xref: /openbmc/linux/drivers/block/pktcdvd.c (revision efe4a1ac)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom make_request_fn function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <linux/backing-dev.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_ioctl.h>
67 #include <scsi/scsi.h>
68 #include <linux/debugfs.h>
69 #include <linux/device.h>
70 
71 #include <linux/uaccess.h>
72 
73 #define DRIVER_NAME	"pktcdvd"
74 
75 #define pkt_err(pd, fmt, ...)						\
76 	pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
77 #define pkt_notice(pd, fmt, ...)					\
78 	pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
79 #define pkt_info(pd, fmt, ...)						\
80 	pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
81 
82 #define pkt_dbg(level, pd, fmt, ...)					\
83 do {									\
84 	if (level == 2 && PACKET_DEBUG >= 2)				\
85 		pr_notice("%s: %s():" fmt,				\
86 			  pd->name, __func__, ##__VA_ARGS__);		\
87 	else if (level == 1 && PACKET_DEBUG >= 1)			\
88 		pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__);		\
89 } while (0)
90 
91 #define MAX_SPEED 0xffff
92 
93 static DEFINE_MUTEX(pktcdvd_mutex);
94 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
95 static struct proc_dir_entry *pkt_proc;
96 static int pktdev_major;
97 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
98 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
99 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
100 static mempool_t *psd_pool;
101 
102 static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
103 static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
104 
105 /* forward declaration */
106 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
107 static int pkt_remove_dev(dev_t pkt_dev);
108 static int pkt_seq_show(struct seq_file *m, void *p);
109 
110 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
111 {
112 	return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
113 }
114 
115 /*
116  * create and register a pktcdvd kernel object.
117  */
118 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
119 					const char* name,
120 					struct kobject* parent,
121 					struct kobj_type* ktype)
122 {
123 	struct pktcdvd_kobj *p;
124 	int error;
125 
126 	p = kzalloc(sizeof(*p), GFP_KERNEL);
127 	if (!p)
128 		return NULL;
129 	p->pd = pd;
130 	error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
131 	if (error) {
132 		kobject_put(&p->kobj);
133 		return NULL;
134 	}
135 	kobject_uevent(&p->kobj, KOBJ_ADD);
136 	return p;
137 }
138 /*
139  * remove a pktcdvd kernel object.
140  */
141 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
142 {
143 	if (p)
144 		kobject_put(&p->kobj);
145 }
146 /*
147  * default release function for pktcdvd kernel objects.
148  */
149 static void pkt_kobj_release(struct kobject *kobj)
150 {
151 	kfree(to_pktcdvdkobj(kobj));
152 }
153 
154 
155 /**********************************************************
156  *
157  * sysfs interface for pktcdvd
158  * by (C) 2006  Thomas Maier <balagi@justmail.de>
159  *
160  **********************************************************/
161 
162 #define DEF_ATTR(_obj,_name,_mode) \
163 	static struct attribute _obj = { .name = _name, .mode = _mode }
164 
165 /**********************************************************
166   /sys/class/pktcdvd/pktcdvd[0-7]/
167                      stat/reset
168                      stat/packets_started
169                      stat/packets_finished
170                      stat/kb_written
171                      stat/kb_read
172                      stat/kb_read_gather
173                      write_queue/size
174                      write_queue/congestion_off
175                      write_queue/congestion_on
176  **********************************************************/
177 
178 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
179 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
180 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
181 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
182 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
183 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
184 
185 static struct attribute *kobj_pkt_attrs_stat[] = {
186 	&kobj_pkt_attr_st1,
187 	&kobj_pkt_attr_st2,
188 	&kobj_pkt_attr_st3,
189 	&kobj_pkt_attr_st4,
190 	&kobj_pkt_attr_st5,
191 	&kobj_pkt_attr_st6,
192 	NULL
193 };
194 
195 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
196 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
197 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
198 
199 static struct attribute *kobj_pkt_attrs_wqueue[] = {
200 	&kobj_pkt_attr_wq1,
201 	&kobj_pkt_attr_wq2,
202 	&kobj_pkt_attr_wq3,
203 	NULL
204 };
205 
206 static ssize_t kobj_pkt_show(struct kobject *kobj,
207 			struct attribute *attr, char *data)
208 {
209 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
210 	int n = 0;
211 	int v;
212 	if (strcmp(attr->name, "packets_started") == 0) {
213 		n = sprintf(data, "%lu\n", pd->stats.pkt_started);
214 
215 	} else if (strcmp(attr->name, "packets_finished") == 0) {
216 		n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
217 
218 	} else if (strcmp(attr->name, "kb_written") == 0) {
219 		n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
220 
221 	} else if (strcmp(attr->name, "kb_read") == 0) {
222 		n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
223 
224 	} else if (strcmp(attr->name, "kb_read_gather") == 0) {
225 		n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
226 
227 	} else if (strcmp(attr->name, "size") == 0) {
228 		spin_lock(&pd->lock);
229 		v = pd->bio_queue_size;
230 		spin_unlock(&pd->lock);
231 		n = sprintf(data, "%d\n", v);
232 
233 	} else if (strcmp(attr->name, "congestion_off") == 0) {
234 		spin_lock(&pd->lock);
235 		v = pd->write_congestion_off;
236 		spin_unlock(&pd->lock);
237 		n = sprintf(data, "%d\n", v);
238 
239 	} else if (strcmp(attr->name, "congestion_on") == 0) {
240 		spin_lock(&pd->lock);
241 		v = pd->write_congestion_on;
242 		spin_unlock(&pd->lock);
243 		n = sprintf(data, "%d\n", v);
244 	}
245 	return n;
246 }
247 
248 static void init_write_congestion_marks(int* lo, int* hi)
249 {
250 	if (*hi > 0) {
251 		*hi = max(*hi, 500);
252 		*hi = min(*hi, 1000000);
253 		if (*lo <= 0)
254 			*lo = *hi - 100;
255 		else {
256 			*lo = min(*lo, *hi - 100);
257 			*lo = max(*lo, 100);
258 		}
259 	} else {
260 		*hi = -1;
261 		*lo = -1;
262 	}
263 }
264 
265 static ssize_t kobj_pkt_store(struct kobject *kobj,
266 			struct attribute *attr,
267 			const char *data, size_t len)
268 {
269 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
270 	int val;
271 
272 	if (strcmp(attr->name, "reset") == 0 && len > 0) {
273 		pd->stats.pkt_started = 0;
274 		pd->stats.pkt_ended = 0;
275 		pd->stats.secs_w = 0;
276 		pd->stats.secs_rg = 0;
277 		pd->stats.secs_r = 0;
278 
279 	} else if (strcmp(attr->name, "congestion_off") == 0
280 		   && sscanf(data, "%d", &val) == 1) {
281 		spin_lock(&pd->lock);
282 		pd->write_congestion_off = val;
283 		init_write_congestion_marks(&pd->write_congestion_off,
284 					&pd->write_congestion_on);
285 		spin_unlock(&pd->lock);
286 
287 	} else if (strcmp(attr->name, "congestion_on") == 0
288 		   && sscanf(data, "%d", &val) == 1) {
289 		spin_lock(&pd->lock);
290 		pd->write_congestion_on = val;
291 		init_write_congestion_marks(&pd->write_congestion_off,
292 					&pd->write_congestion_on);
293 		spin_unlock(&pd->lock);
294 	}
295 	return len;
296 }
297 
298 static const struct sysfs_ops kobj_pkt_ops = {
299 	.show = kobj_pkt_show,
300 	.store = kobj_pkt_store
301 };
302 static struct kobj_type kobj_pkt_type_stat = {
303 	.release = pkt_kobj_release,
304 	.sysfs_ops = &kobj_pkt_ops,
305 	.default_attrs = kobj_pkt_attrs_stat
306 };
307 static struct kobj_type kobj_pkt_type_wqueue = {
308 	.release = pkt_kobj_release,
309 	.sysfs_ops = &kobj_pkt_ops,
310 	.default_attrs = kobj_pkt_attrs_wqueue
311 };
312 
313 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
314 {
315 	if (class_pktcdvd) {
316 		pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
317 					"%s", pd->name);
318 		if (IS_ERR(pd->dev))
319 			pd->dev = NULL;
320 	}
321 	if (pd->dev) {
322 		pd->kobj_stat = pkt_kobj_create(pd, "stat",
323 					&pd->dev->kobj,
324 					&kobj_pkt_type_stat);
325 		pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
326 					&pd->dev->kobj,
327 					&kobj_pkt_type_wqueue);
328 	}
329 }
330 
331 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
332 {
333 	pkt_kobj_remove(pd->kobj_stat);
334 	pkt_kobj_remove(pd->kobj_wqueue);
335 	if (class_pktcdvd)
336 		device_unregister(pd->dev);
337 }
338 
339 
340 /********************************************************************
341   /sys/class/pktcdvd/
342                      add            map block device
343                      remove         unmap packet dev
344                      device_map     show mappings
345  *******************************************************************/
346 
347 static void class_pktcdvd_release(struct class *cls)
348 {
349 	kfree(cls);
350 }
351 static ssize_t class_pktcdvd_show_map(struct class *c,
352 					struct class_attribute *attr,
353 					char *data)
354 {
355 	int n = 0;
356 	int idx;
357 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
358 	for (idx = 0; idx < MAX_WRITERS; idx++) {
359 		struct pktcdvd_device *pd = pkt_devs[idx];
360 		if (!pd)
361 			continue;
362 		n += sprintf(data+n, "%s %u:%u %u:%u\n",
363 			pd->name,
364 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
365 			MAJOR(pd->bdev->bd_dev),
366 			MINOR(pd->bdev->bd_dev));
367 	}
368 	mutex_unlock(&ctl_mutex);
369 	return n;
370 }
371 
372 static ssize_t class_pktcdvd_store_add(struct class *c,
373 					struct class_attribute *attr,
374 					const char *buf,
375 					size_t count)
376 {
377 	unsigned int major, minor;
378 
379 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
380 		/* pkt_setup_dev() expects caller to hold reference to self */
381 		if (!try_module_get(THIS_MODULE))
382 			return -ENODEV;
383 
384 		pkt_setup_dev(MKDEV(major, minor), NULL);
385 
386 		module_put(THIS_MODULE);
387 
388 		return count;
389 	}
390 
391 	return -EINVAL;
392 }
393 
394 static ssize_t class_pktcdvd_store_remove(struct class *c,
395 					  struct class_attribute *attr,
396 					  const char *buf,
397 					size_t count)
398 {
399 	unsigned int major, minor;
400 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
401 		pkt_remove_dev(MKDEV(major, minor));
402 		return count;
403 	}
404 	return -EINVAL;
405 }
406 
407 static struct class_attribute class_pktcdvd_attrs[] = {
408  __ATTR(add,            0200, NULL, class_pktcdvd_store_add),
409  __ATTR(remove,         0200, NULL, class_pktcdvd_store_remove),
410  __ATTR(device_map,     0444, class_pktcdvd_show_map, NULL),
411  __ATTR_NULL
412 };
413 
414 
415 static int pkt_sysfs_init(void)
416 {
417 	int ret = 0;
418 
419 	/*
420 	 * create control files in sysfs
421 	 * /sys/class/pktcdvd/...
