xref: /openbmc/linux/drivers/block/rbd.c (revision 020c5260)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/decode.h>
36 #include <linux/parser.h>
37 #include <linux/bsearch.h>
38 
39 #include <linux/kernel.h>
40 #include <linux/device.h>
41 #include <linux/module.h>
42 #include <linux/blk-mq.h>
43 #include <linux/fs.h>
44 #include <linux/blkdev.h>
45 #include <linux/slab.h>
46 #include <linux/idr.h>
47 #include <linux/workqueue.h>
48 
49 #include "rbd_types.h"
50 
51 #define RBD_DEBUG	/* Activate rbd_assert() calls */
52 
53 /*
54  * The basic unit of block I/O is a sector.  It is interpreted in a
55  * number of contexts in Linux (blk, bio, genhd), but the default is
56  * universally 512 bytes.  These symbols are just slightly more
57  * meaningful than the bare numbers they represent.
58  */
59 #define	SECTOR_SHIFT	9
60 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
61 
62 /*
63  * Increment the given counter and return its updated value.
64  * If the counter is already 0 it will not be incremented.
65  * If the counter is already at its maximum value returns
66  * -EINVAL without updating it.
67  */
68 static int atomic_inc_return_safe(atomic_t *v)
69 {
70 	unsigned int counter;
71 
72 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
73 	if (counter <= (unsigned int)INT_MAX)
74 		return (int)counter;
75 
76 	atomic_dec(v);
77 
78 	return -EINVAL;
79 }
80 
81 /* Decrement the counter.  Return the resulting value, or -EINVAL */
82 static int atomic_dec_return_safe(atomic_t *v)
83 {
84 	int counter;
85 
86 	counter = atomic_dec_return(v);
87 	if (counter >= 0)
88 		return counter;
89 
90 	atomic_inc(v);
91 
92 	return -EINVAL;
93 }
94 
95 #define RBD_DRV_NAME "rbd"
96 
97 #define RBD_MINORS_PER_MAJOR		256
98 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
99 
100 #define RBD_MAX_PARENT_CHAIN_LEN	16
101 
102 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
103 #define RBD_MAX_SNAP_NAME_LEN	\
104 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
105 
106 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
107 
108 #define RBD_SNAP_HEAD_NAME	"-"
109 
110 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
111 
112 /* This allows a single page to hold an image name sent by OSD */
113 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
114 #define RBD_IMAGE_ID_LEN_MAX	64
115 
116 #define RBD_OBJ_PREFIX_LEN_MAX	64
117 
118 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
119 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
120 
121 /* Feature bits */
122 
123 #define RBD_FEATURE_LAYERING		(1ULL<<0)
124 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
125 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
126 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
127 
128 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
129 				 RBD_FEATURE_STRIPINGV2 |	\
130 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
131 				 RBD_FEATURE_DATA_POOL)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 
191 	const char	*image_id;
192 	const char	*image_name;
193 
194 	u64		snap_id;
195 	const char	*snap_name;
196 
197 	struct kref	kref;
198 };
199 
200 /*
201  * an instance of the client.  multiple devices may share an rbd client.
202  */
203 struct rbd_client {
204 	struct ceph_client	*client;
205 	struct kref		kref;
206 	struct list_head	node;
207 };
208 
209 struct rbd_img_request;
210 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
211 
212 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
213 
214 struct rbd_obj_request;
215 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
219 };
220 
221 enum obj_operation_type {
222 	OBJ_OP_WRITE,
223 	OBJ_OP_READ,
224 	OBJ_OP_DISCARD,
225 };
226 
227 enum obj_req_flags {
228 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
229 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
230 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
231 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
232 };
233 
234 struct rbd_obj_request {
235 	u64			object_no;
236 	u64			offset;		/* object start byte */
237 	u64			length;		/* bytes from offset */
238 	unsigned long		flags;
239 
240 	/*
241 	 * An object request associated with an image will have its
242 	 * img_data flag set; a standalone object request will not.
243 	 *
244 	 * A standalone object request will have which == BAD_WHICH
245 	 * and a null obj_request pointer.
246 	 *
247 	 * An object request initiated in support of a layered image
248 	 * object (to check for its existence before a write) will
249 	 * have which == BAD_WHICH and a non-null obj_request pointer.
250 	 *
251 	 * Finally, an object request for rbd image data will have
252 	 * which != BAD_WHICH, and will have a non-null img_request
253 	 * pointer.  The value of which will be in the range
254 	 * 0..(img_request->obj_request_count-1).
255 	 */
256 	union {
257 		struct rbd_obj_request	*obj_request;	/* STAT op */
258 		struct {
259 			struct rbd_img_request	*img_request;
260 			u64			img_offset;
261 			/* links for img_request->obj_requests list */
262 			struct list_head	links;
263 		};
264 	};
265 	u32			which;		/* posn image request list */
266 
267 	enum obj_request_type	type;
268 	union {
269 		struct bio	*bio_list;
270 		struct {
271 			struct page	**pages;
272 			u32		page_count;
273 		};
274 	};
275 	struct page		**copyup_pages;
276 	u32			copyup_page_count;
277 
278 	struct ceph_osd_request	*osd_req;
279 
280 	u64			xferred;	/* bytes transferred */
281 	int			result;
282 
283 	rbd_obj_callback_t	callback;
284 	struct completion	completion;
285 
286 	struct kref		kref;
287 };
288 
289 enum img_req_flags {
290 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
291 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
292 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
293 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
294 };
295 
296 struct rbd_img_request {
297 	struct rbd_device	*rbd_dev;
298 	u64			offset;	/* starting image byte offset */
299 	u64			length;	/* byte count from offset */
300 	unsigned long		flags;
301 	union {
302 		u64			snap_id;	/* for reads */
303 		struct ceph_snap_context *snapc;	/* for writes */
304 	};
305 	union {
306 		struct request		*rq;		/* block request */
307 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
308 	};
309 	struct page		**copyup_pages;
310 	u32			copyup_page_count;
311 	spinlock_t		completion_lock;/* protects next_completion */
312 	u32			next_completion;
313 	rbd_img_callback_t	callback;
314 	u64			xferred;/* aggregate bytes transferred */
315 	int			result;	/* first nonzero obj_request result */
316 
317 	u32			obj_request_count;
318 	struct list_head	obj_requests;	/* rbd_obj_request structs */
319 
320 	struct kref		kref;
321 };
322 
323 #define for_each_obj_request(ireq, oreq) \
324 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
325 #define for_each_obj_request_from(ireq, oreq) \
326 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
327 #define for_each_obj_request_safe(ireq, oreq, n) \
328 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
329 
330 enum rbd_watch_state {
331 	RBD_WATCH_STATE_UNREGISTERED,
332 	RBD_WATCH_STATE_REGISTERED,
333 	RBD_WATCH_STATE_ERROR,
334 };
335 
336 enum rbd_lock_state {
337 	RBD_LOCK_STATE_UNLOCKED,
338 	RBD_LOCK_STATE_LOCKED,
339 	RBD_LOCK_STATE_RELEASING,
340 };
341 
342 /* WatchNotify::ClientId */
343 struct rbd_client_id {
344 	u64 gid;
345 	u64 handle;
346 };
347 
348 struct rbd_mapping {
349 	u64                     size;
350 	u64                     features;
351 	bool			read_only;
352 };
353 
354 /*
355  * a single device
356  */
357 struct rbd_device {
358 	int			dev_id;		/* blkdev unique id */
359 
360 	int			major;		/* blkdev assigned major */
361 	int			minor;
362 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
363 
364 	u32			image_format;	/* Either 1 or 2 */
365 	struct rbd_client	*rbd_client;
366 
367 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
368 
369 	spinlock_t		lock;		/* queue, flags, open_count */
370 
371 	struct rbd_image_header	header;
372 	unsigned long		flags;		/* possibly lock protected */
373 	struct rbd_spec		*spec;
374 	struct rbd_options	*opts;
375 	char			*config_info;	/* add{,_single_major} string */
376 
377 	struct ceph_object_id	header_oid;
378 	struct ceph_object_locator header_oloc;
379 
380 	struct ceph_file_layout	layout;		/* used for all rbd requests */
381 
382 	struct mutex		watch_mutex;
383 	enum rbd_watch_state	watch_state;
384 	struct ceph_osd_linger_request *watch_handle;
385 	u64			watch_cookie;
386 	struct delayed_work	watch_dwork;
387 
388 	struct rw_semaphore	lock_rwsem;
389 	enum rbd_lock_state	lock_state;
390 	char			lock_cookie[32];
391 	struct rbd_client_id	owner_cid;
392 	struct work_struct	acquired_lock_work;
393 	struct work_struct	released_lock_work;
394 	struct delayed_work	lock_dwork;
395 	struct work_struct	unlock_work;
396 	wait_queue_head_t	lock_waitq;
397 
398 	struct workqueue_struct	*task_wq;
399 
400 	struct rbd_spec		*parent_spec;
401 	u64			parent_overlap;
402 	atomic_t		parent_ref;
403 	struct rbd_device	*parent;
404 
405 	/* Block layer tags. */
406 	struct blk_mq_tag_set	tag_set;
407 
408 	/* protects updating the header */
409 	struct rw_semaphore     header_rwsem;
410 
411 	struct rbd_mapping	mapping;
412 
413 	struct list_head	node;
414 
415 	/* sysfs related */
416 	struct device		dev;
417 	unsigned long		open_count;	/* protected by lock */
418 };
419 
420 /*
421  * Flag bits for rbd_dev->flags:
422  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
423  *   by rbd_dev->lock
424  * - BLACKLISTED is protected by rbd_dev->lock_rwsem
425  */
426 enum rbd_dev_flags {
427 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
428 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
429 	RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
430 };
431 
432 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
433 
434 static LIST_HEAD(rbd_dev_list);    /* devices */
435 static DEFINE_SPINLOCK(rbd_dev_list_lock);
436 
437 static LIST_HEAD(rbd_client_list);		/* clients */
438 static DEFINE_SPINLOCK(rbd_client_list_lock);
439 
440 /* Slab caches for frequently-allocated structures */
441 
442 static struct kmem_cache	*rbd_img_request_cache;
443 static struct kmem_cache	*rbd_obj_request_cache;
444 
445 static int rbd_major;
446 static DEFINE_IDA(rbd_dev_id_ida);
447 
448 static struct workqueue_struct *rbd_wq;
449 
450 /*
451  * Default to false for now, as single-major requires >= 0.75 version of
452  * userspace rbd utility.
453  */
454 static bool single_major = false;
455 module_param(single_major, bool, S_IRUGO);
456 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
457 
458 static int rbd_img_request_submit(struct rbd_img_request *img_request);
459 
460 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
461 		       size_t count);
462 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
463 			  size_t count);
464 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
465 				    size_t count);
466 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
467 				       size_t count);
468 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
469 static void rbd_spec_put(struct rbd_spec *spec);
470 
471 static int rbd_dev_id_to_minor(int dev_id)
472 {
473 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
474 }
475 
476 static int minor_to_rbd_dev_id(int minor)
477 {
478 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
479 }
480 
481 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
482 {
483 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
484 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
485 }
486 
487 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
488 {
489 	bool is_lock_owner;
490 
491 	down_read(&rbd_dev->lock_rwsem);
492 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
493 	up_read(&rbd_dev->lock_rwsem);
494 	return is_lock_owner;
495 }
496 
497 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf)
498 {
499 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
500 }
501 
502 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
503 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
504 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
505 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
506 static BUS_ATTR(supported_features, S_IRUGO, rbd_supported_features_show, NULL);
507 
508 static struct attribute *rbd_bus_attrs[] = {
509 	&bus_attr_add.attr,
510 	&bus_attr_remove.attr,
511 	&bus_attr_add_single_major.attr,
512 	&bus_attr_remove_single_major.attr,
513 	&bus_attr_supported_features.attr,
514 	NULL,
515 };
516 
517 static umode_t rbd_bus_is_visible(struct kobject *kobj,
518 				  struct attribute *attr, int index)
519 {
520 	if (!single_major &&
521 	    (attr == &bus_attr_add_single_major.attr ||
522 	     attr == &bus_attr_remove_single_major.attr))
523 		return 0;
524 
525 	return attr->mode;
526 }
527 
528 static const struct attribute_group rbd_bus_group = {
529 	.attrs = rbd_bus_attrs,
530 	.is_visible = rbd_bus_is_visible,
531 };
532 __ATTRIBUTE_GROUPS(rbd_bus);
533 
534 static struct bus_type rbd_bus_type = {
535 	.name		= "rbd",
536 	.bus_groups	= rbd_bus_groups,
537 };
538 
539 static void rbd_root_dev_release(struct device *dev)
540 {
541 }
542 
543 static struct device rbd_root_dev = {
544 	.init_name =    "rbd",
545 	.release =      rbd_root_dev_release,
546 };
547 
548 static __printf(2, 3)
549 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
550 {
551 	struct va_format vaf;
552 	va_list args;
553 
554 	va_start(args, fmt);
555 	vaf.fmt = fmt;
556 	vaf.va = &args;
557 
558 	if (!rbd_dev)
559 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
560 	else if (rbd_dev->disk)
561 		printk(KERN_WARNING "%s: %s: %pV\n",
562 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
563 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
564 		printk(KERN_WARNING "%s: image %s: %pV\n",
565 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
566 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
567 		printk(KERN_WARNING "%s: id %s: %pV\n",
568 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
569 	else	/* punt */
570 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
571 			RBD_DRV_NAME, rbd_dev, &vaf);
572 	va_end(args);
573 }
574 
575 #ifdef RBD_DEBUG
576 #define rbd_assert(expr)						\
577 		if (unlikely(!(expr))) {				\
578 			printk(KERN_ERR "\nAssertion failure in %s() "	\
579 						"at line %d:\n\n"	\
580 					"\trbd_assert(%s);\n\n",	\
581 					__func__, __LINE__, #expr);	\
582 			BUG();						\
583 		}
584 #else /* !RBD_DEBUG */
585 #  define rbd_assert(expr)	((void) 0)
586 #endif /* !RBD_DEBUG */
587 
588 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
589 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
590 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
591 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
592 
593 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
594 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
595 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
596 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
597 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
598 					u64 snap_id);
599 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
600 				u8 *order, u64 *snap_size);
601 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
602 		u64 *snap_features);
603 
604 static int rbd_open(struct block_device *bdev, fmode_t mode)
605 {
606 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
607 	bool removing = false;
608 
609 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
610 		return -EROFS;
611 
612 	spin_lock_irq(&rbd_dev->lock);
613 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
614 		removing = true;
615 	else
616 		rbd_dev->open_count++;
617 	spin_unlock_irq(&rbd_dev->lock);
618 	if (removing)
619 		return -ENOENT;
620 
621 	(void) get_device(&rbd_dev->dev);
622 
623 	return 0;
624 }
625 
626 static void rbd_release(struct gendisk *disk, fmode_t mode)
627 {
628 	struct rbd_device *rbd_dev = disk->private_data;
629 	unsigned long open_count_before;
630 
631 	spin_lock_irq(&rbd_dev->lock);
632 	open_count_before = rbd_dev->open_count--;
633 	spin_unlock_irq(&rbd_dev->lock);
634 	rbd_assert(open_count_before > 0);
635 
636 	put_device(&rbd_dev->dev);
637 }
638 
639 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
640 {
641 	int ret = 0;
642 	int val;
643 	bool ro;
644 	bool ro_changed = false;
645 
646 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
647 	if (get_user(val, (int __user *)(arg)))
648 		return -EFAULT;
649 
650 	ro = val ? true : false;
651 	/* Snapshot doesn't allow to write*/
652 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
653 		return -EROFS;
654 
655 	spin_lock_irq(&rbd_dev->lock);
656 	/* prevent others open this device */
657 	if (rbd_dev->open_count > 1) {
658 		ret = -EBUSY;
659 		goto out;
660 	}
661 
662 	if (rbd_dev->mapping.read_only != ro) {
663 		rbd_dev->mapping.read_only = ro;
664 		ro_changed = true;
665 	}
666 
667 out:
668 	spin_unlock_irq(&rbd_dev->lock);
669 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
670 	if (ret == 0 && ro_changed)
671 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
672 
673 	return ret;
674 }
675 
676 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
677 			unsigned int cmd, unsigned long arg)
678 {
679 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
680 	int ret = 0;
681 
682 	switch (cmd) {
683 	case BLKROSET:
684 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
685 		break;
686 	default:
687 		ret = -ENOTTY;
688 	}
689 
690 	return ret;
691 }
692 
693 #ifdef CONFIG_COMPAT
694 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
695 				unsigned int cmd, unsigned long arg)
696 {
697 	return rbd_ioctl(bdev, mode, cmd, arg);
698 }
699 #endif /* CONFIG_COMPAT */
700 
701 static const struct block_device_operations rbd_bd_ops = {
702 	.owner			= THIS_MODULE,
703 	.open			= rbd_open,
704 	.release		= rbd_release,
705 	.ioctl			= rbd_ioctl,
706 #ifdef CONFIG_COMPAT
707 	.compat_ioctl		= rbd_compat_ioctl,
708 #endif
709 };
710 
711 /*
712  * Initialize an rbd client instance.  Success or not, this function
713  * consumes ceph_opts.  Caller holds client_mutex.
714  */
715 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
716 {
717 	struct rbd_client *rbdc;
718 	int ret = -ENOMEM;
719 
720 	dout("%s:\n", __func__);
721 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
722 	if (!rbdc)
723 		goto out_opt;
724 
725 	kref_init(&rbdc->kref);
726 	INIT_LIST_HEAD(&rbdc->node);
727 
728 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
729 	if (IS_ERR(rbdc->client))
730 		goto out_rbdc;
731 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
732 
733 	ret = ceph_open_session(rbdc->client);
734 	if (ret < 0)
735 		goto out_client;
736 
737 	spin_lock(&rbd_client_list_lock);
738 	list_add_tail(&rbdc->node, &rbd_client_list);
739 	spin_unlock(&rbd_client_list_lock);
740 
741 	dout("%s: rbdc %p\n", __func__, rbdc);
742 
743 	return rbdc;
744 out_client:
745 	ceph_destroy_client(rbdc->client);
746 out_rbdc:
747 	kfree(rbdc);
748 out_opt:
749 	if (ceph_opts)
750 		ceph_destroy_options(ceph_opts);
751 	dout("%s: error %d\n", __func__, ret);
752 
753 	return ERR_PTR(ret);
754 }
755 
756 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
757 {
758 	kref_get(&rbdc->kref);
759 
760 	return rbdc;
761 }
762 
763 /*
764  * Find a ceph client with specific addr and configuration.  If
765  * found, bump its reference count.
766  */
767 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
768 {
769 	struct rbd_client *client_node;
770 	bool found = false;
771 
772 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
773 		return NULL;
774 
775 	spin_lock(&rbd_client_list_lock);
776 	list_for_each_entry(client_node, &rbd_client_list, node) {
777 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
778 			__rbd_get_client(client_node);
779 
780 			found = true;
781 			break;
782 		}
783 	}
784 	spin_unlock(&rbd_client_list_lock);
785 
786 	return found ? client_node : NULL;
787 }
788 
789 /*
790  * (Per device) rbd map options
791  */
792 enum {
793 	Opt_queue_depth,
794 	Opt_last_int,
795 	/* int args above */
796 	Opt_last_string,
797 	/* string args above */
798 	Opt_read_only,
799 	Opt_read_write,
800 	Opt_lock_on_read,
801 	Opt_exclusive,
802 	Opt_err
803 };
804 
805 static match_table_t rbd_opts_tokens = {
806 	{Opt_queue_depth, "queue_depth=%d"},
807 	/* int args above */
808 	/* string args above */
809 	{Opt_read_only, "read_only"},
810 	{Opt_read_only, "ro"},		/* Alternate spelling */
811 	{Opt_read_write, "read_write"},
812 	{Opt_read_write, "rw"},		/* Alternate spelling */
813 	{Opt_lock_on_read, "lock_on_read"},
814 	{Opt_exclusive, "exclusive"},
815 	{Opt_err, NULL}
816 };
817 
818 struct rbd_options {
819 	int	queue_depth;
820 	bool	read_only;
821 	bool	lock_on_read;
822 	bool	exclusive;
823 };
824 
825 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
826 #define RBD_READ_ONLY_DEFAULT	false
827 #define RBD_LOCK_ON_READ_DEFAULT false
828 #define RBD_EXCLUSIVE_DEFAULT	false
829 
830 static int parse_rbd_opts_token(char *c, void *private)
831 {
832 	struct rbd_options *rbd_opts = private;
833 	substring_t argstr[MAX_OPT_ARGS];
834 	int token, intval, ret;
835 
836 	token = match_token(c, rbd_opts_tokens, argstr);
837 	if (token < Opt_last_int) {
838 		ret = match_int(&argstr[0], &intval);
839 		if (ret < 0) {
840 			pr_err("bad mount option arg (not int) at '%s'\n", c);
841 			return ret;
842 		}
843 		dout("got int token %d val %d\n", token, intval);
844 	} else if (token > Opt_last_int && token < Opt_last_string) {
845 		dout("got string token %d val %s\n", token, argstr[0].from);
846 	} else {
847 		dout("got token %d\n", token);
848 	}
849 
850 	switch (token) {
851 	case Opt_queue_depth:
852 		if (intval < 1) {
853 			pr_err("queue_depth out of range\n");
854 			return -EINVAL;
855 		}
856 		rbd_opts->queue_depth = intval;
857 		break;
858 	case Opt_read_only:
859 		rbd_opts->read_only = true;
860 		break;
861 	case Opt_read_write:
862 		rbd_opts->read_only = false;
863 		break;
864 	case Opt_lock_on_read:
865 		rbd_opts->lock_on_read = true;
866 		break;
867 	case Opt_exclusive:
868 		rbd_opts->exclusive = true;
869 		break;
870 	default:
871 		/* libceph prints "bad option" msg */
872 		return -EINVAL;
873 	}
874 
875 	return 0;
876 }
877 
878 static char* obj_op_name(enum obj_operation_type op_type)
879 {
880 	switch (op_type) {
881 	case OBJ_OP_READ:
882 		return "read";
883 	case OBJ_OP_WRITE:
884 		return "write";
885 	case OBJ_OP_DISCARD:
886 		return "discard";
887 	default:
888 		return "???";
889 	}
890 }
891 
892 /*
893  * Get a ceph client with specific addr and configuration, if one does
894  * not exist create it.  Either way, ceph_opts is consumed by this
895  * function.
896  */
897 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
898 {
899 	struct rbd_client *rbdc;
900 
901 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
902 	rbdc = rbd_client_find(ceph_opts);
903 	if (rbdc)	/* using an existing client */
904 		ceph_destroy_options(ceph_opts);
905 	else
906 		rbdc = rbd_client_create(ceph_opts);
907 	mutex_unlock(&client_mutex);
908 
909 	return rbdc;
910 }
911 
912 /*
913  * Destroy ceph client
914  *
915  * Caller must hold rbd_client_list_lock.
916  */
917 static void rbd_client_release(struct kref *kref)
918 {
919 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
920 
921 	dout("%s: rbdc %p\n", __func__, rbdc);
922 	spin_lock(&rbd_client_list_lock);
923 	list_del(&rbdc->node);
924 	spin_unlock(&rbd_client_list_lock);
925 
926 	ceph_destroy_client(rbdc->client);
927 	kfree(rbdc);
928 }
929 
930 /*
931  * Drop reference to ceph client node. If it's not referenced anymore, release
932  * it.
933  */
934 static void rbd_put_client(struct rbd_client *rbdc)
935 {
936 	if (rbdc)
937 		kref_put(&rbdc->kref, rbd_client_release);
938 }
939 
940 static bool rbd_image_format_valid(u32 image_format)
941 {
942 	return image_format == 1 || image_format == 2;
943 }
944 
945 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
946 {
947 	size_t size;
948 	u32 snap_count;
949 
950 	/* The header has to start with the magic rbd header text */
951 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
952 		return false;
953 
954 	/* The bio layer requires at least sector-sized I/O */
955 
956 	if (ondisk->options.order < SECTOR_SHIFT)
957 		return false;
958 
959 	/* If we use u64 in a few spots we may be able to loosen this */
960 
961 	if (ondisk->options.order > 8 * sizeof (int) - 1)
962 		return false;
963 
964 	/*
965 	 * The size of a snapshot header has to fit in a size_t, and
966 	 * that limits the number of snapshots.
