1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/cls_lock_client.h> 35 #include <linux/ceph/decode.h> 36 #include <linux/parser.h> 37 #include <linux/bsearch.h> 38 39 #include <linux/kernel.h> 40 #include <linux/device.h> 41 #include <linux/module.h> 42 #include <linux/blk-mq.h> 43 #include <linux/fs.h> 44 #include <linux/blkdev.h> 45 #include <linux/slab.h> 46 #include <linux/idr.h> 47 #include <linux/workqueue.h> 48 49 #include "rbd_types.h" 50 51 #define RBD_DEBUG /* Activate rbd_assert() calls */ 52 53 /* 54 * The basic unit of block I/O is a sector. It is interpreted in a 55 * number of contexts in Linux (blk, bio, genhd), but the default is 56 * universally 512 bytes. These symbols are just slightly more 57 * meaningful than the bare numbers they represent. 58 */ 59 #define SECTOR_SHIFT 9 60 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 61 62 /* 63 * Increment the given counter and return its updated value. 64 * If the counter is already 0 it will not be incremented. 65 * If the counter is already at its maximum value returns 66 * -EINVAL without updating it. 67 */ 68 static int atomic_inc_return_safe(atomic_t *v) 69 { 70 unsigned int counter; 71 72 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 73 if (counter <= (unsigned int)INT_MAX) 74 return (int)counter; 75 76 atomic_dec(v); 77 78 return -EINVAL; 79 } 80 81 /* Decrement the counter. Return the resulting value, or -EINVAL */ 82 static int atomic_dec_return_safe(atomic_t *v) 83 { 84 int counter; 85 86 counter = atomic_dec_return(v); 87 if (counter >= 0) 88 return counter; 89 90 atomic_inc(v); 91 92 return -EINVAL; 93 } 94 95 #define RBD_DRV_NAME "rbd" 96 97 #define RBD_MINORS_PER_MAJOR 256 98 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 99 100 #define RBD_MAX_PARENT_CHAIN_LEN 16 101 102 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 103 #define RBD_MAX_SNAP_NAME_LEN \ 104 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 105 106 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 107 108 #define RBD_SNAP_HEAD_NAME "-" 109 110 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 111 112 /* This allows a single page to hold an image name sent by OSD */ 113 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 114 #define RBD_IMAGE_ID_LEN_MAX 64 115 116 #define RBD_OBJ_PREFIX_LEN_MAX 64 117 118 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */ 119 #define RBD_RETRY_DELAY msecs_to_jiffies(1000) 120 121 /* Feature bits */ 122 123 #define RBD_FEATURE_LAYERING (1ULL<<0) 124 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1) 125 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2) 126 #define RBD_FEATURE_DATA_POOL (1ULL<<7) 127 128 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \ 129 RBD_FEATURE_STRIPINGV2 | \ 130 RBD_FEATURE_EXCLUSIVE_LOCK | \ 131 RBD_FEATURE_DATA_POOL) 132 133 /* Features supported by this (client software) implementation. */ 134 135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 136 137 /* 138 * An RBD device name will be "rbd#", where the "rbd" comes from 139 * RBD_DRV_NAME above, and # is a unique integer identifier. 140 */ 141 #define DEV_NAME_LEN 32 142 143 /* 144 * block device image metadata (in-memory version) 145 */ 146 struct rbd_image_header { 147 /* These six fields never change for a given rbd image */ 148 char *object_prefix; 149 __u8 obj_order; 150 u64 stripe_unit; 151 u64 stripe_count; 152 s64 data_pool_id; 153 u64 features; /* Might be changeable someday? */ 154 155 /* The remaining fields need to be updated occasionally */ 156 u64 image_size; 157 struct ceph_snap_context *snapc; 158 char *snap_names; /* format 1 only */ 159 u64 *snap_sizes; /* format 1 only */ 160 }; 161 162 /* 163 * An rbd image specification. 164 * 165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 166 * identify an image. Each rbd_dev structure includes a pointer to 167 * an rbd_spec structure that encapsulates this identity. 168 * 169 * Each of the id's in an rbd_spec has an associated name. For a 170 * user-mapped image, the names are supplied and the id's associated 171 * with them are looked up. For a layered image, a parent image is 172 * defined by the tuple, and the names are looked up. 173 * 174 * An rbd_dev structure contains a parent_spec pointer which is 175 * non-null if the image it represents is a child in a layered 176 * image. This pointer will refer to the rbd_spec structure used 177 * by the parent rbd_dev for its own identity (i.e., the structure 178 * is shared between the parent and child). 179 * 180 * Since these structures are populated once, during the discovery 181 * phase of image construction, they are effectively immutable so 182 * we make no effort to synchronize access to them. 183 * 184 * Note that code herein does not assume the image name is known (it 185 * could be a null pointer). 186 */ 187 struct rbd_spec { 188 u64 pool_id; 189 const char *pool_name; 190 191 const char *image_id; 192 const char *image_name; 193 194 u64 snap_id; 195 const char *snap_name; 196 197 struct kref kref; 198 }; 199 200 /* 201 * an instance of the client. multiple devices may share an rbd client. 202 */ 203 struct rbd_client { 204 struct ceph_client *client; 205 struct kref kref; 206 struct list_head node; 207 }; 208 209 struct rbd_img_request; 210 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 211 212 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 213 214 struct rbd_obj_request; 215 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 216 217 enum obj_request_type { 218 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 219 }; 220 221 enum obj_operation_type { 222 OBJ_OP_WRITE, 223 OBJ_OP_READ, 224 OBJ_OP_DISCARD, 225 }; 226 227 enum obj_req_flags { 228 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 229 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 230 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 231 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 232 }; 233 234 struct rbd_obj_request { 235 u64 object_no; 236 u64 offset; /* object start byte */ 237 u64 length; /* bytes from offset */ 238 unsigned long flags; 239 240 /* 241 * An object request associated with an image will have its 242 * img_data flag set; a standalone object request will not. 243 * 244 * A standalone object request will have which == BAD_WHICH 245 * and a null obj_request pointer. 246 * 247 * An object request initiated in support of a layered image 248 * object (to check for its existence before a write) will 249 * have which == BAD_WHICH and a non-null obj_request pointer. 250 * 251 * Finally, an object request for rbd image data will have 252 * which != BAD_WHICH, and will have a non-null img_request 253 * pointer. The value of which will be in the range 254 * 0..(img_request->obj_request_count-1). 255 */ 256 union { 257 struct rbd_obj_request *obj_request; /* STAT op */ 258 struct { 259 struct rbd_img_request *img_request; 260 u64 img_offset; 261 /* links for img_request->obj_requests list */ 262 struct list_head links; 263 }; 264 }; 265 u32 which; /* posn image request list */ 266 267 enum obj_request_type type; 268 union { 269 struct bio *bio_list; 270 struct { 271 struct page **pages; 272 u32 page_count; 273 }; 274 }; 275 struct page **copyup_pages; 276 u32 copyup_page_count; 277 278 struct ceph_osd_request *osd_req; 279 280 u64 xferred; /* bytes transferred */ 281 int result; 282 283 rbd_obj_callback_t callback; 284 struct completion completion; 285 286 struct kref kref; 287 }; 288 289 enum img_req_flags { 290 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 291 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 292 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 293 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */ 294 }; 295 296 struct rbd_img_request { 297 struct rbd_device *rbd_dev; 298 u64 offset; /* starting image byte offset */ 299 u64 length; /* byte count from offset */ 300 unsigned long flags; 301 union { 302 u64 snap_id; /* for reads */ 303 struct ceph_snap_context *snapc; /* for writes */ 304 }; 305 union { 306 struct request *rq; /* block request */ 307 struct rbd_obj_request *obj_request; /* obj req initiator */ 308 }; 309 struct page **copyup_pages; 310 u32 copyup_page_count; 311 spinlock_t completion_lock;/* protects next_completion */ 312 u32 next_completion; 313 rbd_img_callback_t callback; 314 u64 xferred;/* aggregate bytes transferred */ 315 int result; /* first nonzero obj_request result */ 316 317 u32 obj_request_count; 318 struct list_head obj_requests; /* rbd_obj_request structs */ 319 320 struct kref kref; 321 }; 322 323 #define for_each_obj_request(ireq, oreq) \ 324 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 325 #define for_each_obj_request_from(ireq, oreq) \ 326 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 327 #define for_each_obj_request_safe(ireq, oreq, n) \ 328 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 329 330 enum rbd_watch_state { 331 RBD_WATCH_STATE_UNREGISTERED, 332 RBD_WATCH_STATE_REGISTERED, 333 RBD_WATCH_STATE_ERROR, 334 }; 335 336 enum rbd_lock_state { 337 RBD_LOCK_STATE_UNLOCKED, 338 RBD_LOCK_STATE_LOCKED, 339 RBD_LOCK_STATE_RELEASING, 340 }; 341 342 /* WatchNotify::ClientId */ 343 struct rbd_client_id { 344 u64 gid; 345 u64 handle; 346 }; 347 348 struct rbd_mapping { 349 u64 size; 350 u64 features; 351 bool read_only; 352 }; 353 354 /* 355 * a single device 356 */ 357 struct rbd_device { 358 int dev_id; /* blkdev unique id */ 359 360 int major; /* blkdev assigned major */ 361 int minor; 362 struct gendisk *disk; /* blkdev's gendisk and rq */ 363 364 u32 image_format; /* Either 1 or 2 */ 365 struct rbd_client *rbd_client; 366 367 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 368 369 spinlock_t lock; /* queue, flags, open_count */ 370 371 struct rbd_image_header header; 372 unsigned long flags; /* possibly lock protected */ 373 struct rbd_spec *spec; 374 struct rbd_options *opts; 375 char *config_info; /* add{,_single_major} string */ 376 377 struct ceph_object_id header_oid; 378 struct ceph_object_locator header_oloc; 379 380 struct ceph_file_layout layout; /* used for all rbd requests */ 381 382 struct mutex watch_mutex; 383 enum rbd_watch_state watch_state; 384 struct ceph_osd_linger_request *watch_handle; 385 u64 watch_cookie; 386 struct delayed_work watch_dwork; 387 388 struct rw_semaphore lock_rwsem; 389 enum rbd_lock_state lock_state; 390 char lock_cookie[32]; 391 struct rbd_client_id owner_cid; 392 struct work_struct acquired_lock_work; 393 struct work_struct released_lock_work; 394 struct delayed_work lock_dwork; 395 struct work_struct unlock_work; 396 wait_queue_head_t lock_waitq; 397 398 struct workqueue_struct *task_wq; 399 400 struct rbd_spec *parent_spec; 401 u64 parent_overlap; 402 atomic_t parent_ref; 403 struct rbd_device *parent; 404 405 /* Block layer tags. */ 406 struct blk_mq_tag_set tag_set; 407 408 /* protects updating the header */ 409 struct rw_semaphore header_rwsem; 410 411 struct rbd_mapping mapping; 412 413 struct list_head node; 414 415 /* sysfs related */ 416 struct device dev; 417 unsigned long open_count; /* protected by lock */ 418 }; 419 420 /* 421 * Flag bits for rbd_dev->flags: 422 * - REMOVING (which is coupled with rbd_dev->open_count) is protected 423 * by rbd_dev->lock 424 * - BLACKLISTED is protected by rbd_dev->lock_rwsem 425 */ 426 enum rbd_dev_flags { 427 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 428 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 429 RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */ 430 }; 431 432 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 433 434 static LIST_HEAD(rbd_dev_list); /* devices */ 435 static DEFINE_SPINLOCK(rbd_dev_list_lock); 436 437 static LIST_HEAD(rbd_client_list); /* clients */ 438 static DEFINE_SPINLOCK(rbd_client_list_lock); 439 440 /* Slab caches for frequently-allocated structures */ 441 442 static struct kmem_cache *rbd_img_request_cache; 443 static struct kmem_cache *rbd_obj_request_cache; 444 445 static int rbd_major; 446 static DEFINE_IDA(rbd_dev_id_ida); 447 448 static struct workqueue_struct *rbd_wq; 449 450 /* 451 * Default to false for now, as single-major requires >= 0.75 version of 452 * userspace rbd utility. 453 */ 454 static bool single_major = false; 455 module_param(single_major, bool, S_IRUGO); 456 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)"); 457 458 static int rbd_img_request_submit(struct rbd_img_request *img_request); 459 460 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 461 size_t count); 462 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 463 size_t count); 464 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 465 size_t count); 466 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 467 size_t count); 468 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 469 static void rbd_spec_put(struct rbd_spec *spec); 470 471 static int rbd_dev_id_to_minor(int dev_id) 472 { 473 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 474 } 475 476 static int minor_to_rbd_dev_id(int minor) 477 { 478 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 479 } 480 481 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev) 482 { 483 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED || 484 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING; 485 } 486 487 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev) 488 { 489 bool is_lock_owner; 490 491 down_read(&rbd_dev->lock_rwsem); 492 is_lock_owner = __rbd_is_lock_owner(rbd_dev); 493 up_read(&rbd_dev->lock_rwsem); 494 return is_lock_owner; 495 } 496 497 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf) 498 { 499 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED); 500 } 501 502 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add); 503 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove); 504 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major); 505 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major); 506 static BUS_ATTR(supported_features, S_IRUGO, rbd_supported_features_show, NULL); 507 508 static struct attribute *rbd_bus_attrs[] = { 509 &bus_attr_add.attr, 510 &bus_attr_remove.attr, 511 &bus_attr_add_single_major.attr, 512 &bus_attr_remove_single_major.attr, 513 &bus_attr_supported_features.attr, 514 NULL, 515 }; 516 517 static umode_t rbd_bus_is_visible(struct kobject *kobj, 518 struct attribute *attr, int index) 519 { 520 if (!single_major && 521 (attr == &bus_attr_add_single_major.attr || 522 attr == &bus_attr_remove_single_major.attr)) 523 return 0; 524 525 return attr->mode; 526 } 527 528 static const struct attribute_group rbd_bus_group = { 529 .attrs = rbd_bus_attrs, 530 .is_visible = rbd_bus_is_visible, 531 }; 532 __ATTRIBUTE_GROUPS(rbd_bus); 533 534 static struct bus_type rbd_bus_type = { 535 .name = "rbd", 536 .bus_groups = rbd_bus_groups, 537 }; 538 539 static void rbd_root_dev_release(struct device *dev) 540 { 541 } 542 543 static struct device rbd_root_dev = { 544 .init_name = "rbd", 545 .release = rbd_root_dev_release, 546 }; 547 548 static __printf(2, 3) 549 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 550 { 551 struct va_format vaf; 552 va_list args; 553 554 va_start(args, fmt); 555 vaf.fmt = fmt; 556 vaf.va = &args; 557 558 if (!rbd_dev) 559 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 560 else if (rbd_dev->disk) 561 printk(KERN_WARNING "%s: %s: %pV\n", 562 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 563 else if (rbd_dev->spec && rbd_dev->spec->image_name) 564 printk(KERN_WARNING "%s: image %s: %pV\n", 565 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 566 else if (rbd_dev->spec && rbd_dev->spec->image_id) 567 printk(KERN_WARNING "%s: id %s: %pV\n", 568 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 569 else /* punt */ 570 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 571 RBD_DRV_NAME, rbd_dev, &vaf); 572 va_end(args); 573 } 574 575 #ifdef RBD_DEBUG 576 #define rbd_assert(expr) \ 577 if (unlikely(!(expr))) { \ 578 printk(KERN_ERR "\nAssertion failure in %s() " \ 579 "at line %d:\n\n" \ 580 "\trbd_assert(%s);\n\n", \ 581 __func__, __LINE__, #expr); \ 582 BUG(); \ 583 } 584 #else /* !RBD_DEBUG */ 585 # define rbd_assert(expr) ((void) 0) 586 #endif /* !RBD_DEBUG */ 587 588 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request); 589 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 590 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 591 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 592 593 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 594 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 595 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 596 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 597 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 598 u64 snap_id); 599 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 600 u8 *order, u64 *snap_size); 601 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 602 u64 *snap_features); 603 604 static int rbd_open(struct block_device *bdev, fmode_t mode) 605 { 606 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 607 bool removing = false; 608 609 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only) 610 return -EROFS; 611 612 spin_lock_irq(&rbd_dev->lock); 613 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 614 removing = true; 615 else 616 rbd_dev->open_count++; 617 spin_unlock_irq(&rbd_dev->lock); 618 if (removing) 619 return -ENOENT; 620 621 (void) get_device(&rbd_dev->dev); 622 623 return 0; 624 } 625 626 static void rbd_release(struct gendisk *disk, fmode_t mode) 627 { 628 struct rbd_device *rbd_dev = disk->private_data; 629 unsigned long open_count_before; 630 631 spin_lock_irq(&rbd_dev->lock); 632 open_count_before = rbd_dev->open_count--; 633 spin_unlock_irq(&rbd_dev->lock); 634 rbd_assert(open_count_before > 0); 635 636 put_device(&rbd_dev->dev); 637 } 638 639 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 640 { 641 int ret = 0; 642 int val; 643 bool ro; 644 bool ro_changed = false; 645 646 /* get_user() may sleep, so call it before taking rbd_dev->lock */ 647 if (get_user(val, (int __user *)(arg))) 648 return -EFAULT; 649 650 ro = val ? true : false; 651 /* Snapshot doesn't allow to write*/ 652 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 653 return -EROFS; 654 655 spin_lock_irq(&rbd_dev->lock); 656 /* prevent others open this device */ 657 if (rbd_dev->open_count > 1) { 658 ret = -EBUSY; 659 goto out; 660 } 661 662 if (rbd_dev->mapping.read_only != ro) { 663 rbd_dev->mapping.read_only = ro; 664 ro_changed = true; 665 } 666 667 out: 668 spin_unlock_irq(&rbd_dev->lock); 669 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */ 670 if (ret == 0 && ro_changed) 671 set_disk_ro(rbd_dev->disk, ro ? 1 : 0); 672 673 return ret; 674 } 675 676 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 677 unsigned int cmd, unsigned long arg) 678 { 679 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 680 int ret = 0; 681 682 switch (cmd) { 683 case BLKROSET: 684 ret = rbd_ioctl_set_ro(rbd_dev, arg); 685 break; 686 default: 687 ret = -ENOTTY; 688 } 689 690 return ret; 691 } 692 693 #ifdef CONFIG_COMPAT 694 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 695 unsigned int cmd, unsigned long arg) 696 { 697 return rbd_ioctl(bdev, mode, cmd, arg); 698 } 699 #endif /* CONFIG_COMPAT */ 700 701 static const struct block_device_operations rbd_bd_ops = { 702 .owner = THIS_MODULE, 703 .open = rbd_open, 704 .release = rbd_release, 705 .ioctl = rbd_ioctl, 706 #ifdef CONFIG_COMPAT 707 .compat_ioctl = rbd_compat_ioctl, 708 #endif 709 }; 710 711 /* 712 * Initialize an rbd client instance. Success or not, this function 713 * consumes ceph_opts. Caller holds client_mutex. 714 */ 715 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 716 { 717 struct rbd_client *rbdc; 718 int ret = -ENOMEM; 719 720 dout("%s:\n", __func__); 721 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 722 if (!rbdc) 723 goto out_opt; 724 725 kref_init(&rbdc->kref); 726 INIT_LIST_HEAD(&rbdc->node); 727 728 rbdc->client = ceph_create_client(ceph_opts, rbdc); 729 if (IS_ERR(rbdc->client)) 730 goto out_rbdc; 731 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 732 733 ret = ceph_open_session(rbdc->client); 734 if (ret < 0) 735 goto out_client; 736 737 spin_lock(&rbd_client_list_lock); 738 list_add_tail(&rbdc->node, &rbd_client_list); 739 spin_unlock(&rbd_client_list_lock); 740 741 dout("%s: rbdc %p\n", __func__, rbdc); 742 743 return rbdc; 744 out_client: 745 ceph_destroy_client(rbdc->client); 746 out_rbdc: 747 kfree(rbdc); 748 out_opt: 749 if (ceph_opts) 750 ceph_destroy_options(ceph_opts); 751 dout("%s: error %d\n", __func__, ret); 752 753 return ERR_PTR(ret); 754 } 755 756 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 757 { 758 kref_get(&rbdc->kref); 759 760 return rbdc; 761 } 762 763 /* 764 * Find a ceph client with specific addr and configuration. If 765 * found, bump its reference count. 766 */ 767 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 768 { 769 struct rbd_client *client_node; 770 bool found = false; 771 772 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 773 return NULL; 774 775 spin_lock(&rbd_client_list_lock); 776 list_for_each_entry(client_node, &rbd_client_list, node) { 777 if (!ceph_compare_options(ceph_opts, client_node->client)) { 778 __rbd_get_client(client_node); 779 780 found = true; 781 break; 782 } 783 } 784 spin_unlock(&rbd_client_list_lock); 785 786 return found ? client_node : NULL; 787 } 788 789 /* 790 * (Per device) rbd map options 791 */ 792 enum { 793 Opt_queue_depth, 794 Opt_last_int, 795 /* int args above */ 796 Opt_last_string, 797 /* string args above */ 798 Opt_read_only, 799 Opt_read_write, 800 Opt_lock_on_read, 801 Opt_exclusive, 802 Opt_err 803 }; 804 805 static match_table_t rbd_opts_tokens = { 806 {Opt_queue_depth, "queue_depth=%d"}, 807 /* int args above */ 808 /* string args above */ 809 {Opt_read_only, "read_only"}, 810 {Opt_read_only, "ro"}, /* Alternate spelling */ 811 {Opt_read_write, "read_write"}, 812 {Opt_read_write, "rw"}, /* Alternate spelling */ 813 {Opt_lock_on_read, "lock_on_read"}, 814 {Opt_exclusive, "exclusive"}, 815 {Opt_err, NULL} 816 }; 817 818 struct rbd_options { 819 int queue_depth; 820 bool read_only; 821 bool lock_on_read; 822 bool exclusive; 823 }; 824 825 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ 826 #define RBD_READ_ONLY_DEFAULT false 827 #define RBD_LOCK_ON_READ_DEFAULT false 828 #define RBD_EXCLUSIVE_DEFAULT false 829 830 static int parse_rbd_opts_token(char *c, void *private) 831 { 832 struct rbd_options *rbd_opts = private; 833 substring_t argstr[MAX_OPT_ARGS]; 834 int token, intval, ret; 835 836 token = match_token(c, rbd_opts_tokens, argstr); 837 if (token < Opt_last_int) { 838 ret = match_int(&argstr[0], &intval); 839 if (ret < 0) { 840 pr_err("bad mount option arg (not int) at '%s'\n", c); 841 return ret; 842 } 843 dout("got int token %d val %d\n", token, intval); 844 } else if (token > Opt_last_int && token < Opt_last_string) { 845 dout("got string token %d val %s\n", token, argstr[0].from); 846 } else { 847 dout("got token %d\n", token); 848 } 849 850 switch (token) { 851 case Opt_queue_depth: 852 if (intval < 1) { 853 pr_err("queue_depth out of range\n"); 854 return -EINVAL; 855 } 856 rbd_opts->queue_depth = intval; 857 break; 858 case Opt_read_only: 859 rbd_opts->read_only = true; 860 break; 861 case Opt_read_write: 862 rbd_opts->read_only = false; 863 break; 864 case Opt_lock_on_read: 865 rbd_opts->lock_on_read = true; 866 break; 867 case Opt_exclusive: 868 rbd_opts->exclusive = true; 869 break; 870 default: 871 /* libceph prints "bad option" msg */ 872 return -EINVAL; 873 } 874 875 return 0; 876 } 877 878 static char* obj_op_name(enum obj_operation_type op_type) 879 { 880 switch (op_type) { 881 case OBJ_OP_READ: 882 return "read"; 883 case OBJ_OP_WRITE: 884 return "write"; 885 case OBJ_OP_DISCARD: 886 return "discard"; 887 default: 888 return "???"; 889 } 890 } 891 892 /* 893 * Get a ceph client with specific addr and configuration, if one does 894 * not exist create it. Either way, ceph_opts is consumed by this 895 * function. 