422 	 */
423 	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
424 	if (!class_pktcdvd)
425 		return -ENOMEM;
426 	class_pktcdvd->name = DRIVER_NAME;
427 	class_pktcdvd->owner = THIS_MODULE;
428 	class_pktcdvd->class_release = class_pktcdvd_release;
429 	class_pktcdvd->class_attrs = class_pktcdvd_attrs;
430 	ret = class_register(class_pktcdvd);
431 	if (ret) {
432 		kfree(class_pktcdvd);
433 		class_pktcdvd = NULL;
434 		pr_err("failed to create class pktcdvd\n");
435 		return ret;
436 	}
437 	return 0;
438 }
439 
440 static void pkt_sysfs_cleanup(void)
441 {
442 	if (class_pktcdvd)
443 		class_destroy(class_pktcdvd);
444 	class_pktcdvd = NULL;
445 }
446 
447 /********************************************************************
448   entries in debugfs
449 
450   /sys/kernel/debug/pktcdvd[0-7]/
451 			info
452 
453  *******************************************************************/
454 
455 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
456 {
457 	return pkt_seq_show(m, p);
458 }
459 
460 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
461 {
462 	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
463 }
464 
465 static const struct file_operations debug_fops = {
466 	.open		= pkt_debugfs_fops_open,
467 	.read		= seq_read,
468 	.llseek		= seq_lseek,
469 	.release	= single_release,
470 	.owner		= THIS_MODULE,
471 };
472 
473 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
474 {
475 	if (!pkt_debugfs_root)
476 		return;
477 	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
478 	if (!pd->dfs_d_root)
479 		return;
480 
481 	pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
482 				pd->dfs_d_root, pd, &debug_fops);
483 }
484 
485 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
486 {
487 	if (!pkt_debugfs_root)
488 		return;
489 	debugfs_remove(pd->dfs_f_info);
490 	debugfs_remove(pd->dfs_d_root);
491 	pd->dfs_f_info = NULL;
492 	pd->dfs_d_root = NULL;
493 }
494 
495 static void pkt_debugfs_init(void)
496 {
497 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498 }
499 
500 static void pkt_debugfs_cleanup(void)
501 {
502 	debugfs_remove(pkt_debugfs_root);
503 	pkt_debugfs_root = NULL;
504 }
505 
506 /* ----------------------------------------------------------*/
507 
508 
509 static void pkt_bio_finished(struct pktcdvd_device *pd)
510 {
511 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
512 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
513 		pkt_dbg(2, pd, "queue empty\n");
514 		atomic_set(&pd->iosched.attention, 1);
515 		wake_up(&pd->wqueue);
516 	}
517 }
518 
519 /*
520  * Allocate a packet_data struct
521  */
522 static struct packet_data *pkt_alloc_packet_data(int frames)
523 {
524 	int i;
525 	struct packet_data *pkt;
526 
527 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
528 	if (!pkt)
529 		goto no_pkt;
530 
531 	pkt->frames = frames;
532 	pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
533 	if (!pkt->w_bio)
534 		goto no_bio;
535 
536 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
537 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
538 		if (!pkt->pages[i])
539 			goto no_page;
540 	}
541 
542 	spin_lock_init(&pkt->lock);
543 	bio_list_init(&pkt->orig_bios);
544 
545 	for (i = 0; i < frames; i++) {
546 		struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
547 		if (!bio)
548 			goto no_rd_bio;
549 
550 		pkt->r_bios[i] = bio;
551 	}
552 
553 	return pkt;
554 
555 no_rd_bio:
556 	for (i = 0; i < frames; i++) {
557 		struct bio *bio = pkt->r_bios[i];
558 		if (bio)
559 			bio_put(bio);
560 	}
561 
562 no_page:
563 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
564 		if (pkt->pages[i])
565 			__free_page(pkt->pages[i]);
566 	bio_put(pkt->w_bio);
567 no_bio:
568 	kfree(pkt);
569 no_pkt:
570 	return NULL;
571 }
572 
573 /*
574  * Free a packet_data struct
575  */
576 static void pkt_free_packet_data(struct packet_data *pkt)
577 {
578 	int i;
579 
580 	for (i = 0; i < pkt->frames; i++) {
581 		struct bio *bio = pkt->r_bios[i];
582 		if (bio)
583 			bio_put(bio);
584 	}
585 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
586 		__free_page(pkt->pages[i]);
587 	bio_put(pkt->w_bio);
588 	kfree(pkt);
589 }
590 
591 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
592 {
593 	struct packet_data *pkt, *next;
594 
595 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
596 
597 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
598 		pkt_free_packet_data(pkt);
599 	}
600 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
601 }
602 
603 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
604 {
605 	struct packet_data *pkt;
606 
607 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
608 
609 	while (nr_packets > 0) {
610 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
611 		if (!pkt) {
612 			pkt_shrink_pktlist(pd);
613 			return 0;
614 		}
615 		pkt->id = nr_packets;
616 		pkt->pd = pd;
617 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
618 		nr_packets--;
619 	}
620 	return 1;
621 }
622 
623 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
624 {
625 	struct rb_node *n = rb_next(&node->rb_node);
626 	if (!n)
627 		return NULL;
628 	return rb_entry(n, struct pkt_rb_node, rb_node);
629 }
630 
631 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
632 {
633 	rb_erase(&node->rb_node, &pd->bio_queue);
634 	mempool_free(node, pd->rb_pool);
635 	pd->bio_queue_size--;
636 	BUG_ON(pd->bio_queue_size < 0);
637 }
638 
639 /*
640  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
641  */
642 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
643 {
644 	struct rb_node *n = pd->bio_queue.rb_node;
645 	struct rb_node *next;
646 	struct pkt_rb_node *tmp;
647 
648 	if (!n) {
649 		BUG_ON(pd->bio_queue_size > 0);
650 		return NULL;
651 	}
652 
653 	for (;;) {
654 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
655 		if (s <= tmp->bio->bi_iter.bi_sector)
656 			next = n->rb_left;
657 		else
658 			next = n->rb_right;
659 		if (!next)
660 			break;
661 		n = next;
662 	}
663 
664 	if (s > tmp->bio->bi_iter.bi_sector) {
665 		tmp = pkt_rbtree_next(tmp);
666 		if (!tmp)
667 			return NULL;
668 	}
669 	BUG_ON(s > tmp->bio->bi_iter.bi_sector);
670 	return tmp;
671 }
672 
673 /*
674  * Insert a node into the pd->bio_queue rb tree.
675  */
676 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
677 {
678 	struct rb_node **p = &pd->bio_queue.rb_node;
679 	struct rb_node *parent = NULL;
680 	sector_t s = node->bio->bi_iter.bi_sector;
681 	struct pkt_rb_node *tmp;
682 
683 	while (*p) {
684 		parent = *p;
685 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
686 		if (s < tmp->bio->bi_iter.bi_sector)
687 			p = &(*p)->rb_left;
688 		else
689 			p = &(*p)->rb_right;
690 	}
691 	rb_link_node(&node->rb_node, parent, p);
692 	rb_insert_color(&node->rb_node, &pd->bio_queue);
693 	pd->bio_queue_size++;
694 }
695 
696 /*
697  * Send a packet_command to the underlying block device and
698  * wait for completion.
699  */
700 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
701 {
702 	struct request_queue *q = bdev_get_queue(pd->bdev);
703 	struct request *rq;
704 	int ret = 0;
705 
706 	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
707 			     REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
708 	if (IS_ERR(rq))
709 		return PTR_ERR(rq);
710 	scsi_req_init(rq);
711 
712 	if (cgc->buflen) {
713 		ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
714 				      __GFP_RECLAIM);
715 		if (ret)
716 			goto out;
717 	}
718 
719 	scsi_req(rq)->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
720 	memcpy(scsi_req(rq)->cmd, cgc->cmd, CDROM_PACKET_SIZE);
721 
722 	rq->timeout = 60*HZ;
723 	if (cgc->quiet)
724 		rq->rq_flags |= RQF_QUIET;
725 
726 	blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
727 	if (scsi_req(rq)->result)
728 		ret = -EIO;
729 out:
730 	blk_put_request(rq);
731 	return ret;
732 }
733 
734 static const char *sense_key_string(__u8 index)
735 {
736 	static const char * const info[] = {
737 		"No sense", "Recovered error", "Not ready",
738 		"Medium error", "Hardware error", "Illegal request",
739 		"Unit attention", "Data protect", "Blank check",
740 	};
741 
742 	return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
743 }
744 
745 /*
746  * A generic sense dump / resolve mechanism should be implemented across
747  * all ATAPI + SCSI devices.
748  */
749 static void pkt_dump_sense(struct pktcdvd_device *pd,
750 			   struct packet_command *cgc)
751 {
752 	struct request_sense *sense = cgc->sense;
753 
754 	if (sense)
755 		pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
756 			CDROM_PACKET_SIZE, cgc->cmd,
757 			sense->sense_key, sense->asc, sense->ascq,
758 			sense_key_string(sense->sense_key));
759 	else
760 		pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
761 }
762 
763 /*
764  * flush the drive cache to media
765  */
766 static int pkt_flush_cache(struct pktcdvd_device *pd)
767 {
768 	struct packet_command cgc;
769 
770 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
771 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
772 	cgc.quiet = 1;
773 
774 	/*
775 	 * the IMMED bit -- we default to not setting it, although that
776 	 * would allow a much faster close, this is safer
777 	 */
778 #if 0
779 	cgc.cmd[1] = 1 << 1;
780 #endif
781 	return pkt_generic_packet(pd, &cgc);
782 }
783 
784 /*
785  * speed is given as the normal factor, e.g. 4 for 4x
786  */
787 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
788 				unsigned write_speed, unsigned read_speed)
789 {
790 	struct packet_command cgc;
791 	struct request_sense sense;
792 	int ret;
793 
794 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
795 	cgc.sense = &sense;
796 	cgc.cmd[0] = GPCMD_SET_SPEED;
797 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
798 	cgc.cmd[3] = read_speed & 0xff;
799 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
800 	cgc.cmd[5] = write_speed & 0xff;
801 
802 	if ((ret = pkt_generic_packet(pd, &cgc)))
803 		pkt_dump_sense(pd, &cgc);
804 
805 	return ret;
806 }
807 
808 /*
809  * Queue a bio for processing by the low-level CD device. Must be called
810  * from process context.
811  */
812 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
813 {
814 	spin_lock(&pd->iosched.lock);
815 	if (bio_data_dir(bio) == READ)
816 		bio_list_add(&pd->iosched.read_queue, bio);
817 	else
818 		bio_list_add(&pd->iosched.write_queue, bio);
819 	spin_unlock(&pd->iosched.lock);
820 
821 	atomic_set(&pd->iosched.attention, 1);
822 	wake_up(&pd->wqueue);
823 }
824 
825 /*
826  * Process the queued read/write requests. This function handles special
827  * requirements for CDRW drives:
828  * - A cache flush command must be inserted before a read request if the
829  *   previous request was a write.