967 	 */
968 	snap_count = le32_to_cpu(ondisk->snap_count);
969 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
970 	if (snap_count > size / sizeof (__le64))
971 		return false;
972 
973 	/*
974 	 * Not only that, but the size of the entire the snapshot
975 	 * header must also be representable in a size_t.
976 	 */
977 	size -= snap_count * sizeof (__le64);
978 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
979 		return false;
980 
981 	return true;
982 }
983 
984 /*
985  * returns the size of an object in the image
986  */
987 static u32 rbd_obj_bytes(struct rbd_image_header *header)
988 {
989 	return 1U << header->obj_order;
990 }
991 
992 static void rbd_init_layout(struct rbd_device *rbd_dev)
993 {
994 	if (rbd_dev->header.stripe_unit == 0 ||
995 	    rbd_dev->header.stripe_count == 0) {
996 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
997 		rbd_dev->header.stripe_count = 1;
998 	}
999 
1000 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1001 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1002 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1003 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1004 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1005 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1006 }
1007 
1008 /*
1009  * Fill an rbd image header with information from the given format 1
1010  * on-disk header.
1011  */
1012 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1013 				 struct rbd_image_header_ondisk *ondisk)
1014 {
1015 	struct rbd_image_header *header = &rbd_dev->header;
1016 	bool first_time = header->object_prefix == NULL;
1017 	struct ceph_snap_context *snapc;
1018 	char *object_prefix = NULL;
1019 	char *snap_names = NULL;
1020 	u64 *snap_sizes = NULL;
1021 	u32 snap_count;
1022 	int ret = -ENOMEM;
1023 	u32 i;
1024 
1025 	/* Allocate this now to avoid having to handle failure below */
1026 
1027 	if (first_time) {
1028 		object_prefix = kstrndup(ondisk->object_prefix,
1029 					 sizeof(ondisk->object_prefix),
1030 					 GFP_KERNEL);
1031 		if (!object_prefix)
1032 			return -ENOMEM;
1033 	}
1034 
1035 	/* Allocate the snapshot context and fill it in */
1036 
1037 	snap_count = le32_to_cpu(ondisk->snap_count);
1038 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1039 	if (!snapc)
1040 		goto out_err;
1041 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1042 	if (snap_count) {
1043 		struct rbd_image_snap_ondisk *snaps;
1044 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1045 
1046 		/* We'll keep a copy of the snapshot names... */
1047 
1048 		if (snap_names_len > (u64)SIZE_MAX)
1049 			goto out_2big;
1050 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1051 		if (!snap_names)
1052 			goto out_err;
1053 
1054 		/* ...as well as the array of their sizes. */
1055 		snap_sizes = kmalloc_array(snap_count,
1056 					   sizeof(*header->snap_sizes),
1057 					   GFP_KERNEL);
1058 		if (!snap_sizes)
1059 			goto out_err;
1060 
1061 		/*
1062 		 * Copy the names, and fill in each snapshot's id
1063 		 * and size.
1064 		 *
1065 		 * Note that rbd_dev_v1_header_info() guarantees the
1066 		 * ondisk buffer we're working with has
1067 		 * snap_names_len bytes beyond the end of the
1068 		 * snapshot id array, this memcpy() is safe.
1069 		 */
1070 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1071 		snaps = ondisk->snaps;
1072 		for (i = 0; i < snap_count; i++) {
1073 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1074 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1075 		}
1076 	}
1077 
1078 	/* We won't fail any more, fill in the header */
1079 
1080 	if (first_time) {
1081 		header->object_prefix = object_prefix;
1082 		header->obj_order = ondisk->options.order;
1083 		rbd_init_layout(rbd_dev);
1084 	} else {
1085 		ceph_put_snap_context(header->snapc);
1086 		kfree(header->snap_names);
1087 		kfree(header->snap_sizes);
1088 	}
1089 
1090 	/* The remaining fields always get updated (when we refresh) */
1091 
1092 	header->image_size = le64_to_cpu(ondisk->image_size);
1093 	header->snapc = snapc;
1094 	header->snap_names = snap_names;
1095 	header->snap_sizes = snap_sizes;
1096 
1097 	return 0;
1098 out_2big:
1099 	ret = -EIO;
1100 out_err:
1101 	kfree(snap_sizes);
1102 	kfree(snap_names);
1103 	ceph_put_snap_context(snapc);
1104 	kfree(object_prefix);
1105 
1106 	return ret;
1107 }
1108 
1109 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1110 {
1111 	const char *snap_name;
1112 
1113 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1114 
1115 	/* Skip over names until we find the one we are looking for */
1116 
1117 	snap_name = rbd_dev->header.snap_names;
1118 	while (which--)
1119 		snap_name += strlen(snap_name) + 1;
1120 
1121 	return kstrdup(snap_name, GFP_KERNEL);
1122 }
1123 
1124 /*
1125  * Snapshot id comparison function for use with qsort()/bsearch().
1126  * Note that result is for snapshots in *descending* order.
1127  */
1128 static int snapid_compare_reverse(const void *s1, const void *s2)
1129 {
1130 	u64 snap_id1 = *(u64 *)s1;
1131 	u64 snap_id2 = *(u64 *)s2;
1132 
1133 	if (snap_id1 < snap_id2)
1134 		return 1;
1135 	return snap_id1 == snap_id2 ? 0 : -1;
1136 }
1137 
1138 /*
1139  * Search a snapshot context to see if the given snapshot id is
1140  * present.
1141  *
1142  * Returns the position of the snapshot id in the array if it's found,
1143  * or BAD_SNAP_INDEX otherwise.
1144  *
1145  * Note: The snapshot array is in kept sorted (by the osd) in
1146  * reverse order, highest snapshot id first.
1147  */
1148 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1149 {
1150 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1151 	u64 *found;
1152 
1153 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1154 				sizeof (snap_id), snapid_compare_reverse);
1155 
1156 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1157 }
1158 
1159 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1160 					u64 snap_id)
1161 {
1162 	u32 which;
1163 	const char *snap_name;
1164 
1165 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1166 	if (which == BAD_SNAP_INDEX)
1167 		return ERR_PTR(-ENOENT);
1168 
1169 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1170 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1171 }
1172 
1173 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1174 {
1175 	if (snap_id == CEPH_NOSNAP)
1176 		return RBD_SNAP_HEAD_NAME;
1177 
1178 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1179 	if (rbd_dev->image_format == 1)
1180 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1181 
1182 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1183 }
1184 
1185 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1186 				u64 *snap_size)
1187 {
1188 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1189 	if (snap_id == CEPH_NOSNAP) {
1190 		*snap_size = rbd_dev->header.image_size;
1191 	} else if (rbd_dev->image_format == 1) {
1192 		u32 which;
1193 
1194 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1195 		if (which == BAD_SNAP_INDEX)
1196 			return -ENOENT;
1197 
1198 		*snap_size = rbd_dev->header.snap_sizes[which];
1199 	} else {
1200 		u64 size = 0;
1201 		int ret;
1202 
1203 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1204 		if (ret)
1205 			return ret;
1206 
1207 		*snap_size = size;
1208 	}
1209 	return 0;
1210 }
1211 
1212 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1213 			u64 *snap_features)
1214 {
1215 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1216 	if (snap_id == CEPH_NOSNAP) {
1217 		*snap_features = rbd_dev->header.features;
1218 	} else if (rbd_dev->image_format == 1) {
1219 		*snap_features = 0;	/* No features for format 1 */
1220 	} else {
1221 		u64 features = 0;
1222 		int ret;
1223 
1224 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1225 		if (ret)
1226 			return ret;
1227 
1228 		*snap_features = features;
1229 	}
1230 	return 0;
1231 }
1232 
1233 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1234 {
1235 	u64 snap_id = rbd_dev->spec->snap_id;
1236 	u64 size = 0;
1237 	u64 features = 0;
1238 	int ret;
1239 
1240 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1241 	if (ret)
1242 		return ret;
1243 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1244 	if (ret)
1245 		return ret;
1246 
1247 	rbd_dev->mapping.size = size;
1248 	rbd_dev->mapping.features = features;
1249 
1250 	return 0;
1251 }
1252 
1253 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1254 {
1255 	rbd_dev->mapping.size = 0;
1256 	rbd_dev->mapping.features = 0;
1257 }
1258 
1259 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1260 {
1261 	u64 segment_size = rbd_obj_bytes(&rbd_dev->header);
1262 
1263 	return offset & (segment_size - 1);
1264 }
1265 
1266 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1267 				u64 offset, u64 length)
1268 {
1269 	u64 segment_size = rbd_obj_bytes(&rbd_dev->header);
1270 
1271 	offset &= segment_size - 1;
1272 
1273 	rbd_assert(length <= U64_MAX - offset);
1274 	if (offset + length > segment_size)
1275 		length = segment_size - offset;
1276 
1277 	return length;
1278 }
1279 
1280 /*
1281  * bio helpers
1282  */
1283 
1284 static void bio_chain_put(struct bio *chain)
1285 {
1286 	struct bio *tmp;
1287 
1288 	while (chain) {
1289 		tmp = chain;
1290 		chain = chain->bi_next;
1291 		bio_put(tmp);
1292 	}
1293 }
1294 
1295 /*
1296  * zeros a bio chain, starting at specific offset
1297  */
1298 static void zero_bio_chain(struct bio *chain, int start_ofs)
1299 {
1300 	struct bio_vec bv;
1301 	struct bvec_iter iter;
1302 	unsigned long flags;
1303 	void *buf;
1304 	int pos = 0;
1305 
1306 	while (chain) {
1307 		bio_for_each_segment(bv, chain, iter) {
1308 			if (pos + bv.bv_len > start_ofs) {
1309 				int remainder = max(start_ofs - pos, 0);
1310 				buf = bvec_kmap_irq(&bv, &flags);
1311 				memset(buf + remainder, 0,
1312 				       bv.bv_len - remainder);
1313 				flush_dcache_page(bv.bv_page);
1314 				bvec_kunmap_irq(buf, &flags);
1315 			}
1316 			pos += bv.bv_len;
1317 		}
1318 
1319 		chain = chain->bi_next;
1320 	}
1321 }
1322 
1323 /*
1324  * similar to zero_bio_chain(), zeros data defined by a page array,
1325  * starting at the given byte offset from the start of the array and
1326  * continuing up to the given end offset.  The pages array is
1327  * assumed to be big enough to hold all bytes up to the end.
1328  */
1329 static void zero_pages(struct page **pages, u64 offset, u64 end)
1330 {
1331 	struct page **page = &pages[offset >> PAGE_SHIFT];
1332 
1333 	rbd_assert(end > offset);
1334 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1335 	while (offset < end) {
1336 		size_t page_offset;
1337 		size_t length;
1338 		unsigned long flags;
1339 		void *kaddr;
1340 
1341 		page_offset = offset & ~PAGE_MASK;
1342 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1343 		local_irq_save(flags);
1344 		kaddr = kmap_atomic(*page);
1345 		memset(kaddr + page_offset, 0, length);
1346 		flush_dcache_page(*page);
1347 		kunmap_atomic(kaddr);
1348 		local_irq_restore(flags);
1349 
1350 		offset += length;
1351 		page++;
1352 	}
1353 }
1354 
1355 /*
1356  * Clone a portion of a bio, starting at the given byte offset
1357  * and continuing for the number of bytes indicated.
1358  */
1359 static struct bio *bio_clone_range(struct bio *bio_src,
1360 					unsigned int offset,
1361 					unsigned int len,
1362 					gfp_t gfpmask)
1363 {
1364 	struct bio *bio;
1365 
1366 	bio = bio_clone(bio_src, gfpmask);
1367 	if (!bio)
1368 		return NULL;	/* ENOMEM */
1369 
1370 	bio_advance(bio, offset);
1371 	bio->bi_iter.bi_size = len;
1372 
1373 	return bio;
1374 }
1375 
1376 /*
1377  * Clone a portion of a bio chain, starting at the given byte offset
1378  * into the first bio in the source chain and continuing for the
1379  * number of bytes indicated.  The result is another bio chain of
1380  * exactly the given length, or a null pointer on error.
1381  *
1382  * The bio_src and offset parameters are both in-out.  On entry they
1383  * refer to the first source bio and the offset into that bio where
1384  * the start of data to be cloned is located.
1385  *
1386  * On return, bio_src is updated to refer to the bio in the source
1387  * chain that contains first un-cloned byte, and *offset will
1388  * contain the offset of that byte within that bio.
1389  */
1390 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1391 					unsigned int *offset,
1392 					unsigned int len,
1393 					gfp_t gfpmask)
1394 {
1395 	struct bio *bi = *bio_src;
1396 	unsigned int off = *offset;
1397 	struct bio *chain = NULL;
1398 	struct bio **end;
1399 
1400 	/* Build up a chain of clone bios up to the limit */
1401 
1402 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1403 		return NULL;		/* Nothing to clone */
1404 
1405 	end = &chain;
1406 	while (len) {
1407 		unsigned int bi_size;
1408 		struct bio *bio;
1409 
1410 		if (!bi) {
1411 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1412 			goto out_err;	/* EINVAL; ran out of bio's */
1413 		}
1414 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1415 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1416 		if (!bio)
1417 			goto out_err;	/* ENOMEM */
1418 
1419 		*end = bio;
1420 		end = &bio->bi_next;
1421 
1422 		off += bi_size;
1423 		if (off == bi->bi_iter.bi_size) {
1424 			bi = bi->bi_next;
1425 			off = 0;
1426 		}
1427 		len -= bi_size;
1428 	}
1429 	*bio_src = bi;
1430 	*offset = off;
1431 
1432 	return chain;
1433 out_err:
1434 	bio_chain_put(chain);
1435 
1436 	return NULL;
1437 }
1438 
1439 /*
1440  * The default/initial value for all object request flags is 0.  For
1441  * each flag, once its value is set to 1 it is never reset to 0
1442  * again.
1443  */
1444 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1445 {
1446 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1447 		struct rbd_device *rbd_dev;
1448 
1449 		rbd_dev = obj_request->img_request->rbd_dev;
1450 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1451 			obj_request);
1452 	}
1453 }
1454 
1455 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1456 {
1457 	smp_mb();
1458 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1459 }
1460 
1461 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1462 {
1463 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1464 		struct rbd_device *rbd_dev = NULL;
1465 
1466 		if (obj_request_img_data_test(obj_request))
1467 			rbd_dev = obj_request->img_request->rbd_dev;
1468 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1469 			obj_request);
1470 	}
1471 }
1472 
1473 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1474 {
1475 	smp_mb();
1476 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1477 }
1478 
1479 /*
1480  * This sets the KNOWN flag after (possibly) setting the EXISTS
1481  * flag.  The latter is set based on the "exists" value provided.
1482  *
1483  * Note that for our purposes once an object exists it never goes
1484  * away again.  It's possible that the response from two existence
1485  * checks are separated by the creation of the target object, and
1486  * the first ("doesn't exist") response arrives *after* the second
1487  * ("does exist").  In that case we ignore the second one.
1488  */
1489 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1490 				bool exists)
1491 {
1492 	if (exists)
1493 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1494 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1495 	smp_mb();
1496 }
1497 
1498 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1499 {
1500 	smp_mb();
1501 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1502 }
1503 
1504 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1505 {
1506 	smp_mb();
1507 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1508 }
1509 
1510 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1511 {
1512 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1513 
1514 	return obj_request->img_offset <
1515 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1516 }
1517 
1518 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1519 {
1520 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1521 		kref_read(&obj_request->kref));
1522 	kref_get(&obj_request->kref);
1523 }
1524 
1525 static void rbd_obj_request_destroy(struct kref *kref);
1526 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1527 {
1528 	rbd_assert(obj_request != NULL);
1529 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1530 		kref_read(&obj_request->kref));
1531 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1532 }
1533 
1534 static void rbd_img_request_get(struct rbd_img_request *img_request)
1535 {
1536 	dout("%s: img %p (was %d)\n", __func__, img_request,
1537 	     kref_read(&img_request->kref));
1538 	kref_get(&img_request->kref);
1539 }
1540 
1541 static bool img_request_child_test(struct rbd_img_request *img_request);
1542 static void rbd_parent_request_destroy(struct kref *kref);
1543 static void rbd_img_request_destroy(struct kref *kref);
1544 static void rbd_img_request_put(struct rbd_img_request *img_request)
1545 {
1546 	rbd_assert(img_request != NULL);
1547 	dout("%s: img %p (was %d)\n", __func__, img_request,
1548 		kref_read(&img_request->kref));
1549 	if (img_request_child_test(img_request))
1550 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1551 	else
1552 		kref_put(&img_request->kref, rbd_img_request_destroy);
1553 }
1554 
1555 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1556 					struct rbd_obj_request *obj_request)
1557 {
1558 	rbd_assert(obj_request->img_request == NULL);
1559 
1560 	/* Image request now owns object's original reference */
1561 	obj_request->img_request = img_request;
1562 	obj_request->which = img_request->obj_request_count;
1563 	rbd_assert(!obj_request_img_data_test(obj_request));
1564 	obj_request_img_data_set(obj_request);
1565 	rbd_assert(obj_request->which != BAD_WHICH);
1566 	img_request->obj_request_count++;
1567 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1568 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1569 		obj_request->which);
1570 }
1571 
1572 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1573 					struct rbd_obj_request *obj_request)
1574 {
1575 	rbd_assert(obj_request->which != BAD_WHICH);
1576 
1577 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1578 		obj_request->which);
1579 	list_del(&obj_request->links);
1580 	rbd_assert(img_request->obj_request_count > 0);
1581 	img_request->obj_request_count--;
1582 	rbd_assert(obj_request->which == img_request->obj_request_count);
1583 	obj_request->which = BAD_WHICH;
1584 	rbd_assert(obj_request_img_data_test(obj_request));
1585 	rbd_assert(obj_request->img_request == img_request);
1586 	obj_request->img_request = NULL;
1587 	obj_request->callback = NULL;
1588 	rbd_obj_request_put(obj_request);
1589 }
1590 
1591 static bool obj_request_type_valid(enum obj_request_type type)
1592 {
1593 	switch (type) {
1594 	case OBJ_REQUEST_NODATA:
1595 	case OBJ_REQUEST_BIO:
1596 	case OBJ_REQUEST_PAGES:
1597 		return true;
1598 	default:
1599 		return false;
1600 	}
1601 }
1602 
1603 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request);
1604 
1605 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1606 {
1607 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1608 
1609 	dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1610 	     obj_request, obj_request->object_no, obj_request->offset,
1611 	     obj_request->length, osd_req);
1612 	if (obj_request_img_data_test(obj_request)) {
1613 		WARN_ON(obj_request->callback != rbd_img_obj_callback);
1614 		rbd_img_request_get(obj_request->img_request);
1615 	}
1616 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1617 }
1618 
1619 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1620 {
1621 
1622 	dout("%s: img %p\n", __func__, img_request);
1623 
1624 	/*
1625 	 * If no error occurred, compute the aggregate transfer
1626 	 * count for the image request.  We could instead use
1627 	 * atomic64_cmpxchg() to update it as each object request
1628 	 * completes; not clear which way is better off hand.
1629 	 */
1630 	if (!img_request->result) {
1631 		struct rbd_obj_request *obj_request;
1632 		u64 xferred = 0;
1633 
1634 		for_each_obj_request(img_request, obj_request)
1635 			xferred += obj_request->xferred;
1636 		img_request->xferred = xferred;
1637 	}
1638 
1639 	if (img_request->callback)
1640 		img_request->callback(img_request);
1641 	else
1642 		rbd_img_request_put(img_request);
1643 }
1644 
1645 /*
1646  * The default/initial value for all image request flags is 0.  Each
1647  * is conditionally set to 1 at image request initialization time
1648  * and currently never change thereafter.
1649  */
1650 static void img_request_write_set(struct rbd_img_request *img_request)
1651 {
1652 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1653 	smp_mb();
1654 }
1655 
1656 static bool img_request_write_test(struct rbd_img_request *img_request)
1657 {
1658 	smp_mb();
1659 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1660 }
1661 
1662 /*
1663  * Set the discard flag when the img_request is an discard request
1664  */
1665 static void img_request_discard_set(struct rbd_img_request *img_request)
1666 {
1667 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1668 	smp_mb();
1669 }
1670 
1671 static bool img_request_discard_test(struct rbd_img_request *img_request)
1672 {
1673 	smp_mb();
1674 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1675 }
1676 
1677 static void img_request_child_set(struct rbd_img_request *img_request)
1678 {
1679 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1680 	smp_mb();
1681 }
1682 
1683 static void img_request_child_clear(struct rbd_img_request *img_request)
1684 {
1685 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1686 	smp_mb();
1687 }
1688 
1689 static bool img_request_child_test(struct rbd_img_request *img_request)
1690 {
1691 	smp_mb();
1692 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1693 }
1694 
1695 static void img_request_layered_set(struct rbd_img_request *img_request)
1696 {
1697 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1698 	smp_mb();
1699 }
1700 
1701 static void img_request_layered_clear(struct rbd_img_request *img_request)
1702 {
1703 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1704 	smp_mb();
1705 }
1706 
1707 static bool img_request_layered_test(struct rbd_img_request *img_request)
1708 {
1709 	smp_mb();
1710 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1711 }
1712 
1713 static enum obj_operation_type
1714 rbd_img_request_op_type(struct rbd_img_request *img_request)
1715 {
1716 	if (img_request_write_test(img_request))
1717 		return OBJ_OP_WRITE;
1718 	else if (img_request_discard_test(img_request))
1719 		return OBJ_OP_DISCARD;
1720 	else
1721 		return OBJ_OP_READ;
1722 }
1723 
1724 static void
1725 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1726 {
1727 	u64 xferred = obj_request->xferred;
1728 	u64 length = obj_request->length;
1729 
1730 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1731 		obj_request, obj_request->img_request, obj_request->result,
1732 		xferred, length);
1733 	/*
1734 	 * ENOENT means a hole in the image.  We zero-fill the entire
1735 	 * length of the request.  A short read also implies zero-fill
1736 	 * to the end of the request.  An error requires the whole
1737 	 * length of the request to be reported finished with an error
1738 	 * to the block layer.  In each case we update the xferred
1739 	 * count to indicate the whole request was satisfied.
1740 	 */
1741 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1742 	if (obj_request->result == -ENOENT) {
1743 		if (obj_request->type == OBJ_REQUEST_BIO)
1744 			zero_bio_chain(obj_request->bio_list, 0);
1745 		else
1746 			zero_pages(obj_request->pages, 0, length);
1747 		obj_request->result = 0;
1748 	} else if (xferred < length && !obj_request->result) {
1749 		if (obj_request->type == OBJ_REQUEST_BIO)
1750 			zero_bio_chain(obj_request->bio_list, xferred);
1751 		else
1752 			zero_pages(obj_request->pages, xferred, length);
1753 	}
1754 	obj_request->xferred = length;
1755 	obj_request_done_set(obj_request);
1756 }
1757 
1758 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1759 {
1760 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1761 		obj_request->callback);
1762 	if (obj_request->callback)
1763 		obj_request->callback(obj_request);
1764 	else
1765 		complete_all(&obj_request->completion);
1766 }
1767 
1768 static void rbd_obj_request_error(struct rbd_obj_request *obj_request, int err)
1769 {
1770 	obj_request->result = err;
1771 	obj_request->xferred = 0;
1772 	/*
1773 	 * kludge - mirror rbd_obj_request_submit() to match a put in
1774 	 * rbd_img_obj_callback()
1775 	 */
1776 	if (obj_request_img_data_test(obj_request)) {
1777 		WARN_ON(obj_request->callback != rbd_img_obj_callback);
1778 		rbd_img_request_get(obj_request->img_request);
1779 	}
1780 	obj_request_done_set(obj_request);
1781 	rbd_obj_request_complete(obj_request);
1782 }
1783 
1784 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1785 {
1786 	struct rbd_img_request *img_request = NULL;
1787 	struct rbd_device *rbd_dev = NULL;
1788 	bool layered = false;
1789 
1790 	if (obj_request_img_data_test(obj_request)) {
1791 		img_request = obj_request->img_request;
1792 		layered = img_request && img_request_layered_test(img_request);
1793 		rbd_dev = img_request->rbd_dev;
1794 	}
1795 
1796 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1797 		obj_request, img_request, obj_request->result,
1798 		obj_request->xferred, obj_request->length);
1799 	if (layered && obj_request->result == -ENOENT &&
1800 			obj_request->img_offset < rbd_dev->parent_overlap)
1801 		rbd_img_parent_read(obj_request);
1802 	else if (img_request)
1803 		rbd_img_obj_request_read_callback(obj_request);
1804 	else
1805 		obj_request_done_set(obj_request);
1806 }
1807 
1808 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1809 {
1810 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1811 		obj_request->result, obj_request->length);
1812 	/*
1813 	 * There is no such thing as a successful short write.  Set
1814 	 * it to our originally-requested length.
