1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom make_request_fn function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 48 49 #include <linux/pktcdvd.h> 50 #include <linux/module.h> 51 #include <linux/types.h> 52 #include <linux/kernel.h> 53 #include <linux/compat.h> 54 #include <linux/kthread.h> 55 #include <linux/errno.h> 56 #include <linux/spinlock.h> 57 #include <linux/file.h> 58 #include <linux/proc_fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/miscdevice.h> 61 #include <linux/freezer.h> 62 #include <linux/mutex.h> 63 #include <linux/slab.h> 64 #include <scsi/scsi_cmnd.h> 65 #include <scsi/scsi_ioctl.h> 66 #include <scsi/scsi.h> 67 #include <linux/debugfs.h> 68 #include <linux/device.h> 69 70 #include <asm/uaccess.h> 71 72 #define DRIVER_NAME "pktcdvd" 73 74 #define pkt_err(pd, fmt, ...) \ 75 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__) 76 #define pkt_notice(pd, fmt, ...) \ 77 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__) 78 #define pkt_info(pd, fmt, ...) \ 79 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__) 80 81 #define pkt_dbg(level, pd, fmt, ...) \ 82 do { \ 83 if (level == 2 && PACKET_DEBUG >= 2) \ 84 pr_notice("%s: %s():" fmt, \ 85 pd->name, __func__, ##__VA_ARGS__); \ 86 else if (level == 1 && PACKET_DEBUG >= 1) \ 87 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \ 88 } while (0) 89 90 #define MAX_SPEED 0xffff 91 92 static DEFINE_MUTEX(pktcdvd_mutex); 93 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 94 static struct proc_dir_entry *pkt_proc; 95 static int pktdev_major; 96 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 97 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 98 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 99 static mempool_t *psd_pool; 100 101 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */ 102 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */ 103 104 /* forward declaration */ 105 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 106 static int pkt_remove_dev(dev_t pkt_dev); 107 static int pkt_seq_show(struct seq_file *m, void *p); 108 109 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd) 110 { 111 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1); 112 } 113 114 /* 115 * create and register a pktcdvd kernel object. 116 */ 117 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd, 118 const char* name, 119 struct kobject* parent, 120 struct kobj_type* ktype) 121 { 122 struct pktcdvd_kobj *p; 123 int error; 124 125 p = kzalloc(sizeof(*p), GFP_KERNEL); 126 if (!p) 127 return NULL; 128 p->pd = pd; 129 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name); 130 if (error) { 131 kobject_put(&p->kobj); 132 return NULL; 133 } 134 kobject_uevent(&p->kobj, KOBJ_ADD); 135 return p; 136 } 137 /* 138 * remove a pktcdvd kernel object. 139 */ 140 static void pkt_kobj_remove(struct pktcdvd_kobj *p) 141 { 142 if (p) 143 kobject_put(&p->kobj); 144 } 145 /* 146 * default release function for pktcdvd kernel objects. 147 */ 148 static void pkt_kobj_release(struct kobject *kobj) 149 { 150 kfree(to_pktcdvdkobj(kobj)); 151 } 152 153 154 /********************************************************** 155 * 156 * sysfs interface for pktcdvd 157 * by (C) 2006 Thomas Maier <balagi@justmail.de> 158 * 159 **********************************************************/ 160 161 #define DEF_ATTR(_obj,_name,_mode) \ 162 static struct attribute _obj = { .name = _name, .mode = _mode } 163 164 /********************************************************** 165 /sys/class/pktcdvd/pktcdvd[0-7]/ 166 stat/reset 167 stat/packets_started 168 stat/packets_finished 169 stat/kb_written 170 stat/kb_read 171 stat/kb_read_gather 172 write_queue/size 173 write_queue/congestion_off 174 write_queue/congestion_on 175 **********************************************************/ 176 177 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200); 178 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444); 179 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444); 180 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444); 181 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444); 182 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444); 183 184 static struct attribute *kobj_pkt_attrs_stat[] = { 185 &kobj_pkt_attr_st1, 186 &kobj_pkt_attr_st2, 187 &kobj_pkt_attr_st3, 188 &kobj_pkt_attr_st4, 189 &kobj_pkt_attr_st5, 190 &kobj_pkt_attr_st6, 191 NULL 192 }; 193 194 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444); 195 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644); 196 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644); 197 198 static struct attribute *kobj_pkt_attrs_wqueue[] = { 199 &kobj_pkt_attr_wq1, 200 &kobj_pkt_attr_wq2, 201 &kobj_pkt_attr_wq3, 202 NULL 203 }; 204 205 static ssize_t kobj_pkt_show(struct kobject *kobj, 206 struct attribute *attr, char *data) 207 { 208 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 209 int n = 0; 210 int v; 211 if (strcmp(attr->name, "packets_started") == 0) { 212 n = sprintf(data, "%lu\n", pd->stats.pkt_started); 213 214 } else if (strcmp(attr->name, "packets_finished") == 0) { 215 n = sprintf(data, "%lu\n", pd->stats.pkt_ended); 216 217 } else if (strcmp(attr->name, "kb_written") == 0) { 218 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1); 219 220 } else if (strcmp(attr->name, "kb_read") == 0) { 221 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1); 222 223 } else if (strcmp(attr->name, "kb_read_gather") == 0) { 224 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1); 225 226 } else if (strcmp(attr->name, "size") == 0) { 227 spin_lock(&pd->lock); 228 v = pd->bio_queue_size; 229 spin_unlock(&pd->lock); 230 n = sprintf(data, "%d\n", v); 231 232 } else if (strcmp(attr->name, "congestion_off") == 0) { 233 spin_lock(&pd->lock); 234 v = pd->write_congestion_off; 235 spin_unlock(&pd->lock); 236 n = sprintf(data, "%d\n", v); 237 238 } else if (strcmp(attr->name, "congestion_on") == 0) { 239 spin_lock(&pd->lock); 240 v = pd->write_congestion_on; 241 spin_unlock(&pd->lock); 242 n = sprintf(data, "%d\n", v); 243 } 244 return n; 245 } 246 247 static void init_write_congestion_marks(int* lo, int* hi) 248 { 249 if (*hi > 0) { 250 *hi = max(*hi, 500); 251 *hi = min(*hi, 1000000); 252 if (*lo <= 0) 253 *lo = *hi - 100; 254 else { 255 *lo = min(*lo, *hi - 100); 256 *lo = max(*lo, 100); 257 } 258 } else { 259 *hi = -1; 260 *lo = -1; 261 } 262 } 263 264 static ssize_t kobj_pkt_store(struct kobject *kobj, 265 struct attribute *attr, 266 const char *data, size_t len) 267 { 268 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 269 int val; 270 271 if (strcmp(attr->name, "reset") == 0 && len > 0) { 272 pd->stats.pkt_started = 0; 273 pd->stats.pkt_ended = 0; 274 pd->stats.secs_w = 0; 275 pd->stats.secs_rg = 0; 276 pd->stats.secs_r = 0; 277 278 } else if (strcmp(attr->name, "congestion_off") == 0 279 && sscanf(data, "%d", &val) == 1) { 280 spin_lock(&pd->lock); 281 pd->write_congestion_off = val; 282 init_write_congestion_marks(&pd->write_congestion_off, 283 &pd->write_congestion_on); 284 spin_unlock(&pd->lock); 285 286 } else if (strcmp(attr->name, "congestion_on") == 0 287 && sscanf(data, "%d", &val) == 1) { 288 spin_lock(&pd->lock); 289 pd->write_congestion_on = val; 290 init_write_congestion_marks(&pd->write_congestion_off, 291 &pd->write_congestion_on); 292 spin_unlock(&pd->lock); 293 } 294 return len; 295 } 296 297 static const struct sysfs_ops kobj_pkt_ops = { 298 .show = kobj_pkt_show, 299 .store = kobj_pkt_store 300 }; 301 static struct kobj_type kobj_pkt_type_stat = { 302 .release = pkt_kobj_release, 303 .sysfs_ops = &kobj_pkt_ops, 304 .default_attrs = kobj_pkt_attrs_stat 305 }; 306 static struct kobj_type kobj_pkt_type_wqueue = { 307 .release = pkt_kobj_release, 308 .sysfs_ops = &kobj_pkt_ops, 309 .default_attrs = kobj_pkt_attrs_wqueue 310 }; 311 312 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 313 { 314 if (class_pktcdvd) { 315 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL, 316 "%s", pd->name); 317 if (IS_ERR(pd->dev)) 318 pd->dev = NULL; 319 } 320 if (pd->dev) { 321 pd->kobj_stat = pkt_kobj_create(pd, "stat", 322 &pd->dev->kobj, 323 &kobj_pkt_type_stat); 324 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue", 325 &pd->dev->kobj, 326 &kobj_pkt_type_wqueue); 327 } 328 } 329 330 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 331 { 332 pkt_kobj_remove(pd->kobj_stat); 333 pkt_kobj_remove(pd->kobj_wqueue); 334 if (class_pktcdvd) 335 device_unregister(pd->dev); 336 } 337 338 339 /******************************************************************** 340 /sys/class/pktcdvd/ 341 add map block device 342 remove unmap packet dev 343 device_map show mappings 344 *******************************************************************/ 345 346 static void class_pktcdvd_release(struct class *cls) 347 { 348 kfree(cls); 349 } 350 static ssize_t class_pktcdvd_show_map(struct class *c, 351 struct class_attribute *attr, 352 char *data) 353 { 354 int n = 0; 355 int idx; 356 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 357 for (idx = 0; idx < MAX_WRITERS; idx++) { 358 struct pktcdvd_device *pd = pkt_devs[idx]; 359 if (!pd) 360 continue; 361 n += sprintf(data+n, "%s %u:%u %u:%u\n", 362 pd->name, 363 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 364 MAJOR(pd->bdev->bd_dev), 365 MINOR(pd->bdev->bd_dev)); 366 } 367 mutex_unlock(&ctl_mutex); 368 return n; 369 } 370 371 static ssize_t class_pktcdvd_store_add(struct class *c, 372 struct class_attribute *attr, 373 const char *buf, 374 size_t count) 375 { 376 unsigned int major, minor; 377 378 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 379 /* pkt_setup_dev() expects caller to hold reference to self */ 380 if (!try_module_get(THIS_MODULE)) 381 return -ENODEV; 382 383 pkt_setup_dev(MKDEV(major, minor), NULL); 384 385 module_put(THIS_MODULE); 386 387 return count; 388 } 389 390 return -EINVAL; 391 } 392 393 static ssize_t class_pktcdvd_store_remove(struct class *c, 394 struct class_attribute *attr, 395 const char *buf, 396 size_t count) 397 { 398 unsigned int major, minor; 399 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 400 pkt_remove_dev(MKDEV(major, minor)); 401 return count; 402 } 403 return -EINVAL; 404 } 405 406 static struct class_attribute class_pktcdvd_attrs[] = { 407 __ATTR(add, 0200, NULL, class_pktcdvd_store_add), 408 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove), 409 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL), 410 __ATTR_NULL 411 }; 412 413 414 static int pkt_sysfs_init(void) 415 { 416 int ret = 0; 417 418 /* 419 * create control files in sysfs 420 * /sys/class/pktcdvd/... 