896 */ 897 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 898 { 899 struct rbd_client *rbdc; 900 901 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 902 rbdc = rbd_client_find(ceph_opts); 903 if (rbdc) /* using an existing client */ 904 ceph_destroy_options(ceph_opts); 905 else 906 rbdc = rbd_client_create(ceph_opts); 907 mutex_unlock(&client_mutex); 908 909 return rbdc; 910 } 911 912 /* 913 * Destroy ceph client 914 * 915 * Caller must hold rbd_client_list_lock. 916 */ 917 static void rbd_client_release(struct kref *kref) 918 { 919 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 920 921 dout("%s: rbdc %p\n", __func__, rbdc); 922 spin_lock(&rbd_client_list_lock); 923 list_del(&rbdc->node); 924 spin_unlock(&rbd_client_list_lock); 925 926 ceph_destroy_client(rbdc->client); 927 kfree(rbdc); 928 } 929 930 /* 931 * Drop reference to ceph client node. If it's not referenced anymore, release 932 * it. 933 */ 934 static void rbd_put_client(struct rbd_client *rbdc) 935 { 936 if (rbdc) 937 kref_put(&rbdc->kref, rbd_client_release); 938 } 939 940 static bool rbd_image_format_valid(u32 image_format) 941 { 942 return image_format == 1 || image_format == 2; 943 } 944 945 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 946 { 947 size_t size; 948 u32 snap_count; 949 950 /* The header has to start with the magic rbd header text */ 951 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 952 return false; 953 954 /* The bio layer requires at least sector-sized I/O */ 955 956 if (ondisk->options.order < SECTOR_SHIFT) 957 return false; 958 959 /* If we use u64 in a few spots we may be able to loosen this */ 960 961 if (ondisk->options.order > 8 * sizeof (int) - 1) 962 return false; 963 964 /* 965 * The size of a snapshot header has to fit in a size_t, and 966 * that limits the number of snapshots. 967 */ 968 snap_count = le32_to_cpu(ondisk->snap_count); 969 size = SIZE_MAX - sizeof (struct ceph_snap_context); 970 if (snap_count > size / sizeof (__le64)) 971 return false; 972 973 /* 974 * Not only that, but the size of the entire the snapshot 975 * header must also be representable in a size_t. 976 */ 977 size -= snap_count * sizeof (__le64); 978 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 979 return false; 980 981 return true; 982 } 983 984 /* 985 * returns the size of an object in the image 986 */ 987 static u32 rbd_obj_bytes(struct rbd_image_header *header) 988 { 989 return 1U << header->obj_order; 990 } 991 992 static void rbd_init_layout(struct rbd_device *rbd_dev) 993 { 994 if (rbd_dev->header.stripe_unit == 0 || 995 rbd_dev->header.stripe_count == 0) { 996 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header); 997 rbd_dev->header.stripe_count = 1; 998 } 999 1000 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit; 1001 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count; 1002 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header); 1003 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ? 1004 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id; 1005 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL); 1006 } 1007 1008 /* 1009 * Fill an rbd image header with information from the given format 1 1010 * on-disk header. 1011 */ 1012 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 1013 struct rbd_image_header_ondisk *ondisk) 1014 { 1015 struct rbd_image_header *header = &rbd_dev->header; 1016 bool first_time = header->object_prefix == NULL; 1017 struct ceph_snap_context *snapc; 1018 char *object_prefix = NULL; 1019 char *snap_names = NULL; 1020 u64 *snap_sizes = NULL; 1021 u32 snap_count; 1022 int ret = -ENOMEM; 1023 u32 i; 1024 1025 /* Allocate this now to avoid having to handle failure below */ 1026 1027 if (first_time) { 1028 object_prefix = kstrndup(ondisk->object_prefix, 1029 sizeof(ondisk->object_prefix), 1030 GFP_KERNEL); 1031 if (!object_prefix) 1032 return -ENOMEM; 1033 } 1034 1035 /* Allocate the snapshot context and fill it in */ 1036 1037 snap_count = le32_to_cpu(ondisk->snap_count); 1038 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 1039 if (!snapc) 1040 goto out_err; 1041 snapc->seq = le64_to_cpu(ondisk->snap_seq); 1042 if (snap_count) { 1043 struct rbd_image_snap_ondisk *snaps; 1044 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 1045 1046 /* We'll keep a copy of the snapshot names... */ 1047 1048 if (snap_names_len > (u64)SIZE_MAX) 1049 goto out_2big; 1050 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 1051 if (!snap_names) 1052 goto out_err; 1053 1054 /* ...as well as the array of their sizes. */ 1055 snap_sizes = kmalloc_array(snap_count, 1056 sizeof(*header->snap_sizes), 1057 GFP_KERNEL); 1058 if (!snap_sizes) 1059 goto out_err; 1060 1061 /* 1062 * Copy the names, and fill in each snapshot's id 1063 * and size. 1064 * 1065 * Note that rbd_dev_v1_header_info() guarantees the 1066 * ondisk buffer we're working with has 1067 * snap_names_len bytes beyond the end of the 1068 * snapshot id array, this memcpy() is safe. 1069 */ 1070 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 1071 snaps = ondisk->snaps; 1072 for (i = 0; i < snap_count; i++) { 1073 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 1074 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 1075 } 1076 } 1077 1078 /* We won't fail any more, fill in the header */ 1079 1080 if (first_time) { 1081 header->object_prefix = object_prefix; 1082 header->obj_order = ondisk->options.order; 1083 rbd_init_layout(rbd_dev); 1084 } else { 1085 ceph_put_snap_context(header->snapc); 1086 kfree(header->snap_names); 1087 kfree(header->snap_sizes); 1088 } 1089 1090 /* The remaining fields always get updated (when we refresh) */ 1091 1092 header->image_size = le64_to_cpu(ondisk->image_size); 1093 header->snapc = snapc; 1094 header->snap_names = snap_names; 1095 header->snap_sizes = snap_sizes; 1096 1097 return 0; 1098 out_2big: 1099 ret = -EIO; 1100 out_err: 1101 kfree(snap_sizes); 1102 kfree(snap_names); 1103 ceph_put_snap_context(snapc); 1104 kfree(object_prefix); 1105 1106 return ret; 1107 } 1108 1109 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1110 { 1111 const char *snap_name; 1112 1113 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1114 1115 /* Skip over names until we find the one we are looking for */ 1116 1117 snap_name = rbd_dev->header.snap_names; 1118 while (which--) 1119 snap_name += strlen(snap_name) + 1; 1120 1121 return kstrdup(snap_name, GFP_KERNEL); 1122 } 1123 1124 /* 1125 * Snapshot id comparison function for use with qsort()/bsearch(). 1126 * Note that result is for snapshots in *descending* order. 1127 */ 1128 static int snapid_compare_reverse(const void *s1, const void *s2) 1129 { 1130 u64 snap_id1 = *(u64 *)s1; 1131 u64 snap_id2 = *(u64 *)s2; 1132 1133 if (snap_id1 < snap_id2) 1134 return 1; 1135 return snap_id1 == snap_id2 ? 0 : -1; 1136 } 1137 1138 /* 1139 * Search a snapshot context to see if the given snapshot id is 1140 * present. 1141 * 1142 * Returns the position of the snapshot id in the array if it's found, 1143 * or BAD_SNAP_INDEX otherwise. 1144 * 1145 * Note: The snapshot array is in kept sorted (by the osd) in 1146 * reverse order, highest snapshot id first. 1147 */ 1148 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1149 { 1150 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1151 u64 *found; 1152 1153 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1154 sizeof (snap_id), snapid_compare_reverse); 1155 1156 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1157 } 1158 1159 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1160 u64 snap_id) 1161 { 1162 u32 which; 1163 const char *snap_name; 1164 1165 which = rbd_dev_snap_index(rbd_dev, snap_id); 1166 if (which == BAD_SNAP_INDEX) 1167 return ERR_PTR(-ENOENT); 1168 1169 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1170 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1171 } 1172 1173 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1174 { 1175 if (snap_id == CEPH_NOSNAP) 1176 return RBD_SNAP_HEAD_NAME; 1177 1178 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1179 if (rbd_dev->image_format == 1) 1180 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1181 1182 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1183 } 1184 1185 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1186 u64 *snap_size) 1187 { 1188 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1189 if (snap_id == CEPH_NOSNAP) { 1190 *snap_size = rbd_dev->header.image_size; 1191 } else if (rbd_dev->image_format == 1) { 1192 u32 which; 1193 1194 which = rbd_dev_snap_index(rbd_dev, snap_id); 1195 if (which == BAD_SNAP_INDEX) 1196 return -ENOENT; 1197 1198 *snap_size = rbd_dev->header.snap_sizes[which]; 1199 } else { 1200 u64 size = 0; 1201 int ret; 1202 1203 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1204 if (ret) 1205 return ret; 1206 1207 *snap_size = size; 1208 } 1209 return 0; 1210 } 1211 1212 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1213 u64 *snap_features) 1214 { 1215 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1216 if (snap_id == CEPH_NOSNAP) { 1217 *snap_features = rbd_dev->header.features; 1218 } else if (rbd_dev->image_format == 1) { 1219 *snap_features = 0; /* No features for format 1 */ 1220 } else { 1221 u64 features = 0; 1222 int ret; 1223 1224 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1225 if (ret) 1226 return ret; 1227 1228 *snap_features = features; 1229 } 1230 return 0; 1231 } 1232 1233 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1234 { 1235 u64 snap_id = rbd_dev->spec->snap_id; 1236 u64 size = 0; 1237 u64 features = 0; 1238 int ret; 1239 1240 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1241 if (ret) 1242 return ret; 1243 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1244 if (ret) 1245 return ret; 1246 1247 rbd_dev->mapping.size = size; 1248 rbd_dev->mapping.features = features; 1249 1250 return 0; 1251 } 1252 1253 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1254 { 1255 rbd_dev->mapping.size = 0; 1256 rbd_dev->mapping.features = 0; 1257 } 1258 1259 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 1260 { 1261 u64 segment_size = rbd_obj_bytes(&rbd_dev->header); 1262 1263 return offset & (segment_size - 1); 1264 } 1265 1266 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 1267 u64 offset, u64 length) 1268 { 1269 u64 segment_size = rbd_obj_bytes(&rbd_dev->header); 1270 1271 offset &= segment_size - 1; 1272 1273 rbd_assert(length <= U64_MAX - offset); 1274 if (offset + length > segment_size) 1275 length = segment_size - offset; 1276 1277 return length; 1278 } 1279 1280 /* 1281 * bio helpers 1282 */ 1283 1284 static void bio_chain_put(struct bio *chain) 1285 { 1286 struct bio *tmp; 1287 1288 while (chain) { 1289 tmp = chain; 1290 chain = chain->bi_next; 1291 bio_put(tmp); 1292 } 1293 } 1294 1295 /* 1296 * zeros a bio chain, starting at specific offset 1297 */ 1298 static void zero_bio_chain(struct bio *chain, int start_ofs) 1299 { 1300 struct bio_vec bv; 1301 struct bvec_iter iter; 1302 unsigned long flags; 1303 void *buf; 1304 int pos = 0; 1305 1306 while (chain) { 1307 bio_for_each_segment(bv, chain, iter) { 1308 if (pos + bv.bv_len > start_ofs) { 1309 int remainder = max(start_ofs - pos, 0); 1310 buf = bvec_kmap_irq(&bv, &flags); 1311 memset(buf + remainder, 0, 1312 bv.bv_len - remainder); 1313 flush_dcache_page(bv.bv_page); 1314 bvec_kunmap_irq(buf, &flags); 1315 } 1316 pos += bv.bv_len; 1317 } 1318 1319 chain = chain->bi_next; 1320 } 1321 } 1322 1323 /* 1324 * similar to zero_bio_chain(), zeros data defined by a page array, 1325 * starting at the given byte offset from the start of the array and 1326 * continuing up to the given end offset. The pages array is 1327 * assumed to be big enough to hold all bytes up to the end. 1328 */ 1329 static void zero_pages(struct page **pages, u64 offset, u64 end) 1330 { 1331 struct page **page = &pages[offset >> PAGE_SHIFT]; 1332 1333 rbd_assert(end > offset); 1334 rbd_assert(end - offset <= (u64)SIZE_MAX); 1335 while (offset < end) { 1336 size_t page_offset; 1337 size_t length; 1338 unsigned long flags; 1339 void *kaddr; 1340 1341 page_offset = offset & ~PAGE_MASK; 1342 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset); 1343 local_irq_save(flags); 1344 kaddr = kmap_atomic(*page); 1345 memset(kaddr + page_offset, 0, length); 1346 flush_dcache_page(*page); 1347 kunmap_atomic(kaddr); 1348 local_irq_restore(flags); 1349 1350 offset += length; 1351 page++; 1352 } 1353 } 1354 1355 /* 1356 * Clone a portion of a bio, starting at the given byte offset 1357 * and continuing for the number of bytes indicated. 1358 */ 1359 static struct bio *bio_clone_range(struct bio *bio_src, 1360 unsigned int offset, 1361 unsigned int len, 1362 gfp_t gfpmask) 1363 { 1364 struct bio *bio; 1365 1366 bio = bio_clone(bio_src, gfpmask); 1367 if (!bio) 1368 return NULL; /* ENOMEM */ 1369 1370 bio_advance(bio, offset); 1371 bio->bi_iter.bi_size = len; 1372 1373 return bio; 1374 } 1375 1376 /* 1377 * Clone a portion of a bio chain, starting at the given byte offset 1378 * into the first bio in the source chain and continuing for the 1379 * number of bytes indicated. The result is another bio chain of 1380 * exactly the given length, or a null pointer on error. 1381 * 1382 * The bio_src and offset parameters are both in-out. On entry they 1383 * refer to the first source bio and the offset into that bio where 1384 * the start of data to be cloned is located. 1385 * 1386 * On return, bio_src is updated to refer to the bio in the source 1387 * chain that contains first un-cloned byte, and *offset will 1388 * contain the offset of that byte within that bio. 1389 */ 1390 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1391 unsigned int *offset, 1392 unsigned int len, 1393 gfp_t gfpmask) 1394 { 1395 struct bio *bi = *bio_src; 1396 unsigned int off = *offset; 1397 struct bio *chain = NULL; 1398 struct bio **end; 1399 1400 /* Build up a chain of clone bios up to the limit */ 1401 1402 if (!bi || off >= bi->bi_iter.bi_size || !len) 1403 return NULL; /* Nothing to clone */ 1404 1405 end = &chain; 1406 while (len) { 1407 unsigned int bi_size; 1408 struct bio *bio; 1409 1410 if (!bi) { 1411 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1412 goto out_err; /* EINVAL; ran out of bio's */ 1413 } 1414 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len); 1415 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1416 if (!bio) 1417 goto out_err; /* ENOMEM */ 1418 1419 *end = bio; 1420 end = &bio->bi_next; 1421 1422 off += bi_size; 1423 if (off == bi->bi_iter.bi_size) { 1424 bi = bi->bi_next; 1425 off = 0; 1426 } 1427 len -= bi_size; 1428 } 1429 *bio_src = bi; 1430 *offset = off; 1431 1432 return chain; 1433 out_err: 1434 bio_chain_put(chain); 1435 1436 return NULL; 1437 } 1438 1439 /* 1440 * The default/initial value for all object request flags is 0. For 1441 * each flag, once its value is set to 1 it is never reset to 0 1442 * again. 1443 */ 1444 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1445 { 1446 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1447 struct rbd_device *rbd_dev; 1448 1449 rbd_dev = obj_request->img_request->rbd_dev; 1450 rbd_warn(rbd_dev, "obj_request %p already marked img_data", 1451 obj_request); 1452 } 1453 } 1454 1455 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1456 { 1457 smp_mb(); 1458 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1459 } 1460 1461 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1462 { 1463 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1464 struct rbd_device *rbd_dev = NULL; 1465 1466 if (obj_request_img_data_test(obj_request)) 1467 rbd_dev = obj_request->img_request->rbd_dev; 1468 rbd_warn(rbd_dev, "obj_request %p already marked done", 1469 obj_request); 1470 } 1471 } 1472 1473 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1474 { 1475 smp_mb(); 1476 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1477 } 1478 1479 /* 1480 * This sets the KNOWN flag after (possibly) setting the EXISTS 1481 * flag. The latter is set based on the "exists" value provided. 1482 * 1483 * Note that for our purposes once an object exists it never goes 1484 * away again. It's possible that the response from two existence 1485 * checks are separated by the creation of the target object, and 1486 * the first ("doesn't exist") response arrives *after* the second 1487 * ("does exist"). In that case we ignore the second one. 1488 */ 1489 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1490 bool exists) 1491 { 1492 if (exists) 1493 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1494 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1495 smp_mb(); 1496 } 1497 1498 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1499 { 1500 smp_mb(); 1501 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1502 } 1503 1504 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1505 { 1506 smp_mb(); 1507 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1508 } 1509 1510 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request) 1511 { 1512 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1513 1514 return obj_request->img_offset < 1515 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header)); 1516 } 1517 1518 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1519 { 1520 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1521 kref_read(&obj_request->kref)); 1522 kref_get(&obj_request->kref); 1523 } 1524 1525 static void rbd_obj_request_destroy(struct kref *kref); 1526 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1527 { 1528 rbd_assert(obj_request != NULL); 1529 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1530 kref_read(&obj_request->kref)); 1531 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1532 } 1533 1534 static void rbd_img_request_get(struct rbd_img_request *img_request) 1535 { 1536 dout("%s: img %p (was %d)\n", __func__, img_request, 1537 kref_read(&img_request->kref)); 1538 kref_get(&img_request->kref); 1539 } 1540 1541 static bool img_request_child_test(struct rbd_img_request *img_request); 1542 static void rbd_parent_request_destroy(struct kref *kref); 1543 static void rbd_img_request_destroy(struct kref *kref); 1544 static void rbd_img_request_put(struct rbd_img_request *img_request) 1545 { 1546 rbd_assert(img_request != NULL); 1547 dout("%s: img %p (was %d)\n", __func__, img_request, 1548 kref_read(&img_request->kref)); 1549 if (img_request_child_test(img_request)) 1550 kref_put(&img_request->kref, rbd_parent_request_destroy); 1551 else 1552 kref_put(&img_request->kref, rbd_img_request_destroy); 1553 } 1554 1555 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1556 struct rbd_obj_request *obj_request) 1557 { 1558 rbd_assert(obj_request->img_request == NULL); 1559 1560 /* Image request now owns object's original reference */ 1561 obj_request->img_request = img_request; 1562 obj_request->which = img_request->obj_request_count; 1563 rbd_assert(!obj_request_img_data_test(obj_request)); 1564 obj_request_img_data_set(obj_request); 1565 rbd_assert(obj_request->which != BAD_WHICH); 1566 img_request->obj_request_count++; 1567 list_add_tail(&obj_request->links, &img_request->obj_requests); 1568 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1569 obj_request->which); 1570 } 1571 1572 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1573 struct rbd_obj_request *obj_request) 1574 { 1575 rbd_assert(obj_request->which != BAD_WHICH); 1576 1577 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1578 obj_request->which); 1579 list_del(&obj_request->links); 1580 rbd_assert(img_request->obj_request_count > 0); 1581 img_request->obj_request_count--; 1582 rbd_assert(obj_request->which == img_request->obj_request_count); 1583 obj_request->which = BAD_WHICH; 1584 rbd_assert(obj_request_img_data_test(obj_request)); 1585 rbd_assert(obj_request->img_request == img_request); 1586 obj_request->img_request = NULL; 1587 obj_request->callback = NULL; 1588 rbd_obj_request_put(obj_request); 1589 } 1590 1591 static bool obj_request_type_valid(enum obj_request_type type) 1592 { 1593 switch (type) { 1594 case OBJ_REQUEST_NODATA: 1595 case OBJ_REQUEST_BIO: 1596 case OBJ_REQUEST_PAGES: 1597 return true; 1598 default: 1599 return false; 1600 } 1601 } 1602 1603 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request); 1604 1605 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request) 1606 { 1607 struct ceph_osd_request *osd_req = obj_request->osd_req; 1608 1609 dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__, 1610 obj_request, obj_request->object_no, obj_request->offset, 1611 obj_request->length, osd_req); 1612 if (obj_request_img_data_test(obj_request)) { 1613 WARN_ON(obj_request->callback != rbd_img_obj_callback); 1614 rbd_img_request_get(obj_request->img_request); 1615 } 1616 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false); 1617 } 1618 1619 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1620 { 1621 1622 dout("%s: img %p\n", __func__, img_request); 1623 1624 /* 1625 * If no error occurred, compute the aggregate transfer 1626 * count for the image request. We could instead use 1627 * atomic64_cmpxchg() to update it as each object request 1628 * completes; not clear which way is better off hand. 1629 */ 1630 if (!img_request->result) { 1631 struct rbd_obj_request *obj_request; 1632 u64 xferred = 0; 1633 1634 for_each_obj_request(img_request, obj_request) 1635 xferred += obj_request->xferred; 1636 img_request->xferred = xferred; 1637 } 1638 1639 if (img_request->callback) 1640 img_request->callback(img_request); 1641 else 1642 rbd_img_request_put(img_request); 1643 } 1644 1645 /* 1646 * The default/initial value for all image request flags is 0. Each 1647 * is conditionally set to 1 at image request initialization time 1648 * and currently never change thereafter. 