1815 	 */
1816 	obj_request->xferred = obj_request->length;
1817 	obj_request_done_set(obj_request);
1818 }
1819 
1820 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1821 {
1822 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1823 		obj_request->result, obj_request->length);
1824 	/*
1825 	 * There is no such thing as a successful short discard.  Set
1826 	 * it to our originally-requested length.
1827 	 */
1828 	obj_request->xferred = obj_request->length;
1829 	/* discarding a non-existent object is not a problem */
1830 	if (obj_request->result == -ENOENT)
1831 		obj_request->result = 0;
1832 	obj_request_done_set(obj_request);
1833 }
1834 
1835 /*
1836  * For a simple stat call there's nothing to do.  We'll do more if
1837  * this is part of a write sequence for a layered image.
1838  */
1839 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1840 {
1841 	dout("%s: obj %p\n", __func__, obj_request);
1842 	obj_request_done_set(obj_request);
1843 }
1844 
1845 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1846 {
1847 	dout("%s: obj %p\n", __func__, obj_request);
1848 
1849 	if (obj_request_img_data_test(obj_request))
1850 		rbd_osd_copyup_callback(obj_request);
1851 	else
1852 		obj_request_done_set(obj_request);
1853 }
1854 
1855 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1856 {
1857 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1858 	u16 opcode;
1859 
1860 	dout("%s: osd_req %p\n", __func__, osd_req);
1861 	rbd_assert(osd_req == obj_request->osd_req);
1862 	if (obj_request_img_data_test(obj_request)) {
1863 		rbd_assert(obj_request->img_request);
1864 		rbd_assert(obj_request->which != BAD_WHICH);
1865 	} else {
1866 		rbd_assert(obj_request->which == BAD_WHICH);
1867 	}
1868 
1869 	if (osd_req->r_result < 0)
1870 		obj_request->result = osd_req->r_result;
1871 
1872 	/*
1873 	 * We support a 64-bit length, but ultimately it has to be
1874 	 * passed to the block layer, which just supports a 32-bit
1875 	 * length field.
1876 	 */
1877 	obj_request->xferred = osd_req->r_ops[0].outdata_len;
1878 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1879 
1880 	opcode = osd_req->r_ops[0].op;
1881 	switch (opcode) {
1882 	case CEPH_OSD_OP_READ:
1883 		rbd_osd_read_callback(obj_request);
1884 		break;
1885 	case CEPH_OSD_OP_SETALLOCHINT:
1886 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1887 			   osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1888 		/* fall through */
1889 	case CEPH_OSD_OP_WRITE:
1890 	case CEPH_OSD_OP_WRITEFULL:
1891 		rbd_osd_write_callback(obj_request);
1892 		break;
1893 	case CEPH_OSD_OP_STAT:
1894 		rbd_osd_stat_callback(obj_request);
1895 		break;
1896 	case CEPH_OSD_OP_DELETE:
1897 	case CEPH_OSD_OP_TRUNCATE:
1898 	case CEPH_OSD_OP_ZERO:
1899 		rbd_osd_discard_callback(obj_request);
1900 		break;
1901 	case CEPH_OSD_OP_CALL:
1902 		rbd_osd_call_callback(obj_request);
1903 		break;
1904 	default:
1905 		rbd_warn(NULL, "unexpected OSD op: object_no %016llx opcode %d",
1906 			 obj_request->object_no, opcode);
1907 		break;
1908 	}
1909 
1910 	if (obj_request_done_test(obj_request))
1911 		rbd_obj_request_complete(obj_request);
1912 }
1913 
1914 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1915 {
1916 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1917 
1918 	rbd_assert(obj_request_img_data_test(obj_request));
1919 	osd_req->r_snapid = obj_request->img_request->snap_id;
1920 }
1921 
1922 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1923 {
1924 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1925 
1926 	ktime_get_real_ts(&osd_req->r_mtime);
1927 	osd_req->r_data_offset = obj_request->offset;
1928 }
1929 
1930 static struct ceph_osd_request *
1931 __rbd_osd_req_create(struct rbd_device *rbd_dev,
1932 		     struct ceph_snap_context *snapc,
1933 		     int num_ops, unsigned int flags,
1934 		     struct rbd_obj_request *obj_request)
1935 {
1936 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1937 	struct ceph_osd_request *req;
1938 	const char *name_format = rbd_dev->image_format == 1 ?
1939 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1940 
1941 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1942 	if (!req)
1943 		return NULL;
1944 
1945 	req->r_flags = flags;
1946 	req->r_callback = rbd_osd_req_callback;
1947 	req->r_priv = obj_request;
1948 
1949 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1950 	if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1951 			rbd_dev->header.object_prefix, obj_request->object_no))
1952 		goto err_req;
1953 
1954 	if (ceph_osdc_alloc_messages(req, GFP_NOIO))
1955 		goto err_req;
1956 
1957 	return req;
1958 
1959 err_req:
1960 	ceph_osdc_put_request(req);
1961 	return NULL;
1962 }
1963 
1964 /*
1965  * Create an osd request.  A read request has one osd op (read).
1966  * A write request has either one (watch) or two (hint+write) osd ops.
1967  * (All rbd data writes are prefixed with an allocation hint op, but
1968  * technically osd watch is a write request, hence this distinction.)
1969  */
1970 static struct ceph_osd_request *rbd_osd_req_create(
1971 					struct rbd_device *rbd_dev,
1972 					enum obj_operation_type op_type,
1973 					unsigned int num_ops,
1974 					struct rbd_obj_request *obj_request)
1975 {
1976 	struct ceph_snap_context *snapc = NULL;
1977 
1978 	if (obj_request_img_data_test(obj_request) &&
1979 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1980 		struct rbd_img_request *img_request = obj_request->img_request;
1981 		if (op_type == OBJ_OP_WRITE) {
1982 			rbd_assert(img_request_write_test(img_request));
1983 		} else {
1984 			rbd_assert(img_request_discard_test(img_request));
1985 		}
1986 		snapc = img_request->snapc;
1987 	}
1988 
1989 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1990 
1991 	return __rbd_osd_req_create(rbd_dev, snapc, num_ops,
1992 	    (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) ?
1993 	    CEPH_OSD_FLAG_WRITE : CEPH_OSD_FLAG_READ, obj_request);
1994 }
1995 
1996 /*
1997  * Create a copyup osd request based on the information in the object
1998  * request supplied.  A copyup request has two or three osd ops, a
1999  * copyup method call, potentially a hint op, and a write or truncate
2000  * or zero op.
2001  */
2002 static struct ceph_osd_request *
2003 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
2004 {
2005 	struct rbd_img_request *img_request;
2006 	int num_osd_ops = 3;
2007 
2008 	rbd_assert(obj_request_img_data_test(obj_request));
2009 	img_request = obj_request->img_request;
2010 	rbd_assert(img_request);
2011 	rbd_assert(img_request_write_test(img_request) ||
2012 			img_request_discard_test(img_request));
2013 
2014 	if (img_request_discard_test(img_request))
2015 		num_osd_ops = 2;
2016 
2017 	return __rbd_osd_req_create(img_request->rbd_dev,
2018 				    img_request->snapc, num_osd_ops,
2019 				    CEPH_OSD_FLAG_WRITE, obj_request);
2020 }
2021 
2022 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2023 {
2024 	ceph_osdc_put_request(osd_req);
2025 }
2026 
2027 static struct rbd_obj_request *
2028 rbd_obj_request_create(enum obj_request_type type)
2029 {
2030 	struct rbd_obj_request *obj_request;
2031 
2032 	rbd_assert(obj_request_type_valid(type));
2033 
2034 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2035 	if (!obj_request)
2036 		return NULL;
2037 
2038 	obj_request->which = BAD_WHICH;
2039 	obj_request->type = type;
2040 	INIT_LIST_HEAD(&obj_request->links);
2041 	init_completion(&obj_request->completion);
2042 	kref_init(&obj_request->kref);
2043 
2044 	dout("%s %p\n", __func__, obj_request);
2045 	return obj_request;
2046 }
2047 
2048 static void rbd_obj_request_destroy(struct kref *kref)
2049 {
2050 	struct rbd_obj_request *obj_request;
2051 
2052 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2053 
2054 	dout("%s: obj %p\n", __func__, obj_request);
2055 
2056 	rbd_assert(obj_request->img_request == NULL);
2057 	rbd_assert(obj_request->which == BAD_WHICH);
2058 
2059 	if (obj_request->osd_req)
2060 		rbd_osd_req_destroy(obj_request->osd_req);
2061 
2062 	rbd_assert(obj_request_type_valid(obj_request->type));
2063 	switch (obj_request->type) {
2064 	case OBJ_REQUEST_NODATA:
2065 		break;		/* Nothing to do */
2066 	case OBJ_REQUEST_BIO:
2067 		if (obj_request->bio_list)
2068 			bio_chain_put(obj_request->bio_list);
2069 		break;
2070 	case OBJ_REQUEST_PAGES:
2071 		/* img_data requests don't own their page array */
2072 		if (obj_request->pages &&
2073 		    !obj_request_img_data_test(obj_request))
2074 			ceph_release_page_vector(obj_request->pages,
2075 						obj_request->page_count);
2076 		break;
2077 	}
2078 
2079 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2080 }
2081 
2082 /* It's OK to call this for a device with no parent */
2083 
2084 static void rbd_spec_put(struct rbd_spec *spec);
2085 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2086 {
2087 	rbd_dev_remove_parent(rbd_dev);
2088 	rbd_spec_put(rbd_dev->parent_spec);
2089 	rbd_dev->parent_spec = NULL;
2090 	rbd_dev->parent_overlap = 0;
2091 }
2092 
2093 /*
2094  * Parent image reference counting is used to determine when an
2095  * image's parent fields can be safely torn down--after there are no
2096  * more in-flight requests to the parent image.  When the last
2097  * reference is dropped, cleaning them up is safe.
2098  */
2099 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2100 {
2101 	int counter;
2102 
2103 	if (!rbd_dev->parent_spec)
2104 		return;
2105 
2106 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2107 	if (counter > 0)
2108 		return;
2109 
2110 	/* Last reference; clean up parent data structures */
2111 
2112 	if (!counter)
2113 		rbd_dev_unparent(rbd_dev);
2114 	else
2115 		rbd_warn(rbd_dev, "parent reference underflow");
2116 }
2117 
2118 /*
2119  * If an image has a non-zero parent overlap, get a reference to its
2120  * parent.
2121  *
2122  * Returns true if the rbd device has a parent with a non-zero
2123  * overlap and a reference for it was successfully taken, or
2124  * false otherwise.
2125  */
2126 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2127 {
2128 	int counter = 0;
2129 
2130 	if (!rbd_dev->parent_spec)
2131 		return false;
2132 
2133 	down_read(&rbd_dev->header_rwsem);
2134 	if (rbd_dev->parent_overlap)
2135 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2136 	up_read(&rbd_dev->header_rwsem);
2137 
2138 	if (counter < 0)
2139 		rbd_warn(rbd_dev, "parent reference overflow");
2140 
2141 	return counter > 0;
2142 }
2143 
2144 /*
2145  * Caller is responsible for filling in the list of object requests
2146  * that comprises the image request, and the Linux request pointer
2147  * (if there is one).
2148  */
2149 static struct rbd_img_request *rbd_img_request_create(
2150 					struct rbd_device *rbd_dev,
2151 					u64 offset, u64 length,
2152 					enum obj_operation_type op_type,
2153 					struct ceph_snap_context *snapc)
2154 {
2155 	struct rbd_img_request *img_request;
2156 
2157 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2158 	if (!img_request)
2159 		return NULL;
2160 
2161 	img_request->rq = NULL;
2162 	img_request->rbd_dev = rbd_dev;
2163 	img_request->offset = offset;
2164 	img_request->length = length;
2165 	img_request->flags = 0;
2166 	if (op_type == OBJ_OP_DISCARD) {
2167 		img_request_discard_set(img_request);
2168 		img_request->snapc = snapc;
2169 	} else if (op_type == OBJ_OP_WRITE) {
2170 		img_request_write_set(img_request);
2171 		img_request->snapc = snapc;
2172 	} else {
2173 		img_request->snap_id = rbd_dev->spec->snap_id;
2174 	}
2175 	if (rbd_dev_parent_get(rbd_dev))
2176 		img_request_layered_set(img_request);
2177 	spin_lock_init(&img_request->completion_lock);
2178 	img_request->next_completion = 0;
2179 	img_request->callback = NULL;
2180 	img_request->result = 0;
2181 	img_request->obj_request_count = 0;
2182 	INIT_LIST_HEAD(&img_request->obj_requests);
2183 	kref_init(&img_request->kref);
2184 
2185 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2186 		obj_op_name(op_type), offset, length, img_request);
2187 
2188 	return img_request;
2189 }
2190 
2191 static void rbd_img_request_destroy(struct kref *kref)
2192 {
2193 	struct rbd_img_request *img_request;
2194 	struct rbd_obj_request *obj_request;
2195 	struct rbd_obj_request *next_obj_request;
2196 
2197 	img_request = container_of(kref, struct rbd_img_request, kref);
2198 
2199 	dout("%s: img %p\n", __func__, img_request);
2200 
2201 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2202 		rbd_img_obj_request_del(img_request, obj_request);
2203 	rbd_assert(img_request->obj_request_count == 0);
2204 
2205 	if (img_request_layered_test(img_request)) {
2206 		img_request_layered_clear(img_request);
2207 		rbd_dev_parent_put(img_request->rbd_dev);
2208 	}
2209 
2210 	if (img_request_write_test(img_request) ||
2211 		img_request_discard_test(img_request))
2212 		ceph_put_snap_context(img_request->snapc);
2213 
2214 	kmem_cache_free(rbd_img_request_cache, img_request);
2215 }
2216 
2217 static struct rbd_img_request *rbd_parent_request_create(
2218 					struct rbd_obj_request *obj_request,
2219 					u64 img_offset, u64 length)
2220 {
2221 	struct rbd_img_request *parent_request;
2222 	struct rbd_device *rbd_dev;
2223 
2224 	rbd_assert(obj_request->img_request);
2225 	rbd_dev = obj_request->img_request->rbd_dev;
2226 
2227 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2228 						length, OBJ_OP_READ, NULL);
2229 	if (!parent_request)
2230 		return NULL;
2231 
2232 	img_request_child_set(parent_request);
2233 	rbd_obj_request_get(obj_request);
2234 	parent_request->obj_request = obj_request;
2235 
2236 	return parent_request;
2237 }
2238 
2239 static void rbd_parent_request_destroy(struct kref *kref)
2240 {
2241 	struct rbd_img_request *parent_request;
2242 	struct rbd_obj_request *orig_request;
2243 
2244 	parent_request = container_of(kref, struct rbd_img_request, kref);
2245 	orig_request = parent_request->obj_request;
2246 
2247 	parent_request->obj_request = NULL;
2248 	rbd_obj_request_put(orig_request);
2249 	img_request_child_clear(parent_request);
2250 
2251 	rbd_img_request_destroy(kref);
2252 }
2253 
2254 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2255 {
2256 	struct rbd_img_request *img_request;
2257 	unsigned int xferred;
2258 	int result;
2259 	bool more;
2260 
2261 	rbd_assert(obj_request_img_data_test(obj_request));
2262 	img_request = obj_request->img_request;
2263 
2264 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2265 	xferred = (unsigned int)obj_request->xferred;
2266 	result = obj_request->result;
2267 	if (result) {
2268 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2269 		enum obj_operation_type op_type;
2270 
2271 		if (img_request_discard_test(img_request))
2272 			op_type = OBJ_OP_DISCARD;
2273 		else if (img_request_write_test(img_request))
2274 			op_type = OBJ_OP_WRITE;
2275 		else
2276 			op_type = OBJ_OP_READ;
2277 
2278 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2279 			obj_op_name(op_type), obj_request->length,
2280 			obj_request->img_offset, obj_request->offset);
2281 		rbd_warn(rbd_dev, "  result %d xferred %x",
2282 			result, xferred);
2283 		if (!img_request->result)
2284 			img_request->result = result;
2285 		/*
2286 		 * Need to end I/O on the entire obj_request worth of
2287 		 * bytes in case of error.
2288 		 */
2289 		xferred = obj_request->length;
2290 	}
2291 
2292 	if (img_request_child_test(img_request)) {
2293 		rbd_assert(img_request->obj_request != NULL);
2294 		more = obj_request->which < img_request->obj_request_count - 1;
2295 	} else {
2296 		rbd_assert(img_request->rq != NULL);
2297 
2298 		more = blk_update_request(img_request->rq, result, xferred);
2299 		if (!more)
2300 			__blk_mq_end_request(img_request->rq, result);
2301 	}
2302 
2303 	return more;
2304 }
2305 
2306 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2307 {
2308 	struct rbd_img_request *img_request;
2309 	u32 which = obj_request->which;
2310 	bool more = true;
2311 
2312 	rbd_assert(obj_request_img_data_test(obj_request));
2313 	img_request = obj_request->img_request;
2314 
2315 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2316 	rbd_assert(img_request != NULL);
2317 	rbd_assert(img_request->obj_request_count > 0);
2318 	rbd_assert(which != BAD_WHICH);
2319 	rbd_assert(which < img_request->obj_request_count);
2320 
2321 	spin_lock_irq(&img_request->completion_lock);
2322 	if (which != img_request->next_completion)
2323 		goto out;
2324 
2325 	for_each_obj_request_from(img_request, obj_request) {
2326 		rbd_assert(more);
2327 		rbd_assert(which < img_request->obj_request_count);
2328 
2329 		if (!obj_request_done_test(obj_request))
2330 			break;
2331 		more = rbd_img_obj_end_request(obj_request);
2332 		which++;
2333 	}
2334 
2335 	rbd_assert(more ^ (which == img_request->obj_request_count));
2336 	img_request->next_completion = which;
2337 out:
2338 	spin_unlock_irq(&img_request->completion_lock);
2339 	rbd_img_request_put(img_request);
2340 
2341 	if (!more)
2342 		rbd_img_request_complete(img_request);
2343 }
2344 
2345 /*
2346  * Add individual osd ops to the given ceph_osd_request and prepare
2347  * them for submission. num_ops is the current number of
2348  * osd operations already to the object request.
2349  */
2350 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2351 				struct ceph_osd_request *osd_request,
2352 				enum obj_operation_type op_type,
2353 				unsigned int num_ops)
2354 {
2355 	struct rbd_img_request *img_request = obj_request->img_request;
2356 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2357 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2358 	u64 offset = obj_request->offset;
2359 	u64 length = obj_request->length;
2360 	u64 img_end;
2361 	u16 opcode;
2362 
2363 	if (op_type == OBJ_OP_DISCARD) {
2364 		if (!offset && length == object_size &&
2365 		    (!img_request_layered_test(img_request) ||
2366 		     !obj_request_overlaps_parent(obj_request))) {
2367 			opcode = CEPH_OSD_OP_DELETE;
2368 		} else if ((offset + length == object_size)) {
2369 			opcode = CEPH_OSD_OP_TRUNCATE;
2370 		} else {
2371 			down_read(&rbd_dev->header_rwsem);
2372 			img_end = rbd_dev->header.image_size;
2373 			up_read(&rbd_dev->header_rwsem);
2374 
2375 			if (obj_request->img_offset + length == img_end)
2376 				opcode = CEPH_OSD_OP_TRUNCATE;
2377 			else
2378 				opcode = CEPH_OSD_OP_ZERO;
2379 		}
2380 	} else if (op_type == OBJ_OP_WRITE) {
2381 		if (!offset && length == object_size)
2382 			opcode = CEPH_OSD_OP_WRITEFULL;
2383 		else
2384 			opcode = CEPH_OSD_OP_WRITE;
2385 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2386 					object_size, object_size);
2387 		num_ops++;
2388 	} else {
2389 		opcode = CEPH_OSD_OP_READ;
2390 	}
2391 
2392 	if (opcode == CEPH_OSD_OP_DELETE)
2393 		osd_req_op_init(osd_request, num_ops, opcode, 0);
2394 	else
2395 		osd_req_op_extent_init(osd_request, num_ops, opcode,
2396 				       offset, length, 0, 0);
2397 
2398 	if (obj_request->type == OBJ_REQUEST_BIO)
2399 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2400 					obj_request->bio_list, length);
2401 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2402 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2403 					obj_request->pages, length,
2404 					offset & ~PAGE_MASK, false, false);
2405 
2406 	/* Discards are also writes */
2407 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2408 		rbd_osd_req_format_write(obj_request);
2409 	else
2410 		rbd_osd_req_format_read(obj_request);
2411 }
2412 
2413 /*
2414  * Split up an image request into one or more object requests, each
2415  * to a different object.  The "type" parameter indicates whether
2416  * "data_desc" is the pointer to the head of a list of bio
2417  * structures, or the base of a page array.  In either case this
2418  * function assumes data_desc describes memory sufficient to hold
2419  * all data described by the image request.
2420  */
2421 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2422 					enum obj_request_type type,
2423 					void *data_desc)
2424 {
2425 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2426 	struct rbd_obj_request *obj_request = NULL;
2427 	struct rbd_obj_request *next_obj_request;
2428 	struct bio *bio_list = NULL;
2429 	unsigned int bio_offset = 0;
2430 	struct page **pages = NULL;
2431 	enum obj_operation_type op_type;
2432 	u64 img_offset;
2433 	u64 resid;
2434 
2435 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2436 		(int)type, data_desc);
2437 
2438 	img_offset = img_request->offset;
2439 	resid = img_request->length;
2440 	rbd_assert(resid > 0);
2441 	op_type = rbd_img_request_op_type(img_request);
2442 
2443 	if (type == OBJ_REQUEST_BIO) {
2444 		bio_list = data_desc;
2445 		rbd_assert(img_offset ==
2446 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2447 	} else if (type == OBJ_REQUEST_PAGES) {
2448 		pages = data_desc;
2449 	}
2450 
2451 	while (resid) {
2452 		struct ceph_osd_request *osd_req;
2453 		u64 object_no = img_offset >> rbd_dev->header.obj_order;
2454 		u64 offset = rbd_segment_offset(rbd_dev, img_offset);
2455 		u64 length = rbd_segment_length(rbd_dev, img_offset, resid);
2456 
2457 		obj_request = rbd_obj_request_create(type);
2458 		if (!obj_request)
2459 			goto out_unwind;
2460 
2461 		obj_request->object_no = object_no;
2462 		obj_request->offset = offset;
2463 		obj_request->length = length;
2464 
2465 		/*
2466 		 * set obj_request->img_request before creating the
2467 		 * osd_request so that it gets the right snapc
2468 		 */
2469 		rbd_img_obj_request_add(img_request, obj_request);
2470 
2471 		if (type == OBJ_REQUEST_BIO) {
2472 			unsigned int clone_size;
2473 
2474 			rbd_assert(length <= (u64)UINT_MAX);
2475 			clone_size = (unsigned int)length;
2476 			obj_request->bio_list =
2477 					bio_chain_clone_range(&bio_list,
2478 								&bio_offset,
2479 								clone_size,
2480 								GFP_NOIO);
2481 			if (!obj_request->bio_list)
2482 				goto out_unwind;
2483 		} else if (type == OBJ_REQUEST_PAGES) {
2484 			unsigned int page_count;
2485 
2486 			obj_request->pages = pages;
2487 			page_count = (u32)calc_pages_for(offset, length);
2488 			obj_request->page_count = page_count;
2489 			if ((offset + length) & ~PAGE_MASK)
2490 				page_count--;	/* more on last page */
2491 			pages += page_count;
2492 		}
2493 
2494 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2495 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2496 					obj_request);
2497 		if (!osd_req)
2498 			goto out_unwind;
2499 
2500 		obj_request->osd_req = osd_req;
2501 		obj_request->callback = rbd_img_obj_callback;
2502 		obj_request->img_offset = img_offset;
2503 
2504 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2505 
2506 		img_offset += length;
2507 		resid -= length;
2508 	}
2509 
2510 	return 0;
2511 
2512 out_unwind:
2513 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2514 		rbd_img_obj_request_del(img_request, obj_request);
2515 
2516 	return -ENOMEM;
2517 }
2518 
2519 static void
2520 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2521 {
2522 	struct rbd_img_request *img_request;
2523 	struct rbd_device *rbd_dev;
2524 	struct page **pages;
2525 	u32 page_count;
2526 
2527 	dout("%s: obj %p\n", __func__, obj_request);
2528 
2529 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2530 		obj_request->type == OBJ_REQUEST_NODATA);
2531 	rbd_assert(obj_request_img_data_test(obj_request));
2532 	img_request = obj_request->img_request;
2533 	rbd_assert(img_request);
2534 
2535 	rbd_dev = img_request->rbd_dev;
2536 	rbd_assert(rbd_dev);
2537 
2538 	pages = obj_request->copyup_pages;
2539 	rbd_assert(pages != NULL);
2540 	obj_request->copyup_pages = NULL;
2541 	page_count = obj_request->copyup_page_count;
2542 	rbd_assert(page_count);
2543 	obj_request->copyup_page_count = 0;
2544 	ceph_release_page_vector(pages, page_count);
2545 
2546 	/*
2547 	 * We want the transfer count to reflect the size of the
2548 	 * original write request.  There is no such thing as a
2549 	 * successful short write, so if the request was successful
2550 	 * we can just set it to the originally-requested length.
