rbd_client_list_lock. 841 */ 842 static void rbd_client_release(struct kref *kref) 843 { 844 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 845 846 dout("%s: rbdc %p\n", __func__, rbdc); 847 spin_lock(&rbd_client_list_lock); 848 list_del(&rbdc->node); 849 spin_unlock(&rbd_client_list_lock); 850 851 ceph_destroy_client(rbdc->client); 852 kfree(rbdc); 853 } 854 855 /* 856 * Drop reference to ceph client node. If it's not referenced anymore, release 857 * it. 858 */ 859 static void rbd_put_client(struct rbd_client *rbdc) 860 { 861 if (rbdc) 862 kref_put(&rbdc->kref, rbd_client_release); 863 } 864 865 static bool rbd_image_format_valid(u32 image_format) 866 { 867 return image_format == 1 || image_format == 2; 868 } 869 870 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 871 { 872 size_t size; 873 u32 snap_count; 874 875 /* The header has to start with the magic rbd header text */ 876 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 877 return false; 878 879 /* The bio layer requires at least sector-sized I/O */ 880 881 if (ondisk->options.order < SECTOR_SHIFT) 882 return false; 883 884 /* If we use u64 in a few spots we may be able to loosen this */ 885 886 if (ondisk->options.order > 8 * sizeof (int) - 1) 887 return false; 888 889 /* 890 * The size of a snapshot header has to fit in a size_t, and 891 * that limits the number of snapshots. 892 */ 893 snap_count = le32_to_cpu(ondisk->snap_count); 894 size = SIZE_MAX - sizeof (struct ceph_snap_context); 895 if (snap_count > size / sizeof (__le64)) 896 return false; 897 898 /* 899 * Not only that, but the size of the entire the snapshot 900 * header must also be representable in a size_t. 901 */ 902 size -= snap_count * sizeof (__le64); 903 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 904 return false; 905 906 return true; 907 } 908 909 /* 910 * Fill an rbd image header with information from the given format 1 911 * on-disk header. 912 */ 913 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 914 struct rbd_image_header_ondisk *ondisk) 915 { 916 struct rbd_image_header *header = &rbd_dev->header; 917 bool first_time = header->object_prefix == NULL; 918 struct ceph_snap_context *snapc; 919 char *object_prefix = NULL; 920 char *snap_names = NULL; 921 u64 *snap_sizes = NULL; 922 u32 snap_count; 923 size_t size; 924 int ret = -ENOMEM; 925 u32 i; 926 927 /* Allocate this now to avoid having to handle failure below */ 928 929 if (first_time) { 930 size_t len; 931 932 len = strnlen(ondisk->object_prefix, 933 sizeof (ondisk->object_prefix)); 934 object_prefix = kmalloc(len + 1, GFP_KERNEL); 935 if (!object_prefix) 936 return -ENOMEM; 937 memcpy(object_prefix, ondisk->object_prefix, len); 938 object_prefix[len] = '\0'; 939 } 940 941 /* Allocate the snapshot context and fill it in */ 942 943 snap_count = le32_to_cpu(ondisk->snap_count); 944 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 945 if (!snapc) 946 goto out_err; 947 snapc->seq = le64_to_cpu(ondisk->snap_seq); 948 if (snap_count) { 949 struct rbd_image_snap_ondisk *snaps; 950 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 951 952 /* We'll keep a copy of the snapshot names... */ 953 954 if (snap_names_len > (u64)SIZE_MAX) 955 goto out_2big; 956 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 957 if (!snap_names) 958 goto out_err; 959 960 /* ...as well as the array of their sizes. */ 961 962 size = snap_count * sizeof (*header->snap_sizes); 963 snap_sizes = kmalloc(size, GFP_KERNEL); 964 if (!snap_sizes) 965 goto out_err; 966 967 /* 968 * Copy the names, and fill in each snapshot's id 969 * and size. 970 * 971 * Note that rbd_dev_v1_header_info() guarantees the 972 * ondisk buffer we're working with has 973 * snap_names_len bytes beyond the end of the 974 * snapshot id array, this memcpy() is safe. 975 */ 976 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 977 snaps = ondisk->snaps; 978 for (i = 0; i < snap_count; i++) { 979 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 980 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 981 } 982 } 983 984 /* We won't fail any more, fill in the header */ 985 986 if (first_time) { 987 header->object_prefix = object_prefix; 988 header->obj_order = ondisk->options.order; 989 header->crypt_type = ondisk->options.crypt_type; 990 header->comp_type = ondisk->options.comp_type; 991 /* The rest aren't used for format 1 images */ 992 header->stripe_unit = 0; 993 header->stripe_count = 0; 994 header->features = 0; 995 } else { 996 ceph_put_snap_context(header->snapc); 997 kfree(header->snap_names); 998 kfree(header->snap_sizes); 999 } 1000 1001 /* The remaining fields always get updated (when we refresh) */ 1002 1003 header->image_size = le64_to_cpu(ondisk->image_size); 1004 header->snapc = snapc; 1005 header->snap_names = snap_names; 1006 header->snap_sizes = snap_sizes; 1007 1008 return 0; 1009 out_2big: 1010 ret = -EIO; 1011 out_err: 1012 kfree(snap_sizes); 1013 kfree(snap_names); 1014 ceph_put_snap_context(snapc); 1015 kfree(object_prefix); 1016 1017 return ret; 1018 } 1019 1020 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1021 { 1022 const char *snap_name; 1023 1024 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1025 1026 /* Skip over names until we find the one we are looking for */ 1027 1028 snap_name = rbd_dev->header.snap_names; 1029 while (which--) 1030 snap_name += strlen(snap_name) + 1; 1031 1032 return kstrdup(snap_name, GFP_KERNEL); 1033 } 1034 1035 /* 1036 * Snapshot id comparison function for use with qsort()/bsearch(). 1037 * Note that result is for snapshots in *descending* order. 1038 */ 1039 static int snapid_compare_reverse(const void *s1, const void *s2) 1040 { 1041 u64 snap_id1 = *(u64 *)s1; 1042 u64 snap_id2 = *(u64 *)s2; 1043 1044 if (snap_id1 < snap_id2) 1045 return 1; 1046 return snap_id1 == snap_id2 ? 0 : -1; 1047 } 1048 1049 /* 1050 * Search a snapshot context to see if the given snapshot id is 1051 * present. 1052 * 1053 * Returns the position of the snapshot id in the array if it's found, 1054 * or BAD_SNAP_INDEX otherwise. 1055 * 1056 * Note: The snapshot array is in kept sorted (by the osd) in 1057 * reverse order, highest snapshot id first. 1058 */ 1059 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1060 { 1061 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1062 u64 *found; 1063 1064 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1065 sizeof (snap_id), snapid_compare_reverse); 1066 1067 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1068 } 1069 1070 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1071 u64 snap_id) 1072 { 1073 u32 which; 1074 const char *snap_name; 1075 1076 which = rbd_dev_snap_index(rbd_dev, snap_id); 1077 if (which == BAD_SNAP_INDEX) 1078 return ERR_PTR(-ENOENT); 1079 1080 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1081 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1082 } 1083 1084 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1085 { 1086 if (snap_id == CEPH_NOSNAP) 1087 return RBD_SNAP_HEAD_NAME; 1088 1089 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1090 if (rbd_dev->image_format == 1) 1091 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1092 1093 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1094 } 1095 1096 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1097 u64 *snap_size) 1098 { 1099 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1100 if (snap_id == CEPH_NOSNAP) { 1101 *snap_size = rbd_dev->header.image_size; 1102 } else if (rbd_dev->image_format == 1) { 1103 u32 which; 1104 1105 which = rbd_dev_snap_index(rbd_dev, snap_id); 1106 if (which == BAD_SNAP_INDEX) 1107 return -ENOENT; 1108 1109 *snap_size = rbd_dev->header.snap_sizes[which]; 1110 } else { 1111 u64 size = 0; 1112 int ret; 1113 1114 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1115 if (ret) 1116 return ret; 1117 1118 *snap_size = size; 1119 } 1120 return 0; 1121 } 1122 1123 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1124 u64 *snap_features) 1125 { 1126 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1127 if (snap_id == CEPH_NOSNAP) { 1128 *snap_features = rbd_dev->header.features; 1129 } else if (rbd_dev->image_format == 1) { 1130 *snap_features = 0; /* No features for format 1 */ 1131 } else { 1132 u64 features = 0; 1133 int ret; 1134 1135 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1136 if (ret) 1137 return ret; 1138 1139 *snap_features = features; 1140 } 1141 return 0; 1142 } 1143 1144 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1145 { 1146 u64 snap_id = rbd_dev->spec->snap_id; 1147 u64 size = 0; 1148 u64 features = 0; 1149 int ret; 1150 1151 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1152 if (ret) 1153 return ret; 1154 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1155 if (ret) 1156 return ret; 1157 1158 rbd_dev->mapping.size = size; 1159 rbd_dev->mapping.features = features; 1160 1161 return 0; 1162 } 1163 1164 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1165 { 1166 rbd_dev->mapping.size = 0; 1167 rbd_dev->mapping.features = 0; 1168 } 1169 1170 static void rbd_segment_name_free(const char *name) 1171 { 1172 /* The explicit cast here is needed to drop the const qualifier */ 1173 1174 kmem_cache_free(rbd_segment_name_cache, (void *)name); 1175 } 1176 1177 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset) 1178 { 1179 char *name; 1180 u64 segment; 1181 int ret; 1182 char *name_format; 1183 1184 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO); 1185 if (!name) 1186 return NULL; 1187 segment = offset >> rbd_dev->header.obj_order; 1188 name_format = "%s.%012llx"; 1189 if (rbd_dev->image_format == 2) 1190 name_format = "%s.%016llx"; 1191 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format, 1192 rbd_dev->header.object_prefix, segment); 1193 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) { 1194 pr_err("error formatting segment name for #%llu (%d)\n", 1195 segment, ret); 1196 rbd_segment_name_free(name); 1197 name = NULL; 1198 } 1199 1200 return name; 1201 } 1202 1203 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 1204 { 1205 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1206 1207 return offset & (segment_size - 1); 1208 } 1209 1210 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 1211 u64 offset, u64 length) 1212 { 1213 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1214 1215 offset &= segment_size - 1; 1216 1217 rbd_assert(length <= U64_MAX - offset); 1218 if (offset + length > segment_size) 1219 length = segment_size - offset; 1220 1221 return length; 1222 } 1223 1224 /* 1225 * returns the size of an object in the image 1226 */ 1227 static u64 rbd_obj_bytes(struct rbd_image_header *header) 1228 { 1229 return 1 << header->obj_order; 1230 } 1231 1232 /* 1233 * bio helpers 1234 */ 1235 1236 static void bio_chain_put(struct bio *chain) 1237 { 1238 struct bio *tmp; 1239 1240 while (chain) { 1241 tmp = chain; 1242 chain = chain->bi_next; 1243 bio_put(tmp); 1244 } 1245 } 1246 1247 /* 1248 * zeros a bio chain, starting at specific offset 1249 */ 1250 static void zero_bio_chain(struct bio *chain, int start_ofs) 1251 { 1252 struct bio_vec bv; 1253 struct bvec_iter iter; 1254 unsigned long flags; 1255 void *buf; 1256 int pos = 0; 1257 1258 while (chain) { 1259 bio_for_each_segment(bv, chain, iter) { 1260 if (pos + bv.bv_len > start_ofs) { 1261 int remainder = max(start_ofs - pos, 0); 1262 buf = bvec_kmap_irq(&bv, &flags); 1263 memset(buf + remainder, 0, 1264 bv.bv_len - remainder); 1265 flush_dcache_page(bv.bv_page); 1266 bvec_kunmap_irq(buf, &flags); 1267 } 1268 pos += bv.bv_len; 1269 } 1270 1271 chain = chain->bi_next; 1272 } 1273 } 1274 1275 /* 1276 * similar to zero_bio_chain(), zeros data defined by a page array, 1277 * starting at the given byte offset from the start of the array and 1278 * continuing up to the given end offset. The pages array is 1279 * assumed to be big enough to hold all bytes up to the end. 1280 */ 1281 static void zero_pages(struct page **pages, u64 offset, u64 end) 1282 { 1283 struct page **page = &pages[offset >> PAGE_SHIFT]; 1284 1285 rbd_assert(end > offset); 1286 rbd_assert(end - offset <= (u64)SIZE_MAX); 1287 while (offset < end) { 1288 size_t page_offset; 1289 size_t length; 1290 unsigned long flags; 1291 void *kaddr; 1292 1293 page_offset = offset & ~PAGE_MASK; 1294 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset); 1295 local_irq_save(flags); 1296 kaddr = kmap_atomic(*page); 1297 memset(kaddr + page_offset, 0, length); 1298 flush_dcache_page(*page); 1299 kunmap_atomic(kaddr); 1300 local_irq_restore(flags); 1301 1302 offset += length; 1303 page++; 1304 } 1305 } 1306 1307 /* 1308 * Clone a portion of a bio, starting at the given byte offset 1309 * and continuing for the number of bytes indicated. 1310 */ 1311 static struct bio *bio_clone_range(struct bio *bio_src, 1312 unsigned int offset, 1313 unsigned int len, 1314 gfp_t gfpmask) 1315 { 1316 struct bio *bio; 1317 1318 bio = bio_clone(bio_src, gfpmask); 1319 if (!bio) 1320 return NULL; /* ENOMEM */ 1321 1322 bio_advance(bio, offset); 1323 bio->bi_iter.bi_size = len; 1324 1325 return bio; 1326 } 1327 1328 /* 1329 * Clone a portion of a bio chain, starting at the given byte offset 1330 * into the first bio in the source chain and continuing for the 1331 * number of bytes indicated. The result is another bio chain of 1332 * exactly the given length, or a null pointer on error. 1333 * 1334 * The bio_src and offset parameters are both in-out. On entry they 1335 * refer to the first source bio and the offset into that bio where 1336 * the start of data to be cloned is located. 1337 * 1338 * On return, bio_src is updated to refer to the bio in the source 1339 * chain that contains first un-cloned byte, and *offset will 1340 * contain the offset of that byte within that bio. 1341 */ 1342 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1343 unsigned int *offset, 1344 unsigned int len, 1345 gfp_t gfpmask) 1346 { 1347 struct bio *bi = *bio_src; 1348 unsigned int off = *offset; 1349 struct bio *chain = NULL; 1350 struct bio **end; 1351 1352 /* Build up a chain of clone bios up to the limit */ 1353 1354 if (!bi || off >= bi->bi_iter.bi_size || !len) 1355 return NULL; /* Nothing to clone */ 1356 1357 end = &chain; 1358 while (len) { 1359 unsigned int bi_size; 1360 struct bio *bio; 1361 1362 if (!bi) { 1363 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1364 goto out_err; /* EINVAL; ran out of bio's */ 1365 } 1366 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len); 1367 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1368 if (!bio) 1369 goto out_err; /* ENOMEM */ 1370 1371 *end = bio; 1372 end = &bio->bi_next; 1373 1374 off += bi_size; 1375 if (off == bi->bi_iter.bi_size) { 1376 bi = bi->bi_next; 1377 off = 0; 1378 } 1379 len -= bi_size; 1380 } 1381 *bio_src = bi; 1382 *offset = off; 1383 1384 return chain; 1385 out_err: 1386 bio_chain_put(chain); 1387 1388 return NULL; 1389 } 1390 1391 /* 1392 * The default/initial value for all object request flags is 0. For 1393 * each flag, once its value is set to 1 it is never reset to 0 1394 * again. 1395 */ 1396 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1397 { 1398 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1399 struct rbd_device *rbd_dev; 1400 1401 rbd_dev = obj_request->img_request->rbd_dev; 1402 rbd_warn(rbd_dev, "obj_request %p already marked img_data", 1403 obj_request); 1404 } 1405 } 1406 1407 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1408 { 1409 smp_mb(); 1410 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1411 } 1412 1413 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1414 { 1415 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1416 struct rbd_device *rbd_dev = NULL; 1417 1418 if (obj_request_img_data_test(obj_request)) 1419 rbd_dev = obj_request->img_request->rbd_dev; 1420 rbd_warn(rbd_dev, "obj_request %p already marked done", 1421 obj_request); 1422 } 1423 } 1424 1425 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1426 { 1427 smp_mb(); 1428 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1429 } 1430 1431 /* 1432 * This sets the KNOWN flag after (possibly) setting the EXISTS 1433 * flag. The latter is set based on the "exists" value provided. 