1649 */ 1650 static void img_request_write_set(struct rbd_img_request *img_request) 1651 { 1652 set_bit(IMG_REQ_WRITE, &img_request->flags); 1653 smp_mb(); 1654 } 1655 1656 static bool img_request_write_test(struct rbd_img_request *img_request) 1657 { 1658 smp_mb(); 1659 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1660 } 1661 1662 /* 1663 * Set the discard flag when the img_request is an discard request 1664 */ 1665 static void img_request_discard_set(struct rbd_img_request *img_request) 1666 { 1667 set_bit(IMG_REQ_DISCARD, &img_request->flags); 1668 smp_mb(); 1669 } 1670 1671 static bool img_request_discard_test(struct rbd_img_request *img_request) 1672 { 1673 smp_mb(); 1674 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0; 1675 } 1676 1677 static void img_request_child_set(struct rbd_img_request *img_request) 1678 { 1679 set_bit(IMG_REQ_CHILD, &img_request->flags); 1680 smp_mb(); 1681 } 1682 1683 static void img_request_child_clear(struct rbd_img_request *img_request) 1684 { 1685 clear_bit(IMG_REQ_CHILD, &img_request->flags); 1686 smp_mb(); 1687 } 1688 1689 static bool img_request_child_test(struct rbd_img_request *img_request) 1690 { 1691 smp_mb(); 1692 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1693 } 1694 1695 static void img_request_layered_set(struct rbd_img_request *img_request) 1696 { 1697 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1698 smp_mb(); 1699 } 1700 1701 static void img_request_layered_clear(struct rbd_img_request *img_request) 1702 { 1703 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1704 smp_mb(); 1705 } 1706 1707 static bool img_request_layered_test(struct rbd_img_request *img_request) 1708 { 1709 smp_mb(); 1710 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1711 } 1712 1713 static enum obj_operation_type 1714 rbd_img_request_op_type(struct rbd_img_request *img_request) 1715 { 1716 if (img_request_write_test(img_request)) 1717 return OBJ_OP_WRITE; 1718 else if (img_request_discard_test(img_request)) 1719 return OBJ_OP_DISCARD; 1720 else 1721 return OBJ_OP_READ; 1722 } 1723 1724 static void 1725 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1726 { 1727 u64 xferred = obj_request->xferred; 1728 u64 length = obj_request->length; 1729 1730 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1731 obj_request, obj_request->img_request, obj_request->result, 1732 xferred, length); 1733 /* 1734 * ENOENT means a hole in the image. We zero-fill the entire 1735 * length of the request. A short read also implies zero-fill 1736 * to the end of the request. An error requires the whole 1737 * length of the request to be reported finished with an error 1738 * to the block layer. In each case we update the xferred 1739 * count to indicate the whole request was satisfied. 1740 */ 1741 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1742 if (obj_request->result == -ENOENT) { 1743 if (obj_request->type == OBJ_REQUEST_BIO) 1744 zero_bio_chain(obj_request->bio_list, 0); 1745 else 1746 zero_pages(obj_request->pages, 0, length); 1747 obj_request->result = 0; 1748 } else if (xferred < length && !obj_request->result) { 1749 if (obj_request->type == OBJ_REQUEST_BIO) 1750 zero_bio_chain(obj_request->bio_list, xferred); 1751 else 1752 zero_pages(obj_request->pages, xferred, length); 1753 } 1754 obj_request->xferred = length; 1755 obj_request_done_set(obj_request); 1756 } 1757 1758 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1759 { 1760 dout("%s: obj %p cb %p\n", __func__, obj_request, 1761 obj_request->callback); 1762 if (obj_request->callback) 1763 obj_request->callback(obj_request); 1764 else 1765 complete_all(&obj_request->completion); 1766 } 1767 1768 static void rbd_obj_request_error(struct rbd_obj_request *obj_request, int err) 1769 { 1770 obj_request->result = err; 1771 obj_request->xferred = 0; 1772 /* 1773 * kludge - mirror rbd_obj_request_submit() to match a put in 1774 * rbd_img_obj_callback() 1775 */ 1776 if (obj_request_img_data_test(obj_request)) { 1777 WARN_ON(obj_request->callback != rbd_img_obj_callback); 1778 rbd_img_request_get(obj_request->img_request); 1779 } 1780 obj_request_done_set(obj_request); 1781 rbd_obj_request_complete(obj_request); 1782 } 1783 1784 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1785 { 1786 struct rbd_img_request *img_request = NULL; 1787 struct rbd_device *rbd_dev = NULL; 1788 bool layered = false; 1789 1790 if (obj_request_img_data_test(obj_request)) { 1791 img_request = obj_request->img_request; 1792 layered = img_request && img_request_layered_test(img_request); 1793 rbd_dev = img_request->rbd_dev; 1794 } 1795 1796 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1797 obj_request, img_request, obj_request->result, 1798 obj_request->xferred, obj_request->length); 1799 if (layered && obj_request->result == -ENOENT && 1800 obj_request->img_offset < rbd_dev->parent_overlap) 1801 rbd_img_parent_read(obj_request); 1802 else if (img_request) 1803 rbd_img_obj_request_read_callback(obj_request); 1804 else 1805 obj_request_done_set(obj_request); 1806 } 1807 1808 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1809 { 1810 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1811 obj_request->result, obj_request->length); 1812 /* 1813 * There is no such thing as a successful short write. Set 1814 * it to our originally-requested length. 1815 */ 1816 obj_request->xferred = obj_request->length; 1817 obj_request_done_set(obj_request); 1818 } 1819 1820 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request) 1821 { 1822 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1823 obj_request->result, obj_request->length); 1824 /* 1825 * There is no such thing as a successful short discard. Set 1826 * it to our originally-requested length. 1827 */ 1828 obj_request->xferred = obj_request->length; 1829 /* discarding a non-existent object is not a problem */ 1830 if (obj_request->result == -ENOENT) 1831 obj_request->result = 0; 1832 obj_request_done_set(obj_request); 1833 } 1834 1835 /* 1836 * For a simple stat call there's nothing to do. We'll do more if 1837 * this is part of a write sequence for a layered image. 1838 */ 1839 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1840 { 1841 dout("%s: obj %p\n", __func__, obj_request); 1842 obj_request_done_set(obj_request); 1843 } 1844 1845 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request) 1846 { 1847 dout("%s: obj %p\n", __func__, obj_request); 1848 1849 if (obj_request_img_data_test(obj_request)) 1850 rbd_osd_copyup_callback(obj_request); 1851 else 1852 obj_request_done_set(obj_request); 1853 } 1854 1855 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req) 1856 { 1857 struct rbd_obj_request *obj_request = osd_req->r_priv; 1858 u16 opcode; 1859 1860 dout("%s: osd_req %p\n", __func__, osd_req); 1861 rbd_assert(osd_req == obj_request->osd_req); 1862 if (obj_request_img_data_test(obj_request)) { 1863 rbd_assert(obj_request->img_request); 1864 rbd_assert(obj_request->which != BAD_WHICH); 1865 } else { 1866 rbd_assert(obj_request->which == BAD_WHICH); 1867 } 1868 1869 if (osd_req->r_result < 0) 1870 obj_request->result = osd_req->r_result; 1871 1872 /* 1873 * We support a 64-bit length, but ultimately it has to be 1874 * passed to the block layer, which just supports a 32-bit 1875 * length field. 1876 */ 1877 obj_request->xferred = osd_req->r_ops[0].outdata_len; 1878 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1879 1880 opcode = osd_req->r_ops[0].op; 1881 switch (opcode) { 1882 case CEPH_OSD_OP_READ: 1883 rbd_osd_read_callback(obj_request); 1884 break; 1885 case CEPH_OSD_OP_SETALLOCHINT: 1886 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE || 1887 osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL); 1888 /* fall through */ 1889 case CEPH_OSD_OP_WRITE: 1890 case CEPH_OSD_OP_WRITEFULL: 1891 rbd_osd_write_callback(obj_request); 1892 break; 1893 case CEPH_OSD_OP_STAT: 1894 rbd_osd_stat_callback(obj_request); 1895 break; 1896 case CEPH_OSD_OP_DELETE: 1897 case CEPH_OSD_OP_TRUNCATE: 1898 case CEPH_OSD_OP_ZERO: 1899 rbd_osd_discard_callback(obj_request); 1900 break; 1901 case CEPH_OSD_OP_CALL: 1902 rbd_osd_call_callback(obj_request); 1903 break; 1904 default: 1905 rbd_warn(NULL, "unexpected OSD op: object_no %016llx opcode %d", 1906 obj_request->object_no, opcode); 1907 break; 1908 } 1909 1910 if (obj_request_done_test(obj_request)) 1911 rbd_obj_request_complete(obj_request); 1912 } 1913 1914 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1915 { 1916 struct ceph_osd_request *osd_req = obj_request->osd_req; 1917 1918 rbd_assert(obj_request_img_data_test(obj_request)); 1919 osd_req->r_snapid = obj_request->img_request->snap_id; 1920 } 1921 1922 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1923 { 1924 struct ceph_osd_request *osd_req = obj_request->osd_req; 1925 1926 ktime_get_real_ts(&osd_req->r_mtime); 1927 osd_req->r_data_offset = obj_request->offset; 1928 } 1929 1930 static struct ceph_osd_request * 1931 __rbd_osd_req_create(struct rbd_device *rbd_dev, 1932 struct ceph_snap_context *snapc, 1933 int num_ops, unsigned int flags, 1934 struct rbd_obj_request *obj_request) 1935 { 1936 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1937 struct ceph_osd_request *req; 1938 const char *name_format = rbd_dev->image_format == 1 ? 1939 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT; 1940 1941 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO); 1942 if (!req) 1943 return NULL; 1944 1945 req->r_flags = flags; 1946 req->r_callback = rbd_osd_req_callback; 1947 req->r_priv = obj_request; 1948 1949 req->r_base_oloc.pool = rbd_dev->layout.pool_id; 1950 if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format, 1951 rbd_dev->header.object_prefix, obj_request->object_no)) 1952 goto err_req; 1953 1954 if (ceph_osdc_alloc_messages(req, GFP_NOIO)) 1955 goto err_req; 1956 1957 return req; 1958 1959 err_req: 1960 ceph_osdc_put_request(req); 1961 return NULL; 1962 } 1963 1964 /* 1965 * Create an osd request. A read request has one osd op (read). 1966 * A write request has either one (watch) or two (hint+write) osd ops. 1967 * (All rbd data writes are prefixed with an allocation hint op, but 1968 * technically osd watch is a write request, hence this distinction.) 1969 */ 1970 static struct ceph_osd_request *rbd_osd_req_create( 1971 struct rbd_device *rbd_dev, 1972 enum obj_operation_type op_type, 1973 unsigned int num_ops, 1974 struct rbd_obj_request *obj_request) 1975 { 1976 struct ceph_snap_context *snapc = NULL; 1977 1978 if (obj_request_img_data_test(obj_request) && 1979 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) { 1980 struct rbd_img_request *img_request = obj_request->img_request; 1981 if (op_type == OBJ_OP_WRITE) { 1982 rbd_assert(img_request_write_test(img_request)); 1983 } else { 1984 rbd_assert(img_request_discard_test(img_request)); 1985 } 1986 snapc = img_request->snapc; 1987 } 1988 1989 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2)); 1990 1991 return __rbd_osd_req_create(rbd_dev, snapc, num_ops, 1992 (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) ? 1993 CEPH_OSD_FLAG_WRITE : CEPH_OSD_FLAG_READ, obj_request); 1994 } 1995 1996 /* 1997 * Create a copyup osd request based on the information in the object 1998 * request supplied. A copyup request has two or three osd ops, a 1999 * copyup method call, potentially a hint op, and a write or truncate 2000 * or zero op. 2001 */ 2002 static struct ceph_osd_request * 2003 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 2004 { 2005 struct rbd_img_request *img_request; 2006 int num_osd_ops = 3; 2007 2008 rbd_assert(obj_request_img_data_test(obj_request)); 2009 img_request = obj_request->img_request; 2010 rbd_assert(img_request); 2011 rbd_assert(img_request_write_test(img_request) || 2012 img_request_discard_test(img_request)); 2013 2014 if (img_request_discard_test(img_request)) 2015 num_osd_ops = 2; 2016 2017 return __rbd_osd_req_create(img_request->rbd_dev, 2018 img_request->snapc, num_osd_ops, 2019 CEPH_OSD_FLAG_WRITE, obj_request); 2020 } 2021 2022 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 2023 { 2024 ceph_osdc_put_request(osd_req); 2025 } 2026 2027 static struct rbd_obj_request * 2028 rbd_obj_request_create(enum obj_request_type type) 2029 { 2030 struct rbd_obj_request *obj_request; 2031 2032 rbd_assert(obj_request_type_valid(type)); 2033 2034 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 2035 if (!obj_request) 2036 return NULL; 2037 2038 obj_request->which = BAD_WHICH; 2039 obj_request->type = type; 2040 INIT_LIST_HEAD(&obj_request->links); 2041 init_completion(&obj_request->completion); 2042 kref_init(&obj_request->kref); 2043 2044 dout("%s %p\n", __func__, obj_request); 2045 return obj_request; 2046 } 2047 2048 static void rbd_obj_request_destroy(struct kref *kref) 2049 { 2050 struct rbd_obj_request *obj_request; 2051 2052 obj_request = container_of(kref, struct rbd_obj_request, kref); 2053 2054 dout("%s: obj %p\n", __func__, obj_request); 2055 2056 rbd_assert(obj_request->img_request == NULL); 2057 rbd_assert(obj_request->which == BAD_WHICH); 2058 2059 if (obj_request->osd_req) 2060 rbd_osd_req_destroy(obj_request->osd_req); 2061 2062 rbd_assert(obj_request_type_valid(obj_request->type)); 2063 switch (obj_request->type) { 2064 case OBJ_REQUEST_NODATA: 2065 break; /* Nothing to do */ 2066 case OBJ_REQUEST_BIO: 2067 if (obj_request->bio_list) 2068 bio_chain_put(obj_request->bio_list); 2069 break; 2070 case OBJ_REQUEST_PAGES: 2071 /* img_data requests don't own their page array */ 2072 if (obj_request->pages && 2073 !obj_request_img_data_test(obj_request)) 2074 ceph_release_page_vector(obj_request->pages, 2075 obj_request->page_count); 2076 break; 2077 } 2078 2079 kmem_cache_free(rbd_obj_request_cache, obj_request); 2080 } 2081 2082 /* It's OK to call this for a device with no parent */ 2083 2084 static void rbd_spec_put(struct rbd_spec *spec); 2085 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 2086 { 2087 rbd_dev_remove_parent(rbd_dev); 2088 rbd_spec_put(rbd_dev->parent_spec); 2089 rbd_dev->parent_spec = NULL; 2090 rbd_dev->parent_overlap = 0; 2091 } 2092 2093 /* 2094 * Parent image reference counting is used to determine when an 2095 * image's parent fields can be safely torn down--after there are no 2096 * more in-flight requests to the parent image. When the last 2097 * reference is dropped, cleaning them up is safe. 2098 */ 2099 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 2100 { 2101 int counter; 2102 2103 if (!rbd_dev->parent_spec) 2104 return; 2105 2106 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 2107 if (counter > 0) 2108 return; 2109 2110 /* Last reference; clean up parent data structures */ 2111 2112 if (!counter) 2113 rbd_dev_unparent(rbd_dev); 2114 else 2115 rbd_warn(rbd_dev, "parent reference underflow"); 2116 } 2117 2118 /* 2119 * If an image has a non-zero parent overlap, get a reference to its 2120 * parent. 2121 * 2122 * Returns true if the rbd device has a parent with a non-zero 2123 * overlap and a reference for it was successfully taken, or 2124 * false otherwise. 2125 */ 2126 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 2127 { 2128 int counter = 0; 2129 2130 if (!rbd_dev->parent_spec) 2131 return false; 2132 2133 down_read(&rbd_dev->header_rwsem); 2134 if (rbd_dev->parent_overlap) 2135 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 2136 up_read(&rbd_dev->header_rwsem); 2137 2138 if (counter < 0) 2139 rbd_warn(rbd_dev, "parent reference overflow"); 2140 2141 return counter > 0; 2142 } 2143 2144 /* 2145 * Caller is responsible for filling in the list of object requests 2146 * that comprises the image request, and the Linux request pointer 2147 * (if there is one). 2148 */ 2149 static struct rbd_img_request *rbd_img_request_create( 2150 struct rbd_device *rbd_dev, 2151 u64 offset, u64 length, 2152 enum obj_operation_type op_type, 2153 struct ceph_snap_context *snapc) 2154 { 2155 struct rbd_img_request *img_request; 2156 2157 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2158 if (!img_request) 2159 return NULL; 2160 2161 img_request->rq = NULL; 2162 img_request->rbd_dev = rbd_dev; 2163 img_request->offset = offset; 2164 img_request->length = length; 2165 img_request->flags = 0; 2166 if (op_type == OBJ_OP_DISCARD) { 2167 img_request_discard_set(img_request); 2168 img_request->snapc = snapc; 2169 } else if (op_type == OBJ_OP_WRITE) { 2170 img_request_write_set(img_request); 2171 img_request->snapc = snapc; 2172 } else { 2173 img_request->snap_id = rbd_dev->spec->snap_id; 2174 } 2175 if (rbd_dev_parent_get(rbd_dev)) 2176 img_request_layered_set(img_request); 2177 spin_lock_init(&img_request->completion_lock); 2178 img_request->next_completion = 0; 2179 img_request->callback = NULL; 2180 img_request->result = 0; 2181 img_request->obj_request_count = 0; 2182 INIT_LIST_HEAD(&img_request->obj_requests); 2183 kref_init(&img_request->kref); 2184 2185 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 2186 obj_op_name(op_type), offset, length, img_request); 2187 2188 return img_request; 2189 } 2190 2191 static void rbd_img_request_destroy(struct kref *kref) 2192 { 2193 struct rbd_img_request *img_request; 2194 struct rbd_obj_request *obj_request; 2195 struct rbd_obj_request *next_obj_request; 2196 2197 img_request = container_of(kref, struct rbd_img_request, kref); 2198 2199 dout("%s: img %p\n", __func__, img_request); 2200 2201 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2202 rbd_img_obj_request_del(img_request, obj_request); 2203 rbd_assert(img_request->obj_request_count == 0); 2204 2205 if (img_request_layered_test(img_request)) { 2206 img_request_layered_clear(img_request); 2207 rbd_dev_parent_put(img_request->rbd_dev); 2208 } 2209 2210 if (img_request_write_test(img_request) || 2211 img_request_discard_test(img_request)) 2212 ceph_put_snap_context(img_request->snapc); 2213 2214 kmem_cache_free(rbd_img_request_cache, img_request); 2215 } 2216 2217 static struct rbd_img_request *rbd_parent_request_create( 2218 struct rbd_obj_request *obj_request, 2219 u64 img_offset, u64 length) 2220 { 2221 struct rbd_img_request *parent_request; 2222 struct rbd_device *rbd_dev; 2223 2224 rbd_assert(obj_request->img_request); 2225 rbd_dev = obj_request->img_request->rbd_dev; 2226 2227 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset, 2228 length, OBJ_OP_READ, NULL); 2229 if (!parent_request) 2230 return NULL; 2231 2232 img_request_child_set(parent_request); 2233 rbd_obj_request_get(obj_request); 2234 parent_request->obj_request = obj_request; 2235 2236 return parent_request; 2237 } 2238 2239 static void rbd_parent_request_destroy(struct kref *kref) 2240 { 2241 struct rbd_img_request *parent_request; 2242 struct rbd_obj_request *orig_request; 2243 2244 parent_request = container_of(kref, struct rbd_img_request, kref); 2245 orig_request = parent_request->obj_request; 2246 2247 parent_request->obj_request = NULL; 2248 rbd_obj_request_put(orig_request); 2249 img_request_child_clear(parent_request); 2250 2251 rbd_img_request_destroy(kref); 2252 } 2253 2254 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 2255 { 2256 struct rbd_img_request *img_request; 2257 unsigned int xferred; 2258 int result; 2259 bool more; 2260 2261 rbd_assert(obj_request_img_data_test(obj_request)); 2262 img_request = obj_request->img_request; 2263 2264 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 2265 xferred = (unsigned int)obj_request->xferred; 2266 result = obj_request->result; 2267 if (result) { 2268 struct rbd_device *rbd_dev = img_request->rbd_dev; 2269 enum obj_operation_type op_type; 2270 2271 if (img_request_discard_test(img_request)) 2272 op_type = OBJ_OP_DISCARD; 2273 else if (img_request_write_test(img_request)) 2274 op_type = OBJ_OP_WRITE; 2275 else 2276 op_type = OBJ_OP_READ; 2277 2278 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)", 2279 obj_op_name(op_type), obj_request->length, 2280 obj_request->img_offset, obj_request->offset); 2281 rbd_warn(rbd_dev, " result %d xferred %x", 2282 result, xferred); 2283 if (!img_request->result) 2284 img_request->result = result; 2285 /* 2286 * Need to end I/O on the entire obj_request worth of 2287 * bytes in case of error. 2288 */ 2289 xferred = obj_request->length; 2290 } 2291 2292 if (img_request_child_test(img_request)) { 2293 rbd_assert(img_request->obj_request != NULL); 2294 more = obj_request->which < img_request->obj_request_count - 1; 2295 } else { 2296 rbd_assert(img_request->rq != NULL); 2297 2298 more = blk_update_request(img_request->rq, result, xferred); 2299 if (!more) 2300 __blk_mq_end_request(img_request->rq, result); 2301 } 2302 2303 return more; 2304 } 2305 2306 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 2307 { 2308 struct rbd_img_request *img_request; 2309 u32 which = obj_request->which; 2310 bool more = true; 2311 2312 rbd_assert(obj_request_img_data_test(obj_request)); 2313 img_request = obj_request->img_request; 2314 2315 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 2316 rbd_assert(img_request != NULL); 2317 rbd_assert(img_request->obj_request_count > 0); 2318 rbd_assert(which != BAD_WHICH); 2319 rbd_assert(which < img_request->obj_request_count); 2320 2321 spin_lock_irq(&img_request->completion_lock); 2322 if (which != img_request->next_completion) 2323 goto out; 2324 2325 for_each_obj_request_from(img_request, obj_request) { 2326 rbd_assert(more); 2327 rbd_assert(which < img_request->obj_request_count); 2328 2329 if (!obj_request_done_test(obj_request)) 2330 break; 2331 more = rbd_img_obj_end_request(obj_request); 2332 which++; 2333 } 2334 2335 rbd_assert(more ^ (which == img_request->obj_request_count)); 2336 img_request->next_completion = which; 2337 out: 2338 spin_unlock_irq(&img_request->completion_lock); 2339 rbd_img_request_put(img_request); 2340 2341 if (!more) 2342 rbd_img_request_complete(img_request); 2343 } 2344 2345 /* 2346 * Add individual osd ops to the given ceph_osd_request and prepare 2347 * them for submission. num_ops is the current number of 2348 * osd operations already to the object request. 2349 */ 2350 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request, 2351 struct ceph_osd_request *osd_request, 2352 enum obj_operation_type op_type, 2353 unsigned int num_ops) 2354 { 2355 struct rbd_img_request *img_request = obj_request->img_request; 2356 struct rbd_device *rbd_dev = img_request->rbd_dev; 2357 u64 object_size = rbd_obj_bytes(&rbd_dev->header); 2358 u64 offset = obj_request->offset; 2359 u64 length = obj_request->length; 2360 u64 img_end; 2361 u16 opcode; 2362 2363 if (op_type == OBJ_OP_DISCARD) { 2364 if (!offset && length == object_size && 2365 (!img_request_layered_test(img_request) || 2366 !obj_request_overlaps_parent(obj_request))) { 2367 opcode = CEPH_OSD_OP_DELETE; 2368 } else if ((offset + length == object_size)) { 2369 opcode = CEPH_OSD_OP_TRUNCATE; 2370 } else { 2371 down_read(&rbd_dev->header_rwsem); 2372 img_end = rbd_dev->header.image_size; 2373 up_read(&rbd_dev->header_rwsem); 2374 2375 if (obj_request->img_offset + length == img_end) 2376 opcode = CEPH_OSD_OP_TRUNCATE; 2377 else 2378 opcode = CEPH_OSD_OP_ZERO; 2379 } 2380 } else if (op_type == OBJ_OP_WRITE) { 2381 if (!offset && length == object_size) 2382 opcode = CEPH_OSD_OP_WRITEFULL; 2383 else 2384 opcode = CEPH_OSD_OP_WRITE; 2385 osd_req_op_alloc_hint_init(osd_request, num_ops, 2386 object_size, object_size); 2387 num_ops++; 2388 } else { 2389 opcode = CEPH_OSD_OP_READ; 2390 } 2391 2392 if (opcode == CEPH_OSD_OP_DELETE) 2393 osd_req_op_init(osd_request, num_ops, opcode, 0); 2394 else 2395 osd_req_op_extent_init(osd_request, num_ops, opcode, 2396 offset, length, 0, 0); 2397 2398 if (obj_request->type == OBJ_REQUEST_BIO) 2399 osd_req_op_extent_osd_data_bio(osd_request, num_ops, 2400 obj_request->bio_list, length); 2401 else if (obj_request->type == OBJ_REQUEST_PAGES) 2402 osd_req_op_extent_osd_data_pages(osd_request, num_ops, 2403 obj_request->pages, length, 2404 offset & ~PAGE_MASK, false, false); 2405 2406 /* Discards are also writes */ 2407 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 2408 rbd_osd_req_format_write(obj_request); 2409 else 2410 rbd_osd_req_format_read(obj_request); 2411 } 2412 2413 /* 2414 * Split up an image request into one or more object requests, each 2415 * to a different object. The "type" parameter indicates whether 2416 * "data_desc" is the pointer to the head of a list of bio 2417 * structures, or the base of a page array. In either case this 2418 * function assumes data_desc describes memory sufficient to hold 2419 * all data described by the image request. 