2551 	 */
2552 	if (!obj_request->result)
2553 		obj_request->xferred = obj_request->length;
2554 
2555 	obj_request_done_set(obj_request);
2556 }
2557 
2558 static void
2559 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2560 {
2561 	struct rbd_obj_request *orig_request;
2562 	struct ceph_osd_request *osd_req;
2563 	struct rbd_device *rbd_dev;
2564 	struct page **pages;
2565 	enum obj_operation_type op_type;
2566 	u32 page_count;
2567 	int img_result;
2568 	u64 parent_length;
2569 
2570 	rbd_assert(img_request_child_test(img_request));
2571 
2572 	/* First get what we need from the image request */
2573 
2574 	pages = img_request->copyup_pages;
2575 	rbd_assert(pages != NULL);
2576 	img_request->copyup_pages = NULL;
2577 	page_count = img_request->copyup_page_count;
2578 	rbd_assert(page_count);
2579 	img_request->copyup_page_count = 0;
2580 
2581 	orig_request = img_request->obj_request;
2582 	rbd_assert(orig_request != NULL);
2583 	rbd_assert(obj_request_type_valid(orig_request->type));
2584 	img_result = img_request->result;
2585 	parent_length = img_request->length;
2586 	rbd_assert(img_result || parent_length == img_request->xferred);
2587 	rbd_img_request_put(img_request);
2588 
2589 	rbd_assert(orig_request->img_request);
2590 	rbd_dev = orig_request->img_request->rbd_dev;
2591 	rbd_assert(rbd_dev);
2592 
2593 	/*
2594 	 * If the overlap has become 0 (most likely because the
2595 	 * image has been flattened) we need to free the pages
2596 	 * and re-submit the original write request.
2597 	 */
2598 	if (!rbd_dev->parent_overlap) {
2599 		ceph_release_page_vector(pages, page_count);
2600 		rbd_obj_request_submit(orig_request);
2601 		return;
2602 	}
2603 
2604 	if (img_result)
2605 		goto out_err;
2606 
2607 	/*
2608 	 * The original osd request is of no use to use any more.
2609 	 * We need a new one that can hold the three ops in a copyup
2610 	 * request.  Allocate the new copyup osd request for the
2611 	 * original request, and release the old one.
2612 	 */
2613 	img_result = -ENOMEM;
2614 	osd_req = rbd_osd_req_create_copyup(orig_request);
2615 	if (!osd_req)
2616 		goto out_err;
2617 	rbd_osd_req_destroy(orig_request->osd_req);
2618 	orig_request->osd_req = osd_req;
2619 	orig_request->copyup_pages = pages;
2620 	orig_request->copyup_page_count = page_count;
2621 
2622 	/* Initialize the copyup op */
2623 
2624 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2625 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2626 						false, false);
2627 
2628 	/* Add the other op(s) */
2629 
2630 	op_type = rbd_img_request_op_type(orig_request->img_request);
2631 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2632 
2633 	/* All set, send it off. */
2634 
2635 	rbd_obj_request_submit(orig_request);
2636 	return;
2637 
2638 out_err:
2639 	ceph_release_page_vector(pages, page_count);
2640 	rbd_obj_request_error(orig_request, img_result);
2641 }
2642 
2643 /*
2644  * Read from the parent image the range of data that covers the
2645  * entire target of the given object request.  This is used for
2646  * satisfying a layered image write request when the target of an
2647  * object request from the image request does not exist.
2648  *
2649  * A page array big enough to hold the returned data is allocated
2650  * and supplied to rbd_img_request_fill() as the "data descriptor."
2651  * When the read completes, this page array will be transferred to
2652  * the original object request for the copyup operation.
2653  *
2654  * If an error occurs, it is recorded as the result of the original
2655  * object request in rbd_img_obj_exists_callback().
2656  */
2657 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2658 {
2659 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2660 	struct rbd_img_request *parent_request = NULL;
2661 	u64 img_offset;
2662 	u64 length;
2663 	struct page **pages = NULL;
2664 	u32 page_count;
2665 	int result;
2666 
2667 	rbd_assert(rbd_dev->parent != NULL);
2668 
2669 	/*
2670 	 * Determine the byte range covered by the object in the
2671 	 * child image to which the original request was to be sent.
2672 	 */
2673 	img_offset = obj_request->img_offset - obj_request->offset;
2674 	length = rbd_obj_bytes(&rbd_dev->header);
2675 
2676 	/*
2677 	 * There is no defined parent data beyond the parent
2678 	 * overlap, so limit what we read at that boundary if
2679 	 * necessary.
2680 	 */
2681 	if (img_offset + length > rbd_dev->parent_overlap) {
2682 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2683 		length = rbd_dev->parent_overlap - img_offset;
2684 	}
2685 
2686 	/*
2687 	 * Allocate a page array big enough to receive the data read
2688 	 * from the parent.
2689 	 */
2690 	page_count = (u32)calc_pages_for(0, length);
2691 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2692 	if (IS_ERR(pages)) {
2693 		result = PTR_ERR(pages);
2694 		pages = NULL;
2695 		goto out_err;
2696 	}
2697 
2698 	result = -ENOMEM;
2699 	parent_request = rbd_parent_request_create(obj_request,
2700 						img_offset, length);
2701 	if (!parent_request)
2702 		goto out_err;
2703 
2704 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2705 	if (result)
2706 		goto out_err;
2707 
2708 	parent_request->copyup_pages = pages;
2709 	parent_request->copyup_page_count = page_count;
2710 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2711 
2712 	result = rbd_img_request_submit(parent_request);
2713 	if (!result)
2714 		return 0;
2715 
2716 	parent_request->copyup_pages = NULL;
2717 	parent_request->copyup_page_count = 0;
2718 	parent_request->obj_request = NULL;
2719 	rbd_obj_request_put(obj_request);
2720 out_err:
2721 	if (pages)
2722 		ceph_release_page_vector(pages, page_count);
2723 	if (parent_request)
2724 		rbd_img_request_put(parent_request);
2725 	return result;
2726 }
2727 
2728 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2729 {
2730 	struct rbd_obj_request *orig_request;
2731 	struct rbd_device *rbd_dev;
2732 	int result;
2733 
2734 	rbd_assert(!obj_request_img_data_test(obj_request));
2735 
2736 	/*
2737 	 * All we need from the object request is the original
2738 	 * request and the result of the STAT op.  Grab those, then
2739 	 * we're done with the request.
2740 	 */
2741 	orig_request = obj_request->obj_request;
2742 	obj_request->obj_request = NULL;
2743 	rbd_obj_request_put(orig_request);
2744 	rbd_assert(orig_request);
2745 	rbd_assert(orig_request->img_request);
2746 
2747 	result = obj_request->result;
2748 	obj_request->result = 0;
2749 
2750 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2751 		obj_request, orig_request, result,
2752 		obj_request->xferred, obj_request->length);
2753 	rbd_obj_request_put(obj_request);
2754 
2755 	/*
2756 	 * If the overlap has become 0 (most likely because the
2757 	 * image has been flattened) we need to re-submit the
2758 	 * original request.
2759 	 */
2760 	rbd_dev = orig_request->img_request->rbd_dev;
2761 	if (!rbd_dev->parent_overlap) {
2762 		rbd_obj_request_submit(orig_request);
2763 		return;
2764 	}
2765 
2766 	/*
2767 	 * Our only purpose here is to determine whether the object
2768 	 * exists, and we don't want to treat the non-existence as
2769 	 * an error.  If something else comes back, transfer the
2770 	 * error to the original request and complete it now.
2771 	 */
2772 	if (!result) {
2773 		obj_request_existence_set(orig_request, true);
2774 	} else if (result == -ENOENT) {
2775 		obj_request_existence_set(orig_request, false);
2776 	} else {
2777 		goto fail_orig_request;
2778 	}
2779 
2780 	/*
2781 	 * Resubmit the original request now that we have recorded
2782 	 * whether the target object exists.
2783 	 */
2784 	result = rbd_img_obj_request_submit(orig_request);
2785 	if (result)
2786 		goto fail_orig_request;
2787 
2788 	return;
2789 
2790 fail_orig_request:
2791 	rbd_obj_request_error(orig_request, result);
2792 }
2793 
2794 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2795 {
2796 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2797 	struct rbd_obj_request *stat_request;
2798 	struct page **pages;
2799 	u32 page_count;
2800 	size_t size;
2801 	int ret;
2802 
2803 	stat_request = rbd_obj_request_create(OBJ_REQUEST_PAGES);
2804 	if (!stat_request)
2805 		return -ENOMEM;
2806 
2807 	stat_request->object_no = obj_request->object_no;
2808 
2809 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2810 						   stat_request);
2811 	if (!stat_request->osd_req) {
2812 		ret = -ENOMEM;
2813 		goto fail_stat_request;
2814 	}
2815 
2816 	/*
2817 	 * The response data for a STAT call consists of:
2818 	 *     le64 length;
2819 	 *     struct {
2820 	 *         le32 tv_sec;
2821 	 *         le32 tv_nsec;
2822 	 *     } mtime;
2823 	 */
2824 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2825 	page_count = (u32)calc_pages_for(0, size);
2826 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2827 	if (IS_ERR(pages)) {
2828 		ret = PTR_ERR(pages);
2829 		goto fail_stat_request;
2830 	}
2831 
2832 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2833 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2834 				     false, false);
2835 
2836 	rbd_obj_request_get(obj_request);
2837 	stat_request->obj_request = obj_request;
2838 	stat_request->pages = pages;
2839 	stat_request->page_count = page_count;
2840 	stat_request->callback = rbd_img_obj_exists_callback;
2841 
2842 	rbd_obj_request_submit(stat_request);
2843 	return 0;
2844 
2845 fail_stat_request:
2846 	rbd_obj_request_put(stat_request);
2847 	return ret;
2848 }
2849 
2850 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2851 {
2852 	struct rbd_img_request *img_request = obj_request->img_request;
2853 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2854 
2855 	/* Reads */
2856 	if (!img_request_write_test(img_request) &&
2857 	    !img_request_discard_test(img_request))
2858 		return true;
2859 
2860 	/* Non-layered writes */
2861 	if (!img_request_layered_test(img_request))
2862 		return true;
2863 
2864 	/*
2865 	 * Layered writes outside of the parent overlap range don't
2866 	 * share any data with the parent.
2867 	 */
2868 	if (!obj_request_overlaps_parent(obj_request))
2869 		return true;
2870 
2871 	/*
2872 	 * Entire-object layered writes - we will overwrite whatever
2873 	 * parent data there is anyway.
2874 	 */
2875 	if (!obj_request->offset &&
2876 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2877 		return true;
2878 
2879 	/*
2880 	 * If the object is known to already exist, its parent data has
2881 	 * already been copied.
2882 	 */
2883 	if (obj_request_known_test(obj_request) &&
2884 	    obj_request_exists_test(obj_request))
2885 		return true;
2886 
2887 	return false;
2888 }
2889 
2890 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2891 {
2892 	rbd_assert(obj_request_img_data_test(obj_request));
2893 	rbd_assert(obj_request_type_valid(obj_request->type));
2894 	rbd_assert(obj_request->img_request);
2895 
2896 	if (img_obj_request_simple(obj_request)) {
2897 		rbd_obj_request_submit(obj_request);
2898 		return 0;
2899 	}
2900 
2901 	/*
2902 	 * It's a layered write.  The target object might exist but
2903 	 * we may not know that yet.  If we know it doesn't exist,
2904 	 * start by reading the data for the full target object from
2905 	 * the parent so we can use it for a copyup to the target.
2906 	 */
2907 	if (obj_request_known_test(obj_request))
2908 		return rbd_img_obj_parent_read_full(obj_request);
2909 
2910 	/* We don't know whether the target exists.  Go find out. */
2911 
2912 	return rbd_img_obj_exists_submit(obj_request);
2913 }
2914 
2915 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2916 {
2917 	struct rbd_obj_request *obj_request;
2918 	struct rbd_obj_request *next_obj_request;
2919 	int ret = 0;
2920 
2921 	dout("%s: img %p\n", __func__, img_request);
2922 
2923 	rbd_img_request_get(img_request);
2924 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2925 		ret = rbd_img_obj_request_submit(obj_request);
2926 		if (ret)
2927 			goto out_put_ireq;
2928 	}
2929 
2930 out_put_ireq:
2931 	rbd_img_request_put(img_request);
2932 	return ret;
2933 }
2934 
2935 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2936 {
2937 	struct rbd_obj_request *obj_request;
2938 	struct rbd_device *rbd_dev;
2939 	u64 obj_end;
2940 	u64 img_xferred;
2941 	int img_result;
2942 
2943 	rbd_assert(img_request_child_test(img_request));
2944 
2945 	/* First get what we need from the image request and release it */
2946 
2947 	obj_request = img_request->obj_request;
2948 	img_xferred = img_request->xferred;
2949 	img_result = img_request->result;
2950 	rbd_img_request_put(img_request);
2951 
2952 	/*
2953 	 * If the overlap has become 0 (most likely because the
2954 	 * image has been flattened) we need to re-submit the
2955 	 * original request.
2956 	 */
2957 	rbd_assert(obj_request);
2958 	rbd_assert(obj_request->img_request);
2959 	rbd_dev = obj_request->img_request->rbd_dev;
2960 	if (!rbd_dev->parent_overlap) {
2961 		rbd_obj_request_submit(obj_request);
2962 		return;
2963 	}
2964 
2965 	obj_request->result = img_result;
2966 	if (obj_request->result)
2967 		goto out;
2968 
2969 	/*
2970 	 * We need to zero anything beyond the parent overlap
2971 	 * boundary.  Since rbd_img_obj_request_read_callback()
2972 	 * will zero anything beyond the end of a short read, an
2973 	 * easy way to do this is to pretend the data from the
2974 	 * parent came up short--ending at the overlap boundary.
2975 	 */
2976 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2977 	obj_end = obj_request->img_offset + obj_request->length;
2978 	if (obj_end > rbd_dev->parent_overlap) {
2979 		u64 xferred = 0;
2980 
2981 		if (obj_request->img_offset < rbd_dev->parent_overlap)
2982 			xferred = rbd_dev->parent_overlap -
2983 					obj_request->img_offset;
2984 
2985 		obj_request->xferred = min(img_xferred, xferred);
2986 	} else {
2987 		obj_request->xferred = img_xferred;
2988 	}
2989 out:
2990 	rbd_img_obj_request_read_callback(obj_request);
2991 	rbd_obj_request_complete(obj_request);
2992 }
2993 
2994 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2995 {
2996 	struct rbd_img_request *img_request;
2997 	int result;
2998 
2999 	rbd_assert(obj_request_img_data_test(obj_request));
3000 	rbd_assert(obj_request->img_request != NULL);
3001 	rbd_assert(obj_request->result == (s32) -ENOENT);
3002 	rbd_assert(obj_request_type_valid(obj_request->type));
3003 
3004 	/* rbd_read_finish(obj_request, obj_request->length); */
3005 	img_request = rbd_parent_request_create(obj_request,
3006 						obj_request->img_offset,
3007 						obj_request->length);
3008 	result = -ENOMEM;
3009 	if (!img_request)
3010 		goto out_err;
3011 
3012 	if (obj_request->type == OBJ_REQUEST_BIO)
3013 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3014 						obj_request->bio_list);
3015 	else
3016 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3017 						obj_request->pages);
3018 	if (result)
3019 		goto out_err;
3020 
3021 	img_request->callback = rbd_img_parent_read_callback;
3022 	result = rbd_img_request_submit(img_request);
3023 	if (result)
3024 		goto out_err;
3025 
3026 	return;
3027 out_err:
3028 	if (img_request)
3029 		rbd_img_request_put(img_request);
3030 	obj_request->result = result;
3031 	obj_request->xferred = 0;
3032 	obj_request_done_set(obj_request);
3033 }
3034 
3035 static const struct rbd_client_id rbd_empty_cid;
3036 
3037 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3038 			  const struct rbd_client_id *rhs)
3039 {
3040 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3041 }
3042 
3043 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3044 {
3045 	struct rbd_client_id cid;
3046 
3047 	mutex_lock(&rbd_dev->watch_mutex);
3048 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3049 	cid.handle = rbd_dev->watch_cookie;
3050 	mutex_unlock(&rbd_dev->watch_mutex);
3051 	return cid;
3052 }
3053 
3054 /*
3055  * lock_rwsem must be held for write
3056  */
3057 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3058 			      const struct rbd_client_id *cid)
3059 {
3060 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3061 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3062 	     cid->gid, cid->handle);
3063 	rbd_dev->owner_cid = *cid; /* struct */
3064 }
3065 
3066 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3067 {
3068 	mutex_lock(&rbd_dev->watch_mutex);
3069 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3070 	mutex_unlock(&rbd_dev->watch_mutex);
3071 }
3072 
3073 /*
3074  * lock_rwsem must be held for write
3075  */
3076 static int rbd_lock(struct rbd_device *rbd_dev)
3077 {
3078 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3079 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3080 	char cookie[32];
3081 	int ret;
3082 
3083 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3084 		rbd_dev->lock_cookie[0] != '\0');
3085 
3086 	format_lock_cookie(rbd_dev, cookie);
3087 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3088 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3089 			    RBD_LOCK_TAG, "", 0);
3090 	if (ret)
3091 		return ret;
3092 
3093 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3094 	strcpy(rbd_dev->lock_cookie, cookie);
3095 	rbd_set_owner_cid(rbd_dev, &cid);
3096 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3097 	return 0;
3098 }
3099 
3100 /*
3101  * lock_rwsem must be held for write
3102  */
3103 static void rbd_unlock(struct rbd_device *rbd_dev)
3104 {
3105 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3106 	int ret;
3107 
3108 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3109 		rbd_dev->lock_cookie[0] == '\0');
3110 
3111 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3112 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3113 	if (ret && ret != -ENOENT)
3114 		rbd_warn(rbd_dev, "failed to unlock: %d", ret);
3115 
3116 	/* treat errors as the image is unlocked */
3117 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3118 	rbd_dev->lock_cookie[0] = '\0';
3119 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3120 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3121 }
3122 
3123 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3124 				enum rbd_notify_op notify_op,
3125 				struct page ***preply_pages,
3126 				size_t *preply_len)
3127 {
3128 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3129 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3130 	int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN;
3131 	char buf[buf_size];
3132 	void *p = buf;
3133 
3134 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3135 
3136 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3137 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3138 	ceph_encode_32(&p, notify_op);
3139 	ceph_encode_64(&p, cid.gid);
3140 	ceph_encode_64(&p, cid.handle);
3141 
3142 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3143 				&rbd_dev->header_oloc, buf, buf_size,
3144 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3145 }
3146 
3147 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3148 			       enum rbd_notify_op notify_op)
3149 {
3150 	struct page **reply_pages;
3151 	size_t reply_len;
3152 
3153 	__rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3154 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3155 }
3156 
3157 static void rbd_notify_acquired_lock(struct work_struct *work)
3158 {
3159 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3160 						  acquired_lock_work);
3161 
3162 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3163 }
3164 
3165 static void rbd_notify_released_lock(struct work_struct *work)
3166 {
3167 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3168 						  released_lock_work);
3169 
3170 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3171 }
3172 
3173 static int rbd_request_lock(struct rbd_device *rbd_dev)
3174 {
3175 	struct page **reply_pages;
3176 	size_t reply_len;
3177 	bool lock_owner_responded = false;
3178 	int ret;
3179 
3180 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3181 
3182 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3183 				   &reply_pages, &reply_len);
3184 	if (ret && ret != -ETIMEDOUT) {
3185 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3186 		goto out;
3187 	}
3188 
3189 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3190 		void *p = page_address(reply_pages[0]);
3191 		void *const end = p + reply_len;
3192 		u32 n;
3193 
3194 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3195 		while (n--) {
3196 			u8 struct_v;
3197 			u32 len;
3198 
3199 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3200 			p += 8 + 8; /* skip gid and cookie */
3201 
3202 			ceph_decode_32_safe(&p, end, len, e_inval);
3203 			if (!len)
3204 				continue;
3205 
3206 			if (lock_owner_responded) {
3207 				rbd_warn(rbd_dev,
3208 					 "duplicate lock owners detected");
3209 				ret = -EIO;
3210 				goto out;
3211 			}
3212 
3213 			lock_owner_responded = true;
3214 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3215 						  &struct_v, &len);
3216 			if (ret) {
3217 				rbd_warn(rbd_dev,
3218 					 "failed to decode ResponseMessage: %d",
3219 					 ret);
3220 				goto e_inval;
3221 			}
3222 
3223 			ret = ceph_decode_32(&p);
3224 		}
3225 	}
3226 
3227 	if (!lock_owner_responded) {
3228 		rbd_warn(rbd_dev, "no lock owners detected");
3229 		ret = -ETIMEDOUT;
3230 	}
3231 
3232 out:
3233 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3234 	return ret;
3235 
3236 e_inval:
3237 	ret = -EINVAL;
3238 	goto out;
3239 }
3240 
3241 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
3242 {
3243 	dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
3244 
3245 	cancel_delayed_work(&rbd_dev->lock_dwork);
3246 	if (wake_all)
3247 		wake_up_all(&rbd_dev->lock_waitq);
3248 	else
3249 		wake_up(&rbd_dev->lock_waitq);
3250 }
3251 
3252 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3253 			       struct ceph_locker **lockers, u32 *num_lockers)
3254 {
3255 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3256 	u8 lock_type;
3257 	char *lock_tag;
3258 	int ret;
3259 
3260 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3261 
3262 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3263 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3264 				 &lock_type, &lock_tag, lockers, num_lockers);
3265 	if (ret)
3266 		return ret;
3267 
3268 	if (*num_lockers == 0) {
3269 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3270 		goto out;
3271 	}
3272 
3273 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3274 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3275 			 lock_tag);
3276 		ret = -EBUSY;
3277 		goto out;
3278 	}
3279 
3280 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
3281 		rbd_warn(rbd_dev, "shared lock type detected");
3282 		ret = -EBUSY;
3283 		goto out;
3284 	}
3285 
3286 	if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3287 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3288 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3289 			 (*lockers)[0].id.cookie);
3290 		ret = -EBUSY;
3291 		goto out;
3292 	}
3293 
3294 out:
3295 	kfree(lock_tag);
3296 	return ret;
3297 }
3298 
3299 static int find_watcher(struct rbd_device *rbd_dev,
3300 			const struct ceph_locker *locker)
3301 {
3302 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3303 	struct ceph_watch_item *watchers;
3304 	u32 num_watchers;
3305 	u64 cookie;
3306 	int i;
3307 	int ret;
3308 
3309 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3310 				      &rbd_dev->header_oloc, &watchers,
3311 				      &num_watchers);
3312 	if (ret)
3313 		return ret;
3314 
3315 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3316 	for (i = 0; i < num_watchers; i++) {
3317 		if (!memcmp(&watchers[i].addr, &locker->info.addr,
3318 			    sizeof(locker->info.addr)) &&
3319 		    watchers[i].cookie == cookie) {
3320 			struct rbd_client_id cid = {
3321 				.gid = le64_to_cpu(watchers[i].name.num),
3322 				.handle = cookie,
3323 			};
3324 
3325 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3326 			     rbd_dev, cid.gid, cid.handle);
3327 			rbd_set_owner_cid(rbd_dev, &cid);
3328 			ret = 1;
3329 			goto out;
3330 		}
3331 	}
3332 
3333 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3334 	ret = 0;
3335 out:
3336 	kfree(watchers);
3337 	return ret;
3338 }
3339 
3340 /*
3341  * lock_rwsem must be held for write
3342  */
3343 static int rbd_try_lock(struct rbd_device *rbd_dev)
3344 {
3345 	struct ceph_client *client = rbd_dev->rbd_client->client;
3346 	struct ceph_locker *lockers;
3347 	u32 num_lockers;
3348 	int ret;
3349 
3350 	for (;;) {
3351 		ret = rbd_lock(rbd_dev);
3352 		if (ret != -EBUSY)
3353 			return ret;
3354 
3355 		/* determine if the current lock holder is still alive */
3356 		ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3357 		if (ret)
3358 			return ret;
3359 
3360 		if (num_lockers == 0)
3361 			goto again;
3362 
3363 		ret = find_watcher(rbd_dev, lockers);
3364 		if (ret) {
3365 			if (ret > 0)
3366 				ret = 0; /* have to request lock */
3367 			goto out;
3368 		}
3369 
3370 		rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
3371 			 ENTITY_NAME(lockers[0].id.name));
3372 
3373 		ret = ceph_monc_blacklist_add(&client->monc,
3374 					      &lockers[0].info.addr);
3375 		if (ret) {
3376 			rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
3377 				 ENTITY_NAME(lockers[0].id.name), ret);
3378 			goto out;
3379 		}
3380 
3381 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3382 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3383 					  lockers[0].id.cookie,
3384 					  &lockers[0].id.name);
3385 		if (ret && ret != -ENOENT)
3386 			goto out;
3387 
3388 again:
3389 		ceph_free_lockers(lockers, num_lockers);
3390 	}
3391 
3392 out:
3393 	ceph_free_lockers(lockers, num_lockers);
3394 	return ret;
3395 }
3396 
3397 /*
3398  * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
3399  */
3400 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
3401 						int *pret)
3402 {
3403 	enum rbd_lock_state lock_state;
3404 
3405 	down_read(&rbd_dev->lock_rwsem);
3406 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3407 	     rbd_dev->lock_state);
3408 	if (__rbd_is_lock_owner(rbd_dev)) {
3409 		lock_state = rbd_dev->lock_state;
3410 		up_read(&rbd_dev->lock_rwsem);
3411 		return lock_state;
3412 	}
3413 
3414 	up_read(&rbd_dev->lock_rwsem);
3415 	down_write(&rbd_dev->lock_rwsem);
3416 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3417 	     rbd_dev->lock_state);
3418 	if (!__rbd_is_lock_owner(rbd_dev)) {
3419 		*pret = rbd_try_lock(rbd_dev);
3420 		if (*pret)
3421 			rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3422 	}
3423 
3424 	lock_state = rbd_dev->lock_state;
3425 	up_write(&rbd_dev->lock_rwsem);
3426 	return lock_state;
3427 }
3428 
3429 static void rbd_acquire_lock(struct work_struct *work)
3430 {
3431 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3432 					    struct rbd_device, lock_dwork);
3433 	enum rbd_lock_state lock_state;
3434 	int ret;
3435 
3436 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3437 again:
3438 	lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3439 	if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3440 		if (lock_state == RBD_LOCK_STATE_LOCKED)
3441 			wake_requests(rbd_dev, true);
3442 		dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3443 		     rbd_dev, lock_state, ret);
3444 		return;
3445 	}
3446 
3447 	ret = rbd_request_lock(rbd_dev);
3448 	if (ret == -ETIMEDOUT) {
3449 		goto again; /* treat this as a dead client */
3450 	} else if (ret == -EROFS) {
3451 		rbd_warn(rbd_dev, "peer will not release lock");
3452 		/*
3453 		 * If this is rbd_add_acquire_lock(), we want to fail
3454 		 * immediately -- reuse BLACKLISTED flag.  Otherwise we
3455 		 * want to block.