1434 * 1435 * Note that for our purposes once an object exists it never goes 1436 * away again. It's possible that the response from two existence 1437 * checks are separated by the creation of the target object, and 1438 * the first ("doesn't exist") response arrives *after* the second 1439 * ("does exist"). In that case we ignore the second one. 1440 */ 1441 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1442 bool exists) 1443 { 1444 if (exists) 1445 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1446 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1447 smp_mb(); 1448 } 1449 1450 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1451 { 1452 smp_mb(); 1453 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1454 } 1455 1456 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1457 { 1458 smp_mb(); 1459 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1460 } 1461 1462 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request) 1463 { 1464 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1465 1466 return obj_request->img_offset < 1467 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header)); 1468 } 1469 1470 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1471 { 1472 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1473 atomic_read(&obj_request->kref.refcount)); 1474 kref_get(&obj_request->kref); 1475 } 1476 1477 static void rbd_obj_request_destroy(struct kref *kref); 1478 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1479 { 1480 rbd_assert(obj_request != NULL); 1481 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1482 atomic_read(&obj_request->kref.refcount)); 1483 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1484 } 1485 1486 static void rbd_img_request_get(struct rbd_img_request *img_request) 1487 { 1488 dout("%s: img %p (was %d)\n", __func__, img_request, 1489 atomic_read(&img_request->kref.refcount)); 1490 kref_get(&img_request->kref); 1491 } 1492 1493 static bool img_request_child_test(struct rbd_img_request *img_request); 1494 static void rbd_parent_request_destroy(struct kref *kref); 1495 static void rbd_img_request_destroy(struct kref *kref); 1496 static void rbd_img_request_put(struct rbd_img_request *img_request) 1497 { 1498 rbd_assert(img_request != NULL); 1499 dout("%s: img %p (was %d)\n", __func__, img_request, 1500 atomic_read(&img_request->kref.refcount)); 1501 if (img_request_child_test(img_request)) 1502 kref_put(&img_request->kref, rbd_parent_request_destroy); 1503 else 1504 kref_put(&img_request->kref, rbd_img_request_destroy); 1505 } 1506 1507 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1508 struct rbd_obj_request *obj_request) 1509 { 1510 rbd_assert(obj_request->img_request == NULL); 1511 1512 /* Image request now owns object's original reference */ 1513 obj_request->img_request = img_request; 1514 obj_request->which = img_request->obj_request_count; 1515 rbd_assert(!obj_request_img_data_test(obj_request)); 1516 obj_request_img_data_set(obj_request); 1517 rbd_assert(obj_request->which != BAD_WHICH); 1518 img_request->obj_request_count++; 1519 list_add_tail(&obj_request->links, &img_request->obj_requests); 1520 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1521 obj_request->which); 1522 } 1523 1524 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1525 struct rbd_obj_request *obj_request) 1526 { 1527 rbd_assert(obj_request->which != BAD_WHICH); 1528 1529 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1530 obj_request->which); 1531 list_del(&obj_request->links); 1532 rbd_assert(img_request->obj_request_count > 0); 1533 img_request->obj_request_count--; 1534 rbd_assert(obj_request->which == img_request->obj_request_count); 1535 obj_request->which = BAD_WHICH; 1536 rbd_assert(obj_request_img_data_test(obj_request)); 1537 rbd_assert(obj_request->img_request == img_request); 1538 obj_request->img_request = NULL; 1539 obj_request->callback = NULL; 1540 rbd_obj_request_put(obj_request); 1541 } 1542 1543 static bool obj_request_type_valid(enum obj_request_type type) 1544 { 1545 switch (type) { 1546 case OBJ_REQUEST_NODATA: 1547 case OBJ_REQUEST_BIO: 1548 case OBJ_REQUEST_PAGES: 1549 return true; 1550 default: 1551 return false; 1552 } 1553 } 1554 1555 static int rbd_obj_request_submit(struct ceph_osd_client *osdc, 1556 struct rbd_obj_request *obj_request) 1557 { 1558 dout("%s %p\n", __func__, obj_request); 1559 return ceph_osdc_start_request(osdc, obj_request->osd_req, false); 1560 } 1561 1562 static void rbd_obj_request_end(struct rbd_obj_request *obj_request) 1563 { 1564 dout("%s %p\n", __func__, obj_request); 1565 ceph_osdc_cancel_request(obj_request->osd_req); 1566 } 1567 1568 /* 1569 * Wait for an object request to complete. If interrupted, cancel the 1570 * underlying osd request. 1571 * 1572 * @timeout: in jiffies, 0 means "wait forever" 1573 */ 1574 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request, 1575 unsigned long timeout) 1576 { 1577 long ret; 1578 1579 dout("%s %p\n", __func__, obj_request); 1580 ret = wait_for_completion_interruptible_timeout( 1581 &obj_request->completion, 1582 ceph_timeout_jiffies(timeout)); 1583 if (ret <= 0) { 1584 if (ret == 0) 1585 ret = -ETIMEDOUT; 1586 rbd_obj_request_end(obj_request); 1587 } else { 1588 ret = 0; 1589 } 1590 1591 dout("%s %p ret %d\n", __func__, obj_request, (int)ret); 1592 return ret; 1593 } 1594 1595 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request) 1596 { 1597 return __rbd_obj_request_wait(obj_request, 0); 1598 } 1599 1600 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request, 1601 unsigned long timeout) 1602 { 1603 return __rbd_obj_request_wait(obj_request, timeout); 1604 } 1605 1606 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1607 { 1608 1609 dout("%s: img %p\n", __func__, img_request); 1610 1611 /* 1612 * If no error occurred, compute the aggregate transfer 1613 * count for the image request. We could instead use 1614 * atomic64_cmpxchg() to update it as each object request 1615 * completes; not clear which way is better off hand. 1616 */ 1617 if (!img_request->result) { 1618 struct rbd_obj_request *obj_request; 1619 u64 xferred = 0; 1620 1621 for_each_obj_request(img_request, obj_request) 1622 xferred += obj_request->xferred; 1623 img_request->xferred = xferred; 1624 } 1625 1626 if (img_request->callback) 1627 img_request->callback(img_request); 1628 else 1629 rbd_img_request_put(img_request); 1630 } 1631 1632 /* 1633 * The default/initial value for all image request flags is 0. Each 1634 * is conditionally set to 1 at image request initialization time 1635 * and currently never change thereafter. 1636 */ 1637 static void img_request_write_set(struct rbd_img_request *img_request) 1638 { 1639 set_bit(IMG_REQ_WRITE, &img_request->flags); 1640 smp_mb(); 1641 } 1642 1643 static bool img_request_write_test(struct rbd_img_request *img_request) 1644 { 1645 smp_mb(); 1646 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1647 } 1648 1649 /* 1650 * Set the discard flag when the img_request is an discard request 1651 */ 1652 static void img_request_discard_set(struct rbd_img_request *img_request) 1653 { 1654 set_bit(IMG_REQ_DISCARD, &img_request->flags); 1655 smp_mb(); 1656 } 1657 1658 static bool img_request_discard_test(struct rbd_img_request *img_request) 1659 { 1660 smp_mb(); 1661 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0; 1662 } 1663 1664 static void img_request_child_set(struct rbd_img_request *img_request) 1665 { 1666 set_bit(IMG_REQ_CHILD, &img_request->flags); 1667 smp_mb(); 1668 } 1669 1670 static void img_request_child_clear(struct rbd_img_request *img_request) 1671 { 1672 clear_bit(IMG_REQ_CHILD, &img_request->flags); 1673 smp_mb(); 1674 } 1675 1676 static bool img_request_child_test(struct rbd_img_request *img_request) 1677 { 1678 smp_mb(); 1679 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1680 } 1681 1682 static void img_request_layered_set(struct rbd_img_request *img_request) 1683 { 1684 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1685 smp_mb(); 1686 } 1687 1688 static void img_request_layered_clear(struct rbd_img_request *img_request) 1689 { 1690 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1691 smp_mb(); 1692 } 1693 1694 static bool img_request_layered_test(struct rbd_img_request *img_request) 1695 { 1696 smp_mb(); 1697 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1698 } 1699 1700 static enum obj_operation_type 1701 rbd_img_request_op_type(struct rbd_img_request *img_request) 1702 { 1703 if (img_request_write_test(img_request)) 1704 return OBJ_OP_WRITE; 1705 else if (img_request_discard_test(img_request)) 1706 return OBJ_OP_DISCARD; 1707 else 1708 return OBJ_OP_READ; 1709 } 1710 1711 static void 1712 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1713 { 1714 u64 xferred = obj_request->xferred; 1715 u64 length = obj_request->length; 1716 1717 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1718 obj_request, obj_request->img_request, obj_request->result, 1719 xferred, length); 1720 /* 1721 * ENOENT means a hole in the image. We zero-fill the entire 1722 * length of the request. A short read also implies zero-fill 1723 * to the end of the request. An error requires the whole 1724 * length of the request to be reported finished with an error 1725 * to the block layer. In each case we update the xferred 1726 * count to indicate the whole request was satisfied. 1727 */ 1728 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1729 if (obj_request->result == -ENOENT) { 1730 if (obj_request->type == OBJ_REQUEST_BIO) 1731 zero_bio_chain(obj_request->bio_list, 0); 1732 else 1733 zero_pages(obj_request->pages, 0, length); 1734 obj_request->result = 0; 1735 } else if (xferred < length && !obj_request->result) { 1736 if (obj_request->type == OBJ_REQUEST_BIO) 1737 zero_bio_chain(obj_request->bio_list, xferred); 1738 else 1739 zero_pages(obj_request->pages, xferred, length); 1740 } 1741 obj_request->xferred = length; 1742 obj_request_done_set(obj_request); 1743 } 1744 1745 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1746 { 1747 dout("%s: obj %p cb %p\n", __func__, obj_request, 1748 obj_request->callback); 1749 if (obj_request->callback) 1750 obj_request->callback(obj_request); 1751 else 1752 complete_all(&obj_request->completion); 1753 } 1754 1755 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request) 1756 { 1757 dout("%s: obj %p\n", __func__, obj_request); 1758 obj_request_done_set(obj_request); 1759 } 1760 1761 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1762 { 1763 struct rbd_img_request *img_request = NULL; 1764 struct rbd_device *rbd_dev = NULL; 1765 bool layered = false; 1766 1767 if (obj_request_img_data_test(obj_request)) { 1768 img_request = obj_request->img_request; 1769 layered = img_request && img_request_layered_test(img_request); 1770 rbd_dev = img_request->rbd_dev; 1771 } 1772 1773 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1774 obj_request, img_request, obj_request->result, 1775 obj_request->xferred, obj_request->length); 1776 if (layered && obj_request->result == -ENOENT && 1777 obj_request->img_offset < rbd_dev->parent_overlap) 1778 rbd_img_parent_read(obj_request); 1779 else if (img_request) 1780 rbd_img_obj_request_read_callback(obj_request); 1781 else 1782 obj_request_done_set(obj_request); 1783 } 1784 1785 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1786 { 1787 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1788 obj_request->result, obj_request->length); 1789 /* 1790 * There is no such thing as a successful short write. Set 1791 * it to our originally-requested length. 1792 */ 1793 obj_request->xferred = obj_request->length; 1794 obj_request_done_set(obj_request); 1795 } 1796 1797 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request) 1798 { 1799 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1800 obj_request->result, obj_request->length); 1801 /* 1802 * There is no such thing as a successful short discard. Set 1803 * it to our originally-requested length. 1804 */ 1805 obj_request->xferred = obj_request->length; 1806 /* discarding a non-existent object is not a problem */ 1807 if (obj_request->result == -ENOENT) 1808 obj_request->result = 0; 1809 obj_request_done_set(obj_request); 1810 } 1811 1812 /* 1813 * For a simple stat call there's nothing to do. We'll do more if 1814 * this is part of a write sequence for a layered image. 1815 */ 1816 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1817 { 1818 dout("%s: obj %p\n", __func__, obj_request); 1819 obj_request_done_set(obj_request); 1820 } 1821 1822 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request) 1823 { 1824 dout("%s: obj %p\n", __func__, obj_request); 1825 1826 if (obj_request_img_data_test(obj_request)) 1827 rbd_osd_copyup_callback(obj_request); 1828 else 1829 obj_request_done_set(obj_request); 1830 } 1831 1832 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req, 1833 struct ceph_msg *msg) 1834 { 1835 struct rbd_obj_request *obj_request = osd_req->r_priv; 1836 u16 opcode; 1837 1838 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg); 1839 rbd_assert(osd_req == obj_request->osd_req); 1840 if (obj_request_img_data_test(obj_request)) { 1841 rbd_assert(obj_request->img_request); 1842 rbd_assert(obj_request->which != BAD_WHICH); 1843 } else { 1844 rbd_assert(obj_request->which == BAD_WHICH); 1845 } 1846 1847 if (osd_req->r_result < 0) 1848 obj_request->result = osd_req->r_result; 1849 1850 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP); 1851 1852 /* 1853 * We support a 64-bit length, but ultimately it has to be 1854 * passed to the block layer, which just supports a 32-bit 1855 * length field. 1856 */ 1857 obj_request->xferred = osd_req->r_reply_op_len[0]; 1858 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1859 1860 opcode = osd_req->r_ops[0].op; 1861 switch (opcode) { 1862 case CEPH_OSD_OP_READ: 1863 rbd_osd_read_callback(obj_request); 1864 break; 1865 case CEPH_OSD_OP_SETALLOCHINT: 1866 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE || 1867 osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL); 1868 /* fall through */ 1869 case CEPH_OSD_OP_WRITE: 1870 case CEPH_OSD_OP_WRITEFULL: 1871 rbd_osd_write_callback(obj_request); 1872 break; 1873 case CEPH_OSD_OP_STAT: 1874 rbd_osd_stat_callback(obj_request); 1875 break; 1876 case CEPH_OSD_OP_DELETE: 1877 case CEPH_OSD_OP_TRUNCATE: 1878 case CEPH_OSD_OP_ZERO: 1879 rbd_osd_discard_callback(obj_request); 1880 break; 1881 case CEPH_OSD_OP_CALL: 1882 rbd_osd_call_callback(obj_request); 1883 break; 1884 case CEPH_OSD_OP_NOTIFY_ACK: 1885 case CEPH_OSD_OP_WATCH: 1886 rbd_osd_trivial_callback(obj_request); 1887 break; 1888 default: 1889 rbd_warn(NULL, "%s: unsupported op %hu", 1890 obj_request->object_name, (unsigned short) opcode); 1891 break; 1892 } 1893 1894 if (obj_request_done_test(obj_request)) 1895 rbd_obj_request_complete(obj_request); 1896 } 1897 1898 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1899 { 1900 struct rbd_img_request *img_request = obj_request->img_request; 1901 struct ceph_osd_request *osd_req = obj_request->osd_req; 1902 u64 snap_id; 1903 1904 rbd_assert(osd_req != NULL); 1905 1906 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP; 1907 ceph_osdc_build_request(osd_req, obj_request->offset, 1908 NULL, snap_id, NULL); 1909 } 1910 1911 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1912 { 1913 struct rbd_img_request *img_request = obj_request->img_request; 1914 struct ceph_osd_request *osd_req = obj_request->osd_req; 1915 struct ceph_snap_context *snapc; 1916 struct timespec mtime = CURRENT_TIME; 1917 1918 rbd_assert(osd_req != NULL); 1919 1920 snapc = img_request ? img_request->snapc : NULL; 1921 ceph_osdc_build_request(osd_req, obj_request->offset, 1922 snapc, CEPH_NOSNAP, &mtime); 1923 } 1924 1925 /* 1926 * Create an osd request. A read request has one osd op (read). 1927 * A write request has either one (watch) or two (hint+write) osd ops. 1928 * (All rbd data writes are prefixed with an allocation hint op, but 1929 * technically osd watch is a write request, hence this distinction.) 1930 */ 1931 static struct ceph_osd_request *rbd_osd_req_create( 1932 struct rbd_device *rbd_dev, 1933 enum obj_operation_type op_type, 1934 unsigned int num_ops, 1935 struct rbd_obj_request *obj_request) 1936 { 1937 struct ceph_snap_context *snapc = NULL; 1938 struct ceph_osd_client *osdc; 1939 struct ceph_osd_request *osd_req; 1940 1941 if (obj_request_img_data_test(obj_request) && 1942 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) { 1943 struct rbd_img_request *img_request = obj_request->img_request; 1944 if (op_type == OBJ_OP_WRITE) { 1945 rbd_assert(img_request_write_test(img_request)); 1946 } else { 1947 rbd_assert(img_request_discard_test(img_request)); 1948 } 1949 snapc = img_request->snapc; 1950 } 1951 1952 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2)); 1953 1954 /* Allocate and initialize the request, for the num_ops ops */ 1955 1956 osdc = &rbd_dev->rbd_client->client->osdc; 1957 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, 1958 GFP_ATOMIC); 1959 if (!osd_req) 1960 return NULL; /* ENOMEM */ 1961 1962 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 1963 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1964 else 1965 osd_req->r_flags = CEPH_OSD_FLAG_READ; 1966 1967 osd_req->r_callback = rbd_osd_req_callback; 1968 osd_req->r_priv = obj_request; 1969 1970 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1971 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 1972 1973 return osd_req; 1974 } 1975 1976 /* 1977 * Create a copyup osd request based on the information in the object 1978 * request supplied. A copyup request has two or three osd ops, a 1979 * copyup method call, potentially a hint op, and a write or truncate 1980 * or zero op. 1981 */ 1982 static struct ceph_osd_request * 1983 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 1984 { 1985 struct rbd_img_request *img_request; 1986 struct ceph_snap_context *snapc; 1987 struct rbd_device *rbd_dev; 1988 struct ceph_osd_client *osdc; 1989 struct ceph_osd_request *osd_req; 1990 int num_osd_ops = 3; 1991 1992 rbd_assert(obj_request_img_data_test(obj_request)); 1993 img_request = obj_request->img_request; 1994 rbd_assert(img_request); 1995 rbd_assert(img_request_write_test(img_request) || 1996 img_request_discard_test(img_request)); 1997 1998 if (img_request_discard_test(img_request)) 1999 num_osd_ops = 2; 2000 2001 /* Allocate and initialize the request, for all the ops */ 2002 2003 snapc = img_request->snapc; 2004 rbd_dev = img_request->rbd_dev; 2005 osdc = &rbd_dev->rbd_client->client->osdc; 2006 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops, 2007 false, GFP_ATOMIC); 2008 if (!osd_req) 2009 return NULL; /* ENOMEM */ 2010 2011 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 2012 osd_req->r_callback = rbd_osd_req_callback; 2013 osd_req->r_priv = obj_request; 2014 2015 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 2016 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 2017 2018 return osd_req; 2019 } 2020 2021 2022 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 2023 { 2024 ceph_osdc_put_request(osd_req); 2025 } 2026 2027 /* object_name is assumed to be a non-null pointer and NUL-terminated */ 2028 2029 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name, 2030 u64 offset, u64 length, 2031 enum obj_request_type type) 2032 { 2033 struct rbd_obj_request *obj_request; 2034 size_t size; 