2420 */ 2421 static int rbd_img_request_fill(struct rbd_img_request *img_request, 2422 enum obj_request_type type, 2423 void *data_desc) 2424 { 2425 struct rbd_device *rbd_dev = img_request->rbd_dev; 2426 struct rbd_obj_request *obj_request = NULL; 2427 struct rbd_obj_request *next_obj_request; 2428 struct bio *bio_list = NULL; 2429 unsigned int bio_offset = 0; 2430 struct page **pages = NULL; 2431 enum obj_operation_type op_type; 2432 u64 img_offset; 2433 u64 resid; 2434 2435 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 2436 (int)type, data_desc); 2437 2438 img_offset = img_request->offset; 2439 resid = img_request->length; 2440 rbd_assert(resid > 0); 2441 op_type = rbd_img_request_op_type(img_request); 2442 2443 if (type == OBJ_REQUEST_BIO) { 2444 bio_list = data_desc; 2445 rbd_assert(img_offset == 2446 bio_list->bi_iter.bi_sector << SECTOR_SHIFT); 2447 } else if (type == OBJ_REQUEST_PAGES) { 2448 pages = data_desc; 2449 } 2450 2451 while (resid) { 2452 struct ceph_osd_request *osd_req; 2453 u64 object_no = img_offset >> rbd_dev->header.obj_order; 2454 u64 offset = rbd_segment_offset(rbd_dev, img_offset); 2455 u64 length = rbd_segment_length(rbd_dev, img_offset, resid); 2456 2457 obj_request = rbd_obj_request_create(type); 2458 if (!obj_request) 2459 goto out_unwind; 2460 2461 obj_request->object_no = object_no; 2462 obj_request->offset = offset; 2463 obj_request->length = length; 2464 2465 /* 2466 * set obj_request->img_request before creating the 2467 * osd_request so that it gets the right snapc 2468 */ 2469 rbd_img_obj_request_add(img_request, obj_request); 2470 2471 if (type == OBJ_REQUEST_BIO) { 2472 unsigned int clone_size; 2473 2474 rbd_assert(length <= (u64)UINT_MAX); 2475 clone_size = (unsigned int)length; 2476 obj_request->bio_list = 2477 bio_chain_clone_range(&bio_list, 2478 &bio_offset, 2479 clone_size, 2480 GFP_NOIO); 2481 if (!obj_request->bio_list) 2482 goto out_unwind; 2483 } else if (type == OBJ_REQUEST_PAGES) { 2484 unsigned int page_count; 2485 2486 obj_request->pages = pages; 2487 page_count = (u32)calc_pages_for(offset, length); 2488 obj_request->page_count = page_count; 2489 if ((offset + length) & ~PAGE_MASK) 2490 page_count--; /* more on last page */ 2491 pages += page_count; 2492 } 2493 2494 osd_req = rbd_osd_req_create(rbd_dev, op_type, 2495 (op_type == OBJ_OP_WRITE) ? 2 : 1, 2496 obj_request); 2497 if (!osd_req) 2498 goto out_unwind; 2499 2500 obj_request->osd_req = osd_req; 2501 obj_request->callback = rbd_img_obj_callback; 2502 obj_request->img_offset = img_offset; 2503 2504 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0); 2505 2506 img_offset += length; 2507 resid -= length; 2508 } 2509 2510 return 0; 2511 2512 out_unwind: 2513 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2514 rbd_img_obj_request_del(img_request, obj_request); 2515 2516 return -ENOMEM; 2517 } 2518 2519 static void 2520 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request) 2521 { 2522 struct rbd_img_request *img_request; 2523 struct rbd_device *rbd_dev; 2524 struct page **pages; 2525 u32 page_count; 2526 2527 dout("%s: obj %p\n", __func__, obj_request); 2528 2529 rbd_assert(obj_request->type == OBJ_REQUEST_BIO || 2530 obj_request->type == OBJ_REQUEST_NODATA); 2531 rbd_assert(obj_request_img_data_test(obj_request)); 2532 img_request = obj_request->img_request; 2533 rbd_assert(img_request); 2534 2535 rbd_dev = img_request->rbd_dev; 2536 rbd_assert(rbd_dev); 2537 2538 pages = obj_request->copyup_pages; 2539 rbd_assert(pages != NULL); 2540 obj_request->copyup_pages = NULL; 2541 page_count = obj_request->copyup_page_count; 2542 rbd_assert(page_count); 2543 obj_request->copyup_page_count = 0; 2544 ceph_release_page_vector(pages, page_count); 2545 2546 /* 2547 * We want the transfer count to reflect the size of the 2548 * original write request. There is no such thing as a 2549 * successful short write, so if the request was successful 2550 * we can just set it to the originally-requested length. 2551 */ 2552 if (!obj_request->result) 2553 obj_request->xferred = obj_request->length; 2554 2555 obj_request_done_set(obj_request); 2556 } 2557 2558 static void 2559 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2560 { 2561 struct rbd_obj_request *orig_request; 2562 struct ceph_osd_request *osd_req; 2563 struct rbd_device *rbd_dev; 2564 struct page **pages; 2565 enum obj_operation_type op_type; 2566 u32 page_count; 2567 int img_result; 2568 u64 parent_length; 2569 2570 rbd_assert(img_request_child_test(img_request)); 2571 2572 /* First get what we need from the image request */ 2573 2574 pages = img_request->copyup_pages; 2575 rbd_assert(pages != NULL); 2576 img_request->copyup_pages = NULL; 2577 page_count = img_request->copyup_page_count; 2578 rbd_assert(page_count); 2579 img_request->copyup_page_count = 0; 2580 2581 orig_request = img_request->obj_request; 2582 rbd_assert(orig_request != NULL); 2583 rbd_assert(obj_request_type_valid(orig_request->type)); 2584 img_result = img_request->result; 2585 parent_length = img_request->length; 2586 rbd_assert(img_result || parent_length == img_request->xferred); 2587 rbd_img_request_put(img_request); 2588 2589 rbd_assert(orig_request->img_request); 2590 rbd_dev = orig_request->img_request->rbd_dev; 2591 rbd_assert(rbd_dev); 2592 2593 /* 2594 * If the overlap has become 0 (most likely because the 2595 * image has been flattened) we need to free the pages 2596 * and re-submit the original write request. 2597 */ 2598 if (!rbd_dev->parent_overlap) { 2599 ceph_release_page_vector(pages, page_count); 2600 rbd_obj_request_submit(orig_request); 2601 return; 2602 } 2603 2604 if (img_result) 2605 goto out_err; 2606 2607 /* 2608 * The original osd request is of no use to use any more. 2609 * We need a new one that can hold the three ops in a copyup 2610 * request. Allocate the new copyup osd request for the 2611 * original request, and release the old one. 2612 */ 2613 img_result = -ENOMEM; 2614 osd_req = rbd_osd_req_create_copyup(orig_request); 2615 if (!osd_req) 2616 goto out_err; 2617 rbd_osd_req_destroy(orig_request->osd_req); 2618 orig_request->osd_req = osd_req; 2619 orig_request->copyup_pages = pages; 2620 orig_request->copyup_page_count = page_count; 2621 2622 /* Initialize the copyup op */ 2623 2624 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2625 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0, 2626 false, false); 2627 2628 /* Add the other op(s) */ 2629 2630 op_type = rbd_img_request_op_type(orig_request->img_request); 2631 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1); 2632 2633 /* All set, send it off. */ 2634 2635 rbd_obj_request_submit(orig_request); 2636 return; 2637 2638 out_err: 2639 ceph_release_page_vector(pages, page_count); 2640 rbd_obj_request_error(orig_request, img_result); 2641 } 2642 2643 /* 2644 * Read from the parent image the range of data that covers the 2645 * entire target of the given object request. This is used for 2646 * satisfying a layered image write request when the target of an 2647 * object request from the image request does not exist. 2648 * 2649 * A page array big enough to hold the returned data is allocated 2650 * and supplied to rbd_img_request_fill() as the "data descriptor." 2651 * When the read completes, this page array will be transferred to 2652 * the original object request for the copyup operation. 2653 * 2654 * If an error occurs, it is recorded as the result of the original 2655 * object request in rbd_img_obj_exists_callback(). 2656 */ 2657 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2658 { 2659 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 2660 struct rbd_img_request *parent_request = NULL; 2661 u64 img_offset; 2662 u64 length; 2663 struct page **pages = NULL; 2664 u32 page_count; 2665 int result; 2666 2667 rbd_assert(rbd_dev->parent != NULL); 2668 2669 /* 2670 * Determine the byte range covered by the object in the 2671 * child image to which the original request was to be sent. 2672 */ 2673 img_offset = obj_request->img_offset - obj_request->offset; 2674 length = rbd_obj_bytes(&rbd_dev->header); 2675 2676 /* 2677 * There is no defined parent data beyond the parent 2678 * overlap, so limit what we read at that boundary if 2679 * necessary. 2680 */ 2681 if (img_offset + length > rbd_dev->parent_overlap) { 2682 rbd_assert(img_offset < rbd_dev->parent_overlap); 2683 length = rbd_dev->parent_overlap - img_offset; 2684 } 2685 2686 /* 2687 * Allocate a page array big enough to receive the data read 2688 * from the parent. 2689 */ 2690 page_count = (u32)calc_pages_for(0, length); 2691 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2692 if (IS_ERR(pages)) { 2693 result = PTR_ERR(pages); 2694 pages = NULL; 2695 goto out_err; 2696 } 2697 2698 result = -ENOMEM; 2699 parent_request = rbd_parent_request_create(obj_request, 2700 img_offset, length); 2701 if (!parent_request) 2702 goto out_err; 2703 2704 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2705 if (result) 2706 goto out_err; 2707 2708 parent_request->copyup_pages = pages; 2709 parent_request->copyup_page_count = page_count; 2710 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2711 2712 result = rbd_img_request_submit(parent_request); 2713 if (!result) 2714 return 0; 2715 2716 parent_request->copyup_pages = NULL; 2717 parent_request->copyup_page_count = 0; 2718 parent_request->obj_request = NULL; 2719 rbd_obj_request_put(obj_request); 2720 out_err: 2721 if (pages) 2722 ceph_release_page_vector(pages, page_count); 2723 if (parent_request) 2724 rbd_img_request_put(parent_request); 2725 return result; 2726 } 2727 2728 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2729 { 2730 struct rbd_obj_request *orig_request; 2731 struct rbd_device *rbd_dev; 2732 int result; 2733 2734 rbd_assert(!obj_request_img_data_test(obj_request)); 2735 2736 /* 2737 * All we need from the object request is the original 2738 * request and the result of the STAT op. Grab those, then 2739 * we're done with the request. 2740 */ 2741 orig_request = obj_request->obj_request; 2742 obj_request->obj_request = NULL; 2743 rbd_obj_request_put(orig_request); 2744 rbd_assert(orig_request); 2745 rbd_assert(orig_request->img_request); 2746 2747 result = obj_request->result; 2748 obj_request->result = 0; 2749 2750 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2751 obj_request, orig_request, result, 2752 obj_request->xferred, obj_request->length); 2753 rbd_obj_request_put(obj_request); 2754 2755 /* 2756 * If the overlap has become 0 (most likely because the 2757 * image has been flattened) we need to re-submit the 2758 * original request. 2759 */ 2760 rbd_dev = orig_request->img_request->rbd_dev; 2761 if (!rbd_dev->parent_overlap) { 2762 rbd_obj_request_submit(orig_request); 2763 return; 2764 } 2765 2766 /* 2767 * Our only purpose here is to determine whether the object 2768 * exists, and we don't want to treat the non-existence as 2769 * an error. If something else comes back, transfer the 2770 * error to the original request and complete it now. 2771 */ 2772 if (!result) { 2773 obj_request_existence_set(orig_request, true); 2774 } else if (result == -ENOENT) { 2775 obj_request_existence_set(orig_request, false); 2776 } else { 2777 goto fail_orig_request; 2778 } 2779 2780 /* 2781 * Resubmit the original request now that we have recorded 2782 * whether the target object exists. 2783 */ 2784 result = rbd_img_obj_request_submit(orig_request); 2785 if (result) 2786 goto fail_orig_request; 2787 2788 return; 2789 2790 fail_orig_request: 2791 rbd_obj_request_error(orig_request, result); 2792 } 2793 2794 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2795 { 2796 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 2797 struct rbd_obj_request *stat_request; 2798 struct page **pages; 2799 u32 page_count; 2800 size_t size; 2801 int ret; 2802 2803 stat_request = rbd_obj_request_create(OBJ_REQUEST_PAGES); 2804 if (!stat_request) 2805 return -ENOMEM; 2806 2807 stat_request->object_no = obj_request->object_no; 2808 2809 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 2810 stat_request); 2811 if (!stat_request->osd_req) { 2812 ret = -ENOMEM; 2813 goto fail_stat_request; 2814 } 2815 2816 /* 2817 * The response data for a STAT call consists of: 2818 * le64 length; 2819 * struct { 2820 * le32 tv_sec; 2821 * le32 tv_nsec; 2822 * } mtime; 2823 */ 2824 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2825 page_count = (u32)calc_pages_for(0, size); 2826 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2827 if (IS_ERR(pages)) { 2828 ret = PTR_ERR(pages); 2829 goto fail_stat_request; 2830 } 2831 2832 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0); 2833 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2834 false, false); 2835 2836 rbd_obj_request_get(obj_request); 2837 stat_request->obj_request = obj_request; 2838 stat_request->pages = pages; 2839 stat_request->page_count = page_count; 2840 stat_request->callback = rbd_img_obj_exists_callback; 2841 2842 rbd_obj_request_submit(stat_request); 2843 return 0; 2844 2845 fail_stat_request: 2846 rbd_obj_request_put(stat_request); 2847 return ret; 2848 } 2849 2850 static bool img_obj_request_simple(struct rbd_obj_request *obj_request) 2851 { 2852 struct rbd_img_request *img_request = obj_request->img_request; 2853 struct rbd_device *rbd_dev = img_request->rbd_dev; 2854 2855 /* Reads */ 2856 if (!img_request_write_test(img_request) && 2857 !img_request_discard_test(img_request)) 2858 return true; 2859 2860 /* Non-layered writes */ 2861 if (!img_request_layered_test(img_request)) 2862 return true; 2863 2864 /* 2865 * Layered writes outside of the parent overlap range don't 2866 * share any data with the parent. 2867 */ 2868 if (!obj_request_overlaps_parent(obj_request)) 2869 return true; 2870 2871 /* 2872 * Entire-object layered writes - we will overwrite whatever 2873 * parent data there is anyway. 2874 */ 2875 if (!obj_request->offset && 2876 obj_request->length == rbd_obj_bytes(&rbd_dev->header)) 2877 return true; 2878 2879 /* 2880 * If the object is known to already exist, its parent data has 2881 * already been copied. 2882 */ 2883 if (obj_request_known_test(obj_request) && 2884 obj_request_exists_test(obj_request)) 2885 return true; 2886 2887 return false; 2888 } 2889 2890 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2891 { 2892 rbd_assert(obj_request_img_data_test(obj_request)); 2893 rbd_assert(obj_request_type_valid(obj_request->type)); 2894 rbd_assert(obj_request->img_request); 2895 2896 if (img_obj_request_simple(obj_request)) { 2897 rbd_obj_request_submit(obj_request); 2898 return 0; 2899 } 2900 2901 /* 2902 * It's a layered write. The target object might exist but 2903 * we may not know that yet. If we know it doesn't exist, 2904 * start by reading the data for the full target object from 2905 * the parent so we can use it for a copyup to the target. 2906 */ 2907 if (obj_request_known_test(obj_request)) 2908 return rbd_img_obj_parent_read_full(obj_request); 2909 2910 /* We don't know whether the target exists. Go find out. */ 2911 2912 return rbd_img_obj_exists_submit(obj_request); 2913 } 2914 2915 static int rbd_img_request_submit(struct rbd_img_request *img_request) 2916 { 2917 struct rbd_obj_request *obj_request; 2918 struct rbd_obj_request *next_obj_request; 2919 int ret = 0; 2920 2921 dout("%s: img %p\n", __func__, img_request); 2922 2923 rbd_img_request_get(img_request); 2924 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 2925 ret = rbd_img_obj_request_submit(obj_request); 2926 if (ret) 2927 goto out_put_ireq; 2928 } 2929 2930 out_put_ireq: 2931 rbd_img_request_put(img_request); 2932 return ret; 2933 } 2934 2935 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 2936 { 2937 struct rbd_obj_request *obj_request; 2938 struct rbd_device *rbd_dev; 2939 u64 obj_end; 2940 u64 img_xferred; 2941 int img_result; 2942 2943 rbd_assert(img_request_child_test(img_request)); 2944 2945 /* First get what we need from the image request and release it */ 2946 2947 obj_request = img_request->obj_request; 2948 img_xferred = img_request->xferred; 2949 img_result = img_request->result; 2950 rbd_img_request_put(img_request); 2951 2952 /* 2953 * If the overlap has become 0 (most likely because the 2954 * image has been flattened) we need to re-submit the 2955 * original request. 2956 */ 2957 rbd_assert(obj_request); 2958 rbd_assert(obj_request->img_request); 2959 rbd_dev = obj_request->img_request->rbd_dev; 2960 if (!rbd_dev->parent_overlap) { 2961 rbd_obj_request_submit(obj_request); 2962 return; 2963 } 2964 2965 obj_request->result = img_result; 2966 if (obj_request->result) 2967 goto out; 2968 2969 /* 2970 * We need to zero anything beyond the parent overlap 2971 * boundary. Since rbd_img_obj_request_read_callback() 2972 * will zero anything beyond the end of a short read, an 2973 * easy way to do this is to pretend the data from the 2974 * parent came up short--ending at the overlap boundary. 2975 */ 2976 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 2977 obj_end = obj_request->img_offset + obj_request->length; 2978 if (obj_end > rbd_dev->parent_overlap) { 2979 u64 xferred = 0; 2980 2981 if (obj_request->img_offset < rbd_dev->parent_overlap) 2982 xferred = rbd_dev->parent_overlap - 2983 obj_request->img_offset; 2984 2985 obj_request->xferred = min(img_xferred, xferred); 2986 } else { 2987 obj_request->xferred = img_xferred; 2988 } 2989 out: 2990 rbd_img_obj_request_read_callback(obj_request); 2991 rbd_obj_request_complete(obj_request); 2992 } 2993 2994 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 2995 { 2996 struct rbd_img_request *img_request; 2997 int result; 2998 2999 rbd_assert(obj_request_img_data_test(obj_request)); 3000 rbd_assert(obj_request->img_request != NULL); 3001 rbd_assert(obj_request->result == (s32) -ENOENT); 3002 rbd_assert(obj_request_type_valid(obj_request->type)); 3003 3004 /* rbd_read_finish(obj_request, obj_request->length); */ 3005 img_request = rbd_parent_request_create(obj_request, 3006 obj_request->img_offset, 3007 obj_request->length); 3008 result = -ENOMEM; 3009 if (!img_request) 3010 goto out_err; 3011 3012 if (obj_request->type == OBJ_REQUEST_BIO) 3013 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3014 obj_request->bio_list); 3015 else 3016 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES, 3017 obj_request->pages); 3018 if (result) 3019 goto out_err; 3020 3021 img_request->callback = rbd_img_parent_read_callback; 3022 result = rbd_img_request_submit(img_request); 3023 if (result) 3024 goto out_err; 3025 3026 return; 3027 out_err: 3028 if (img_request) 3029 rbd_img_request_put(img_request); 3030 obj_request->result = result; 3031 obj_request->xferred = 0; 3032 obj_request_done_set(obj_request); 3033 } 3034 3035 static const struct rbd_client_id rbd_empty_cid; 3036 3037 static bool rbd_cid_equal(const struct rbd_client_id *lhs, 3038 const struct rbd_client_id *rhs) 3039 { 3040 return lhs->gid == rhs->gid && lhs->handle == rhs->handle; 3041 } 3042 3043 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev) 3044 { 3045 struct rbd_client_id cid; 3046 3047 mutex_lock(&rbd_dev->watch_mutex); 3048 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client); 3049 cid.handle = rbd_dev->watch_cookie; 3050 mutex_unlock(&rbd_dev->watch_mutex); 3051 return cid; 3052 } 3053 3054 /* 3055 * lock_rwsem must be held for write 3056 */ 3057 static void rbd_set_owner_cid(struct rbd_device *rbd_dev, 3058 const struct rbd_client_id *cid) 3059 { 3060 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev, 3061 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle, 3062 cid->gid, cid->handle); 3063 rbd_dev->owner_cid = *cid; /* struct */ 3064 } 3065 3066 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf) 3067 { 3068 mutex_lock(&rbd_dev->watch_mutex); 3069 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie); 3070 mutex_unlock(&rbd_dev->watch_mutex); 3071 } 3072 3073 /* 3074 * lock_rwsem must be held for write 3075 */ 3076 static int rbd_lock(struct rbd_device *rbd_dev) 3077 { 3078 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3079 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3080 char cookie[32]; 3081 int ret; 3082 3083 WARN_ON(__rbd_is_lock_owner(rbd_dev) || 3084 rbd_dev->lock_cookie[0] != '\0'); 3085 3086 format_lock_cookie(rbd_dev, cookie); 3087 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3088 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie, 3089 RBD_LOCK_TAG, "", 0); 3090 if (ret) 3091 return ret; 3092 3093 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED; 3094 strcpy(rbd_dev->lock_cookie, cookie); 3095 rbd_set_owner_cid(rbd_dev, &cid); 3096 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work); 3097 return 0; 3098 } 3099 3100 /* 3101 * lock_rwsem must be held for write 3102 */ 3103 static void rbd_unlock(struct rbd_device *rbd_dev) 3104 { 3105 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3106 int ret; 3107 3108 WARN_ON(!