830  * - Switching between reading and writing is slow, so don't do it more often
831  *   than necessary.
832  * - Optimize for throughput at the expense of latency. This means that streaming
833  *   writes will never be interrupted by a read, but if the drive has to seek
834  *   before the next write, switch to reading instead if there are any pending
835  *   read requests.
836  * - Set the read speed according to current usage pattern. When only reading
837  *   from the device, it's best to use the highest possible read speed, but
838  *   when switching often between reading and writing, it's better to have the
839  *   same read and write speeds.
840  */
841 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
842 {
843 
844 	if (atomic_read(&pd->iosched.attention) == 0)
845 		return;
846 	atomic_set(&pd->iosched.attention, 0);
847 
848 	for (;;) {
849 		struct bio *bio;
850 		int reads_queued, writes_queued;
851 
852 		spin_lock(&pd->iosched.lock);
853 		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
854 		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
855 		spin_unlock(&pd->iosched.lock);
856 
857 		if (!reads_queued && !writes_queued)
858 			break;
859 
860 		if (pd->iosched.writing) {
861 			int need_write_seek = 1;
862 			spin_lock(&pd->iosched.lock);
863 			bio = bio_list_peek(&pd->iosched.write_queue);
864 			spin_unlock(&pd->iosched.lock);
865 			if (bio && (bio->bi_iter.bi_sector ==
866 				    pd->iosched.last_write))
867 				need_write_seek = 0;
868 			if (need_write_seek && reads_queued) {
869 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
870 					pkt_dbg(2, pd, "write, waiting\n");
871 					break;
872 				}
873 				pkt_flush_cache(pd);
874 				pd->iosched.writing = 0;
875 			}
876 		} else {
877 			if (!reads_queued && writes_queued) {
878 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
879 					pkt_dbg(2, pd, "read, waiting\n");
880 					break;
881 				}
882 				pd->iosched.writing = 1;
883 			}
884 		}
885 
886 		spin_lock(&pd->iosched.lock);
887 		if (pd->iosched.writing)
888 			bio = bio_list_pop(&pd->iosched.write_queue);
889 		else
890 			bio = bio_list_pop(&pd->iosched.read_queue);
891 		spin_unlock(&pd->iosched.lock);
892 
893 		if (!bio)
894 			continue;
895 
896 		if (bio_data_dir(bio) == READ)
897 			pd->iosched.successive_reads +=
898 				bio->bi_iter.bi_size >> 10;
899 		else {
900 			pd->iosched.successive_reads = 0;
901 			pd->iosched.last_write = bio_end_sector(bio);
902 		}
903 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
904 			if (pd->read_speed == pd->write_speed) {
905 				pd->read_speed = MAX_SPEED;
906 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
907 			}
908 		} else {
909 			if (pd->read_speed != pd->write_speed) {
910 				pd->read_speed = pd->write_speed;
911 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
912 			}
913 		}
914 
915 		atomic_inc(&pd->cdrw.pending_bios);
916 		generic_make_request(bio);
917 	}
918 }
919 
920 /*
921  * Special care is needed if the underlying block device has a small
922  * max_phys_segments value.
923  */
924 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
925 {
926 	if ((pd->settings.size << 9) / CD_FRAMESIZE
927 	    <= queue_max_segments(q)) {
928 		/*
929 		 * The cdrom device can handle one segment/frame
930 		 */
931 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
932 		return 0;
933 	} else if ((pd->settings.size << 9) / PAGE_SIZE
934 		   <= queue_max_segments(q)) {
935 		/*
936 		 * We can handle this case at the expense of some extra memory
937 		 * copies during write operations
938 		 */
939 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
940 		return 0;
941 	} else {
942 		pkt_err(pd, "cdrom max_phys_segments too small\n");
943 		return -EIO;
944 	}
945 }
946 
947 static void pkt_end_io_read(struct bio *bio)
948 {
949 	struct packet_data *pkt = bio->bi_private;
950 	struct pktcdvd_device *pd = pkt->pd;
951 	BUG_ON(!pd);
952 
953 	pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
954 		bio, (unsigned long long)pkt->sector,
955 		(unsigned long long)bio->bi_iter.bi_sector, bio->bi_error);
956 
957 	if (bio->bi_error)
958 		atomic_inc(&pkt->io_errors);
959 	if (atomic_dec_and_test(&pkt->io_wait)) {
960 		atomic_inc(&pkt->run_sm);
961 		wake_up(&pd->wqueue);
962 	}
963 	pkt_bio_finished(pd);
964 }
965 
966 static void pkt_end_io_packet_write(struct bio *bio)
967 {
968 	struct packet_data *pkt = bio->bi_private;
969 	struct pktcdvd_device *pd = pkt->pd;
970 	BUG_ON(!pd);
971 
972 	pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_error);
973 
974 	pd->stats.pkt_ended++;
975 
976 	pkt_bio_finished(pd);
977 	atomic_dec(&pkt->io_wait);
978 	atomic_inc(&pkt->run_sm);
979 	wake_up(&pd->wqueue);
980 }
981 
982 /*
983  * Schedule reads for the holes in a packet
984  */
985 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
986 {
987 	int frames_read = 0;
988 	struct bio *bio;
989 	int f;
990 	char written[PACKET_MAX_SIZE];
991 
992 	BUG_ON(bio_list_empty(&pkt->orig_bios));
993 
994 	atomic_set(&pkt->io_wait, 0);
995 	atomic_set(&pkt->io_errors, 0);
996 
997 	/*
998 	 * Figure out which frames we need to read before we can write.
999 	 */
1000 	memset(written, 0, sizeof(written));
1001 	spin_lock(&pkt->lock);
1002 	bio_list_for_each(bio, &pkt->orig_bios) {
1003 		int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1004 			(CD_FRAMESIZE >> 9);
1005 		int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1006 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1007 		BUG_ON(first_frame < 0);
1008 		BUG_ON(first_frame + num_frames > pkt->frames);
1009 		for (f = first_frame; f < first_frame + num_frames; f++)
1010 			written[f] = 1;
1011 	}
1012 	spin_unlock(&pkt->lock);
1013 
1014 	if (pkt->cache_valid) {
1015 		pkt_dbg(2, pd, "zone %llx cached\n",
1016 			(unsigned long long)pkt->sector);
1017 		goto out_account;
1018 	}
1019 
1020 	/*
1021 	 * Schedule reads for missing parts of the packet.
1022 	 */
1023 	for (f = 0; f < pkt->frames; f++) {
1024 		int p, offset;
1025 
1026 		if (written[f])
1027 			continue;
1028 
1029 		bio = pkt->r_bios[f];
1030 		bio_reset(bio);
1031 		bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1032 		bio->bi_bdev = pd->bdev;
1033 		bio->bi_end_io = pkt_end_io_read;
1034 		bio->bi_private = pkt;
1035 
1036 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1037 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1038 		pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1039 			f, pkt->pages[p], offset);
1040 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1041 			BUG();
1042 
1043 		atomic_inc(&pkt->io_wait);
1044 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
1045 		pkt_queue_bio(pd, bio);
1046 		frames_read++;
1047 	}
1048 
1049 out_account:
1050 	pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1051 		frames_read, (unsigned long long)pkt->sector);
1052 	pd->stats.pkt_started++;
1053 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1054 }
1055 
1056 /*
1057  * Find a packet matching zone, or the least recently used packet if
1058  * there is no match.
1059  */
1060 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1061 {
1062 	struct packet_data *pkt;
1063 
1064 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1065 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1066 			list_del_init(&pkt->list);
1067 			if (pkt->sector != zone)
1068 				pkt->cache_valid = 0;
1069 			return pkt;
1070 		}
1071 	}
1072 	BUG();
1073 	return NULL;
1074 }
1075 
1076 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1077 {
1078 	if (pkt->cache_valid) {
1079 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1080 	} else {
1081 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1082 	}
1083 }
1084 
1085 /*
1086  * recover a failed write, query for relocation if possible
1087  *
1088  * returns 1 if recovery is possible, or 0 if not
1089  *
1090  */
1091 static int pkt_start_recovery(struct packet_data *pkt)
1092 {
1093 	/*
1094 	 * FIXME. We need help from the file system to implement
1095 	 * recovery handling.
1096 	 */
1097 	return 0;
1098 #if 0
1099 	struct request *rq = pkt->rq;
1100 	struct pktcdvd_device *pd = rq->rq_disk->private_data;
1101 	struct block_device *pkt_bdev;
1102 	struct super_block *sb = NULL;
1103 	unsigned long old_block, new_block;
1104 	sector_t new_sector;
1105 
1106 	pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1107 	if (pkt_bdev) {
1108 		sb = get_super(pkt_bdev);
1109 		bdput(pkt_bdev);
1110 	}
1111 
1112 	if (!sb)
1113 		return 0;
1114 
1115 	if (!sb->s_op->relocate_blocks)
1116 		goto out;
1117 
1118 	old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1119 	if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1120 		goto out;
1121 
1122 	new_sector = new_block * (CD_FRAMESIZE >> 9);
1123 	pkt->sector = new_sector;
1124 
1125 	bio_reset(pkt->bio);
1126 	pkt->bio->bi_bdev = pd->bdev;
1127 	bio_set_op_attrs(pkt->bio, REQ_OP_WRITE, 0);
1128 	pkt->bio->bi_iter.bi_sector = new_sector;
1129 	pkt->bio->bi_iter.bi_size = pkt->frames * CD_FRAMESIZE;
1130 	pkt->bio->bi_vcnt = pkt->frames;
1131 
1132 	pkt->bio->bi_end_io = pkt_end_io_packet_write;
1133 	pkt->bio->bi_private = pkt;
1134 
1135 	drop_super(sb);
1136 	return 1;
1137 
1138 out:
1139 	drop_super(sb);
1140 	return 0;
1141 #endif
1142 }
1143 
1144 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1145 {
1146 #if PACKET_DEBUG > 1
1147 	static const char *state_name[] = {
1148 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1149 	};
1150 	enum packet_data_state old_state = pkt->state;
1151 	pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1152 		pkt->id, (unsigned long long)pkt->sector,
1153 		state_name[old_state], state_name[state]);
1154 #endif
1155 	pkt->state = state;
1156 }
1157 
1158 /*
1159  * Scan the work queue to see if we can start a new packet.
1160  * returns non-zero if any work was done.
1161  */
1162 static int pkt_handle_queue(struct pktcdvd_device *pd)
1163 {
1164 	struct packet_data *pkt, *p;
1165 	struct bio *bio = NULL;
1166 	sector_t zone = 0; /* Suppress gcc warning */
1167 	struct pkt_rb_node *node, *first_node;
1168 	struct rb_node *n;
1169 	int wakeup;
1170 
1171 	atomic_set(&pd->scan_queue, 0);
1172 
1173 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1174 		pkt_dbg(2, pd, "no pkt\n");
1175 		return 0;
1176 	}
1177 
1178 	/*
1179 	 * Try to find a zone we are not already working on.