3456 		 */
3457 		if (!(rbd_dev->disk->flags & GENHD_FL_UP)) {
3458 			set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3459 			/* wake "rbd map --exclusive" process */
3460 			wake_requests(rbd_dev, false);
3461 		}
3462 	} else if (ret < 0) {
3463 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3464 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3465 				 RBD_RETRY_DELAY);
3466 	} else {
3467 		/*
3468 		 * lock owner acked, but resend if we don't see them
3469 		 * release the lock
3470 		 */
3471 		dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3472 		     rbd_dev);
3473 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3474 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3475 	}
3476 }
3477 
3478 /*
3479  * lock_rwsem must be held for write
3480  */
3481 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3482 {
3483 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3484 	     rbd_dev->lock_state);
3485 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3486 		return false;
3487 
3488 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3489 	downgrade_write(&rbd_dev->lock_rwsem);
3490 	/*
3491 	 * Ensure that all in-flight IO is flushed.
3492 	 *
3493 	 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3494 	 * may be shared with other devices.
3495 	 */
3496 	ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3497 	up_read(&rbd_dev->lock_rwsem);
3498 
3499 	down_write(&rbd_dev->lock_rwsem);
3500 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3501 	     rbd_dev->lock_state);
3502 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3503 		return false;
3504 
3505 	rbd_unlock(rbd_dev);
3506 	/*
3507 	 * Give others a chance to grab the lock - we would re-acquire
3508 	 * almost immediately if we got new IO during ceph_osdc_sync()
3509 	 * otherwise.  We need to ack our own notifications, so this
3510 	 * lock_dwork will be requeued from rbd_wait_state_locked()
3511 	 * after wake_requests() in rbd_handle_released_lock().
3512 	 */
3513 	cancel_delayed_work(&rbd_dev->lock_dwork);
3514 	return true;
3515 }
3516 
3517 static void rbd_release_lock_work(struct work_struct *work)
3518 {
3519 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3520 						  unlock_work);
3521 
3522 	down_write(&rbd_dev->lock_rwsem);
3523 	rbd_release_lock(rbd_dev);
3524 	up_write(&rbd_dev->lock_rwsem);
3525 }
3526 
3527 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3528 				     void **p)
3529 {
3530 	struct rbd_client_id cid = { 0 };
3531 
3532 	if (struct_v >= 2) {
3533 		cid.gid = ceph_decode_64(p);
3534 		cid.handle = ceph_decode_64(p);
3535 	}
3536 
3537 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3538 	     cid.handle);
3539 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3540 		down_write(&rbd_dev->lock_rwsem);
3541 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3542 			/*
3543 			 * we already know that the remote client is
3544 			 * the owner
3545 			 */
3546 			up_write(&rbd_dev->lock_rwsem);
3547 			return;
3548 		}
3549 
3550 		rbd_set_owner_cid(rbd_dev, &cid);
3551 		downgrade_write(&rbd_dev->lock_rwsem);
3552 	} else {
3553 		down_read(&rbd_dev->lock_rwsem);
3554 	}
3555 
3556 	if (!__rbd_is_lock_owner(rbd_dev))
3557 		wake_requests(rbd_dev, false);
3558 	up_read(&rbd_dev->lock_rwsem);
3559 }
3560 
3561 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3562 				     void **p)
3563 {
3564 	struct rbd_client_id cid = { 0 };
3565 
3566 	if (struct_v >= 2) {
3567 		cid.gid = ceph_decode_64(p);
3568 		cid.handle = ceph_decode_64(p);
3569 	}
3570 
3571 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3572 	     cid.handle);
3573 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3574 		down_write(&rbd_dev->lock_rwsem);
3575 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3576 			dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3577 			     __func__, rbd_dev, cid.gid, cid.handle,
3578 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3579 			up_write(&rbd_dev->lock_rwsem);
3580 			return;
3581 		}
3582 
3583 		rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3584 		downgrade_write(&rbd_dev->lock_rwsem);
3585 	} else {
3586 		down_read(&rbd_dev->lock_rwsem);
3587 	}
3588 
3589 	if (!__rbd_is_lock_owner(rbd_dev))
3590 		wake_requests(rbd_dev, false);
3591 	up_read(&rbd_dev->lock_rwsem);
3592 }
3593 
3594 /*
3595  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
3596  * ResponseMessage is needed.
3597  */
3598 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3599 				   void **p)
3600 {
3601 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3602 	struct rbd_client_id cid = { 0 };
3603 	int result = 1;
3604 
3605 	if (struct_v >= 2) {
3606 		cid.gid = ceph_decode_64(p);
3607 		cid.handle = ceph_decode_64(p);
3608 	}
3609 
3610 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3611 	     cid.handle);
3612 	if (rbd_cid_equal(&cid, &my_cid))
3613 		return result;
3614 
3615 	down_read(&rbd_dev->lock_rwsem);
3616 	if (__rbd_is_lock_owner(rbd_dev)) {
3617 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
3618 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
3619 			goto out_unlock;
3620 
3621 		/*
3622 		 * encode ResponseMessage(0) so the peer can detect
3623 		 * a missing owner
3624 		 */
3625 		result = 0;
3626 
3627 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3628 			if (!rbd_dev->opts->exclusive) {
3629 				dout("%s rbd_dev %p queueing unlock_work\n",
3630 				     __func__, rbd_dev);
3631 				queue_work(rbd_dev->task_wq,
3632 					   &rbd_dev->unlock_work);
3633 			} else {
3634 				/* refuse to release the lock */
3635 				result = -EROFS;
3636 			}
3637 		}
3638 	}
3639 
3640 out_unlock:
3641 	up_read(&rbd_dev->lock_rwsem);
3642 	return result;
3643 }
3644 
3645 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3646 				     u64 notify_id, u64 cookie, s32 *result)
3647 {
3648 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3649 	int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN;
3650 	char buf[buf_size];
3651 	int ret;
3652 
3653 	if (result) {
3654 		void *p = buf;
3655 
3656 		/* encode ResponseMessage */
3657 		ceph_start_encoding(&p, 1, 1,
3658 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
3659 		ceph_encode_32(&p, *result);
3660 	} else {
3661 		buf_size = 0;
3662 	}
3663 
3664 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3665 				   &rbd_dev->header_oloc, notify_id, cookie,
3666 				   buf, buf_size);
3667 	if (ret)
3668 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3669 }
3670 
3671 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3672 				   u64 cookie)
3673 {
3674 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3675 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3676 }
3677 
3678 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3679 					  u64 notify_id, u64 cookie, s32 result)
3680 {
3681 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3682 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3683 }
3684 
3685 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3686 			 u64 notifier_id, void *data, size_t data_len)
3687 {
3688 	struct rbd_device *rbd_dev = arg;
3689 	void *p = data;
3690 	void *const end = p + data_len;
3691 	u8 struct_v = 0;
3692 	u32 len;
3693 	u32 notify_op;
3694 	int ret;
3695 
3696 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3697 	     __func__, rbd_dev, cookie, notify_id, data_len);
3698 	if (data_len) {
3699 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3700 					  &struct_v, &len);
3701 		if (ret) {
3702 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3703 				 ret);
3704 			return;
3705 		}
3706 
3707 		notify_op = ceph_decode_32(&p);
3708 	} else {
3709 		/* legacy notification for header updates */
3710 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3711 		len = 0;
3712 	}
3713 
3714 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3715 	switch (notify_op) {
3716 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3717 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3718 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3719 		break;
3720 	case RBD_NOTIFY_OP_RELEASED_LOCK:
3721 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
3722 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3723 		break;
3724 	case RBD_NOTIFY_OP_REQUEST_LOCK:
3725 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
3726 		if (ret <= 0)
3727 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
3728 						      cookie, ret);
3729 		else
3730 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3731 		break;
3732 	case RBD_NOTIFY_OP_HEADER_UPDATE:
3733 		ret = rbd_dev_refresh(rbd_dev);
3734 		if (ret)
3735 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
3736 
3737 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3738 		break;
3739 	default:
3740 		if (rbd_is_lock_owner(rbd_dev))
3741 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
3742 						      cookie, -EOPNOTSUPP);
3743 		else
3744 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3745 		break;
3746 	}
3747 }
3748 
3749 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3750 
3751 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3752 {
3753 	struct rbd_device *rbd_dev = arg;
3754 
3755 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
3756 
3757 	down_write(&rbd_dev->lock_rwsem);
3758 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3759 	up_write(&rbd_dev->lock_rwsem);
3760 
3761 	mutex_lock(&rbd_dev->watch_mutex);
3762 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3763 		__rbd_unregister_watch(rbd_dev);
3764 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3765 
3766 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3767 	}
3768 	mutex_unlock(&rbd_dev->watch_mutex);
3769 }
3770 
3771 /*
3772  * watch_mutex must be locked
3773  */
3774 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3775 {
3776 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3777 	struct ceph_osd_linger_request *handle;
3778 
3779 	rbd_assert(!rbd_dev->watch_handle);
3780 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3781 
3782 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3783 				 &rbd_dev->header_oloc, rbd_watch_cb,
3784 				 rbd_watch_errcb, rbd_dev);
3785 	if (IS_ERR(handle))
3786 		return PTR_ERR(handle);
3787 
3788 	rbd_dev->watch_handle = handle;
3789 	return 0;
3790 }
3791 
3792 /*
3793  * watch_mutex must be locked
3794  */
3795 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3796 {
3797 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3798 	int ret;
3799 
3800 	rbd_assert(rbd_dev->watch_handle);
3801 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3802 
3803 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3804 	if (ret)
3805 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3806 
3807 	rbd_dev->watch_handle = NULL;
3808 }
3809 
3810 static int rbd_register_watch(struct rbd_device *rbd_dev)
3811 {
3812 	int ret;
3813 
3814 	mutex_lock(&rbd_dev->watch_mutex);
3815 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3816 	ret = __rbd_register_watch(rbd_dev);
3817 	if (ret)
3818 		goto out;
3819 
3820 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3821 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3822 
3823 out:
3824 	mutex_unlock(&rbd_dev->watch_mutex);
3825 	return ret;
3826 }
3827 
3828 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3829 {
3830 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3831 
3832 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3833 	cancel_work_sync(&rbd_dev->acquired_lock_work);
3834 	cancel_work_sync(&rbd_dev->released_lock_work);
3835 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3836 	cancel_work_sync(&rbd_dev->unlock_work);
3837 }
3838 
3839 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3840 {
3841 	WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3842 	cancel_tasks_sync(rbd_dev);
3843 
3844 	mutex_lock(&rbd_dev->watch_mutex);
3845 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3846 		__rbd_unregister_watch(rbd_dev);
3847 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3848 	mutex_unlock(&rbd_dev->watch_mutex);
3849 
3850 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3851 }
3852 
3853 /*
3854  * lock_rwsem must be held for write
3855  */
3856 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
3857 {
3858 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3859 	char cookie[32];
3860 	int ret;
3861 
3862 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3863 
3864 	format_lock_cookie(rbd_dev, cookie);
3865 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
3866 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3867 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
3868 				  RBD_LOCK_TAG, cookie);
3869 	if (ret) {
3870 		if (ret != -EOPNOTSUPP)
3871 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
3872 				 ret);
3873 
3874 		/*
3875 		 * Lock cookie cannot be updated on older OSDs, so do
3876 		 * a manual release and queue an acquire.
3877 		 */
3878 		if (rbd_release_lock(rbd_dev))
3879 			queue_delayed_work(rbd_dev->task_wq,
3880 					   &rbd_dev->lock_dwork, 0);
3881 	} else {
3882 		strcpy(rbd_dev->lock_cookie, cookie);
3883 	}
3884 }
3885 
3886 static void rbd_reregister_watch(struct work_struct *work)
3887 {
3888 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3889 					    struct rbd_device, watch_dwork);
3890 	int ret;
3891 
3892 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3893 
3894 	mutex_lock(&rbd_dev->watch_mutex);
3895 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3896 		mutex_unlock(&rbd_dev->watch_mutex);
3897 		return;
3898 	}
3899 
3900 	ret = __rbd_register_watch(rbd_dev);
3901 	if (ret) {
3902 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3903 		if (ret == -EBLACKLISTED || ret == -ENOENT) {
3904 			set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3905 			wake_requests(rbd_dev, true);
3906 		} else {
3907 			queue_delayed_work(rbd_dev->task_wq,
3908 					   &rbd_dev->watch_dwork,
3909 					   RBD_RETRY_DELAY);
3910 		}
3911 		mutex_unlock(&rbd_dev->watch_mutex);
3912 		return;
3913 	}
3914 
3915 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3916 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3917 	mutex_unlock(&rbd_dev->watch_mutex);
3918 
3919 	down_write(&rbd_dev->lock_rwsem);
3920 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3921 		rbd_reacquire_lock(rbd_dev);
3922 	up_write(&rbd_dev->lock_rwsem);
3923 
3924 	ret = rbd_dev_refresh(rbd_dev);
3925 	if (ret)
3926 		rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret);
3927 }
3928 
3929 /*
3930  * Synchronous osd object method call.  Returns the number of bytes
3931  * returned in the outbound buffer, or a negative error code.
3932  */
3933 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3934 			     struct ceph_object_id *oid,
3935 			     struct ceph_object_locator *oloc,
3936 			     const char *method_name,
3937 			     const void *outbound,
3938 			     size_t outbound_size,
3939 			     void *inbound,
3940 			     size_t inbound_size)
3941 {
3942 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3943 	struct page *req_page = NULL;
3944 	struct page *reply_page;
3945 	int ret;
3946 
3947 	/*
3948 	 * Method calls are ultimately read operations.  The result
3949 	 * should placed into the inbound buffer provided.  They
3950 	 * also supply outbound data--parameters for the object
3951 	 * method.  Currently if this is present it will be a
3952 	 * snapshot id.
3953 	 */
3954 	if (outbound) {
3955 		if (outbound_size > PAGE_SIZE)
3956 			return -E2BIG;
3957 
3958 		req_page = alloc_page(GFP_KERNEL);
3959 		if (!req_page)
3960 			return -ENOMEM;
3961 
3962 		memcpy(page_address(req_page), outbound, outbound_size);
3963 	}
3964 
3965 	reply_page = alloc_page(GFP_KERNEL);
3966 	if (!reply_page) {
3967 		if (req_page)
3968 			__free_page(req_page);
3969 		return -ENOMEM;
3970 	}
3971 
3972 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3973 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
3974 			     reply_page, &inbound_size);
3975 	if (!ret) {
3976 		memcpy(inbound, page_address(reply_page), inbound_size);
3977 		ret = inbound_size;
3978 	}
3979 
3980 	if (req_page)
3981 		__free_page(req_page);
3982 	__free_page(reply_page);
3983 	return ret;
3984 }
3985 
3986 /*
3987  * lock_rwsem must be held for read
3988  */
3989 static void rbd_wait_state_locked(struct rbd_device *rbd_dev)
3990 {
3991 	DEFINE_WAIT(wait);
3992 
3993 	do {
3994 		/*
3995 		 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3996 		 * and cancel_delayed_work() in wake_requests().
3997 		 */
3998 		dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3999 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4000 		prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
4001 					  TASK_UNINTERRUPTIBLE);
4002 		up_read(&rbd_dev->lock_rwsem);
4003 		schedule();
4004 		down_read(&rbd_dev->lock_rwsem);
4005 	} while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
4006 		 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags));
4007 
4008 	finish_wait(&rbd_dev->lock_waitq, &wait);
4009 }
4010 
4011 static void rbd_queue_workfn(struct work_struct *work)
4012 {
4013 	struct request *rq = blk_mq_rq_from_pdu(work);
4014 	struct rbd_device *rbd_dev = rq->q->queuedata;
4015 	struct rbd_img_request *img_request;
4016 	struct ceph_snap_context *snapc = NULL;
4017 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4018 	u64 length = blk_rq_bytes(rq);
4019 	enum obj_operation_type op_type;
4020 	u64 mapping_size;
4021 	bool must_be_locked;
4022 	int result;
4023 
4024 	switch (req_op(rq)) {
4025 	case REQ_OP_DISCARD:
4026 		op_type = OBJ_OP_DISCARD;
4027 		break;
4028 	case REQ_OP_WRITE:
4029 		op_type = OBJ_OP_WRITE;
4030 		break;
4031 	case REQ_OP_READ:
4032 		op_type = OBJ_OP_READ;
4033 		break;
4034 	default:
4035 		dout("%s: non-fs request type %d\n", __func__, req_op(rq));
4036 		result = -EIO;
4037 		goto err;
4038 	}
4039 
4040 	/* Ignore/skip any zero-length requests */
4041 
4042 	if (!length) {
4043 		dout("%s: zero-length request\n", __func__);
4044 		result = 0;
4045 		goto err_rq;
4046 	}
4047 
4048 	/* Only reads are allowed to a read-only device */
4049 
4050 	if (op_type != OBJ_OP_READ) {
4051 		if (rbd_dev->mapping.read_only) {
4052 			result = -EROFS;
4053 			goto err_rq;
4054 		}
4055 		rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
4056 	}
4057 
4058 	/*
4059 	 * Quit early if the mapped snapshot no longer exists.  It's
4060 	 * still possible the snapshot will have disappeared by the
4061 	 * time our request arrives at the osd, but there's no sense in
4062 	 * sending it if we already know.
