1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom make_request_fn function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #include <linux/pktcdvd.h> 48 #include <linux/module.h> 49 #include <linux/types.h> 50 #include <linux/kernel.h> 51 #include <linux/compat.h> 52 #include <linux/kthread.h> 53 #include <linux/errno.h> 54 #include <linux/spinlock.h> 55 #include <linux/file.h> 56 #include <linux/proc_fs.h> 57 #include <linux/seq_file.h> 58 #include <linux/miscdevice.h> 59 #include <linux/freezer.h> 60 #include <linux/mutex.h> 61 #include <linux/slab.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_ioctl.h> 64 #include <scsi/scsi.h> 65 #include <linux/debugfs.h> 66 #include <linux/device.h> 67 68 #include <asm/uaccess.h> 69 70 #define DRIVER_NAME "pktcdvd" 71 72 #if PACKET_DEBUG 73 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 74 #else 75 #define DPRINTK(fmt, args...) 76 #endif 77 78 #if PACKET_DEBUG > 1 79 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 80 #else 81 #define VPRINTK(fmt, args...) 82 #endif 83 84 #define MAX_SPEED 0xffff 85 86 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1)) 87 88 static DEFINE_MUTEX(pktcdvd_mutex); 89 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 90 static struct proc_dir_entry *pkt_proc; 91 static int pktdev_major; 92 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 93 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 94 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 95 static mempool_t *psd_pool; 96 97 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */ 98 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */ 99 100 /* forward declaration */ 101 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 102 static int pkt_remove_dev(dev_t pkt_dev); 103 static int pkt_seq_show(struct seq_file *m, void *p); 104 105 106 107 /* 108 * create and register a pktcdvd kernel object. 109 */ 110 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd, 111 const char* name, 112 struct kobject* parent, 113 struct kobj_type* ktype) 114 { 115 struct pktcdvd_kobj *p; 116 int error; 117 118 p = kzalloc(sizeof(*p), GFP_KERNEL); 119 if (!p) 120 return NULL; 121 p->pd = pd; 122 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name); 123 if (error) { 124 kobject_put(&p->kobj); 125 return NULL; 126 } 127 kobject_uevent(&p->kobj, KOBJ_ADD); 128 return p; 129 } 130 /* 131 * remove a pktcdvd kernel object. 132 */ 133 static void pkt_kobj_remove(struct pktcdvd_kobj *p) 134 { 135 if (p) 136 kobject_put(&p->kobj); 137 } 138 /* 139 * default release function for pktcdvd kernel objects. 140 */ 141 static void pkt_kobj_release(struct kobject *kobj) 142 { 143 kfree(to_pktcdvdkobj(kobj)); 144 } 145 146 147 /********************************************************** 148 * 149 * sysfs interface for pktcdvd 150 * by (C) 2006 Thomas Maier <balagi@justmail.de> 151 * 152 **********************************************************/ 153 154 #define DEF_ATTR(_obj,_name,_mode) \ 155 static struct attribute _obj = { .name = _name, .mode = _mode } 156 157 /********************************************************** 158 /sys/class/pktcdvd/pktcdvd[0-7]/ 159 stat/reset 160 stat/packets_started 161 stat/packets_finished 162 stat/kb_written 163 stat/kb_read 164 stat/kb_read_gather 165 write_queue/size 166 write_queue/congestion_off 167 write_queue/congestion_on 168 **********************************************************/ 169 170 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200); 171 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444); 172 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444); 173 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444); 174 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444); 175 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444); 176 177 static struct attribute *kobj_pkt_attrs_stat[] = { 178 &kobj_pkt_attr_st1, 179 &kobj_pkt_attr_st2, 180 &kobj_pkt_attr_st3, 181 &kobj_pkt_attr_st4, 182 &kobj_pkt_attr_st5, 183 &kobj_pkt_attr_st6, 184 NULL 185 }; 186 187 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444); 188 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644); 189 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644); 190 191 static struct attribute *kobj_pkt_attrs_wqueue[] = { 192 &kobj_pkt_attr_wq1, 193 &kobj_pkt_attr_wq2, 194 &kobj_pkt_attr_wq3, 195 NULL 196 }; 197 198 static ssize_t kobj_pkt_show(struct kobject *kobj, 199 struct attribute *attr, char *data) 200 { 201 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 202 int n = 0; 203 int v; 204 if (strcmp(attr->name, "packets_started") == 0) { 205 n = sprintf(data, "%lu\n", pd->stats.pkt_started); 206 207 } else if (strcmp(attr->name, "packets_finished") == 0) { 208 n = sprintf(data, "%lu\n", pd->stats.pkt_ended); 209 210 } else if (strcmp(attr->name, "kb_written") == 0) { 211 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1); 212 213 } else if (strcmp(attr->name, "kb_read") == 0) { 214 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1); 215 216 } else if (strcmp(attr->name, "kb_read_gather") == 0) { 217 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1); 218 219 } else if (strcmp(attr->name, "size") == 0) { 220 spin_lock(&pd->lock); 221 v = pd->bio_queue_size; 222 spin_unlock(&pd->lock); 223 n = sprintf(data, "%d\n", v); 224 225 } else if (strcmp(attr->name, "congestion_off") == 0) { 226 spin_lock(&pd->lock); 227 v = pd->write_congestion_off; 228 spin_unlock(&pd->lock); 229 n = sprintf(data, "%d\n", v); 230 231 } else if (strcmp(attr->name, "congestion_on") == 0) { 232 spin_lock(&pd->lock); 233 v = pd->write_congestion_on; 234 spin_unlock(&pd->lock); 235 n = sprintf(data, "%d\n", v); 236 } 237 return n; 238 } 239 240 static void init_write_congestion_marks(int* lo, int* hi) 241 { 242 if (*hi > 0) { 243 *hi = max(*hi, 500); 244 *hi = min(*hi, 1000000); 245 if (*lo <= 0) 246 *lo = *hi - 100; 247 else { 248 *lo = min(*lo, *hi - 100); 249 *lo = max(*lo, 100); 250 } 251 } else { 252 *hi = -1; 253 *lo = -1; 254 } 255 } 256 257 static ssize_t kobj_pkt_store(struct kobject *kobj, 258 struct attribute *attr, 259 const char *data, size_t len) 260 { 261 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 262 int val; 263 264 if (strcmp(attr->name, "reset") == 0 && len > 0) { 265 pd->stats.pkt_started = 0; 266 pd->stats.pkt_ended = 0; 267 pd->stats.secs_w = 0; 268 pd->stats.secs_rg = 0; 269 pd->stats.secs_r = 0; 270 271 } else if (strcmp(attr->name, "congestion_off") == 0 272 && sscanf(data, "%d", &val) == 1) { 273 spin_lock(&pd->lock); 274 pd->write_congestion_off = val; 275 init_write_congestion_marks(&pd->write_congestion_off, 276 &pd->write_congestion_on); 277 spin_unlock(&pd->lock); 278 279 } else if (strcmp(attr->name, "congestion_on") == 0 280 && sscanf(data, "%d", &val) == 1) { 281 spin_lock(&pd->lock); 282 pd->write_congestion_on = val; 283 init_write_congestion_marks(&pd->write_congestion_off, 284 &pd->write_congestion_on); 285 spin_unlock(&pd->lock); 286 } 287 return len; 288 } 289 290 static const struct sysfs_ops kobj_pkt_ops = { 291 .show = kobj_pkt_show, 292 .store = kobj_pkt_store 293 }; 294 static struct kobj_type kobj_pkt_type_stat = { 295 .release = pkt_kobj_release, 296 .sysfs_ops = &kobj_pkt_ops, 297 .default_attrs = kobj_pkt_attrs_stat 298 }; 299 static struct kobj_type kobj_pkt_type_wqueue = { 300 .release = pkt_kobj_release, 301 .sysfs_ops = &kobj_pkt_ops, 302 .default_attrs = kobj_pkt_attrs_wqueue 303 }; 304 305 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 306 { 307 if (class_pktcdvd) { 308 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL, 309 "%s", pd->name); 310 if (IS_ERR(pd->dev)) 311 pd->dev = NULL; 312 } 313 if (pd->dev) { 314 pd->kobj_stat = pkt_kobj_create(pd, "stat", 315 &pd->dev->kobj, 316 &kobj_pkt_type_stat); 317 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue", 318 &pd->dev->kobj, 319 &kobj_pkt_type_wqueue); 320 } 321 } 322 323 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 324 { 325 pkt_kobj_remove(pd->kobj_stat); 326 pkt_kobj_remove(pd->kobj_wqueue); 327 if (class_pktcdvd) 328 device_unregister(pd->dev); 329 } 330 331 332 /******************************************************************** 333 /sys/class/pktcdvd/ 334 add map block device 335 remove unmap packet dev 336 device_map show mappings 337 *******************************************************************/ 338 339 static void class_pktcdvd_release(struct class *cls) 340 { 341 kfree(cls); 342 } 343 static ssize_t class_pktcdvd_show_map(struct class *c, 344 struct class_attribute *attr, 345 char *data) 346 { 347 int n = 0; 348 int idx; 349 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 350 for (idx = 0; idx < MAX_WRITERS; idx++) { 351 struct pktcdvd_device *pd = pkt_devs[idx]; 352 if (!pd) 353 continue; 354 n += sprintf(data+n, "%s %u:%u %u:%u\n", 355 pd->name, 356 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 357 MAJOR(pd->bdev->bd_dev), 358 MINOR(pd->bdev->bd_dev)); 359 } 360 mutex_unlock(&ctl_mutex); 361 return n; 362 } 363 364 static ssize_t class_pktcdvd_store_add(struct class *c, 365 struct class_attribute *attr, 366 const char *buf, 367 size_t count) 368 { 369 unsigned int major, minor; 370 371 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 372 /* pkt_setup_dev() expects caller to hold reference to self */ 373 if (!try_module_get(THIS_MODULE)) 374 return -ENODEV; 375 376 pkt_setup_dev(MKDEV(major, minor), NULL); 377 378 module_put(THIS_MODULE); 379 380 return count; 381 } 382 383 return -EINVAL; 384 } 385 386 static ssize_t class_pktcdvd_store_remove(struct class *c, 387 struct class_attribute *attr, 388 const char *buf, 389 size_t count) 390 { 391 unsigned int major, minor; 392 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 393 pkt_remove_dev(MKDEV(major, minor)); 394 return count; 395 } 396 return -EINVAL; 397 } 398 399 static struct class_attribute class_pktcdvd_attrs[] = { 400 __ATTR(add, 0200, NULL, class_pktcdvd_store_add), 401 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove), 402 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL), 403 __ATTR_NULL 404 }; 405 406 407 static int pkt_sysfs_init(void) 408 { 409 int ret = 0; 410 411 /* 412 * create control files in sysfs 413 * /sys/class/pktcdvd/... 