1180 	 */
1181 	spin_lock(&pd->lock);
1182 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1183 	if (!first_node) {
1184 		n = rb_first(&pd->bio_queue);
1185 		if (n)
1186 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1187 	}
1188 	node = first_node;
1189 	while (node) {
1190 		bio = node->bio;
1191 		zone = get_zone(bio->bi_iter.bi_sector, pd);
1192 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1193 			if (p->sector == zone) {
1194 				bio = NULL;
1195 				goto try_next_bio;
1196 			}
1197 		}
1198 		break;
1199 try_next_bio:
1200 		node = pkt_rbtree_next(node);
1201 		if (!node) {
1202 			n = rb_first(&pd->bio_queue);
1203 			if (n)
1204 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1205 		}
1206 		if (node == first_node)
1207 			node = NULL;
1208 	}
1209 	spin_unlock(&pd->lock);
1210 	if (!bio) {
1211 		pkt_dbg(2, pd, "no bio\n");
1212 		return 0;
1213 	}
1214 
1215 	pkt = pkt_get_packet_data(pd, zone);
1216 
1217 	pd->current_sector = zone + pd->settings.size;
1218 	pkt->sector = zone;
1219 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1220 	pkt->write_size = 0;
1221 
1222 	/*
1223 	 * Scan work queue for bios in the same zone and link them
1224 	 * to this packet.
1225 	 */
1226 	spin_lock(&pd->lock);
1227 	pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1228 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1229 		bio = node->bio;
1230 		pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1231 			get_zone(bio->bi_iter.bi_sector, pd));
1232 		if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1233 			break;
1234 		pkt_rbtree_erase(pd, node);
1235 		spin_lock(&pkt->lock);
1236 		bio_list_add(&pkt->orig_bios, bio);
1237 		pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1238 		spin_unlock(&pkt->lock);
1239 	}
1240 	/* check write congestion marks, and if bio_queue_size is
1241 	   below, wake up any waiters */
1242 	wakeup = (pd->write_congestion_on > 0
1243 	 		&& pd->bio_queue_size <= pd->write_congestion_off);
1244 	spin_unlock(&pd->lock);
1245 	if (wakeup) {
1246 		clear_bdi_congested(pd->disk->queue->backing_dev_info,
1247 					BLK_RW_ASYNC);
1248 	}
1249 
1250 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1251 	pkt_set_state(pkt, PACKET_WAITING_STATE);
1252 	atomic_set(&pkt->run_sm, 1);
1253 
1254 	spin_lock(&pd->cdrw.active_list_lock);
1255 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1256 	spin_unlock(&pd->cdrw.active_list_lock);
1257 
1258 	return 1;
1259 }
1260 
1261 /*
1262  * Assemble a bio to write one packet and queue the bio for processing
1263  * by the underlying block device.
1264  */
1265 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1266 {
1267 	int f;
1268 
1269 	bio_reset(pkt->w_bio);
1270 	pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1271 	pkt->w_bio->bi_bdev = pd->bdev;
1272 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1273 	pkt->w_bio->bi_private = pkt;
1274 
1275 	/* XXX: locking? */
1276 	for (f = 0; f < pkt->frames; f++) {
1277 		struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1278 		unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1279 
1280 		if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1281 			BUG();
1282 	}
1283 	pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1284 
1285 	/*
1286 	 * Fill-in bvec with data from orig_bios.
1287 	 */
1288 	spin_lock(&pkt->lock);
1289 	bio_copy_data(pkt->w_bio, pkt->orig_bios.head);
1290 
1291 	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1292 	spin_unlock(&pkt->lock);
1293 
1294 	pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1295 		pkt->write_size, (unsigned long long)pkt->sector);
1296 
1297 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1298 		pkt->cache_valid = 1;
1299 	else
1300 		pkt->cache_valid = 0;
1301 
1302 	/* Start the write request */
1303 	atomic_set(&pkt->io_wait, 1);
1304 	bio_set_op_attrs(pkt->w_bio, REQ_OP_WRITE, 0);
1305 	pkt_queue_bio(pd, pkt->w_bio);
1306 }
1307 
1308 static void pkt_finish_packet(struct packet_data *pkt, int error)
1309 {
1310 	struct bio *bio;
1311 
1312 	if (error)
1313 		pkt->cache_valid = 0;
1314 
1315 	/* Finish all bios corresponding to this packet */
1316 	while ((bio = bio_list_pop(&pkt->orig_bios))) {
1317 		bio->bi_error = error;
1318 		bio_endio(bio);
1319 	}
1320 }
1321 
1322 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1323 {
1324 	pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1325 
1326 	for (;;) {
1327 		switch (pkt->state) {
1328 		case PACKET_WAITING_STATE:
1329 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1330 				return;
1331 
1332 			pkt->sleep_time = 0;
1333 			pkt_gather_data(pd, pkt);
1334 			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1335 			break;
1336 
1337 		case PACKET_READ_WAIT_STATE:
1338 			if (atomic_read(&pkt->io_wait) > 0)
1339 				return;
1340 
1341 			if (atomic_read(&pkt->io_errors) > 0) {
1342 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1343 			} else {
1344 				pkt_start_write(pd, pkt);
1345 			}
1346 			break;
1347 
1348 		case PACKET_WRITE_WAIT_STATE:
1349 			if (atomic_read(&pkt->io_wait) > 0)
1350 				return;
1351 
1352 			if (!pkt->w_bio->bi_error) {
1353 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1354 			} else {
1355 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1356 			}
1357 			break;
1358 
1359 		case PACKET_RECOVERY_STATE:
1360 			if (pkt_start_recovery(pkt)) {
1361 				pkt_start_write(pd, pkt);
1362 			} else {
1363 				pkt_dbg(2, pd, "No recovery possible\n");
1364 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1365 			}
1366 			break;
1367 
1368 		case PACKET_FINISHED_STATE:
1369 			pkt_finish_packet(pkt, pkt->w_bio->bi_error);
1370 			return;
1371 
1372 		default:
1373 			BUG();
1374 			break;
1375 		}
1376 	}
1377 }
1378 
1379 static void pkt_handle_packets(struct pktcdvd_device *pd)
1380 {
1381 	struct packet_data *pkt, *next;
1382 
1383 	/*
1384 	 * Run state machine for active packets
1385 	 */
1386 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1387 		if (atomic_read(&pkt->run_sm) > 0) {
1388 			atomic_set(&pkt->run_sm, 0);
1389 			pkt_run_state_machine(pd, pkt);
1390 		}
1391 	}
1392 
1393 	/*
1394 	 * Move no longer active packets to the free list
1395 	 */
1396 	spin_lock(&pd->cdrw.active_list_lock);
1397 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1398 		if (pkt->state == PACKET_FINISHED_STATE) {
1399 			list_del(&pkt->list);
1400 			pkt_put_packet_data(pd, pkt);
1401 			pkt_set_state(pkt, PACKET_IDLE_STATE);
1402 			atomic_set(&pd->scan_queue, 1);
1403 		}
1404 	}
1405 	spin_unlock(&pd->cdrw.active_list_lock);
1406 }
1407 
1408 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1409 {
1410 	struct packet_data *pkt;
1411 	int i;
1412 
1413 	for (i = 0; i < PACKET_NUM_STATES; i++)
1414 		states[i] = 0;
1415 
1416 	spin_lock(&pd->cdrw.active_list_lock);
1417 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1418 		states[pkt->state]++;
1419 	}
1420 	spin_unlock(&pd->cdrw.active_list_lock);
1421 }
1422 
1423 /*
1424  * kcdrwd is woken up when writes have been queued for one of our
1425  * registered devices
1426  */
1427 static int kcdrwd(void *foobar)
1428 {
1429 	struct pktcdvd_device *pd = foobar;
1430 	struct packet_data *pkt;
1431 	long min_sleep_time, residue;
1432 
1433 	set_user_nice(current, MIN_NICE);
1434 	set_freezable();
1435 
1436 	for (;;) {
1437 		DECLARE_WAITQUEUE(wait, current);
1438 
1439 		/*
1440 		 * Wait until there is something to do
1441 		 */
1442 		add_wait_queue(&pd->wqueue, &wait);
1443 		for (;;) {
1444 			set_current_state(TASK_INTERRUPTIBLE);
1445 
1446 			/* Check if we need to run pkt_handle_queue */
1447 			if (atomic_read(&pd->scan_queue) > 0)
1448 				goto work_to_do;
1449 
1450 			/* Check if we need to run the state machine for some packet */
1451 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1452 				if (atomic_read(&pkt->run_sm) > 0)
1453 					goto work_to_do;
1454 			}
1455 
1456 			/* Check if we need to process the iosched queues */
1457 			if (atomic_read(&pd->iosched.attention) != 0)
1458 				goto work_to_do;
1459 
1460 			/* Otherwise, go to sleep */
1461 			if (PACKET_DEBUG > 1) {
1462 				int states[PACKET_NUM_STATES];
1463 				pkt_count_states(pd, states);
1464 				pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1465 					states[0], states[1], states[2],
1466 					states[3], states[4], states[5]);
1467 			}
1468 
1469 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1470 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1471 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1472 					min_sleep_time = pkt->sleep_time;
1473 			}
1474 
1475 			pkt_dbg(2, pd, "sleeping\n");
1476 			residue = schedule_timeout(min_sleep_time);
1477 			pkt_dbg(2, pd, "wake up\n");
1478 
1479 			/* make swsusp happy with our thread */
1480 			try_to_freeze();
1481 
1482 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1483 				if (!pkt->sleep_time)
1484 					continue;
1485 				pkt->sleep_time -= min_sleep_time - residue;
1486 				if (pkt->sleep_time <= 0) {
1487 					pkt->sleep_time = 0;
1488 					atomic_inc(&pkt->run_sm);
1489 				}
1490 			}
1491 
1492 			if (kthread_should_stop())
1493 				break;
1494 		}
1495 work_to_do:
1496 		set_current_state(TASK_RUNNING);
1497 		remove_wait_queue(&pd->wqueue, &wait);
1498 
1499 		if (kthread_should_stop())
1500 			break;
1501 
1502 		/*
1503 		 * if pkt_handle_queue returns true, we can queue
1504 		 * another request.