2035 char *name; 2036 2037 rbd_assert(obj_request_type_valid(type)); 2038 2039 size = strlen(object_name) + 1; 2040 name = kmalloc(size, GFP_NOIO); 2041 if (!name) 2042 return NULL; 2043 2044 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 2045 if (!obj_request) { 2046 kfree(name); 2047 return NULL; 2048 } 2049 2050 obj_request->object_name = memcpy(name, object_name, size); 2051 obj_request->offset = offset; 2052 obj_request->length = length; 2053 obj_request->flags = 0; 2054 obj_request->which = BAD_WHICH; 2055 obj_request->type = type; 2056 INIT_LIST_HEAD(&obj_request->links); 2057 init_completion(&obj_request->completion); 2058 kref_init(&obj_request->kref); 2059 2060 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name, 2061 offset, length, (int)type, obj_request); 2062 2063 return obj_request; 2064 } 2065 2066 static void rbd_obj_request_destroy(struct kref *kref) 2067 { 2068 struct rbd_obj_request *obj_request; 2069 2070 obj_request = container_of(kref, struct rbd_obj_request, kref); 2071 2072 dout("%s: obj %p\n", __func__, obj_request); 2073 2074 rbd_assert(obj_request->img_request == NULL); 2075 rbd_assert(obj_request->which == BAD_WHICH); 2076 2077 if (obj_request->osd_req) 2078 rbd_osd_req_destroy(obj_request->osd_req); 2079 2080 rbd_assert(obj_request_type_valid(obj_request->type)); 2081 switch (obj_request->type) { 2082 case OBJ_REQUEST_NODATA: 2083 break; /* Nothing to do */ 2084 case OBJ_REQUEST_BIO: 2085 if (obj_request->bio_list) 2086 bio_chain_put(obj_request->bio_list); 2087 break; 2088 case OBJ_REQUEST_PAGES: 2089 if (obj_request->pages) 2090 ceph_release_page_vector(obj_request->pages, 2091 obj_request->page_count); 2092 break; 2093 } 2094 2095 kfree(obj_request->object_name); 2096 obj_request->object_name = NULL; 2097 kmem_cache_free(rbd_obj_request_cache, obj_request); 2098 } 2099 2100 /* It's OK to call this for a device with no parent */ 2101 2102 static void rbd_spec_put(struct rbd_spec *spec); 2103 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 2104 { 2105 rbd_dev_remove_parent(rbd_dev); 2106 rbd_spec_put(rbd_dev->parent_spec); 2107 rbd_dev->parent_spec = NULL; 2108 rbd_dev->parent_overlap = 0; 2109 } 2110 2111 /* 2112 * Parent image reference counting is used to determine when an 2113 * image's parent fields can be safely torn down--after there are no 2114 * more in-flight requests to the parent image. When the last 2115 * reference is dropped, cleaning them up is safe. 2116 */ 2117 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 2118 { 2119 int counter; 2120 2121 if (!rbd_dev->parent_spec) 2122 return; 2123 2124 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 2125 if (counter > 0) 2126 return; 2127 2128 /* Last reference; clean up parent data structures */ 2129 2130 if (!counter) 2131 rbd_dev_unparent(rbd_dev); 2132 else 2133 rbd_warn(rbd_dev, "parent reference underflow"); 2134 } 2135 2136 /* 2137 * If an image has a non-zero parent overlap, get a reference to its 2138 * parent. 2139 * 2140 * Returns true if the rbd device has a parent with a non-zero 2141 * overlap and a reference for it was successfully taken, or 2142 * false otherwise. 2143 */ 2144 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 2145 { 2146 int counter = 0; 2147 2148 if (!rbd_dev->parent_spec) 2149 return false; 2150 2151 down_read(&rbd_dev->header_rwsem); 2152 if (rbd_dev->parent_overlap) 2153 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 2154 up_read(&rbd_dev->header_rwsem); 2155 2156 if (counter < 0) 2157 rbd_warn(rbd_dev, "parent reference overflow"); 2158 2159 return counter > 0; 2160 } 2161 2162 /* 2163 * Caller is responsible for filling in the list of object requests 2164 * that comprises the image request, and the Linux request pointer 2165 * (if there is one). 2166 */ 2167 static struct rbd_img_request *rbd_img_request_create( 2168 struct rbd_device *rbd_dev, 2169 u64 offset, u64 length, 2170 enum obj_operation_type op_type, 2171 struct ceph_snap_context *snapc) 2172 { 2173 struct rbd_img_request *img_request; 2174 2175 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2176 if (!img_request) 2177 return NULL; 2178 2179 img_request->rq = NULL; 2180 img_request->rbd_dev = rbd_dev; 2181 img_request->offset = offset; 2182 img_request->length = length; 2183 img_request->flags = 0; 2184 if (op_type == OBJ_OP_DISCARD) { 2185 img_request_discard_set(img_request); 2186 img_request->snapc = snapc; 2187 } else if (op_type == OBJ_OP_WRITE) { 2188 img_request_write_set(img_request); 2189 img_request->snapc = snapc; 2190 } else { 2191 img_request->snap_id = rbd_dev->spec->snap_id; 2192 } 2193 if (rbd_dev_parent_get(rbd_dev)) 2194 img_request_layered_set(img_request); 2195 spin_lock_init(&img_request->completion_lock); 2196 img_request->next_completion = 0; 2197 img_request->callback = NULL; 2198 img_request->result = 0; 2199 img_request->obj_request_count = 0; 2200 INIT_LIST_HEAD(&img_request->obj_requests); 2201 kref_init(&img_request->kref); 2202 2203 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 2204 obj_op_name(op_type), offset, length, img_request); 2205 2206 return img_request; 2207 } 2208 2209 static void rbd_img_request_destroy(struct kref *kref) 2210 { 2211 struct rbd_img_request *img_request; 2212 struct rbd_obj_request *obj_request; 2213 struct rbd_obj_request *next_obj_request; 2214 2215 img_request = container_of(kref, struct rbd_img_request, kref); 2216 2217 dout("%s: img %p\n", __func__, img_request); 2218 2219 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2220 rbd_img_obj_request_del(img_request, obj_request); 2221 rbd_assert(img_request->obj_request_count == 0); 2222 2223 if (img_request_layered_test(img_request)) { 2224 img_request_layered_clear(img_request); 2225 rbd_dev_parent_put(img_request->rbd_dev); 2226 } 2227 2228 if (img_request_write_test(img_request) || 2229 img_request_discard_test(img_request)) 2230 ceph_put_snap_context(img_request->snapc); 2231 2232 kmem_cache_free(rbd_img_request_cache, img_request); 2233 } 2234 2235 static struct rbd_img_request *rbd_parent_request_create( 2236 struct rbd_obj_request *obj_request, 2237 u64 img_offset, u64 length) 2238 { 2239 struct rbd_img_request *parent_request; 2240 struct rbd_device *rbd_dev; 2241 2242 rbd_assert(obj_request->img_request); 2243 rbd_dev = obj_request->img_request->rbd_dev; 2244 2245 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset, 2246 length, OBJ_OP_READ, NULL); 2247 if (!parent_request) 2248 return NULL; 2249 2250 img_request_child_set(parent_request); 2251 rbd_obj_request_get(obj_request); 2252 parent_request->obj_request = obj_request; 2253 2254 return parent_request; 2255 } 2256 2257 static void rbd_parent_request_destroy(struct kref *kref) 2258 { 2259 struct rbd_img_request *parent_request; 2260 struct rbd_obj_request *orig_request; 2261 2262 parent_request = container_of(kref, struct rbd_img_request, kref); 2263 orig_request = parent_request->obj_request; 2264 2265 parent_request->obj_request = NULL; 2266 rbd_obj_request_put(orig_request); 2267 img_request_child_clear(parent_request); 2268 2269 rbd_img_request_destroy(kref); 2270 } 2271 2272 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 2273 { 2274 struct rbd_img_request *img_request; 2275 unsigned int xferred; 2276 int result; 2277 bool more; 2278 2279 rbd_assert(obj_request_img_data_test(obj_request)); 2280 img_request = obj_request->img_request; 2281 2282 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 2283 xferred = (unsigned int)obj_request->xferred; 2284 result = obj_request->result; 2285 if (result) { 2286 struct rbd_device *rbd_dev = img_request->rbd_dev; 2287 enum obj_operation_type op_type; 2288 2289 if (img_request_discard_test(img_request)) 2290 op_type = OBJ_OP_DISCARD; 2291 else if (img_request_write_test(img_request)) 2292 op_type = OBJ_OP_WRITE; 2293 else 2294 op_type = OBJ_OP_READ; 2295 2296 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)", 2297 obj_op_name(op_type), obj_request->length, 2298 obj_request->img_offset, obj_request->offset); 2299 rbd_warn(rbd_dev, " result %d xferred %x", 2300 result, xferred); 2301 if (!img_request->result) 2302 img_request->result = result; 2303 /* 2304 * Need to end I/O on the entire obj_request worth of 2305 * bytes in case of error. 2306 */ 2307 xferred = obj_request->length; 2308 } 2309 2310 /* Image object requests don't own their page array */ 2311 2312 if (obj_request->type == OBJ_REQUEST_PAGES) { 2313 obj_request->pages = NULL; 2314 obj_request->page_count = 0; 2315 } 2316 2317 if (img_request_child_test(img_request)) { 2318 rbd_assert(img_request->obj_request != NULL); 2319 more = obj_request->which < img_request->obj_request_count - 1; 2320 } else { 2321 rbd_assert(img_request->rq != NULL); 2322 2323 more = blk_update_request(img_request->rq, result, xferred); 2324 if (!more) 2325 __blk_mq_end_request(img_request->rq, result); 2326 } 2327 2328 return more; 2329 } 2330 2331 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 2332 { 2333 struct rbd_img_request *img_request; 2334 u32 which = obj_request->which; 2335 bool more = true; 2336 2337 rbd_assert(obj_request_img_data_test(obj_request)); 2338 img_request = obj_request->img_request; 2339 2340 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 2341 rbd_assert(img_request != NULL); 2342 rbd_assert(img_request->obj_request_count > 0); 2343 rbd_assert(which != BAD_WHICH); 2344 rbd_assert(which < img_request->obj_request_count); 2345 2346 spin_lock_irq(&img_request->completion_lock); 2347 if (which != img_request->next_completion) 2348 goto out; 2349 2350 for_each_obj_request_from(img_request, obj_request) { 2351 rbd_assert(more); 2352 rbd_assert(which < img_request->obj_request_count); 2353 2354 if (!obj_request_done_test(obj_request)) 2355 break; 2356 more = rbd_img_obj_end_request(obj_request); 2357 which++; 2358 } 2359 2360 rbd_assert(more ^ (which == img_request->obj_request_count)); 2361 img_request->next_completion = which; 2362 out: 2363 spin_unlock_irq(&img_request->completion_lock); 2364 rbd_img_request_put(img_request); 2365 2366 if (!more) 2367 rbd_img_request_complete(img_request); 2368 } 2369 2370 /* 2371 * Add individual osd ops to the given ceph_osd_request and prepare 2372 * them for submission. num_ops is the current number of 2373 * osd operations already to the object request. 2374 */ 2375 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request, 2376 struct ceph_osd_request *osd_request, 2377 enum obj_operation_type op_type, 2378 unsigned int num_ops) 2379 { 2380 struct rbd_img_request *img_request = obj_request->img_request; 2381 struct rbd_device *rbd_dev = img_request->rbd_dev; 2382 u64 object_size = rbd_obj_bytes(&rbd_dev->header); 2383 u64 offset = obj_request->offset; 2384 u64 length = obj_request->length; 2385 u64 img_end; 2386 u16 opcode; 2387 2388 if (op_type == OBJ_OP_DISCARD) { 2389 if (!offset && length == object_size && 2390 (!img_request_layered_test(img_request) || 2391 !obj_request_overlaps_parent(obj_request))) { 2392 opcode = CEPH_OSD_OP_DELETE; 2393 } else if ((offset + length == object_size)) { 2394 opcode = CEPH_OSD_OP_TRUNCATE; 2395 } else { 2396 down_read(&rbd_dev->header_rwsem); 2397 img_end = rbd_dev->header.image_size; 2398 up_read(&rbd_dev->header_rwsem); 2399 2400 if (obj_request->img_offset + length == img_end) 2401 opcode = CEPH_OSD_OP_TRUNCATE; 2402 else 2403 opcode = CEPH_OSD_OP_ZERO; 2404 } 2405 } else if (op_type == OBJ_OP_WRITE) { 2406 if (!offset && length == object_size) 2407 opcode = CEPH_OSD_OP_WRITEFULL; 2408 else 2409 opcode = CEPH_OSD_OP_WRITE; 2410 osd_req_op_alloc_hint_init(osd_request, num_ops, 2411 object_size, object_size); 2412 num_ops++; 2413 } else { 2414 opcode = CEPH_OSD_OP_READ; 2415 } 2416 2417 if (opcode == CEPH_OSD_OP_DELETE) 2418 osd_req_op_init(osd_request, num_ops, opcode, 0); 2419 else 2420 osd_req_op_extent_init(osd_request, num_ops, opcode, 2421 offset, length, 0, 0); 2422 2423 if (obj_request->type == OBJ_REQUEST_BIO) 2424 osd_req_op_extent_osd_data_bio(osd_request, num_ops, 2425 obj_request->bio_list, length); 2426 else if (obj_request->type == OBJ_REQUEST_PAGES) 2427 osd_req_op_extent_osd_data_pages(osd_request, num_ops, 2428 obj_request->pages, length, 2429 offset & ~PAGE_MASK, false, false); 2430 2431 /* Discards are also writes */ 2432 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 2433 rbd_osd_req_format_write(obj_request); 2434 else 2435 rbd_osd_req_format_read(obj_request); 2436 } 2437 2438 /* 2439 * Split up an image request into one or more object requests, each 2440 * to a different object. The "type" parameter indicates whether 2441 * "data_desc" is the pointer to the head of a list of bio 2442 * structures, or the base of a page array. In either case this 2443 * function assumes data_desc describes memory sufficient to hold 2444 * all data described by the image request. 2445 */ 2446 static int rbd_img_request_fill(struct rbd_img_request *img_request, 2447 enum obj_request_type type, 2448 void *data_desc) 2449 { 2450 struct rbd_device *rbd_dev = img_request->rbd_dev; 2451 struct rbd_obj_request *obj_request = NULL; 2452 struct rbd_obj_request *next_obj_request; 2453 struct bio *bio_list = NULL; 2454 unsigned int bio_offset = 0; 2455 struct page **pages = NULL; 2456 enum obj_operation_type op_type; 2457 u64 img_offset; 2458 u64 resid; 2459 2460 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 2461 (int)type, data_desc); 2462 2463 img_offset = img_request->offset; 2464 resid = img_request->length; 2465 rbd_assert(resid > 0); 2466 op_type = rbd_img_request_op_type(img_request); 2467 2468 if (type == OBJ_REQUEST_BIO) { 2469 bio_list = data_desc; 2470 rbd_assert(img_offset == 2471 bio_list->bi_iter.bi_sector << SECTOR_SHIFT); 2472 } else if (type == OBJ_REQUEST_PAGES) { 2473 pages = data_desc; 2474 } 2475 2476 while (resid) { 2477 struct ceph_osd_request *osd_req; 2478 const char *object_name; 2479 u64 offset; 2480 u64 length; 2481 2482 object_name = rbd_segment_name(rbd_dev, img_offset); 2483 if (!object_name) 2484 goto out_unwind; 2485 offset = rbd_segment_offset(rbd_dev, img_offset); 2486 length = rbd_segment_length(rbd_dev, img_offset, resid); 2487 obj_request = rbd_obj_request_create(object_name, 2488 offset, length, type); 2489 /* object request has its own copy of the object name */ 2490 rbd_segment_name_free(object_name); 2491 if (!obj_request) 2492 goto out_unwind; 2493 2494 /* 2495 * set obj_request->img_request before creating the 2496 * osd_request so that it gets the right snapc 2497 */ 2498 rbd_img_obj_request_add(img_request, obj_request); 2499 2500 if (type == OBJ_REQUEST_BIO) { 2501 unsigned int clone_size; 2502 2503 rbd_assert(length <= (u64)UINT_MAX); 2504 clone_size = (unsigned int)length; 2505 obj_request->bio_list = 2506 bio_chain_clone_range(&bio_list, 2507 &bio_offset, 2508 clone_size, 2509 GFP_ATOMIC); 2510 if (!obj_request->bio_list) 2511 goto out_unwind; 2512 } else if (type == OBJ_REQUEST_PAGES) { 2513 unsigned int page_count; 2514 2515 obj_request->pages = pages; 2516 page_count = (u32)calc_pages_for(offset, length); 2517 obj_request->page_count = page_count; 2518 if ((offset + length) & ~PAGE_MASK) 2519 page_count--; /* more on last page */ 2520 pages += page_count; 2521 } 2522 2523 osd_req = rbd_osd_req_create(rbd_dev, op_type, 2524 (op_type == OBJ_OP_WRITE) ? 2 : 1, 2525 obj_request); 2526 if (!osd_req) 2527 goto out_unwind; 2528 2529 obj_request->osd_req = osd_req; 2530 obj_request->callback = rbd_img_obj_callback; 2531 obj_request->img_offset = img_offset; 2532 2533 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0); 2534 2535 rbd_img_request_get(img_request); 2536 2537 img_offset += length; 2538 resid -= length; 2539 } 2540 2541 return 0; 2542 2543 out_unwind: 2544 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2545 rbd_img_obj_request_del(img_request, obj_request); 2546 2547 return -ENOMEM; 2548 } 2549 2550 static void 2551 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request) 2552 { 2553 struct rbd_img_request *img_request; 2554 struct rbd_device *rbd_dev; 2555 struct page **pages; 2556 u32 page_count; 2557 2558 dout("%s: obj %p\n", __func__, obj_request); 2559 2560 rbd_assert(obj_request->type == OBJ_REQUEST_BIO || 2561 obj_request->type == OBJ_REQUEST_NODATA); 2562 rbd_assert(obj_request_img_data_test(obj_request)); 2563 img_request = obj_request->img_request; 2564 rbd_assert(img_request); 2565 2566 rbd_dev = img_request->rbd_dev; 2567 rbd_assert(rbd_dev); 2568 2569 pages = obj_request->copyup_pages; 2570 rbd_assert(pages != NULL); 2571 obj_request->copyup_pages = NULL; 2572 page_count = obj_request->copyup_page_count; 2573 rbd_assert(page_count); 2574 obj_request->copyup_page_count = 0; 2575 ceph_release_page_vector(pages, page_count); 2576 2577 /* 2578 * We want the transfer count to reflect the size of the 2579 * original write request. There is no such thing as a 2580 * successful short write, so if the request was successful 2581 * we can just set it to the originally-requested length. 2582 */ 2583 if (!obj_request->result) 2584 obj_request->xferred = obj_request->length; 2585 2586 obj_request_done_set(obj_request); 2587 } 2588 2589 static void 2590 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2591 { 2592 struct rbd_obj_request *orig_request; 2593 struct ceph_osd_request *osd_req; 2594 struct ceph_osd_client *osdc; 2595 struct rbd_device *rbd_dev; 2596 struct page **pages; 2597 enum obj_operation_type op_type; 2598 u32 page_count; 2599 int img_result; 2600 u64 parent_length; 2601 2602 rbd_assert(img_request_child_test(img_request)); 2603 2604 /* First get what we need from the image request */ 2605 2606 pages = img_request->copyup_pages; 2607 rbd_assert(pages != NULL); 2608 img_request->copyup_pages = NULL; 2609 page_count = img_request->copyup_page_count; 2610 rbd_assert(page_count); 2611 img_request->copyup_page_count = 0; 2612 2613 orig_request = img_request->obj_request; 2614 rbd_assert(orig_request != NULL); 2615 rbd_assert(obj_request_type_valid(orig_request->type)); 2616 img_result = img_request->result; 2617 parent_length = img_request->length; 2618 rbd_assert(parent_length == img_request->xferred); 2619 rbd_img_request_put(img_request); 2620 2621 rbd_assert(orig_request->img_request); 2622 rbd_dev = orig_request->img_request->rbd_dev; 2623 rbd_assert(rbd_dev); 2624 2625 /* 2626 * If the overlap has become 0 (most likely because the 2627 * image has been flattened) we need to free the pages 2628 * and re-submit the original write request. 