421 */ 422 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL); 423 if (!class_pktcdvd) 424 return -ENOMEM; 425 class_pktcdvd->name = DRIVER_NAME; 426 class_pktcdvd->owner = THIS_MODULE; 427 class_pktcdvd->class_release = class_pktcdvd_release; 428 class_pktcdvd->class_attrs = class_pktcdvd_attrs; 429 ret = class_register(class_pktcdvd); 430 if (ret) { 431 kfree(class_pktcdvd); 432 class_pktcdvd = NULL; 433 pr_err("failed to create class pktcdvd\n"); 434 return ret; 435 } 436 return 0; 437 } 438 439 static void pkt_sysfs_cleanup(void) 440 { 441 if (class_pktcdvd) 442 class_destroy(class_pktcdvd); 443 class_pktcdvd = NULL; 444 } 445 446 /******************************************************************** 447 entries in debugfs 448 449 /sys/kernel/debug/pktcdvd[0-7]/ 450 info 451 452 *******************************************************************/ 453 454 static int pkt_debugfs_seq_show(struct seq_file *m, void *p) 455 { 456 return pkt_seq_show(m, p); 457 } 458 459 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file) 460 { 461 return single_open(file, pkt_debugfs_seq_show, inode->i_private); 462 } 463 464 static const struct file_operations debug_fops = { 465 .open = pkt_debugfs_fops_open, 466 .read = seq_read, 467 .llseek = seq_lseek, 468 .release = single_release, 469 .owner = THIS_MODULE, 470 }; 471 472 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 473 { 474 if (!pkt_debugfs_root) 475 return; 476 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root); 477 if (!pd->dfs_d_root) 478 return; 479 480 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO, 481 pd->dfs_d_root, pd, &debug_fops); 482 } 483 484 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 485 { 486 if (!pkt_debugfs_root) 487 return; 488 debugfs_remove(pd->dfs_f_info); 489 debugfs_remove(pd->dfs_d_root); 490 pd->dfs_f_info = NULL; 491 pd->dfs_d_root = NULL; 492 } 493 494 static void pkt_debugfs_init(void) 495 { 496 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 497 } 498 499 static void pkt_debugfs_cleanup(void) 500 { 501 debugfs_remove(pkt_debugfs_root); 502 pkt_debugfs_root = NULL; 503 } 504 505 /* ----------------------------------------------------------*/ 506 507 508 static void pkt_bio_finished(struct pktcdvd_device *pd) 509 { 510 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 511 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 512 pkt_dbg(2, pd, "queue empty\n"); 513 atomic_set(&pd->iosched.attention, 1); 514 wake_up(&pd->wqueue); 515 } 516 } 517 518 /* 519 * Allocate a packet_data struct 520 */ 521 static struct packet_data *pkt_alloc_packet_data(int frames) 522 { 523 int i; 524 struct packet_data *pkt; 525 526 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 527 if (!pkt) 528 goto no_pkt; 529 530 pkt->frames = frames; 531 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames); 532 if (!pkt->w_bio) 533 goto no_bio; 534 535 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 536 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 537 if (!pkt->pages[i]) 538 goto no_page; 539 } 540 541 spin_lock_init(&pkt->lock); 542 bio_list_init(&pkt->orig_bios); 543 544 for (i = 0; i < frames; i++) { 545 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1); 546 if (!bio) 547 goto no_rd_bio; 548 549 pkt->r_bios[i] = bio; 550 } 551 552 return pkt; 553 554 no_rd_bio: 555 for (i = 0; i < frames; i++) { 556 struct bio *bio = pkt->r_bios[i]; 557 if (bio) 558 bio_put(bio); 559 } 560 561 no_page: 562 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 563 if (pkt->pages[i]) 564 __free_page(pkt->pages[i]); 565 bio_put(pkt->w_bio); 566 no_bio: 567 kfree(pkt); 568 no_pkt: 569 return NULL; 570 } 571 572 /* 573 * Free a packet_data struct 574 */ 575 static void pkt_free_packet_data(struct packet_data *pkt) 576 { 577 int i; 578 579 for (i = 0; i < pkt->frames; i++) { 580 struct bio *bio = pkt->r_bios[i]; 581 if (bio) 582 bio_put(bio); 583 } 584 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 585 __free_page(pkt->pages[i]); 586 bio_put(pkt->w_bio); 587 kfree(pkt); 588 } 589 590 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 591 { 592 struct packet_data *pkt, *next; 593 594 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 595 596 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 597 pkt_free_packet_data(pkt); 598 } 599 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 600 } 601 602 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 603 { 604 struct packet_data *pkt; 605 606 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 607 608 while (nr_packets > 0) { 609 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 610 if (!pkt) { 611 pkt_shrink_pktlist(pd); 612 return 0; 613 } 614 pkt->id = nr_packets; 615 pkt->pd = pd; 616 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 617 nr_packets--; 618 } 619 return 1; 620 } 621 622 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 623 { 624 struct rb_node *n = rb_next(&node->rb_node); 625 if (!n) 626 return NULL; 627 return rb_entry(n, struct pkt_rb_node, rb_node); 628 } 629 630 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 631 { 632 rb_erase(&node->rb_node, &pd->bio_queue); 633 mempool_free(node, pd->rb_pool); 634 pd->bio_queue_size--; 635 BUG_ON(pd->bio_queue_size < 0); 636 } 637 638 /* 639 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 640 */ 641 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 642 { 643 struct rb_node *n = pd->bio_queue.rb_node; 644 struct rb_node *next; 645 struct pkt_rb_node *tmp; 646 647 if (!n) { 648 BUG_ON(pd->bio_queue_size > 0); 649 return NULL; 650 } 651 652 for (;;) { 653 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 654 if (s <= tmp->bio->bi_sector) 655 next = n->rb_left; 656 else 657 next = n->rb_right; 658 if (!next) 659 break; 660 n = next; 661 } 662 663 if (s > tmp->bio->bi_sector) { 664 tmp = pkt_rbtree_next(tmp); 665 if (!tmp) 666 return NULL; 667 } 668 BUG_ON(s > tmp->bio->bi_sector); 669 return tmp; 670 } 671 672 /* 673 * Insert a node into the pd->bio_queue rb tree. 674 */ 675 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 676 { 677 struct rb_node **p = &pd->bio_queue.rb_node; 678 struct rb_node *parent = NULL; 679 sector_t s = node->bio->bi_sector; 680 struct pkt_rb_node *tmp; 681 682 while (*p) { 683 parent = *p; 684 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 685 if (s < tmp->bio->bi_sector) 686 p = &(*p)->rb_left; 687 else 688 p = &(*p)->rb_right; 689 } 690 rb_link_node(&node->rb_node, parent, p); 691 rb_insert_color(&node->rb_node, &pd->bio_queue); 692 pd->bio_queue_size++; 693 } 694 695 /* 696 * Send a packet_command to the underlying block device and 697 * wait for completion. 698 */ 699 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 700 { 701 struct request_queue *q = bdev_get_queue(pd->bdev); 702 struct request *rq; 703 int ret = 0; 704 705 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 706 WRITE : READ, __GFP_WAIT); 707 708 if (cgc->buflen) { 709 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT)) 710 goto out; 711 } 712 713 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 714 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE); 715 716 rq->timeout = 60*HZ; 717 rq->cmd_type = REQ_TYPE_BLOCK_PC; 718 if (cgc->quiet) 719 rq->cmd_flags |= REQ_QUIET; 720 721 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0); 722 if (rq->errors) 723 ret = -EIO; 724 out: 725 blk_put_request(rq); 726 return ret; 727 } 728 729 static const char *sense_key_string(__u8 index) 730 { 731 static const char * const info[] = { 732 "No sense", "Recovered error", "Not ready", 733 "Medium error", "Hardware error", "Illegal request", 734 "Unit attention", "Data protect", "Blank check", 735 }; 736 737 return index < ARRAY_SIZE(info) ? info[index] : "INVALID"; 738 } 739 740 /* 741 * A generic sense dump / resolve mechanism should be implemented across 742 * all ATAPI + SCSI devices. 743 */ 744 static void pkt_dump_sense(struct pktcdvd_device *pd, 745 struct packet_command *cgc) 746 { 747 struct request_sense *sense = cgc->sense; 748 749 if (sense) 750 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n", 751 CDROM_PACKET_SIZE, cgc->cmd, 752 sense->sense_key, sense->asc, sense->ascq, 753 sense_key_string(sense->sense_key)); 754 else 755 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd); 756 } 757 758 /* 759 * flush the drive cache to media 760 */ 761 static int pkt_flush_cache(struct pktcdvd_device *pd) 762 { 763 struct packet_command cgc; 764 765 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 766 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 767 cgc.quiet = 1; 768 769 /* 770 * the IMMED bit -- we default to not setting it, although that 771 * would allow a much faster close, this is safer 772 */ 773 #if 0 774 cgc.cmd[1] = 1 << 1; 775 #endif 776 return pkt_generic_packet(pd, &cgc); 777 } 778 779 /* 780 * speed is given as the normal factor, e.g. 4 for 4x 781 */ 782 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd, 783 unsigned write_speed, unsigned read_speed) 784 { 785 struct packet_command cgc; 786 struct request_sense sense; 787 int ret; 788 789 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 790 cgc.sense = &sense; 791 cgc.cmd[0] = GPCMD_SET_SPEED; 792 cgc.cmd[2] = (read_speed >> 8) & 0xff; 793 cgc.cmd[3] = read_speed & 0xff; 794 cgc.cmd[4] = (write_speed >> 8) & 0xff; 795 cgc.cmd[5] = write_speed & 0xff; 796 797 if ((ret = pkt_generic_packet(pd, &cgc))) 798 pkt_dump_sense(pd, &cgc); 799 800 return ret; 801 } 802 803 /* 804 * Queue a bio for processing by the low-level CD device. Must be called 805 * from process context. 