4063 	 */
4064 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
4065 		dout("request for non-existent snapshot");
4066 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
4067 		result = -ENXIO;
4068 		goto err_rq;
4069 	}
4070 
4071 	if (offset && length > U64_MAX - offset + 1) {
4072 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
4073 			 length);
4074 		result = -EINVAL;
4075 		goto err_rq;	/* Shouldn't happen */
4076 	}
4077 
4078 	blk_mq_start_request(rq);
4079 
4080 	down_read(&rbd_dev->header_rwsem);
4081 	mapping_size = rbd_dev->mapping.size;
4082 	if (op_type != OBJ_OP_READ) {
4083 		snapc = rbd_dev->header.snapc;
4084 		ceph_get_snap_context(snapc);
4085 	}
4086 	up_read(&rbd_dev->header_rwsem);
4087 
4088 	if (offset + length > mapping_size) {
4089 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4090 			 length, mapping_size);
4091 		result = -EIO;
4092 		goto err_rq;
4093 	}
4094 
4095 	must_be_locked =
4096 	    (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
4097 	    (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read);
4098 	if (must_be_locked) {
4099 		down_read(&rbd_dev->lock_rwsem);
4100 		if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
4101 		    !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
4102 			if (rbd_dev->opts->exclusive) {
4103 				rbd_warn(rbd_dev, "exclusive lock required");
4104 				result = -EROFS;
4105 				goto err_unlock;
4106 			}
4107 			rbd_wait_state_locked(rbd_dev);
4108 		}
4109 		if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
4110 			result = -EBLACKLISTED;
4111 			goto err_unlock;
4112 		}
4113 	}
4114 
4115 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
4116 					     snapc);
4117 	if (!img_request) {
4118 		result = -ENOMEM;
4119 		goto err_unlock;
4120 	}
4121 	img_request->rq = rq;
4122 	snapc = NULL; /* img_request consumes a ref */
4123 
4124 	if (op_type == OBJ_OP_DISCARD)
4125 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
4126 					      NULL);
4127 	else
4128 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
4129 					      rq->bio);
4130 	if (result)
4131 		goto err_img_request;
4132 
4133 	result = rbd_img_request_submit(img_request);
4134 	if (result)
4135 		goto err_img_request;
4136 
4137 	if (must_be_locked)
4138 		up_read(&rbd_dev->lock_rwsem);
4139 	return;
4140 
4141 err_img_request:
4142 	rbd_img_request_put(img_request);
4143 err_unlock:
4144 	if (must_be_locked)
4145 		up_read(&rbd_dev->lock_rwsem);
4146 err_rq:
4147 	if (result)
4148 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4149 			 obj_op_name(op_type), length, offset, result);
4150 	ceph_put_snap_context(snapc);
4151 err:
4152 	blk_mq_end_request(rq, result);
4153 }
4154 
4155 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4156 		const struct blk_mq_queue_data *bd)
4157 {
4158 	struct request *rq = bd->rq;
4159 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
4160 
4161 	queue_work(rbd_wq, work);
4162 	return BLK_MQ_RQ_QUEUE_OK;
4163 }
4164 
4165 static void rbd_free_disk(struct rbd_device *rbd_dev)
4166 {
4167 	blk_cleanup_queue(rbd_dev->disk->queue);
4168 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4169 	put_disk(rbd_dev->disk);
4170 	rbd_dev->disk = NULL;
4171 }
4172 
4173 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4174 			     struct ceph_object_id *oid,
4175 			     struct ceph_object_locator *oloc,
4176 			     void *buf, int buf_len)
4177 
4178 {
4179 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4180 	struct ceph_osd_request *req;
4181 	struct page **pages;
4182 	int num_pages = calc_pages_for(0, buf_len);
4183 	int ret;
4184 
4185 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4186 	if (!req)
4187 		return -ENOMEM;
4188 
4189 	ceph_oid_copy(&req->r_base_oid, oid);
4190 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4191 	req->r_flags = CEPH_OSD_FLAG_READ;
4192 
4193 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4194 	if (ret)
4195 		goto out_req;
4196 
4197 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4198 	if (IS_ERR(pages)) {
4199 		ret = PTR_ERR(pages);
4200 		goto out_req;
4201 	}
4202 
4203 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4204 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4205 					 true);
4206 
4207 	ceph_osdc_start_request(osdc, req, false);
4208 	ret = ceph_osdc_wait_request(osdc, req);
4209 	if (ret >= 0)
4210 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4211 
4212 out_req:
4213 	ceph_osdc_put_request(req);
4214 	return ret;
4215 }
4216 
4217 /*
4218  * Read the complete header for the given rbd device.  On successful
4219  * return, the rbd_dev->header field will contain up-to-date
4220  * information about the image.
4221  */
4222 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4223 {
4224 	struct rbd_image_header_ondisk *ondisk = NULL;
4225 	u32 snap_count = 0;
4226 	u64 names_size = 0;
4227 	u32 want_count;
4228 	int ret;
4229 
4230 	/*
4231 	 * The complete header will include an array of its 64-bit
4232 	 * snapshot ids, followed by the names of those snapshots as
4233 	 * a contiguous block of NUL-terminated strings.  Note that
4234 	 * the number of snapshots could change by the time we read
4235 	 * it in, in which case we re-read it.
4236 	 */
4237 	do {
4238 		size_t size;
4239 
4240 		kfree(ondisk);
4241 
4242 		size = sizeof (*ondisk);
4243 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4244 		size += names_size;
4245 		ondisk = kmalloc(size, GFP_KERNEL);
4246 		if (!ondisk)
4247 			return -ENOMEM;
4248 
4249 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4250 					&rbd_dev->header_oloc, ondisk, size);
4251 		if (ret < 0)
4252 			goto out;
4253 		if ((size_t)ret < size) {
4254 			ret = -ENXIO;
4255 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4256 				size, ret);
4257 			goto out;
4258 		}
4259 		if (!rbd_dev_ondisk_valid(ondisk)) {
4260 			ret = -ENXIO;
4261 			rbd_warn(rbd_dev, "invalid header");
4262 			goto out;
4263 		}
4264 
4265 		names_size = le64_to_cpu(ondisk->snap_names_len);
4266 		want_count = snap_count;
4267 		snap_count = le32_to_cpu(ondisk->snap_count);
4268 	} while (snap_count != want_count);
4269 
4270 	ret = rbd_header_from_disk(rbd_dev, ondisk);
4271 out:
4272 	kfree(ondisk);
4273 
4274 	return ret;
4275 }
4276 
4277 /*
4278  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
4279  * has disappeared from the (just updated) snapshot context.
4280  */
4281 static void rbd_exists_validate(struct rbd_device *rbd_dev)
4282 {
4283 	u64 snap_id;
4284 
4285 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
4286 		return;
4287 
4288 	snap_id = rbd_dev->spec->snap_id;
4289 	if (snap_id == CEPH_NOSNAP)
4290 		return;
4291 
4292 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
4293 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4294 }
4295 
4296 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4297 {
4298 	sector_t size;
4299 
4300 	/*
4301 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4302 	 * try to update its size.  If REMOVING is set, updating size
4303 	 * is just useless work since the device can't be opened.
4304 	 */
4305 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4306 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4307 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4308 		dout("setting size to %llu sectors", (unsigned long long)size);
4309 		set_capacity(rbd_dev->disk, size);
4310 		revalidate_disk(rbd_dev->disk);
4311 	}
4312 }
4313 
4314 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4315 {
4316 	u64 mapping_size;
4317 	int ret;
4318 
4319 	down_write(&rbd_dev->header_rwsem);
4320 	mapping_size = rbd_dev->mapping.size;
4321 
4322 	ret = rbd_dev_header_info(rbd_dev);
4323 	if (ret)
4324 		goto out;
4325 
4326 	/*
4327 	 * If there is a parent, see if it has disappeared due to the
4328 	 * mapped image getting flattened.
4329 	 */
4330 	if (rbd_dev->parent) {
4331 		ret = rbd_dev_v2_parent_info(rbd_dev);
4332 		if (ret)
4333 			goto out;
4334 	}
4335 
4336 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
4337 		rbd_dev->mapping.size = rbd_dev->header.image_size;
4338 	} else {
4339 		/* validate mapped snapshot's EXISTS flag */
4340 		rbd_exists_validate(rbd_dev);
4341 	}
4342 
4343 out:
4344 	up_write(&rbd_dev->header_rwsem);
4345 	if (!ret && mapping_size != rbd_dev->mapping.size)
4346 		rbd_dev_update_size(rbd_dev);
4347 
4348 	return ret;
4349 }
4350 
4351 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
4352 		unsigned int hctx_idx, unsigned int numa_node)
4353 {
4354 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
4355 
4356 	INIT_WORK(work, rbd_queue_workfn);
4357 	return 0;
4358 }
4359 
4360 static const struct blk_mq_ops rbd_mq_ops = {
4361 	.queue_rq	= rbd_queue_rq,
4362 	.init_request	= rbd_init_request,
4363 };
4364 
4365 static int rbd_init_disk(struct rbd_device *rbd_dev)
4366 {
4367 	struct gendisk *disk;
4368 	struct request_queue *q;
4369 	u64 segment_size;
4370 	int err;
4371 
4372 	/* create gendisk info */
4373 	disk = alloc_disk(single_major ?
4374 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4375 			  RBD_MINORS_PER_MAJOR);
4376 	if (!disk)
4377 		return -ENOMEM;
4378 
4379 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4380 		 rbd_dev->dev_id);
4381 	disk->major = rbd_dev->major;
4382 	disk->first_minor = rbd_dev->minor;
4383 	if (single_major)
4384 		disk->flags |= GENHD_FL_EXT_DEVT;
4385 	disk->fops = &rbd_bd_ops;
4386 	disk->private_data = rbd_dev;
4387 
4388 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4389 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4390 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4391 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4392 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
4393 	rbd_dev->tag_set.nr_hw_queues = 1;
4394 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
4395 
4396 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4397 	if (err)
4398 		goto out_disk;
4399 
4400 	q = blk_mq_init_queue(&rbd_dev->tag_set);
4401 	if (IS_ERR(q)) {
4402 		err = PTR_ERR(q);
4403 		goto out_tag_set;
4404 	}
4405 
4406 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
4407 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4408 
4409 	/* set io sizes to object size */
4410 	segment_size = rbd_obj_bytes(&rbd_dev->header);
4411 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
4412 	q->limits.max_sectors = queue_max_hw_sectors(q);
4413 	blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
4414 	blk_queue_max_segment_size(q, segment_size);
4415 	blk_queue_io_min(q, segment_size);
4416 	blk_queue_io_opt(q, segment_size);
4417 
4418 	/* enable the discard support */
4419 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
4420 	q->limits.discard_granularity = segment_size;
4421 	q->limits.discard_alignment = segment_size;
4422 	blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
4423 
4424 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4425 		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
4426 
4427 	/*
4428 	 * disk_release() expects a queue ref from add_disk() and will
4429 	 * put it.  Hold an extra ref until add_disk() is called.
4430 	 */
4431 	WARN_ON(!blk_get_queue(q));
4432 	disk->queue = q;
4433 	q->queuedata = rbd_dev;
4434 
4435 	rbd_dev->disk = disk;
4436 
4437 	return 0;
4438 out_tag_set:
4439 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4440 out_disk:
4441 	put_disk(disk);
4442 	return err;
4443 }
4444 
4445 /*
4446   sysfs
4447 */
4448 
4449 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4450 {
4451 	return container_of(dev, struct rbd_device, dev);
4452 }
4453 
4454 static ssize_t rbd_size_show(struct device *dev,
4455 			     struct device_attribute *attr, char *buf)
4456 {
4457 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4458 
4459 	return sprintf(buf, "%llu\n",
4460 		(unsigned long long)rbd_dev->mapping.size);
4461 }
4462 
4463 /*
4464  * Note this shows the features for whatever's mapped, which is not
4465  * necessarily the base image.
4466  */
4467 static ssize_t rbd_features_show(struct device *dev,
4468 			     struct device_attribute *attr, char *buf)
4469 {
4470 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4471 
4472 	return sprintf(buf, "0x%016llx\n",
4473 			(unsigned long long)rbd_dev->mapping.features);
4474 }
4475 
4476 static ssize_t rbd_major_show(struct device *dev,
4477 			      struct device_attribute *attr, char *buf)
4478 {
4479 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4480 
4481 	if (rbd_dev->major)
4482 		return sprintf(buf, "%d\n", rbd_dev->major);
4483 
4484 	return sprintf(buf, "(none)\n");
4485 }
4486 
4487 static ssize_t rbd_minor_show(struct device *dev,
4488 			      struct device_attribute *attr, char *buf)
4489 {
4490 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4491 
4492 	return sprintf(buf, "%d\n", rbd_dev->minor);
4493 }
4494 
4495 static ssize_t rbd_client_addr_show(struct device *dev,
4496 				    struct device_attribute *attr, char *buf)
4497 {
4498 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4499 	struct ceph_entity_addr *client_addr =
4500 	    ceph_client_addr(rbd_dev->rbd_client->client);
4501 
4502 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4503 		       le32_to_cpu(client_addr->nonce));
4504 }
4505 
4506 static ssize_t rbd_client_id_show(struct device *dev,
4507 				  struct device_attribute *attr, char *buf)
4508 {
4509 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4510 
4511 	return sprintf(buf, "client%lld\n",
4512 		       ceph_client_gid(rbd_dev->rbd_client->client));
4513 }
4514 
4515 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4516 				     struct device_attribute *attr, char *buf)
4517 {
4518 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4519 
4520 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4521 }
4522 
4523 static ssize_t rbd_config_info_show(struct device *dev,
4524 				    struct device_attribute *attr, char *buf)
4525 {
4526 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4527 
4528 	return sprintf(buf, "%s\n", rbd_dev->config_info);
4529 }
4530 
4531 static ssize_t rbd_pool_show(struct device *dev,
4532 			     struct device_attribute *attr, char *buf)
4533 {
4534 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4535 
4536 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4537 }
4538 
4539 static ssize_t rbd_pool_id_show(struct device *dev,
4540 			     struct device_attribute *attr, char *buf)
4541 {
4542 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4543 
4544 	return sprintf(buf, "%llu\n",
4545 			(unsigned long long) rbd_dev->spec->pool_id);
4546 }
4547 
4548 static ssize_t rbd_name_show(struct device *dev,
4549 			     struct device_attribute *attr, char *buf)
4550 {
4551 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4552 
4553 	if (rbd_dev->spec->image_name)
4554 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4555 
4556 	return sprintf(buf, "(unknown)\n");
4557 }
4558 
4559 static ssize_t rbd_image_id_show(struct device *dev,
4560 			     struct device_attribute *attr, char *buf)
4561 {
4562 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4563 
4564 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4565 }
4566 
4567 /*
4568  * Shows the name of the currently-mapped snapshot (or
4569  * RBD_SNAP_HEAD_NAME for the base image).
4570  */
4571 static ssize_t rbd_snap_show(struct device *dev,
4572 			     struct device_attribute *attr,
4573 			     char *buf)
4574 {
4575 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4576 
4577 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4578 }
4579 
4580 static ssize_t rbd_snap_id_show(struct device *dev,
4581 				struct device_attribute *attr, char *buf)
4582 {
4583 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4584 
4585 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4586 }
4587 
4588 /*
4589  * For a v2 image, shows the chain of parent images, separated by empty
4590  * lines.  For v1 images or if there is no parent, shows "(no parent
4591  * image)".
4592  */
4593 static ssize_t rbd_parent_show(struct device *dev,
4594 			       struct device_attribute *attr,
4595 			       char *buf)
4596 {
4597 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4598 	ssize_t count = 0;
4599 
4600 	if (!rbd_dev->parent)
4601 		return sprintf(buf, "(no parent image)\n");
4602 
4603 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4604 		struct rbd_spec *spec = rbd_dev->parent_spec;
4605 
4606 		count += sprintf(&buf[count], "%s"
4607 			    "pool_id %llu\npool_name %s\n"
4608 			    "image_id %s\nimage_name %s\n"
4609 			    "snap_id %llu\nsnap_name %s\n"
4610 			    "overlap %llu\n",
4611 			    !count ? "" : "\n", /* first? */
4612 			    spec->pool_id, spec->pool_name,
4613 			    spec->image_id, spec->image_name ?: "(unknown)",
4614 			    spec->snap_id, spec->snap_name,
4615 			    rbd_dev->parent_overlap);
4616 	}
4617 
4618 	return count;
4619 }
4620 
4621 static ssize_t rbd_image_refresh(struct device *dev,
4622 				 struct device_attribute *attr,
4623 				 const char *buf,
4624 				 size_t size)
4625 {
4626 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4627 	int ret;
4628 
4629 	ret = rbd_dev_refresh(rbd_dev);
4630 	if (ret)
4631 		return ret;
4632 
4633 	return size;
4634 }
4635 
4636 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
4637 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
4638 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
4639 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
4640 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL);
4641 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
4642 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL);
4643 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL);
4644 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
4645 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
4646 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
4647 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
4648 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
4649 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
4650 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
4651 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
4652 
4653 static struct attribute *rbd_attrs[] = {
4654 	&dev_attr_size.attr,
4655 	&dev_attr_features.attr,
4656 	&dev_attr_major.attr,
4657 	&dev_attr_minor.attr,
4658 	&dev_attr_client_addr.attr,
4659 	&dev_attr_client_id.attr,
4660 	&dev_attr_cluster_fsid.attr,
4661 	&dev_attr_config_info.attr,
4662 	&dev_attr_pool.attr,
4663 	&dev_attr_pool_id.attr,
4664 	&dev_attr_name.attr,
4665 	&dev_attr_image_id.attr,
4666 	&dev_attr_current_snap.attr,
4667 	&dev_attr_snap_id.attr,
4668 	&dev_attr_parent.attr,
4669 	&dev_attr_refresh.attr,
4670 	NULL
4671 };
4672 
4673 static struct attribute_group rbd_attr_group = {
4674 	.attrs = rbd_attrs,
4675 };
4676 
4677 static const struct attribute_group *rbd_attr_groups[] = {
4678 	&rbd_attr_group,
4679 	NULL
4680 };
4681 
4682 static void rbd_dev_release(struct device *dev);
4683 
4684 static const struct device_type rbd_device_type = {
4685 	.name		= "rbd",
4686 	.groups		= rbd_attr_groups,
4687 	.release	= rbd_dev_release,
4688 };
4689 
4690 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4691 {
4692 	kref_get(&spec->kref);
4693 
4694 	return spec;
4695 }
4696 
4697 static void rbd_spec_free(struct kref *kref);
4698 static void rbd_spec_put(struct rbd_spec *spec)
4699 {
4700 	if (spec)
4701 		kref_put(&spec->kref, rbd_spec_free);
4702 }
4703 
4704 static struct rbd_spec *rbd_spec_alloc(void)
4705 {
4706 	struct rbd_spec *spec;
4707 
4708 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4709 	if (!spec)
4710 		return NULL;
4711 
4712 	spec->pool_id = CEPH_NOPOOL;
4713 	spec->snap_id = CEPH_NOSNAP;
4714 	kref_init(&spec->kref);
4715 
4716 	return spec;
4717 }
4718 
4719 static void rbd_spec_free(struct kref *kref)
4720 {
4721 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4722 
4723 	kfree(spec->pool_name);
4724 	kfree(spec->image_id);
4725 	kfree(spec->image_name);
4726 	kfree(spec->snap_name);
4727 	kfree(spec);
4728 }
4729 
4730 static void rbd_dev_free(struct rbd_device *rbd_dev)
4731 {
4732 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4733 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4734 
4735 	ceph_oid_destroy(&rbd_dev->header_oid);
4736 	ceph_oloc_destroy(&rbd_dev->header_oloc);
4737 	kfree(rbd_dev->config_info);
4738 
4739 	rbd_put_client(rbd_dev->rbd_client);
4740 	rbd_spec_put(rbd_dev->spec);
4741 	kfree(rbd_dev->opts);
4742 	kfree(rbd_dev);
4743 }
4744 
4745 static void rbd_dev_release(struct device *dev)
4746 {
4747 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4748 	bool need_put = !!rbd_dev->opts;
4749 
4750 	if (need_put) {
4751 		destroy_workqueue(rbd_dev->task_wq);
4752 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4753 	}
4754 
4755 	rbd_dev_free(rbd_dev);
4756 
4757 	/*
4758 	 * This is racy, but way better than putting module outside of
4759 	 * the release callback.  The race window is pretty small, so
4760 	 * doing something similar to dm (dm-builtin.c) is overkill.
4761 	 */
4762 	if (need_put)
4763 		module_put(THIS_MODULE);
4764 }
4765 
4766 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4767 					   struct rbd_spec *spec)
4768 {
4769 	struct rbd_device *rbd_dev;
4770 
4771 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4772 	if (!rbd_dev)
4773 		return NULL;
4774 
4775 	spin_lock_init(&rbd_dev->lock);
4776 	INIT_LIST_HEAD(&rbd_dev->node);
4777 	init_rwsem(&rbd_dev->header_rwsem);
4778 
4779 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4780 	ceph_oid_init(&rbd_dev->header_oid);
4781 	rbd_dev->header_oloc.pool = spec->pool_id;
4782 
4783 	mutex_init(&rbd_dev->watch_mutex);
4784 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4785 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4786 
4787 	init_rwsem(&rbd_dev->lock_rwsem);
4788 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4789 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4790 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4791 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4792 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4793 	init_waitqueue_head(&rbd_dev->lock_waitq);
4794 
4795 	rbd_dev->dev.bus = &rbd_bus_type;
4796 	rbd_dev->dev.type = &rbd_device_type;
4797 	rbd_dev->dev.parent = &rbd_root_dev;
4798 	device_initialize(&rbd_dev->dev);
4799 
4800 	rbd_dev->rbd_client = rbdc;
4801 	rbd_dev->spec = spec;
4802 
4803 	return rbd_dev;
4804 }
4805 
4806 /*
4807  * Create a mapping rbd_dev.
4808  */
4809 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4810 					 struct rbd_spec *spec,
4811 					 struct rbd_options *opts)
4812 {
4813 	struct rbd_device *rbd_dev;
4814 
4815 	rbd_dev = __rbd_dev_create(rbdc, spec);
4816 	if (!rbd_dev)
4817 		return NULL;
4818 
4819 	rbd_dev->opts = opts;
4820 
4821 	/* get an id and fill in device name */
4822 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4823 					 minor_to_rbd_dev_id(1 << MINORBITS),
4824 					 GFP_KERNEL);
4825 	if (rbd_dev->dev_id < 0)
4826 		goto fail_rbd_dev;
4827 
4828 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4829 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4830 						   rbd_dev->name);
4831 	if (!rbd_dev->task_wq)
4832 		goto fail_dev_id;
4833 
4834 	/* we have a ref from do_rbd_add() */
4835 	__module_get(THIS_MODULE);
4836 
4837 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4838 	return rbd_dev;
4839 
4840 fail_dev_id:
4841 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4842 fail_rbd_dev:
4843 	rbd_dev_free(rbd_dev);
4844 	return NULL;
4845 }
4846 
4847 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4848 {
4849 	if (rbd_dev)
4850 		put_device(&rbd_dev->dev);
4851 }
4852 
4853 /*
4854  * Get the size and object order for an image snapshot, or if
4855  * snap_id is CEPH_NOSNAP, gets this information for the base
4856  * image.
4857  */
4858 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4859 				u8 *order, u64 *snap_size)
4860 {
4861 	__le64 snapid = cpu_to_le64(snap_id);
4862 	int ret;
4863 	struct {
4864 		u8 order;
4865 		__le64 size;
4866 	} __attribute__ ((packed)) size_buf = { 0 };
4867 
4868 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4869 				  &rbd_dev->header_oloc, "get_size",
4870 				  &snapid, sizeof(snapid),
4871 				  &size_buf, sizeof(size_buf));
4872 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4873 	if (ret < 0)
4874 		return ret;
4875 	if (ret < sizeof (size_buf))
4876 		return -ERANGE;
4877 
4878 	if (order) {
4879 		*order = size_buf.order;
4880 		dout("  order %u", (unsigned int)*order);
4881 	}
4882 	*snap_size = le64_to_cpu(size_buf.size);
4883 
4884 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4885 		(unsigned long long)snap_id,
4886 		(unsigned long long)*snap_size);
4887 
4888 	return 0;
4889 }
4890 
4891 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4892 {
4893 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4894 					&rbd_dev->header.obj_order,
4895 					&rbd_dev->header.image_size);
4896 }
4897 
4898 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4899 {
4900 	void *reply_buf;
4901 	int ret;
4902 	void *p;
4903 
4904 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4905 	if (!reply_buf)
4906 		return -ENOMEM;
4907 
4908 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4909 				  &rbd_dev->header_oloc, "get_object_prefix",
4910 				  NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4911 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4912 	if (ret < 0)
4913 		goto out;
4914 
4915 	p = reply_buf;
4916 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4917 						p + ret, NULL, GFP_NOIO);
4918 	ret = 0;
4919 
4920 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4921 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4922 		rbd_dev->header.object_prefix = NULL;
4923 	} else {
4924 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4925 	}
4926 out:
4927 	kfree(reply_buf);
4928 
4929 	return ret;
4930 }
4931 
4932 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4933 		u64 *snap_features)
4934 {
4935 	__le64 snapid = cpu_to_le64(snap_id);
4936 	struct {
4937 		__le64 features;
4938 		__le64 incompat;
4939 	} __attribute__ ((packed)) features_buf = { 0 };
4940 	u64 unsup;
4941 	int ret;
4942 
4943 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4944 				  &rbd_dev->header_oloc, "get_features",
4945 				  &snapid, sizeof(snapid),
4946 				  &features_buf, sizeof(features_buf));
4947 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4948 	if (ret < 0)
4949 		return ret;
4950 	if (ret < sizeof (features_buf))
4951 		return -ERANGE;
4952 
4953 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4954 	if (unsup) {
4955 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4956 			 unsup);
4957 		return -ENXIO;
4958 	}
4959 
4960 	*snap_features = le64_to_cpu(features_buf.features);
4961 
4962 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4963 		(unsigned long long)snap_id,
4964 		(unsigned long long)*snap_features,
4965 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4966 
4967 	return 0;
4968 }
4969 
4970 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4971 {
4972 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4973 						&rbd_dev->header.features);
4974 }
4975 
4976 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4977 {
4978 	struct rbd_spec *parent_spec;
4979 	size_t size;
4980 	void *reply_buf = NULL;
4981 	__le64 snapid;
4982 	void *p;
4983 	void *end;
4984 	u64 pool_id;
4985 	char *image_id;
4986 	u64 snap_id;
4987 	u64 overlap;
4988 	int ret;
4989 
4990 	parent_spec = rbd_spec_alloc();
4991 	if (!parent_spec)
4992 		return -ENOMEM;
4993 
4994 	size = sizeof (__le64) +				/* pool_id */
4995 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4996 		sizeof (__le64) +				/* snap_id */
4997 		sizeof (__le64);				/* overlap */
4998 	reply_buf = kmalloc(size, GFP_KERNEL);
4999 	if (!reply_buf) {
5000 		ret = -ENOMEM;
5001 		goto out_err;
5002 	}
5003 
5004 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5005 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5006 				  &rbd_dev->header_oloc, "get_parent",
5007 				  &snapid, sizeof(snapid), reply_buf, size);
5008 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5009 	if (ret < 0)
5010 		goto out_err;
5011 
5012 	p = reply_buf;
5013 	end = reply_buf + ret;
5014 	ret = -ERANGE;
5015 	ceph_decode_64_safe(&p, end, pool_id, out_err);
5016 	if (pool_id == CEPH_NOPOOL) {
5017 		/*
5018 		 * Either the parent never existed, or we have
5019 		 * record of it but the image got flattened so it no
5020 		 * longer has a parent.  When the parent of a
5021 		 * layered image disappears we immediately set the
5022 		 * overlap to 0.  The effect of this is that all new
5023 		 * requests will be treated as if the image had no
5024 		 * parent.