2629 */ 2630 if (!rbd_dev->parent_overlap) { 2631 struct ceph_osd_client *osdc; 2632 2633 ceph_release_page_vector(pages, page_count); 2634 osdc = &rbd_dev->rbd_client->client->osdc; 2635 img_result = rbd_obj_request_submit(osdc, orig_request); 2636 if (!img_result) 2637 return; 2638 } 2639 2640 if (img_result) 2641 goto out_err; 2642 2643 /* 2644 * The original osd request is of no use to use any more. 2645 * We need a new one that can hold the three ops in a copyup 2646 * request. Allocate the new copyup osd request for the 2647 * original request, and release the old one. 2648 */ 2649 img_result = -ENOMEM; 2650 osd_req = rbd_osd_req_create_copyup(orig_request); 2651 if (!osd_req) 2652 goto out_err; 2653 rbd_osd_req_destroy(orig_request->osd_req); 2654 orig_request->osd_req = osd_req; 2655 orig_request->copyup_pages = pages; 2656 orig_request->copyup_page_count = page_count; 2657 2658 /* Initialize the copyup op */ 2659 2660 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2661 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0, 2662 false, false); 2663 2664 /* Add the other op(s) */ 2665 2666 op_type = rbd_img_request_op_type(orig_request->img_request); 2667 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1); 2668 2669 /* All set, send it off. */ 2670 2671 osdc = &rbd_dev->rbd_client->client->osdc; 2672 img_result = rbd_obj_request_submit(osdc, orig_request); 2673 if (!img_result) 2674 return; 2675 out_err: 2676 /* Record the error code and complete the request */ 2677 2678 orig_request->result = img_result; 2679 orig_request->xferred = 0; 2680 obj_request_done_set(orig_request); 2681 rbd_obj_request_complete(orig_request); 2682 } 2683 2684 /* 2685 * Read from the parent image the range of data that covers the 2686 * entire target of the given object request. This is used for 2687 * satisfying a layered image write request when the target of an 2688 * object request from the image request does not exist. 2689 * 2690 * A page array big enough to hold the returned data is allocated 2691 * and supplied to rbd_img_request_fill() as the "data descriptor." 2692 * When the read completes, this page array will be transferred to 2693 * the original object request for the copyup operation. 2694 * 2695 * If an error occurs, record it as the result of the original 2696 * object request and mark it done so it gets completed. 2697 */ 2698 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2699 { 2700 struct rbd_img_request *img_request = NULL; 2701 struct rbd_img_request *parent_request = NULL; 2702 struct rbd_device *rbd_dev; 2703 u64 img_offset; 2704 u64 length; 2705 struct page **pages = NULL; 2706 u32 page_count; 2707 int result; 2708 2709 rbd_assert(obj_request_img_data_test(obj_request)); 2710 rbd_assert(obj_request_type_valid(obj_request->type)); 2711 2712 img_request = obj_request->img_request; 2713 rbd_assert(img_request != NULL); 2714 rbd_dev = img_request->rbd_dev; 2715 rbd_assert(rbd_dev->parent != NULL); 2716 2717 /* 2718 * Determine the byte range covered by the object in the 2719 * child image to which the original request was to be sent. 2720 */ 2721 img_offset = obj_request->img_offset - obj_request->offset; 2722 length = (u64)1 << rbd_dev->header.obj_order; 2723 2724 /* 2725 * There is no defined parent data beyond the parent 2726 * overlap, so limit what we read at that boundary if 2727 * necessary. 2728 */ 2729 if (img_offset + length > rbd_dev->parent_overlap) { 2730 rbd_assert(img_offset < rbd_dev->parent_overlap); 2731 length = rbd_dev->parent_overlap - img_offset; 2732 } 2733 2734 /* 2735 * Allocate a page array big enough to receive the data read 2736 * from the parent. 2737 */ 2738 page_count = (u32)calc_pages_for(0, length); 2739 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2740 if (IS_ERR(pages)) { 2741 result = PTR_ERR(pages); 2742 pages = NULL; 2743 goto out_err; 2744 } 2745 2746 result = -ENOMEM; 2747 parent_request = rbd_parent_request_create(obj_request, 2748 img_offset, length); 2749 if (!parent_request) 2750 goto out_err; 2751 2752 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2753 if (result) 2754 goto out_err; 2755 parent_request->copyup_pages = pages; 2756 parent_request->copyup_page_count = page_count; 2757 2758 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2759 result = rbd_img_request_submit(parent_request); 2760 if (!result) 2761 return 0; 2762 2763 parent_request->copyup_pages = NULL; 2764 parent_request->copyup_page_count = 0; 2765 parent_request->obj_request = NULL; 2766 rbd_obj_request_put(obj_request); 2767 out_err: 2768 if (pages) 2769 ceph_release_page_vector(pages, page_count); 2770 if (parent_request) 2771 rbd_img_request_put(parent_request); 2772 obj_request->result = result; 2773 obj_request->xferred = 0; 2774 obj_request_done_set(obj_request); 2775 2776 return result; 2777 } 2778 2779 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2780 { 2781 struct rbd_obj_request *orig_request; 2782 struct rbd_device *rbd_dev; 2783 int result; 2784 2785 rbd_assert(!obj_request_img_data_test(obj_request)); 2786 2787 /* 2788 * All we need from the object request is the original 2789 * request and the result of the STAT op. Grab those, then 2790 * we're done with the request. 2791 */ 2792 orig_request = obj_request->obj_request; 2793 obj_request->obj_request = NULL; 2794 rbd_obj_request_put(orig_request); 2795 rbd_assert(orig_request); 2796 rbd_assert(orig_request->img_request); 2797 2798 result = obj_request->result; 2799 obj_request->result = 0; 2800 2801 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2802 obj_request, orig_request, result, 2803 obj_request->xferred, obj_request->length); 2804 rbd_obj_request_put(obj_request); 2805 2806 /* 2807 * If the overlap has become 0 (most likely because the 2808 * image has been flattened) we need to free the pages 2809 * and re-submit the original write request. 2810 */ 2811 rbd_dev = orig_request->img_request->rbd_dev; 2812 if (!rbd_dev->parent_overlap) { 2813 struct ceph_osd_client *osdc; 2814 2815 osdc = &rbd_dev->rbd_client->client->osdc; 2816 result = rbd_obj_request_submit(osdc, orig_request); 2817 if (!result) 2818 return; 2819 } 2820 2821 /* 2822 * Our only purpose here is to determine whether the object 2823 * exists, and we don't want to treat the non-existence as 2824 * an error. If something else comes back, transfer the 2825 * error to the original request and complete it now. 2826 */ 2827 if (!result) { 2828 obj_request_existence_set(orig_request, true); 2829 } else if (result == -ENOENT) { 2830 obj_request_existence_set(orig_request, false); 2831 } else if (result) { 2832 orig_request->result = result; 2833 goto out; 2834 } 2835 2836 /* 2837 * Resubmit the original request now that we have recorded 2838 * whether the target object exists. 2839 */ 2840 orig_request->result = rbd_img_obj_request_submit(orig_request); 2841 out: 2842 if (orig_request->result) 2843 rbd_obj_request_complete(orig_request); 2844 } 2845 2846 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2847 { 2848 struct rbd_obj_request *stat_request; 2849 struct rbd_device *rbd_dev; 2850 struct ceph_osd_client *osdc; 2851 struct page **pages = NULL; 2852 u32 page_count; 2853 size_t size; 2854 int ret; 2855 2856 /* 2857 * The response data for a STAT call consists of: 2858 * le64 length; 2859 * struct { 2860 * le32 tv_sec; 2861 * le32 tv_nsec; 2862 * } mtime; 2863 */ 2864 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2865 page_count = (u32)calc_pages_for(0, size); 2866 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2867 if (IS_ERR(pages)) 2868 return PTR_ERR(pages); 2869 2870 ret = -ENOMEM; 2871 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0, 2872 OBJ_REQUEST_PAGES); 2873 if (!stat_request) 2874 goto out; 2875 2876 rbd_obj_request_get(obj_request); 2877 stat_request->obj_request = obj_request; 2878 stat_request->pages = pages; 2879 stat_request->page_count = page_count; 2880 2881 rbd_assert(obj_request->img_request); 2882 rbd_dev = obj_request->img_request->rbd_dev; 2883 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 2884 stat_request); 2885 if (!stat_request->osd_req) 2886 goto out; 2887 stat_request->callback = rbd_img_obj_exists_callback; 2888 2889 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0); 2890 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2891 false, false); 2892 rbd_osd_req_format_read(stat_request); 2893 2894 osdc = &rbd_dev->rbd_client->client->osdc; 2895 ret = rbd_obj_request_submit(osdc, stat_request); 2896 out: 2897 if (ret) 2898 rbd_obj_request_put(obj_request); 2899 2900 return ret; 2901 } 2902 2903 static bool img_obj_request_simple(struct rbd_obj_request *obj_request) 2904 { 2905 struct rbd_img_request *img_request; 2906 struct rbd_device *rbd_dev; 2907 2908 rbd_assert(obj_request_img_data_test(obj_request)); 2909 2910 img_request = obj_request->img_request; 2911 rbd_assert(img_request); 2912 rbd_dev = img_request->rbd_dev; 2913 2914 /* Reads */ 2915 if (!img_request_write_test(img_request) && 2916 !img_request_discard_test(img_request)) 2917 return true; 2918 2919 /* Non-layered writes */ 2920 if (!img_request_layered_test(img_request)) 2921 return true; 2922 2923 /* 2924 * Layered writes outside of the parent overlap range don't 2925 * share any data with the parent. 2926 */ 2927 if (!obj_request_overlaps_parent(obj_request)) 2928 return true; 2929 2930 /* 2931 * Entire-object layered writes - we will overwrite whatever 2932 * parent data there is anyway. 2933 */ 2934 if (!obj_request->offset && 2935 obj_request->length == rbd_obj_bytes(&rbd_dev->header)) 2936 return true; 2937 2938 /* 2939 * If the object is known to already exist, its parent data has 2940 * already been copied. 2941 */ 2942 if (obj_request_known_test(obj_request) && 2943 obj_request_exists_test(obj_request)) 2944 return true; 2945 2946 return false; 2947 } 2948 2949 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2950 { 2951 if (img_obj_request_simple(obj_request)) { 2952 struct rbd_device *rbd_dev; 2953 struct ceph_osd_client *osdc; 2954 2955 rbd_dev = obj_request->img_request->rbd_dev; 2956 osdc = &rbd_dev->rbd_client->client->osdc; 2957 2958 return rbd_obj_request_submit(osdc, obj_request); 2959 } 2960 2961 /* 2962 * It's a layered write. The target object might exist but 2963 * we may not know that yet. If we know it doesn't exist, 2964 * start by reading the data for the full target object from 2965 * the parent so we can use it for a copyup to the target. 2966 */ 2967 if (obj_request_known_test(obj_request)) 2968 return rbd_img_obj_parent_read_full(obj_request); 2969 2970 /* We don't know whether the target exists. Go find out. */ 2971 2972 return rbd_img_obj_exists_submit(obj_request); 2973 } 2974 2975 static int rbd_img_request_submit(struct rbd_img_request *img_request) 2976 { 2977 struct rbd_obj_request *obj_request; 2978 struct rbd_obj_request *next_obj_request; 2979 2980 dout("%s: img %p\n", __func__, img_request); 2981 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 2982 int ret; 2983 2984 ret = rbd_img_obj_request_submit(obj_request); 2985 if (ret) 2986 return ret; 2987 } 2988 2989 return 0; 2990 } 2991 2992 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 2993 { 2994 struct rbd_obj_request *obj_request; 2995 struct rbd_device *rbd_dev; 2996 u64 obj_end; 2997 u64 img_xferred; 2998 int img_result; 2999 3000 rbd_assert(img_request_child_test(img_request)); 3001 3002 /* First get what we need from the image request and release it */ 3003 3004 obj_request = img_request->obj_request; 3005 img_xferred = img_request->xferred; 3006 img_result = img_request->result; 3007 rbd_img_request_put(img_request); 3008 3009 /* 3010 * If the overlap has become 0 (most likely because the 3011 * image has been flattened) we need to re-submit the 3012 * original request. 3013 */ 3014 rbd_assert(obj_request); 3015 rbd_assert(obj_request->img_request); 3016 rbd_dev = obj_request->img_request->rbd_dev; 3017 if (!rbd_dev->parent_overlap) { 3018 struct ceph_osd_client *osdc; 3019 3020 osdc = &rbd_dev->rbd_client->client->osdc; 3021 img_result = rbd_obj_request_submit(osdc, obj_request); 3022 if (!img_result) 3023 return; 3024 } 3025 3026 obj_request->result = img_result; 3027 if (obj_request->result) 3028 goto out; 3029 3030 /* 3031 * We need to zero anything beyond the parent overlap 3032 * boundary. Since rbd_img_obj_request_read_callback() 3033 * will zero anything beyond the end of a short read, an 3034 * easy way to do this is to pretend the data from the 3035 * parent came up short--ending at the overlap boundary. 3036 */ 3037 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 3038 obj_end = obj_request->img_offset + obj_request->length; 3039 if (obj_end > rbd_dev->parent_overlap) { 3040 u64 xferred = 0; 3041 3042 if (obj_request->img_offset < rbd_dev->parent_overlap) 3043 xferred = rbd_dev->parent_overlap - 3044 obj_request->img_offset; 3045 3046 obj_request->xferred = min(img_xferred, xferred); 3047 } else { 3048 obj_request->xferred = img_xferred; 3049 } 3050 out: 3051 rbd_img_obj_request_read_callback(obj_request); 3052 rbd_obj_request_complete(obj_request); 3053 } 3054 3055 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 3056 { 3057 struct rbd_img_request *img_request; 3058 int result; 3059 3060 rbd_assert(obj_request_img_data_test(obj_request)); 3061 rbd_assert(obj_request->img_request != NULL); 3062 rbd_assert(obj_request->result == (s32) -ENOENT); 3063 rbd_assert(obj_request_type_valid(obj_request->type)); 3064 3065 /* rbd_read_finish(obj_request, obj_request->length); */ 3066 img_request = rbd_parent_request_create(obj_request, 3067 obj_request->img_offset, 3068 obj_request->length); 3069 result = -ENOMEM; 3070 if (!img_request) 3071 goto out_err; 3072 3073 if (obj_request->type == OBJ_REQUEST_BIO) 3074 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3075 obj_request->bio_list); 3076 else 3077 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES, 3078 obj_request->pages); 3079 if (result) 3080 goto out_err; 3081 3082 img_request->callback = rbd_img_parent_read_callback; 3083 result = rbd_img_request_submit(img_request); 3084 if (result) 3085 goto out_err; 3086 3087 return; 3088 out_err: 3089 if (img_request) 3090 rbd_img_request_put(img_request); 3091 obj_request->result = result; 3092 obj_request->xferred = 0; 3093 obj_request_done_set(obj_request); 3094 } 3095 3096 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id) 3097 { 3098 struct rbd_obj_request *obj_request; 3099 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3100 int ret; 3101 3102 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 3103 OBJ_REQUEST_NODATA); 3104 if (!obj_request) 3105 return -ENOMEM; 3106 3107 ret = -ENOMEM; 3108 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3109 obj_request); 3110 if (!obj_request->osd_req) 3111 goto out; 3112 3113 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK, 3114 notify_id, 0, 0); 3115 rbd_osd_req_format_read(obj_request); 3116 3117 ret = rbd_obj_request_submit(osdc, obj_request); 3118 if (ret) 3119 goto out; 3120 ret = rbd_obj_request_wait(obj_request); 3121 out: 3122 rbd_obj_request_put(obj_request); 3123 3124 return ret; 3125 } 3126 3127 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data) 3128 { 3129 struct rbd_device *rbd_dev = (struct rbd_device *)data; 3130 int ret; 3131 3132 if (!rbd_dev) 3133 return; 3134 3135 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__, 3136 rbd_dev->header_name, (unsigned long long)notify_id, 3137 (unsigned int)opcode); 3138 3139 /* 3140 * Until adequate refresh error handling is in place, there is 3141 * not much we can do here, except warn. 3142 * 3143 * See http://tracker.ceph.com/issues/5040 3144 */ 3145 ret = rbd_dev_refresh(rbd_dev); 3146 if (ret) 3147 rbd_warn(rbd_dev, "refresh failed: %d", ret); 3148 3149 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id); 3150 if (ret) 3151 rbd_warn(rbd_dev, "notify_ack ret %d", ret); 3152 } 3153 3154 /* 3155 * Send a (un)watch request and wait for the ack. Return a request 3156 * with a ref held on success or error. 3157 */ 3158 static struct rbd_obj_request *rbd_obj_watch_request_helper( 3159 struct rbd_device *rbd_dev, 3160 bool watch) 3161 { 3162 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3163 struct ceph_options *opts = osdc->client->options; 3164 struct rbd_obj_request *obj_request; 3165 int ret; 3166 3167 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 3168 OBJ_REQUEST_NODATA); 3169 if (!obj_request) 3170 return ERR_PTR(-ENOMEM); 3171 3172 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1, 3173 obj_request); 3174 if (!obj_request->osd_req) { 3175 ret = -ENOMEM; 3176 goto out; 3177 } 3178 3179 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH, 3180 rbd_dev->watch_event->cookie, 0, watch); 3181 rbd_osd_req_format_write(obj_request); 3182 3183 if (watch) 3184 ceph_osdc_set_request_linger(osdc, obj_request->osd_req); 3185 3186 ret = rbd_obj_request_submit(osdc, obj_request); 3187 if (ret) 3188 goto out; 3189 3190 ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout); 3191 if (ret) 3192 goto out; 3193 3194 ret = obj_request->result; 3195 if (ret) { 3196 if (watch) 3197 rbd_obj_request_end(obj_request); 3198 goto out; 3199 } 3200 3201 return obj_request; 3202 3203 out: 3204 rbd_obj_request_put(obj_request); 3205 return ERR_PTR(ret); 3206 } 3207 3208 /* 3209 * Initiate a watch request, synchronously. 