806 */ 807 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 808 { 809 spin_lock(&pd->iosched.lock); 810 if (bio_data_dir(bio) == READ) 811 bio_list_add(&pd->iosched.read_queue, bio); 812 else 813 bio_list_add(&pd->iosched.write_queue, bio); 814 spin_unlock(&pd->iosched.lock); 815 816 atomic_set(&pd->iosched.attention, 1); 817 wake_up(&pd->wqueue); 818 } 819 820 /* 821 * Process the queued read/write requests. This function handles special 822 * requirements for CDRW drives: 823 * - A cache flush command must be inserted before a read request if the 824 * previous request was a write. 825 * - Switching between reading and writing is slow, so don't do it more often 826 * than necessary. 827 * - Optimize for throughput at the expense of latency. This means that streaming 828 * writes will never be interrupted by a read, but if the drive has to seek 829 * before the next write, switch to reading instead if there are any pending 830 * read requests. 831 * - Set the read speed according to current usage pattern. When only reading 832 * from the device, it's best to use the highest possible read speed, but 833 * when switching often between reading and writing, it's better to have the 834 * same read and write speeds. 835 */ 836 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 837 { 838 839 if (atomic_read(&pd->iosched.attention) == 0) 840 return; 841 atomic_set(&pd->iosched.attention, 0); 842 843 for (;;) { 844 struct bio *bio; 845 int reads_queued, writes_queued; 846 847 spin_lock(&pd->iosched.lock); 848 reads_queued = !bio_list_empty(&pd->iosched.read_queue); 849 writes_queued = !bio_list_empty(&pd->iosched.write_queue); 850 spin_unlock(&pd->iosched.lock); 851 852 if (!reads_queued && !writes_queued) 853 break; 854 855 if (pd->iosched.writing) { 856 int need_write_seek = 1; 857 spin_lock(&pd->iosched.lock); 858 bio = bio_list_peek(&pd->iosched.write_queue); 859 spin_unlock(&pd->iosched.lock); 860 if (bio && (bio->bi_sector == pd->iosched.last_write)) 861 need_write_seek = 0; 862 if (need_write_seek && reads_queued) { 863 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 864 pkt_dbg(2, pd, "write, waiting\n"); 865 break; 866 } 867 pkt_flush_cache(pd); 868 pd->iosched.writing = 0; 869 } 870 } else { 871 if (!reads_queued && writes_queued) { 872 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 873 pkt_dbg(2, pd, "read, waiting\n"); 874 break; 875 } 876 pd->iosched.writing = 1; 877 } 878 } 879 880 spin_lock(&pd->iosched.lock); 881 if (pd->iosched.writing) 882 bio = bio_list_pop(&pd->iosched.write_queue); 883 else 884 bio = bio_list_pop(&pd->iosched.read_queue); 885 spin_unlock(&pd->iosched.lock); 886 887 if (!bio) 888 continue; 889 890 if (bio_data_dir(bio) == READ) 891 pd->iosched.successive_reads += bio->bi_size >> 10; 892 else { 893 pd->iosched.successive_reads = 0; 894 pd->iosched.last_write = bio_end_sector(bio); 895 } 896 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 897 if (pd->read_speed == pd->write_speed) { 898 pd->read_speed = MAX_SPEED; 899 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 900 } 901 } else { 902 if (pd->read_speed != pd->write_speed) { 903 pd->read_speed = pd->write_speed; 904 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 905 } 906 } 907 908 atomic_inc(&pd->cdrw.pending_bios); 909 generic_make_request(bio); 910 } 911 } 912 913 /* 914 * Special care is needed if the underlying block device has a small 915 * max_phys_segments value. 916 */ 917 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q) 918 { 919 if ((pd->settings.size << 9) / CD_FRAMESIZE 920 <= queue_max_segments(q)) { 921 /* 922 * The cdrom device can handle one segment/frame 923 */ 924 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 925 return 0; 926 } else if ((pd->settings.size << 9) / PAGE_SIZE 927 <= queue_max_segments(q)) { 928 /* 929 * We can handle this case at the expense of some extra memory 930 * copies during write operations 931 */ 932 set_bit(PACKET_MERGE_SEGS, &pd->flags); 933 return 0; 934 } else { 935 pkt_err(pd, "cdrom max_phys_segments too small\n"); 936 return -EIO; 937 } 938 } 939 940 /* 941 * Copy all data for this packet to pkt->pages[], so that 942 * a) The number of required segments for the write bio is minimized, which 943 * is necessary for some scsi controllers. 944 * b) The data can be used as cache to avoid read requests if we receive a 945 * new write request for the same zone. 946 */ 947 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec) 948 { 949 int f, p, offs; 950 951 /* Copy all data to pkt->pages[] */ 952 p = 0; 953 offs = 0; 954 for (f = 0; f < pkt->frames; f++) { 955 if (bvec[f].bv_page != pkt->pages[p]) { 956 void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset; 957 void *vto = page_address(pkt->pages[p]) + offs; 958 memcpy(vto, vfrom, CD_FRAMESIZE); 959 kunmap_atomic(vfrom); 960 bvec[f].bv_page = pkt->pages[p]; 961 bvec[f].bv_offset = offs; 962 } else { 963 BUG_ON(bvec[f].bv_offset != offs); 964 } 965 offs += CD_FRAMESIZE; 966 if (offs >= PAGE_SIZE) { 967 offs = 0; 968 p++; 969 } 970 } 971 } 972 973 static void pkt_end_io_read(struct bio *bio, int err) 974 { 975 struct packet_data *pkt = bio->bi_private; 976 struct pktcdvd_device *pd = pkt->pd; 977 BUG_ON(!pd); 978 979 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n", 980 bio, (unsigned long long)pkt->sector, 981 (unsigned long long)bio->bi_sector, err); 982 983 if (err) 984 atomic_inc(&pkt->io_errors); 985 if (atomic_dec_and_test(&pkt->io_wait)) { 986 atomic_inc(&pkt->run_sm); 987 wake_up(&pd->wqueue); 988 } 989 pkt_bio_finished(pd); 990 } 991 992 static void pkt_end_io_packet_write(struct bio *bio, int err) 993 { 994 struct packet_data *pkt = bio->bi_private; 995 struct pktcdvd_device *pd = pkt->pd; 996 BUG_ON(!pd); 997 998 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, err); 999 1000 pd->stats.pkt_ended++; 1001 1002 pkt_bio_finished(pd); 1003 atomic_dec(&pkt->io_wait); 1004 atomic_inc(&pkt->run_sm); 1005 wake_up(&pd->wqueue); 1006 } 1007 1008 /* 1009 * Schedule reads for the holes in a packet 1010 */ 1011 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1012 { 1013 int frames_read = 0; 1014 struct bio *bio; 1015 int f; 1016 char written[PACKET_MAX_SIZE]; 1017 1018 BUG_ON(bio_list_empty(&pkt->orig_bios)); 1019 1020 atomic_set(&pkt->io_wait, 0); 1021 atomic_set(&pkt->io_errors, 0); 1022 1023 /* 1024 * Figure out which frames we need to read before we can write. 1025 */ 1026 memset(written, 0, sizeof(written)); 1027 spin_lock(&pkt->lock); 1028 bio_list_for_each(bio, &pkt->orig_bios) { 1029 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1030 int num_frames = bio->bi_size / CD_FRAMESIZE; 1031 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 1032 BUG_ON(first_frame < 0); 1033 BUG_ON(first_frame + num_frames > pkt->frames); 1034 for (f = first_frame; f < first_frame + num_frames; f++) 1035 written[f] = 1; 1036 } 1037 spin_unlock(&pkt->lock); 1038 1039 if (pkt->cache_valid) { 1040 pkt_dbg(2, pd, "zone %llx cached\n", 1041 (unsigned long long)pkt->sector); 1042 goto out_account; 1043 } 1044 1045 /* 1046 * Schedule reads for missing parts of the packet. 1047 */ 1048 for (f = 0; f < pkt->frames; f++) { 1049 int p, offset; 1050 1051 if (written[f]) 1052 continue; 1053 1054 bio = pkt->r_bios[f]; 1055 bio_reset(bio); 1056 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1057 bio->bi_bdev = pd->bdev; 1058 bio->bi_end_io = pkt_end_io_read; 1059 bio->bi_private = pkt; 1060 1061 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1062 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1063 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n", 1064 f, pkt->pages[p], offset); 1065 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1066 BUG(); 1067 1068 atomic_inc(&pkt->io_wait); 1069 bio->bi_rw = READ; 1070 pkt_queue_bio(pd, bio); 1071 frames_read++; 1072 } 1073 1074 out_account: 1075 pkt_dbg(2, pd, "need %d frames for zone %llx\n", 1076 frames_read, (unsigned long long)pkt->sector); 1077 pd->stats.pkt_started++; 1078 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1079 } 1080 1081 /* 1082 * Find a packet matching zone, or the least recently used packet if 1083 * there is no match. 1084 */ 1085 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1086 { 1087 struct packet_data *pkt; 1088 1089 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1090 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1091 list_del_init(&pkt->list); 1092 if (pkt->sector != zone) 1093 pkt->cache_valid = 0; 1094 return pkt; 1095 } 1096 } 1097 BUG(); 1098 return NULL; 1099 } 1100 1101 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1102 { 1103 if (pkt->cache_valid) { 1104 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1105 } else { 1106 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1107 } 1108 } 1109 1110 /* 1111 * recover a failed write, query for relocation if possible 1112 * 1113 * returns 1 if recovery is possible, or 0 if not 1114 * 1115 */ 1116 static int pkt_start_recovery(struct packet_data *pkt) 1117 { 1118 /* 1119 * FIXME. We need help from the file system to implement 1120 * recovery handling. 1121 */ 1122 return 0; 1123 #if 0 1124 struct request *rq = pkt->rq; 1125 struct pktcdvd_device *pd = rq->rq_disk->private_data; 1126 struct block_device *pkt_bdev; 1127 struct super_block *sb = NULL; 1128 unsigned long old_block, new_block; 1129 sector_t new_sector; 1130 1131 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 1132 if (pkt_bdev) { 1133 sb = get_super(pkt_bdev); 1134 bdput(pkt_bdev); 1135 } 1136 1137 if (!sb) 1138 return 0; 1139 1140 if (!sb->s_op->relocate_blocks) 1141 goto out; 1142 1143 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 1144 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 1145 goto out; 1146 1147 new_sector = new_block * (CD_FRAMESIZE >> 9); 1148 pkt->sector = new_sector; 1149 1150 bio_reset(pkt->bio); 1151 pkt->bio->bi_bdev = pd->bdev; 1152 pkt->bio->bi_rw = REQ_WRITE; 1153 pkt->bio->bi_sector = new_sector; 1154 pkt->bio->bi_size = pkt->frames * CD_FRAMESIZE; 1155 pkt->bio->bi_vcnt = pkt->frames; 1156 1157 pkt->bio->bi_end_io = pkt_end_io_packet_write; 1158 pkt->bio->bi_private = pkt; 1159 1160 drop_super(sb); 1161 return 1; 1162 1163 out: 1164 drop_super(sb); 1165 return 0; 1166 #endif 1167 } 1168 1169 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 1170 { 1171 #if PACKET_DEBUG > 1 1172 static const char *state_name[] = { 1173 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1174 }; 1175 enum packet_data_state old_state = pkt->state; 1176 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n", 1177 pkt->id, (unsigned long long)pkt->sector, 1178 state_name[old_state], state_name[state]); 1179 #endif 1180 pkt->state = state; 1181 } 1182 1183 /* 1184 * Scan the work queue to see if we can start a new packet. 