414 */ 415 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL); 416 if (!class_pktcdvd) 417 return -ENOMEM; 418 class_pktcdvd->name = DRIVER_NAME; 419 class_pktcdvd->owner = THIS_MODULE; 420 class_pktcdvd->class_release = class_pktcdvd_release; 421 class_pktcdvd->class_attrs = class_pktcdvd_attrs; 422 ret = class_register(class_pktcdvd); 423 if (ret) { 424 kfree(class_pktcdvd); 425 class_pktcdvd = NULL; 426 printk(DRIVER_NAME": failed to create class pktcdvd\n"); 427 return ret; 428 } 429 return 0; 430 } 431 432 static void pkt_sysfs_cleanup(void) 433 { 434 if (class_pktcdvd) 435 class_destroy(class_pktcdvd); 436 class_pktcdvd = NULL; 437 } 438 439 /******************************************************************** 440 entries in debugfs 441 442 /sys/kernel/debug/pktcdvd[0-7]/ 443 info 444 445 *******************************************************************/ 446 447 static int pkt_debugfs_seq_show(struct seq_file *m, void *p) 448 { 449 return pkt_seq_show(m, p); 450 } 451 452 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file) 453 { 454 return single_open(file, pkt_debugfs_seq_show, inode->i_private); 455 } 456 457 static const struct file_operations debug_fops = { 458 .open = pkt_debugfs_fops_open, 459 .read = seq_read, 460 .llseek = seq_lseek, 461 .release = single_release, 462 .owner = THIS_MODULE, 463 }; 464 465 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 466 { 467 if (!pkt_debugfs_root) 468 return; 469 pd->dfs_f_info = NULL; 470 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root); 471 if (IS_ERR(pd->dfs_d_root)) { 472 pd->dfs_d_root = NULL; 473 return; 474 } 475 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO, 476 pd->dfs_d_root, pd, &debug_fops); 477 if (IS_ERR(pd->dfs_f_info)) { 478 pd->dfs_f_info = NULL; 479 return; 480 } 481 } 482 483 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 484 { 485 if (!pkt_debugfs_root) 486 return; 487 if (pd->dfs_f_info) 488 debugfs_remove(pd->dfs_f_info); 489 pd->dfs_f_info = NULL; 490 if (pd->dfs_d_root) 491 debugfs_remove(pd->dfs_d_root); 492 pd->dfs_d_root = NULL; 493 } 494 495 static void pkt_debugfs_init(void) 496 { 497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 498 if (IS_ERR(pkt_debugfs_root)) { 499 pkt_debugfs_root = NULL; 500 return; 501 } 502 } 503 504 static void pkt_debugfs_cleanup(void) 505 { 506 if (!pkt_debugfs_root) 507 return; 508 debugfs_remove(pkt_debugfs_root); 509 pkt_debugfs_root = NULL; 510 } 511 512 /* ----------------------------------------------------------*/ 513 514 515 static void pkt_bio_finished(struct pktcdvd_device *pd) 516 { 517 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 518 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 519 VPRINTK(DRIVER_NAME": queue empty\n"); 520 atomic_set(&pd->iosched.attention, 1); 521 wake_up(&pd->wqueue); 522 } 523 } 524 525 /* 526 * Allocate a packet_data struct 527 */ 528 static struct packet_data *pkt_alloc_packet_data(int frames) 529 { 530 int i; 531 struct packet_data *pkt; 532 533 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 534 if (!pkt) 535 goto no_pkt; 536 537 pkt->frames = frames; 538 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames); 539 if (!pkt->w_bio) 540 goto no_bio; 541 542 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 543 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 544 if (!pkt->pages[i]) 545 goto no_page; 546 } 547 548 spin_lock_init(&pkt->lock); 549 bio_list_init(&pkt->orig_bios); 550 551 for (i = 0; i < frames; i++) { 552 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1); 553 if (!bio) 554 goto no_rd_bio; 555 556 pkt->r_bios[i] = bio; 557 } 558 559 return pkt; 560 561 no_rd_bio: 562 for (i = 0; i < frames; i++) { 563 struct bio *bio = pkt->r_bios[i]; 564 if (bio) 565 bio_put(bio); 566 } 567 568 no_page: 569 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 570 if (pkt->pages[i]) 571 __free_page(pkt->pages[i]); 572 bio_put(pkt->w_bio); 573 no_bio: 574 kfree(pkt); 575 no_pkt: 576 return NULL; 577 } 578 579 /* 580 * Free a packet_data struct 581 */ 582 static void pkt_free_packet_data(struct packet_data *pkt) 583 { 584 int i; 585 586 for (i = 0; i < pkt->frames; i++) { 587 struct bio *bio = pkt->r_bios[i]; 588 if (bio) 589 bio_put(bio); 590 } 591 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 592 __free_page(pkt->pages[i]); 593 bio_put(pkt->w_bio); 594 kfree(pkt); 595 } 596 597 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 598 { 599 struct packet_data *pkt, *next; 600 601 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 602 603 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 604 pkt_free_packet_data(pkt); 605 } 606 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 607 } 608 609 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 610 { 611 struct packet_data *pkt; 612 613 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 614 615 while (nr_packets > 0) { 616 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 617 if (!pkt) { 618 pkt_shrink_pktlist(pd); 619 return 0; 620 } 621 pkt->id = nr_packets; 622 pkt->pd = pd; 623 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 624 nr_packets--; 625 } 626 return 1; 627 } 628 629 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 630 { 631 struct rb_node *n = rb_next(&node->rb_node); 632 if (!n) 633 return NULL; 634 return rb_entry(n, struct pkt_rb_node, rb_node); 635 } 636 637 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 638 { 639 rb_erase(&node->rb_node, &pd->bio_queue); 640 mempool_free(node, pd->rb_pool); 641 pd->bio_queue_size--; 642 BUG_ON(pd->bio_queue_size < 0); 643 } 644 645 /* 646 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 647 */ 648 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 649 { 650 struct rb_node *n = pd->bio_queue.rb_node; 651 struct rb_node *next; 652 struct pkt_rb_node *tmp; 653 654 if (!n) { 655 BUG_ON(pd->bio_queue_size > 0); 656 return NULL; 657 } 658 659 for (;;) { 660 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 661 if (s <= tmp->bio->bi_sector) 662 next = n->rb_left; 663 else 664 next = n->rb_right; 665 if (!next) 666 break; 667 n = next; 668 } 669 670 if (s > tmp->bio->bi_sector) { 671 tmp = pkt_rbtree_next(tmp); 672 if (!tmp) 673 return NULL; 674 } 675 BUG_ON(s > tmp->bio->bi_sector); 676 return tmp; 677 } 678 679 /* 680 * Insert a node into the pd->bio_queue rb tree. 681 */ 682 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 683 { 684 struct rb_node **p = &pd->bio_queue.rb_node; 685 struct rb_node *parent = NULL; 686 sector_t s = node->bio->bi_sector; 687 struct pkt_rb_node *tmp; 688 689 while (*p) { 690 parent = *p; 691 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 692 if (s < tmp->bio->bi_sector) 693 p = &(*p)->rb_left; 694 else 695 p = &(*p)->rb_right; 696 } 697 rb_link_node(&node->rb_node, parent, p); 698 rb_insert_color(&node->rb_node, &pd->bio_queue); 699 pd->bio_queue_size++; 700 } 701 702 /* 703 * Send a packet_command to the underlying block device and 704 * wait for completion. 705 */ 706 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 707 { 708 struct request_queue *q = bdev_get_queue(pd->bdev); 709 struct request *rq; 710 int ret = 0; 711 712 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 713 WRITE : READ, __GFP_WAIT); 714 715 if (cgc->buflen) { 716 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT)) 717 goto out; 718 } 719 720 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 721 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE); 722 723 rq->timeout = 60*HZ; 724 rq->cmd_type = REQ_TYPE_BLOCK_PC; 725 if (cgc->quiet) 726 rq->cmd_flags |= REQ_QUIET; 727 728 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0); 729 if (rq->errors) 730 ret = -EIO; 731 out: 732 blk_put_request(rq); 733 return ret; 734 } 735 736 /* 737 * A generic sense dump / resolve mechanism should be implemented across 738 * all ATAPI + SCSI devices. 