3210 */ 3211 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev) 3212 { 3213 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3214 struct rbd_obj_request *obj_request; 3215 int ret; 3216 3217 rbd_assert(!rbd_dev->watch_event); 3218 rbd_assert(!rbd_dev->watch_request); 3219 3220 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev, 3221 &rbd_dev->watch_event); 3222 if (ret < 0) 3223 return ret; 3224 3225 obj_request = rbd_obj_watch_request_helper(rbd_dev, true); 3226 if (IS_ERR(obj_request)) { 3227 ceph_osdc_cancel_event(rbd_dev->watch_event); 3228 rbd_dev->watch_event = NULL; 3229 return PTR_ERR(obj_request); 3230 } 3231 3232 /* 3233 * A watch request is set to linger, so the underlying osd 3234 * request won't go away until we unregister it. We retain 3235 * a pointer to the object request during that time (in 3236 * rbd_dev->watch_request), so we'll keep a reference to it. 3237 * We'll drop that reference after we've unregistered it in 3238 * rbd_dev_header_unwatch_sync(). 3239 */ 3240 rbd_dev->watch_request = obj_request; 3241 3242 return 0; 3243 } 3244 3245 /* 3246 * Tear down a watch request, synchronously. 3247 */ 3248 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev) 3249 { 3250 struct rbd_obj_request *obj_request; 3251 3252 rbd_assert(rbd_dev->watch_event); 3253 rbd_assert(rbd_dev->watch_request); 3254 3255 rbd_obj_request_end(rbd_dev->watch_request); 3256 rbd_obj_request_put(rbd_dev->watch_request); 3257 rbd_dev->watch_request = NULL; 3258 3259 obj_request = rbd_obj_watch_request_helper(rbd_dev, false); 3260 if (!IS_ERR(obj_request)) 3261 rbd_obj_request_put(obj_request); 3262 else 3263 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)", 3264 PTR_ERR(obj_request)); 3265 3266 ceph_osdc_cancel_event(rbd_dev->watch_event); 3267 rbd_dev->watch_event = NULL; 3268 } 3269 3270 /* 3271 * Synchronous osd object method call. Returns the number of bytes 3272 * returned in the outbound buffer, or a negative error code. 3273 */ 3274 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 3275 const char *object_name, 3276 const char *class_name, 3277 const char *method_name, 3278 const void *outbound, 3279 size_t outbound_size, 3280 void *inbound, 3281 size_t inbound_size) 3282 { 3283 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3284 struct rbd_obj_request *obj_request; 3285 struct page **pages; 3286 u32 page_count; 3287 int ret; 3288 3289 /* 3290 * Method calls are ultimately read operations. The result 3291 * should placed into the inbound buffer provided. They 3292 * also supply outbound data--parameters for the object 3293 * method. Currently if this is present it will be a 3294 * snapshot id. 3295 */ 3296 page_count = (u32)calc_pages_for(0, inbound_size); 3297 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3298 if (IS_ERR(pages)) 3299 return PTR_ERR(pages); 3300 3301 ret = -ENOMEM; 3302 obj_request = rbd_obj_request_create(object_name, 0, inbound_size, 3303 OBJ_REQUEST_PAGES); 3304 if (!obj_request) 3305 goto out; 3306 3307 obj_request->pages = pages; 3308 obj_request->page_count = page_count; 3309 3310 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3311 obj_request); 3312 if (!obj_request->osd_req) 3313 goto out; 3314 3315 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL, 3316 class_name, method_name); 3317 if (outbound_size) { 3318 struct ceph_pagelist *pagelist; 3319 3320 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS); 3321 if (!pagelist) 3322 goto out; 3323 3324 ceph_pagelist_init(pagelist); 3325 ceph_pagelist_append(pagelist, outbound, outbound_size); 3326 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0, 3327 pagelist); 3328 } 3329 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0, 3330 obj_request->pages, inbound_size, 3331 0, false, false); 3332 rbd_osd_req_format_read(obj_request); 3333 3334 ret = rbd_obj_request_submit(osdc, obj_request); 3335 if (ret) 3336 goto out; 3337 ret = rbd_obj_request_wait(obj_request); 3338 if (ret) 3339 goto out; 3340 3341 ret = obj_request->result; 3342 if (ret < 0) 3343 goto out; 3344 3345 rbd_assert(obj_request->xferred < (u64)INT_MAX); 3346 ret = (int)obj_request->xferred; 3347 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred); 3348 out: 3349 if (obj_request) 3350 rbd_obj_request_put(obj_request); 3351 else 3352 ceph_release_page_vector(pages, page_count); 3353 3354 return ret; 3355 } 3356 3357 static void rbd_queue_workfn(struct work_struct *work) 3358 { 3359 struct request *rq = blk_mq_rq_from_pdu(work); 3360 struct rbd_device *rbd_dev = rq->q->queuedata; 3361 struct rbd_img_request *img_request; 3362 struct ceph_snap_context *snapc = NULL; 3363 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 3364 u64 length = blk_rq_bytes(rq); 3365 enum obj_operation_type op_type; 3366 u64 mapping_size; 3367 int result; 3368 3369 if (rq->cmd_type != REQ_TYPE_FS) { 3370 dout("%s: non-fs request type %d\n", __func__, 3371 (int) rq->cmd_type); 3372 result = -EIO; 3373 goto err; 3374 } 3375 3376 if (rq->cmd_flags & REQ_DISCARD) 3377 op_type = OBJ_OP_DISCARD; 3378 else if (rq->cmd_flags & REQ_WRITE) 3379 op_type = OBJ_OP_WRITE; 3380 else 3381 op_type = OBJ_OP_READ; 3382 3383 /* Ignore/skip any zero-length requests */ 3384 3385 if (!length) { 3386 dout("%s: zero-length request\n", __func__); 3387 result = 0; 3388 goto err_rq; 3389 } 3390 3391 /* Only reads are allowed to a read-only device */ 3392 3393 if (op_type != OBJ_OP_READ) { 3394 if (rbd_dev->mapping.read_only) { 3395 result = -EROFS; 3396 goto err_rq; 3397 } 3398 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP); 3399 } 3400 3401 /* 3402 * Quit early if the mapped snapshot no longer exists. It's 3403 * still possible the snapshot will have disappeared by the 3404 * time our request arrives at the osd, but there's no sense in 3405 * sending it if we already know. 3406 */ 3407 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 3408 dout("request for non-existent snapshot"); 3409 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 3410 result = -ENXIO; 3411 goto err_rq; 3412 } 3413 3414 if (offset && length > U64_MAX - offset + 1) { 3415 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset, 3416 length); 3417 result = -EINVAL; 3418 goto err_rq; /* Shouldn't happen */ 3419 } 3420 3421 blk_mq_start_request(rq); 3422 3423 down_read(&rbd_dev->header_rwsem); 3424 mapping_size = rbd_dev->mapping.size; 3425 if (op_type != OBJ_OP_READ) { 3426 snapc = rbd_dev->header.snapc; 3427 ceph_get_snap_context(snapc); 3428 } 3429 up_read(&rbd_dev->header_rwsem); 3430 3431 if (offset + length > mapping_size) { 3432 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 3433 length, mapping_size); 3434 result = -EIO; 3435 goto err_rq; 3436 } 3437 3438 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type, 3439 snapc); 3440 if (!img_request) { 3441 result = -ENOMEM; 3442 goto err_rq; 3443 } 3444 img_request->rq = rq; 3445 3446 if (op_type == OBJ_OP_DISCARD) 3447 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA, 3448 NULL); 3449 else 3450 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3451 rq->bio); 3452 if (result) 3453 goto err_img_request; 3454 3455 result = rbd_img_request_submit(img_request); 3456 if (result) 3457 goto err_img_request; 3458 3459 return; 3460 3461 err_img_request: 3462 rbd_img_request_put(img_request); 3463 err_rq: 3464 if (result) 3465 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 3466 obj_op_name(op_type), length, offset, result); 3467 ceph_put_snap_context(snapc); 3468 err: 3469 blk_mq_end_request(rq, result); 3470 } 3471 3472 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 3473 const struct blk_mq_queue_data *bd) 3474 { 3475 struct request *rq = bd->rq; 3476 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3477 3478 queue_work(rbd_wq, work); 3479 return BLK_MQ_RQ_QUEUE_OK; 3480 } 3481 3482 static void rbd_free_disk(struct rbd_device *rbd_dev) 3483 { 3484 struct gendisk *disk = rbd_dev->disk; 3485 3486 if (!disk) 3487 return; 3488 3489 rbd_dev->disk = NULL; 3490 if (disk->flags & GENHD_FL_UP) { 3491 del_gendisk(disk); 3492 if (disk->queue) 3493 blk_cleanup_queue(disk->queue); 3494 blk_mq_free_tag_set(&rbd_dev->tag_set); 3495 } 3496 put_disk(disk); 3497 } 3498 3499 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 3500 const char *object_name, 3501 u64 offset, u64 length, void *buf) 3502 3503 { 3504 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3505 struct rbd_obj_request *obj_request; 3506 struct page **pages = NULL; 3507 u32 page_count; 3508 size_t size; 3509 int ret; 3510 3511 page_count = (u32) calc_pages_for(offset, length); 3512 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3513 if (IS_ERR(pages)) 3514 return PTR_ERR(pages); 3515 3516 ret = -ENOMEM; 3517 obj_request = rbd_obj_request_create(object_name, offset, length, 3518 OBJ_REQUEST_PAGES); 3519 if (!obj_request) 3520 goto out; 3521 3522 obj_request->pages = pages; 3523 obj_request->page_count = page_count; 3524 3525 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3526 obj_request); 3527 if (!obj_request->osd_req) 3528 goto out; 3529 3530 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ, 3531 offset, length, 0, 0); 3532 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0, 3533 obj_request->pages, 3534 obj_request->length, 3535 obj_request->offset & ~PAGE_MASK, 3536 false, false); 3537 rbd_osd_req_format_read(obj_request); 3538 3539 ret = rbd_obj_request_submit(osdc, obj_request); 3540 if (ret) 3541 goto out; 3542 ret = rbd_obj_request_wait(obj_request); 3543 if (ret) 3544 goto out; 3545 3546 ret = obj_request->result; 3547 if (ret < 0) 3548 goto out; 3549 3550 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX); 3551 size = (size_t) obj_request->xferred; 3552 ceph_copy_from_page_vector(pages, buf, 0, size); 3553 rbd_assert(size <= (size_t)INT_MAX); 3554 ret = (int)size; 3555 out: 3556 if (obj_request) 3557 rbd_obj_request_put(obj_request); 3558 else 3559 ceph_release_page_vector(pages, page_count); 3560 3561 return ret; 3562 } 3563 3564 /* 3565 * Read the complete header for the given rbd device. On successful 3566 * return, the rbd_dev->header field will contain up-to-date 3567 * information about the image. 3568 */ 3569 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 3570 { 3571 struct rbd_image_header_ondisk *ondisk = NULL; 3572 u32 snap_count = 0; 3573 u64 names_size = 0; 3574 u32 want_count; 3575 int ret; 3576 3577 /* 3578 * The complete header will include an array of its 64-bit 3579 * snapshot ids, followed by the names of those snapshots as 3580 * a contiguous block of NUL-terminated strings. Note that 3581 * the number of snapshots could change by the time we read 3582 * it in, in which case we re-read it. 3583 */ 3584 do { 3585 size_t size; 3586 3587 kfree(ondisk); 3588 3589 size = sizeof (*ondisk); 3590 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 3591 size += names_size; 3592 ondisk = kmalloc(size, GFP_KERNEL); 3593 if (!ondisk) 3594 return -ENOMEM; 3595 3596 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name, 3597 0, size, ondisk); 3598 if (ret < 0) 3599 goto out; 3600 if ((size_t)ret < size) { 3601 ret = -ENXIO; 3602 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 3603 size, ret); 3604 goto out; 3605 } 3606 if (!rbd_dev_ondisk_valid(ondisk)) { 3607 ret = -ENXIO; 3608 rbd_warn(rbd_dev, "invalid header"); 3609 goto out; 3610 } 3611 3612 names_size = le64_to_cpu(ondisk->snap_names_len); 3613 want_count = snap_count; 3614 snap_count = le32_to_cpu(ondisk->snap_count); 3615 } while (snap_count != want_count); 3616 3617 ret = rbd_header_from_disk(rbd_dev, ondisk); 3618 out: 3619 kfree(ondisk); 3620 3621 return ret; 3622 } 3623 3624 /* 3625 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 3626 * has disappeared from the (just updated) snapshot context. 3627 */ 3628 static void rbd_exists_validate(struct rbd_device *rbd_dev) 3629 { 3630 u64 snap_id; 3631 3632 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 3633 return; 3634 3635 snap_id = rbd_dev->spec->snap_id; 3636 if (snap_id == CEPH_NOSNAP) 3637 return; 3638 3639 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 3640 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 3641 } 3642 3643 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 3644 { 3645 sector_t size; 3646 bool removing; 3647 3648 /* 3649 * Don't hold the lock while doing disk operations, 3650 * or lock ordering will conflict with the bdev mutex via: 3651 * rbd_add() -> blkdev_get() -> rbd_open() 3652 */ 3653 spin_lock_irq(&rbd_dev->lock); 3654 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags); 3655 spin_unlock_irq(&rbd_dev->lock); 3656 /* 3657 * If the device is being removed, rbd_dev->disk has 3658 * been destroyed, so don't try to update its size 3659 */ 3660 if (!removing) { 3661 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 3662 dout("setting size to %llu sectors", (unsigned long long)size); 3663 set_capacity(rbd_dev->disk, size); 3664 revalidate_disk(rbd_dev->disk); 3665 } 3666 } 3667 3668 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 3669 { 3670 u64 mapping_size; 3671 int ret; 3672 3673 down_write(&rbd_dev->header_rwsem); 3674 mapping_size = rbd_dev->mapping.size; 3675 3676 ret = rbd_dev_header_info(rbd_dev); 3677 if (ret) 3678 goto out; 3679 3680 /* 3681 * If there is a parent, see if it has disappeared due to the 3682 * mapped image getting flattened. 3683 */ 3684 if (rbd_dev->parent) { 3685 ret = rbd_dev_v2_parent_info(rbd_dev); 3686 if (ret) 3687 goto out; 3688 } 3689 3690 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) { 3691 rbd_dev->mapping.size = rbd_dev->header.image_size; 3692 } else { 3693 /* validate mapped snapshot's EXISTS flag */ 3694 rbd_exists_validate(rbd_dev); 3695 } 3696 3697 out: 3698 up_write(&rbd_dev->header_rwsem); 3699 if (!ret && mapping_size != rbd_dev->mapping.size) 3700 rbd_dev_update_size(rbd_dev); 3701 3702 return ret; 3703 } 3704 3705 static int rbd_init_request(void *data, struct request *rq, 3706 unsigned int hctx_idx, unsigned int request_idx, 3707 unsigned int numa_node) 3708 { 3709 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3710 3711 INIT_WORK(work, rbd_queue_workfn); 3712 return 0; 3713 } 3714 3715 static struct blk_mq_ops rbd_mq_ops = { 3716 .queue_rq = rbd_queue_rq, 3717 .map_queue = blk_mq_map_queue, 3718 .init_request = rbd_init_request, 3719 }; 3720 3721 static int rbd_init_disk(struct rbd_device *rbd_dev) 3722 { 3723 struct gendisk *disk; 3724 struct request_queue *q; 3725 u64 segment_size; 3726 int err; 3727 3728 /* create gendisk info */ 3729 disk = alloc_disk(single_major ? 3730 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 3731 RBD_MINORS_PER_MAJOR); 3732 if (!disk) 3733 return -ENOMEM; 3734 3735 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 3736 rbd_dev->dev_id); 3737 disk->major = rbd_dev->major; 3738 disk->first_minor = rbd_dev->minor; 3739 if (single_major) 3740 disk->flags |= GENHD_FL_EXT_DEVT; 3741 disk->fops = &rbd_bd_ops; 3742 disk->private_data = rbd_dev; 3743 3744 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 3745 rbd_dev->tag_set.ops = &rbd_mq_ops; 3746 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 3747 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 3748 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 3749 rbd_dev->tag_set.nr_hw_queues = 1; 3750 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct); 3751 3752 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 3753 if (err) 3754 goto out_disk; 3755 3756 q = blk_mq_init_queue(&rbd_dev->tag_set); 3757 if (IS_ERR(q)) { 3758 err = PTR_ERR(q); 3759 goto out_tag_set; 3760 } 3761 3762 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 3763 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 3764 3765 /* set io sizes to object size */ 3766 segment_size = rbd_obj_bytes(&rbd_dev->header); 3767 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 3768 q->limits.max_sectors = queue_max_hw_sectors(q); 3769 blk_queue_max_segments(q, segment_size / SECTOR_SIZE); 3770 blk_queue_max_segment_size(q, segment_size); 3771 blk_queue_io_min(q, segment_size); 3772 blk_queue_io_opt(q, segment_size); 3773 3774 /* enable the discard support */ 3775 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 3776 q->limits.discard_granularity = segment_size; 3777 q->limits.discard_alignment = segment_size; 3778 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE); 3779 q->limits.discard_zeroes_data = 1; 3780 3781 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 3782 q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES; 3783 3784 disk->queue = q; 3785 3786 q->queuedata = rbd_dev; 3787 3788 rbd_dev->disk = disk; 3789 3790 return 0; 3791 out_tag_set: 3792 blk_mq_free_tag_set(&rbd_dev->tag_set); 3793 out_disk: 3794 put_disk(disk); 3795 return err; 3796 } 3797 3798 /* 3799 sysfs 3800 */ 3801 3802 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 3803 { 3804 return container_of(dev, struct rbd_device, dev); 3805 } 3806 3807 static ssize_t rbd_size_show(struct device *dev, 3808 struct device_attribute *attr, char *buf) 3809 { 3810 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3811 3812 return sprintf(buf, "%llu\n", 3813 (unsigned long long)rbd_dev->mapping.size); 3814 } 3815 3816 /* 3817 * Note this shows the features for whatever's mapped, which is not 3818 * necessarily the base image. 