1505 		 */
1506 		while (pkt_handle_queue(pd))
1507 			;
1508 
1509 		/*
1510 		 * Handle packet state machine
1511 		 */
1512 		pkt_handle_packets(pd);
1513 
1514 		/*
1515 		 * Handle iosched queues
1516 		 */
1517 		pkt_iosched_process_queue(pd);
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 static void pkt_print_settings(struct pktcdvd_device *pd)
1524 {
1525 	pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1526 		 pd->settings.fp ? "Fixed" : "Variable",
1527 		 pd->settings.size >> 2,
1528 		 pd->settings.block_mode == 8 ? '1' : '2');
1529 }
1530 
1531 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1532 {
1533 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1534 
1535 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1536 	cgc->cmd[2] = page_code | (page_control << 6);
1537 	cgc->cmd[7] = cgc->buflen >> 8;
1538 	cgc->cmd[8] = cgc->buflen & 0xff;
1539 	cgc->data_direction = CGC_DATA_READ;
1540 	return pkt_generic_packet(pd, cgc);
1541 }
1542 
1543 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1544 {
1545 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1546 	memset(cgc->buffer, 0, 2);
1547 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1548 	cgc->cmd[1] = 0x10;		/* PF */
1549 	cgc->cmd[7] = cgc->buflen >> 8;
1550 	cgc->cmd[8] = cgc->buflen & 0xff;
1551 	cgc->data_direction = CGC_DATA_WRITE;
1552 	return pkt_generic_packet(pd, cgc);
1553 }
1554 
1555 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1556 {
1557 	struct packet_command cgc;
1558 	int ret;
1559 
1560 	/* set up command and get the disc info */
1561 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1562 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1563 	cgc.cmd[8] = cgc.buflen = 2;
1564 	cgc.quiet = 1;
1565 
1566 	if ((ret = pkt_generic_packet(pd, &cgc)))
1567 		return ret;
1568 
1569 	/* not all drives have the same disc_info length, so requeue
1570 	 * packet with the length the drive tells us it can supply
1571 	 */
1572 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1573 		     sizeof(di->disc_information_length);
1574 
1575 	if (cgc.buflen > sizeof(disc_information))
1576 		cgc.buflen = sizeof(disc_information);
1577 
1578 	cgc.cmd[8] = cgc.buflen;
1579 	return pkt_generic_packet(pd, &cgc);
1580 }
1581 
1582 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1583 {
1584 	struct packet_command cgc;
1585 	int ret;
1586 
1587 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1588 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1589 	cgc.cmd[1] = type & 3;
1590 	cgc.cmd[4] = (track & 0xff00) >> 8;
1591 	cgc.cmd[5] = track & 0xff;
1592 	cgc.cmd[8] = 8;
1593 	cgc.quiet = 1;
1594 
1595 	if ((ret = pkt_generic_packet(pd, &cgc)))
1596 		return ret;
1597 
1598 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1599 		     sizeof(ti->track_information_length);
1600 
1601 	if (cgc.buflen > sizeof(track_information))
1602 		cgc.buflen = sizeof(track_information);
1603 
1604 	cgc.cmd[8] = cgc.buflen;
1605 	return pkt_generic_packet(pd, &cgc);
1606 }
1607 
1608 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1609 						long *last_written)
1610 {
1611 	disc_information di;
1612 	track_information ti;
1613 	__u32 last_track;
1614 	int ret = -1;
1615 
1616 	if ((ret = pkt_get_disc_info(pd, &di)))
1617 		return ret;
1618 
1619 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1620 	if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1621 		return ret;
1622 
1623 	/* if this track is blank, try the previous. */
1624 	if (ti.blank) {
1625 		last_track--;
1626 		if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1627 			return ret;
1628 	}
1629 
1630 	/* if last recorded field is valid, return it. */
1631 	if (ti.lra_v) {
1632 		*last_written = be32_to_cpu(ti.last_rec_address);
1633 	} else {
1634 		/* make it up instead */
1635 		*last_written = be32_to_cpu(ti.track_start) +
1636 				be32_to_cpu(ti.track_size);
1637 		if (ti.free_blocks)
1638 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1639 	}
1640 	return 0;
1641 }
1642 
1643 /*
1644  * write mode select package based on pd->settings
1645  */
1646 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1647 {
1648 	struct packet_command cgc;
1649 	struct request_sense sense;
1650 	write_param_page *wp;
1651 	char buffer[128];
1652 	int ret, size;
1653 
1654 	/* doesn't apply to DVD+RW or DVD-RAM */
1655 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1656 		return 0;
1657 
1658 	memset(buffer, 0, sizeof(buffer));
1659 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1660 	cgc.sense = &sense;
1661 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1662 		pkt_dump_sense(pd, &cgc);
1663 		return ret;
1664 	}
1665 
1666 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1667 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1668 	if (size > sizeof(buffer))
1669 		size = sizeof(buffer);
1670 
1671 	/*
1672 	 * now get it all
1673 	 */
1674 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1675 	cgc.sense = &sense;
1676 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1677 		pkt_dump_sense(pd, &cgc);
1678 		return ret;
1679 	}
1680 
1681 	/*
1682 	 * write page is offset header + block descriptor length
1683 	 */
1684 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1685 
1686 	wp->fp = pd->settings.fp;
1687 	wp->track_mode = pd->settings.track_mode;
1688 	wp->write_type = pd->settings.write_type;
1689 	wp->data_block_type = pd->settings.block_mode;
1690 
1691 	wp->multi_session = 0;
1692 
1693 #ifdef PACKET_USE_LS
1694 	wp->link_size = 7;
1695 	wp->ls_v = 1;
1696 #endif
1697 
1698 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1699 		wp->session_format = 0;
1700 		wp->subhdr2 = 0x20;
1701 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1702 		wp->session_format = 0x20;
1703 		wp->subhdr2 = 8;
1704 #if 0
1705 		wp->mcn[0] = 0x80;
1706 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1707 #endif
1708 	} else {
1709 		/*
1710 		 * paranoia
1711 		 */
1712 		pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1713 		return 1;
1714 	}
1715 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1716 
1717 	cgc.buflen = cgc.cmd[8] = size;
1718 	if ((ret = pkt_mode_select(pd, &cgc))) {
1719 		pkt_dump_sense(pd, &cgc);
1720 		return ret;
1721 	}
1722 
1723 	pkt_print_settings(pd);
1724 	return 0;
1725 }
1726 
1727 /*
1728  * 1 -- we can write to this track, 0 -- we can't
1729  */
1730 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1731 {
1732 	switch (pd->mmc3_profile) {
1733 		case 0x1a: /* DVD+RW */
1734 		case 0x12: /* DVD-RAM */
1735 			/* The track is always writable on DVD+RW/DVD-RAM */
1736 			return 1;
1737 		default:
1738 			break;
1739 	}
1740 
1741 	if (!ti->packet || !ti->fp)
1742 		return 0;
1743 
1744 	/*
1745 	 * "good" settings as per Mt Fuji.
1746 	 */
1747 	if (ti->rt == 0 && ti->blank == 0)
1748 		return 1;
1749 
1750 	if (ti->rt == 0 && ti->blank == 1)
1751 		return 1;
1752 
1753 	if (ti->rt == 1 && ti->blank == 0)
1754 		return 1;
1755 
1756 	pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1757 	return 0;
1758 }
1759 
1760 /*
1761  * 1 -- we can write to this disc, 0 -- we can't
1762  */
1763 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1764 {
1765 	switch (pd->mmc3_profile) {
1766 		case 0x0a: /* CD-RW */
1767 		case 0xffff: /* MMC3 not supported */
1768 			break;
1769 		case 0x1a: /* DVD+RW */
1770 		case 0x13: /* DVD-RW */
1771 		case 0x12: /* DVD-RAM */
1772 			return 1;
1773 		default:
1774 			pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1775 				pd->mmc3_profile);
1776 			return 0;
1777 	}
1778 
1779 	/*
1780 	 * for disc type 0xff we should probably reserve a new track.
1781 	 * but i'm not sure, should we leave this to user apps? probably.
1782 	 */
1783 	if (di->disc_type == 0xff) {
1784 		pkt_notice(pd, "unknown disc - no track?\n");
1785 		return 0;
1786 	}
1787 
1788 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1789 		pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1790 		return 0;
1791 	}
1792 
1793 	if (di->erasable == 0) {
1794 		pkt_notice(pd, "disc not erasable\n");
1795 		return 0;
1796 	}
1797 
1798 	if (di->border_status == PACKET_SESSION_RESERVED) {
1799 		pkt_err(pd, "can't write to last track (reserved)\n");
1800 		return 0;
1801 	}
1802 
1803 	return 1;
1804 }
1805 
1806 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1807 {
1808 	struct packet_command cgc;
1809 	unsigned char buf[12];
1810 	disc_information di;
1811 	track_information ti;
1812 	int ret, track;
1813 
1814 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1815 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1816 	cgc.cmd[8] = 8;
1817 	ret = pkt_generic_packet(pd, &cgc);
1818 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1819 
1820 	memset(&di, 0, sizeof(disc_information));
1821 	memset(&ti, 0, sizeof(track_information));
1822 
1823 	if ((ret = pkt_get_disc_info(pd, &di))) {
1824 		pkt_err(pd, "failed get_disc\n");
1825 		return ret;
1826 	}
1827 
1828 	if (!pkt_writable_disc(pd, &di))
1829 		return -EROFS;
1830 
1831 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1832 
1833 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1834 	if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1835 		pkt_err(pd, "failed get_track\n");
1836 		return ret;
1837 	}
1838 
1839 	if (!pkt_writable_track(pd, &ti)) {
1840 		pkt_err(pd, "can't write to this track\n");
1841 		return -EROFS;
1842 	}
1843 
1844 	/*
1845 	 * we keep packet size in 512 byte units, makes it easier to
1846 	 * deal with request calculations.
1847 	 */
1848 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1849 	if (pd->settings.size == 0) {
1850 		pkt_notice(pd, "detected zero packet size!\n");
1851 		return -ENXIO;
1852 	}
1853 	if (pd->settings.size > PACKET_MAX_SECTORS) {
1854 		pkt_err(pd, "packet size is too big\n");
1855 		return -EROFS;
1856 	}
1857 	pd->settings.fp = ti.fp;
1858 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1859 
1860 	if (ti.nwa_v) {
1861 		pd->nwa = be32_to_cpu(ti.next_writable);
1862 		set_bit(PACKET_NWA_VALID, &pd->flags);
1863 	}
1864 
1865 	/*
1866 	 * in theory we could use lra on -RW media as well and just zero
1867 	 * blocks that haven't been written yet, but in practice that
1868 	 * is just a no-go. we'll use that for -R, naturally.