5025 		 */
5026 		if (rbd_dev->parent_overlap) {
5027 			rbd_dev->parent_overlap = 0;
5028 			rbd_dev_parent_put(rbd_dev);
5029 			pr_info("%s: clone image has been flattened\n",
5030 				rbd_dev->disk->disk_name);
5031 		}
5032 
5033 		goto out;	/* No parent?  No problem. */
5034 	}
5035 
5036 	/* The ceph file layout needs to fit pool id in 32 bits */
5037 
5038 	ret = -EIO;
5039 	if (pool_id > (u64)U32_MAX) {
5040 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5041 			(unsigned long long)pool_id, U32_MAX);
5042 		goto out_err;
5043 	}
5044 
5045 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5046 	if (IS_ERR(image_id)) {
5047 		ret = PTR_ERR(image_id);
5048 		goto out_err;
5049 	}
5050 	ceph_decode_64_safe(&p, end, snap_id, out_err);
5051 	ceph_decode_64_safe(&p, end, overlap, out_err);
5052 
5053 	/*
5054 	 * The parent won't change (except when the clone is
5055 	 * flattened, already handled that).  So we only need to
5056 	 * record the parent spec we have not already done so.
5057 	 */
5058 	if (!rbd_dev->parent_spec) {
5059 		parent_spec->pool_id = pool_id;
5060 		parent_spec->image_id = image_id;
5061 		parent_spec->snap_id = snap_id;
5062 		rbd_dev->parent_spec = parent_spec;
5063 		parent_spec = NULL;	/* rbd_dev now owns this */
5064 	} else {
5065 		kfree(image_id);
5066 	}
5067 
5068 	/*
5069 	 * We always update the parent overlap.  If it's zero we issue
5070 	 * a warning, as we will proceed as if there was no parent.
5071 	 */
5072 	if (!overlap) {
5073 		if (parent_spec) {
5074 			/* refresh, careful to warn just once */
5075 			if (rbd_dev->parent_overlap)
5076 				rbd_warn(rbd_dev,
5077 				    "clone now standalone (overlap became 0)");
5078 		} else {
5079 			/* initial probe */
5080 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5081 		}
5082 	}
5083 	rbd_dev->parent_overlap = overlap;
5084 
5085 out:
5086 	ret = 0;
5087 out_err:
5088 	kfree(reply_buf);
5089 	rbd_spec_put(parent_spec);
5090 
5091 	return ret;
5092 }
5093 
5094 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5095 {
5096 	struct {
5097 		__le64 stripe_unit;
5098 		__le64 stripe_count;
5099 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5100 	size_t size = sizeof (striping_info_buf);
5101 	void *p;
5102 	u64 obj_size;
5103 	u64 stripe_unit;
5104 	u64 stripe_count;
5105 	int ret;
5106 
5107 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5108 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5109 				NULL, 0, &striping_info_buf, size);
5110 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5111 	if (ret < 0)
5112 		return ret;
5113 	if (ret < size)
5114 		return -ERANGE;
5115 
5116 	/*
5117 	 * We don't actually support the "fancy striping" feature
5118 	 * (STRIPINGV2) yet, but if the striping sizes are the
5119 	 * defaults the behavior is the same as before.  So find
5120 	 * out, and only fail if the image has non-default values.
5121 	 */
5122 	ret = -EINVAL;
5123 	obj_size = rbd_obj_bytes(&rbd_dev->header);
5124 	p = &striping_info_buf;
5125 	stripe_unit = ceph_decode_64(&p);
5126 	if (stripe_unit != obj_size) {
5127 		rbd_warn(rbd_dev, "unsupported stripe unit "
5128 				"(got %llu want %llu)",
5129 				stripe_unit, obj_size);
5130 		return -EINVAL;
5131 	}
5132 	stripe_count = ceph_decode_64(&p);
5133 	if (stripe_count != 1) {
5134 		rbd_warn(rbd_dev, "unsupported stripe count "
5135 				"(got %llu want 1)", stripe_count);
5136 		return -EINVAL;
5137 	}
5138 	rbd_dev->header.stripe_unit = stripe_unit;
5139 	rbd_dev->header.stripe_count = stripe_count;
5140 
5141 	return 0;
5142 }
5143 
5144 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5145 {
5146 	__le64 data_pool_id;
5147 	int ret;
5148 
5149 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5150 				  &rbd_dev->header_oloc, "get_data_pool",
5151 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
5152 	if (ret < 0)
5153 		return ret;
5154 	if (ret < sizeof(data_pool_id))
5155 		return -EBADMSG;
5156 
5157 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5158 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5159 	return 0;
5160 }
5161 
5162 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5163 {
5164 	CEPH_DEFINE_OID_ONSTACK(oid);
5165 	size_t image_id_size;
5166 	char *image_id;
5167 	void *p;
5168 	void *end;
5169 	size_t size;
5170 	void *reply_buf = NULL;
5171 	size_t len = 0;
5172 	char *image_name = NULL;
5173 	int ret;
5174 
5175 	rbd_assert(!rbd_dev->spec->image_name);
5176 
5177 	len = strlen(rbd_dev->spec->image_id);
5178 	image_id_size = sizeof (__le32) + len;
5179 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5180 	if (!image_id)
5181 		return NULL;
5182 
5183 	p = image_id;
5184 	end = image_id + image_id_size;
5185 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5186 
5187 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5188 	reply_buf = kmalloc(size, GFP_KERNEL);
5189 	if (!reply_buf)
5190 		goto out;
5191 
5192 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5193 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5194 				  "dir_get_name", image_id, image_id_size,
5195 				  reply_buf, size);
5196 	if (ret < 0)
5197 		goto out;
5198 	p = reply_buf;
5199 	end = reply_buf + ret;
5200 
5201 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5202 	if (IS_ERR(image_name))
5203 		image_name = NULL;
5204 	else
5205 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5206 out:
5207 	kfree(reply_buf);
5208 	kfree(image_id);
5209 
5210 	return image_name;
5211 }
5212 
5213 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5214 {
5215 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5216 	const char *snap_name;
5217 	u32 which = 0;
5218 
5219 	/* Skip over names until we find the one we are looking for */
5220 
5221 	snap_name = rbd_dev->header.snap_names;
5222 	while (which < snapc->num_snaps) {
5223 		if (!strcmp(name, snap_name))
5224 			return snapc->snaps[which];
5225 		snap_name += strlen(snap_name) + 1;
5226 		which++;
5227 	}
5228 	return CEPH_NOSNAP;
5229 }
5230 
5231 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5232 {
5233 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5234 	u32 which;
5235 	bool found = false;
5236 	u64 snap_id;
5237 
5238 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5239 		const char *snap_name;
5240 
5241 		snap_id = snapc->snaps[which];
5242 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5243 		if (IS_ERR(snap_name)) {
5244 			/* ignore no-longer existing snapshots */
5245 			if (PTR_ERR(snap_name) == -ENOENT)
5246 				continue;
5247 			else
5248 				break;
5249 		}
5250 		found = !strcmp(name, snap_name);
5251 		kfree(snap_name);
5252 	}
5253 	return found ? snap_id : CEPH_NOSNAP;
5254 }
5255 
5256 /*
5257  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5258  * no snapshot by that name is found, or if an error occurs.
5259  */
5260 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5261 {
5262 	if (rbd_dev->image_format == 1)
5263 		return rbd_v1_snap_id_by_name(rbd_dev, name);
5264 
5265 	return rbd_v2_snap_id_by_name(rbd_dev, name);
5266 }
5267 
5268 /*
5269  * An image being mapped will have everything but the snap id.
5270  */
5271 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5272 {
5273 	struct rbd_spec *spec = rbd_dev->spec;
5274 
5275 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5276 	rbd_assert(spec->image_id && spec->image_name);
5277 	rbd_assert(spec->snap_name);
5278 
5279 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5280 		u64 snap_id;
5281 
5282 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5283 		if (snap_id == CEPH_NOSNAP)
5284 			return -ENOENT;
5285 
5286 		spec->snap_id = snap_id;
5287 	} else {
5288 		spec->snap_id = CEPH_NOSNAP;
5289 	}
5290 
5291 	return 0;
5292 }
5293 
5294 /*
5295  * A parent image will have all ids but none of the names.
5296  *
5297  * All names in an rbd spec are dynamically allocated.  It's OK if we
5298  * can't figure out the name for an image id.
5299  */
5300 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5301 {
5302 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5303 	struct rbd_spec *spec = rbd_dev->spec;
5304 	const char *pool_name;
5305 	const char *image_name;
5306 	const char *snap_name;
5307 	int ret;
5308 
5309 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
5310 	rbd_assert(spec->image_id);
5311 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
5312 
5313 	/* Get the pool name; we have to make our own copy of this */
5314 
5315 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5316 	if (!pool_name) {
5317 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5318 		return -EIO;
5319 	}
5320 	pool_name = kstrdup(pool_name, GFP_KERNEL);
5321 	if (!pool_name)
5322 		return -ENOMEM;
5323 
5324 	/* Fetch the image name; tolerate failure here */
5325 
5326 	image_name = rbd_dev_image_name(rbd_dev);
5327 	if (!image_name)
5328 		rbd_warn(rbd_dev, "unable to get image name");
5329 
5330 	/* Fetch the snapshot name */
5331 
5332 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5333 	if (IS_ERR(snap_name)) {
5334 		ret = PTR_ERR(snap_name);
5335 		goto out_err;
5336 	}
5337 
5338 	spec->pool_name = pool_name;
5339 	spec->image_name = image_name;
5340 	spec->snap_name = snap_name;
5341 
5342 	return 0;
5343 
5344 out_err:
5345 	kfree(image_name);
5346 	kfree(pool_name);
5347 	return ret;
5348 }
5349 
5350 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5351 {
5352 	size_t size;
5353 	int ret;
5354 	void *reply_buf;
5355 	void *p;
5356 	void *end;
5357 	u64 seq;
5358 	u32 snap_count;
5359 	struct ceph_snap_context *snapc;
5360 	u32 i;
5361 
5362 	/*
5363 	 * We'll need room for the seq value (maximum snapshot id),
5364 	 * snapshot count, and array of that many snapshot ids.
5365 	 * For now we have a fixed upper limit on the number we're
5366 	 * prepared to receive.
5367 	 */
5368 	size = sizeof (__le64) + sizeof (__le32) +
5369 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
5370 	reply_buf = kzalloc(size, GFP_KERNEL);
5371 	if (!reply_buf)
5372 		return -ENOMEM;
5373 
5374 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5375 				  &rbd_dev->header_oloc, "get_snapcontext",
5376 				  NULL, 0, reply_buf, size);
5377 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5378 	if (ret < 0)
5379 		goto out;
5380 
5381 	p = reply_buf;
5382 	end = reply_buf + ret;
5383 	ret = -ERANGE;
5384 	ceph_decode_64_safe(&p, end, seq, out);
5385 	ceph_decode_32_safe(&p, end, snap_count, out);
5386 
5387 	/*
5388 	 * Make sure the reported number of snapshot ids wouldn't go
5389 	 * beyond the end of our buffer.  But before checking that,
5390 	 * make sure the computed size of the snapshot context we
5391 	 * allocate is representable in a size_t.
5392 	 */
5393 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5394 				 / sizeof (u64)) {
5395 		ret = -EINVAL;
5396 		goto out;
5397 	}
5398 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5399 		goto out;
5400 	ret = 0;
5401 
5402 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5403 	if (!snapc) {
5404 		ret = -ENOMEM;
5405 		goto out;
5406 	}
5407 	snapc->seq = seq;
5408 	for (i = 0; i < snap_count; i++)
5409 		snapc->snaps[i] = ceph_decode_64(&p);
5410 
5411 	ceph_put_snap_context(rbd_dev->header.snapc);
5412 	rbd_dev->header.snapc = snapc;
5413 
5414 	dout("  snap context seq = %llu, snap_count = %u\n",
5415 		(unsigned long long)seq, (unsigned int)snap_count);
5416 out:
5417 	kfree(reply_buf);
5418 
5419 	return ret;
5420 }
5421 
5422 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5423 					u64 snap_id)
5424 {
5425 	size_t size;
5426 	void *reply_buf;
5427 	__le64 snapid;
5428 	int ret;
5429 	void *p;
5430 	void *end;
5431 	char *snap_name;
5432 
5433 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5434 	reply_buf = kmalloc(size, GFP_KERNEL);
5435 	if (!reply_buf)
5436 		return ERR_PTR(-ENOMEM);
5437 
5438 	snapid = cpu_to_le64(snap_id);
5439 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5440 				  &rbd_dev->header_oloc, "get_snapshot_name",
5441 				  &snapid, sizeof(snapid), reply_buf, size);
5442 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5443 	if (ret < 0) {
5444 		snap_name = ERR_PTR(ret);
5445 		goto out;
5446 	}
5447 
5448 	p = reply_buf;
5449 	end = reply_buf + ret;
5450 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5451 	if (IS_ERR(snap_name))
5452 		goto out;
5453 
5454 	dout("  snap_id 0x%016llx snap_name = %s\n",
5455 		(unsigned long long)snap_id, snap_name);
5456 out:
5457 	kfree(reply_buf);
5458 
5459 	return snap_name;
5460 }
5461 
5462 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5463 {
5464 	bool first_time = rbd_dev->header.object_prefix == NULL;
5465 	int ret;
5466 
5467 	ret = rbd_dev_v2_image_size(rbd_dev);
5468 	if (ret)
5469 		return ret;
5470 
5471 	if (first_time) {
5472 		ret = rbd_dev_v2_header_onetime(rbd_dev);
5473 		if (ret)
5474 			return ret;
5475 	}
5476 
5477 	ret = rbd_dev_v2_snap_context(rbd_dev);
5478 	if (ret && first_time) {
5479 		kfree(rbd_dev->header.object_prefix);
5480 		rbd_dev->header.object_prefix = NULL;
5481 	}
5482 
5483 	return ret;
5484 }
5485 
5486 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5487 {
5488 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5489 
5490 	if (rbd_dev->image_format == 1)
5491 		return rbd_dev_v1_header_info(rbd_dev);
5492 
5493 	return rbd_dev_v2_header_info(rbd_dev);
5494 }
5495 
5496 /*
5497  * Skips over white space at *buf, and updates *buf to point to the
5498  * first found non-space character (if any). Returns the length of
5499  * the token (string of non-white space characters) found.  Note
5500  * that *buf must be terminated with '\0'.
5501  */
5502 static inline size_t next_token(const char **buf)
5503 {
5504         /*
5505         * These are the characters that produce nonzero for
5506         * isspace() in the "C" and "POSIX" locales.
5507         */
5508         const char *spaces = " \f\n\r\t\v";
5509 
5510         *buf += strspn(*buf, spaces);	/* Find start of token */
5511 
5512 	return strcspn(*buf, spaces);   /* Return token length */
5513 }
5514 
5515 /*
5516  * Finds the next token in *buf, dynamically allocates a buffer big
5517  * enough to hold a copy of it, and copies the token into the new
5518  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5519  * that a duplicate buffer is created even for a zero-length token.
5520  *
5521  * Returns a pointer to the newly-allocated duplicate, or a null
5522  * pointer if memory for the duplicate was not available.  If
5523  * the lenp argument is a non-null pointer, the length of the token
5524  * (not including the '\0') is returned in *lenp.
5525  *
5526  * If successful, the *buf pointer will be updated to point beyond
5527  * the end of the found token.
5528  *
5529  * Note: uses GFP_KERNEL for allocation.
5530  */
5531 static inline char *dup_token(const char **buf, size_t *lenp)
5532 {
5533 	char *dup;
5534 	size_t len;
5535 
5536 	len = next_token(buf);
5537 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5538 	if (!dup)
5539 		return NULL;
5540 	*(dup + len) = '\0';
5541 	*buf += len;
5542 
5543 	if (lenp)
5544 		*lenp = len;
5545 
5546 	return dup;
5547 }
5548 
5549 /*
5550  * Parse the options provided for an "rbd add" (i.e., rbd image
5551  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5552  * and the data written is passed here via a NUL-terminated buffer.
5553  * Returns 0 if successful or an error code otherwise.
5554  *
5555  * The information extracted from these options is recorded in
5556  * the other parameters which return dynamically-allocated
5557  * structures:
5558  *  ceph_opts
5559  *      The address of a pointer that will refer to a ceph options
5560  *      structure.  Caller must release the returned pointer using
5561  *      ceph_destroy_options() when it is no longer needed.
5562  *  rbd_opts
5563  *	Address of an rbd options pointer.  Fully initialized by
5564  *	this function; caller must release with kfree().
5565  *  spec
5566  *	Address of an rbd image specification pointer.  Fully
5567  *	initialized by this function based on parsed options.
5568  *	Caller must release with rbd_spec_put().
5569  *
5570  * The options passed take this form:
5571  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5572  * where:
5573  *  <mon_addrs>
5574  *      A comma-separated list of one or more monitor addresses.
5575  *      A monitor address is an ip address, optionally followed
5576  *      by a port number (separated by a colon).
5577  *        I.e.:  ip1[:port1][,ip2[:port2]...]
5578  *  <options>
5579  *      A comma-separated list of ceph and/or rbd options.
5580  *  <pool_name>
5581  *      The name of the rados pool containing the rbd image.
5582  *  <image_name>
5583  *      The name of the image in that pool to map.
5584  *  <snap_id>
5585  *      An optional snapshot id.  If provided, the mapping will
5586  *      present data from the image at the time that snapshot was
5587  *      created.  The image head is used if no snapshot id is
5588  *      provided.  Snapshot mappings are always read-only.
5589  */
5590 static int rbd_add_parse_args(const char *buf,
5591 				struct ceph_options **ceph_opts,
5592 				struct rbd_options **opts,
5593 				struct rbd_spec **rbd_spec)
5594 {
5595 	size_t len;
5596 	char *options;
5597 	const char *mon_addrs;
5598 	char *snap_name;
5599 	size_t mon_addrs_size;
5600 	struct rbd_spec *spec = NULL;
5601 	struct rbd_options *rbd_opts = NULL;
5602 	struct ceph_options *copts;
5603 	int ret;
5604 
5605 	/* The first four tokens are required */
5606 
5607 	len = next_token(&buf);
5608 	if (!len) {
5609 		rbd_warn(NULL, "no monitor address(es) provided");
5610 		return -EINVAL;
5611 	}
5612 	mon_addrs = buf;
5613 	mon_addrs_size = len + 1;
5614 	buf += len;
5615 
5616 	ret = -EINVAL;
5617 	options = dup_token(&buf, NULL);
5618 	if (!options)
5619 		return -ENOMEM;
5620 	if (!*options) {
5621 		rbd_warn(NULL, "no options provided");
5622 		goto out_err;
5623 	}
5624 
5625 	spec = rbd_spec_alloc();
5626 	if (!spec)
5627 		goto out_mem;
5628 
5629 	spec->pool_name = dup_token(&buf, NULL);
5630 	if (!spec->pool_name)
5631 		goto out_mem;
5632 	if (!*spec->pool_name) {
5633 		rbd_warn(NULL, "no pool name provided");
5634 		goto out_err;
5635 	}
5636 
5637 	spec->image_name = dup_token(&buf, NULL);
5638 	if (!spec->image_name)
5639 		goto out_mem;
5640 	if (!*spec->image_name) {
5641 		rbd_warn(NULL, "no image name provided");
5642 		goto out_err;
5643 	}
5644 
5645 	/*
5646 	 * Snapshot name is optional; default is to use "-"
5647 	 * (indicating the head/no snapshot).
5648 	 */
5649 	len = next_token(&buf);
5650 	if (!len) {
5651 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5652 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5653 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
5654 		ret = -ENAMETOOLONG;
5655 		goto out_err;
5656 	}
5657 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5658 	if (!snap_name)
5659 		goto out_mem;
5660 	*(snap_name + len) = '\0';
5661 	spec->snap_name = snap_name;
5662 
5663 	/* Initialize all rbd options to the defaults */
5664 
5665 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5666 	if (!rbd_opts)
5667 		goto out_mem;
5668 
5669 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5670 	rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5671 	rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5672 	rbd_opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
5673 
5674 	copts = ceph_parse_options(options, mon_addrs,
5675 					mon_addrs + mon_addrs_size - 1,
5676 					parse_rbd_opts_token, rbd_opts);
5677 	if (IS_ERR(copts)) {
5678 		ret = PTR_ERR(copts);
5679 		goto out_err;
5680 	}
5681 	kfree(options);
5682 
5683 	*ceph_opts = copts;
5684 	*opts = rbd_opts;
5685 	*rbd_spec = spec;
5686 
5687 	return 0;
5688 out_mem:
5689 	ret = -ENOMEM;
5690 out_err:
5691 	kfree(rbd_opts);
5692 	rbd_spec_put(spec);
5693 	kfree(options);
5694 
5695 	return ret;
5696 }
5697 
5698 /*
5699  * Return pool id (>= 0) or a negative error code.
5700  */
5701 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
5702 {
5703 	struct ceph_options *opts = rbdc->client->options;
5704 	u64 newest_epoch;
5705 	int tries = 0;
5706 	int ret;
5707 
5708 again:
5709 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5710 	if (ret == -ENOENT && tries++ < 1) {
5711 		ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap",
5712 					    &newest_epoch);
5713 		if (ret < 0)
5714 			return ret;
5715 
5716 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5717 			ceph_osdc_maybe_request_map(&rbdc->client->osdc);
5718 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5719 						     newest_epoch,
5720 						     opts->mount_timeout);
5721 			goto again;
5722 		} else {
5723 			/* the osdmap we have is new enough */
5724 			return -ENOENT;
5725 		}
5726 	}
5727 
5728 	return ret;
5729 }
5730 
5731 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
5732 {
5733 	down_write(&rbd_dev->lock_rwsem);
5734 	if (__rbd_is_lock_owner(rbd_dev))
5735 		rbd_unlock(rbd_dev);
5736 	up_write(&rbd_dev->lock_rwsem);
5737 }
5738 
5739 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
5740 {
5741 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
5742 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
5743 		return -EINVAL;
5744 	}
5745 
5746 	/* FIXME: "rbd map --exclusive" should be in interruptible */
5747 	down_read(&rbd_dev->lock_rwsem);
5748 	rbd_wait_state_locked(rbd_dev);
5749 	up_read(&rbd_dev->lock_rwsem);
5750 	if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
5751 		rbd_warn(rbd_dev, "failed to acquire exclusive lock");
5752 		return -EROFS;
5753 	}
5754 
5755 	return 0;
5756 }
5757 
5758 /*
5759  * An rbd format 2 image has a unique identifier, distinct from the
5760  * name given to it by the user.  Internally, that identifier is
5761  * what's used to specify the names of objects related to the image.