1185 * returns non-zero if any work was done. 1186 */ 1187 static int pkt_handle_queue(struct pktcdvd_device *pd) 1188 { 1189 struct packet_data *pkt, *p; 1190 struct bio *bio = NULL; 1191 sector_t zone = 0; /* Suppress gcc warning */ 1192 struct pkt_rb_node *node, *first_node; 1193 struct rb_node *n; 1194 int wakeup; 1195 1196 atomic_set(&pd->scan_queue, 0); 1197 1198 if (list_empty(&pd->cdrw.pkt_free_list)) { 1199 pkt_dbg(2, pd, "no pkt\n"); 1200 return 0; 1201 } 1202 1203 /* 1204 * Try to find a zone we are not already working on. 1205 */ 1206 spin_lock(&pd->lock); 1207 first_node = pkt_rbtree_find(pd, pd->current_sector); 1208 if (!first_node) { 1209 n = rb_first(&pd->bio_queue); 1210 if (n) 1211 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1212 } 1213 node = first_node; 1214 while (node) { 1215 bio = node->bio; 1216 zone = get_zone(bio->bi_sector, pd); 1217 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1218 if (p->sector == zone) { 1219 bio = NULL; 1220 goto try_next_bio; 1221 } 1222 } 1223 break; 1224 try_next_bio: 1225 node = pkt_rbtree_next(node); 1226 if (!node) { 1227 n = rb_first(&pd->bio_queue); 1228 if (n) 1229 node = rb_entry(n, struct pkt_rb_node, rb_node); 1230 } 1231 if (node == first_node) 1232 node = NULL; 1233 } 1234 spin_unlock(&pd->lock); 1235 if (!bio) { 1236 pkt_dbg(2, pd, "no bio\n"); 1237 return 0; 1238 } 1239 1240 pkt = pkt_get_packet_data(pd, zone); 1241 1242 pd->current_sector = zone + pd->settings.size; 1243 pkt->sector = zone; 1244 BUG_ON(pkt->frames != pd->settings.size >> 2); 1245 pkt->write_size = 0; 1246 1247 /* 1248 * Scan work queue for bios in the same zone and link them 1249 * to this packet. 1250 */ 1251 spin_lock(&pd->lock); 1252 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone); 1253 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1254 bio = node->bio; 1255 pkt_dbg(2, pd, "found zone=%llx\n", 1256 (unsigned long long)get_zone(bio->bi_sector, pd)); 1257 if (get_zone(bio->bi_sector, pd) != zone) 1258 break; 1259 pkt_rbtree_erase(pd, node); 1260 spin_lock(&pkt->lock); 1261 bio_list_add(&pkt->orig_bios, bio); 1262 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 1263 spin_unlock(&pkt->lock); 1264 } 1265 /* check write congestion marks, and if bio_queue_size is 1266 below, wake up any waiters */ 1267 wakeup = (pd->write_congestion_on > 0 1268 && pd->bio_queue_size <= pd->write_congestion_off); 1269 spin_unlock(&pd->lock); 1270 if (wakeup) { 1271 clear_bdi_congested(&pd->disk->queue->backing_dev_info, 1272 BLK_RW_ASYNC); 1273 } 1274 1275 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1276 pkt_set_state(pkt, PACKET_WAITING_STATE); 1277 atomic_set(&pkt->run_sm, 1); 1278 1279 spin_lock(&pd->cdrw.active_list_lock); 1280 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1281 spin_unlock(&pd->cdrw.active_list_lock); 1282 1283 return 1; 1284 } 1285 1286 /* 1287 * Assemble a bio to write one packet and queue the bio for processing 1288 * by the underlying block device. 1289 */ 1290 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1291 { 1292 int f; 1293 struct bio_vec *bvec = pkt->w_bio->bi_io_vec; 1294 1295 bio_reset(pkt->w_bio); 1296 pkt->w_bio->bi_sector = pkt->sector; 1297 pkt->w_bio->bi_bdev = pd->bdev; 1298 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1299 pkt->w_bio->bi_private = pkt; 1300 1301 /* XXX: locking? */ 1302 for (f = 0; f < pkt->frames; f++) { 1303 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1304 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1305 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset)) 1306 BUG(); 1307 } 1308 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt); 1309 1310 /* 1311 * Fill-in bvec with data from orig_bios. 1312 */ 1313 spin_lock(&pkt->lock); 1314 bio_copy_data(pkt->w_bio, pkt->orig_bios.head); 1315 1316 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1317 spin_unlock(&pkt->lock); 1318 1319 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n", 1320 pkt->write_size, (unsigned long long)pkt->sector); 1321 1322 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) { 1323 pkt_make_local_copy(pkt, bvec); 1324 pkt->cache_valid = 1; 1325 } else { 1326 pkt->cache_valid = 0; 1327 } 1328 1329 /* Start the write request */ 1330 atomic_set(&pkt->io_wait, 1); 1331 pkt->w_bio->bi_rw = WRITE; 1332 pkt_queue_bio(pd, pkt->w_bio); 1333 } 1334 1335 static void pkt_finish_packet(struct packet_data *pkt, int uptodate) 1336 { 1337 struct bio *bio; 1338 1339 if (!uptodate) 1340 pkt->cache_valid = 0; 1341 1342 /* Finish all bios corresponding to this packet */ 1343 while ((bio = bio_list_pop(&pkt->orig_bios))) 1344 bio_endio(bio, uptodate ? 0 : -EIO); 1345 } 1346 1347 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1348 { 1349 int uptodate; 1350 1351 pkt_dbg(2, pd, "pkt %d\n", pkt->id); 1352 1353 for (;;) { 1354 switch (pkt->state) { 1355 case PACKET_WAITING_STATE: 1356 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1357 return; 1358 1359 pkt->sleep_time = 0; 1360 pkt_gather_data(pd, pkt); 1361 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1362 break; 1363 1364 case PACKET_READ_WAIT_STATE: 1365 if (atomic_read(&pkt->io_wait) > 0) 1366 return; 1367 1368 if (atomic_read(&pkt->io_errors) > 0) { 1369 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1370 } else { 1371 pkt_start_write(pd, pkt); 1372 } 1373 break; 1374 1375 case PACKET_WRITE_WAIT_STATE: 1376 if (atomic_read(&pkt->io_wait) > 0) 1377 return; 1378 1379 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) { 1380 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1381 } else { 1382 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1383 } 1384 break; 1385 1386 case PACKET_RECOVERY_STATE: 1387 if (pkt_start_recovery(pkt)) { 1388 pkt_start_write(pd, pkt); 1389 } else { 1390 pkt_dbg(2, pd, "No recovery possible\n"); 1391 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1392 } 1393 break; 1394 1395 case PACKET_FINISHED_STATE: 1396 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags); 1397 pkt_finish_packet(pkt, uptodate); 1398 return; 1399 1400 default: 1401 BUG(); 1402 break; 1403 } 1404 } 1405 } 1406 1407 static void pkt_handle_packets(struct pktcdvd_device *pd) 1408 { 1409 struct packet_data *pkt, *next; 1410 1411 /* 1412 * Run state machine for active packets 1413 */ 1414 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1415 if (atomic_read(&pkt->run_sm) > 0) { 1416 atomic_set(&pkt->run_sm, 0); 1417 pkt_run_state_machine(pd, pkt); 1418 } 1419 } 1420 1421 /* 1422 * Move no longer active packets to the free list 1423 */ 1424 spin_lock(&pd->cdrw.active_list_lock); 1425 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1426 if (pkt->state == PACKET_FINISHED_STATE) { 1427 list_del(&pkt->list); 1428 pkt_put_packet_data(pd, pkt); 1429 pkt_set_state(pkt, PACKET_IDLE_STATE); 1430 atomic_set(&pd->scan_queue, 1); 1431 } 1432 } 1433 spin_unlock(&pd->cdrw.active_list_lock); 1434 } 1435 1436 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1437 { 1438 struct packet_data *pkt; 1439 int i; 1440 1441 for (i = 0; i < PACKET_NUM_STATES; i++) 1442 states[i] = 0; 1443 1444 spin_lock(&pd->cdrw.active_list_lock); 1445 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1446 states[pkt->state]++; 1447 } 1448 spin_unlock(&pd->cdrw.active_list_lock); 1449 } 1450 1451 /* 1452 * kcdrwd is woken up when writes have been queued for one of our 1453 * registered devices 1454 */ 1455 static int kcdrwd(void *foobar) 1456 { 1457 struct pktcdvd_device *pd = foobar; 1458 struct packet_data *pkt; 1459 long min_sleep_time, residue; 1460 1461 set_user_nice(current, -20); 1462 set_freezable(); 1463 1464 for (;;) { 1465 DECLARE_WAITQUEUE(wait, current); 1466 1467 /* 1468 * Wait until there is something to do 1469 */ 1470 add_wait_queue(&pd->wqueue, &wait); 1471 for (;;) { 1472 set_current_state(TASK_INTERRUPTIBLE); 1473 1474 /* Check if we need to run pkt_handle_queue */ 1475 if (atomic_read(&pd->scan_queue) > 0) 1476 goto work_to_do; 1477 1478 /* Check if we need to run the state machine for some packet */ 1479 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1480 if (atomic_read(&pkt->run_sm) > 0) 1481 goto work_to_do; 1482 } 1483 1484 /* Check if we need to process the iosched queues */ 1485 if (atomic_read(&pd->iosched.attention) != 0) 1486 goto work_to_do; 1487 1488 /* Otherwise, go to sleep */ 1489 if (PACKET_DEBUG > 1) { 1490 int states[PACKET_NUM_STATES]; 1491 pkt_count_states(pd, states); 1492 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1493 states[0], states[1], states[2], 1494 states[3], states[4], states[5]); 1495 } 1496 1497 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1498 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1499 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1500 min_sleep_time = pkt->sleep_time; 1501 } 1502 1503 pkt_dbg(2, pd, "sleeping\n"); 1504 residue = schedule_timeout(min_sleep_time); 1505 pkt_dbg(2, pd, "wake up\n"); 1506 1507 /* make swsusp happy with our thread */ 1508 try_to_freeze(); 1509 1510 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1511 if (!pkt->sleep_time) 1512 continue; 1513 pkt->sleep_time -= min_sleep_time - residue; 1514 if (pkt->sleep_time <= 0) { 1515 pkt->sleep_time = 0; 1516 atomic_inc(&pkt->run_sm); 1517 } 1518 } 1519 1520 if (kthread_should_stop()) 1521 break; 1522 } 1523 work_to_do: 1524 set_current_state(TASK_RUNNING); 1525 remove_wait_queue(&pd->wqueue, &wait); 1526 1527 if (kthread_should_stop()) 1528 break; 1529 1530 /* 1531 * if pkt_handle_queue returns true, we can queue 1532 * another request. 