739 */ 740 static void pkt_dump_sense(struct packet_command *cgc) 741 { 742 static char *info[9] = { "No sense", "Recovered error", "Not ready", 743 "Medium error", "Hardware error", "Illegal request", 744 "Unit attention", "Data protect", "Blank check" }; 745 int i; 746 struct request_sense *sense = cgc->sense; 747 748 printk(DRIVER_NAME":"); 749 for (i = 0; i < CDROM_PACKET_SIZE; i++) 750 printk(" %02x", cgc->cmd[i]); 751 printk(" - "); 752 753 if (sense == NULL) { 754 printk("no sense\n"); 755 return; 756 } 757 758 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq); 759 760 if (sense->sense_key > 8) { 761 printk(" (INVALID)\n"); 762 return; 763 } 764 765 printk(" (%s)\n", info[sense->sense_key]); 766 } 767 768 /* 769 * flush the drive cache to media 770 */ 771 static int pkt_flush_cache(struct pktcdvd_device *pd) 772 { 773 struct packet_command cgc; 774 775 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 776 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 777 cgc.quiet = 1; 778 779 /* 780 * the IMMED bit -- we default to not setting it, although that 781 * would allow a much faster close, this is safer 782 */ 783 #if 0 784 cgc.cmd[1] = 1 << 1; 785 #endif 786 return pkt_generic_packet(pd, &cgc); 787 } 788 789 /* 790 * speed is given as the normal factor, e.g. 4 for 4x 791 */ 792 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd, 793 unsigned write_speed, unsigned read_speed) 794 { 795 struct packet_command cgc; 796 struct request_sense sense; 797 int ret; 798 799 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 800 cgc.sense = &sense; 801 cgc.cmd[0] = GPCMD_SET_SPEED; 802 cgc.cmd[2] = (read_speed >> 8) & 0xff; 803 cgc.cmd[3] = read_speed & 0xff; 804 cgc.cmd[4] = (write_speed >> 8) & 0xff; 805 cgc.cmd[5] = write_speed & 0xff; 806 807 if ((ret = pkt_generic_packet(pd, &cgc))) 808 pkt_dump_sense(&cgc); 809 810 return ret; 811 } 812 813 /* 814 * Queue a bio for processing by the low-level CD device. Must be called 815 * from process context. 816 */ 817 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 818 { 819 spin_lock(&pd->iosched.lock); 820 if (bio_data_dir(bio) == READ) 821 bio_list_add(&pd->iosched.read_queue, bio); 822 else 823 bio_list_add(&pd->iosched.write_queue, bio); 824 spin_unlock(&pd->iosched.lock); 825 826 atomic_set(&pd->iosched.attention, 1); 827 wake_up(&pd->wqueue); 828 } 829 830 /* 831 * Process the queued read/write requests. This function handles special 832 * requirements for CDRW drives: 833 * - A cache flush command must be inserted before a read request if the 834 * previous request was a write. 835 * - Switching between reading and writing is slow, so don't do it more often 836 * than necessary. 837 * - Optimize for throughput at the expense of latency. This means that streaming 838 * writes will never be interrupted by a read, but if the drive has to seek 839 * before the next write, switch to reading instead if there are any pending 840 * read requests. 841 * - Set the read speed according to current usage pattern. When only reading 842 * from the device, it's best to use the highest possible read speed, but 843 * when switching often between reading and writing, it's better to have the 844 * same read and write speeds. 845 */ 846 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 847 { 848 849 if (atomic_read(&pd->iosched.attention) == 0) 850 return; 851 atomic_set(&pd->iosched.attention, 0); 852 853 for (;;) { 854 struct bio *bio; 855 int reads_queued, writes_queued; 856 857 spin_lock(&pd->iosched.lock); 858 reads_queued = !bio_list_empty(&pd->iosched.read_queue); 859 writes_queued = !bio_list_empty(&pd->iosched.write_queue); 860 spin_unlock(&pd->iosched.lock); 861 862 if (!reads_queued && !writes_queued) 863 break; 864 865 if (pd->iosched.writing) { 866 int need_write_seek = 1; 867 spin_lock(&pd->iosched.lock); 868 bio = bio_list_peek(&pd->iosched.write_queue); 869 spin_unlock(&pd->iosched.lock); 870 if (bio && (bio->bi_sector == pd->iosched.last_write)) 871 need_write_seek = 0; 872 if (need_write_seek && reads_queued) { 873 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 874 VPRINTK(DRIVER_NAME": write, waiting\n"); 875 break; 876 } 877 pkt_flush_cache(pd); 878 pd->iosched.writing = 0; 879 } 880 } else { 881 if (!reads_queued && writes_queued) { 882 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 883 VPRINTK(DRIVER_NAME": read, waiting\n"); 884 break; 885 } 886 pd->iosched.writing = 1; 887 } 888 } 889 890 spin_lock(&pd->iosched.lock); 891 if (pd->iosched.writing) 892 bio = bio_list_pop(&pd->iosched.write_queue); 893 else 894 bio = bio_list_pop(&pd->iosched.read_queue); 895 spin_unlock(&pd->iosched.lock); 896 897 if (!bio) 898 continue; 899 900 if (bio_data_dir(bio) == READ) 901 pd->iosched.successive_reads += bio->bi_size >> 10; 902 else { 903 pd->iosched.successive_reads = 0; 904 pd->iosched.last_write = bio_end_sector(bio); 905 } 906 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 907 if (pd->read_speed == pd->write_speed) { 908 pd->read_speed = MAX_SPEED; 909 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 910 } 911 } else { 912 if (pd->read_speed != pd->write_speed) { 913 pd->read_speed = pd->write_speed; 914 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 915 } 916 } 917 918 atomic_inc(&pd->cdrw.pending_bios); 919 generic_make_request(bio); 920 } 921 } 922 923 /* 924 * Special care is needed if the underlying block device has a small 925 * max_phys_segments value. 926 */ 927 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q) 928 { 929 if ((pd->settings.size << 9) / CD_FRAMESIZE 930 <= queue_max_segments(q)) { 931 /* 932 * The cdrom device can handle one segment/frame 933 */ 934 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 935 return 0; 936 } else if ((pd->settings.size << 9) / PAGE_SIZE 937 <= queue_max_segments(q)) { 938 /* 939 * We can handle this case at the expense of some extra memory 940 * copies during write operations 941 */ 942 set_bit(PACKET_MERGE_SEGS, &pd->flags); 943 return 0; 944 } else { 945 printk(DRIVER_NAME": cdrom max_phys_segments too small\n"); 946 return -EIO; 947 } 948 } 949 950 /* 951 * Copy all data for this packet to pkt->pages[], so that 952 * a) The number of required segments for the write bio is minimized, which 953 * is necessary for some scsi controllers. 954 * b) The data can be used as cache to avoid read requests if we receive a 955 * new write request for the same zone. 956 */ 957 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec) 958 { 959 int f, p, offs; 960 961 /* Copy all data to pkt->pages[] */ 962 p = 0; 963 offs = 0; 964 for (f = 0; f < pkt->frames; f++) { 965 if (bvec[f].bv_page != pkt->pages[p]) { 966 void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset; 967 void *vto = page_address(pkt->pages[p]) + offs; 968 memcpy(vto, vfrom, CD_FRAMESIZE); 969 kunmap_atomic(vfrom); 970 bvec[f].bv_page = pkt->pages[p]; 971 bvec[f].bv_offset = offs; 972 } else { 973 BUG_ON(bvec[f].bv_offset != offs); 974 } 975 offs += CD_FRAMESIZE; 976 if (offs >= PAGE_SIZE) { 977 offs = 0; 978 p++; 979 } 980 } 981 } 982 983 static void pkt_end_io_read(struct bio *bio, int err) 984 { 985 struct packet_data *pkt = bio->bi_private; 986 struct pktcdvd_device *pd = pkt->pd; 987 BUG_ON(!pd); 988 989 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio, 990 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err); 991 992 if (err) 993 atomic_inc(&pkt->io_errors); 994 if (atomic_dec_and_test(&pkt->io_wait)) { 995 atomic_inc(&pkt->run_sm); 996 wake_up(&pd->wqueue); 997 } 998 pkt_bio_finished(pd); 999 } 1000 1001 static void pkt_end_io_packet_write(struct bio *bio, int err) 1002 { 1003 struct packet_data *pkt = bio->bi_private; 1004 struct pktcdvd_device *pd = pkt->pd; 1005 BUG_ON(!pd); 1006 1007 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err); 1008 1009 pd->stats.pkt_ended++; 1010 1011 pkt_bio_finished(pd); 1012 atomic_dec(&pkt->io_wait); 1013 atomic_inc(&pkt->run_sm); 1014 wake_up(&pd->wqueue); 1015 } 1016 1017 /* 1018 * Schedule reads for the holes in a packet 1019 */ 1020 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1021 { 1022 int frames_read = 0; 1023 struct bio *bio; 1024 int f; 1025 char written[PACKET_MAX_SIZE]; 1026 1027 BUG_ON(bio_list_empty(&pkt->orig_bios)); 1028 1029 atomic_set(&pkt->io_wait, 0); 1030 atomic_set(&pkt->io_errors, 0); 1031 1032 /* 1033 * Figure out which frames we need to read before we can write. 1034 */ 1035 memset(written, 0, sizeof(written)); 1036 spin_lock(&pkt->lock); 1037 bio_list_for_each(bio, &pkt->orig_bios) { 1038 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1039 int num_frames = bio->bi_size / CD_FRAMESIZE; 1040 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 1041 BUG_ON(first_frame < 0); 1042 BUG_ON(first_frame + num_frames > pkt->frames); 1043 for (f = first_frame; f < first_frame + num_frames; f++) 1044 written[f] = 1; 1045 } 1046 spin_unlock(&pkt->lock); 1047 1048 if (pkt->cache_valid) { 1049 VPRINTK("pkt_gather_data: zone %llx cached\n", 1050 (unsigned long long)pkt->sector); 1051 goto out_account; 1052 } 1053 1054 /* 1055 * Schedule reads for missing parts of the packet. 1056 */ 1057 for (f = 0; f < pkt->frames; f++) { 1058 int p, offset; 1059 1060 if (written[f]) 1061 continue; 1062 1063 bio = pkt->r_bios[f]; 1064 bio_reset(bio); 1065 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1066 bio->bi_bdev = pd->bdev; 1067 bio->bi_end_io = pkt_end_io_read; 1068 bio->bi_private = pkt; 1069 1070 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1071 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1072 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n", 1073 f, pkt->pages[p], offset); 1074 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1075 BUG(); 1076 1077 atomic_inc(&pkt->io_wait); 1078 bio->bi_rw = READ; 1079 pkt_queue_bio(pd, bio); 1080 frames_read++; 1081 } 1082 1083 out_account: 1084 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n", 1085 frames_read, (unsigned long long)pkt->sector); 1086 pd->stats.pkt_started++; 1087 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1088 } 1089 1090 /* 1091 * Find a packet matching zone, or the least recently used packet if 1092 * there is no match. 