1869 	 */
1870 	if (ti.lra_v) {
1871 		pd->lra = be32_to_cpu(ti.last_rec_address);
1872 		set_bit(PACKET_LRA_VALID, &pd->flags);
1873 	} else {
1874 		pd->lra = 0xffffffff;
1875 		set_bit(PACKET_LRA_VALID, &pd->flags);
1876 	}
1877 
1878 	/*
1879 	 * fine for now
1880 	 */
1881 	pd->settings.link_loss = 7;
1882 	pd->settings.write_type = 0;	/* packet */
1883 	pd->settings.track_mode = ti.track_mode;
1884 
1885 	/*
1886 	 * mode1 or mode2 disc
1887 	 */
1888 	switch (ti.data_mode) {
1889 		case PACKET_MODE1:
1890 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1891 			break;
1892 		case PACKET_MODE2:
1893 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1894 			break;
1895 		default:
1896 			pkt_err(pd, "unknown data mode\n");
1897 			return -EROFS;
1898 	}
1899 	return 0;
1900 }
1901 
1902 /*
1903  * enable/disable write caching on drive
1904  */
1905 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1906 						int set)
1907 {
1908 	struct packet_command cgc;
1909 	struct request_sense sense;
1910 	unsigned char buf[64];
1911 	int ret;
1912 
1913 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1914 	cgc.sense = &sense;
1915 	cgc.buflen = pd->mode_offset + 12;
1916 
1917 	/*
1918 	 * caching mode page might not be there, so quiet this command
1919 	 */
1920 	cgc.quiet = 1;
1921 
1922 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1923 		return ret;
1924 
1925 	buf[pd->mode_offset + 10] |= (!!set << 2);
1926 
1927 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1928 	ret = pkt_mode_select(pd, &cgc);
1929 	if (ret) {
1930 		pkt_err(pd, "write caching control failed\n");
1931 		pkt_dump_sense(pd, &cgc);
1932 	} else if (!ret && set)
1933 		pkt_notice(pd, "enabled write caching\n");
1934 	return ret;
1935 }
1936 
1937 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1938 {
1939 	struct packet_command cgc;
1940 
1941 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1942 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1943 	cgc.cmd[4] = lockflag ? 1 : 0;
1944 	return pkt_generic_packet(pd, &cgc);
1945 }
1946 
1947 /*
1948  * Returns drive maximum write speed
1949  */
1950 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1951 						unsigned *write_speed)
1952 {
1953 	struct packet_command cgc;
1954 	struct request_sense sense;
1955 	unsigned char buf[256+18];
1956 	unsigned char *cap_buf;
1957 	int ret, offset;
1958 
1959 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1960 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1961 	cgc.sense = &sense;
1962 
1963 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1964 	if (ret) {
1965 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1966 			     sizeof(struct mode_page_header);
1967 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1968 		if (ret) {
1969 			pkt_dump_sense(pd, &cgc);
1970 			return ret;
1971 		}
1972 	}
1973 
1974 	offset = 20;			    /* Obsoleted field, used by older drives */
1975 	if (cap_buf[1] >= 28)
1976 		offset = 28;		    /* Current write speed selected */
1977 	if (cap_buf[1] >= 30) {
1978 		/* If the drive reports at least one "Logical Unit Write
1979 		 * Speed Performance Descriptor Block", use the information
1980 		 * in the first block. (contains the highest speed)
1981 		 */
1982 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1983 		if (num_spdb > 0)
1984 			offset = 34;
1985 	}
1986 
1987 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1988 	return 0;
1989 }
1990 
1991 /* These tables from cdrecord - I don't have orange book */
1992 /* standard speed CD-RW (1-4x) */
1993 static char clv_to_speed[16] = {
1994 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1995 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1996 };
1997 /* high speed CD-RW (-10x) */
1998 static char hs_clv_to_speed[16] = {
1999 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2000 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2001 };
2002 /* ultra high speed CD-RW */
2003 static char us_clv_to_speed[16] = {
2004 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2005 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2006 };
2007 
2008 /*
2009  * reads the maximum media speed from ATIP
2010  */
2011 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2012 						unsigned *speed)
2013 {
2014 	struct packet_command cgc;
2015 	struct request_sense sense;
2016 	unsigned char buf[64];
2017 	unsigned int size, st, sp;
2018 	int ret;
2019 
2020 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2021 	cgc.sense = &sense;
2022 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2023 	cgc.cmd[1] = 2;
2024 	cgc.cmd[2] = 4; /* READ ATIP */
2025 	cgc.cmd[8] = 2;
2026 	ret = pkt_generic_packet(pd, &cgc);
2027 	if (ret) {
2028 		pkt_dump_sense(pd, &cgc);
2029 		return ret;
2030 	}
2031 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2032 	if (size > sizeof(buf))
2033 		size = sizeof(buf);
2034 
2035 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2036 	cgc.sense = &sense;
2037 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2038 	cgc.cmd[1] = 2;
2039 	cgc.cmd[2] = 4;
2040 	cgc.cmd[8] = size;
2041 	ret = pkt_generic_packet(pd, &cgc);
2042 	if (ret) {
2043 		pkt_dump_sense(pd, &cgc);
2044 		return ret;
2045 	}
2046 
2047 	if (!(buf[6] & 0x40)) {
2048 		pkt_notice(pd, "disc type is not CD-RW\n");
2049 		return 1;
2050 	}
2051 	if (!(buf[6] & 0x4)) {
2052 		pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2053 		return 1;
2054 	}
2055 
2056 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2057 
2058 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2059 
2060 	/* Info from cdrecord */
2061 	switch (st) {
2062 		case 0: /* standard speed */
2063 			*speed = clv_to_speed[sp];
2064 			break;
2065 		case 1: /* high speed */
2066 			*speed = hs_clv_to_speed[sp];
2067 			break;
2068 		case 2: /* ultra high speed */
2069 			*speed = us_clv_to_speed[sp];
2070 			break;
2071 		default:
2072 			pkt_notice(pd, "unknown disc sub-type %d\n", st);
2073 			return 1;
2074 	}
2075 	if (*speed) {
2076 		pkt_info(pd, "maximum media speed: %d\n", *speed);
2077 		return 0;
2078 	} else {
2079 		pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2080 		return 1;
2081 	}
2082 }
2083 
2084 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2085 {
2086 	struct packet_command cgc;
2087 	struct request_sense sense;
2088 	int ret;
2089 
2090 	pkt_dbg(2, pd, "Performing OPC\n");
2091 
2092 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2093 	cgc.sense = &sense;
2094 	cgc.timeout = 60*HZ;
2095 	cgc.cmd[0] = GPCMD_SEND_OPC;
2096 	cgc.cmd[1] = 1;
2097 	if ((ret = pkt_generic_packet(pd, &cgc)))
2098 		pkt_dump_sense(pd, &cgc);
2099 	return ret;
2100 }
2101 
2102 static int pkt_open_write(struct pktcdvd_device *pd)
2103 {
2104 	int ret;
2105 	unsigned int write_speed, media_write_speed, read_speed;
2106 
2107 	if ((ret = pkt_probe_settings(pd))) {
2108 		pkt_dbg(2, pd, "failed probe\n");
2109 		return ret;
2110 	}
2111 
2112 	if ((ret = pkt_set_write_settings(pd))) {
2113 		pkt_dbg(1, pd, "failed saving write settings\n");
2114 		return -EIO;
2115 	}
2116 
2117 	pkt_write_caching(pd, USE_WCACHING);
2118 
2119 	if ((ret = pkt_get_max_speed(pd, &write_speed)))
2120 		write_speed = 16 * 177;
2121 	switch (pd->mmc3_profile) {
2122 		case 0x13: /* DVD-RW */
2123 		case 0x1a: /* DVD+RW */
2124 		case 0x12: /* DVD-RAM */
2125 			pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2126 			break;
2127 		default:
2128 			if ((ret = pkt_media_speed(pd, &media_write_speed)))
2129 				media_write_speed = 16;
2130 			write_speed = min(write_speed, media_write_speed * 177);
2131 			pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2132 			break;
2133 	}
2134 	read_speed = write_speed;
2135 
2136 	if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2137 		pkt_dbg(1, pd, "couldn't set write speed\n");
2138 		return -EIO;
2139 	}
2140 	pd->write_speed = write_speed;
2141 	pd->read_speed = read_speed;
2142 
2143 	if ((ret = pkt_perform_opc(pd))) {
2144 		pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2145 	}
2146 
2147 	return 0;
2148 }
2149 
2150 /*
2151  * called at open time.
2152  */
2153 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2154 {
2155 	int ret;
2156 	long lba;
2157 	struct request_queue *q;
2158 
2159 	/*
2160 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2161 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2162 	 * so bdget() can't fail.
2163 	 */
2164 	bdget(pd->bdev->bd_dev);
2165 	if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2166 		goto out;
2167 
2168 	if ((ret = pkt_get_last_written(pd, &lba))) {
2169 		pkt_err(pd, "pkt_get_last_written failed\n");
2170 		goto out_putdev;
2171 	}
2172 
2173 	set_capacity(pd->disk, lba << 2);
2174 	set_capacity(pd->bdev->bd_disk, lba << 2);
2175 	bd_set_size(pd->bdev, (loff_t)lba << 11);
2176 
2177 	q = bdev_get_queue(pd->bdev);
2178 	if (write) {
2179 		if ((ret = pkt_open_write(pd)))
2180 			goto out_putdev;
2181 		/*
2182 		 * Some CDRW drives can not handle writes larger than one packet,
2183 		 * even if the size is a multiple of the packet size.
2184 		 */
2185 		spin_lock_irq(q->queue_lock);
2186 		blk_queue_max_hw_sectors(q, pd->settings.size);
2187 		spin_unlock_irq(q->queue_lock);
2188 		set_bit(PACKET_WRITABLE, &pd->flags);
2189 	} else {
2190 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2191 		clear_bit(PACKET_WRITABLE, &pd->flags);
2192 	}
2193 
2194 	if ((ret = pkt_set_segment_merging(pd, q)))
2195 		goto out_putdev;
2196 
2197 	if (write) {
2198 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2199 			pkt_err(pd, "not enough memory for buffers\n");
2200 			ret = -ENOMEM;
2201 			goto out_putdev;
2202 		}
2203 		pkt_info(pd, "%lukB available on disc\n", lba << 1);
2204 	}
2205 
2206 	return 0;
2207 
2208 out_putdev:
2209 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2210 out:
2211 	return ret;
2212 }
2213 
2214 /*
2215  * called when the device is closed. makes sure that the device flushes
2216  * the internal cache before we close.