1533 */ 1534 while (pkt_handle_queue(pd)) 1535 ; 1536 1537 /* 1538 * Handle packet state machine 1539 */ 1540 pkt_handle_packets(pd); 1541 1542 /* 1543 * Handle iosched queues 1544 */ 1545 pkt_iosched_process_queue(pd); 1546 } 1547 1548 return 0; 1549 } 1550 1551 static void pkt_print_settings(struct pktcdvd_device *pd) 1552 { 1553 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n", 1554 pd->settings.fp ? "Fixed" : "Variable", 1555 pd->settings.size >> 2, 1556 pd->settings.block_mode == 8 ? '1' : '2'); 1557 } 1558 1559 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1560 { 1561 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1562 1563 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1564 cgc->cmd[2] = page_code | (page_control << 6); 1565 cgc->cmd[7] = cgc->buflen >> 8; 1566 cgc->cmd[8] = cgc->buflen & 0xff; 1567 cgc->data_direction = CGC_DATA_READ; 1568 return pkt_generic_packet(pd, cgc); 1569 } 1570 1571 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1572 { 1573 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1574 memset(cgc->buffer, 0, 2); 1575 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1576 cgc->cmd[1] = 0x10; /* PF */ 1577 cgc->cmd[7] = cgc->buflen >> 8; 1578 cgc->cmd[8] = cgc->buflen & 0xff; 1579 cgc->data_direction = CGC_DATA_WRITE; 1580 return pkt_generic_packet(pd, cgc); 1581 } 1582 1583 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1584 { 1585 struct packet_command cgc; 1586 int ret; 1587 1588 /* set up command and get the disc info */ 1589 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1590 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1591 cgc.cmd[8] = cgc.buflen = 2; 1592 cgc.quiet = 1; 1593 1594 if ((ret = pkt_generic_packet(pd, &cgc))) 1595 return ret; 1596 1597 /* not all drives have the same disc_info length, so requeue 1598 * packet with the length the drive tells us it can supply 1599 */ 1600 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1601 sizeof(di->disc_information_length); 1602 1603 if (cgc.buflen > sizeof(disc_information)) 1604 cgc.buflen = sizeof(disc_information); 1605 1606 cgc.cmd[8] = cgc.buflen; 1607 return pkt_generic_packet(pd, &cgc); 1608 } 1609 1610 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1611 { 1612 struct packet_command cgc; 1613 int ret; 1614 1615 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1616 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1617 cgc.cmd[1] = type & 3; 1618 cgc.cmd[4] = (track & 0xff00) >> 8; 1619 cgc.cmd[5] = track & 0xff; 1620 cgc.cmd[8] = 8; 1621 cgc.quiet = 1; 1622 1623 if ((ret = pkt_generic_packet(pd, &cgc))) 1624 return ret; 1625 1626 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1627 sizeof(ti->track_information_length); 1628 1629 if (cgc.buflen > sizeof(track_information)) 1630 cgc.buflen = sizeof(track_information); 1631 1632 cgc.cmd[8] = cgc.buflen; 1633 return pkt_generic_packet(pd, &cgc); 1634 } 1635 1636 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd, 1637 long *last_written) 1638 { 1639 disc_information di; 1640 track_information ti; 1641 __u32 last_track; 1642 int ret = -1; 1643 1644 if ((ret = pkt_get_disc_info(pd, &di))) 1645 return ret; 1646 1647 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1648 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1649 return ret; 1650 1651 /* if this track is blank, try the previous. */ 1652 if (ti.blank) { 1653 last_track--; 1654 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1655 return ret; 1656 } 1657 1658 /* if last recorded field is valid, return it. */ 1659 if (ti.lra_v) { 1660 *last_written = be32_to_cpu(ti.last_rec_address); 1661 } else { 1662 /* make it up instead */ 1663 *last_written = be32_to_cpu(ti.track_start) + 1664 be32_to_cpu(ti.track_size); 1665 if (ti.free_blocks) 1666 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1667 } 1668 return 0; 1669 } 1670 1671 /* 1672 * write mode select package based on pd->settings 1673 */ 1674 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd) 1675 { 1676 struct packet_command cgc; 1677 struct request_sense sense; 1678 write_param_page *wp; 1679 char buffer[128]; 1680 int ret, size; 1681 1682 /* doesn't apply to DVD+RW or DVD-RAM */ 1683 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1684 return 0; 1685 1686 memset(buffer, 0, sizeof(buffer)); 1687 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1688 cgc.sense = &sense; 1689 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1690 pkt_dump_sense(pd, &cgc); 1691 return ret; 1692 } 1693 1694 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1695 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1696 if (size > sizeof(buffer)) 1697 size = sizeof(buffer); 1698 1699 /* 1700 * now get it all 1701 */ 1702 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1703 cgc.sense = &sense; 1704 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1705 pkt_dump_sense(pd, &cgc); 1706 return ret; 1707 } 1708 1709 /* 1710 * write page is offset header + block descriptor length 1711 */ 1712 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1713 1714 wp->fp = pd->settings.fp; 1715 wp->track_mode = pd->settings.track_mode; 1716 wp->write_type = pd->settings.write_type; 1717 wp->data_block_type = pd->settings.block_mode; 1718 1719 wp->multi_session = 0; 1720 1721 #ifdef PACKET_USE_LS 1722 wp->link_size = 7; 1723 wp->ls_v = 1; 1724 #endif 1725 1726 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1727 wp->session_format = 0; 1728 wp->subhdr2 = 0x20; 1729 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1730 wp->session_format = 0x20; 1731 wp->subhdr2 = 8; 1732 #if 0 1733 wp->mcn[0] = 0x80; 1734 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1735 #endif 1736 } else { 1737 /* 1738 * paranoia 1739 */ 1740 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type); 1741 return 1; 1742 } 1743 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1744 1745 cgc.buflen = cgc.cmd[8] = size; 1746 if ((ret = pkt_mode_select(pd, &cgc))) { 1747 pkt_dump_sense(pd, &cgc); 1748 return ret; 1749 } 1750 1751 pkt_print_settings(pd); 1752 return 0; 1753 } 1754 1755 /* 1756 * 1 -- we can write to this track, 0 -- we can't 1757 */ 1758 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1759 { 1760 switch (pd->mmc3_profile) { 1761 case 0x1a: /* DVD+RW */ 1762 case 0x12: /* DVD-RAM */ 1763 /* The track is always writable on DVD+RW/DVD-RAM */ 1764 return 1; 1765 default: 1766 break; 1767 } 1768 1769 if (!ti->packet || !ti->fp) 1770 return 0; 1771 1772 /* 1773 * "good" settings as per Mt Fuji. 1774 */ 1775 if (ti->rt == 0 && ti->blank == 0) 1776 return 1; 1777 1778 if (ti->rt == 0 && ti->blank == 1) 1779 return 1; 1780 1781 if (ti->rt == 1 && ti->blank == 0) 1782 return 1; 1783 1784 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1785 return 0; 1786 } 1787 1788 /* 1789 * 1 -- we can write to this disc, 0 -- we can't 1790 */ 1791 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1792 { 1793 switch (pd->mmc3_profile) { 1794 case 0x0a: /* CD-RW */ 1795 case 0xffff: /* MMC3 not supported */ 1796 break; 1797 case 0x1a: /* DVD+RW */ 1798 case 0x13: /* DVD-RW */ 1799 case 0x12: /* DVD-RAM */ 1800 return 1; 1801 default: 1802 pkt_dbg(2, pd, "Wrong disc profile (%x)\n", 1803 pd->mmc3_profile); 1804 return 0; 1805 } 1806 1807 /* 1808 * for disc type 0xff we should probably reserve a new track. 1809 * but i'm not sure, should we leave this to user apps? probably. 1810 */ 1811 if (di->disc_type == 0xff) { 1812 pkt_notice(pd, "unknown disc - no track?\n"); 1813 return 0; 1814 } 1815 1816 if (di->disc_type != 0x20 && di->disc_type != 0) { 1817 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type); 1818 return 0; 1819 } 1820 1821 if (di->erasable == 0) { 1822 pkt_notice(pd, "disc not erasable\n"); 1823 return 0; 1824 } 1825 1826 if (di->border_status == PACKET_SESSION_RESERVED) { 1827 pkt_err(pd, "can't write to last track (reserved)\n"); 1828 return 0; 1829 } 1830 1831 return 1; 1832 } 1833 1834 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd) 1835 { 1836 struct packet_command cgc; 1837 unsigned char buf[12]; 1838 disc_information di; 1839 track_information ti; 1840 int ret, track; 1841 1842 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1843 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1844 cgc.cmd[8] = 8; 1845 ret = pkt_generic_packet(pd, &cgc); 1846 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1847 1848 memset(&di, 0, sizeof(disc_information)); 1849 memset(&ti, 0, sizeof(track_information)); 1850 1851 if ((ret = pkt_get_disc_info(pd, &di))) { 1852 pkt_err(pd, "failed get_disc\n"); 1853 return ret; 1854 } 1855 1856 if (!pkt_writable_disc(pd, &di)) 1857 return -EROFS; 1858 1859 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 1860 1861 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 1862 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 1863 pkt_err(pd, "failed get_track\n"); 1864 return ret; 1865 } 1866 1867 if (!pkt_writable_track(pd, &ti)) { 1868 pkt_err(pd, "can't write to this track\n"); 1869 return -EROFS; 1870 } 1871 1872 /* 1873 * we keep packet size in 512 byte units, makes it easier to 1874 * deal with request calculations. 1875 */ 1876 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 1877 if (pd->settings.size == 0) { 1878 pkt_notice(pd, "detected zero packet size!\n"); 1879 return -ENXIO; 1880 } 1881 if (pd->settings.size > PACKET_MAX_SECTORS) { 1882 pkt_err(pd, "packet size is too big\n"); 1883 return -EROFS; 1884 } 1885 pd->settings.fp = ti.fp; 1886 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 1887 1888 if (ti.nwa_v) { 1889 pd->nwa = be32_to_cpu(ti.next_writable); 1890 set_bit(PACKET_NWA_VALID, &pd->flags); 1891 } 1892 1893 /* 1894 * in theory we could use lra on -RW media as well and just zero 1895 * blocks that haven't been written yet, but in practice that 1896 * is just a no-go. we'll use that for -R, naturally. 