1093 */ 1094 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1095 { 1096 struct packet_data *pkt; 1097 1098 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1099 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1100 list_del_init(&pkt->list); 1101 if (pkt->sector != zone) 1102 pkt->cache_valid = 0; 1103 return pkt; 1104 } 1105 } 1106 BUG(); 1107 return NULL; 1108 } 1109 1110 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1111 { 1112 if (pkt->cache_valid) { 1113 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1114 } else { 1115 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1116 } 1117 } 1118 1119 /* 1120 * recover a failed write, query for relocation if possible 1121 * 1122 * returns 1 if recovery is possible, or 0 if not 1123 * 1124 */ 1125 static int pkt_start_recovery(struct packet_data *pkt) 1126 { 1127 /* 1128 * FIXME. We need help from the file system to implement 1129 * recovery handling. 1130 */ 1131 return 0; 1132 #if 0 1133 struct request *rq = pkt->rq; 1134 struct pktcdvd_device *pd = rq->rq_disk->private_data; 1135 struct block_device *pkt_bdev; 1136 struct super_block *sb = NULL; 1137 unsigned long old_block, new_block; 1138 sector_t new_sector; 1139 1140 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 1141 if (pkt_bdev) { 1142 sb = get_super(pkt_bdev); 1143 bdput(pkt_bdev); 1144 } 1145 1146 if (!sb) 1147 return 0; 1148 1149 if (!sb->s_op->relocate_blocks) 1150 goto out; 1151 1152 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 1153 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 1154 goto out; 1155 1156 new_sector = new_block * (CD_FRAMESIZE >> 9); 1157 pkt->sector = new_sector; 1158 1159 bio_reset(pkt->bio); 1160 pkt->bio->bi_bdev = pd->bdev; 1161 pkt->bio->bi_rw = REQ_WRITE; 1162 pkt->bio->bi_sector = new_sector; 1163 pkt->bio->bi_size = pkt->frames * CD_FRAMESIZE; 1164 pkt->bio->bi_vcnt = pkt->frames; 1165 1166 pkt->bio->bi_end_io = pkt_end_io_packet_write; 1167 pkt->bio->bi_private = pkt; 1168 1169 drop_super(sb); 1170 return 1; 1171 1172 out: 1173 drop_super(sb); 1174 return 0; 1175 #endif 1176 } 1177 1178 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 1179 { 1180 #if PACKET_DEBUG > 1 1181 static const char *state_name[] = { 1182 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1183 }; 1184 enum packet_data_state old_state = pkt->state; 1185 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector, 1186 state_name[old_state], state_name[state]); 1187 #endif 1188 pkt->state = state; 1189 } 1190 1191 /* 1192 * Scan the work queue to see if we can start a new packet. 1193 * returns non-zero if any work was done. 1194 */ 1195 static int pkt_handle_queue(struct pktcdvd_device *pd) 1196 { 1197 struct packet_data *pkt, *p; 1198 struct bio *bio = NULL; 1199 sector_t zone = 0; /* Suppress gcc warning */ 1200 struct pkt_rb_node *node, *first_node; 1201 struct rb_node *n; 1202 int wakeup; 1203 1204 VPRINTK("handle_queue\n"); 1205 1206 atomic_set(&pd->scan_queue, 0); 1207 1208 if (list_empty(&pd->cdrw.pkt_free_list)) { 1209 VPRINTK("handle_queue: no pkt\n"); 1210 return 0; 1211 } 1212 1213 /* 1214 * Try to find a zone we are not already working on. 1215 */ 1216 spin_lock(&pd->lock); 1217 first_node = pkt_rbtree_find(pd, pd->current_sector); 1218 if (!first_node) { 1219 n = rb_first(&pd->bio_queue); 1220 if (n) 1221 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1222 } 1223 node = first_node; 1224 while (node) { 1225 bio = node->bio; 1226 zone = ZONE(bio->bi_sector, pd); 1227 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1228 if (p->sector == zone) { 1229 bio = NULL; 1230 goto try_next_bio; 1231 } 1232 } 1233 break; 1234 try_next_bio: 1235 node = pkt_rbtree_next(node); 1236 if (!node) { 1237 n = rb_first(&pd->bio_queue); 1238 if (n) 1239 node = rb_entry(n, struct pkt_rb_node, rb_node); 1240 } 1241 if (node == first_node) 1242 node = NULL; 1243 } 1244 spin_unlock(&pd->lock); 1245 if (!bio) { 1246 VPRINTK("handle_queue: no bio\n"); 1247 return 0; 1248 } 1249 1250 pkt = pkt_get_packet_data(pd, zone); 1251 1252 pd->current_sector = zone + pd->settings.size; 1253 pkt->sector = zone; 1254 BUG_ON(pkt->frames != pd->settings.size >> 2); 1255 pkt->write_size = 0; 1256 1257 /* 1258 * Scan work queue for bios in the same zone and link them 1259 * to this packet. 1260 */ 1261 spin_lock(&pd->lock); 1262 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone); 1263 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1264 bio = node->bio; 1265 VPRINTK("pkt_handle_queue: found zone=%llx\n", 1266 (unsigned long long)ZONE(bio->bi_sector, pd)); 1267 if (ZONE(bio->bi_sector, pd) != zone) 1268 break; 1269 pkt_rbtree_erase(pd, node); 1270 spin_lock(&pkt->lock); 1271 bio_list_add(&pkt->orig_bios, bio); 1272 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 1273 spin_unlock(&pkt->lock); 1274 } 1275 /* check write congestion marks, and if bio_queue_size is 1276 below, wake up any waiters */ 1277 wakeup = (pd->write_congestion_on > 0 1278 && pd->bio_queue_size <= pd->write_congestion_off); 1279 spin_unlock(&pd->lock); 1280 if (wakeup) { 1281 clear_bdi_congested(&pd->disk->queue->backing_dev_info, 1282 BLK_RW_ASYNC); 1283 } 1284 1285 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1286 pkt_set_state(pkt, PACKET_WAITING_STATE); 1287 atomic_set(&pkt->run_sm, 1); 1288 1289 spin_lock(&pd->cdrw.active_list_lock); 1290 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1291 spin_unlock(&pd->cdrw.active_list_lock); 1292 1293 return 1; 1294 } 1295 1296 /* 1297 * Assemble a bio to write one packet and queue the bio for processing 1298 * by the underlying block device. 1299 */ 1300 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1301 { 1302 int f; 1303 struct bio_vec *bvec = pkt->w_bio->bi_io_vec; 1304 1305 bio_reset(pkt->w_bio); 1306 pkt->w_bio->bi_sector = pkt->sector; 1307 pkt->w_bio->bi_bdev = pd->bdev; 1308 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1309 pkt->w_bio->bi_private = pkt; 1310 1311 /* XXX: locking? */ 1312 for (f = 0; f < pkt->frames; f++) { 1313 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1314 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1315 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset)) 1316 BUG(); 1317 } 1318 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt); 1319 1320 /* 1321 * Fill-in bvec with data from orig_bios. 1322 */ 1323 spin_lock(&pkt->lock); 1324 bio_copy_data(pkt->w_bio, pkt->orig_bios.head); 1325 1326 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1327 spin_unlock(&pkt->lock); 1328 1329 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n", 1330 pkt->write_size, (unsigned long long)pkt->sector); 1331 1332 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) { 1333 pkt_make_local_copy(pkt, bvec); 1334 pkt->cache_valid = 1; 1335 } else { 1336 pkt->cache_valid = 0; 1337 } 1338 1339 /* Start the write request */ 1340 atomic_set(&pkt->io_wait, 1); 1341 pkt->w_bio->bi_rw = WRITE; 1342 pkt_queue_bio(pd, pkt->w_bio); 1343 } 1344 1345 static void pkt_finish_packet(struct packet_data *pkt, int uptodate) 1346 { 1347 struct bio *bio; 1348 1349 if (!uptodate) 1350 pkt->cache_valid = 0; 1351 1352 /* Finish all bios corresponding to this packet */ 1353 while ((bio = bio_list_pop(&pkt->orig_bios))) 1354 bio_endio(bio, uptodate ? 0 : -EIO); 1355 } 1356 1357 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1358 { 1359 int uptodate; 1360 1361 VPRINTK("run_state_machine: pkt %d\n", pkt->id); 1362 1363 for (;;) { 1364 switch (pkt->state) { 1365 case PACKET_WAITING_STATE: 1366 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1367 return; 1368 1369 pkt->sleep_time = 0; 1370 pkt_gather_data(pd, pkt); 1371 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1372 break; 1373 1374 case PACKET_READ_WAIT_STATE: 1375 if (atomic_read(&pkt->io_wait) > 0) 1376 return; 1377 1378 if (atomic_read(&pkt->io_errors) > 0) { 1379 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1380 } else { 1381 pkt_start_write(pd, pkt); 1382 } 1383 break; 1384 1385 case PACKET_WRITE_WAIT_STATE: 1386 if (atomic_read(&pkt->io_wait) > 0) 1387 return; 1388 1389 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) { 1390 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1391 } else { 1392 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1393 } 1394 break; 1395 1396 case PACKET_RECOVERY_STATE: 1397 if (pkt_start_recovery(pkt)) { 1398 pkt_start_write(pd, pkt); 1399 } else { 1400 VPRINTK("No recovery possible\n"); 1401 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1402 } 1403 break; 1404 1405 case PACKET_FINISHED_STATE: 1406 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags); 1407 pkt_finish_packet(pkt, uptodate); 1408 return; 1409 1410 default: 1411 BUG(); 1412 break; 1413 } 1414 } 1415 } 1416 1417 static void pkt_handle_packets(struct pktcdvd_device *pd) 1418 { 1419 struct packet_data *pkt, *next; 1420 1421 VPRINTK("pkt_handle_packets\n"); 1422 1423 /* 1424 * Run state machine for active packets 1425 */ 1426 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1427 if (atomic_read(&pkt->run_sm) > 0) { 1428 atomic_set(&pkt->run_sm, 0); 1429 pkt_run_state_machine(pd, pkt); 1430 } 1431 } 1432 1433 /* 1434 * Move no longer active packets to the free list 1435 */ 1436 spin_lock(&pd->cdrw.active_list_lock); 1437 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1438 if (pkt->state == PACKET_FINISHED_STATE) { 1439 list_del(&pkt->list); 1440 pkt_put_packet_data(pd, pkt); 1441 pkt_set_state(pkt, PACKET_IDLE_STATE); 1442 atomic_set(&pd->scan_queue, 1); 1443 } 1444 } 1445 spin_unlock(&pd->cdrw.active_list_lock); 1446 } 1447 1448 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1449 { 1450 struct packet_data *pkt; 1451 int i; 1452 1453 for (i = 0; i < PACKET_NUM_STATES; i++) 1454 states[i] = 0; 1455 1456 spin_lock(&pd->cdrw.active_list_lock); 1457 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1458 states[pkt->state]++; 1459 } 1460 spin_unlock(&pd->cdrw.active_list_lock); 1461 } 1462 1463 /* 1464 * kcdrwd is woken up when writes have been queued for one of our 1465 * registered devices 1466 */ 1467 static int kcdrwd(void *foobar) 1468 { 1469 struct pktcdvd_device *pd = foobar; 1470 struct packet_data *pkt; 1471 long min_sleep_time, residue; 1472 1473 set_user_nice(current, -20); 1474 set_freezable(); 1475 1476 for (;;) { 1477 DECLARE_WAITQUEUE(wait, current); 1478 1479 /* 1480 * Wait until there is something to do 1481 */ 1482 add_wait_queue(&pd->wqueue, &wait); 1483 for (;;) { 1484 set_current_state(TASK_INTERRUPTIBLE); 1485 1486 /* Check if we need to run pkt_handle_queue */ 1487 if (atomic_read(&pd->scan_queue) > 0) 1488 goto work_to_do; 1489 1490 /* Check if we need to run the state machine for some packet */ 1491 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1492 if (atomic_read(&pkt->run_sm) > 0) 1493 goto work_to_do; 1494 } 1495 1496 /* Check if we need to process the iosched queues */ 1497 if (atomic_read(&pd->iosched.attention) != 0) 1498 goto work_to_do; 1499 1500 /* Otherwise, go to sleep */ 1501 if (PACKET_DEBUG > 1) { 1502 int states[PACKET_NUM_STATES]; 1503 pkt_count_states(pd, states); 1504 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1505 states[0], states[1], states[2], states[3], 1506 states[4], states[5]); 1507 } 1508 1509 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1510 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1511 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1512 min_sleep_time = pkt->sleep_time; 1513 } 1514 1515 VPRINTK("kcdrwd: sleeping\n"); 1516 residue = schedule_timeout(min_sleep_time); 1517 VPRINTK("kcdrwd: wake up\n"); 1518 1519 /* make swsusp happy with our thread */ 1520 try_to_freeze(); 1521 1522 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1523 if (!pkt->sleep_time) 1524 continue; 1525 pkt->sleep_time -= min_sleep_time - residue; 1526 if (pkt->sleep_time <= 0) { 1527 pkt->sleep_time = 0; 1528 atomic_inc(&pkt->run_sm); 1529 } 1530 } 1531 1532 if (kthread_should_stop()) 1533 break; 1534 } 1535 work_to_do: 1536 set_current_state(TASK_RUNNING); 1537 remove_wait_queue(&pd->wqueue, &wait); 1538 1539 if (kthread_should_stop()) 1540 break; 1541 1542 /* 1543 * if pkt_handle_queue returns true, we can queue 1544 * another request. 1545 */ 1546 while (pkt_handle_queue(pd)) 1547 ; 1548 1549 /* 1550 * Handle packet state machine 1551 */ 1552 pkt_handle_packets(pd); 1553 1554 /* 1555 * Handle iosched queues 1556 */ 1557 pkt_iosched_process_queue(pd); 1558 } 1559 1560 return 0; 1561 } 1562 1563 static void pkt_print_settings(struct pktcdvd_device *pd) 1564 { 1565 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable"); 1566 printk("%u blocks, ", pd->settings.size >> 2); 1567 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2'); 1568 } 1569 1570 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1571 { 1572 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1573 1574 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1575 cgc->cmd[2] = page_code | (page_control << 6); 1576 cgc->cmd[7] = cgc->buflen >> 8; 1577 cgc->cmd[8] = cgc->buflen & 0xff; 1578 cgc->data_direction = CGC_DATA_READ; 1579 return pkt_generic_packet(pd, cgc); 1580 } 1581 1582 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1583 { 1584 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1585 memset(cgc->buffer, 0, 2); 1586 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1587 cgc->cmd[1] = 0x10; /* PF */ 1588 cgc->cmd[7] = cgc->buflen >> 8; 1589 cgc->cmd[8] = cgc->buflen & 0xff; 1590 cgc->data_direction = CGC_DATA_WRITE; 1591 return pkt_generic_packet(pd, cgc); 1592 } 1593 1594 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1595 { 1596 struct packet_command cgc; 1597 int ret; 1598 1599 /* set up command and get the disc info */ 1600 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1601 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1602 cgc.cmd[8] = cgc.buflen = 2; 1603 cgc.quiet = 1; 1604 1605 if ((ret = pkt_generic_packet(pd, &cgc))) 1606 return ret; 1607 1608 /* not all drives have the same disc_info length, so requeue 1609 * packet with the length the drive tells us it can supply 1610 */ 1611 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1612 sizeof(di->disc_information_length); 1613 1614 if (cgc.buflen > sizeof(disc_information)) 1615 cgc.buflen = sizeof(disc_information); 1616 1617 cgc.cmd[8] = cgc.buflen; 1618 return pkt_generic_packet(pd, &cgc); 1619 } 1620 1621 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1622 { 1623 struct packet_command cgc; 1624 int ret; 1625 1626 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1627 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1628 cgc.cmd[1] = type & 3; 1629 cgc.cmd[4] = (track & 0xff00) >> 8; 1630 cgc.cmd[5] = track & 0xff; 1631 cgc.cmd[8] = 8; 1632 cgc.quiet = 1; 1633 1634 if ((ret = pkt_generic_packet(pd, &cgc))) 1635 return ret; 1636 1637 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1638 sizeof(ti->track_information_length); 1639 1640 if (cgc.buflen > sizeof(track_information)) 1641 cgc.buflen = sizeof(track_information); 1642 1643 cgc.cmd[8] = cgc.buflen; 1644 return pkt_generic_packet(pd, &cgc); 1645 } 1646 1647 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd, 1648 long *last_written) 1649 { 1650 disc_information di; 1651 track_information ti; 1652 __u32 last_track; 1653 int ret = -1; 1654 1655 if ((ret = pkt_get_disc_info(pd, &di))) 1656 return ret; 1657 1658 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1659 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1660 return ret; 1661 1662 /* if this track is blank, try the previous. */ 1663 if (ti.blank) { 1664 last_track--; 1665 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1666 return ret; 1667 } 1668 1669 /* if last recorded field is valid, return it. */ 1670 if (ti.lra_v) { 1671 *last_written = be32_to_cpu(ti.last_rec_address); 1672 } else { 1673 /* make it up instead */ 1674 *last_written = be32_to_cpu(ti.track_start) + 1675 be32_to_cpu(ti.track_size); 1676 if (ti.free_blocks) 1677 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1678 } 1679 return 0; 1680 } 1681 1682 /* 1683 * write mode select package based on pd->settings 1684 */ 1685 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd) 1686 { 1687 struct packet_command cgc; 1688 struct request_sense sense; 1689 write_param_page *wp; 1690 char buffer[128]; 1691 int ret, size; 1692 1693 /* doesn't apply to DVD+RW or DVD-RAM */ 1694 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1695 return 0; 1696 1697 memset(buffer, 0, sizeof(buffer)); 1698 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1699 cgc.sense = &sense; 1700 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1701 pkt_dump_sense(&cgc); 1702 return ret; 1703 } 1704 1705 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1706 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1707 if (size > sizeof(buffer)) 1708 size = sizeof(buffer); 1709 1710 /* 1711 * now get it all 1712 */ 1713 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1714 cgc.sense = &sense; 1715 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1716 pkt_dump_sense(&cgc); 1717 return ret; 1718 } 1719 1720 /* 1721 * write page is offset header + block descriptor length 1722 */ 1723 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1724 1725 wp->fp = pd->settings.fp; 1726 wp->track_mode = pd->settings.track_mode; 1727 wp->write_type = pd->settings.write_type; 1728 wp->data_block_type = pd->settings.block_mode; 1729 1730 wp->multi_session = 0; 1731 1732 #ifdef PACKET_USE_LS 1733 wp->link_size = 7; 1734 wp->ls_v = 1; 1735 #endif 1736 1737 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1738 wp->session_format = 0; 1739 wp->subhdr2 = 0x20; 1740 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1741 wp->session_format = 0x20; 1742 wp->subhdr2 = 8; 1743 #if 0 1744 wp->mcn[0] = 0x80; 1745 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1746 #endif 1747 } else { 1748 /* 1749 * paranoia 1750 */ 1751 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type); 1752 return 1; 1753 } 1754 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1755 1756 cgc.buflen = cgc.cmd[8] = size; 1757 if ((ret = pkt_mode_select(pd, &cgc))) { 1758 pkt_dump_sense(&cgc); 1759 return ret; 1760 } 1761 1762 pkt_print_settings(pd); 1763 return 0; 1764 } 1765 1766 /* 1767 * 1 -- we can write to this track, 0 -- we can't 1768 */ 1769 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1770 { 1771 switch (pd->mmc3_profile) { 1772 case 0x1a: /* DVD+RW */ 1773 case 0x12: /* DVD-RAM */ 1774 /* The track is always writable on DVD+RW/DVD-RAM */ 1775 return 1; 1776 default: 1777 break; 1778 } 1779 1780 if (!ti->packet || !ti->fp) 1781 return 0; 1782 1783 /* 1784 * "good" settings as per Mt Fuji. 1785 */ 1786 if (ti->rt == 0 && ti->blank == 0) 1787 return 1; 1788 1789 if (ti->rt == 0 && ti->blank == 1) 1790 return 1; 1791 1792 if (ti->rt == 1 && ti->blank == 0) 1793 return 1; 1794 1795 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1796 return 0; 1797 } 1798 1799 /* 1800 * 1 -- we can write to this disc, 0 -- we can't 1801 */ 1802 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1803 { 1804 switch (pd->mmc3_profile) { 1805 case 0x0a: /* CD-RW */ 1806 case 0xffff: /* MMC3 not supported */ 1807 break; 1808 case 0x1a: /* DVD+RW */ 1809 case 0x13: /* DVD-RW */ 1810 case 0x12: /* DVD-RAM */ 1811 return 1; 1812 default: 1813 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile); 1814 return 0; 1815 } 1816 1817 /* 1818 * for disc type 0xff we should probably reserve a new track. 