3819 */ 3820 static ssize_t rbd_features_show(struct device *dev, 3821 struct device_attribute *attr, char *buf) 3822 { 3823 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3824 3825 return sprintf(buf, "0x%016llx\n", 3826 (unsigned long long)rbd_dev->mapping.features); 3827 } 3828 3829 static ssize_t rbd_major_show(struct device *dev, 3830 struct device_attribute *attr, char *buf) 3831 { 3832 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3833 3834 if (rbd_dev->major) 3835 return sprintf(buf, "%d\n", rbd_dev->major); 3836 3837 return sprintf(buf, "(none)\n"); 3838 } 3839 3840 static ssize_t rbd_minor_show(struct device *dev, 3841 struct device_attribute *attr, char *buf) 3842 { 3843 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3844 3845 return sprintf(buf, "%d\n", rbd_dev->minor); 3846 } 3847 3848 static ssize_t rbd_client_id_show(struct device *dev, 3849 struct device_attribute *attr, char *buf) 3850 { 3851 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3852 3853 return sprintf(buf, "client%lld\n", 3854 ceph_client_id(rbd_dev->rbd_client->client)); 3855 } 3856 3857 static ssize_t rbd_pool_show(struct device *dev, 3858 struct device_attribute *attr, char *buf) 3859 { 3860 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3861 3862 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 3863 } 3864 3865 static ssize_t rbd_pool_id_show(struct device *dev, 3866 struct device_attribute *attr, char *buf) 3867 { 3868 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3869 3870 return sprintf(buf, "%llu\n", 3871 (unsigned long long) rbd_dev->spec->pool_id); 3872 } 3873 3874 static ssize_t rbd_name_show(struct device *dev, 3875 struct device_attribute *attr, char *buf) 3876 { 3877 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3878 3879 if (rbd_dev->spec->image_name) 3880 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 3881 3882 return sprintf(buf, "(unknown)\n"); 3883 } 3884 3885 static ssize_t rbd_image_id_show(struct device *dev, 3886 struct device_attribute *attr, char *buf) 3887 { 3888 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3889 3890 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 3891 } 3892 3893 /* 3894 * Shows the name of the currently-mapped snapshot (or 3895 * RBD_SNAP_HEAD_NAME for the base image). 3896 */ 3897 static ssize_t rbd_snap_show(struct device *dev, 3898 struct device_attribute *attr, 3899 char *buf) 3900 { 3901 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3902 3903 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 3904 } 3905 3906 /* 3907 * For a v2 image, shows the chain of parent images, separated by empty 3908 * lines. For v1 images or if there is no parent, shows "(no parent 3909 * image)". 3910 */ 3911 static ssize_t rbd_parent_show(struct device *dev, 3912 struct device_attribute *attr, 3913 char *buf) 3914 { 3915 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3916 ssize_t count = 0; 3917 3918 if (!rbd_dev->parent) 3919 return sprintf(buf, "(no parent image)\n"); 3920 3921 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 3922 struct rbd_spec *spec = rbd_dev->parent_spec; 3923 3924 count += sprintf(&buf[count], "%s" 3925 "pool_id %llu\npool_name %s\n" 3926 "image_id %s\nimage_name %s\n" 3927 "snap_id %llu\nsnap_name %s\n" 3928 "overlap %llu\n", 3929 !count ? "" : "\n", /* first? */ 3930 spec->pool_id, spec->pool_name, 3931 spec->image_id, spec->image_name ?: "(unknown)", 3932 spec->snap_id, spec->snap_name, 3933 rbd_dev->parent_overlap); 3934 } 3935 3936 return count; 3937 } 3938 3939 static ssize_t rbd_image_refresh(struct device *dev, 3940 struct device_attribute *attr, 3941 const char *buf, 3942 size_t size) 3943 { 3944 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3945 int ret; 3946 3947 ret = rbd_dev_refresh(rbd_dev); 3948 if (ret) 3949 return ret; 3950 3951 return size; 3952 } 3953 3954 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 3955 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 3956 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 3957 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL); 3958 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 3959 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 3960 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 3961 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 3962 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 3963 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 3964 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 3965 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 3966 3967 static struct attribute *rbd_attrs[] = { 3968 &dev_attr_size.attr, 3969 &dev_attr_features.attr, 3970 &dev_attr_major.attr, 3971 &dev_attr_minor.attr, 3972 &dev_attr_client_id.attr, 3973 &dev_attr_pool.attr, 3974 &dev_attr_pool_id.attr, 3975 &dev_attr_name.attr, 3976 &dev_attr_image_id.attr, 3977 &dev_attr_current_snap.attr, 3978 &dev_attr_parent.attr, 3979 &dev_attr_refresh.attr, 3980 NULL 3981 }; 3982 3983 static struct attribute_group rbd_attr_group = { 3984 .attrs = rbd_attrs, 3985 }; 3986 3987 static const struct attribute_group *rbd_attr_groups[] = { 3988 &rbd_attr_group, 3989 NULL 3990 }; 3991 3992 static void rbd_dev_release(struct device *dev); 3993 3994 static struct device_type rbd_device_type = { 3995 .name = "rbd", 3996 .groups = rbd_attr_groups, 3997 .release = rbd_dev_release, 3998 }; 3999 4000 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 4001 { 4002 kref_get(&spec->kref); 4003 4004 return spec; 4005 } 4006 4007 static void rbd_spec_free(struct kref *kref); 4008 static void rbd_spec_put(struct rbd_spec *spec) 4009 { 4010 if (spec) 4011 kref_put(&spec->kref, rbd_spec_free); 4012 } 4013 4014 static struct rbd_spec *rbd_spec_alloc(void) 4015 { 4016 struct rbd_spec *spec; 4017 4018 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 4019 if (!spec) 4020 return NULL; 4021 4022 spec->pool_id = CEPH_NOPOOL; 4023 spec->snap_id = CEPH_NOSNAP; 4024 kref_init(&spec->kref); 4025 4026 return spec; 4027 } 4028 4029 static void rbd_spec_free(struct kref *kref) 4030 { 4031 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 4032 4033 kfree(spec->pool_name); 4034 kfree(spec->image_id); 4035 kfree(spec->image_name); 4036 kfree(spec->snap_name); 4037 kfree(spec); 4038 } 4039 4040 static void rbd_dev_release(struct device *dev) 4041 { 4042 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4043 bool need_put = !!rbd_dev->opts; 4044 4045 rbd_put_client(rbd_dev->rbd_client); 4046 rbd_spec_put(rbd_dev->spec); 4047 kfree(rbd_dev->opts); 4048 kfree(rbd_dev); 4049 4050 /* 4051 * This is racy, but way better than putting module outside of 4052 * the release callback. The race window is pretty small, so 4053 * doing something similar to dm (dm-builtin.c) is overkill. 4054 */ 4055 if (need_put) 4056 module_put(THIS_MODULE); 4057 } 4058 4059 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 4060 struct rbd_spec *spec, 4061 struct rbd_options *opts) 4062 { 4063 struct rbd_device *rbd_dev; 4064 4065 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL); 4066 if (!rbd_dev) 4067 return NULL; 4068 4069 spin_lock_init(&rbd_dev->lock); 4070 rbd_dev->flags = 0; 4071 atomic_set(&rbd_dev->parent_ref, 0); 4072 INIT_LIST_HEAD(&rbd_dev->node); 4073 init_rwsem(&rbd_dev->header_rwsem); 4074 4075 rbd_dev->dev.bus = &rbd_bus_type; 4076 rbd_dev->dev.type = &rbd_device_type; 4077 rbd_dev->dev.parent = &rbd_root_dev; 4078 device_initialize(&rbd_dev->dev); 4079 4080 rbd_dev->rbd_client = rbdc; 4081 rbd_dev->spec = spec; 4082 rbd_dev->opts = opts; 4083 4084 /* Initialize the layout used for all rbd requests */ 4085 4086 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 4087 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1); 4088 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 4089 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id); 4090 4091 /* 4092 * If this is a mapping rbd_dev (as opposed to a parent one), 4093 * pin our module. We have a ref from do_rbd_add(), so use 4094 * __module_get(). 4095 */ 4096 if (rbd_dev->opts) 4097 __module_get(THIS_MODULE); 4098 4099 return rbd_dev; 4100 } 4101 4102 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 4103 { 4104 if (rbd_dev) 4105 put_device(&rbd_dev->dev); 4106 } 4107 4108 /* 4109 * Get the size and object order for an image snapshot, or if 4110 * snap_id is CEPH_NOSNAP, gets this information for the base 4111 * image. 4112 */ 4113 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 4114 u8 *order, u64 *snap_size) 4115 { 4116 __le64 snapid = cpu_to_le64(snap_id); 4117 int ret; 4118 struct { 4119 u8 order; 4120 __le64 size; 4121 } __attribute__ ((packed)) size_buf = { 0 }; 4122 4123 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4124 "rbd", "get_size", 4125 &snapid, sizeof (snapid), 4126 &size_buf, sizeof (size_buf)); 4127 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4128 if (ret < 0) 4129 return ret; 4130 if (ret < sizeof (size_buf)) 4131 return -ERANGE; 4132 4133 if (order) { 4134 *order = size_buf.order; 4135 dout(" order %u", (unsigned int)*order); 4136 } 4137 *snap_size = le64_to_cpu(size_buf.size); 4138 4139 dout(" snap_id 0x%016llx snap_size = %llu\n", 4140 (unsigned long long)snap_id, 4141 (unsigned long long)*snap_size); 4142 4143 return 0; 4144 } 4145 4146 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 4147 { 4148 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 4149 &rbd_dev->header.obj_order, 4150 &rbd_dev->header.image_size); 4151 } 4152 4153 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 4154 { 4155 void *reply_buf; 4156 int ret; 4157 void *p; 4158 4159 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 4160 if (!reply_buf) 4161 return -ENOMEM; 4162 4163 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4164 "rbd", "get_object_prefix", NULL, 0, 4165 reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 4166 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4167 if (ret < 0) 4168 goto out; 4169 4170 p = reply_buf; 4171 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 4172 p + ret, NULL, GFP_NOIO); 4173 ret = 0; 4174 4175 if (IS_ERR(rbd_dev->header.object_prefix)) { 4176 ret = PTR_ERR(rbd_dev->header.object_prefix); 4177 rbd_dev->header.object_prefix = NULL; 4178 } else { 4179 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 4180 } 4181 out: 4182 kfree(reply_buf); 4183 4184 return ret; 4185 } 4186 4187 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 4188 u64 *snap_features) 4189 { 4190 __le64 snapid = cpu_to_le64(snap_id); 4191 struct { 4192 __le64 features; 4193 __le64 incompat; 4194 } __attribute__ ((packed)) features_buf = { 0 }; 4195 u64 incompat; 4196 int ret; 4197 4198 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4199 "rbd", "get_features", 4200 &snapid, sizeof (snapid), 4201 &features_buf, sizeof (features_buf)); 4202 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4203 if (ret < 0) 4204 return ret; 4205 if (ret < sizeof (features_buf)) 4206 return -ERANGE; 4207 4208 incompat = le64_to_cpu(features_buf.incompat); 4209 if (incompat & ~RBD_FEATURES_SUPPORTED) 4210 return -ENXIO; 4211 4212 *snap_features = le64_to_cpu(features_buf.features); 4213 4214 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 4215 (unsigned long long)snap_id, 4216 (unsigned long long)*snap_features, 4217 (unsigned long long)le64_to_cpu(features_buf.incompat)); 4218 4219 return 0; 4220 } 4221 4222 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 4223 { 4224 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 4225 &rbd_dev->header.features); 4226 } 4227 4228 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 4229 { 4230 struct rbd_spec *parent_spec; 4231 size_t size; 4232 void *reply_buf = NULL; 4233 __le64 snapid; 4234 void *p; 4235 void *end; 4236 u64 pool_id; 4237 char *image_id; 4238 u64 snap_id; 4239 u64 overlap; 4240 int ret; 4241 4242 parent_spec = rbd_spec_alloc(); 4243 if (!parent_spec) 4244 return -ENOMEM; 4245 4246 size = sizeof (__le64) + /* pool_id */ 4247 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 4248 sizeof (__le64) + /* snap_id */ 4249 sizeof (__le64); /* overlap */ 4250 reply_buf = kmalloc(size, GFP_KERNEL); 4251 if (!reply_buf) { 4252 ret = -ENOMEM; 4253 goto out_err; 4254 } 4255 4256 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 4257 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4258 "rbd", "get_parent", 4259 &snapid, sizeof (snapid), 4260 reply_buf, size); 4261 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4262 if (ret < 0) 4263 goto out_err; 4264 4265 p = reply_buf; 4266 end = reply_buf + ret; 4267 ret = -ERANGE; 4268 ceph_decode_64_safe(&p, end, pool_id, out_err); 4269 if (pool_id == CEPH_NOPOOL) { 4270 /* 4271 * Either the parent never existed, or we have 4272 * record of it but the image got flattened so it no 4273 * longer has a parent. When the parent of a 4274 * layered image disappears we immediately set the 4275 * overlap to 0. The effect of this is that all new 4276 * requests will be treated as if the image had no 4277 * parent. 4278 */ 4279 if (rbd_dev->parent_overlap) { 4280 rbd_dev->parent_overlap = 0; 4281 rbd_dev_parent_put(rbd_dev); 4282 pr_info("%s: clone image has been flattened\n", 4283 rbd_dev->disk->disk_name); 4284 } 4285 4286 goto out; /* No parent? No problem. */ 4287 } 4288 4289 /* The ceph file layout needs to fit pool id in 32 bits */ 4290 4291 ret = -EIO; 4292 if (pool_id > (u64)U32_MAX) { 4293 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 4294 (unsigned long long)pool_id, U32_MAX); 4295 goto out_err; 4296 } 4297 4298 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4299 if (IS_ERR(image_id)) { 4300 ret = PTR_ERR(image_id); 4301 goto out_err; 4302 } 4303 ceph_decode_64_safe(&p, end, snap_id, out_err); 4304 ceph_decode_64_safe(&p, end, overlap, out_err); 4305 4306 /* 4307 * The parent won't change (except when the clone is 4308 * flattened, already handled that). So we only need to 4309 * record the parent spec we have not already done so. 4310 */ 4311 if (!rbd_dev->parent_spec) { 4312 parent_spec->pool_id = pool_id; 4313 parent_spec->image_id = image_id; 4314 parent_spec->snap_id = snap_id; 4315 rbd_dev->parent_spec = parent_spec; 4316 parent_spec = NULL; /* rbd_dev now owns this */ 4317 } else { 4318 kfree(image_id); 4319 } 4320 4321 /* 4322 * We always update the parent overlap. If it's zero we issue 4323 * a warning, as we will proceed as if there was no parent. 4324 */ 4325 if (!overlap) { 4326 if (parent_spec) { 4327 /* refresh, careful to warn just once */ 4328 if (rbd_dev->parent_overlap) 4329 rbd_warn(rbd_dev, 4330 "clone now standalone (overlap became 0)"); 4331 } else { 4332 /* initial probe */ 4333 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 4334 } 4335 } 4336 rbd_dev->parent_overlap = overlap; 4337 4338 out: 4339 ret = 0; 4340 out_err: 4341 kfree(reply_buf); 4342 rbd_spec_put(parent_spec); 4343 4344 return ret; 4345 } 4346 4347 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 4348 { 4349 struct { 4350 __le64 stripe_unit; 4351 __le64 stripe_count; 4352 } __attribute__ ((packed)) striping_info_buf = { 0 }; 4353 size_t size = sizeof (striping_info_buf); 4354 void *p; 4355 u64 obj_size; 4356 u64 stripe_unit; 4357 u64 stripe_count; 4358 int ret; 4359 4360 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4361 "rbd", "get_stripe_unit_count", NULL, 0, 4362 (char *)&striping_info_buf, size); 4363 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4364 if (ret < 0) 4365 return ret; 4366 if (ret < size) 4367 return -ERANGE; 4368 4369 /* 4370 * We don't actually support the "fancy striping" feature 4371 * (STRIPINGV2) yet, but if the striping sizes are the 4372 * defaults the behavior is the same as before. So find 4373 * out, and only fail if the image has non-default values. 4374 */ 4375 ret = -EINVAL; 4376 obj_size = (u64)1 << rbd_dev->header.obj_order; 4377 p = &striping_info_buf; 4378 stripe_unit = ceph_decode_64(&p); 4379 if (stripe_unit != obj_size) { 4380 rbd_warn(rbd_dev, "unsupported stripe unit " 4381 "(got %llu want %llu)", 4382 stripe_unit, obj_size); 4383 return -EINVAL; 4384 } 4385 stripe_count = ceph_decode_64(&p); 4386 if (stripe_count != 1) { 4387 rbd_warn(rbd_dev, "unsupported stripe count " 4388 "(got %llu want 1)", stripe_count); 4389 return -EINVAL; 4390 } 4391 rbd_dev->header.stripe_unit = stripe_unit; 4392 rbd_dev->header.stripe_count = stripe_count; 4393 4394 return 0; 4395 } 4396 4397 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 4398 { 4399 size_t image_id_size; 4400 char *image_id; 4401 void *p; 4402 void *end; 4403 size_t size; 4404 void *reply_buf = NULL; 4405 size_t len = 0; 4406 char *image_name = NULL; 4407 int ret; 4408 4409 rbd_assert(!rbd_dev->spec->image_name); 4410 4411 len = strlen(rbd_dev->spec->image_id); 4412 image_id_size = sizeof (__le32) + len; 4413 image_id = kmalloc(image_id_size, GFP_KERNEL); 4414 if (!image_id) 4415 return NULL; 4416 4417 p = image_id; 4418 end = image_id + image_id_size; 4419 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 4420 4421 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 4422 reply_buf = kmalloc(size, GFP_KERNEL); 4423 if (!reply_buf) 4424 goto out; 4425 4426 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY, 4427 "rbd", "dir_get_name", 4428 image_id, image_id_size, 4429 reply_buf, size); 4430 if (ret < 0) 4431 goto out; 4432 p = reply_buf; 4433 end = reply_buf + ret; 4434 4435 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 4436 if (IS_ERR(image_name)) 4437 image_name = NULL; 4438 else 4439 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 4440 out: 4441 kfree(reply_buf); 4442 kfree(image_id); 4443 4444 return image_name; 4445 } 4446 4447 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4448 { 4449 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4450 const char *snap_name; 4451 u32 which = 0; 4452 4453 /* Skip over names until we find the one we are looking for */ 4454 4455 snap_name = rbd_dev->header.snap_names; 4456 while (which < snapc->num_snaps) { 4457 if (!strcmp(name, snap_name)) 4458 return snapc->snaps[which]; 4459 snap_name += strlen(snap_name) + 1; 4460 which++; 4461 } 4462 return CEPH_NOSNAP; 4463 } 4464 4465 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4466 { 4467 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4468 u32 which; 4469 bool found = false; 4470 u64 snap_id; 4471 4472 for (which = 0; !found && which < snapc->num_snaps; which++) { 4473 const char *snap_name; 4474 4475 snap_id = snapc->snaps[which]; 4476 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 4477 if (IS_ERR(snap_name)) { 4478 /* ignore no-longer existing snapshots */ 4479 if (PTR_ERR(snap_name) == -ENOENT) 4480 continue; 4481 else 4482 break; 4483 } 4484 found = !strcmp(name, snap_name); 4485 kfree(snap_name); 4486 } 4487 return found ? snap_id : CEPH_NOSNAP; 4488 } 4489 4490 /* 4491 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 4492 * no snapshot by that name is found, or if an error occurs. 