1897 */ 1898 if (ti.lra_v) { 1899 pd->lra = be32_to_cpu(ti.last_rec_address); 1900 set_bit(PACKET_LRA_VALID, &pd->flags); 1901 } else { 1902 pd->lra = 0xffffffff; 1903 set_bit(PACKET_LRA_VALID, &pd->flags); 1904 } 1905 1906 /* 1907 * fine for now 1908 */ 1909 pd->settings.link_loss = 7; 1910 pd->settings.write_type = 0; /* packet */ 1911 pd->settings.track_mode = ti.track_mode; 1912 1913 /* 1914 * mode1 or mode2 disc 1915 */ 1916 switch (ti.data_mode) { 1917 case PACKET_MODE1: 1918 pd->settings.block_mode = PACKET_BLOCK_MODE1; 1919 break; 1920 case PACKET_MODE2: 1921 pd->settings.block_mode = PACKET_BLOCK_MODE2; 1922 break; 1923 default: 1924 pkt_err(pd, "unknown data mode\n"); 1925 return -EROFS; 1926 } 1927 return 0; 1928 } 1929 1930 /* 1931 * enable/disable write caching on drive 1932 */ 1933 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd, 1934 int set) 1935 { 1936 struct packet_command cgc; 1937 struct request_sense sense; 1938 unsigned char buf[64]; 1939 int ret; 1940 1941 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1942 cgc.sense = &sense; 1943 cgc.buflen = pd->mode_offset + 12; 1944 1945 /* 1946 * caching mode page might not be there, so quiet this command 1947 */ 1948 cgc.quiet = 1; 1949 1950 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 1951 return ret; 1952 1953 buf[pd->mode_offset + 10] |= (!!set << 2); 1954 1955 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 1956 ret = pkt_mode_select(pd, &cgc); 1957 if (ret) { 1958 pkt_err(pd, "write caching control failed\n"); 1959 pkt_dump_sense(pd, &cgc); 1960 } else if (!ret && set) 1961 pkt_notice(pd, "enabled write caching\n"); 1962 return ret; 1963 } 1964 1965 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 1966 { 1967 struct packet_command cgc; 1968 1969 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 1970 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 1971 cgc.cmd[4] = lockflag ? 1 : 0; 1972 return pkt_generic_packet(pd, &cgc); 1973 } 1974 1975 /* 1976 * Returns drive maximum write speed 1977 */ 1978 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd, 1979 unsigned *write_speed) 1980 { 1981 struct packet_command cgc; 1982 struct request_sense sense; 1983 unsigned char buf[256+18]; 1984 unsigned char *cap_buf; 1985 int ret, offset; 1986 1987 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 1988 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 1989 cgc.sense = &sense; 1990 1991 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1992 if (ret) { 1993 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 1994 sizeof(struct mode_page_header); 1995 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1996 if (ret) { 1997 pkt_dump_sense(pd, &cgc); 1998 return ret; 1999 } 2000 } 2001 2002 offset = 20; /* Obsoleted field, used by older drives */ 2003 if (cap_buf[1] >= 28) 2004 offset = 28; /* Current write speed selected */ 2005 if (cap_buf[1] >= 30) { 2006 /* If the drive reports at least one "Logical Unit Write 2007 * Speed Performance Descriptor Block", use the information 2008 * in the first block. (contains the highest speed) 2009 */ 2010 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 2011 if (num_spdb > 0) 2012 offset = 34; 2013 } 2014 2015 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 2016 return 0; 2017 } 2018 2019 /* These tables from cdrecord - I don't have orange book */ 2020 /* standard speed CD-RW (1-4x) */ 2021 static char clv_to_speed[16] = { 2022 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2023 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2024 }; 2025 /* high speed CD-RW (-10x) */ 2026 static char hs_clv_to_speed[16] = { 2027 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2028 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2029 }; 2030 /* ultra high speed CD-RW */ 2031 static char us_clv_to_speed[16] = { 2032 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2033 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 2034 }; 2035 2036 /* 2037 * reads the maximum media speed from ATIP 2038 */ 2039 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd, 2040 unsigned *speed) 2041 { 2042 struct packet_command cgc; 2043 struct request_sense sense; 2044 unsigned char buf[64]; 2045 unsigned int size, st, sp; 2046 int ret; 2047 2048 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 2049 cgc.sense = &sense; 2050 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2051 cgc.cmd[1] = 2; 2052 cgc.cmd[2] = 4; /* READ ATIP */ 2053 cgc.cmd[8] = 2; 2054 ret = pkt_generic_packet(pd, &cgc); 2055 if (ret) { 2056 pkt_dump_sense(pd, &cgc); 2057 return ret; 2058 } 2059 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 2060 if (size > sizeof(buf)) 2061 size = sizeof(buf); 2062 2063 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2064 cgc.sense = &sense; 2065 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2066 cgc.cmd[1] = 2; 2067 cgc.cmd[2] = 4; 2068 cgc.cmd[8] = size; 2069 ret = pkt_generic_packet(pd, &cgc); 2070 if (ret) { 2071 pkt_dump_sense(pd, &cgc); 2072 return ret; 2073 } 2074 2075 if (!(buf[6] & 0x40)) { 2076 pkt_notice(pd, "disc type is not CD-RW\n"); 2077 return 1; 2078 } 2079 if (!(buf[6] & 0x4)) { 2080 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n"); 2081 return 1; 2082 } 2083 2084 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2085 2086 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2087 2088 /* Info from cdrecord */ 2089 switch (st) { 2090 case 0: /* standard speed */ 2091 *speed = clv_to_speed[sp]; 2092 break; 2093 case 1: /* high speed */ 2094 *speed = hs_clv_to_speed[sp]; 2095 break; 2096 case 2: /* ultra high speed */ 2097 *speed = us_clv_to_speed[sp]; 2098 break; 2099 default: 2100 pkt_notice(pd, "unknown disc sub-type %d\n", st); 2101 return 1; 2102 } 2103 if (*speed) { 2104 pkt_info(pd, "maximum media speed: %d\n", *speed); 2105 return 0; 2106 } else { 2107 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st); 2108 return 1; 2109 } 2110 } 2111 2112 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd) 2113 { 2114 struct packet_command cgc; 2115 struct request_sense sense; 2116 int ret; 2117 2118 pkt_dbg(2, pd, "Performing OPC\n"); 2119 2120 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2121 cgc.sense = &sense; 2122 cgc.timeout = 60*HZ; 2123 cgc.cmd[0] = GPCMD_SEND_OPC; 2124 cgc.cmd[1] = 1; 2125 if ((ret = pkt_generic_packet(pd, &cgc))) 2126 pkt_dump_sense(pd, &cgc); 2127 return ret; 2128 } 2129 2130 static int pkt_open_write(struct pktcdvd_device *pd) 2131 { 2132 int ret; 2133 unsigned int write_speed, media_write_speed, read_speed; 2134 2135 if ((ret = pkt_probe_settings(pd))) { 2136 pkt_dbg(2, pd, "failed probe\n"); 2137 return ret; 2138 } 2139 2140 if ((ret = pkt_set_write_settings(pd))) { 2141 pkt_dbg(1, pd, "failed saving write settings\n"); 2142 return -EIO; 2143 } 2144 2145 pkt_write_caching(pd, USE_WCACHING); 2146 2147 if ((ret = pkt_get_max_speed(pd, &write_speed))) 2148 write_speed = 16 * 177; 2149 switch (pd->mmc3_profile) { 2150 case 0x13: /* DVD-RW */ 2151 case 0x1a: /* DVD+RW */ 2152 case 0x12: /* DVD-RAM */ 2153 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed); 2154 break; 2155 default: 2156 if ((ret = pkt_media_speed(pd, &media_write_speed))) 2157 media_write_speed = 16; 2158 write_speed = min(write_speed, media_write_speed * 177); 2159 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176); 2160 break; 2161 } 2162 read_speed = write_speed; 2163 2164 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 2165 pkt_dbg(1, pd, "couldn't set write speed\n"); 2166 return -EIO; 2167 } 2168 pd->write_speed = write_speed; 2169 pd->read_speed = read_speed; 2170 2171 if ((ret = pkt_perform_opc(pd))) { 2172 pkt_dbg(1, pd, "Optimum Power Calibration failed\n"); 2173 } 2174 2175 return 0; 2176 } 2177 2178 /* 2179 * called at open time. 2180 */ 2181 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write) 2182 { 2183 int ret; 2184 long lba; 2185 struct request_queue *q; 2186 2187 /* 2188 * We need to re-open the cdrom device without O_NONBLOCK to be able 2189 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2190 * so bdget() can't fail. 2191 */ 2192 bdget(pd->bdev->bd_dev); 2193 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd))) 2194 goto out; 2195 2196 if ((ret = pkt_get_last_written(pd, &lba))) { 2197 pkt_err(pd, "pkt_get_last_written failed\n"); 2198 goto out_putdev; 2199 } 2200 2201 set_capacity(pd->disk, lba << 2); 2202 set_capacity(pd->bdev->bd_disk, lba << 2); 2203 bd_set_size(pd->bdev, (loff_t)lba << 11); 2204 2205 q = bdev_get_queue(pd->bdev); 2206 if (write) { 2207 if ((ret = pkt_open_write(pd))) 2208 goto out_putdev; 2209 /* 2210 * Some CDRW drives can not handle writes larger than one packet, 2211 * even if the size is a multiple of the packet size. 2212 */ 2213 spin_lock_irq(q->queue_lock); 2214 blk_queue_max_hw_sectors(q, pd->settings.size); 2215 spin_unlock_irq(q->queue_lock); 2216 set_bit(PACKET_WRITABLE, &pd->flags); 2217 } else { 2218 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2219 clear_bit(PACKET_WRITABLE, &pd->flags); 2220 } 2221 2222 if ((ret = pkt_set_segment_merging(pd, q))) 2223 goto out_putdev; 2224 2225 if (write) { 2226 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2227 pkt_err(pd, "not enough memory for buffers\n"); 2228 ret = -ENOMEM; 2229 goto out_putdev; 2230 } 2231 pkt_info(pd, "%lukB available on disc\n", lba << 1); 2232 } 2233 2234 return 0; 2235 2236 out_putdev: 2237 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL); 2238 out: 2239 return ret; 2240 } 2241 2242 /* 2243 * called when the device is closed. makes sure that the device flushes 2244 * the internal cache before we close. 