1819 * but i'm not sure, should we leave this to user apps? probably. 1820 */ 1821 if (di->disc_type == 0xff) { 1822 printk(DRIVER_NAME": Unknown disc. No track?\n"); 1823 return 0; 1824 } 1825 1826 if (di->disc_type != 0x20 && di->disc_type != 0) { 1827 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type); 1828 return 0; 1829 } 1830 1831 if (di->erasable == 0) { 1832 printk(DRIVER_NAME": Disc not erasable\n"); 1833 return 0; 1834 } 1835 1836 if (di->border_status == PACKET_SESSION_RESERVED) { 1837 printk(DRIVER_NAME": Can't write to last track (reserved)\n"); 1838 return 0; 1839 } 1840 1841 return 1; 1842 } 1843 1844 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd) 1845 { 1846 struct packet_command cgc; 1847 unsigned char buf[12]; 1848 disc_information di; 1849 track_information ti; 1850 int ret, track; 1851 1852 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1853 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1854 cgc.cmd[8] = 8; 1855 ret = pkt_generic_packet(pd, &cgc); 1856 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1857 1858 memset(&di, 0, sizeof(disc_information)); 1859 memset(&ti, 0, sizeof(track_information)); 1860 1861 if ((ret = pkt_get_disc_info(pd, &di))) { 1862 printk("failed get_disc\n"); 1863 return ret; 1864 } 1865 1866 if (!pkt_writable_disc(pd, &di)) 1867 return -EROFS; 1868 1869 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 1870 1871 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 1872 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 1873 printk(DRIVER_NAME": failed get_track\n"); 1874 return ret; 1875 } 1876 1877 if (!pkt_writable_track(pd, &ti)) { 1878 printk(DRIVER_NAME": can't write to this track\n"); 1879 return -EROFS; 1880 } 1881 1882 /* 1883 * we keep packet size in 512 byte units, makes it easier to 1884 * deal with request calculations. 1885 */ 1886 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 1887 if (pd->settings.size == 0) { 1888 printk(DRIVER_NAME": detected zero packet size!\n"); 1889 return -ENXIO; 1890 } 1891 if (pd->settings.size > PACKET_MAX_SECTORS) { 1892 printk(DRIVER_NAME": packet size is too big\n"); 1893 return -EROFS; 1894 } 1895 pd->settings.fp = ti.fp; 1896 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 1897 1898 if (ti.nwa_v) { 1899 pd->nwa = be32_to_cpu(ti.next_writable); 1900 set_bit(PACKET_NWA_VALID, &pd->flags); 1901 } 1902 1903 /* 1904 * in theory we could use lra on -RW media as well and just zero 1905 * blocks that haven't been written yet, but in practice that 1906 * is just a no-go. we'll use that for -R, naturally. 1907 */ 1908 if (ti.lra_v) { 1909 pd->lra = be32_to_cpu(ti.last_rec_address); 1910 set_bit(PACKET_LRA_VALID, &pd->flags); 1911 } else { 1912 pd->lra = 0xffffffff; 1913 set_bit(PACKET_LRA_VALID, &pd->flags); 1914 } 1915 1916 /* 1917 * fine for now 1918 */ 1919 pd->settings.link_loss = 7; 1920 pd->settings.write_type = 0; /* packet */ 1921 pd->settings.track_mode = ti.track_mode; 1922 1923 /* 1924 * mode1 or mode2 disc 1925 */ 1926 switch (ti.data_mode) { 1927 case PACKET_MODE1: 1928 pd->settings.block_mode = PACKET_BLOCK_MODE1; 1929 break; 1930 case PACKET_MODE2: 1931 pd->settings.block_mode = PACKET_BLOCK_MODE2; 1932 break; 1933 default: 1934 printk(DRIVER_NAME": unknown data mode\n"); 1935 return -EROFS; 1936 } 1937 return 0; 1938 } 1939 1940 /* 1941 * enable/disable write caching on drive 1942 */ 1943 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd, 1944 int set) 1945 { 1946 struct packet_command cgc; 1947 struct request_sense sense; 1948 unsigned char buf[64]; 1949 int ret; 1950 1951 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1952 cgc.sense = &sense; 1953 cgc.buflen = pd->mode_offset + 12; 1954 1955 /* 1956 * caching mode page might not be there, so quiet this command 1957 */ 1958 cgc.quiet = 1; 1959 1960 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 1961 return ret; 1962 1963 buf[pd->mode_offset + 10] |= (!!set << 2); 1964 1965 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 1966 ret = pkt_mode_select(pd, &cgc); 1967 if (ret) { 1968 printk(DRIVER_NAME": write caching control failed\n"); 1969 pkt_dump_sense(&cgc); 1970 } else if (!ret && set) 1971 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name); 1972 return ret; 1973 } 1974 1975 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 1976 { 1977 struct packet_command cgc; 1978 1979 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 1980 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 1981 cgc.cmd[4] = lockflag ? 1 : 0; 1982 return pkt_generic_packet(pd, &cgc); 1983 } 1984 1985 /* 1986 * Returns drive maximum write speed 1987 */ 1988 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd, 1989 unsigned *write_speed) 1990 { 1991 struct packet_command cgc; 1992 struct request_sense sense; 1993 unsigned char buf[256+18]; 1994 unsigned char *cap_buf; 1995 int ret, offset; 1996 1997 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 1998 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 1999 cgc.sense = &sense; 2000 2001 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2002 if (ret) { 2003 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 2004 sizeof(struct mode_page_header); 2005 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2006 if (ret) { 2007 pkt_dump_sense(&cgc); 2008 return ret; 2009 } 2010 } 2011 2012 offset = 20; /* Obsoleted field, used by older drives */ 2013 if (cap_buf[1] >= 28) 2014 offset = 28; /* Current write speed selected */ 2015 if (cap_buf[1] >= 30) { 2016 /* If the drive reports at least one "Logical Unit Write 2017 * Speed Performance Descriptor Block", use the information 2018 * in the first block. (contains the highest speed) 2019 */ 2020 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 2021 if (num_spdb > 0) 2022 offset = 34; 2023 } 2024 2025 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 2026 return 0; 2027 } 2028 2029 /* These tables from cdrecord - I don't have orange book */ 2030 /* standard speed CD-RW (1-4x) */ 2031 static char clv_to_speed[16] = { 2032 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2033 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2034 }; 2035 /* high speed CD-RW (-10x) */ 2036 static char hs_clv_to_speed[16] = { 2037 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2038 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2039 }; 2040 /* ultra high speed CD-RW */ 2041 static char us_clv_to_speed[16] = { 2042 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2043 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 2044 }; 2045 2046 /* 2047 * reads the maximum media speed from ATIP 2048 */ 2049 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd, 2050 unsigned *speed) 2051 { 2052 struct packet_command cgc; 2053 struct request_sense sense; 2054 unsigned char buf[64]; 2055 unsigned int size, st, sp; 2056 int ret; 2057 2058 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 2059 cgc.sense = &sense; 2060 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2061 cgc.cmd[1] = 2; 2062 cgc.cmd[2] = 4; /* READ ATIP */ 2063 cgc.cmd[8] = 2; 2064 ret = pkt_generic_packet(pd, &cgc); 2065 if (ret) { 2066 pkt_dump_sense(&cgc); 2067 return ret; 2068 } 2069 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 2070 if (size > sizeof(buf)) 2071 size = sizeof(buf); 2072 2073 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2074 cgc.sense = &sense; 2075 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2076 cgc.cmd[1] = 2; 2077 cgc.cmd[2] = 4; 2078 cgc.cmd[8] = size; 2079 ret = pkt_generic_packet(pd, &cgc); 2080 if (ret) { 2081 pkt_dump_sense(&cgc); 2082 return ret; 2083 } 2084 2085 if (!(buf[6] & 0x40)) { 2086 printk(DRIVER_NAME": Disc type is not CD-RW\n"); 2087 return 1; 2088 } 2089 if (!