__rbd_is_lock_owner(rbd_dev) || 3109 rbd_dev->lock_cookie[0] == '\0'); 3110 3111 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3112 RBD_LOCK_NAME, rbd_dev->lock_cookie); 3113 if (ret && ret != -ENOENT) 3114 rbd_warn(rbd_dev, "failed to unlock: %d", ret); 3115 3116 /* treat errors as the image is unlocked */ 3117 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 3118 rbd_dev->lock_cookie[0] = '\0'; 3119 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3120 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work); 3121 } 3122 3123 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev, 3124 enum rbd_notify_op notify_op, 3125 struct page ***preply_pages, 3126 size_t *preply_len) 3127 { 3128 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3129 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3130 int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN; 3131 char buf[buf_size]; 3132 void *p = buf; 3133 3134 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op); 3135 3136 /* encode *LockPayload NotifyMessage (op + ClientId) */ 3137 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN); 3138 ceph_encode_32(&p, notify_op); 3139 ceph_encode_64(&p, cid.gid); 3140 ceph_encode_64(&p, cid.handle); 3141 3142 return ceph_osdc_notify(osdc, &rbd_dev->header_oid, 3143 &rbd_dev->header_oloc, buf, buf_size, 3144 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len); 3145 } 3146 3147 static void rbd_notify_op_lock(struct rbd_device *rbd_dev, 3148 enum rbd_notify_op notify_op) 3149 { 3150 struct page **reply_pages; 3151 size_t reply_len; 3152 3153 __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len); 3154 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3155 } 3156 3157 static void rbd_notify_acquired_lock(struct work_struct *work) 3158 { 3159 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3160 acquired_lock_work); 3161 3162 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK); 3163 } 3164 3165 static void rbd_notify_released_lock(struct work_struct *work) 3166 { 3167 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3168 released_lock_work); 3169 3170 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK); 3171 } 3172 3173 static int rbd_request_lock(struct rbd_device *rbd_dev) 3174 { 3175 struct page **reply_pages; 3176 size_t reply_len; 3177 bool lock_owner_responded = false; 3178 int ret; 3179 3180 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3181 3182 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK, 3183 &reply_pages, &reply_len); 3184 if (ret && ret != -ETIMEDOUT) { 3185 rbd_warn(rbd_dev, "failed to request lock: %d", ret); 3186 goto out; 3187 } 3188 3189 if (reply_len > 0 && reply_len <= PAGE_SIZE) { 3190 void *p = page_address(reply_pages[0]); 3191 void *const end = p + reply_len; 3192 u32 n; 3193 3194 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */ 3195 while (n--) { 3196 u8 struct_v; 3197 u32 len; 3198 3199 ceph_decode_need(&p, end, 8 + 8, e_inval); 3200 p += 8 + 8; /* skip gid and cookie */ 3201 3202 ceph_decode_32_safe(&p, end, len, e_inval); 3203 if (!len) 3204 continue; 3205 3206 if (lock_owner_responded) { 3207 rbd_warn(rbd_dev, 3208 "duplicate lock owners detected"); 3209 ret = -EIO; 3210 goto out; 3211 } 3212 3213 lock_owner_responded = true; 3214 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage", 3215 &struct_v, &len); 3216 if (ret) { 3217 rbd_warn(rbd_dev, 3218 "failed to decode ResponseMessage: %d", 3219 ret); 3220 goto e_inval; 3221 } 3222 3223 ret = ceph_decode_32(&p); 3224 } 3225 } 3226 3227 if (!lock_owner_responded) { 3228 rbd_warn(rbd_dev, "no lock owners detected"); 3229 ret = -ETIMEDOUT; 3230 } 3231 3232 out: 3233 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3234 return ret; 3235 3236 e_inval: 3237 ret = -EINVAL; 3238 goto out; 3239 } 3240 3241 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all) 3242 { 3243 dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all); 3244 3245 cancel_delayed_work(&rbd_dev->lock_dwork); 3246 if (wake_all) 3247 wake_up_all(&rbd_dev->lock_waitq); 3248 else 3249 wake_up(&rbd_dev->lock_waitq); 3250 } 3251 3252 static int get_lock_owner_info(struct rbd_device *rbd_dev, 3253 struct ceph_locker **lockers, u32 *num_lockers) 3254 { 3255 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3256 u8 lock_type; 3257 char *lock_tag; 3258 int ret; 3259 3260 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3261 3262 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid, 3263 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3264 &lock_type, &lock_tag, lockers, num_lockers); 3265 if (ret) 3266 return ret; 3267 3268 if (*num_lockers == 0) { 3269 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev); 3270 goto out; 3271 } 3272 3273 if (strcmp(lock_tag, RBD_LOCK_TAG)) { 3274 rbd_warn(rbd_dev, "locked by external mechanism, tag %s", 3275 lock_tag); 3276 ret = -EBUSY; 3277 goto out; 3278 } 3279 3280 if (lock_type == CEPH_CLS_LOCK_SHARED) { 3281 rbd_warn(rbd_dev, "shared lock type detected"); 3282 ret = -EBUSY; 3283 goto out; 3284 } 3285 3286 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX, 3287 strlen(RBD_LOCK_COOKIE_PREFIX))) { 3288 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s", 3289 (*lockers)[0].id.cookie); 3290 ret = -EBUSY; 3291 goto out; 3292 } 3293 3294 out: 3295 kfree(lock_tag); 3296 return ret; 3297 } 3298 3299 static int find_watcher(struct rbd_device *rbd_dev, 3300 const struct ceph_locker *locker) 3301 { 3302 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3303 struct ceph_watch_item *watchers; 3304 u32 num_watchers; 3305 u64 cookie; 3306 int i; 3307 int ret; 3308 3309 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid, 3310 &rbd_dev->header_oloc, &watchers, 3311 &num_watchers); 3312 if (ret) 3313 return ret; 3314 3315 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie); 3316 for (i = 0; i < num_watchers; i++) { 3317 if (!memcmp(&watchers[i].addr, &locker->info.addr, 3318 sizeof(locker->info.addr)) && 3319 watchers[i].cookie == cookie) { 3320 struct rbd_client_id cid = { 3321 .gid = le64_to_cpu(watchers[i].name.num), 3322 .handle = cookie, 3323 }; 3324 3325 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__, 3326 rbd_dev, cid.gid, cid.handle); 3327 rbd_set_owner_cid(rbd_dev, &cid); 3328 ret = 1; 3329 goto out; 3330 } 3331 } 3332 3333 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev); 3334 ret = 0; 3335 out: 3336 kfree(watchers); 3337 return ret; 3338 } 3339 3340 /* 3341 * lock_rwsem must be held for write 3342 */ 3343 static int rbd_try_lock(struct rbd_device *rbd_dev) 3344 { 3345 struct ceph_client *client = rbd_dev->rbd_client->client; 3346 struct ceph_locker *lockers; 3347 u32 num_lockers; 3348 int ret; 3349 3350 for (;;) { 3351 ret = rbd_lock(rbd_dev); 3352 if (ret != -EBUSY) 3353 return ret; 3354 3355 /* determine if the current lock holder is still alive */ 3356 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers); 3357 if (ret) 3358 return ret; 3359 3360 if (num_lockers == 0) 3361 goto again; 3362 3363 ret = find_watcher(rbd_dev, lockers); 3364 if (ret) { 3365 if (ret > 0) 3366 ret = 0; /* have to request lock */ 3367 goto out; 3368 } 3369 3370 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock", 3371 ENTITY_NAME(lockers[0].id.name)); 3372 3373 ret = ceph_monc_blacklist_add(&client->monc, 3374 &lockers[0].info.addr); 3375 if (ret) { 3376 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d", 3377 ENTITY_NAME(lockers[0].id.name), ret); 3378 goto out; 3379 } 3380 3381 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid, 3382 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3383 lockers[0].id.cookie, 3384 &lockers[0].id.name); 3385 if (ret && ret != -ENOENT) 3386 goto out; 3387 3388 again: 3389 ceph_free_lockers(lockers, num_lockers); 3390 } 3391 3392 out: 3393 ceph_free_lockers(lockers, num_lockers); 3394 return ret; 3395 } 3396 3397 /* 3398 * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED 3399 */ 3400 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev, 3401 int *pret) 3402 { 3403 enum rbd_lock_state lock_state; 3404 3405 down_read(&rbd_dev->lock_rwsem); 3406 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 3407 rbd_dev->lock_state); 3408 if (__rbd_is_lock_owner(rbd_dev)) { 3409 lock_state = rbd_dev->lock_state; 3410 up_read(&rbd_dev->lock_rwsem); 3411 return lock_state; 3412 } 3413 3414 up_read(&rbd_dev->lock_rwsem); 3415 down_write(&rbd_dev->lock_rwsem); 3416 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 3417 rbd_dev->lock_state); 3418 if (!__rbd_is_lock_owner(rbd_dev)) { 3419 *pret = rbd_try_lock(rbd_dev); 3420 if (*pret) 3421 rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret); 3422 } 3423 3424 lock_state = rbd_dev->lock_state; 3425 up_write(&rbd_dev->lock_rwsem); 3426 return lock_state; 3427 } 3428 3429 static void rbd_acquire_lock(struct work_struct *work) 3430 { 3431 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 3432 struct rbd_device, lock_dwork); 3433 enum rbd_lock_state lock_state; 3434 int ret; 3435 3436 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3437 again: 3438 lock_state = rbd_try_acquire_lock(rbd_dev, &ret); 3439 if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) { 3440 if (lock_state == RBD_LOCK_STATE_LOCKED) 3441 wake_requests(rbd_dev, true); 3442 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__, 3443 rbd_dev, lock_state, ret); 3444 return; 3445 } 3446 3447 ret = rbd_request_lock(rbd_dev); 3448 if (ret == -ETIMEDOUT) { 3449 goto again; /* treat this as a dead client */ 3450 } else if (ret == -EROFS) { 3451 rbd_warn(rbd_dev, "peer will not release lock"); 3452 /* 3453 * If this is rbd_add_acquire_lock(), we want to fail 3454 * immediately -- reuse BLACKLISTED flag. Otherwise we 3455 * want to block. 3456 */ 3457 if (!(rbd_dev->disk->flags & GENHD_FL_UP)) { 3458 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags); 3459 /* wake "rbd map --exclusive" process */ 3460 wake_requests(rbd_dev, false); 3461 } 3462 } else if (ret < 0) { 3463 rbd_warn(rbd_dev, "error requesting lock: %d", ret); 3464 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 3465 RBD_RETRY_DELAY); 3466 } else { 3467 /* 3468 * lock owner acked, but resend if we don't see them 3469 * release the lock 3470 */ 3471 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__, 3472 rbd_dev); 3473 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 3474 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC)); 3475 } 3476 } 3477 3478 /* 3479 * lock_rwsem must be held for write 3480 */ 3481 static bool rbd_release_lock(struct rbd_device *rbd_dev) 3482 { 3483 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 3484 rbd_dev->lock_state); 3485 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED) 3486 return false; 3487 3488 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING; 3489 downgrade_write(&rbd_dev->lock_rwsem); 3490 /* 3491 * Ensure that all in-flight IO is flushed. 3492 * 3493 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which 3494 * may be shared with other devices. 3495 */ 3496 ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc); 3497 up_read(&rbd_dev->lock_rwsem); 3498 3499 down_write(&rbd_dev->lock_rwsem); 3500 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 3501 rbd_dev->lock_state); 3502 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING) 3503 return false; 3504 3505 rbd_unlock(rbd_dev); 3506 /* 3507 * Give others a chance to grab the lock - we would re-acquire 3508 * almost immediately if we got new IO during ceph_osdc_sync() 3509 * otherwise. We need to ack our own notifications, so this 3510 * lock_dwork will be requeued from rbd_wait_state_locked() 3511 * after wake_requests() in rbd_handle_released_lock(). 3512 */ 3513 cancel_delayed_work(&rbd_dev->lock_dwork); 3514 return true; 3515 } 3516 3517 static void rbd_release_lock_work(struct work_struct *work) 3518 { 3519 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3520 unlock_work); 3521 3522 down_write(&rbd_dev->lock_rwsem); 3523 rbd_release_lock(rbd_dev); 3524 up_write(&rbd_dev->lock_rwsem); 3525 } 3526 3527 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v, 3528 void **p) 3529 { 3530 struct rbd_client_id cid = { 0 }; 3531 3532 if (struct_v >= 2) { 3533 cid.gid = ceph_decode_64(p); 3534 cid.handle = ceph_decode_64(p); 3535 } 3536 3537 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3538 cid.handle); 3539 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 3540 down_write(&rbd_dev->lock_rwsem); 3541 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 3542 /* 3543 * we already know that the remote client is 3544 * the owner 3545 */ 3546 up_write(&rbd_dev->lock_rwsem); 3547 return; 3548 } 3549 3550 rbd_set_owner_cid(rbd_dev, &cid); 3551 downgrade_write(&rbd_dev->lock_rwsem); 3552 } else { 3553 down_read(&rbd_dev->lock_rwsem); 3554 } 3555 3556 if (!__rbd_is_lock_owner(rbd_dev)) 3557 wake_requests(rbd_dev, false); 3558 up_read(&rbd_dev->lock_rwsem); 3559 } 3560 3561 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v, 3562 void **p) 3563 { 3564 struct rbd_client_id cid = { 0 }; 3565 3566 if (struct_v >= 2) { 3567 cid.gid = ceph_decode_64(p); 3568 cid.handle = ceph_decode_64(p); 3569 } 3570 3571 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3572 cid.handle); 3573 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 3574 down_write(&rbd_dev->lock_rwsem); 3575 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 3576 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n", 3577 __func__, rbd_dev, cid.gid, cid.handle, 3578 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle); 3579 up_write(&rbd_dev->lock_rwsem); 3580 return; 3581 } 3582 3583 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3584 downgrade_write(&rbd_dev->lock_rwsem); 3585 } else { 3586 down_read(&rbd_dev->lock_rwsem); 3587 } 3588 3589 if (!__rbd_is_lock_owner(rbd_dev)) 3590 wake_requests(rbd_dev, false); 3591 up_read(&rbd_dev->lock_rwsem); 3592 } 3593 3594 /* 3595 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no 3596 * ResponseMessage is needed. 3597 */ 3598 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v, 3599 void **p) 3600 { 3601 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev); 3602 struct rbd_client_id cid = { 0 }; 3603 int result = 1; 3604 3605 if (struct_v >= 2) { 3606 cid.gid = ceph_decode_64(p); 3607 cid.handle = ceph_decode_64(p); 3608 } 3609 3610 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3611 cid.handle); 3612 if (rbd_cid_equal(&cid, &my_cid)) 3613 return result; 3614 3615 down_read(&rbd_dev->lock_rwsem); 3616 if (__rbd_is_lock_owner(rbd_dev)) { 3617 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED && 3618 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) 3619 goto out_unlock; 3620 3621 /* 3622 * encode ResponseMessage(0) so the peer can detect 3623 * a missing owner 3624 */ 3625 result = 0; 3626 3627 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) { 3628 if (!rbd_dev->opts->exclusive) { 3629 dout("%s rbd_dev %p queueing unlock_work\n", 3630 __func__, rbd_dev); 3631 queue_work(rbd_dev->task_wq, 3632 &rbd_dev->unlock_work); 3633 } else { 3634 /* refuse to release the lock */ 3635 result = -EROFS; 3636 } 3637 } 3638 } 3639 3640 out_unlock: 3641 up_read(&rbd_dev->lock_rwsem); 3642 return result; 3643 } 3644 3645 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev, 3646 u64 notify_id, u64 cookie, s32 *result) 3647 { 3648 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3649 int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN; 3650 char buf[buf_size]; 3651 int ret; 3652 3653 if (result) { 3654 void *p = buf; 3655 3656 /* encode ResponseMessage */ 3657 ceph_start_encoding(&p, 1, 1, 3658 buf_size - CEPH_ENCODING_START_BLK_LEN); 3659 ceph_encode_32(&p, *result); 3660 } else { 3661 buf_size = 0; 3662 } 3663 3664 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid, 3665 &rbd_dev->header_oloc, notify_id, cookie, 3666 buf, buf_size); 3667 if (ret) 3668 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret); 3669 } 3670 3671 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id, 3672 u64 cookie) 3673 { 3674 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3675 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL); 3676 } 3677 3678 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev, 3679 u64 notify_id, u64 cookie, s32 result) 3680 { 3681 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 3682 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result); 3683 } 3684 3685 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie, 3686 u64 notifier_id, void *data, size_t data_len) 3687 { 3688 struct rbd_device *rbd_dev = arg; 3689 void *p = data; 3690 void *const end = p + data_len; 3691 u8 struct_v = 0; 3692 u32 len; 3693 u32 notify_op; 3694 int ret; 3695 3696 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n", 3697 __func__, rbd_dev, cookie, notify_id, data_len); 3698 if (data_len) { 3699 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage", 3700 &struct_v, &len); 3701 if (ret) { 3702 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d", 3703 ret); 3704 return; 3705 } 3706 3707 notify_op = ceph_decode_32(&p); 3708 } else { 3709 /* legacy notification for header updates */ 3710 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE; 3711 len = 0; 3712 } 3713 3714 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op); 3715 switch (notify_op) { 3716 case RBD_NOTIFY_OP_ACQUIRED_LOCK: 3717 rbd_handle_acquired_lock(rbd_dev, struct_v, &p); 3718 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3719 break; 3720 case RBD_NOTIFY_OP_RELEASED_LOCK: 3721 rbd_handle_released_lock(rbd_dev, struct_v, &p); 3722 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3723 break; 3724 case RBD_NOTIFY_OP_REQUEST_LOCK: 3725 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p); 3726 if (ret <= 0) 3727 rbd_acknowledge_notify_result(rbd_dev, notify_id, 3728 cookie, ret); 3729 else 3730 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3731 break; 3732 case RBD_NOTIFY_OP_HEADER_UPDATE: 3733 ret = rbd_dev_refresh(rbd_dev); 3734 if (ret) 3735 rbd_warn(rbd_dev, "refresh failed: %d", ret); 3736 3737 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3738 break; 3739 default: 3740 if (rbd_is_lock_owner(rbd_dev)) 3741 rbd_acknowledge_notify_result(rbd_dev, notify_id, 3742 cookie, -EOPNOTSUPP); 3743 else 3744 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3745 break; 3746 } 3747 } 3748 3749 static void __rbd_unregister_watch(struct rbd_device *rbd_dev); 3750 3751 static void rbd_watch_errcb(void *arg, u64 cookie, int err) 3752 { 3753 struct rbd_device *rbd_dev = arg; 3754 3755 rbd_warn(rbd_dev, "encountered watch error: %d", err); 3756 3757 down_write(&rbd_dev->lock_rwsem); 3758 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3759 up_write(&rbd_dev->lock_rwsem); 3760 3761 mutex_lock(&rbd_dev->watch_mutex); 3762 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) { 3763 __rbd_unregister_watch(rbd_dev); 3764 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR; 3765 3766 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0); 3767 } 3768 mutex_unlock(&rbd_dev->watch_mutex); 3769 } 3770 3771 /* 3772 * watch_mutex must be locked 3773 */ 3774 static int __rbd_register_watch(struct rbd_device *rbd_dev) 3775 { 3776 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3777 struct ceph_osd_linger_request *handle; 3778 3779 rbd_assert(!rbd_dev->watch_handle); 3780 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3781 3782 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid, 3783 &rbd_dev->header_oloc, rbd_watch_cb, 3784 rbd_watch_errcb, rbd_dev); 3785 if (IS_ERR(handle)) 3786 return PTR_ERR(handle); 3787 3788 rbd_dev->watch_handle = handle; 3789 return 0; 3790 } 3791 3792 /* 3793 * watch_mutex must be locked 3794 */ 3795 static void __rbd_unregister_watch(struct rbd_device *rbd_dev) 3796 { 3797 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3798 int ret; 3799 3800 rbd_assert(rbd_dev->watch_handle); 3801 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3802 3803 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle); 3804 if (ret) 3805 rbd_warn(rbd_dev, "failed to unwatch: %d", ret); 3806 3807 rbd_dev->watch_handle = NULL; 3808 } 3809 3810 static int rbd_register_watch(struct rbd_device *rbd_dev) 3811 { 3812 int ret; 3813 3814 mutex_lock(&rbd_dev->watch_mutex); 3815 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED); 3816 ret = __rbd_register_watch(rbd_dev); 3817 if (ret) 3818 goto out; 3819 3820 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 3821 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 3822 3823 out: 3824 mutex_unlock(&rbd_dev->watch_mutex); 3825 return ret; 3826 } 3827 3828 static void cancel_tasks_sync(struct rbd_device *rbd_dev) 3829 { 3830 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3831 3832 cancel_delayed_work_sync(&rbd_dev->watch_dwork); 3833 cancel_work_sync(&rbd_dev->acquired_lock_work); 3834 cancel_work_sync(&rbd_dev->released_lock_work); 3835 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 3836 cancel_work_sync(&rbd_dev->unlock_work); 3837 } 3838 3839 static void rbd_unregister_watch(struct rbd_device *rbd_dev) 3840 { 3841 WARN_ON(waitqueue_active(&rbd_dev->lock_waitq)); 3842 cancel_tasks_sync(rbd_dev); 3843 3844 mutex_lock(&rbd_dev->watch_mutex); 3845 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) 3846 __rbd_unregister_watch(rbd_dev); 3847 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 3848 mutex_unlock(&rbd_dev->watch_mutex); 3849 3850 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 3851 } 3852 3853 /* 3854 * lock_rwsem must be held for write 3855 */ 3856 static void rbd_reacquire_lock(struct rbd_device *rbd_dev) 3857 { 3858 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3859 char cookie[32]; 3860 int ret; 3861 3862 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED); 3863 3864 format_lock_cookie(rbd_dev, cookie); 3865 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid, 3866 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3867 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie, 3868 RBD_LOCK_TAG, cookie); 3869 if (ret) { 3870 if (ret != -EOPNOTSUPP) 3871 rbd_warn(rbd_dev, "failed to update lock cookie: %d", 3872 ret); 3873 3874 /* 3875 * Lock cookie cannot be updated on older OSDs, so do 3876 * a manual release and queue an acquire. 3877 */ 3878 if (rbd_release_lock(rbd_dev)) 3879 queue_delayed_work(rbd_dev->task_wq, 3880 &rbd_dev->lock_dwork, 0); 3881 } else { 3882 strcpy(rbd_dev->lock_cookie, cookie); 3883 } 3884 } 3885 3886 static void rbd_reregister_watch(struct work_struct *work) 3887 { 3888 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 3889 struct rbd_device, watch_dwork); 3890 int ret; 3891 3892 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3893 3894 mutex_lock(&rbd_dev->watch_mutex); 3895 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) { 3896 mutex_unlock(&rbd_dev->watch_mutex); 3897 return; 3898 } 3899 3900 ret = __rbd_register_watch(rbd_dev); 3901 if (ret) { 3902 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret); 3903 if (ret == -EBLACKLISTED || ret == -ENOENT) { 3904 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags); 3905 wake_requests(rbd_dev, true); 3906 } else { 3907 queue_delayed_work(rbd_dev->task_wq, 3908 &rbd_dev->watch_dwork, 3909 RBD_RETRY_DELAY); 3910 } 3911 mutex_unlock(&rbd_dev->watch_mutex); 3912 return; 3913 } 3914 3915 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 3916 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 3917 mutex_unlock(&rbd_dev->watch_mutex); 3918 3919 down_write(&rbd_dev->lock_rwsem); 3920 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 3921 rbd_reacquire_lock(rbd_dev); 3922 up_write(&rbd_dev->lock_rwsem); 3923 3924 ret = rbd_dev_refresh(rbd_dev); 3925 if (ret) 3926 rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret); 3927 } 3928 3929 /* 3930 * Synchronous osd object method call. Returns the number of bytes 3931 * returned in the outbound buffer, or a negative error code. 3932 */ 3933 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 3934 struct ceph_object_id *oid, 3935 struct ceph_object_locator *oloc, 3936 const char *method_name, 3937 const void *outbound, 3938 size_t outbound_size, 3939 void *inbound, 3940 size_t inbound_size) 3941 { 3942 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3943 struct page *req_page = NULL; 3944 struct page *reply_page; 3945 int ret; 3946 3947 /* 3948 * Method calls are ultimately read operations. The result 3949 * should placed into the inbound buffer provided. They 3950 * also supply outbound data--parameters for the object 3951 * method. Currently if this is present it will be a 3952 * snapshot id. 3953 */ 3954 if (outbound) { 3955 if (outbound_size > PAGE_SIZE) 3956 return -E2BIG; 3957 3958 req_page = alloc_page(GFP_KERNEL); 3959 if (!req_page) 3960 return -ENOMEM; 3961 3962 memcpy(page_address(req_page), outbound, outbound_size); 3963 } 3964 3965 reply_page = alloc_page(GFP_KERNEL); 3966 if (!reply_page) { 3967 if (req_page) 3968 __free_page(req_page); 3969 return -ENOMEM; 3970 } 3971 3972 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name, 3973 CEPH_OSD_FLAG_READ, req_page, outbound_size, 3974 reply_page, &inbound_size); 3975 if (!ret) { 3976 memcpy(inbound, page_address(reply_page), inbound_size); 3977 ret = inbound_size; 3978 } 3979 3980 if (req_page) 3981 __free_page(req_page); 3982 __free_page(reply_page); 3983 return ret; 3984 } 3985 3986 /* 3987 * lock_rwsem must be held for read 3988 */ 3989 static void rbd_wait_state_locked(struct rbd_device *rbd_dev) 3990 { 3991 DEFINE_WAIT(wait); 3992 3993 do { 3994 /* 3995 * Note the use of mod_delayed_work() in rbd_acquire_lock() 3996 * and cancel_delayed_work() in wake_requests(). 