4493 */ 4494 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4495 { 4496 if (rbd_dev->image_format == 1) 4497 return rbd_v1_snap_id_by_name(rbd_dev, name); 4498 4499 return rbd_v2_snap_id_by_name(rbd_dev, name); 4500 } 4501 4502 /* 4503 * An image being mapped will have everything but the snap id. 4504 */ 4505 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 4506 { 4507 struct rbd_spec *spec = rbd_dev->spec; 4508 4509 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 4510 rbd_assert(spec->image_id && spec->image_name); 4511 rbd_assert(spec->snap_name); 4512 4513 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 4514 u64 snap_id; 4515 4516 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 4517 if (snap_id == CEPH_NOSNAP) 4518 return -ENOENT; 4519 4520 spec->snap_id = snap_id; 4521 } else { 4522 spec->snap_id = CEPH_NOSNAP; 4523 } 4524 4525 return 0; 4526 } 4527 4528 /* 4529 * A parent image will have all ids but none of the names. 4530 * 4531 * All names in an rbd spec are dynamically allocated. It's OK if we 4532 * can't figure out the name for an image id. 4533 */ 4534 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 4535 { 4536 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4537 struct rbd_spec *spec = rbd_dev->spec; 4538 const char *pool_name; 4539 const char *image_name; 4540 const char *snap_name; 4541 int ret; 4542 4543 rbd_assert(spec->pool_id != CEPH_NOPOOL); 4544 rbd_assert(spec->image_id); 4545 rbd_assert(spec->snap_id != CEPH_NOSNAP); 4546 4547 /* Get the pool name; we have to make our own copy of this */ 4548 4549 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 4550 if (!pool_name) { 4551 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 4552 return -EIO; 4553 } 4554 pool_name = kstrdup(pool_name, GFP_KERNEL); 4555 if (!pool_name) 4556 return -ENOMEM; 4557 4558 /* Fetch the image name; tolerate failure here */ 4559 4560 image_name = rbd_dev_image_name(rbd_dev); 4561 if (!image_name) 4562 rbd_warn(rbd_dev, "unable to get image name"); 4563 4564 /* Fetch the snapshot name */ 4565 4566 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 4567 if (IS_ERR(snap_name)) { 4568 ret = PTR_ERR(snap_name); 4569 goto out_err; 4570 } 4571 4572 spec->pool_name = pool_name; 4573 spec->image_name = image_name; 4574 spec->snap_name = snap_name; 4575 4576 return 0; 4577 4578 out_err: 4579 kfree(image_name); 4580 kfree(pool_name); 4581 return ret; 4582 } 4583 4584 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 4585 { 4586 size_t size; 4587 int ret; 4588 void *reply_buf; 4589 void *p; 4590 void *end; 4591 u64 seq; 4592 u32 snap_count; 4593 struct ceph_snap_context *snapc; 4594 u32 i; 4595 4596 /* 4597 * We'll need room for the seq value (maximum snapshot id), 4598 * snapshot count, and array of that many snapshot ids. 4599 * For now we have a fixed upper limit on the number we're 4600 * prepared to receive. 4601 */ 4602 size = sizeof (__le64) + sizeof (__le32) + 4603 RBD_MAX_SNAP_COUNT * sizeof (__le64); 4604 reply_buf = kzalloc(size, GFP_KERNEL); 4605 if (!reply_buf) 4606 return -ENOMEM; 4607 4608 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4609 "rbd", "get_snapcontext", NULL, 0, 4610 reply_buf, size); 4611 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4612 if (ret < 0) 4613 goto out; 4614 4615 p = reply_buf; 4616 end = reply_buf + ret; 4617 ret = -ERANGE; 4618 ceph_decode_64_safe(&p, end, seq, out); 4619 ceph_decode_32_safe(&p, end, snap_count, out); 4620 4621 /* 4622 * Make sure the reported number of snapshot ids wouldn't go 4623 * beyond the end of our buffer. But before checking that, 4624 * make sure the computed size of the snapshot context we 4625 * allocate is representable in a size_t. 4626 */ 4627 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 4628 / sizeof (u64)) { 4629 ret = -EINVAL; 4630 goto out; 4631 } 4632 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 4633 goto out; 4634 ret = 0; 4635 4636 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 4637 if (!snapc) { 4638 ret = -ENOMEM; 4639 goto out; 4640 } 4641 snapc->seq = seq; 4642 for (i = 0; i < snap_count; i++) 4643 snapc->snaps[i] = ceph_decode_64(&p); 4644 4645 ceph_put_snap_context(rbd_dev->header.snapc); 4646 rbd_dev->header.snapc = snapc; 4647 4648 dout(" snap context seq = %llu, snap_count = %u\n", 4649 (unsigned long long)seq, (unsigned int)snap_count); 4650 out: 4651 kfree(reply_buf); 4652 4653 return ret; 4654 } 4655 4656 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 4657 u64 snap_id) 4658 { 4659 size_t size; 4660 void *reply_buf; 4661 __le64 snapid; 4662 int ret; 4663 void *p; 4664 void *end; 4665 char *snap_name; 4666 4667 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 4668 reply_buf = kmalloc(size, GFP_KERNEL); 4669 if (!reply_buf) 4670 return ERR_PTR(-ENOMEM); 4671 4672 snapid = cpu_to_le64(snap_id); 4673 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4674 "rbd", "get_snapshot_name", 4675 &snapid, sizeof (snapid), 4676 reply_buf, size); 4677 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4678 if (ret < 0) { 4679 snap_name = ERR_PTR(ret); 4680 goto out; 4681 } 4682 4683 p = reply_buf; 4684 end = reply_buf + ret; 4685 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4686 if (IS_ERR(snap_name)) 4687 goto out; 4688 4689 dout(" snap_id 0x%016llx snap_name = %s\n", 4690 (unsigned long long)snap_id, snap_name); 4691 out: 4692 kfree(reply_buf); 4693 4694 return snap_name; 4695 } 4696 4697 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 4698 { 4699 bool first_time = rbd_dev->header.object_prefix == NULL; 4700 int ret; 4701 4702 ret = rbd_dev_v2_image_size(rbd_dev); 4703 if (ret) 4704 return ret; 4705 4706 if (first_time) { 4707 ret = rbd_dev_v2_header_onetime(rbd_dev); 4708 if (ret) 4709 return ret; 4710 } 4711 4712 ret = rbd_dev_v2_snap_context(rbd_dev); 4713 if (ret && first_time) { 4714 kfree(rbd_dev->header.object_prefix); 4715 rbd_dev->header.object_prefix = NULL; 4716 } 4717 4718 return ret; 4719 } 4720 4721 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 4722 { 4723 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 4724 4725 if (rbd_dev->image_format == 1) 4726 return rbd_dev_v1_header_info(rbd_dev); 4727 4728 return rbd_dev_v2_header_info(rbd_dev); 4729 } 4730 4731 /* 4732 * Get a unique rbd identifier for the given new rbd_dev, and add 4733 * the rbd_dev to the global list. 4734 */ 4735 static int rbd_dev_id_get(struct rbd_device *rbd_dev) 4736 { 4737 int new_dev_id; 4738 4739 new_dev_id = ida_simple_get(&rbd_dev_id_ida, 4740 0, minor_to_rbd_dev_id(1 << MINORBITS), 4741 GFP_KERNEL); 4742 if (new_dev_id < 0) 4743 return new_dev_id; 4744 4745 rbd_dev->dev_id = new_dev_id; 4746 4747 spin_lock(&rbd_dev_list_lock); 4748 list_add_tail(&rbd_dev->node, &rbd_dev_list); 4749 spin_unlock(&rbd_dev_list_lock); 4750 4751 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id); 4752 4753 return 0; 4754 } 4755 4756 /* 4757 * Remove an rbd_dev from the global list, and record that its 4758 * identifier is no longer in use. 4759 */ 4760 static void rbd_dev_id_put(struct rbd_device *rbd_dev) 4761 { 4762 spin_lock(&rbd_dev_list_lock); 4763 list_del_init(&rbd_dev->node); 4764 spin_unlock(&rbd_dev_list_lock); 4765 4766 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4767 4768 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id); 4769 } 4770 4771 /* 4772 * Skips over white space at *buf, and updates *buf to point to the 4773 * first found non-space character (if any). Returns the length of 4774 * the token (string of non-white space characters) found. Note 4775 * that *buf must be terminated with '\0'. 4776 */ 4777 static inline size_t next_token(const char **buf) 4778 { 4779 /* 4780 * These are the characters that produce nonzero for 4781 * isspace() in the "C" and "POSIX" locales. 4782 */ 4783 const char *spaces = " \f\n\r\t\v"; 4784 4785 *buf += strspn(*buf, spaces); /* Find start of token */ 4786 4787 return strcspn(*buf, spaces); /* Return token length */ 4788 } 4789 4790 /* 4791 * Finds the next token in *buf, dynamically allocates a buffer big 4792 * enough to hold a copy of it, and copies the token into the new 4793 * buffer. The copy is guaranteed to be terminated with '\0'. Note 4794 * that a duplicate buffer is created even for a zero-length token. 4795 * 4796 * Returns a pointer to the newly-allocated duplicate, or a null 4797 * pointer if memory for the duplicate was not available. If 4798 * the lenp argument is a non-null pointer, the length of the token 4799 * (not including the '\0') is returned in *lenp. 4800 * 4801 * If successful, the *buf pointer will be updated to point beyond 4802 * the end of the found token. 4803 * 4804 * Note: uses GFP_KERNEL for allocation. 4805 */ 4806 static inline char *dup_token(const char **buf, size_t *lenp) 4807 { 4808 char *dup; 4809 size_t len; 4810 4811 len = next_token(buf); 4812 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 4813 if (!dup) 4814 return NULL; 4815 *(dup + len) = '\0'; 4816 *buf += len; 4817 4818 if (lenp) 4819 *lenp = len; 4820 4821 return dup; 4822 } 4823 4824 /* 4825 * Parse the options provided for an "rbd add" (i.e., rbd image 4826 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 4827 * and the data written is passed here via a NUL-terminated buffer. 4828 * Returns 0 if successful or an error code otherwise. 4829 * 4830 * The information extracted from these options is recorded in 4831 * the other parameters which return dynamically-allocated 4832 * structures: 4833 * ceph_opts 4834 * The address of a pointer that will refer to a ceph options 4835 * structure. Caller must release the returned pointer using 4836 * ceph_destroy_options() when it is no longer needed. 4837 * rbd_opts 4838 * Address of an rbd options pointer. Fully initialized by 4839 * this function; caller must release with kfree(). 4840 * spec 4841 * Address of an rbd image specification pointer. Fully 4842 * initialized by this function based on parsed options. 4843 * Caller must release with rbd_spec_put(). 4844 * 4845 * The options passed take this form: 4846 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 4847 * where: 4848 * <mon_addrs> 4849 * A comma-separated list of one or more monitor addresses. 4850 * A monitor address is an ip address, optionally followed 4851 * by a port number (separated by a colon). 4852 * I.e.: ip1[:port1][,ip2[:port2]...] 4853 * <options> 4854 * A comma-separated list of ceph and/or rbd options. 4855 * <pool_name> 4856 * The name of the rados pool containing the rbd image. 4857 * <image_name> 4858 * The name of the image in that pool to map. 4859 * <snap_id> 4860 * An optional snapshot id. If provided, the mapping will 4861 * present data from the image at the time that snapshot was 4862 * created. The image head is used if no snapshot id is 4863 * provided. Snapshot mappings are always read-only. 4864 */ 4865 static int rbd_add_parse_args(const char *buf, 4866 struct ceph_options **ceph_opts, 4867 struct rbd_options **opts, 4868 struct rbd_spec **rbd_spec) 4869 { 4870 size_t len; 4871 char *options; 4872 const char *mon_addrs; 4873 char *snap_name; 4874 size_t mon_addrs_size; 4875 struct rbd_spec *spec = NULL; 4876 struct rbd_options *rbd_opts = NULL; 4877 struct ceph_options *copts; 4878 int ret; 4879 4880 /* The first four tokens are required */ 4881 4882 len = next_token(&buf); 4883 if (!len) { 4884 rbd_warn(NULL, "no monitor address(es) provided"); 4885 return -EINVAL; 4886 } 4887 mon_addrs = buf; 4888 mon_addrs_size = len + 1; 4889 buf += len; 4890 4891 ret = -EINVAL; 4892 options = dup_token(&buf, NULL); 4893 if (!options) 4894 return -ENOMEM; 4895 if (!*options) { 4896 rbd_warn(NULL, "no options provided"); 4897 goto out_err; 4898 } 4899 4900 spec = rbd_spec_alloc(); 4901 if (!spec) 4902 goto out_mem; 4903 4904 spec->pool_name = dup_token(&buf, NULL); 4905 if (!spec->pool_name) 4906 goto out_mem; 4907 if (!*spec->pool_name) { 4908 rbd_warn(NULL, "no pool name provided"); 4909 goto out_err; 4910 } 4911 4912 spec->image_name = dup_token(&buf, NULL); 4913 if (!spec->image_name) 4914 goto out_mem; 4915 if (!*spec->image_name) { 4916 rbd_warn(NULL, "no image name provided"); 4917 goto out_err; 4918 } 4919 4920 /* 4921 * Snapshot name is optional; default is to use "-" 4922 * (indicating the head/no snapshot). 4923 */ 4924 len = next_token(&buf); 4925 if (!len) { 4926 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 4927 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 4928 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 4929 ret = -ENAMETOOLONG; 4930 goto out_err; 4931 } 4932 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 4933 if (!snap_name) 4934 goto out_mem; 4935 *(snap_name + len) = '\0'; 4936 spec->snap_name = snap_name; 4937 4938 /* Initialize all rbd options to the defaults */ 4939 4940 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 4941 if (!rbd_opts) 4942 goto out_mem; 4943 4944 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 4945 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 4946 4947 copts = ceph_parse_options(options, mon_addrs, 4948 mon_addrs + mon_addrs_size - 1, 4949 parse_rbd_opts_token, rbd_opts); 4950 if (IS_ERR(copts)) { 4951 ret = PTR_ERR(copts); 4952 goto out_err; 4953 } 4954 kfree(options); 4955 4956 *ceph_opts = copts; 4957 *opts = rbd_opts; 4958 *rbd_spec = spec; 4959 4960 return 0; 4961 out_mem: 4962 ret = -ENOMEM; 4963 out_err: 4964 kfree(rbd_opts); 4965 rbd_spec_put(spec); 4966 kfree(options); 4967 4968 return ret; 4969 } 4970 4971 /* 4972 * Return pool id (>= 0) or a negative error code. 4973 */ 4974 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name) 4975 { 4976 struct ceph_options *opts = rbdc->client->options; 4977 u64 newest_epoch; 4978 int tries = 0; 4979 int ret; 4980 4981 again: 4982 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name); 4983 if (ret == -ENOENT && tries++ < 1) { 4984 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap", 4985 &newest_epoch); 4986 if (ret < 0) 4987 return ret; 4988 4989 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) { 4990 ceph_monc_request_next_osdmap(&rbdc->client->monc); 4991 (void) ceph_monc_wait_osdmap(&rbdc->client->monc, 4992 newest_epoch, 4993 opts->mount_timeout); 4994 goto again; 4995 } else { 4996 /* the osdmap we have is new enough */ 4997 return -ENOENT; 4998 } 4999 } 5000 5001 return ret; 5002 } 5003 5004 /* 5005 * An rbd format 2 image has a unique identifier, distinct from the 5006 * name given to it by the user. Internally, that identifier is 5007 * what's used to specify the names of objects related to the image. 5008 * 5009 * A special "rbd id" object is used to map an rbd image name to its 5010 * id. If that object doesn't exist, then there is no v2 rbd image 5011 * with the supplied name. 5012 * 5013 * This function will record the given rbd_dev's image_id field if 5014 * it can be determined, and in that case will return 0. If any 5015 * errors occur a negative errno will be returned and the rbd_dev's 5016 * image_id field will be unchanged (and should be NULL). 5017 */ 5018 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 5019 { 5020 int ret; 5021 size_t size; 5022 char *object_name; 5023 void *response; 5024 char *image_id; 5025 5026 /* 5027 * When probing a parent image, the image id is already 5028 * known (and the image name likely is not). There's no 5029 * need to fetch the image id again in this case. We 5030 * do still need to set the image format though. 5031 */ 5032 if (rbd_dev->spec->image_id) { 5033 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 5034 5035 return 0; 5036 } 5037 5038 /* 5039 * First, see if the format 2 image id file exists, and if 5040 * so, get the image's persistent id from it. 5041 */ 5042 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name); 5043 object_name = kmalloc(size, GFP_NOIO); 5044 if (!object_name) 5045 return -ENOMEM; 5046 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name); 5047 dout("rbd id object name is %s\n", object_name); 5048 5049 /* Response will be an encoded string, which includes a length */ 5050 5051 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 5052 response = kzalloc(size, GFP_NOIO); 5053 if (!response) { 5054 ret = -ENOMEM; 5055 goto out; 5056 } 5057 5058 /* If it doesn't exist we'll assume it's a format 1 image */ 5059 5060 ret = rbd_obj_method_sync(rbd_dev, object_name, 5061 "rbd", "get_id", NULL, 0, 5062 response, RBD_IMAGE_ID_LEN_MAX); 5063 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5064 if (ret == -ENOENT) { 5065 image_id = kstrdup("", GFP_KERNEL); 5066 ret = image_id ? 