(buf[6] & 0x4)) { 2090 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n"); 2091 return 1; 2092 } 2093 2094 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2095 2096 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2097 2098 /* Info from cdrecord */ 2099 switch (st) { 2100 case 0: /* standard speed */ 2101 *speed = clv_to_speed[sp]; 2102 break; 2103 case 1: /* high speed */ 2104 *speed = hs_clv_to_speed[sp]; 2105 break; 2106 case 2: /* ultra high speed */ 2107 *speed = us_clv_to_speed[sp]; 2108 break; 2109 default: 2110 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st); 2111 return 1; 2112 } 2113 if (*speed) { 2114 printk(DRIVER_NAME": Max. media speed: %d\n",*speed); 2115 return 0; 2116 } else { 2117 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st); 2118 return 1; 2119 } 2120 } 2121 2122 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd) 2123 { 2124 struct packet_command cgc; 2125 struct request_sense sense; 2126 int ret; 2127 2128 VPRINTK(DRIVER_NAME": Performing OPC\n"); 2129 2130 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2131 cgc.sense = &sense; 2132 cgc.timeout = 60*HZ; 2133 cgc.cmd[0] = GPCMD_SEND_OPC; 2134 cgc.cmd[1] = 1; 2135 if ((ret = pkt_generic_packet(pd, &cgc))) 2136 pkt_dump_sense(&cgc); 2137 return ret; 2138 } 2139 2140 static int pkt_open_write(struct pktcdvd_device *pd) 2141 { 2142 int ret; 2143 unsigned int write_speed, media_write_speed, read_speed; 2144 2145 if ((ret = pkt_probe_settings(pd))) { 2146 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name); 2147 return ret; 2148 } 2149 2150 if ((ret = pkt_set_write_settings(pd))) { 2151 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name); 2152 return -EIO; 2153 } 2154 2155 pkt_write_caching(pd, USE_WCACHING); 2156 2157 if ((ret = pkt_get_max_speed(pd, &write_speed))) 2158 write_speed = 16 * 177; 2159 switch (pd->mmc3_profile) { 2160 case 0x13: /* DVD-RW */ 2161 case 0x1a: /* DVD+RW */ 2162 case 0x12: /* DVD-RAM */ 2163 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed); 2164 break; 2165 default: 2166 if ((ret = pkt_media_speed(pd, &media_write_speed))) 2167 media_write_speed = 16; 2168 write_speed = min(write_speed, media_write_speed * 177); 2169 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176); 2170 break; 2171 } 2172 read_speed = write_speed; 2173 2174 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 2175 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name); 2176 return -EIO; 2177 } 2178 pd->write_speed = write_speed; 2179 pd->read_speed = read_speed; 2180 2181 if ((ret = pkt_perform_opc(pd))) { 2182 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name); 2183 } 2184 2185 return 0; 2186 } 2187 2188 /* 2189 * called at open time. 2190 */ 2191 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write) 2192 { 2193 int ret; 2194 long lba; 2195 struct request_queue *q; 2196 2197 /* 2198 * We need to re-open the cdrom device without O_NONBLOCK to be able 2199 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2200 * so bdget() can't fail. 2201 */ 2202 bdget(pd->bdev->bd_dev); 2203 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd))) 2204 goto out; 2205 2206 if ((ret = pkt_get_last_written(pd, &lba))) { 2207 printk(DRIVER_NAME": pkt_get_last_written failed\n"); 2208 goto out_putdev; 2209 } 2210 2211 set_capacity(pd->disk, lba << 2); 2212 set_capacity(pd->bdev->bd_disk, lba << 2); 2213 bd_set_size(pd->bdev, (loff_t)lba << 11); 2214 2215 q = bdev_get_queue(pd->bdev); 2216 if (write) { 2217 if ((ret = pkt_open_write(pd))) 2218 goto out_putdev; 2219 /* 2220 * Some CDRW drives can not handle writes larger than one packet, 2221 * even if the size is a multiple of the packet size. 2222 */ 2223 spin_lock_irq(q->queue_lock); 2224 blk_queue_max_hw_sectors(q, pd->settings.size); 2225 spin_unlock_irq(q->queue_lock); 2226 set_bit(PACKET_WRITABLE, &pd->flags); 2227 } else { 2228 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2229 clear_bit(PACKET_WRITABLE, &pd->flags); 2230 } 2231 2232 if ((ret = pkt_set_segment_merging(pd, q))) 2233 goto out_putdev; 2234 2235 if (write) { 2236 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2237 printk(DRIVER_NAME": not enough memory for buffers\n"); 2238 ret = -ENOMEM; 2239 goto out_putdev; 2240 } 2241 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1); 2242 } 2243 2244 return 0; 2245 2246 out_putdev: 2247 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL); 2248 out: 2249 return ret; 2250 } 2251 2252 /* 2253 * called when the device is closed. makes sure that the device flushes 2254 * the internal cache before we close. 2255 */ 2256 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2257 { 2258 if (flush && pkt_flush_cache(pd)) 2259 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name); 2260 2261 pkt_lock_door(pd, 0); 2262 2263 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2264 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL); 2265 2266 pkt_shrink_pktlist(pd); 2267 } 2268 2269 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor) 2270 { 2271 if (dev_minor >= MAX_WRITERS) 2272 return NULL; 2273 return pkt_devs[dev_minor]; 2274 } 2275 2276 static int pkt_open(struct block_device *bdev, fmode_t mode) 2277 { 2278 struct pktcdvd_device *pd = NULL; 2279 int ret; 2280 2281 VPRINTK(DRIVER_NAME": entering open\n"); 2282 2283 mutex_lock(&pktcdvd_mutex); 2284 mutex_lock(&ctl_mutex); 2285 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev)); 2286 if (!pd) { 2287 ret = -ENODEV; 2288 goto out; 2289 } 2290 BUG_ON(pd->refcnt < 0); 2291 2292 pd->refcnt++; 2293 if (pd->refcnt > 1) { 2294 if ((mode & FMODE_WRITE) && 2295 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2296 ret = -EBUSY; 2297 goto out_dec; 2298 } 2299 } else { 2300 ret = pkt_open_dev(pd, mode & FMODE_WRITE); 2301 if (ret) 2302 goto out_dec; 2303 /* 2304 * needed here as well, since ext2 (among others) may change 2305 * the blocksize at mount time 2306 */ 2307 set_blocksize(bdev, CD_FRAMESIZE); 2308 } 2309 2310 mutex_unlock(&ctl_mutex); 2311 mutex_unlock(&pktcdvd_mutex); 2312 return 0; 2313 2314 out_dec: 2315 pd->refcnt--; 2316 out: 2317 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret); 2318 mutex_unlock(&ctl_mutex); 2319 mutex_unlock(&pktcdvd_mutex); 2320 return ret; 2321 } 2322 2323 static void pkt_close(struct gendisk *disk, fmode_t mode) 2324 { 2325 struct pktcdvd_device *pd = disk->private_data; 2326 2327 mutex_lock(&pktcdvd_mutex); 2328 mutex_lock(&ctl_mutex); 2329 pd->refcnt--; 2330 BUG_ON(pd->refcnt < 0); 2331 if (pd->refcnt == 0) { 2332 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2333 pkt_release_dev(pd, flush); 2334 } 2335 mutex_unlock(&ctl_mutex); 2336 mutex_unlock(&pktcdvd_mutex); 2337 } 2338 2339 2340 static void pkt_end_io_read_cloned(struct bio *bio, int err) 2341 { 2342 struct packet_stacked_data *psd = bio->bi_private; 2343 struct pktcdvd_device *pd = psd->pd; 2344 2345 bio_put(bio); 2346 bio_endio(psd->bio, err); 2347 mempool_free(psd, psd_pool); 2348 pkt_bio_finished(pd); 2349 } 2350 2351 static void pkt_make_request(struct request_queue *q, struct bio *bio) 2352 { 2353 struct pktcdvd_device *pd; 2354 char b[BDEVNAME_SIZE]; 2355 sector_t zone; 2356 struct packet_data *pkt; 2357 int was_empty, blocked_bio; 2358 struct pkt_rb_node *node; 2359 2360 pd = q->queuedata; 2361 if (!pd) { 2362 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b)); 2363 goto end_io; 2364 } 2365 2366 /* 2367 * Clone READ bios so we can have our own bi_end_io callback. 2368 */ 2369 if (bio_data_dir(bio) == READ) { 2370 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); 2371 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2372 2373 psd->pd = pd; 2374 psd->bio = bio; 2375 cloned_bio->bi_bdev = pd->bdev; 2376 cloned_bio->bi_private = psd; 2377 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2378 pd->stats.secs_r += bio_sectors(bio); 2379 pkt_queue_bio(pd, cloned_bio); 2380 return; 2381 } 2382 2383 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2384 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n", 2385 pd->name, (unsigned long long)bio->bi_sector); 2386 goto end_io; 2387 } 2388 2389 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) { 2390 printk(DRIVER_NAME": wrong bio size\n"); 2391 goto end_io; 2392 } 2393 2394 blk_queue_bounce(q, &bio); 2395 2396 zone = ZONE(bio->bi_sector, pd); 2397 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n", 2398 (unsigned long long)bio->bi_sector, 2399 (unsigned long long)bio_end_sector(bio)); 2400 2401 /* Check if we have to split the bio */ 2402 { 2403 struct bio_pair *bp; 2404 sector_t last_zone; 2405 int first_sectors; 2406 2407 last_zone = ZONE(bio_end_sector(bio) - 1, pd); 2408 if (last_zone != zone) { 2409 BUG_ON(last_zone != zone + pd->settings.size); 2410 first_sectors = last_zone - bio->bi_sector; 2411 bp = bio_split(bio, first_sectors); 2412 BUG_ON(!bp); 2413 pkt_make_request(q, &bp->bio1); 2414 pkt_make_request(q, &bp->bio2); 2415 bio_pair_release(bp); 2416 return; 2417 } 2418 } 2419 2420 /* 2421 * If we find a matching packet in state WAITING or READ_WAIT, we can 2422 * just append this bio to that packet. 2423 */ 2424 spin_lock(&pd->cdrw.active_list_lock); 2425 blocked_bio = 0; 2426 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2427 if (pkt->sector == zone) { 2428 spin_lock(&pkt->lock); 2429 if ((pkt->state == PACKET_WAITING_STATE) || 2430 (pkt->state == PACKET_READ_WAIT_STATE)) { 2431 bio_list_add(&pkt->orig_bios, bio); 2432 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 2433 if ((pkt->write_size >= pkt->frames) && 2434 (pkt->state == PACKET_WAITING_STATE)) { 2435 atomic_inc(&pkt->run_sm); 2436 wake_up(&pd->wqueue); 2437 } 2438 spin_unlock(&pkt->lock); 2439 spin_unlock(&pd->cdrw.active_list_lock); 2440 return; 2441 } else { 2442 blocked_bio = 1; 2443 } 2444 spin_unlock(&pkt->lock); 2445 } 2446 } 2447 spin_unlock(&pd->cdrw.active_list_lock); 2448 2449 /* 2450 * Test if there is enough room left in the bio work queue 2451 * (queue size >= congestion on mark). 