2217  */
2218 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2219 {
2220 	if (flush && pkt_flush_cache(pd))
2221 		pkt_dbg(1, pd, "not flushing cache\n");
2222 
2223 	pkt_lock_door(pd, 0);
2224 
2225 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2226 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2227 
2228 	pkt_shrink_pktlist(pd);
2229 }
2230 
2231 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2232 {
2233 	if (dev_minor >= MAX_WRITERS)
2234 		return NULL;
2235 	return pkt_devs[dev_minor];
2236 }
2237 
2238 static int pkt_open(struct block_device *bdev, fmode_t mode)
2239 {
2240 	struct pktcdvd_device *pd = NULL;
2241 	int ret;
2242 
2243 	mutex_lock(&pktcdvd_mutex);
2244 	mutex_lock(&ctl_mutex);
2245 	pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2246 	if (!pd) {
2247 		ret = -ENODEV;
2248 		goto out;
2249 	}
2250 	BUG_ON(pd->refcnt < 0);
2251 
2252 	pd->refcnt++;
2253 	if (pd->refcnt > 1) {
2254 		if ((mode & FMODE_WRITE) &&
2255 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2256 			ret = -EBUSY;
2257 			goto out_dec;
2258 		}
2259 	} else {
2260 		ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2261 		if (ret)
2262 			goto out_dec;
2263 		/*
2264 		 * needed here as well, since ext2 (among others) may change
2265 		 * the blocksize at mount time
2266 		 */
2267 		set_blocksize(bdev, CD_FRAMESIZE);
2268 	}
2269 
2270 	mutex_unlock(&ctl_mutex);
2271 	mutex_unlock(&pktcdvd_mutex);
2272 	return 0;
2273 
2274 out_dec:
2275 	pd->refcnt--;
2276 out:
2277 	mutex_unlock(&ctl_mutex);
2278 	mutex_unlock(&pktcdvd_mutex);
2279 	return ret;
2280 }
2281 
2282 static void pkt_close(struct gendisk *disk, fmode_t mode)
2283 {
2284 	struct pktcdvd_device *pd = disk->private_data;
2285 
2286 	mutex_lock(&pktcdvd_mutex);
2287 	mutex_lock(&ctl_mutex);
2288 	pd->refcnt--;
2289 	BUG_ON(pd->refcnt < 0);
2290 	if (pd->refcnt == 0) {
2291 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2292 		pkt_release_dev(pd, flush);
2293 	}
2294 	mutex_unlock(&ctl_mutex);
2295 	mutex_unlock(&pktcdvd_mutex);
2296 }
2297 
2298 
2299 static void pkt_end_io_read_cloned(struct bio *bio)
2300 {
2301 	struct packet_stacked_data *psd = bio->bi_private;
2302 	struct pktcdvd_device *pd = psd->pd;
2303 
2304 	psd->bio->bi_error = bio->bi_error;
2305 	bio_put(bio);
2306 	bio_endio(psd->bio);
2307 	mempool_free(psd, psd_pool);
2308 	pkt_bio_finished(pd);
2309 }
2310 
2311 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2312 {
2313 	struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2314 	struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2315 
2316 	psd->pd = pd;
2317 	psd->bio = bio;
2318 	cloned_bio->bi_bdev = pd->bdev;
2319 	cloned_bio->bi_private = psd;
2320 	cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2321 	pd->stats.secs_r += bio_sectors(bio);
2322 	pkt_queue_bio(pd, cloned_bio);
2323 }
2324 
2325 static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2326 {
2327 	struct pktcdvd_device *pd = q->queuedata;
2328 	sector_t zone;
2329 	struct packet_data *pkt;
2330 	int was_empty, blocked_bio;
2331 	struct pkt_rb_node *node;
2332 
2333 	zone = get_zone(bio->bi_iter.bi_sector, pd);
2334 
2335 	/*
2336 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2337 	 * just append this bio to that packet.
2338 	 */
2339 	spin_lock(&pd->cdrw.active_list_lock);
2340 	blocked_bio = 0;
2341 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2342 		if (pkt->sector == zone) {
2343 			spin_lock(&pkt->lock);
2344 			if ((pkt->state == PACKET_WAITING_STATE) ||
2345 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2346 				bio_list_add(&pkt->orig_bios, bio);
2347 				pkt->write_size +=
2348 					bio->bi_iter.bi_size / CD_FRAMESIZE;
2349 				if ((pkt->write_size >= pkt->frames) &&
2350 				    (pkt->state == PACKET_WAITING_STATE)) {
2351 					atomic_inc(&pkt->run_sm);
2352 					wake_up(&pd->wqueue);
2353 				}
2354 				spin_unlock(&pkt->lock);
2355 				spin_unlock(&pd->cdrw.active_list_lock);
2356 				return;
2357 			} else {
2358 				blocked_bio = 1;
2359 			}
2360 			spin_unlock(&pkt->lock);
2361 		}
2362 	}
2363 	spin_unlock(&pd->cdrw.active_list_lock);
2364 
2365  	/*
2366 	 * Test if there is enough room left in the bio work queue
2367 	 * (queue size >= congestion on mark).
2368 	 * If not, wait till the work queue size is below the congestion off mark.
2369 	 */
2370 	spin_lock(&pd->lock);
2371 	if (pd->write_congestion_on > 0
2372 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2373 		set_bdi_congested(q->backing_dev_info, BLK_RW_ASYNC);
2374 		do {
2375 			spin_unlock(&pd->lock);
2376 			congestion_wait(BLK_RW_ASYNC, HZ);
2377 			spin_lock(&pd->lock);
2378 		} while(pd->bio_queue_size > pd->write_congestion_off);
2379 	}
2380 	spin_unlock(&pd->lock);
2381 
2382 	/*
2383 	 * No matching packet found. Store the bio in the work queue.
2384 	 */
2385 	node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2386 	node->bio = bio;
2387 	spin_lock(&pd->lock);
2388 	BUG_ON(pd->bio_queue_size < 0);
2389 	was_empty = (pd->bio_queue_size == 0);
2390 	pkt_rbtree_insert(pd, node);
2391 	spin_unlock(&pd->lock);
2392 
2393 	/*
2394 	 * Wake up the worker thread.
2395 	 */
2396 	atomic_set(&pd->scan_queue, 1);
2397 	if (was_empty) {
2398 		/* This wake_up is required for correct operation */
2399 		wake_up(&pd->wqueue);
2400 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2401 		/*
2402 		 * This wake up is not required for correct operation,
2403 		 * but improves performance in some cases.
2404 		 */
2405 		wake_up(&pd->wqueue);
2406 	}
2407 }
2408 
2409 static blk_qc_t pkt_make_request(struct request_queue *q, struct bio *bio)
2410 {
2411 	struct pktcdvd_device *pd;
2412 	char b[BDEVNAME_SIZE];
2413 	struct bio *split;
2414 
2415 	blk_queue_bounce(q, &bio);
2416 
2417 	blk_queue_split(q, &bio, q->bio_split);
2418 
2419 	pd = q->queuedata;
2420 	if (!pd) {
2421 		pr_err("%s incorrect request queue\n",
2422 		       bdevname(bio->bi_bdev, b));
2423 		goto end_io;
2424 	}
2425 
2426 	pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2427 		(unsigned long long)bio->bi_iter.bi_sector,
2428 		(unsigned long long)bio_end_sector(bio));
2429 
2430 	/*
2431 	 * Clone READ bios so we can have our own bi_end_io callback.
2432 	 */
2433 	if (bio_data_dir(bio) == READ) {
2434 		pkt_make_request_read(pd, bio);
2435 		return BLK_QC_T_NONE;
2436 	}
2437 
2438 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2439 		pkt_notice(pd, "WRITE for ro device (%llu)\n",
2440 			   (unsigned long long)bio->bi_iter.bi_sector);
2441 		goto end_io;
2442 	}
2443 
2444 	if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2445 		pkt_err(pd, "wrong bio size\n");
2446 		goto end_io;
2447 	}
2448 
2449 	do {
2450 		sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2451 		sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2452 
2453 		if (last_zone != zone) {
2454 			BUG_ON(last_zone != zone + pd->settings.size);
2455 
2456 			split = bio_split(bio, last_zone -
2457 					  bio->bi_iter.bi_sector,
2458 					  GFP_NOIO, fs_bio_set);
2459 			bio_chain(split, bio);
2460 		} else {
2461 			split = bio;
2462 		}
2463 
2464 		pkt_make_request_write(q, split);
2465 	} while (split != bio);
2466 
2467 	return BLK_QC_T_NONE;
2468 end_io:
2469 	bio_io_error(bio);
2470 	return BLK_QC_T_NONE;
2471 }
2472 
2473 static void pkt_init_queue(struct pktcdvd_device *pd)
2474 {
2475 	struct request_queue *q = pd->disk->queue;
2476 
2477 	blk_queue_make_request(q, pkt_make_request);
2478 	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2479 	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2480 	q->queuedata = pd;
2481 }
2482 
2483 static int pkt_seq_show(struct seq_file *m, void *p)
2484 {
2485 	struct pktcdvd_device *pd = m->private;
2486 	char *msg;
2487 	char bdev_buf[BDEVNAME_SIZE];
2488 	int states[PACKET_NUM_STATES];
2489 
2490 	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2491 		   bdevname(pd->bdev, bdev_buf));
2492 
2493 	seq_printf(m, "\nSettings:\n");
2494 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2495 
2496 	if (pd->settings.write_type == 0)
2497 		msg = "Packet";
2498 	else
2499 		msg = "Unknown";
2500 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2501 
2502 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2503 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2504 
2505 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2506 
2507 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2508 		msg = "Mode 1";
2509 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2510 		msg = "Mode 2";
2511 	else
2512 		msg = "Unknown";
2513 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2514 
2515 	seq_printf(m, "\nStatistics:\n");
2516 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2517 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2518 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2519 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2520 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2521 
2522 	seq_printf(m, "\nMisc:\n");
2523 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2524 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2525 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2526 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2527 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2528 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2529 
2530 	seq_printf(m, "\nQueue state:\n");
2531 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2532 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2533 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2534 
2535 	pkt_count_states(pd, states);
2536 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2537 		   states[0], states[1], states[2], states[3], states[4], states[5]);
2538 
2539 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2540 			pd->write_congestion_off,
2541 			pd->write_congestion_on);
2542 	return 0;
2543 }
2544 
2545 static int pkt_seq_open(struct inode *inode, struct file *file)
2546 {
2547 	return single_open(file, pkt_seq_show, PDE_DATA(inode));
2548 }
2549 
2550 static const struct file_operations pkt_proc_fops = {
2551 	.open	= pkt_seq_open,
2552 	.read	= seq_read,
2553 	.llseek	= seq_lseek,
2554 	.release = single_release
2555 };
2556 
2557 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2558 {
2559 	int i;
2560 	int ret = 0;
2561 	char b[BDEVNAME_SIZE];
2562 	struct block_device *bdev;
2563 
2564 	if (pd->pkt_dev == dev) {
2565 		pkt_err(pd, "recursive setup not allowed\n");
2566 		return -EBUSY;
2567 	}
2568 	for (i = 0; i < MAX_WRITERS; i++) {
2569 		struct pktcdvd_device *pd2 = pkt_devs[i];
2570 		if (!pd2)
2571 			continue;
2572 		if (pd2->bdev->bd_dev == dev) {
2573 			pkt_err(pd, "%s already setup\n",
2574 				bdevname(pd2->bdev, b));
2575 			return -EBUSY;
2576 		}
2577 		if (pd2->pkt_dev == dev) {
2578 			pkt_err(pd, "can't chain pktcdvd devices\n");
2579 			return -EBUSY;
2580 		}
2581 	}
2582 
2583 	bdev = bdget(dev);
2584 	if (!bdev)
2585 		return -ENOMEM;
2586 	ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2587 	if (ret)
2588 		return ret;
2589 
2590 	/* This is safe, since we have a reference from open(). */
2591 	__module_get(THIS_MODULE);
2592 
2593 	pd->bdev = bdev;
2594 	set_blocksize(bdev, CD_FRAMESIZE);
2595 
2596 	pkt_init_queue(pd);
2597 
2598 	atomic_set(&pd->cdrw.pending_bios, 0);
2599 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2600 	if (IS_ERR(pd->cdrw.thread)) {
2601 		pkt_err(pd, "can't start kernel thread\n");
2602 		ret = -ENOMEM;
2603 		goto out_mem;
2604 	}
2605 
2606 	proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2607 	pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2608 	return 0;
2609 
2610 out_mem:
2611 	blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2612 	/* This is safe: open() is still holding a reference. */
2613 	module_put(THIS_MODULE);
2614 	return ret;
2615 }
2616 
2617 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2618 {
2619 	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2620 	int ret;
2621 
2622 	pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2623 		cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2624 
2625 	mutex_lock(&pktcdvd_mutex);
2626 	switch (cmd) {
2627 	case CDROMEJECT:
2628 		/*
2629 		 * The door gets locked when the device is opened, so we
2630 		 * have to unlock it or else the eject command fails.