3997 */ 3998 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev); 3999 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4000 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait, 4001 TASK_UNINTERRUPTIBLE); 4002 up_read(&rbd_dev->lock_rwsem); 4003 schedule(); 4004 down_read(&rbd_dev->lock_rwsem); 4005 } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED && 4006 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)); 4007 4008 finish_wait(&rbd_dev->lock_waitq, &wait); 4009 } 4010 4011 static void rbd_queue_workfn(struct work_struct *work) 4012 { 4013 struct request *rq = blk_mq_rq_from_pdu(work); 4014 struct rbd_device *rbd_dev = rq->q->queuedata; 4015 struct rbd_img_request *img_request; 4016 struct ceph_snap_context *snapc = NULL; 4017 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 4018 u64 length = blk_rq_bytes(rq); 4019 enum obj_operation_type op_type; 4020 u64 mapping_size; 4021 bool must_be_locked; 4022 int result; 4023 4024 switch (req_op(rq)) { 4025 case REQ_OP_DISCARD: 4026 op_type = OBJ_OP_DISCARD; 4027 break; 4028 case REQ_OP_WRITE: 4029 op_type = OBJ_OP_WRITE; 4030 break; 4031 case REQ_OP_READ: 4032 op_type = OBJ_OP_READ; 4033 break; 4034 default: 4035 dout("%s: non-fs request type %d\n", __func__, req_op(rq)); 4036 result = -EIO; 4037 goto err; 4038 } 4039 4040 /* Ignore/skip any zero-length requests */ 4041 4042 if (!length) { 4043 dout("%s: zero-length request\n", __func__); 4044 result = 0; 4045 goto err_rq; 4046 } 4047 4048 /* Only reads are allowed to a read-only device */ 4049 4050 if (op_type != OBJ_OP_READ) { 4051 if (rbd_dev->mapping.read_only) { 4052 result = -EROFS; 4053 goto err_rq; 4054 } 4055 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP); 4056 } 4057 4058 /* 4059 * Quit early if the mapped snapshot no longer exists. It's 4060 * still possible the snapshot will have disappeared by the 4061 * time our request arrives at the osd, but there's no sense in 4062 * sending it if we already know. 4063 */ 4064 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 4065 dout("request for non-existent snapshot"); 4066 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 4067 result = -ENXIO; 4068 goto err_rq; 4069 } 4070 4071 if (offset && length > U64_MAX - offset + 1) { 4072 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset, 4073 length); 4074 result = -EINVAL; 4075 goto err_rq; /* Shouldn't happen */ 4076 } 4077 4078 blk_mq_start_request(rq); 4079 4080 down_read(&rbd_dev->header_rwsem); 4081 mapping_size = rbd_dev->mapping.size; 4082 if (op_type != OBJ_OP_READ) { 4083 snapc = rbd_dev->header.snapc; 4084 ceph_get_snap_context(snapc); 4085 } 4086 up_read(&rbd_dev->header_rwsem); 4087 4088 if (offset + length > mapping_size) { 4089 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 4090 length, mapping_size); 4091 result = -EIO; 4092 goto err_rq; 4093 } 4094 4095 must_be_locked = 4096 (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) && 4097 (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read); 4098 if (must_be_locked) { 4099 down_read(&rbd_dev->lock_rwsem); 4100 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED && 4101 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) { 4102 if (rbd_dev->opts->exclusive) { 4103 rbd_warn(rbd_dev, "exclusive lock required"); 4104 result = -EROFS; 4105 goto err_unlock; 4106 } 4107 rbd_wait_state_locked(rbd_dev); 4108 } 4109 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) { 4110 result = -EBLACKLISTED; 4111 goto err_unlock; 4112 } 4113 } 4114 4115 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type, 4116 snapc); 4117 if (!img_request) { 4118 result = -ENOMEM; 4119 goto err_unlock; 4120 } 4121 img_request->rq = rq; 4122 snapc = NULL; /* img_request consumes a ref */ 4123 4124 if (op_type == OBJ_OP_DISCARD) 4125 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA, 4126 NULL); 4127 else 4128 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 4129 rq->bio); 4130 if (result) 4131 goto err_img_request; 4132 4133 result = rbd_img_request_submit(img_request); 4134 if (result) 4135 goto err_img_request; 4136 4137 if (must_be_locked) 4138 up_read(&rbd_dev->lock_rwsem); 4139 return; 4140 4141 err_img_request: 4142 rbd_img_request_put(img_request); 4143 err_unlock: 4144 if (must_be_locked) 4145 up_read(&rbd_dev->lock_rwsem); 4146 err_rq: 4147 if (result) 4148 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 4149 obj_op_name(op_type), length, offset, result); 4150 ceph_put_snap_context(snapc); 4151 err: 4152 blk_mq_end_request(rq, result); 4153 } 4154 4155 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 4156 const struct blk_mq_queue_data *bd) 4157 { 4158 struct request *rq = bd->rq; 4159 struct work_struct *work = blk_mq_rq_to_pdu(rq); 4160 4161 queue_work(rbd_wq, work); 4162 return BLK_MQ_RQ_QUEUE_OK; 4163 } 4164 4165 static void rbd_free_disk(struct rbd_device *rbd_dev) 4166 { 4167 blk_cleanup_queue(rbd_dev->disk->queue); 4168 blk_mq_free_tag_set(&rbd_dev->tag_set); 4169 put_disk(rbd_dev->disk); 4170 rbd_dev->disk = NULL; 4171 } 4172 4173 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 4174 struct ceph_object_id *oid, 4175 struct ceph_object_locator *oloc, 4176 void *buf, int buf_len) 4177 4178 { 4179 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4180 struct ceph_osd_request *req; 4181 struct page **pages; 4182 int num_pages = calc_pages_for(0, buf_len); 4183 int ret; 4184 4185 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL); 4186 if (!req) 4187 return -ENOMEM; 4188 4189 ceph_oid_copy(&req->r_base_oid, oid); 4190 ceph_oloc_copy(&req->r_base_oloc, oloc); 4191 req->r_flags = CEPH_OSD_FLAG_READ; 4192 4193 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL); 4194 if (ret) 4195 goto out_req; 4196 4197 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 4198 if (IS_ERR(pages)) { 4199 ret = PTR_ERR(pages); 4200 goto out_req; 4201 } 4202 4203 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0); 4204 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false, 4205 true); 4206 4207 ceph_osdc_start_request(osdc, req, false); 4208 ret = ceph_osdc_wait_request(osdc, req); 4209 if (ret >= 0) 4210 ceph_copy_from_page_vector(pages, buf, 0, ret); 4211 4212 out_req: 4213 ceph_osdc_put_request(req); 4214 return ret; 4215 } 4216 4217 /* 4218 * Read the complete header for the given rbd device. On successful 4219 * return, the rbd_dev->header field will contain up-to-date 4220 * information about the image. 4221 */ 4222 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 4223 { 4224 struct rbd_image_header_ondisk *ondisk = NULL; 4225 u32 snap_count = 0; 4226 u64 names_size = 0; 4227 u32 want_count; 4228 int ret; 4229 4230 /* 4231 * The complete header will include an array of its 64-bit 4232 * snapshot ids, followed by the names of those snapshots as 4233 * a contiguous block of NUL-terminated strings. Note that 4234 * the number of snapshots could change by the time we read 4235 * it in, in which case we re-read it. 4236 */ 4237 do { 4238 size_t size; 4239 4240 kfree(ondisk); 4241 4242 size = sizeof (*ondisk); 4243 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 4244 size += names_size; 4245 ondisk = kmalloc(size, GFP_KERNEL); 4246 if (!ondisk) 4247 return -ENOMEM; 4248 4249 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid, 4250 &rbd_dev->header_oloc, ondisk, size); 4251 if (ret < 0) 4252 goto out; 4253 if ((size_t)ret < size) { 4254 ret = -ENXIO; 4255 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 4256 size, ret); 4257 goto out; 4258 } 4259 if (!rbd_dev_ondisk_valid(ondisk)) { 4260 ret = -ENXIO; 4261 rbd_warn(rbd_dev, "invalid header"); 4262 goto out; 4263 } 4264 4265 names_size = le64_to_cpu(ondisk->snap_names_len); 4266 want_count = snap_count; 4267 snap_count = le32_to_cpu(ondisk->snap_count); 4268 } while (snap_count != want_count); 4269 4270 ret = rbd_header_from_disk(rbd_dev, ondisk); 4271 out: 4272 kfree(ondisk); 4273 4274 return ret; 4275 } 4276 4277 /* 4278 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 4279 * has disappeared from the (just updated) snapshot context. 4280 */ 4281 static void rbd_exists_validate(struct rbd_device *rbd_dev) 4282 { 4283 u64 snap_id; 4284 4285 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 4286 return; 4287 4288 snap_id = rbd_dev->spec->snap_id; 4289 if (snap_id == CEPH_NOSNAP) 4290 return; 4291 4292 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 4293 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 4294 } 4295 4296 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 4297 { 4298 sector_t size; 4299 4300 /* 4301 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't 4302 * try to update its size. If REMOVING is set, updating size 4303 * is just useless work since the device can't be opened. 4304 */ 4305 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) && 4306 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) { 4307 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 4308 dout("setting size to %llu sectors", (unsigned long long)size); 4309 set_capacity(rbd_dev->disk, size); 4310 revalidate_disk(rbd_dev->disk); 4311 } 4312 } 4313 4314 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 4315 { 4316 u64 mapping_size; 4317 int ret; 4318 4319 down_write(&rbd_dev->header_rwsem); 4320 mapping_size = rbd_dev->mapping.size; 4321 4322 ret = rbd_dev_header_info(rbd_dev); 4323 if (ret) 4324 goto out; 4325 4326 /* 4327 * If there is a parent, see if it has disappeared due to the 4328 * mapped image getting flattened. 4329 */ 4330 if (rbd_dev->parent) { 4331 ret = rbd_dev_v2_parent_info(rbd_dev); 4332 if (ret) 4333 goto out; 4334 } 4335 4336 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) { 4337 rbd_dev->mapping.size = rbd_dev->header.image_size; 4338 } else { 4339 /* validate mapped snapshot's EXISTS flag */ 4340 rbd_exists_validate(rbd_dev); 4341 } 4342 4343 out: 4344 up_write(&rbd_dev->header_rwsem); 4345 if (!ret && mapping_size != rbd_dev->mapping.size) 4346 rbd_dev_update_size(rbd_dev); 4347 4348 return ret; 4349 } 4350 4351 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq, 4352 unsigned int hctx_idx, unsigned int numa_node) 4353 { 4354 struct work_struct *work = blk_mq_rq_to_pdu(rq); 4355 4356 INIT_WORK(work, rbd_queue_workfn); 4357 return 0; 4358 } 4359 4360 static const struct blk_mq_ops rbd_mq_ops = { 4361 .queue_rq = rbd_queue_rq, 4362 .init_request = rbd_init_request, 4363 }; 4364 4365 static int rbd_init_disk(struct rbd_device *rbd_dev) 4366 { 4367 struct gendisk *disk; 4368 struct request_queue *q; 4369 u64 segment_size; 4370 int err; 4371 4372 /* create gendisk info */ 4373 disk = alloc_disk(single_major ? 4374 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 4375 RBD_MINORS_PER_MAJOR); 4376 if (!disk) 4377 return -ENOMEM; 4378 4379 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 4380 rbd_dev->dev_id); 4381 disk->major = rbd_dev->major; 4382 disk->first_minor = rbd_dev->minor; 4383 if (single_major) 4384 disk->flags |= GENHD_FL_EXT_DEVT; 4385 disk->fops = &rbd_bd_ops; 4386 disk->private_data = rbd_dev; 4387 4388 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 4389 rbd_dev->tag_set.ops = &rbd_mq_ops; 4390 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 4391 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 4392 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 4393 rbd_dev->tag_set.nr_hw_queues = 1; 4394 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct); 4395 4396 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 4397 if (err) 4398 goto out_disk; 4399 4400 q = blk_mq_init_queue(&rbd_dev->tag_set); 4401 if (IS_ERR(q)) { 4402 err = PTR_ERR(q); 4403 goto out_tag_set; 4404 } 4405 4406 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 4407 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 4408 4409 /* set io sizes to object size */ 4410 segment_size = rbd_obj_bytes(&rbd_dev->header); 4411 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 4412 q->limits.max_sectors = queue_max_hw_sectors(q); 4413 blk_queue_max_segments(q, segment_size / SECTOR_SIZE); 4414 blk_queue_max_segment_size(q, segment_size); 4415 blk_queue_io_min(q, segment_size); 4416 blk_queue_io_opt(q, segment_size); 4417 4418 /* enable the discard support */ 4419 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 4420 q->limits.discard_granularity = segment_size; 4421 q->limits.discard_alignment = segment_size; 4422 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE); 4423 4424 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 4425 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; 4426 4427 /* 4428 * disk_release() expects a queue ref from add_disk() and will 4429 * put it. Hold an extra ref until add_disk() is called. 4430 */ 4431 WARN_ON(!blk_get_queue(q)); 4432 disk->queue = q; 4433 q->queuedata = rbd_dev; 4434 4435 rbd_dev->disk = disk; 4436 4437 return 0; 4438 out_tag_set: 4439 blk_mq_free_tag_set(&rbd_dev->tag_set); 4440 out_disk: 4441 put_disk(disk); 4442 return err; 4443 } 4444 4445 /* 4446 sysfs 4447 */ 4448 4449 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 4450 { 4451 return container_of(dev, struct rbd_device, dev); 4452 } 4453 4454 static ssize_t rbd_size_show(struct device *dev, 4455 struct device_attribute *attr, char *buf) 4456 { 4457 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4458 4459 return sprintf(buf, "%llu\n", 4460 (unsigned long long)rbd_dev->mapping.size); 4461 } 4462 4463 /* 4464 * Note this shows the features for whatever's mapped, which is not 4465 * necessarily the base image. 4466 */ 4467 static ssize_t rbd_features_show(struct device *dev, 4468 struct device_attribute *attr, char *buf) 4469 { 4470 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4471 4472 return sprintf(buf, "0x%016llx\n", 4473 (unsigned long long)rbd_dev->mapping.features); 4474 } 4475 4476 static ssize_t rbd_major_show(struct device *dev, 4477 struct device_attribute *attr, char *buf) 4478 { 4479 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4480 4481 if (rbd_dev->major) 4482 return sprintf(buf, "%d\n", rbd_dev->major); 4483 4484 return sprintf(buf, "(none)\n"); 4485 } 4486 4487 static ssize_t rbd_minor_show(struct device *dev, 4488 struct device_attribute *attr, char *buf) 4489 { 4490 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4491 4492 return sprintf(buf, "%d\n", rbd_dev->minor); 4493 } 4494 4495 static ssize_t rbd_client_addr_show(struct device *dev, 4496 struct device_attribute *attr, char *buf) 4497 { 4498 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4499 struct ceph_entity_addr *client_addr = 4500 ceph_client_addr(rbd_dev->rbd_client->client); 4501 4502 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr, 4503 le32_to_cpu(client_addr->nonce)); 4504 } 4505 4506 static ssize_t rbd_client_id_show(struct device *dev, 4507 struct device_attribute *attr, char *buf) 4508 { 4509 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4510 4511 return sprintf(buf, "client%lld\n", 4512 ceph_client_gid(rbd_dev->rbd_client->client)); 4513 } 4514 4515 static ssize_t rbd_cluster_fsid_show(struct device *dev, 4516 struct device_attribute *attr, char *buf) 4517 { 4518 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4519 4520 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid); 4521 } 4522 4523 static ssize_t rbd_config_info_show(struct device *dev, 4524 struct device_attribute *attr, char *buf) 4525 { 4526 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4527 4528 return sprintf(buf, "%s\n", rbd_dev->config_info); 4529 } 4530 4531 static ssize_t rbd_pool_show(struct device *dev, 4532 struct device_attribute *attr, char *buf) 4533 { 4534 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4535 4536 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 4537 } 4538 4539 static ssize_t rbd_pool_id_show(struct device *dev, 4540 struct device_attribute *attr, char *buf) 4541 { 4542 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4543 4544 return sprintf(buf, "%llu\n", 4545 (unsigned long long) rbd_dev->spec->pool_id); 4546 } 4547 4548 static ssize_t rbd_name_show(struct device *dev, 4549 struct device_attribute *attr, char *buf) 4550 { 4551 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4552 4553 if (rbd_dev->spec->image_name) 4554 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 4555 4556 return sprintf(buf, "(unknown)\n"); 4557 } 4558 4559 static ssize_t rbd_image_id_show(struct device *dev, 4560 struct device_attribute *attr, char *buf) 4561 { 4562 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4563 4564 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 4565 } 4566 4567 /* 4568 * Shows the name of the currently-mapped snapshot (or 4569 * RBD_SNAP_HEAD_NAME for the base image). 4570 */ 4571 static ssize_t rbd_snap_show(struct device *dev, 4572 struct device_attribute *attr, 4573 char *buf) 4574 { 4575 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4576 4577 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 4578 } 4579 4580 static ssize_t rbd_snap_id_show(struct device *dev, 4581 struct device_attribute *attr, char *buf) 4582 { 4583 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4584 4585 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id); 4586 } 4587 4588 /* 4589 * For a v2 image, shows the chain of parent images, separated by empty 4590 * lines. For v1 images or if there is no parent, shows "(no parent 4591 * image)". 4592 */ 4593 static ssize_t rbd_parent_show(struct device *dev, 4594 struct device_attribute *attr, 4595 char *buf) 4596 { 4597 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4598 ssize_t count = 0; 4599 4600 if (!rbd_dev->parent) 4601 return sprintf(buf, "(no parent image)\n"); 4602 4603 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 4604 struct rbd_spec *spec = rbd_dev->parent_spec; 4605 4606 count += sprintf(&buf[count], "%s" 4607 "pool_id %llu\npool_name %s\n" 4608 "image_id %s\nimage_name %s\n" 4609 "snap_id %llu\nsnap_name %s\n" 4610 "overlap %llu\n", 4611 !count ? "" : "\n", /* first? */ 4612 spec->pool_id, spec->pool_name, 4613 spec->image_id, spec->image_name ?: "(unknown)", 4614 spec->snap_id, spec->snap_name, 4615 rbd_dev->parent_overlap); 4616 } 4617 4618 return count; 4619 } 4620 4621 static ssize_t rbd_image_refresh(struct device *dev, 4622 struct device_attribute *attr, 4623 const char *buf, 4624 size_t size) 4625 { 4626 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4627 int ret; 4628 4629 ret = rbd_dev_refresh(rbd_dev); 4630 if (ret) 4631 return ret; 4632 4633 return size; 4634 } 4635 4636 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 4637 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 4638 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 4639 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL); 4640 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL); 4641 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 4642 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL); 4643 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL); 4644 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 4645 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 4646 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 4647 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 4648 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 4649 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 4650 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL); 4651 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 4652 4653 static struct attribute *rbd_attrs[] = { 4654 &dev_attr_size.attr, 4655 &dev_attr_features.attr, 4656 &dev_attr_major.attr, 4657 &dev_attr_minor.attr, 4658 &dev_attr_client_addr.attr, 4659 &dev_attr_client_id.attr, 4660 &dev_attr_cluster_fsid.attr, 4661 &dev_attr_config_info.attr, 4662 &dev_attr_pool.attr, 4663 &dev_attr_pool_id.attr, 4664 &dev_attr_name.attr, 4665 &dev_attr_image_id.attr, 4666 &dev_attr_current_snap.attr, 4667 &dev_attr_snap_id.attr, 4668 &dev_attr_parent.attr, 4669 &dev_attr_refresh.attr, 4670 NULL 4671 }; 4672 4673 static struct attribute_group rbd_attr_group = { 4674 .attrs = rbd_attrs, 4675 }; 4676 4677 static const struct attribute_group *rbd_attr_groups[] = { 4678 &rbd_attr_group, 4679 NULL 4680 }; 4681 4682 static void rbd_dev_release(struct device *dev); 4683 4684 static const struct device_type rbd_device_type = { 4685 .name = "rbd", 4686 .groups = rbd_attr_groups, 4687 .release = rbd_dev_release, 4688 }; 4689 4690 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 4691 { 4692 kref_get(&spec->kref); 4693 4694 return spec; 4695 } 4696 4697 static void rbd_spec_free(struct kref *kref); 4698 static void rbd_spec_put(struct rbd_spec *spec) 4699 { 4700 if (spec) 4701 kref_put(&spec->kref, rbd_spec_free); 4702 } 4703 4704 static struct rbd_spec *rbd_spec_alloc(void) 4705 { 4706 struct rbd_spec *spec; 4707 4708 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 4709 if (!spec) 4710 return NULL; 4711 4712 spec->pool_id = CEPH_NOPOOL; 4713 spec->snap_id = CEPH_NOSNAP; 4714 kref_init(&spec->kref); 4715 4716 return spec; 4717 } 4718 4719 static void rbd_spec_free(struct kref *kref) 4720 { 4721 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 4722 4723 kfree(spec->pool_name); 4724 kfree(spec->image_id); 4725 kfree(spec->image_name); 4726 kfree(spec->snap_name); 4727 kfree(spec); 4728 } 4729 4730 static void rbd_dev_free(struct rbd_device *rbd_dev) 4731 { 4732 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED); 4733 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED); 4734 4735 ceph_oid_destroy(&rbd_dev->header_oid); 4736 ceph_oloc_destroy(&rbd_dev->header_oloc); 4737 kfree(rbd_dev->config_info); 4738 4739 rbd_put_client(rbd_dev->rbd_client); 4740 rbd_spec_put(rbd_dev->spec); 4741 kfree(rbd_dev->opts); 4742 kfree(rbd_dev); 4743 } 4744 4745 static void rbd_dev_release(struct device *dev) 4746 { 4747 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4748 bool need_put = !!rbd_dev->opts; 4749 4750 if (need_put) { 4751 destroy_workqueue(rbd_dev->task_wq); 4752 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4753 } 4754 4755 rbd_dev_free(rbd_dev); 4756 4757 /* 4758 * This is racy, but way better than putting module outside of 4759 * the release callback. The race window is pretty small, so 4760 * doing something similar to dm (dm-builtin.c) is overkill. 