5762  *
5763  * A special "rbd id" object is used to map an rbd image name to its
5764  * id.  If that object doesn't exist, then there is no v2 rbd image
5765  * with the supplied name.
5766  *
5767  * This function will record the given rbd_dev's image_id field if
5768  * it can be determined, and in that case will return 0.  If any
5769  * errors occur a negative errno will be returned and the rbd_dev's
5770  * image_id field will be unchanged (and should be NULL).
5771  */
5772 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5773 {
5774 	int ret;
5775 	size_t size;
5776 	CEPH_DEFINE_OID_ONSTACK(oid);
5777 	void *response;
5778 	char *image_id;
5779 
5780 	/*
5781 	 * When probing a parent image, the image id is already
5782 	 * known (and the image name likely is not).  There's no
5783 	 * need to fetch the image id again in this case.  We
5784 	 * do still need to set the image format though.
5785 	 */
5786 	if (rbd_dev->spec->image_id) {
5787 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5788 
5789 		return 0;
5790 	}
5791 
5792 	/*
5793 	 * First, see if the format 2 image id file exists, and if
5794 	 * so, get the image's persistent id from it.
5795 	 */
5796 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5797 			       rbd_dev->spec->image_name);
5798 	if (ret)
5799 		return ret;
5800 
5801 	dout("rbd id object name is %s\n", oid.name);
5802 
5803 	/* Response will be an encoded string, which includes a length */
5804 
5805 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5806 	response = kzalloc(size, GFP_NOIO);
5807 	if (!response) {
5808 		ret = -ENOMEM;
5809 		goto out;
5810 	}
5811 
5812 	/* If it doesn't exist we'll assume it's a format 1 image */
5813 
5814 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5815 				  "get_id", NULL, 0,
5816 				  response, RBD_IMAGE_ID_LEN_MAX);
5817 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5818 	if (ret == -ENOENT) {
5819 		image_id = kstrdup("", GFP_KERNEL);
5820 		ret = image_id ? 0 : -ENOMEM;
5821 		if (!ret)
5822 			rbd_dev->image_format = 1;
5823 	} else if (ret >= 0) {
5824 		void *p = response;
5825 
5826 		image_id = ceph_extract_encoded_string(&p, p + ret,
5827 						NULL, GFP_NOIO);
5828 		ret = PTR_ERR_OR_ZERO(image_id);
5829 		if (!ret)
5830 			rbd_dev->image_format = 2;
5831 	}
5832 
5833 	if (!ret) {
5834 		rbd_dev->spec->image_id = image_id;
5835 		dout("image_id is %s\n", image_id);
5836 	}
5837 out:
5838 	kfree(response);
5839 	ceph_oid_destroy(&oid);
5840 	return ret;
5841 }
5842 
5843 /*
5844  * Undo whatever state changes are made by v1 or v2 header info
5845  * call.
5846  */
5847 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5848 {
5849 	struct rbd_image_header	*header;
5850 
5851 	rbd_dev_parent_put(rbd_dev);
5852 
5853 	/* Free dynamic fields from the header, then zero it out */
5854 
5855 	header = &rbd_dev->header;
5856 	ceph_put_snap_context(header->snapc);
5857 	kfree(header->snap_sizes);
5858 	kfree(header->snap_names);
5859 	kfree(header->object_prefix);
5860 	memset(header, 0, sizeof (*header));
5861 }
5862 
5863 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5864 {
5865 	int ret;
5866 
5867 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5868 	if (ret)
5869 		goto out_err;
5870 
5871 	/*
5872 	 * Get the and check features for the image.  Currently the
5873 	 * features are assumed to never change.
5874 	 */
5875 	ret = rbd_dev_v2_features(rbd_dev);
5876 	if (ret)
5877 		goto out_err;
5878 
5879 	/* If the image supports fancy striping, get its parameters */
5880 
5881 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5882 		ret = rbd_dev_v2_striping_info(rbd_dev);
5883 		if (ret < 0)
5884 			goto out_err;
5885 	}
5886 
5887 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5888 		ret = rbd_dev_v2_data_pool(rbd_dev);
5889 		if (ret)
5890 			goto out_err;
5891 	}
5892 
5893 	rbd_init_layout(rbd_dev);
5894 	return 0;
5895 
5896 out_err:
5897 	rbd_dev->header.features = 0;
5898 	kfree(rbd_dev->header.object_prefix);
5899 	rbd_dev->header.object_prefix = NULL;
5900 	return ret;
5901 }
5902 
5903 /*
5904  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5905  * rbd_dev_image_probe() recursion depth, which means it's also the
5906  * length of the already discovered part of the parent chain.
5907  */
5908 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5909 {
5910 	struct rbd_device *parent = NULL;
5911 	int ret;
5912 
5913 	if (!rbd_dev->parent_spec)
5914 		return 0;
5915 
5916 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5917 		pr_info("parent chain is too long (%d)\n", depth);
5918 		ret = -EINVAL;
5919 		goto out_err;
5920 	}
5921 
5922 	parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5923 	if (!parent) {
5924 		ret = -ENOMEM;
5925 		goto out_err;
5926 	}
5927 
5928 	/*
5929 	 * Images related by parent/child relationships always share
5930 	 * rbd_client and spec/parent_spec, so bump their refcounts.
5931 	 */
5932 	__rbd_get_client(rbd_dev->rbd_client);
5933 	rbd_spec_get(rbd_dev->parent_spec);
5934 
5935 	ret = rbd_dev_image_probe(parent, depth);
5936 	if (ret < 0)
5937 		goto out_err;
5938 
5939 	rbd_dev->parent = parent;
5940 	atomic_set(&rbd_dev->parent_ref, 1);
5941 	return 0;
5942 
5943 out_err:
5944 	rbd_dev_unparent(rbd_dev);
5945 	rbd_dev_destroy(parent);
5946 	return ret;
5947 }
5948 
5949 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5950 {
5951 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5952 	rbd_dev_mapping_clear(rbd_dev);
5953 	rbd_free_disk(rbd_dev);
5954 	if (!single_major)
5955 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5956 }
5957 
5958 /*
5959  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5960  * upon return.
5961  */
5962 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5963 {
5964 	int ret;
5965 
5966 	/* Record our major and minor device numbers. */
5967 
5968 	if (!single_major) {
5969 		ret = register_blkdev(0, rbd_dev->name);
5970 		if (ret < 0)
5971 			goto err_out_unlock;
5972 
5973 		rbd_dev->major = ret;
5974 		rbd_dev->minor = 0;
5975 	} else {
5976 		rbd_dev->major = rbd_major;
5977 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5978 	}
5979 
5980 	/* Set up the blkdev mapping. */
5981 
5982 	ret = rbd_init_disk(rbd_dev);
5983 	if (ret)
5984 		goto err_out_blkdev;
5985 
5986 	ret = rbd_dev_mapping_set(rbd_dev);
5987 	if (ret)
5988 		goto err_out_disk;
5989 
5990 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5991 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5992 
5993 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5994 	if (ret)
5995 		goto err_out_mapping;
5996 
5997 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5998 	up_write(&rbd_dev->header_rwsem);
5999 	return 0;
6000 
6001 err_out_mapping:
6002 	rbd_dev_mapping_clear(rbd_dev);
6003 err_out_disk:
6004 	rbd_free_disk(rbd_dev);
6005 err_out_blkdev:
6006 	if (!single_major)
6007 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6008 err_out_unlock:
6009 	up_write(&rbd_dev->header_rwsem);
6010 	return ret;
6011 }
6012 
6013 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6014 {
6015 	struct rbd_spec *spec = rbd_dev->spec;
6016 	int ret;
6017 
6018 	/* Record the header object name for this rbd image. */
6019 
6020 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6021 	if (rbd_dev->image_format == 1)
6022 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6023 				       spec->image_name, RBD_SUFFIX);
6024 	else
6025 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6026 				       RBD_HEADER_PREFIX, spec->image_id);
6027 
6028 	return ret;
6029 }
6030 
6031 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6032 {
6033 	rbd_dev_unprobe(rbd_dev);
6034 	if (rbd_dev->opts)
6035 		rbd_unregister_watch(rbd_dev);
6036 	rbd_dev->image_format = 0;
6037 	kfree(rbd_dev->spec->image_id);
6038 	rbd_dev->spec->image_id = NULL;
6039 }
6040 
6041 /*
6042  * Probe for the existence of the header object for the given rbd
6043  * device.  If this image is the one being mapped (i.e., not a
6044  * parent), initiate a watch on its header object before using that
6045  * object to get detailed information about the rbd image.
6046  */
6047 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6048 {
6049 	int ret;
6050 
6051 	/*
6052 	 * Get the id from the image id object.  Unless there's an
6053 	 * error, rbd_dev->spec->image_id will be filled in with
6054 	 * a dynamically-allocated string, and rbd_dev->image_format
6055 	 * will be set to either 1 or 2.
6056 	 */
6057 	ret = rbd_dev_image_id(rbd_dev);
6058 	if (ret)
6059 		return ret;
6060 
6061 	ret = rbd_dev_header_name(rbd_dev);
6062 	if (ret)
6063 		goto err_out_format;
6064 
6065 	if (!depth) {
6066 		ret = rbd_register_watch(rbd_dev);
6067 		if (ret) {
6068 			if (ret == -ENOENT)
6069 				pr_info("image %s/%s does not exist\n",
6070 					rbd_dev->spec->pool_name,
6071 					rbd_dev->spec->image_name);
6072 			goto err_out_format;
6073 		}
6074 	}
6075 
6076 	ret = rbd_dev_header_info(rbd_dev);
6077 	if (ret)
6078 		goto err_out_watch;
6079 
6080 	/*
6081 	 * If this image is the one being mapped, we have pool name and
6082 	 * id, image name and id, and snap name - need to fill snap id.
6083 	 * Otherwise this is a parent image, identified by pool, image
6084 	 * and snap ids - need to fill in names for those ids.
6085 	 */
6086 	if (!depth)
6087 		ret = rbd_spec_fill_snap_id(rbd_dev);
6088 	else
6089 		ret = rbd_spec_fill_names(rbd_dev);
6090 	if (ret) {
6091 		if (ret == -ENOENT)
6092 			pr_info("snap %s/%s@%s does not exist\n",
6093 				rbd_dev->spec->pool_name,
6094 				rbd_dev->spec->image_name,
6095 				rbd_dev->spec->snap_name);
6096 		goto err_out_probe;
6097 	}
6098 
6099 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6100 		ret = rbd_dev_v2_parent_info(rbd_dev);
6101 		if (ret)
6102 			goto err_out_probe;
6103 
6104 		/*
6105 		 * Need to warn users if this image is the one being
6106 		 * mapped and has a parent.
6107 		 */
6108 		if (!depth && rbd_dev->parent_spec)
6109 			rbd_warn(rbd_dev,
6110 				 "WARNING: kernel layering is EXPERIMENTAL!");
6111 	}
6112 
6113 	ret = rbd_dev_probe_parent(rbd_dev, depth);
6114 	if (ret)
6115 		goto err_out_probe;
6116 
6117 	dout("discovered format %u image, header name is %s\n",
6118 		rbd_dev->image_format, rbd_dev->header_oid.name);
6119 	return 0;
6120 
6121 err_out_probe:
6122 	rbd_dev_unprobe(rbd_dev);
6123 err_out_watch:
6124 	if (!depth)
6125 		rbd_unregister_watch(rbd_dev);
6126 err_out_format:
6127 	rbd_dev->image_format = 0;
6128 	kfree(rbd_dev->spec->image_id);
6129 	rbd_dev->spec->image_id = NULL;
6130 	return ret;
6131 }
6132 
6133 static ssize_t do_rbd_add(struct bus_type *bus,
6134 			  const char *buf,
6135 			  size_t count)
6136 {
6137 	struct rbd_device *rbd_dev = NULL;
6138 	struct ceph_options *ceph_opts = NULL;
6139 	struct rbd_options *rbd_opts = NULL;
6140 	struct rbd_spec *spec = NULL;
6141 	struct rbd_client *rbdc;
6142 	bool read_only;
6143 	int rc;
6144 
6145 	if (!try_module_get(THIS_MODULE))
6146 		return -ENODEV;
6147 
6148 	/* parse add command */
6149 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6150 	if (rc < 0)
6151 		goto out;
6152 
6153 	rbdc = rbd_get_client(ceph_opts);
6154 	if (IS_ERR(rbdc)) {
6155 		rc = PTR_ERR(rbdc);
6156 		goto err_out_args;
6157 	}
6158 
6159 	/* pick the pool */
6160 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
6161 	if (rc < 0) {
6162 		if (rc == -ENOENT)
6163 			pr_info("pool %s does not exist\n", spec->pool_name);
6164 		goto err_out_client;
6165 	}
6166 	spec->pool_id = (u64)rc;
6167 
6168 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
6169 	if (!rbd_dev) {
6170 		rc = -ENOMEM;
6171 		goto err_out_client;
6172 	}
6173 	rbdc = NULL;		/* rbd_dev now owns this */
6174 	spec = NULL;		/* rbd_dev now owns this */
6175 	rbd_opts = NULL;	/* rbd_dev now owns this */
6176 
6177 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
6178 	if (!rbd_dev->config_info) {
6179 		rc = -ENOMEM;
6180 		goto err_out_rbd_dev;
6181 	}
6182 
6183 	down_write(&rbd_dev->header_rwsem);
6184 	rc = rbd_dev_image_probe(rbd_dev, 0);
6185 	if (rc < 0) {
6186 		up_write(&rbd_dev->header_rwsem);
6187 		goto err_out_rbd_dev;
6188 	}
6189 
6190 	/* If we are mapping a snapshot it must be marked read-only */
6191 
6192 	read_only = rbd_dev->opts->read_only;
6193 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6194 		read_only = true;
6195 	rbd_dev->mapping.read_only = read_only;
6196 
6197 	rc = rbd_dev_device_setup(rbd_dev);
6198 	if (rc)
6199 		goto err_out_image_probe;
6200 
6201 	if (rbd_dev->opts->exclusive) {
6202 		rc = rbd_add_acquire_lock(rbd_dev);
6203 		if (rc)
6204 			goto err_out_device_setup;
6205 	}
6206 
6207 	/* Everything's ready.  Announce the disk to the world. */
6208 
6209 	rc = device_add(&rbd_dev->dev);
6210 	if (rc)
6211 		goto err_out_image_lock;
6212 
6213 	add_disk(rbd_dev->disk);
6214 	/* see rbd_init_disk() */
6215 	blk_put_queue(rbd_dev->disk->queue);
6216 
6217 	spin_lock(&rbd_dev_list_lock);
6218 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
6219 	spin_unlock(&rbd_dev_list_lock);
6220 
6221 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
6222 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
6223 		rbd_dev->header.features);
6224 	rc = count;
6225 out:
6226 	module_put(THIS_MODULE);
6227 	return rc;
6228 
6229 err_out_image_lock:
6230 	rbd_dev_image_unlock(rbd_dev);
6231 err_out_device_setup:
6232 	rbd_dev_device_release(rbd_dev);
6233 err_out_image_probe:
6234 	rbd_dev_image_release(rbd_dev);
6235 err_out_rbd_dev:
6236 	rbd_dev_destroy(rbd_dev);
6237 err_out_client:
6238 	rbd_put_client(rbdc);
6239 err_out_args:
6240 	rbd_spec_put(spec);
6241 	kfree(rbd_opts);
6242 	goto out;
6243 }
6244 
6245 static ssize_t rbd_add(struct bus_type *bus,
6246 		       const char *buf,
6247 		       size_t count)
6248 {
6249 	if (single_major)
6250 		return -EINVAL;
6251 
6252 	return do_rbd_add(bus, buf, count);
6253 }
6254 
6255 static ssize_t rbd_add_single_major(struct bus_type *bus,
6256 				    const char *buf,
6257 				    size_t count)
6258 {
6259 	return do_rbd_add(bus, buf, count);
6260 }
6261 
6262 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
6263 {
6264 	while (rbd_dev->parent) {
6265 		struct rbd_device *first = rbd_dev;
6266 		struct rbd_device *second = first->parent;
6267 		struct rbd_device *third;
6268 
6269 		/*
6270 		 * Follow to the parent with no grandparent and
6271 		 * remove it.
6272 		 */
6273 		while (second && (third = second->parent)) {
6274 			first = second;
6275 			second = third;
6276 		}
6277 		rbd_assert(second);
6278 		rbd_dev_image_release(second);
6279 		rbd_dev_destroy(second);
6280 		first->parent = NULL;
6281 		first->parent_overlap = 0;
6282 
6283 		rbd_assert(first->parent_spec);
6284 		rbd_spec_put(first->parent_spec);
6285 		first->parent_spec = NULL;
6286 	}
6287 }
6288 
6289 static ssize_t do_rbd_remove(struct bus_type *bus,
6290 			     const char *buf,
6291 			     size_t count)
6292 {
6293 	struct rbd_device *rbd_dev = NULL;
6294 	struct list_head *tmp;
6295 	int dev_id;
6296 	char opt_buf[6];
6297 	bool already = false;
6298 	bool force = false;
6299 	int ret;
6300 
6301 	dev_id = -1;
6302 	opt_buf[0] = '\0';
6303 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
6304 	if (dev_id < 0) {
6305 		pr_err("dev_id out of range\n");
6306 		return -EINVAL;
6307 	}
6308 	if (opt_buf[0] != '\0') {
6309 		if (!strcmp(opt_buf, "force")) {
6310 			force = true;
6311 		} else {
6312 			pr_err("bad remove option at '%s'\n", opt_buf);
6313 			return -EINVAL;
6314 		}
6315 	}
6316 
6317 	ret = -ENOENT;
6318 	spin_lock(&rbd_dev_list_lock);
6319 	list_for_each(tmp, &rbd_dev_list) {
6320 		rbd_dev = list_entry(tmp, struct rbd_device, node);
6321 		if (rbd_dev->dev_id == dev_id) {
6322 			ret = 0;
6323 			break;
6324 		}
6325 	}
6326 	if (!ret) {
6327 		spin_lock_irq(&rbd_dev->lock);
6328 		if (rbd_dev->open_count && !force)
6329 			ret = -EBUSY;
6330 		else
6331 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6332 							&rbd_dev->flags);
6333 		spin_unlock_irq(&rbd_dev->lock);
6334 	}
6335 	spin_unlock(&rbd_dev_list_lock);
6336 	if (ret < 0 || already)
6337 		return ret;
6338 
6339 	if (force) {
6340 		/*
6341 		 * Prevent new IO from being queued and wait for existing
6342 		 * IO to complete/fail.
6343 		 */
6344 		blk_mq_freeze_queue(rbd_dev->disk->queue);
6345 		blk_set_queue_dying(rbd_dev->disk->queue);
6346 	}
6347 
6348 	del_gendisk(rbd_dev->disk);
6349 	spin_lock(&rbd_dev_list_lock);
6350 	list_del_init(&rbd_dev->node);
6351 	spin_unlock(&rbd_dev_list_lock);
6352 	device_del(&rbd_dev->dev);
6353 
6354 	rbd_dev_image_unlock(rbd_dev);
6355 	rbd_dev_device_release(rbd_dev);
6356 	rbd_dev_image_release(rbd_dev);
6357 	rbd_dev_destroy(rbd_dev);
6358 	return count;
6359 }
6360 
6361 static ssize_t rbd_remove(struct bus_type *bus,
6362 			  const char *buf,
6363 			  size_t count)
6364 {
6365 	if (single_major)
6366 		return -EINVAL;
6367 
6368 	return do_rbd_remove(bus, buf, count);
6369 }
6370 
6371 static ssize_t rbd_remove_single_major(struct bus_type *bus,
6372 				       const char *buf,
6373 				       size_t count)
6374 {
6375 	return do_rbd_remove(bus, buf, count);
6376 }
6377 
6378 /*
6379  * create control files in sysfs
6380  * /sys/bus/rbd/...
6381  */
6382 static int rbd_sysfs_init(void)
6383 {
6384 	int ret;
6385 
6386 	ret = device_register(&rbd_root_dev);
6387 	if (ret < 0)
6388 		return ret;
6389 
6390 	ret = bus_register(&rbd_bus_type);
6391 	if (ret < 0)
6392 		device_unregister(&rbd_root_dev);
6393 
6394 	return ret;
6395 }
6396 
6397 static void rbd_sysfs_cleanup(void)
6398 {
6399 	bus_unregister(&rbd_bus_type);
6400 	device_unregister(&rbd_root_dev);
6401 }
6402 
6403 static int rbd_slab_init(void)
6404 {
6405 	rbd_assert(!rbd_img_request_cache);
6406 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6407 	if (!rbd_img_request_cache)
6408 		return -ENOMEM;
6409 
6410 	rbd_assert(!rbd_obj_request_cache);
6411 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6412 	if (!rbd_obj_request_cache)
6413 		goto out_err;
6414 
6415 	return 0;
6416 
6417 out_err:
6418 	kmem_cache_destroy(rbd_img_request_cache);
6419 	rbd_img_request_cache = NULL;
6420 	return -ENOMEM;
6421 }
6422 
6423 static void rbd_slab_exit(void)
6424 {
6425 	rbd_assert(rbd_obj_request_cache);
6426 	kmem_cache_destroy(rbd_obj_request_cache);
6427 	rbd_obj_request_cache = NULL;
6428 
6429 	rbd_assert(rbd_img_request_cache);
6430 	kmem_cache_destroy(rbd_img_request_cache);
6431 	rbd_img_request_cache = NULL;
6432 }
6433 
6434 static int __init rbd_init(void)
6435 {
6436 	int rc;
6437 
6438 	if (!libceph_compatible(NULL)) {
6439 		rbd_warn(NULL, "libceph incompatibility (quitting)");
6440 		return -EINVAL;
6441 	}
6442 
6443 	rc = rbd_slab_init();
6444 	if (rc)
6445 		return rc;
6446 
6447 	/*
6448 	 * The number of active work items is limited by the number of
6449 	 * rbd devices * queue depth, so leave @max_active at default.
6450 	 */
6451 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6452 	if (!rbd_wq) {
6453 		rc = -ENOMEM;
6454 		goto err_out_slab;
6455 	}
6456 
6457 	if (single_major) {
6458 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
6459 		if (rbd_major < 0) {
6460 			rc = rbd_major;
6461 			goto err_out_wq;
6462 		}
6463 	}
6464 
6465 	rc = rbd_sysfs_init();
6466 	if (rc)
6467 		goto err_out_blkdev;
6468 
6469 	if (single_major)
6470 		pr_info("loaded (major %d)\n", rbd_major);
6471 	else
6472 		pr_info("loaded\n");
6473 
6474 	return 0;
6475 
6476 err_out_blkdev:
6477 	if (single_major)
6478 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
6479 err_out_wq:
6480 	destroy_workqueue(rbd_wq);
6481 err_out_slab:
6482 	rbd_slab_exit();
6483 	return rc;
6484 }
6485 
6486 static void __exit rbd_exit(void)
6487 {
6488 	ida_destroy(&rbd_dev_id_ida);
6489 	rbd_sysfs_cleanup();
6490 	if (single_major)
6491 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
6492 	destroy_workqueue(rbd_wq);
6493 	rbd_slab_exit();
6494 }
6495 
6496 module_init(rbd_init);
6497 module_exit(rbd_exit);
6498 
6499 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6500 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6501 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6502 /* following authorship retained from original osdblk.c */
6503 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6504 
6505 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6506 MODULE_LICENSE("GPL");
6507