0 : -ENOMEM; 5067 if (!ret) 5068 rbd_dev->image_format = 1; 5069 } else if (ret >= 0) { 5070 void *p = response; 5071 5072 image_id = ceph_extract_encoded_string(&p, p + ret, 5073 NULL, GFP_NOIO); 5074 ret = PTR_ERR_OR_ZERO(image_id); 5075 if (!ret) 5076 rbd_dev->image_format = 2; 5077 } 5078 5079 if (!ret) { 5080 rbd_dev->spec->image_id = image_id; 5081 dout("image_id is %s\n", image_id); 5082 } 5083 out: 5084 kfree(response); 5085 kfree(object_name); 5086 5087 return ret; 5088 } 5089 5090 /* 5091 * Undo whatever state changes are made by v1 or v2 header info 5092 * call. 5093 */ 5094 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 5095 { 5096 struct rbd_image_header *header; 5097 5098 rbd_dev_parent_put(rbd_dev); 5099 5100 /* Free dynamic fields from the header, then zero it out */ 5101 5102 header = &rbd_dev->header; 5103 ceph_put_snap_context(header->snapc); 5104 kfree(header->snap_sizes); 5105 kfree(header->snap_names); 5106 kfree(header->object_prefix); 5107 memset(header, 0, sizeof (*header)); 5108 } 5109 5110 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 5111 { 5112 int ret; 5113 5114 ret = rbd_dev_v2_object_prefix(rbd_dev); 5115 if (ret) 5116 goto out_err; 5117 5118 /* 5119 * Get the and check features for the image. Currently the 5120 * features are assumed to never change. 5121 */ 5122 ret = rbd_dev_v2_features(rbd_dev); 5123 if (ret) 5124 goto out_err; 5125 5126 /* If the image supports fancy striping, get its parameters */ 5127 5128 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 5129 ret = rbd_dev_v2_striping_info(rbd_dev); 5130 if (ret < 0) 5131 goto out_err; 5132 } 5133 /* No support for crypto and compression type format 2 images */ 5134 5135 return 0; 5136 out_err: 5137 rbd_dev->header.features = 0; 5138 kfree(rbd_dev->header.object_prefix); 5139 rbd_dev->header.object_prefix = NULL; 5140 5141 return ret; 5142 } 5143 5144 /* 5145 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 5146 * rbd_dev_image_probe() recursion depth, which means it's also the 5147 * length of the already discovered part of the parent chain. 5148 */ 5149 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 5150 { 5151 struct rbd_device *parent = NULL; 5152 int ret; 5153 5154 if (!rbd_dev->parent_spec) 5155 return 0; 5156 5157 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 5158 pr_info("parent chain is too long (%d)\n", depth); 5159 ret = -EINVAL; 5160 goto out_err; 5161 } 5162 5163 parent = rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec, 5164 NULL); 5165 if (!parent) { 5166 ret = -ENOMEM; 5167 goto out_err; 5168 } 5169 5170 /* 5171 * Images related by parent/child relationships always share 5172 * rbd_client and spec/parent_spec, so bump their refcounts. 5173 */ 5174 __rbd_get_client(rbd_dev->rbd_client); 5175 rbd_spec_get(rbd_dev->parent_spec); 5176 5177 ret = rbd_dev_image_probe(parent, depth); 5178 if (ret < 0) 5179 goto out_err; 5180 5181 rbd_dev->parent = parent; 5182 atomic_set(&rbd_dev->parent_ref, 1); 5183 return 0; 5184 5185 out_err: 5186 rbd_dev_unparent(rbd_dev); 5187 if (parent) 5188 rbd_dev_destroy(parent); 5189 return ret; 5190 } 5191 5192 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 5193 { 5194 int ret; 5195 5196 /* Get an id and fill in device name. */ 5197 5198 ret = rbd_dev_id_get(rbd_dev); 5199 if (ret) 5200 return ret; 5201 5202 BUILD_BUG_ON(DEV_NAME_LEN 5203 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH); 5204 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id); 5205 5206 /* Record our major and minor device numbers. */ 5207 5208 if (!single_major) { 5209 ret = register_blkdev(0, rbd_dev->name); 5210 if (ret < 0) 5211 goto err_out_id; 5212 5213 rbd_dev->major = ret; 5214 rbd_dev->minor = 0; 5215 } else { 5216 rbd_dev->major = rbd_major; 5217 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 5218 } 5219 5220 /* Set up the blkdev mapping. */ 5221 5222 ret = rbd_init_disk(rbd_dev); 5223 if (ret) 5224 goto err_out_blkdev; 5225 5226 ret = rbd_dev_mapping_set(rbd_dev); 5227 if (ret) 5228 goto err_out_disk; 5229 5230 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 5231 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only); 5232 5233 dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 5234 ret = device_add(&rbd_dev->dev); 5235 if (ret) 5236 goto err_out_mapping; 5237 5238 /* Everything's ready. Announce the disk to the world. */ 5239 5240 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5241 add_disk(rbd_dev->disk); 5242 5243 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name, 5244 (unsigned long long) rbd_dev->mapping.size); 5245 5246 return ret; 5247 5248 err_out_mapping: 5249 rbd_dev_mapping_clear(rbd_dev); 5250 err_out_disk: 5251 rbd_free_disk(rbd_dev); 5252 err_out_blkdev: 5253 if (!single_major) 5254 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5255 err_out_id: 5256 rbd_dev_id_put(rbd_dev); 5257 return ret; 5258 } 5259 5260 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 5261 { 5262 struct rbd_spec *spec = rbd_dev->spec; 5263 size_t size; 5264 5265 /* Record the header object name for this rbd image. */ 5266 5267 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5268 5269 if (rbd_dev->image_format == 1) 5270 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX); 5271 else 5272 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id); 5273 5274 rbd_dev->header_name = kmalloc(size, GFP_KERNEL); 5275 if (!rbd_dev->header_name) 5276 return -ENOMEM; 5277 5278 if (rbd_dev->image_format == 1) 5279 sprintf(rbd_dev->header_name, "%s%s", 5280 spec->image_name, RBD_SUFFIX); 5281 else 5282 sprintf(rbd_dev->header_name, "%s%s", 5283 RBD_HEADER_PREFIX, spec->image_id); 5284 return 0; 5285 } 5286 5287 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 5288 { 5289 rbd_dev_unprobe(rbd_dev); 5290 kfree(rbd_dev->header_name); 5291 rbd_dev->header_name = NULL; 5292 rbd_dev->image_format = 0; 5293 kfree(rbd_dev->spec->image_id); 5294 rbd_dev->spec->image_id = NULL; 5295 5296 rbd_dev_destroy(rbd_dev); 5297 } 5298 5299 /* 5300 * Probe for the existence of the header object for the given rbd 5301 * device. If this image is the one being mapped (i.e., not a 5302 * parent), initiate a watch on its header object before using that 5303 * object to get detailed information about the rbd image. 5304 */ 5305 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 5306 { 5307 int ret; 5308 5309 /* 5310 * Get the id from the image id object. Unless there's an 5311 * error, rbd_dev->spec->image_id will be filled in with 5312 * a dynamically-allocated string, and rbd_dev->image_format 5313 * will be set to either 1 or 2. 5314 */ 5315 ret = rbd_dev_image_id(rbd_dev); 5316 if (ret) 5317 return ret; 5318 5319 ret = rbd_dev_header_name(rbd_dev); 5320 if (ret) 5321 goto err_out_format; 5322 5323 if (!depth) { 5324 ret = rbd_dev_header_watch_sync(rbd_dev); 5325 if (ret) { 5326 if (ret == -ENOENT) 5327 pr_info("image %s/%s does not exist\n", 5328 rbd_dev->spec->pool_name, 5329 rbd_dev->spec->image_name); 5330 goto out_header_name; 5331 } 5332 } 5333 5334 ret = rbd_dev_header_info(rbd_dev); 5335 if (ret) 5336 goto err_out_watch; 5337 5338 /* 5339 * If this image is the one being mapped, we have pool name and 5340 * id, image name and id, and snap name - need to fill snap id. 5341 * Otherwise this is a parent image, identified by pool, image 5342 * and snap ids - need to fill in names for those ids. 5343 */ 5344 if (!depth) 5345 ret = rbd_spec_fill_snap_id(rbd_dev); 5346 else 5347 ret = rbd_spec_fill_names(rbd_dev); 5348 if (ret) { 5349 if (ret == -ENOENT) 5350 pr_info("snap %s/%s@%s does not exist\n", 5351 rbd_dev->spec->pool_name, 5352 rbd_dev->spec->image_name, 5353 rbd_dev->spec->snap_name); 5354 goto err_out_probe; 5355 } 5356 5357 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 5358 ret = rbd_dev_v2_parent_info(rbd_dev); 5359 if (ret) 5360 goto err_out_probe; 5361 5362 /* 5363 * Need to warn users if this image is the one being 5364 * mapped and has a parent. 5365 */ 5366 if (!depth && rbd_dev->parent_spec) 5367 rbd_warn(rbd_dev, 5368 "WARNING: kernel layering is EXPERIMENTAL!"); 5369 } 5370 5371 ret = rbd_dev_probe_parent(rbd_dev, depth); 5372 if (ret) 5373 goto err_out_probe; 5374 5375 dout("discovered format %u image, header name is %s\n", 5376 rbd_dev->image_format, rbd_dev->header_name); 5377 return 0; 5378 5379 err_out_probe: 5380 rbd_dev_unprobe(rbd_dev); 5381 err_out_watch: 5382 if (!depth) 5383 rbd_dev_header_unwatch_sync(rbd_dev); 5384 out_header_name: 5385 kfree(rbd_dev->header_name); 5386 rbd_dev->header_name = NULL; 5387 err_out_format: 5388 rbd_dev->image_format = 0; 5389 kfree(rbd_dev->spec->image_id); 5390 rbd_dev->spec->image_id = NULL; 5391 return ret; 5392 } 5393 5394 static ssize_t do_rbd_add(struct bus_type *bus, 5395 const char *buf, 5396 size_t count) 5397 { 5398 struct rbd_device *rbd_dev = NULL; 5399 struct ceph_options *ceph_opts = NULL; 5400 struct rbd_options *rbd_opts = NULL; 5401 struct rbd_spec *spec = NULL; 5402 struct rbd_client *rbdc; 5403 bool read_only; 5404 int rc; 5405 5406 if (!try_module_get(THIS_MODULE)) 5407 return -ENODEV; 5408 5409 /* parse add command */ 5410 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 5411 if (rc < 0) 5412 goto out; 5413 5414 rbdc = rbd_get_client(ceph_opts); 5415 if (IS_ERR(rbdc)) { 5416 rc = PTR_ERR(rbdc); 5417 goto err_out_args; 5418 } 5419 5420 /* pick the pool */ 5421 rc = rbd_add_get_pool_id(rbdc, spec->pool_name); 5422 if (rc < 0) { 5423 if (rc == -ENOENT) 5424 pr_info("pool %s does not exist\n", spec->pool_name); 5425 goto err_out_client; 5426 } 5427 spec->pool_id = (u64)rc; 5428 5429 /* The ceph file layout needs to fit pool id in 32 bits */ 5430 5431 if (spec->pool_id > (u64)U32_MAX) { 5432 rbd_warn(NULL, "pool id too large (%llu > %u)", 5433 (unsigned long long)spec->pool_id, U32_MAX); 5434 rc = -EIO; 5435 goto err_out_client; 5436 } 5437 5438 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 5439 if (!rbd_dev) { 5440 rc = -ENOMEM; 5441 goto err_out_client; 5442 } 5443 rbdc = NULL; /* rbd_dev now owns this */ 5444 spec = NULL; /* rbd_dev now owns this */ 5445 rbd_opts = NULL; /* rbd_dev now owns this */ 5446 5447 rc = rbd_dev_image_probe(rbd_dev, 0); 5448 if (rc < 0) 5449 goto err_out_rbd_dev; 5450 5451 /* If we are mapping a snapshot it must be marked read-only */ 5452 5453 read_only = rbd_dev->opts->read_only; 5454 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 5455 read_only = true; 5456 rbd_dev->mapping.read_only = read_only; 5457 5458 rc = rbd_dev_device_setup(rbd_dev); 5459 if (rc) { 5460 /* 5461 * rbd_dev_header_unwatch_sync() can't be moved into 5462 * rbd_dev_image_release() without refactoring, see 5463 * commit 1f3ef78861ac. 5464 */ 5465 rbd_dev_header_unwatch_sync(rbd_dev); 5466 rbd_dev_image_release(rbd_dev); 5467 goto out; 5468 } 5469 5470 rc = count; 5471 out: 5472 module_put(THIS_MODULE); 5473 return rc; 5474 5475 err_out_rbd_dev: 5476 rbd_dev_destroy(rbd_dev); 5477 err_out_client: 5478 rbd_put_client(rbdc); 5479 err_out_args: 5480 rbd_spec_put(spec); 5481 kfree(rbd_opts); 5482 goto out; 5483 } 5484 5485 static ssize_t rbd_add(struct bus_type *bus, 5486 const char *buf, 5487 size_t count) 5488 { 5489 if (single_major) 5490 return -EINVAL; 5491 5492 return do_rbd_add(bus, buf, count); 5493 } 5494 5495 static ssize_t rbd_add_single_major(struct bus_type *bus, 5496 const char *buf, 5497 size_t count) 5498 { 5499 return do_rbd_add(bus, buf, count); 5500 } 5501 5502 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 5503 { 5504 rbd_free_disk(rbd_dev); 5505 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5506 device_del(&rbd_dev->dev); 5507 rbd_dev_mapping_clear(rbd_dev); 5508 if (!single_major) 5509 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5510 rbd_dev_id_put(rbd_dev); 5511 } 5512 5513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 5514 { 5515 while (rbd_dev->parent) { 5516 struct rbd_device *first = rbd_dev; 5517 struct rbd_device *second = first->parent; 5518 struct rbd_device *third; 5519 5520 /* 5521 * Follow to the parent with no grandparent and 5522 * remove it. 5523 */ 5524 while (second && (third = second->parent)) { 5525 first = second; 5526 second = third; 5527 } 5528 rbd_assert(second); 5529 rbd_dev_image_release(second); 5530 first->parent = NULL; 5531 first->parent_overlap = 0; 5532 5533 rbd_assert(first->parent_spec); 5534 rbd_spec_put(first->parent_spec); 5535 first->parent_spec = NULL; 5536 } 5537 } 5538 5539 static ssize_t do_rbd_remove(struct bus_type *bus, 5540 const char *buf, 5541 size_t count) 5542 { 5543 struct rbd_device *rbd_dev = NULL; 5544 struct list_head *tmp; 5545 int dev_id; 5546 unsigned long ul; 5547 bool already = false; 5548 int ret; 5549 5550 ret = kstrtoul(buf, 10, &ul); 5551 if (ret) 5552 return ret; 5553 5554 /* convert to int; abort if we lost anything in the conversion */ 5555 dev_id = (int)ul; 5556 if (dev_id != ul) 5557 return -EINVAL; 5558 5559 ret = -ENOENT; 5560 spin_lock(&rbd_dev_list_lock); 5561 list_for_each(tmp, &rbd_dev_list) { 5562 rbd_dev = list_entry(tmp, struct rbd_device, node); 5563 if (rbd_dev->dev_id == dev_id) { 5564 ret = 0; 5565 break; 5566 } 5567 } 5568 if (!ret) { 5569 spin_lock_irq(&rbd_dev->lock); 5570 if (rbd_dev->open_count) 5571 ret = -EBUSY; 5572 else 5573 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 5574 &rbd_dev->flags); 5575 spin_unlock_irq(&rbd_dev->lock); 5576 } 5577 spin_unlock(&rbd_dev_list_lock); 5578 if (ret < 0 || already) 5579 return ret; 5580 5581 rbd_dev_header_unwatch_sync(rbd_dev); 5582 /* 5583 * flush remaining watch callbacks - these must be complete 5584 * before the osd_client is shutdown 5585 */ 5586 dout("%s: flushing notifies", __func__); 5587 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 5588 5589 /* 5590 * Don't free anything from rbd_dev->disk until after all 5591 * notifies are completely processed. Otherwise 5592 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting 5593 * in a potential use after free of rbd_dev->disk or rbd_dev. 5594 */ 5595 rbd_dev_device_release(rbd_dev); 5596 rbd_dev_image_release(rbd_dev); 5597 5598 return count; 5599 } 5600 5601 static ssize_t rbd_remove(struct bus_type *bus, 5602 const char *buf, 5603 size_t count) 5604 { 5605 if (single_major) 5606 return -EINVAL; 5607 5608 return do_rbd_remove(bus, buf, count); 5609 } 5610 5611 static ssize_t rbd_remove_single_major(struct bus_type *bus, 5612 const char *buf, 5613 size_t count) 5614 { 5615 return do_rbd_remove(bus, buf, count); 5616 } 5617 5618 /* 5619 * create control files in sysfs 5620 * /sys/bus/rbd/... 5621 */ 5622 static int rbd_sysfs_init(void) 5623 { 5624 int ret; 5625 5626 ret = device_register(&rbd_root_dev); 5627 if (ret < 0) 5628 return ret; 5629 5630 ret = bus_register(&rbd_bus_type); 5631 if (ret < 0) 5632 device_unregister(&rbd_root_dev); 5633 5634 return ret; 5635 } 5636 5637 static void rbd_sysfs_cleanup(void) 5638 { 5639 bus_unregister(&rbd_bus_type); 5640 device_unregister(&rbd_root_dev); 5641 } 5642 5643 static int rbd_slab_init(void) 5644 { 5645 rbd_assert(!rbd_img_request_cache); 5646 rbd_img_request_cache = kmem_cache_create("rbd_img_request", 5647 sizeof (struct rbd_img_request), 5648 __alignof__(struct rbd_img_request), 5649 0, NULL); 5650 if (!rbd_img_request_cache) 5651 return -ENOMEM; 5652 5653 rbd_assert(!rbd_obj_request_cache); 5654 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request", 5655 sizeof (struct rbd_obj_request), 5656 __alignof__(struct rbd_obj_request), 5657 0, NULL); 5658 if (!rbd_obj_request_cache) 5659 goto out_err; 5660 5661 rbd_assert(!rbd_segment_name_cache); 5662 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name", 5663 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL); 5664 if (rbd_segment_name_cache) 5665 return 0; 5666 out_err: 5667 kmem_cache_destroy(rbd_obj_request_cache); 5668 rbd_obj_request_cache = NULL; 5669 5670 kmem_cache_destroy(rbd_img_request_cache); 5671 rbd_img_request_cache = NULL; 5672 5673 return -ENOMEM; 5674 } 5675 5676 static void rbd_slab_exit(void) 5677 { 5678 rbd_assert(rbd_segment_name_cache); 5679 kmem_cache_destroy(rbd_segment_name_cache); 5680 rbd_segment_name_cache = NULL; 5681 5682 rbd_assert(rbd_obj_request_cache); 5683 kmem_cache_destroy(rbd_obj_request_cache); 5684 rbd_obj_request_cache = NULL; 5685 5686 rbd_assert(rbd_img_request_cache); 5687 kmem_cache_destroy(rbd_img_request_cache); 5688 rbd_img_request_cache = NULL; 5689 } 5690 5691 static int __init rbd_init(void) 5692 { 5693 int rc; 5694 5695 if (!libceph_compatible(NULL)) { 5696 rbd_warn(NULL, "libceph incompatibility (quitting)"); 5697 return -EINVAL; 5698 } 5699 5700 rc = rbd_slab_init(); 5701 if (rc) 5702 return rc; 5703 5704 /* 5705 * The number of active work items is limited by the number of 5706 * rbd devices * queue depth, so leave @max_active at default. 5707 */ 5708 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 5709 if (!rbd_wq) { 5710 rc = -ENOMEM; 5711 goto err_out_slab; 5712 } 5713 5714 if (single_major) { 5715 rbd_major = register_blkdev(0, RBD_DRV_NAME); 5716 if (rbd_major < 0) { 5717 rc = rbd_major; 5718 goto err_out_wq; 5719 } 5720 } 5721 5722 rc = rbd_sysfs_init(); 5723 if (rc) 5724 goto err_out_blkdev; 5725 5726 if (single_major) 5727 pr_info("loaded (major %d)\n", rbd_major); 5728 else 5729 pr_info("loaded\n"); 5730 5731 return 0; 5732 5733 err_out_blkdev: 5734 if (single_major) 5735 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5736 err_out_wq: 5737 destroy_workqueue(rbd_wq); 5738 err_out_slab: 5739 rbd_slab_exit(); 5740 return rc; 5741 } 5742 5743 static void __exit rbd_exit(void) 5744 { 5745 ida_destroy(&rbd_dev_id_ida); 5746 rbd_sysfs_cleanup(); 5747 if (single_major) 5748 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5749 destroy_workqueue(rbd_wq); 5750 rbd_slab_exit(); 5751 } 5752 5753 module_init(rbd_init); 5754 module_exit(rbd_exit); 5755 5756 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 5757 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 5758 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 5759 /* following authorship retained from original osdblk.c */ 5760 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 5761 5762 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 5763 MODULE_LICENSE("GPL"); 5764