4761 */ 4762 if (need_put) 4763 module_put(THIS_MODULE); 4764 } 4765 4766 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc, 4767 struct rbd_spec *spec) 4768 { 4769 struct rbd_device *rbd_dev; 4770 4771 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL); 4772 if (!rbd_dev) 4773 return NULL; 4774 4775 spin_lock_init(&rbd_dev->lock); 4776 INIT_LIST_HEAD(&rbd_dev->node); 4777 init_rwsem(&rbd_dev->header_rwsem); 4778 4779 rbd_dev->header.data_pool_id = CEPH_NOPOOL; 4780 ceph_oid_init(&rbd_dev->header_oid); 4781 rbd_dev->header_oloc.pool = spec->pool_id; 4782 4783 mutex_init(&rbd_dev->watch_mutex); 4784 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 4785 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch); 4786 4787 init_rwsem(&rbd_dev->lock_rwsem); 4788 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 4789 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock); 4790 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock); 4791 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock); 4792 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work); 4793 init_waitqueue_head(&rbd_dev->lock_waitq); 4794 4795 rbd_dev->dev.bus = &rbd_bus_type; 4796 rbd_dev->dev.type = &rbd_device_type; 4797 rbd_dev->dev.parent = &rbd_root_dev; 4798 device_initialize(&rbd_dev->dev); 4799 4800 rbd_dev->rbd_client = rbdc; 4801 rbd_dev->spec = spec; 4802 4803 return rbd_dev; 4804 } 4805 4806 /* 4807 * Create a mapping rbd_dev. 4808 */ 4809 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 4810 struct rbd_spec *spec, 4811 struct rbd_options *opts) 4812 { 4813 struct rbd_device *rbd_dev; 4814 4815 rbd_dev = __rbd_dev_create(rbdc, spec); 4816 if (!rbd_dev) 4817 return NULL; 4818 4819 rbd_dev->opts = opts; 4820 4821 /* get an id and fill in device name */ 4822 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0, 4823 minor_to_rbd_dev_id(1 << MINORBITS), 4824 GFP_KERNEL); 4825 if (rbd_dev->dev_id < 0) 4826 goto fail_rbd_dev; 4827 4828 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id); 4829 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM, 4830 rbd_dev->name); 4831 if (!rbd_dev->task_wq) 4832 goto fail_dev_id; 4833 4834 /* we have a ref from do_rbd_add() */ 4835 __module_get(THIS_MODULE); 4836 4837 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id); 4838 return rbd_dev; 4839 4840 fail_dev_id: 4841 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4842 fail_rbd_dev: 4843 rbd_dev_free(rbd_dev); 4844 return NULL; 4845 } 4846 4847 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 4848 { 4849 if (rbd_dev) 4850 put_device(&rbd_dev->dev); 4851 } 4852 4853 /* 4854 * Get the size and object order for an image snapshot, or if 4855 * snap_id is CEPH_NOSNAP, gets this information for the base 4856 * image. 4857 */ 4858 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 4859 u8 *order, u64 *snap_size) 4860 { 4861 __le64 snapid = cpu_to_le64(snap_id); 4862 int ret; 4863 struct { 4864 u8 order; 4865 __le64 size; 4866 } __attribute__ ((packed)) size_buf = { 0 }; 4867 4868 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4869 &rbd_dev->header_oloc, "get_size", 4870 &snapid, sizeof(snapid), 4871 &size_buf, sizeof(size_buf)); 4872 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4873 if (ret < 0) 4874 return ret; 4875 if (ret < sizeof (size_buf)) 4876 return -ERANGE; 4877 4878 if (order) { 4879 *order = size_buf.order; 4880 dout(" order %u", (unsigned int)*order); 4881 } 4882 *snap_size = le64_to_cpu(size_buf.size); 4883 4884 dout(" snap_id 0x%016llx snap_size = %llu\n", 4885 (unsigned long long)snap_id, 4886 (unsigned long long)*snap_size); 4887 4888 return 0; 4889 } 4890 4891 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 4892 { 4893 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 4894 &rbd_dev->header.obj_order, 4895 &rbd_dev->header.image_size); 4896 } 4897 4898 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 4899 { 4900 void *reply_buf; 4901 int ret; 4902 void *p; 4903 4904 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 4905 if (!reply_buf) 4906 return -ENOMEM; 4907 4908 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4909 &rbd_dev->header_oloc, "get_object_prefix", 4910 NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 4911 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4912 if (ret < 0) 4913 goto out; 4914 4915 p = reply_buf; 4916 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 4917 p + ret, NULL, GFP_NOIO); 4918 ret = 0; 4919 4920 if (IS_ERR(rbd_dev->header.object_prefix)) { 4921 ret = PTR_ERR(rbd_dev->header.object_prefix); 4922 rbd_dev->header.object_prefix = NULL; 4923 } else { 4924 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 4925 } 4926 out: 4927 kfree(reply_buf); 4928 4929 return ret; 4930 } 4931 4932 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 4933 u64 *snap_features) 4934 { 4935 __le64 snapid = cpu_to_le64(snap_id); 4936 struct { 4937 __le64 features; 4938 __le64 incompat; 4939 } __attribute__ ((packed)) features_buf = { 0 }; 4940 u64 unsup; 4941 int ret; 4942 4943 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4944 &rbd_dev->header_oloc, "get_features", 4945 &snapid, sizeof(snapid), 4946 &features_buf, sizeof(features_buf)); 4947 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4948 if (ret < 0) 4949 return ret; 4950 if (ret < sizeof (features_buf)) 4951 return -ERANGE; 4952 4953 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED; 4954 if (unsup) { 4955 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx", 4956 unsup); 4957 return -ENXIO; 4958 } 4959 4960 *snap_features = le64_to_cpu(features_buf.features); 4961 4962 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 4963 (unsigned long long)snap_id, 4964 (unsigned long long)*snap_features, 4965 (unsigned long long)le64_to_cpu(features_buf.incompat)); 4966 4967 return 0; 4968 } 4969 4970 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 4971 { 4972 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 4973 &rbd_dev->header.features); 4974 } 4975 4976 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 4977 { 4978 struct rbd_spec *parent_spec; 4979 size_t size; 4980 void *reply_buf = NULL; 4981 __le64 snapid; 4982 void *p; 4983 void *end; 4984 u64 pool_id; 4985 char *image_id; 4986 u64 snap_id; 4987 u64 overlap; 4988 int ret; 4989 4990 parent_spec = rbd_spec_alloc(); 4991 if (!parent_spec) 4992 return -ENOMEM; 4993 4994 size = sizeof (__le64) + /* pool_id */ 4995 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 4996 sizeof (__le64) + /* snap_id */ 4997 sizeof (__le64); /* overlap */ 4998 reply_buf = kmalloc(size, GFP_KERNEL); 4999 if (!reply_buf) { 5000 ret = -ENOMEM; 5001 goto out_err; 5002 } 5003 5004 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 5005 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5006 &rbd_dev->header_oloc, "get_parent", 5007 &snapid, sizeof(snapid), reply_buf, size); 5008 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5009 if (ret < 0) 5010 goto out_err; 5011 5012 p = reply_buf; 5013 end = reply_buf + ret; 5014 ret = -ERANGE; 5015 ceph_decode_64_safe(&p, end, pool_id, out_err); 5016 if (pool_id == CEPH_NOPOOL) { 5017 /* 5018 * Either the parent never existed, or we have 5019 * record of it but the image got flattened so it no 5020 * longer has a parent. When the parent of a 5021 * layered image disappears we immediately set the 5022 * overlap to 0. The effect of this is that all new 5023 * requests will be treated as if the image had no 5024 * parent. 5025 */ 5026 if (rbd_dev->parent_overlap) { 5027 rbd_dev->parent_overlap = 0; 5028 rbd_dev_parent_put(rbd_dev); 5029 pr_info("%s: clone image has been flattened\n", 5030 rbd_dev->disk->disk_name); 5031 } 5032 5033 goto out; /* No parent? No problem. */ 5034 } 5035 5036 /* The ceph file layout needs to fit pool id in 32 bits */ 5037 5038 ret = -EIO; 5039 if (pool_id > (u64)U32_MAX) { 5040 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 5041 (unsigned long long)pool_id, U32_MAX); 5042 goto out_err; 5043 } 5044 5045 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5046 if (IS_ERR(image_id)) { 5047 ret = PTR_ERR(image_id); 5048 goto out_err; 5049 } 5050 ceph_decode_64_safe(&p, end, snap_id, out_err); 5051 ceph_decode_64_safe(&p, end, overlap, out_err); 5052 5053 /* 5054 * The parent won't change (except when the clone is 5055 * flattened, already handled that). So we only need to 5056 * record the parent spec we have not already done so. 5057 */ 5058 if (!rbd_dev->parent_spec) { 5059 parent_spec->pool_id = pool_id; 5060 parent_spec->image_id = image_id; 5061 parent_spec->snap_id = snap_id; 5062 rbd_dev->parent_spec = parent_spec; 5063 parent_spec = NULL; /* rbd_dev now owns this */ 5064 } else { 5065 kfree(image_id); 5066 } 5067 5068 /* 5069 * We always update the parent overlap. If it's zero we issue 5070 * a warning, as we will proceed as if there was no parent. 5071 */ 5072 if (!overlap) { 5073 if (parent_spec) { 5074 /* refresh, careful to warn just once */ 5075 if (rbd_dev->parent_overlap) 5076 rbd_warn(rbd_dev, 5077 "clone now standalone (overlap became 0)"); 5078 } else { 5079 /* initial probe */ 5080 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 5081 } 5082 } 5083 rbd_dev->parent_overlap = overlap; 5084 5085 out: 5086 ret = 0; 5087 out_err: 5088 kfree(reply_buf); 5089 rbd_spec_put(parent_spec); 5090 5091 return ret; 5092 } 5093 5094 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 5095 { 5096 struct { 5097 __le64 stripe_unit; 5098 __le64 stripe_count; 5099 } __attribute__ ((packed)) striping_info_buf = { 0 }; 5100 size_t size = sizeof (striping_info_buf); 5101 void *p; 5102 u64 obj_size; 5103 u64 stripe_unit; 5104 u64 stripe_count; 5105 int ret; 5106 5107 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5108 &rbd_dev->header_oloc, "get_stripe_unit_count", 5109 NULL, 0, &striping_info_buf, size); 5110 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5111 if (ret < 0) 5112 return ret; 5113 if (ret < size) 5114 return -ERANGE; 5115 5116 /* 5117 * We don't actually support the "fancy striping" feature 5118 * (STRIPINGV2) yet, but if the striping sizes are the 5119 * defaults the behavior is the same as before. So find 5120 * out, and only fail if the image has non-default values. 5121 */ 5122 ret = -EINVAL; 5123 obj_size = rbd_obj_bytes(&rbd_dev->header); 5124 p = &striping_info_buf; 5125 stripe_unit = ceph_decode_64(&p); 5126 if (stripe_unit != obj_size) { 5127 rbd_warn(rbd_dev, "unsupported stripe unit " 5128 "(got %llu want %llu)", 5129 stripe_unit, obj_size); 5130 return -EINVAL; 5131 } 5132 stripe_count = ceph_decode_64(&p); 5133 if (stripe_count != 1) { 5134 rbd_warn(rbd_dev, "unsupported stripe count " 5135 "(got %llu want 1)", stripe_count); 5136 return -EINVAL; 5137 } 5138 rbd_dev->header.stripe_unit = stripe_unit; 5139 rbd_dev->header.stripe_count = stripe_count; 5140 5141 return 0; 5142 } 5143 5144 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev) 5145 { 5146 __le64 data_pool_id; 5147 int ret; 5148 5149 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5150 &rbd_dev->header_oloc, "get_data_pool", 5151 NULL, 0, &data_pool_id, sizeof(data_pool_id)); 5152 if (ret < 0) 5153 return ret; 5154 if (ret < sizeof(data_pool_id)) 5155 return -EBADMSG; 5156 5157 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id); 5158 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL); 5159 return 0; 5160 } 5161 5162 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 5163 { 5164 CEPH_DEFINE_OID_ONSTACK(oid); 5165 size_t image_id_size; 5166 char *image_id; 5167 void *p; 5168 void *end; 5169 size_t size; 5170 void *reply_buf = NULL; 5171 size_t len = 0; 5172 char *image_name = NULL; 5173 int ret; 5174 5175 rbd_assert(!rbd_dev->spec->image_name); 5176 5177 len = strlen(rbd_dev->spec->image_id); 5178 image_id_size = sizeof (__le32) + len; 5179 image_id = kmalloc(image_id_size, GFP_KERNEL); 5180 if (!image_id) 5181 return NULL; 5182 5183 p = image_id; 5184 end = image_id + image_id_size; 5185 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 5186 5187 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 5188 reply_buf = kmalloc(size, GFP_KERNEL); 5189 if (!reply_buf) 5190 goto out; 5191 5192 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY); 5193 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5194 "dir_get_name", image_id, image_id_size, 5195 reply_buf, size); 5196 if (ret < 0) 5197 goto out; 5198 p = reply_buf; 5199 end = reply_buf + ret; 5200 5201 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 5202 if (IS_ERR(image_name)) 5203 image_name = NULL; 5204 else 5205 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 5206 out: 5207 kfree(reply_buf); 5208 kfree(image_id); 5209 5210 return image_name; 5211 } 5212 5213 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5214 { 5215 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5216 const char *snap_name; 5217 u32 which = 0; 5218 5219 /* Skip over names until we find the one we are looking for */ 5220 5221 snap_name = rbd_dev->header.snap_names; 5222 while (which < snapc->num_snaps) { 5223 if (!strcmp(name, snap_name)) 5224 return snapc->snaps[which]; 5225 snap_name += strlen(snap_name) + 1; 5226 which++; 5227 } 5228 return CEPH_NOSNAP; 5229 } 5230 5231 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5232 { 5233 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5234 u32 which; 5235 bool found = false; 5236 u64 snap_id; 5237 5238 for (which = 0; !found && which < snapc->num_snaps; which++) { 5239 const char *snap_name; 5240 5241 snap_id = snapc->snaps[which]; 5242 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 5243 if (IS_ERR(snap_name)) { 5244 /* ignore no-longer existing snapshots */ 5245 if (PTR_ERR(snap_name) == -ENOENT) 5246 continue; 5247 else 5248 break; 5249 } 5250 found = !strcmp(name, snap_name); 5251 kfree(snap_name); 5252 } 5253 return found ? snap_id : CEPH_NOSNAP; 5254 } 5255 5256 /* 5257 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 5258 * no snapshot by that name is found, or if an error occurs. 5259 */ 5260 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5261 { 5262 if (rbd_dev->image_format == 1) 5263 return rbd_v1_snap_id_by_name(rbd_dev, name); 5264 5265 return rbd_v2_snap_id_by_name(rbd_dev, name); 5266 } 5267 5268 /* 5269 * An image being mapped will have everything but the snap id. 5270 */ 5271 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 5272 { 5273 struct rbd_spec *spec = rbd_dev->spec; 5274 5275 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 5276 rbd_assert(spec->image_id && spec->image_name); 5277 rbd_assert(spec->snap_name); 5278 5279 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 5280 u64 snap_id; 5281 5282 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 5283 if (snap_id == CEPH_NOSNAP) 5284 return -ENOENT; 5285 5286 spec->snap_id = snap_id; 5287 } else { 5288 spec->snap_id = CEPH_NOSNAP; 5289 } 5290 5291 return 0; 5292 } 5293 5294 /* 5295 * A parent image will have all ids but none of the names. 5296 * 5297 * All names in an rbd spec are dynamically allocated. It's OK if we 5298 * can't figure out the name for an image id. 5299 */ 5300 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 5301 { 5302 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5303 struct rbd_spec *spec = rbd_dev->spec; 5304 const char *pool_name; 5305 const char *image_name; 5306 const char *snap_name; 5307 int ret; 5308 5309 rbd_assert(spec->pool_id != CEPH_NOPOOL); 5310 rbd_assert(spec->image_id); 5311 rbd_assert(spec->snap_id != CEPH_NOSNAP); 5312 5313 /* Get the pool name; we have to make our own copy of this */ 5314 5315 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 5316 if (!pool_name) { 5317 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 5318 return -EIO; 5319 } 5320 pool_name = kstrdup(pool_name, GFP_KERNEL); 5321 if (!pool_name) 5322 return -ENOMEM; 5323 5324 /* Fetch the image name; tolerate failure here */ 5325 5326 image_name = rbd_dev_image_name(rbd_dev); 5327 if (!image_name) 5328 rbd_warn(rbd_dev, "unable to get image name"); 5329 5330 /* Fetch the snapshot name */ 5331 5332 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 5333 if (IS_ERR(snap_name)) { 5334 ret = PTR_ERR(snap_name); 5335 goto out_err; 5336 } 5337 5338 spec->pool_name = pool_name; 5339 spec->image_name = image_name; 5340 spec->snap_name = snap_name; 5341 5342 return 0; 5343 5344 out_err: 5345 kfree(image_name); 5346 kfree(pool_name); 5347 return ret; 5348 } 5349 5350 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 5351 { 5352 size_t size; 5353 int ret; 5354 void *reply_buf; 5355 void *p; 5356 void *end; 5357 u64 seq; 5358 u32 snap_count; 5359 struct ceph_snap_context *snapc; 5360 u32 i; 5361 5362 /* 5363 * We'll need room for the seq value (maximum snapshot id), 5364 * snapshot count, and array of that many snapshot ids. 5365 * For now we have a fixed upper limit on the number we're 5366 * prepared to receive. 5367 */ 5368 size = sizeof (__le64) + sizeof (__le32) + 5369 RBD_MAX_SNAP_COUNT * sizeof (__le64); 5370 reply_buf = kzalloc(size, GFP_KERNEL); 5371 if (!reply_buf) 5372 return -ENOMEM; 5373 5374 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5375 &rbd_dev->header_oloc, "get_snapcontext", 5376 NULL, 0, reply_buf, size); 5377 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5378 if (ret < 0) 5379 goto out; 5380 5381 p = reply_buf; 5382 end = reply_buf + ret; 5383 ret = -ERANGE; 5384 ceph_decode_64_safe(&p, end, seq, out); 5385 ceph_decode_32_safe(&p, end, snap_count, out); 5386 5387 /* 5388 * Make sure the reported number of snapshot ids wouldn't go 5389 * beyond the end of our buffer. But before checking that, 5390 * make sure the computed size of the snapshot context we 5391 * allocate is representable in a size_t. 5392 */ 5393 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 5394 / sizeof (u64)) { 5395 ret = -EINVAL; 5396 goto out; 5397 } 5398 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 5399 goto out; 5400 ret = 0; 5401 5402 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 5403 if (!snapc) { 5404 ret = -ENOMEM; 5405 goto out; 5406 } 5407 snapc->seq = seq; 5408 for (i = 0; i < snap_count; i++) 5409 snapc->snaps[i] = ceph_decode_64(&p); 5410 5411 ceph_put_snap_context(rbd_dev->header.snapc); 5412 rbd_dev->header.snapc = snapc; 5413 5414 dout(" snap context seq = %llu, snap_count = %u\n", 5415 (unsigned long long)seq, (unsigned int)snap_count); 5416 out: 5417 kfree(reply_buf); 5418 5419 return ret; 5420 } 5421 5422 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 5423 u64 snap_id) 5424 { 5425 size_t size; 5426 void *reply_buf; 5427 __le64 snapid; 5428 int ret; 5429 void *p; 5430 void *end; 5431 char *snap_name; 5432 5433 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 5434 reply_buf = kmalloc(size, GFP_KERNEL); 5435 if (!reply_buf) 5436 return ERR_PTR(-ENOMEM); 5437 5438 snapid = cpu_to_le64(snap_id); 5439 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5440 &rbd_dev->header_oloc, "get_snapshot_name", 5441 &snapid, sizeof(snapid), reply_buf, size); 5442 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5443 if (ret < 0) { 5444 snap_name = ERR_PTR(ret); 5445 goto out; 5446 } 5447 5448 p = reply_buf; 5449 end = reply_buf + ret; 5450 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5451 if (IS_ERR(snap_name)) 5452 goto out; 5453 5454 dout(" snap_id 0x%016llx snap_name = %s\n", 5455 (unsigned long long)snap_id, snap_name); 5456 out: 5457 kfree(reply_buf); 5458 5459 return snap_name; 5460 } 5461 5462 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 5463 { 5464 bool first_time = rbd_dev->header.object_prefix == NULL; 5465 int ret; 5466 5467 ret = rbd_dev_v2_image_size(rbd_dev); 5468 if (ret) 5469 return ret; 5470 5471 if (first_time) { 5472 ret = rbd_dev_v2_header_onetime(rbd_dev); 5473 if (ret) 5474 return ret; 5475 } 5476 5477 ret = rbd_dev_v2_snap_context(rbd_dev); 5478 if (ret && first_time) { 5479 kfree(rbd_dev->header.object_prefix); 5480 rbd_dev->header.object_prefix = NULL; 5481 } 5482 5483 return ret; 5484 } 5485 5486 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 5487 { 5488 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5489 5490 if (rbd_dev->image_format == 1) 5491 return rbd_dev_v1_header_info(rbd_dev); 5492 5493 return rbd_dev_v2_header_info(rbd_dev); 5494 } 5495 5496 /* 5497 * Skips over white space at *buf, and updates *buf to point to the 5498 * first found non-space character (if any). Returns the length of 5499 * the token (string of non-white space characters) found. Note 5500 * that *buf must be terminated with '\0'. 5501 */ 5502 static inline size_t next_token(const char **buf) 5503 { 5504 /* 5505 * These are the characters that produce nonzero for 5506 * isspace() in the "C" and "POSIX" locales. 5507 */ 5508 const char *spaces = " \f\n\r\t\v"; 5509 5510 *buf += strspn(*buf, spaces); /* Find start of token */ 5511 5512 return strcspn(*buf, spaces); /* Return token length */ 5513 } 5514 5515 /* 5516 * Finds the next token in *buf, dynamically allocates a buffer big 5517 * enough to hold a copy of it, and copies the token into the new 5518 * buffer. The copy is guaranteed to be terminated with '\0'. Note 5519 * that a duplicate buffer is created even for a zero-length token. 5520 * 5521 * Returns a pointer to the newly-allocated duplicate, or a null 5522 * pointer if memory for the duplicate was not available. If 5523 * the lenp argument is a non-null pointer, the length of the token 5524 * (not including the '\0') is returned in *lenp. 5525 * 5526 * If successful, the *buf pointer will be updated to point beyond 5527 * the end of the found token. 5528 * 5529 * Note: uses GFP_KERNEL for allocation. 5530 */ 5531 static inline char *dup_token(const char **buf, size_t *lenp) 5532 { 5533 char *dup; 5534 size_t len; 5535 5536 len = next_token(buf); 5537 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 5538 if (!dup) 5539 return NULL; 5540 *(dup + len) = '\0'; 5541 *buf += len; 5542 5543 if (lenp) 5544 *lenp = len; 5545 5546 return dup; 5547 } 5548 5549 /* 5550 * Parse the options provided for an "rbd add" (i.e., rbd image 5551 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 5552 * and the data written is passed here via a NUL-terminated buffer. 5553 * Returns 0 if successful or an error code otherwise. 5554 * 5555 * The information extracted from these options is recorded in 5556 * the other parameters which return dynamically-allocated 5557 * structures: 5558 * ceph_opts 5559 * The address of a pointer that will refer to a ceph options 5560 * structure. Caller must release the returned pointer using 5561 * ceph_destroy_options() when it is no longer needed. 5562 * rbd_opts 5563 * Address of an rbd options pointer. Fully initialized by 5564 * this function; caller must release with kfree(). 5565 * spec 5566 * Address of an rbd image specification pointer. Fully 5567 * initialized by this function based on parsed options. 5568 * Caller must release with rbd_spec_put(). 5569 * 5570 * The options passed take this form: 5571 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 5572 * where: 5573 * <mon_addrs> 5574 * A comma-separated list of one or more monitor addresses. 5575 * A monitor address is an ip address, optionally followed 5576 * by a port number (separated by a colon). 5577 * I.e.: ip1[:port1][,ip2[:port2]...] 5578 * <options> 5579 * A comma-separated list of ceph and/or rbd options. 5580 * <pool_name> 5581 * The name of the rados pool containing the rbd image. 5582 * <image_name> 5583 * The name of the image in that pool to map. 5584 * <snap_id> 5585 * An optional snapshot id. If provided, the mapping will 5586 * present data from the image at the time that snapshot was 5587 * created. The image head is used if no snapshot id is 5588 * provided. Snapshot mappings are always read-only. 5589 */ 5590 static int rbd_add_parse_args(const char *buf, 5591 struct ceph_options **ceph_opts, 5592 struct rbd_options **opts, 5593 struct rbd_spec **rbd_spec) 5594 { 5595 size_t len; 5596 char *options; 5597 const char *mon_addrs; 5598 char *snap_name; 5599 size_t mon_addrs_size; 5600 struct rbd_spec *spec = NULL; 5601 struct rbd_options *rbd_opts = NULL; 5602 struct ceph_options *copts; 5603 int ret; 5604 5605 /* The first four tokens are required */ 5606 5607 len = next_token(&buf); 5608 if (!len) { 5609 rbd_warn(NULL, "no monitor address(es) provided"); 5610 return -EINVAL; 5611 } 5612 mon_addrs = buf; 5613 mon_addrs_size = len + 1; 5614 buf += len; 5615 5616 ret = -EINVAL; 5617 options = dup_token(&buf, NULL); 5618 if (!options) 5619 return -ENOMEM; 5620 if (!