2631 		 */
2632 		if (pd->refcnt == 1)
2633 			pkt_lock_door(pd, 0);
2634 		/* fallthru */
2635 	/*
2636 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2637 	 */
2638 	case CDROMMULTISESSION:
2639 	case CDROMREADTOCENTRY:
2640 	case CDROM_LAST_WRITTEN:
2641 	case CDROM_SEND_PACKET:
2642 	case SCSI_IOCTL_SEND_COMMAND:
2643 		ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2644 		break;
2645 
2646 	default:
2647 		pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2648 		ret = -ENOTTY;
2649 	}
2650 	mutex_unlock(&pktcdvd_mutex);
2651 
2652 	return ret;
2653 }
2654 
2655 static unsigned int pkt_check_events(struct gendisk *disk,
2656 				     unsigned int clearing)
2657 {
2658 	struct pktcdvd_device *pd = disk->private_data;
2659 	struct gendisk *attached_disk;
2660 
2661 	if (!pd)
2662 		return 0;
2663 	if (!pd->bdev)
2664 		return 0;
2665 	attached_disk = pd->bdev->bd_disk;
2666 	if (!attached_disk || !attached_disk->fops->check_events)
2667 		return 0;
2668 	return attached_disk->fops->check_events(attached_disk, clearing);
2669 }
2670 
2671 static const struct block_device_operations pktcdvd_ops = {
2672 	.owner =		THIS_MODULE,
2673 	.open =			pkt_open,
2674 	.release =		pkt_close,
2675 	.ioctl =		pkt_ioctl,
2676 	.check_events =		pkt_check_events,
2677 };
2678 
2679 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2680 {
2681 	return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2682 }
2683 
2684 /*
2685  * Set up mapping from pktcdvd device to CD-ROM device.
2686  */
2687 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2688 {
2689 	int idx;
2690 	int ret = -ENOMEM;
2691 	struct pktcdvd_device *pd;
2692 	struct gendisk *disk;
2693 
2694 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2695 
2696 	for (idx = 0; idx < MAX_WRITERS; idx++)
2697 		if (!pkt_devs[idx])
2698 			break;
2699 	if (idx == MAX_WRITERS) {
2700 		pr_err("max %d writers supported\n", MAX_WRITERS);
2701 		ret = -EBUSY;
2702 		goto out_mutex;
2703 	}
2704 
2705 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2706 	if (!pd)
2707 		goto out_mutex;
2708 
2709 	pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2710 						  sizeof(struct pkt_rb_node));
2711 	if (!pd->rb_pool)
2712 		goto out_mem;
2713 
2714 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2715 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2716 	spin_lock_init(&pd->cdrw.active_list_lock);
2717 
2718 	spin_lock_init(&pd->lock);
2719 	spin_lock_init(&pd->iosched.lock);
2720 	bio_list_init(&pd->iosched.read_queue);
2721 	bio_list_init(&pd->iosched.write_queue);
2722 	sprintf(pd->name, DRIVER_NAME"%d", idx);
2723 	init_waitqueue_head(&pd->wqueue);
2724 	pd->bio_queue = RB_ROOT;
2725 
2726 	pd->write_congestion_on  = write_congestion_on;
2727 	pd->write_congestion_off = write_congestion_off;
2728 
2729 	disk = alloc_disk(1);
2730 	if (!disk)
2731 		goto out_mem;
2732 	pd->disk = disk;
2733 	disk->major = pktdev_major;
2734 	disk->first_minor = idx;
2735 	disk->fops = &pktcdvd_ops;
2736 	disk->flags = GENHD_FL_REMOVABLE;
2737 	strcpy(disk->disk_name, pd->name);
2738 	disk->devnode = pktcdvd_devnode;
2739 	disk->private_data = pd;
2740 	disk->queue = blk_alloc_queue(GFP_KERNEL);
2741 	if (!disk->queue)
2742 		goto out_mem2;
2743 
2744 	pd->pkt_dev = MKDEV(pktdev_major, idx);
2745 	ret = pkt_new_dev(pd, dev);
2746 	if (ret)
2747 		goto out_new_dev;
2748 
2749 	/* inherit events of the host device */
2750 	disk->events = pd->bdev->bd_disk->events;
2751 	disk->async_events = pd->bdev->bd_disk->async_events;
2752 
2753 	add_disk(disk);
2754 
2755 	pkt_sysfs_dev_new(pd);
2756 	pkt_debugfs_dev_new(pd);
2757 
2758 	pkt_devs[idx] = pd;
2759 	if (pkt_dev)
2760 		*pkt_dev = pd->pkt_dev;
2761 
2762 	mutex_unlock(&ctl_mutex);
2763 	return 0;
2764 
2765 out_new_dev:
2766 	blk_cleanup_queue(disk->queue);
2767 out_mem2:
2768 	put_disk(disk);
2769 out_mem:
2770 	mempool_destroy(pd->rb_pool);
2771 	kfree(pd);
2772 out_mutex:
2773 	mutex_unlock(&ctl_mutex);
2774 	pr_err("setup of pktcdvd device failed\n");
2775 	return ret;
2776 }
2777 
2778 /*
2779  * Tear down mapping from pktcdvd device to CD-ROM device.
2780  */
2781 static int pkt_remove_dev(dev_t pkt_dev)
2782 {
2783 	struct pktcdvd_device *pd;
2784 	int idx;
2785 	int ret = 0;
2786 
2787 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2788 
2789 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2790 		pd = pkt_devs[idx];
2791 		if (pd && (pd->pkt_dev == pkt_dev))
2792 			break;
2793 	}
2794 	if (idx == MAX_WRITERS) {
2795 		pr_debug("dev not setup\n");
2796 		ret = -ENXIO;
2797 		goto out;
2798 	}
2799 
2800 	if (pd->refcnt > 0) {
2801 		ret = -EBUSY;
2802 		goto out;
2803 	}
2804 	if (!IS_ERR(pd->cdrw.thread))
2805 		kthread_stop(pd->cdrw.thread);
2806 
2807 	pkt_devs[idx] = NULL;
2808 
2809 	pkt_debugfs_dev_remove(pd);
2810 	pkt_sysfs_dev_remove(pd);
2811 
2812 	blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2813 
2814 	remove_proc_entry(pd->name, pkt_proc);
2815 	pkt_dbg(1, pd, "writer unmapped\n");
2816 
2817 	del_gendisk(pd->disk);
2818 	blk_cleanup_queue(pd->disk->queue);
2819 	put_disk(pd->disk);
2820 
2821 	mempool_destroy(pd->rb_pool);
2822 	kfree(pd);
2823 
2824 	/* This is safe: open() is still holding a reference. */
2825 	module_put(THIS_MODULE);
2826 
2827 out:
2828 	mutex_unlock(&ctl_mutex);
2829 	return ret;
2830 }
2831 
2832 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2833 {
2834 	struct pktcdvd_device *pd;
2835 
2836 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2837 
2838 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2839 	if (pd) {
2840 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2841 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2842 	} else {
2843 		ctrl_cmd->dev = 0;
2844 		ctrl_cmd->pkt_dev = 0;
2845 	}
2846 	ctrl_cmd->num_devices = MAX_WRITERS;
2847 
2848 	mutex_unlock(&ctl_mutex);
2849 }
2850 
2851 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2852 {
2853 	void __user *argp = (void __user *)arg;
2854 	struct pkt_ctrl_command ctrl_cmd;
2855 	int ret = 0;
2856 	dev_t pkt_dev = 0;
2857 
2858 	if (cmd != PACKET_CTRL_CMD)
2859 		return -ENOTTY;
2860 
2861 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2862 		return -EFAULT;
2863 
2864 	switch (ctrl_cmd.command) {
2865 	case PKT_CTRL_CMD_SETUP:
2866 		if (!capable(CAP_SYS_ADMIN))
2867 			return -EPERM;
2868 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2869 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2870 		break;
2871 	case PKT_CTRL_CMD_TEARDOWN:
2872 		if (!capable(CAP_SYS_ADMIN))
2873 			return -EPERM;
2874 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2875 		break;
2876 	case PKT_CTRL_CMD_STATUS:
2877 		pkt_get_status(&ctrl_cmd);
2878 		break;
2879 	default:
2880 		return -ENOTTY;
2881 	}
2882 
2883 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2884 		return -EFAULT;
2885 	return ret;
2886 }
2887 
2888 #ifdef CONFIG_COMPAT
2889 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2890 {
2891 	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2892 }
2893 #endif
2894 
2895 static const struct file_operations pkt_ctl_fops = {
2896 	.open		= nonseekable_open,
2897 	.unlocked_ioctl	= pkt_ctl_ioctl,
2898 #ifdef CONFIG_COMPAT
2899 	.compat_ioctl	= pkt_ctl_compat_ioctl,
2900 #endif
2901 	.owner		= THIS_MODULE,
2902 	.llseek		= no_llseek,
2903 };
2904 
2905 static struct miscdevice pkt_misc = {
2906 	.minor 		= MISC_DYNAMIC_MINOR,
2907 	.name  		= DRIVER_NAME,
2908 	.nodename	= "pktcdvd/control",
2909 	.fops  		= &pkt_ctl_fops
2910 };
2911 
2912 static int __init pkt_init(void)
2913 {
2914 	int ret;
2915 
2916 	mutex_init(&ctl_mutex);
2917 
2918 	psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2919 					sizeof(struct packet_stacked_data));
2920 	if (!psd_pool)
2921 		return -ENOMEM;
2922 
2923 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2924 	if (ret < 0) {
2925 		pr_err("unable to register block device\n");
2926 		goto out2;
2927 	}
2928 	if (!pktdev_major)
2929 		pktdev_major = ret;
2930 
2931 	ret = pkt_sysfs_init();
2932 	if (ret)
2933 		goto out;
2934 
2935 	pkt_debugfs_init();
2936 
2937 	ret = misc_register(&pkt_misc);
2938 	if (ret) {
2939 		pr_err("unable to register misc device\n");
2940 		goto out_misc;
2941 	}
2942 
2943 	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2944 
2945 	return 0;
2946 
2947 out_misc:
2948 	pkt_debugfs_cleanup();
2949 	pkt_sysfs_cleanup();
2950 out:
2951 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2952 out2:
2953 	mempool_destroy(psd_pool);
2954 	return ret;
2955 }
2956 
2957 static void __exit pkt_exit(void)
2958 {
2959 	remove_proc_entry("driver/"DRIVER_NAME, NULL);
2960 	misc_deregister(&pkt_misc);
2961 
2962 	pkt_debugfs_cleanup();
2963 	pkt_sysfs_cleanup();
2964 
2965 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2966 	mempool_destroy(psd_pool);
2967 }
2968 
2969 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2970 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2971 MODULE_LICENSE("GPL");
2972 
2973 module_init(pkt_init);
2974 module_exit(pkt_exit);
2975