2245 */ 2246 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2247 { 2248 if (flush && pkt_flush_cache(pd)) 2249 pkt_dbg(1, pd, "not flushing cache\n"); 2250 2251 pkt_lock_door(pd, 0); 2252 2253 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2254 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL); 2255 2256 pkt_shrink_pktlist(pd); 2257 } 2258 2259 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor) 2260 { 2261 if (dev_minor >= MAX_WRITERS) 2262 return NULL; 2263 return pkt_devs[dev_minor]; 2264 } 2265 2266 static int pkt_open(struct block_device *bdev, fmode_t mode) 2267 { 2268 struct pktcdvd_device *pd = NULL; 2269 int ret; 2270 2271 mutex_lock(&pktcdvd_mutex); 2272 mutex_lock(&ctl_mutex); 2273 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev)); 2274 if (!pd) { 2275 ret = -ENODEV; 2276 goto out; 2277 } 2278 BUG_ON(pd->refcnt < 0); 2279 2280 pd->refcnt++; 2281 if (pd->refcnt > 1) { 2282 if ((mode & FMODE_WRITE) && 2283 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2284 ret = -EBUSY; 2285 goto out_dec; 2286 } 2287 } else { 2288 ret = pkt_open_dev(pd, mode & FMODE_WRITE); 2289 if (ret) 2290 goto out_dec; 2291 /* 2292 * needed here as well, since ext2 (among others) may change 2293 * the blocksize at mount time 2294 */ 2295 set_blocksize(bdev, CD_FRAMESIZE); 2296 } 2297 2298 mutex_unlock(&ctl_mutex); 2299 mutex_unlock(&pktcdvd_mutex); 2300 return 0; 2301 2302 out_dec: 2303 pd->refcnt--; 2304 out: 2305 mutex_unlock(&ctl_mutex); 2306 mutex_unlock(&pktcdvd_mutex); 2307 return ret; 2308 } 2309 2310 static void pkt_close(struct gendisk *disk, fmode_t mode) 2311 { 2312 struct pktcdvd_device *pd = disk->private_data; 2313 2314 mutex_lock(&pktcdvd_mutex); 2315 mutex_lock(&ctl_mutex); 2316 pd->refcnt--; 2317 BUG_ON(pd->refcnt < 0); 2318 if (pd->refcnt == 0) { 2319 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2320 pkt_release_dev(pd, flush); 2321 } 2322 mutex_unlock(&ctl_mutex); 2323 mutex_unlock(&pktcdvd_mutex); 2324 } 2325 2326 2327 static void pkt_end_io_read_cloned(struct bio *bio, int err) 2328 { 2329 struct packet_stacked_data *psd = bio->bi_private; 2330 struct pktcdvd_device *pd = psd->pd; 2331 2332 bio_put(bio); 2333 bio_endio(psd->bio, err); 2334 mempool_free(psd, psd_pool); 2335 pkt_bio_finished(pd); 2336 } 2337 2338 static void pkt_make_request(struct request_queue *q, struct bio *bio) 2339 { 2340 struct pktcdvd_device *pd; 2341 char b[BDEVNAME_SIZE]; 2342 sector_t zone; 2343 struct packet_data *pkt; 2344 int was_empty, blocked_bio; 2345 struct pkt_rb_node *node; 2346 2347 pd = q->queuedata; 2348 if (!pd) { 2349 pr_err("%s incorrect request queue\n", 2350 bdevname(bio->bi_bdev, b)); 2351 goto end_io; 2352 } 2353 2354 /* 2355 * Clone READ bios so we can have our own bi_end_io callback. 2356 */ 2357 if (bio_data_dir(bio) == READ) { 2358 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); 2359 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2360 2361 psd->pd = pd; 2362 psd->bio = bio; 2363 cloned_bio->bi_bdev = pd->bdev; 2364 cloned_bio->bi_private = psd; 2365 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2366 pd->stats.secs_r += bio_sectors(bio); 2367 pkt_queue_bio(pd, cloned_bio); 2368 return; 2369 } 2370 2371 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2372 pkt_notice(pd, "WRITE for ro device (%llu)\n", 2373 (unsigned long long)bio->bi_sector); 2374 goto end_io; 2375 } 2376 2377 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) { 2378 pkt_err(pd, "wrong bio size\n"); 2379 goto end_io; 2380 } 2381 2382 blk_queue_bounce(q, &bio); 2383 2384 zone = get_zone(bio->bi_sector, pd); 2385 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n", 2386 (unsigned long long)bio->bi_sector, 2387 (unsigned long long)bio_end_sector(bio)); 2388 2389 /* Check if we have to split the bio */ 2390 { 2391 struct bio_pair *bp; 2392 sector_t last_zone; 2393 int first_sectors; 2394 2395 last_zone = get_zone(bio_end_sector(bio) - 1, pd); 2396 if (last_zone != zone) { 2397 BUG_ON(last_zone != zone + pd->settings.size); 2398 first_sectors = last_zone - bio->bi_sector; 2399 bp = bio_split(bio, first_sectors); 2400 BUG_ON(!bp); 2401 pkt_make_request(q, &bp->bio1); 2402 pkt_make_request(q, &bp->bio2); 2403 bio_pair_release(bp); 2404 return; 2405 } 2406 } 2407 2408 /* 2409 * If we find a matching packet in state WAITING or READ_WAIT, we can 2410 * just append this bio to that packet. 2411 */ 2412 spin_lock(&pd->cdrw.active_list_lock); 2413 blocked_bio = 0; 2414 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2415 if (pkt->sector == zone) { 2416 spin_lock(&pkt->lock); 2417 if ((pkt->state == PACKET_WAITING_STATE) || 2418 (pkt->state == PACKET_READ_WAIT_STATE)) { 2419 bio_list_add(&pkt->orig_bios, bio); 2420 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 2421 if ((pkt->write_size >= pkt->frames) && 2422 (pkt->state == PACKET_WAITING_STATE)) { 2423 atomic_inc(&pkt->run_sm); 2424 wake_up(&pd->wqueue); 2425 } 2426 spin_unlock(&pkt->lock); 2427 spin_unlock(&pd->cdrw.active_list_lock); 2428 return; 2429 } else { 2430 blocked_bio = 1; 2431 } 2432 spin_unlock(&pkt->lock); 2433 } 2434 } 2435 spin_unlock(&pd->cdrw.active_list_lock); 2436 2437 /* 2438 * Test if there is enough room left in the bio work queue 2439 * (queue size >= congestion on mark). 2440 * If not, wait till the work queue size is below the congestion off mark. 2441 */ 2442 spin_lock(&pd->lock); 2443 if (pd->write_congestion_on > 0 2444 && pd->bio_queue_size >= pd->write_congestion_on) { 2445 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC); 2446 do { 2447 spin_unlock(&pd->lock); 2448 congestion_wait(BLK_RW_ASYNC, HZ); 2449 spin_lock(&pd->lock); 2450 } while(pd->bio_queue_size > pd->write_congestion_off); 2451 } 2452 spin_unlock(&pd->lock); 2453 2454 /* 2455 * No matching packet found. Store the bio in the work queue. 2456 */ 2457 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2458 node->bio = bio; 2459 spin_lock(&pd->lock); 2460 BUG_ON(pd->bio_queue_size < 0); 2461 was_empty = (pd->bio_queue_size == 0); 2462 pkt_rbtree_insert(pd, node); 2463 spin_unlock(&pd->lock); 2464 2465 /* 2466 * Wake up the worker thread. 2467 */ 2468 atomic_set(&pd->scan_queue, 1); 2469 if (was_empty) { 2470 /* This wake_up is required for correct operation */ 2471 wake_up(&pd->wqueue); 2472 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2473 /* 2474 * This wake up is not required for correct operation, 2475 * but improves performance in some cases. 2476 */ 2477 wake_up(&pd->wqueue); 2478 } 2479 return; 2480 end_io: 2481 bio_io_error(bio); 2482 } 2483 2484 2485 2486 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 2487 struct bio_vec *bvec) 2488 { 2489 struct pktcdvd_device *pd = q->queuedata; 2490 sector_t zone = get_zone(bmd->bi_sector, pd); 2491 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size; 2492 int remaining = (pd->settings.size << 9) - used; 2493 int remaining2; 2494 2495 /* 2496 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet 2497 * boundary, pkt_make_request() will split the bio. 2498 */ 2499 remaining2 = PAGE_SIZE - bmd->bi_size; 2500 remaining = max(remaining, remaining2); 2501 2502 BUG_ON(remaining < 0); 2503 return remaining; 2504 } 2505 2506 static void pkt_init_queue(struct pktcdvd_device *pd) 2507 { 2508 struct request_queue *q = pd->disk->queue; 2509 2510 blk_queue_make_request(q, pkt_make_request); 2511 blk_queue_logical_block_size(q, CD_FRAMESIZE); 2512 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS); 2513 blk_queue_merge_bvec(q, pkt_merge_bvec); 2514 q->queuedata = pd; 2515 } 2516 2517 static int pkt_seq_show(struct seq_file *m, void *p) 2518 { 2519 struct pktcdvd_device *pd = m->private; 2520 char *msg; 2521 char bdev_buf[BDEVNAME_SIZE]; 2522 int states[PACKET_NUM_STATES]; 2523 2524 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2525 bdevname(pd->bdev, bdev_buf)); 2526 2527 seq_printf(m, "\nSettings:\n"); 2528 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2529 2530 if (pd->settings.write_type == 0) 2531 msg = "Packet"; 2532 else 2533 msg = "Unknown"; 2534 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2535 2536 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2537 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2538 2539 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2540 2541 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2542 msg = "Mode 1"; 2543 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2544 msg = "Mode 2"; 2545 else 2546 msg = "Unknown"; 2547 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2548 2549 seq_printf(m, "\nStatistics:\n"); 2550 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2551 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2552 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2553 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2554 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2555 2556 seq_printf(m, "\nMisc:\n"); 2557 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2558 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2559 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2560 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2561 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2562 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2563 2564 seq_printf(m, "\nQueue state:\n"); 2565 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2566 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2567 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2568 2569 pkt_count_states(pd, states); 2570 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2571 states[0], states[1], states[2], states[3], states[4], states[5]); 2572 2573 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 2574 pd->write_congestion_off, 2575 pd->write_congestion_on); 2576 return 0; 2577 } 2578 2579 static int pkt_seq_open(struct inode *inode, struct file *file) 2580 { 2581 return single_open(file, pkt_seq_show, PDE_DATA(inode)); 2582 } 2583 2584 static const struct file_operations pkt_proc_fops = { 2585 .open = pkt_seq_open, 2586 .read = seq_read, 2587 .llseek = seq_lseek, 2588 .release = single_release 2589 }; 2590 2591 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2592 { 2593 int i; 2594 int ret = 0; 2595 char b[BDEVNAME_SIZE]; 2596 struct block_device *bdev; 2597 2598 if (pd->pkt_dev == dev) { 2599 pkt_err(pd, "recursive setup not allowed\n"); 2600 return -EBUSY; 2601 } 2602 for (i = 0; i < MAX_WRITERS; i++) { 2603 struct pktcdvd_device *pd2 = pkt_devs[i]; 2604 if (!pd2) 2605 continue; 2606 if (pd2->bdev->bd_dev == dev) { 2607 pkt_err(pd, "%s already setup\n", 2608 bdevname(pd2->bdev, b)); 2609 return -EBUSY; 2610 } 2611 if (pd2->pkt_dev == dev) { 2612 pkt_err(pd, "can't chain pktcdvd devices\n"); 2613 return -EBUSY; 2614 } 2615 } 2616 2617 bdev = bdget(dev); 2618 if (!bdev) 2619 return -ENOMEM; 2620 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL); 2621 if (ret) 2622 return ret; 2623 2624 /* This is safe, since we have a reference from open(). */ 2625 __module_get(THIS_MODULE); 2626 2627 pd->bdev = bdev; 2628 set_blocksize(bdev, CD_FRAMESIZE); 2629 2630 pkt_init_queue(pd); 2631 2632 atomic_set(&pd->cdrw.pending_bios, 0); 2633 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2634 if (IS_ERR(pd->cdrw.thread)) { 2635 pkt_err(pd, "can't start kernel thread\n"); 2636 ret = -ENOMEM; 2637 goto out_mem; 2638 } 2639 2640 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd); 2641 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b)); 2642 return 0; 2643 2644 out_mem: 2645 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY); 2646 /* This is safe: open() is still holding a reference. */ 2647 module_put(THIS_MODULE); 2648 return ret; 2649 } 2650 2651 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) 2652 { 2653 struct pktcdvd_device *pd = bdev->bd_disk->private_data; 2654 int ret; 2655 2656 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n", 2657 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2658 2659 mutex_lock(&pktcdvd_mutex); 2660 switch (cmd) { 2661 case CDROMEJECT: 2662 /* 2663 * The door gets locked when the device is opened, so we 2664 * have to unlock it or else the eject command fails. 