*options) { 5621 rbd_warn(NULL, "no options provided"); 5622 goto out_err; 5623 } 5624 5625 spec = rbd_spec_alloc(); 5626 if (!spec) 5627 goto out_mem; 5628 5629 spec->pool_name = dup_token(&buf, NULL); 5630 if (!spec->pool_name) 5631 goto out_mem; 5632 if (!*spec->pool_name) { 5633 rbd_warn(NULL, "no pool name provided"); 5634 goto out_err; 5635 } 5636 5637 spec->image_name = dup_token(&buf, NULL); 5638 if (!spec->image_name) 5639 goto out_mem; 5640 if (!*spec->image_name) { 5641 rbd_warn(NULL, "no image name provided"); 5642 goto out_err; 5643 } 5644 5645 /* 5646 * Snapshot name is optional; default is to use "-" 5647 * (indicating the head/no snapshot). 5648 */ 5649 len = next_token(&buf); 5650 if (!len) { 5651 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 5652 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 5653 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 5654 ret = -ENAMETOOLONG; 5655 goto out_err; 5656 } 5657 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 5658 if (!snap_name) 5659 goto out_mem; 5660 *(snap_name + len) = '\0'; 5661 spec->snap_name = snap_name; 5662 5663 /* Initialize all rbd options to the defaults */ 5664 5665 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 5666 if (!rbd_opts) 5667 goto out_mem; 5668 5669 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 5670 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 5671 rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT; 5672 rbd_opts->exclusive = RBD_EXCLUSIVE_DEFAULT; 5673 5674 copts = ceph_parse_options(options, mon_addrs, 5675 mon_addrs + mon_addrs_size - 1, 5676 parse_rbd_opts_token, rbd_opts); 5677 if (IS_ERR(copts)) { 5678 ret = PTR_ERR(copts); 5679 goto out_err; 5680 } 5681 kfree(options); 5682 5683 *ceph_opts = copts; 5684 *opts = rbd_opts; 5685 *rbd_spec = spec; 5686 5687 return 0; 5688 out_mem: 5689 ret = -ENOMEM; 5690 out_err: 5691 kfree(rbd_opts); 5692 rbd_spec_put(spec); 5693 kfree(options); 5694 5695 return ret; 5696 } 5697 5698 /* 5699 * Return pool id (>= 0) or a negative error code. 5700 */ 5701 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name) 5702 { 5703 struct ceph_options *opts = rbdc->client->options; 5704 u64 newest_epoch; 5705 int tries = 0; 5706 int ret; 5707 5708 again: 5709 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name); 5710 if (ret == -ENOENT && tries++ < 1) { 5711 ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap", 5712 &newest_epoch); 5713 if (ret < 0) 5714 return ret; 5715 5716 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) { 5717 ceph_osdc_maybe_request_map(&rbdc->client->osdc); 5718 (void) ceph_monc_wait_osdmap(&rbdc->client->monc, 5719 newest_epoch, 5720 opts->mount_timeout); 5721 goto again; 5722 } else { 5723 /* the osdmap we have is new enough */ 5724 return -ENOENT; 5725 } 5726 } 5727 5728 return ret; 5729 } 5730 5731 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev) 5732 { 5733 down_write(&rbd_dev->lock_rwsem); 5734 if (__rbd_is_lock_owner(rbd_dev)) 5735 rbd_unlock(rbd_dev); 5736 up_write(&rbd_dev->lock_rwsem); 5737 } 5738 5739 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev) 5740 { 5741 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) { 5742 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled"); 5743 return -EINVAL; 5744 } 5745 5746 /* FIXME: "rbd map --exclusive" should be in interruptible */ 5747 down_read(&rbd_dev->lock_rwsem); 5748 rbd_wait_state_locked(rbd_dev); 5749 up_read(&rbd_dev->lock_rwsem); 5750 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) { 5751 rbd_warn(rbd_dev, "failed to acquire exclusive lock"); 5752 return -EROFS; 5753 } 5754 5755 return 0; 5756 } 5757 5758 /* 5759 * An rbd format 2 image has a unique identifier, distinct from the 5760 * name given to it by the user. Internally, that identifier is 5761 * what's used to specify the names of objects related to the image. 5762 * 5763 * A special "rbd id" object is used to map an rbd image name to its 5764 * id. If that object doesn't exist, then there is no v2 rbd image 5765 * with the supplied name. 5766 * 5767 * This function will record the given rbd_dev's image_id field if 5768 * it can be determined, and in that case will return 0. If any 5769 * errors occur a negative errno will be returned and the rbd_dev's 5770 * image_id field will be unchanged (and should be NULL). 5771 */ 5772 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 5773 { 5774 int ret; 5775 size_t size; 5776 CEPH_DEFINE_OID_ONSTACK(oid); 5777 void *response; 5778 char *image_id; 5779 5780 /* 5781 * When probing a parent image, the image id is already 5782 * known (and the image name likely is not). There's no 5783 * need to fetch the image id again in this case. We 5784 * do still need to set the image format though. 5785 */ 5786 if (rbd_dev->spec->image_id) { 5787 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 5788 5789 return 0; 5790 } 5791 5792 /* 5793 * First, see if the format 2 image id file exists, and if 5794 * so, get the image's persistent id from it. 5795 */ 5796 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX, 5797 rbd_dev->spec->image_name); 5798 if (ret) 5799 return ret; 5800 5801 dout("rbd id object name is %s\n", oid.name); 5802 5803 /* Response will be an encoded string, which includes a length */ 5804 5805 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 5806 response = kzalloc(size, GFP_NOIO); 5807 if (!response) { 5808 ret = -ENOMEM; 5809 goto out; 5810 } 5811 5812 /* If it doesn't exist we'll assume it's a format 1 image */ 5813 5814 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5815 "get_id", NULL, 0, 5816 response, RBD_IMAGE_ID_LEN_MAX); 5817 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5818 if (ret == -ENOENT) { 5819 image_id = kstrdup("", GFP_KERNEL); 5820 ret = image_id ? 0 : -ENOMEM; 5821 if (!ret) 5822 rbd_dev->image_format = 1; 5823 } else if (ret >= 0) { 5824 void *p = response; 5825 5826 image_id = ceph_extract_encoded_string(&p, p + ret, 5827 NULL, GFP_NOIO); 5828 ret = PTR_ERR_OR_ZERO(image_id); 5829 if (!ret) 5830 rbd_dev->image_format = 2; 5831 } 5832 5833 if (!ret) { 5834 rbd_dev->spec->image_id = image_id; 5835 dout("image_id is %s\n", image_id); 5836 } 5837 out: 5838 kfree(response); 5839 ceph_oid_destroy(&oid); 5840 return ret; 5841 } 5842 5843 /* 5844 * Undo whatever state changes are made by v1 or v2 header info 5845 * call. 5846 */ 5847 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 5848 { 5849 struct rbd_image_header *header; 5850 5851 rbd_dev_parent_put(rbd_dev); 5852 5853 /* Free dynamic fields from the header, then zero it out */ 5854 5855 header = &rbd_dev->header; 5856 ceph_put_snap_context(header->snapc); 5857 kfree(header->snap_sizes); 5858 kfree(header->snap_names); 5859 kfree(header->object_prefix); 5860 memset(header, 0, sizeof (*header)); 5861 } 5862 5863 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 5864 { 5865 int ret; 5866 5867 ret = rbd_dev_v2_object_prefix(rbd_dev); 5868 if (ret) 5869 goto out_err; 5870 5871 /* 5872 * Get the and check features for the image. Currently the 5873 * features are assumed to never change. 5874 */ 5875 ret = rbd_dev_v2_features(rbd_dev); 5876 if (ret) 5877 goto out_err; 5878 5879 /* If the image supports fancy striping, get its parameters */ 5880 5881 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 5882 ret = rbd_dev_v2_striping_info(rbd_dev); 5883 if (ret < 0) 5884 goto out_err; 5885 } 5886 5887 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) { 5888 ret = rbd_dev_v2_data_pool(rbd_dev); 5889 if (ret) 5890 goto out_err; 5891 } 5892 5893 rbd_init_layout(rbd_dev); 5894 return 0; 5895 5896 out_err: 5897 rbd_dev->header.features = 0; 5898 kfree(rbd_dev->header.object_prefix); 5899 rbd_dev->header.object_prefix = NULL; 5900 return ret; 5901 } 5902 5903 /* 5904 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 5905 * rbd_dev_image_probe() recursion depth, which means it's also the 5906 * length of the already discovered part of the parent chain. 5907 */ 5908 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 5909 { 5910 struct rbd_device *parent = NULL; 5911 int ret; 5912 5913 if (!rbd_dev->parent_spec) 5914 return 0; 5915 5916 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 5917 pr_info("parent chain is too long (%d)\n", depth); 5918 ret = -EINVAL; 5919 goto out_err; 5920 } 5921 5922 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec); 5923 if (!parent) { 5924 ret = -ENOMEM; 5925 goto out_err; 5926 } 5927 5928 /* 5929 * Images related by parent/child relationships always share 5930 * rbd_client and spec/parent_spec, so bump their refcounts. 5931 */ 5932 __rbd_get_client(rbd_dev->rbd_client); 5933 rbd_spec_get(rbd_dev->parent_spec); 5934 5935 ret = rbd_dev_image_probe(parent, depth); 5936 if (ret < 0) 5937 goto out_err; 5938 5939 rbd_dev->parent = parent; 5940 atomic_set(&rbd_dev->parent_ref, 1); 5941 return 0; 5942 5943 out_err: 5944 rbd_dev_unparent(rbd_dev); 5945 rbd_dev_destroy(parent); 5946 return ret; 5947 } 5948 5949 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 5950 { 5951 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5952 rbd_dev_mapping_clear(rbd_dev); 5953 rbd_free_disk(rbd_dev); 5954 if (!single_major) 5955 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5956 } 5957 5958 /* 5959 * rbd_dev->header_rwsem must be locked for write and will be unlocked 5960 * upon return. 5961 */ 5962 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 5963 { 5964 int ret; 5965 5966 /* Record our major and minor device numbers. */ 5967 5968 if (!single_major) { 5969 ret = register_blkdev(0, rbd_dev->name); 5970 if (ret < 0) 5971 goto err_out_unlock; 5972 5973 rbd_dev->major = ret; 5974 rbd_dev->minor = 0; 5975 } else { 5976 rbd_dev->major = rbd_major; 5977 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 5978 } 5979 5980 /* Set up the blkdev mapping. */ 5981 5982 ret = rbd_init_disk(rbd_dev); 5983 if (ret) 5984 goto err_out_blkdev; 5985 5986 ret = rbd_dev_mapping_set(rbd_dev); 5987 if (ret) 5988 goto err_out_disk; 5989 5990 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 5991 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only); 5992 5993 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 5994 if (ret) 5995 goto err_out_mapping; 5996 5997 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5998 up_write(&rbd_dev->header_rwsem); 5999 return 0; 6000 6001 err_out_mapping: 6002 rbd_dev_mapping_clear(rbd_dev); 6003 err_out_disk: 6004 rbd_free_disk(rbd_dev); 6005 err_out_blkdev: 6006 if (!single_major) 6007 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6008 err_out_unlock: 6009 up_write(&rbd_dev->header_rwsem); 6010 return ret; 6011 } 6012 6013 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 6014 { 6015 struct rbd_spec *spec = rbd_dev->spec; 6016 int ret; 6017 6018 /* Record the header object name for this rbd image. */ 6019 6020 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6021 if (rbd_dev->image_format == 1) 6022 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6023 spec->image_name, RBD_SUFFIX); 6024 else 6025 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6026 RBD_HEADER_PREFIX, spec->image_id); 6027 6028 return ret; 6029 } 6030 6031 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 6032 { 6033 rbd_dev_unprobe(rbd_dev); 6034 if (rbd_dev->opts) 6035 rbd_unregister_watch(rbd_dev); 6036 rbd_dev->image_format = 0; 6037 kfree(rbd_dev->spec->image_id); 6038 rbd_dev->spec->image_id = NULL; 6039 } 6040 6041 /* 6042 * Probe for the existence of the header object for the given rbd 6043 * device. If this image is the one being mapped (i.e., not a 6044 * parent), initiate a watch on its header object before using that 6045 * object to get detailed information about the rbd image. 6046 */ 6047 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 6048 { 6049 int ret; 6050 6051 /* 6052 * Get the id from the image id object. Unless there's an 6053 * error, rbd_dev->spec->image_id will be filled in with 6054 * a dynamically-allocated string, and rbd_dev->image_format 6055 * will be set to either 1 or 2. 6056 */ 6057 ret = rbd_dev_image_id(rbd_dev); 6058 if (ret) 6059 return ret; 6060 6061 ret = rbd_dev_header_name(rbd_dev); 6062 if (ret) 6063 goto err_out_format; 6064 6065 if (!depth) { 6066 ret = rbd_register_watch(rbd_dev); 6067 if (ret) { 6068 if (ret == -ENOENT) 6069 pr_info("image %s/%s does not exist\n", 6070 rbd_dev->spec->pool_name, 6071 rbd_dev->spec->image_name); 6072 goto err_out_format; 6073 } 6074 } 6075 6076 ret = rbd_dev_header_info(rbd_dev); 6077 if (ret) 6078 goto err_out_watch; 6079 6080 /* 6081 * If this image is the one being mapped, we have pool name and 6082 * id, image name and id, and snap name - need to fill snap id. 6083 * Otherwise this is a parent image, identified by pool, image 6084 * and snap ids - need to fill in names for those ids. 6085 */ 6086 if (!depth) 6087 ret = rbd_spec_fill_snap_id(rbd_dev); 6088 else 6089 ret = rbd_spec_fill_names(rbd_dev); 6090 if (ret) { 6091 if (ret == -ENOENT) 6092 pr_info("snap %s/%s@%s does not exist\n", 6093 rbd_dev->spec->pool_name, 6094 rbd_dev->spec->image_name, 6095 rbd_dev->spec->snap_name); 6096 goto err_out_probe; 6097 } 6098 6099 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 6100 ret = rbd_dev_v2_parent_info(rbd_dev); 6101 if (ret) 6102 goto err_out_probe; 6103 6104 /* 6105 * Need to warn users if this image is the one being 6106 * mapped and has a parent. 6107 */ 6108 if (!depth && rbd_dev->parent_spec) 6109 rbd_warn(rbd_dev, 6110 "WARNING: kernel layering is EXPERIMENTAL!"); 6111 } 6112 6113 ret = rbd_dev_probe_parent(rbd_dev, depth); 6114 if (ret) 6115 goto err_out_probe; 6116 6117 dout("discovered format %u image, header name is %s\n", 6118 rbd_dev->image_format, rbd_dev->header_oid.name); 6119 return 0; 6120 6121 err_out_probe: 6122 rbd_dev_unprobe(rbd_dev); 6123 err_out_watch: 6124 if (!depth) 6125 rbd_unregister_watch(rbd_dev); 6126 err_out_format: 6127 rbd_dev->image_format = 0; 6128 kfree(rbd_dev->spec->image_id); 6129 rbd_dev->spec->image_id = NULL; 6130 return ret; 6131 } 6132 6133 static ssize_t do_rbd_add(struct bus_type *bus, 6134 const char *buf, 6135 size_t count) 6136 { 6137 struct rbd_device *rbd_dev = NULL; 6138 struct ceph_options *ceph_opts = NULL; 6139 struct rbd_options *rbd_opts = NULL; 6140 struct rbd_spec *spec = NULL; 6141 struct rbd_client *rbdc; 6142 bool read_only; 6143 int rc; 6144 6145 if (!try_module_get(THIS_MODULE)) 6146 return -ENODEV; 6147 6148 /* parse add command */ 6149 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 6150 if (rc < 0) 6151 goto out; 6152 6153 rbdc = rbd_get_client(ceph_opts); 6154 if (IS_ERR(rbdc)) { 6155 rc = PTR_ERR(rbdc); 6156 goto err_out_args; 6157 } 6158 6159 /* pick the pool */ 6160 rc = rbd_add_get_pool_id(rbdc, spec->pool_name); 6161 if (rc < 0) { 6162 if (rc == -ENOENT) 6163 pr_info("pool %s does not exist\n", spec->pool_name); 6164 goto err_out_client; 6165 } 6166 spec->pool_id = (u64)rc; 6167 6168 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 6169 if (!rbd_dev) { 6170 rc = -ENOMEM; 6171 goto err_out_client; 6172 } 6173 rbdc = NULL; /* rbd_dev now owns this */ 6174 spec = NULL; /* rbd_dev now owns this */ 6175 rbd_opts = NULL; /* rbd_dev now owns this */ 6176 6177 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL); 6178 if (!rbd_dev->config_info) { 6179 rc = -ENOMEM; 6180 goto err_out_rbd_dev; 6181 } 6182 6183 down_write(&rbd_dev->header_rwsem); 6184 rc = rbd_dev_image_probe(rbd_dev, 0); 6185 if (rc < 0) { 6186 up_write(&rbd_dev->header_rwsem); 6187 goto err_out_rbd_dev; 6188 } 6189 6190 /* If we are mapping a snapshot it must be marked read-only */ 6191 6192 read_only = rbd_dev->opts->read_only; 6193 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 6194 read_only = true; 6195 rbd_dev->mapping.read_only = read_only; 6196 6197 rc = rbd_dev_device_setup(rbd_dev); 6198 if (rc) 6199 goto err_out_image_probe; 6200 6201 if (rbd_dev->opts->exclusive) { 6202 rc = rbd_add_acquire_lock(rbd_dev); 6203 if (rc) 6204 goto err_out_device_setup; 6205 } 6206 6207 /* Everything's ready. Announce the disk to the world. */ 6208 6209 rc = device_add(&rbd_dev->dev); 6210 if (rc) 6211 goto err_out_image_lock; 6212 6213 add_disk(rbd_dev->disk); 6214 /* see rbd_init_disk() */ 6215 blk_put_queue(rbd_dev->disk->queue); 6216 6217 spin_lock(&rbd_dev_list_lock); 6218 list_add_tail(&rbd_dev->node, &rbd_dev_list); 6219 spin_unlock(&rbd_dev_list_lock); 6220 6221 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name, 6222 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT, 6223 rbd_dev->header.features); 6224 rc = count; 6225 out: 6226 module_put(THIS_MODULE); 6227 return rc; 6228 6229 err_out_image_lock: 6230 rbd_dev_image_unlock(rbd_dev); 6231 err_out_device_setup: 6232 rbd_dev_device_release(rbd_dev); 6233 err_out_image_probe: 6234 rbd_dev_image_release(rbd_dev); 6235 err_out_rbd_dev: 6236 rbd_dev_destroy(rbd_dev); 6237 err_out_client: 6238 rbd_put_client(rbdc); 6239 err_out_args: 6240 rbd_spec_put(spec); 6241 kfree(rbd_opts); 6242 goto out; 6243 } 6244 6245 static ssize_t rbd_add(struct bus_type *bus, 6246 const char *buf, 6247 size_t count) 6248 { 6249 if (single_major) 6250 return -EINVAL; 6251 6252 return do_rbd_add(bus, buf, count); 6253 } 6254 6255 static ssize_t rbd_add_single_major(struct bus_type *bus, 6256 const char *buf, 6257 size_t count) 6258 { 6259 return do_rbd_add(bus, buf, count); 6260 } 6261 6262 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 6263 { 6264 while (rbd_dev->parent) { 6265 struct rbd_device *first = rbd_dev; 6266 struct rbd_device *second = first->parent; 6267 struct rbd_device *third; 6268 6269 /* 6270 * Follow to the parent with no grandparent and 6271 * remove it. 6272 */ 6273 while (second && (third = second->parent)) { 6274 first = second; 6275 second = third; 6276 } 6277 rbd_assert(second); 6278 rbd_dev_image_release(second); 6279 rbd_dev_destroy(second); 6280 first->parent = NULL; 6281 first->parent_overlap = 0; 6282 6283 rbd_assert(first->parent_spec); 6284 rbd_spec_put(first->parent_spec); 6285 first->parent_spec = NULL; 6286 } 6287 } 6288 6289 static ssize_t do_rbd_remove(struct bus_type *bus, 6290 const char *buf, 6291 size_t count) 6292 { 6293 struct rbd_device *rbd_dev = NULL; 6294 struct list_head *tmp; 6295 int dev_id; 6296 char opt_buf[6]; 6297 bool already = false; 6298 bool force = false; 6299 int ret; 6300 6301 dev_id = -1; 6302 opt_buf[0] = '\0'; 6303 sscanf(buf, "%d %5s", &dev_id, opt_buf); 6304 if (dev_id < 0) { 6305 pr_err("dev_id out of range\n"); 6306 return -EINVAL; 6307 } 6308 if (opt_buf[0] != '\0') { 6309 if (!strcmp(opt_buf, "force")) { 6310 force = true; 6311 } else { 6312 pr_err("bad remove option at '%s'\n", opt_buf); 6313 return -EINVAL; 6314 } 6315 } 6316 6317 ret = -ENOENT; 6318 spin_lock(&rbd_dev_list_lock); 6319 list_for_each(tmp, &rbd_dev_list) { 6320 rbd_dev = list_entry(tmp, struct rbd_device, node); 6321 if (rbd_dev->dev_id == dev_id) { 6322 ret = 0; 6323 break; 6324 } 6325 } 6326 if (!ret) { 6327 spin_lock_irq(&rbd_dev->lock); 6328 if (rbd_dev->open_count && !force) 6329 ret = -EBUSY; 6330 else 6331 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 6332 &rbd_dev->flags); 6333 spin_unlock_irq(&rbd_dev->lock); 6334 } 6335 spin_unlock(&rbd_dev_list_lock); 6336 if (ret < 0 || already) 6337 return ret; 6338 6339 if (force) { 6340 /* 6341 * Prevent new IO from being queued and wait for existing 6342 * IO to complete/fail. 6343 */ 6344 blk_mq_freeze_queue(rbd_dev->disk->queue); 6345 blk_set_queue_dying(rbd_dev->disk->queue); 6346 } 6347 6348 del_gendisk(rbd_dev->disk); 6349 spin_lock(&rbd_dev_list_lock); 6350 list_del_init(&rbd_dev->node); 6351 spin_unlock(&rbd_dev_list_lock); 6352 device_del(&rbd_dev->dev); 6353 6354 rbd_dev_image_unlock(rbd_dev); 6355 rbd_dev_device_release(rbd_dev); 6356 rbd_dev_image_release(rbd_dev); 6357 rbd_dev_destroy(rbd_dev); 6358 return count; 6359 } 6360 6361 static ssize_t rbd_remove(struct bus_type *bus, 6362 const char *buf, 6363 size_t count) 6364 { 6365 if (single_major) 6366 return -EINVAL; 6367 6368 return do_rbd_remove(bus, buf, count); 6369 } 6370 6371 static ssize_t rbd_remove_single_major(struct bus_type *bus, 6372 const char *buf, 6373 size_t count) 6374 { 6375 return do_rbd_remove(bus, buf, count); 6376 } 6377 6378 /* 6379 * create control files in sysfs 6380 * /sys/bus/rbd/... 6381 */ 6382 static int rbd_sysfs_init(void) 6383 { 6384 int ret; 6385 6386 ret = device_register(&rbd_root_dev); 6387 if (ret < 0) 6388 return ret; 6389 6390 ret = bus_register(&rbd_bus_type); 6391 if (ret < 0) 6392 device_unregister(&rbd_root_dev); 6393 6394 return ret; 6395 } 6396 6397 static void rbd_sysfs_cleanup(void) 6398 { 6399 bus_unregister(&rbd_bus_type); 6400 device_unregister(&rbd_root_dev); 6401 } 6402 6403 static int rbd_slab_init(void) 6404 { 6405 rbd_assert(!rbd_img_request_cache); 6406 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0); 6407 if (!rbd_img_request_cache) 6408 return -ENOMEM; 6409 6410 rbd_assert(!rbd_obj_request_cache); 6411 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0); 6412 if (!rbd_obj_request_cache) 6413 goto out_err; 6414 6415 return 0; 6416 6417 out_err: 6418 kmem_cache_destroy(rbd_img_request_cache); 6419 rbd_img_request_cache = NULL; 6420 return -ENOMEM; 6421 } 6422 6423 static void rbd_slab_exit(void) 6424 { 6425 rbd_assert(rbd_obj_request_cache); 6426 kmem_cache_destroy(rbd_obj_request_cache); 6427 rbd_obj_request_cache = NULL; 6428 6429 rbd_assert(rbd_img_request_cache); 6430 kmem_cache_destroy(rbd_img_request_cache); 6431 rbd_img_request_cache = NULL; 6432 } 6433 6434 static int __init rbd_init(void) 6435 { 6436 int rc; 6437 6438 if (!libceph_compatible(NULL)) { 6439 rbd_warn(NULL, "libceph incompatibility (quitting)"); 6440 return -EINVAL; 6441 } 6442 6443 rc = rbd_slab_init(); 6444 if (rc) 6445 return rc; 6446 6447 /* 6448 * The number of active work items is limited by the number of 6449 * rbd devices * queue depth, so leave @max_active at default. 6450 */ 6451 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 6452 if (!rbd_wq) { 6453 rc = -ENOMEM; 6454 goto err_out_slab; 6455 } 6456 6457 if (single_major) { 6458 rbd_major = register_blkdev(0, RBD_DRV_NAME); 6459 if (rbd_major < 0) { 6460 rc = rbd_major; 6461 goto err_out_wq; 6462 } 6463 } 6464 6465 rc = rbd_sysfs_init(); 6466 if (rc) 6467 goto err_out_blkdev; 6468 6469 if (single_major) 6470 pr_info("loaded (major %d)\n", rbd_major); 6471 else 6472 pr_info("loaded\n"); 6473 6474 return 0; 6475 6476 err_out_blkdev: 6477 if (single_major) 6478 unregister_blkdev(rbd_major, RBD_DRV_NAME); 6479 err_out_wq: 6480 destroy_workqueue(rbd_wq); 6481 err_out_slab: 6482 rbd_slab_exit(); 6483 return rc; 6484 } 6485 6486 static void __exit rbd_exit(void) 6487 { 6488 ida_destroy(&rbd_dev_id_ida); 6489 rbd_sysfs_cleanup(); 6490 if (single_major) 6491 unregister_blkdev(rbd_major, RBD_DRV_NAME); 6492 destroy_workqueue(rbd_wq); 6493 rbd_slab_exit(); 6494 } 6495 6496 module_init(rbd_init); 6497 module_exit(rbd_exit); 6498 6499 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 6500 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 6501 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 6502 /* following authorship retained from original osdblk.c */ 6503 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 6504 6505 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 6506 MODULE_LICENSE("GPL"); 6507