2665 */ 2666 if (pd->refcnt == 1) 2667 pkt_lock_door(pd, 0); 2668 /* fallthru */ 2669 /* 2670 * forward selected CDROM ioctls to CD-ROM, for UDF 2671 */ 2672 case CDROMMULTISESSION: 2673 case CDROMREADTOCENTRY: 2674 case CDROM_LAST_WRITTEN: 2675 case CDROM_SEND_PACKET: 2676 case SCSI_IOCTL_SEND_COMMAND: 2677 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg); 2678 break; 2679 2680 default: 2681 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd); 2682 ret = -ENOTTY; 2683 } 2684 mutex_unlock(&pktcdvd_mutex); 2685 2686 return ret; 2687 } 2688 2689 static unsigned int pkt_check_events(struct gendisk *disk, 2690 unsigned int clearing) 2691 { 2692 struct pktcdvd_device *pd = disk->private_data; 2693 struct gendisk *attached_disk; 2694 2695 if (!pd) 2696 return 0; 2697 if (!pd->bdev) 2698 return 0; 2699 attached_disk = pd->bdev->bd_disk; 2700 if (!attached_disk || !attached_disk->fops->check_events) 2701 return 0; 2702 return attached_disk->fops->check_events(attached_disk, clearing); 2703 } 2704 2705 static const struct block_device_operations pktcdvd_ops = { 2706 .owner = THIS_MODULE, 2707 .open = pkt_open, 2708 .release = pkt_close, 2709 .ioctl = pkt_ioctl, 2710 .check_events = pkt_check_events, 2711 }; 2712 2713 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode) 2714 { 2715 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name); 2716 } 2717 2718 /* 2719 * Set up mapping from pktcdvd device to CD-ROM device. 2720 */ 2721 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2722 { 2723 int idx; 2724 int ret = -ENOMEM; 2725 struct pktcdvd_device *pd; 2726 struct gendisk *disk; 2727 2728 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2729 2730 for (idx = 0; idx < MAX_WRITERS; idx++) 2731 if (!pkt_devs[idx]) 2732 break; 2733 if (idx == MAX_WRITERS) { 2734 pr_err("max %d writers supported\n", MAX_WRITERS); 2735 ret = -EBUSY; 2736 goto out_mutex; 2737 } 2738 2739 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2740 if (!pd) 2741 goto out_mutex; 2742 2743 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE, 2744 sizeof(struct pkt_rb_node)); 2745 if (!pd->rb_pool) 2746 goto out_mem; 2747 2748 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2749 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2750 spin_lock_init(&pd->cdrw.active_list_lock); 2751 2752 spin_lock_init(&pd->lock); 2753 spin_lock_init(&pd->iosched.lock); 2754 bio_list_init(&pd->iosched.read_queue); 2755 bio_list_init(&pd->iosched.write_queue); 2756 sprintf(pd->name, DRIVER_NAME"%d", idx); 2757 init_waitqueue_head(&pd->wqueue); 2758 pd->bio_queue = RB_ROOT; 2759 2760 pd->write_congestion_on = write_congestion_on; 2761 pd->write_congestion_off = write_congestion_off; 2762 2763 disk = alloc_disk(1); 2764 if (!disk) 2765 goto out_mem; 2766 pd->disk = disk; 2767 disk->major = pktdev_major; 2768 disk->first_minor = idx; 2769 disk->fops = &pktcdvd_ops; 2770 disk->flags = GENHD_FL_REMOVABLE; 2771 strcpy(disk->disk_name, pd->name); 2772 disk->devnode = pktcdvd_devnode; 2773 disk->private_data = pd; 2774 disk->queue = blk_alloc_queue(GFP_KERNEL); 2775 if (!disk->queue) 2776 goto out_mem2; 2777 2778 pd->pkt_dev = MKDEV(pktdev_major, idx); 2779 ret = pkt_new_dev(pd, dev); 2780 if (ret) 2781 goto out_new_dev; 2782 2783 /* inherit events of the host device */ 2784 disk->events = pd->bdev->bd_disk->events; 2785 disk->async_events = pd->bdev->bd_disk->async_events; 2786 2787 add_disk(disk); 2788 2789 pkt_sysfs_dev_new(pd); 2790 pkt_debugfs_dev_new(pd); 2791 2792 pkt_devs[idx] = pd; 2793 if (pkt_dev) 2794 *pkt_dev = pd->pkt_dev; 2795 2796 mutex_unlock(&ctl_mutex); 2797 return 0; 2798 2799 out_new_dev: 2800 blk_cleanup_queue(disk->queue); 2801 out_mem2: 2802 put_disk(disk); 2803 out_mem: 2804 if (pd->rb_pool) 2805 mempool_destroy(pd->rb_pool); 2806 kfree(pd); 2807 out_mutex: 2808 mutex_unlock(&ctl_mutex); 2809 pr_err("setup of pktcdvd device failed\n"); 2810 return ret; 2811 } 2812 2813 /* 2814 * Tear down mapping from pktcdvd device to CD-ROM device. 2815 */ 2816 static int pkt_remove_dev(dev_t pkt_dev) 2817 { 2818 struct pktcdvd_device *pd; 2819 int idx; 2820 int ret = 0; 2821 2822 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2823 2824 for (idx = 0; idx < MAX_WRITERS; idx++) { 2825 pd = pkt_devs[idx]; 2826 if (pd && (pd->pkt_dev == pkt_dev)) 2827 break; 2828 } 2829 if (idx == MAX_WRITERS) { 2830 pr_debug("dev not setup\n"); 2831 ret = -ENXIO; 2832 goto out; 2833 } 2834 2835 if (pd->refcnt > 0) { 2836 ret = -EBUSY; 2837 goto out; 2838 } 2839 if (!IS_ERR(pd->cdrw.thread)) 2840 kthread_stop(pd->cdrw.thread); 2841 2842 pkt_devs[idx] = NULL; 2843 2844 pkt_debugfs_dev_remove(pd); 2845 pkt_sysfs_dev_remove(pd); 2846 2847 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY); 2848 2849 remove_proc_entry(pd->name, pkt_proc); 2850 pkt_dbg(1, pd, "writer unmapped\n"); 2851 2852 del_gendisk(pd->disk); 2853 blk_cleanup_queue(pd->disk->queue); 2854 put_disk(pd->disk); 2855 2856 mempool_destroy(pd->rb_pool); 2857 kfree(pd); 2858 2859 /* This is safe: open() is still holding a reference. */ 2860 module_put(THIS_MODULE); 2861 2862 out: 2863 mutex_unlock(&ctl_mutex); 2864 return ret; 2865 } 2866 2867 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 2868 { 2869 struct pktcdvd_device *pd; 2870 2871 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2872 2873 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 2874 if (pd) { 2875 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 2876 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2877 } else { 2878 ctrl_cmd->dev = 0; 2879 ctrl_cmd->pkt_dev = 0; 2880 } 2881 ctrl_cmd->num_devices = MAX_WRITERS; 2882 2883 mutex_unlock(&ctl_mutex); 2884 } 2885 2886 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2887 { 2888 void __user *argp = (void __user *)arg; 2889 struct pkt_ctrl_command ctrl_cmd; 2890 int ret = 0; 2891 dev_t pkt_dev = 0; 2892 2893 if (cmd != PACKET_CTRL_CMD) 2894 return -ENOTTY; 2895 2896 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 2897 return -EFAULT; 2898 2899 switch (ctrl_cmd.command) { 2900 case PKT_CTRL_CMD_SETUP: 2901 if (!capable(CAP_SYS_ADMIN)) 2902 return -EPERM; 2903 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 2904 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 2905 break; 2906 case PKT_CTRL_CMD_TEARDOWN: 2907 if (!capable(CAP_SYS_ADMIN)) 2908 return -EPERM; 2909 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 2910 break; 2911 case PKT_CTRL_CMD_STATUS: 2912 pkt_get_status(&ctrl_cmd); 2913 break; 2914 default: 2915 return -ENOTTY; 2916 } 2917 2918 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 2919 return -EFAULT; 2920 return ret; 2921 } 2922 2923 #ifdef CONFIG_COMPAT 2924 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2925 { 2926 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); 2927 } 2928 #endif 2929 2930 static const struct file_operations pkt_ctl_fops = { 2931 .open = nonseekable_open, 2932 .unlocked_ioctl = pkt_ctl_ioctl, 2933 #ifdef CONFIG_COMPAT 2934 .compat_ioctl = pkt_ctl_compat_ioctl, 2935 #endif 2936 .owner = THIS_MODULE, 2937 .llseek = no_llseek, 2938 }; 2939 2940 static struct miscdevice pkt_misc = { 2941 .minor = MISC_DYNAMIC_MINOR, 2942 .name = DRIVER_NAME, 2943 .nodename = "pktcdvd/control", 2944 .fops = &pkt_ctl_fops 2945 }; 2946 2947 static int __init pkt_init(void) 2948 { 2949 int ret; 2950 2951 mutex_init(&ctl_mutex); 2952 2953 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE, 2954 sizeof(struct packet_stacked_data)); 2955 if (!psd_pool) 2956 return -ENOMEM; 2957 2958 ret = register_blkdev(pktdev_major, DRIVER_NAME); 2959 if (ret < 0) { 2960 pr_err("unable to register block device\n"); 2961 goto out2; 2962 } 2963 if (!pktdev_major) 2964 pktdev_major = ret; 2965 2966 ret = pkt_sysfs_init(); 2967 if (ret) 2968 goto out; 2969 2970 pkt_debugfs_init(); 2971 2972 ret = misc_register(&pkt_misc); 2973 if (ret) { 2974 pr_err("unable to register misc device\n"); 2975 goto out_misc; 2976 } 2977 2978 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL); 2979 2980 return 0; 2981 2982 out_misc: 2983 pkt_debugfs_cleanup(); 2984 pkt_sysfs_cleanup(); 2985 out: 2986 unregister_blkdev(pktdev_major, DRIVER_NAME); 2987 out2: 2988 mempool_destroy(psd_pool); 2989 return ret; 2990 } 2991 2992 static void __exit pkt_exit(void) 2993 { 2994 remove_proc_entry("driver/"DRIVER_NAME, NULL); 2995 misc_deregister(&pkt_misc); 2996 2997 pkt_debugfs_cleanup(); 2998 pkt_sysfs_cleanup(); 2999 3000 unregister_blkdev(pktdev_major, DRIVER_NAME); 3001 mempool_destroy(psd_pool); 3002 } 3003 3004 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 3005 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 3006 MODULE_LICENSE("GPL"); 3007 3008 module_init(pkt_init); 3009 module_exit(pkt_exit); 3010