2452 * If not, wait till the work queue size is below the congestion off mark. 2453 */ 2454 spin_lock(&pd->lock); 2455 if (pd->write_congestion_on > 0 2456 && pd->bio_queue_size >= pd->write_congestion_on) { 2457 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC); 2458 do { 2459 spin_unlock(&pd->lock); 2460 congestion_wait(BLK_RW_ASYNC, HZ); 2461 spin_lock(&pd->lock); 2462 } while(pd->bio_queue_size > pd->write_congestion_off); 2463 } 2464 spin_unlock(&pd->lock); 2465 2466 /* 2467 * No matching packet found. Store the bio in the work queue. 2468 */ 2469 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2470 node->bio = bio; 2471 spin_lock(&pd->lock); 2472 BUG_ON(pd->bio_queue_size < 0); 2473 was_empty = (pd->bio_queue_size == 0); 2474 pkt_rbtree_insert(pd, node); 2475 spin_unlock(&pd->lock); 2476 2477 /* 2478 * Wake up the worker thread. 2479 */ 2480 atomic_set(&pd->scan_queue, 1); 2481 if (was_empty) { 2482 /* This wake_up is required for correct operation */ 2483 wake_up(&pd->wqueue); 2484 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2485 /* 2486 * This wake up is not required for correct operation, 2487 * but improves performance in some cases. 2488 */ 2489 wake_up(&pd->wqueue); 2490 } 2491 return; 2492 end_io: 2493 bio_io_error(bio); 2494 } 2495 2496 2497 2498 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 2499 struct bio_vec *bvec) 2500 { 2501 struct pktcdvd_device *pd = q->queuedata; 2502 sector_t zone = ZONE(bmd->bi_sector, pd); 2503 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size; 2504 int remaining = (pd->settings.size << 9) - used; 2505 int remaining2; 2506 2507 /* 2508 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet 2509 * boundary, pkt_make_request() will split the bio. 2510 */ 2511 remaining2 = PAGE_SIZE - bmd->bi_size; 2512 remaining = max(remaining, remaining2); 2513 2514 BUG_ON(remaining < 0); 2515 return remaining; 2516 } 2517 2518 static void pkt_init_queue(struct pktcdvd_device *pd) 2519 { 2520 struct request_queue *q = pd->disk->queue; 2521 2522 blk_queue_make_request(q, pkt_make_request); 2523 blk_queue_logical_block_size(q, CD_FRAMESIZE); 2524 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS); 2525 blk_queue_merge_bvec(q, pkt_merge_bvec); 2526 q->queuedata = pd; 2527 } 2528 2529 static int pkt_seq_show(struct seq_file *m, void *p) 2530 { 2531 struct pktcdvd_device *pd = m->private; 2532 char *msg; 2533 char bdev_buf[BDEVNAME_SIZE]; 2534 int states[PACKET_NUM_STATES]; 2535 2536 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2537 bdevname(pd->bdev, bdev_buf)); 2538 2539 seq_printf(m, "\nSettings:\n"); 2540 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2541 2542 if (pd->settings.write_type == 0) 2543 msg = "Packet"; 2544 else 2545 msg = "Unknown"; 2546 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2547 2548 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2549 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2550 2551 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2552 2553 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2554 msg = "Mode 1"; 2555 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2556 msg = "Mode 2"; 2557 else 2558 msg = "Unknown"; 2559 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2560 2561 seq_printf(m, "\nStatistics:\n"); 2562 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2563 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2564 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2565 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2566 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2567 2568 seq_printf(m, "\nMisc:\n"); 2569 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2570 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2571 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2572 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2573 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2574 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2575 2576 seq_printf(m, "\nQueue state:\n"); 2577 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2578 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2579 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2580 2581 pkt_count_states(pd, states); 2582 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2583 states[0], states[1], states[2], states[3], states[4], states[5]); 2584 2585 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 2586 pd->write_congestion_off, 2587 pd->write_congestion_on); 2588 return 0; 2589 } 2590 2591 static int pkt_seq_open(struct inode *inode, struct file *file) 2592 { 2593 return single_open(file, pkt_seq_show, PDE_DATA(inode)); 2594 } 2595 2596 static const struct file_operations pkt_proc_fops = { 2597 .open = pkt_seq_open, 2598 .read = seq_read, 2599 .llseek = seq_lseek, 2600 .release = single_release 2601 }; 2602 2603 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2604 { 2605 int i; 2606 int ret = 0; 2607 char b[BDEVNAME_SIZE]; 2608 struct block_device *bdev; 2609 2610 if (pd->pkt_dev == dev) { 2611 printk(DRIVER_NAME": Recursive setup not allowed\n"); 2612 return -EBUSY; 2613 } 2614 for (i = 0; i < MAX_WRITERS; i++) { 2615 struct pktcdvd_device *pd2 = pkt_devs[i]; 2616 if (!pd2) 2617 continue; 2618 if (pd2->bdev->bd_dev == dev) { 2619 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b)); 2620 return -EBUSY; 2621 } 2622 if (pd2->pkt_dev == dev) { 2623 printk(DRIVER_NAME": Can't chain pktcdvd devices\n"); 2624 return -EBUSY; 2625 } 2626 } 2627 2628 bdev = bdget(dev); 2629 if (!bdev) 2630 return -ENOMEM; 2631 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL); 2632 if (ret) 2633 return ret; 2634 2635 /* This is safe, since we have a reference from open(). */ 2636 __module_get(THIS_MODULE); 2637 2638 pd->bdev = bdev; 2639 set_blocksize(bdev, CD_FRAMESIZE); 2640 2641 pkt_init_queue(pd); 2642 2643 atomic_set(&pd->cdrw.pending_bios, 0); 2644 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2645 if (IS_ERR(pd->cdrw.thread)) { 2646 printk(DRIVER_NAME": can't start kernel thread\n"); 2647 ret = -ENOMEM; 2648 goto out_mem; 2649 } 2650 2651 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd); 2652 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b)); 2653 return 0; 2654 2655 out_mem: 2656 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY); 2657 /* This is safe: open() is still holding a reference. */ 2658 module_put(THIS_MODULE); 2659 return ret; 2660 } 2661 2662 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) 2663 { 2664 struct pktcdvd_device *pd = bdev->bd_disk->private_data; 2665 int ret; 2666 2667 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, 2668 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2669 2670 mutex_lock(&pktcdvd_mutex); 2671 switch (cmd) { 2672 case CDROMEJECT: 2673 /* 2674 * The door gets locked when the device is opened, so we 2675 * have to unlock it or else the eject command fails. 2676 */ 2677 if (pd->refcnt == 1) 2678 pkt_lock_door(pd, 0); 2679 /* fallthru */ 2680 /* 2681 * forward selected CDROM ioctls to CD-ROM, for UDF 2682 */ 2683 case CDROMMULTISESSION: 2684 case CDROMREADTOCENTRY: 2685 case CDROM_LAST_WRITTEN: 2686 case CDROM_SEND_PACKET: 2687 case SCSI_IOCTL_SEND_COMMAND: 2688 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg); 2689 break; 2690 2691 default: 2692 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd); 2693 ret = -ENOTTY; 2694 } 2695 mutex_unlock(&pktcdvd_mutex); 2696 2697 return ret; 2698 } 2699 2700 static unsigned int pkt_check_events(struct gendisk *disk, 2701 unsigned int clearing) 2702 { 2703 struct pktcdvd_device *pd = disk->private_data; 2704 struct gendisk *attached_disk; 2705 2706 if (!pd) 2707 return 0; 2708 if (!pd->bdev) 2709 return 0; 2710 attached_disk = pd->bdev->bd_disk; 2711 if (!attached_disk || !attached_disk->fops->check_events) 2712 return 0; 2713 return attached_disk->fops->check_events(attached_disk, clearing); 2714 } 2715 2716 static const struct block_device_operations pktcdvd_ops = { 2717 .owner = THIS_MODULE, 2718 .open = pkt_open, 2719 .release = pkt_close, 2720 .ioctl = pkt_ioctl, 2721 .check_events = pkt_check_events, 2722 }; 2723 2724 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode) 2725 { 2726 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name); 2727 } 2728 2729 /* 2730 * Set up mapping from pktcdvd device to CD-ROM device. 2731 */ 2732 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2733 { 2734 int idx; 2735 int ret = -ENOMEM; 2736 struct pktcdvd_device *pd; 2737 struct gendisk *disk; 2738 2739 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2740 2741 for (idx = 0; idx < MAX_WRITERS; idx++) 2742 if (!pkt_devs[idx]) 2743 break; 2744 if (idx == MAX_WRITERS) { 2745 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS); 2746 ret = -EBUSY; 2747 goto out_mutex; 2748 } 2749 2750 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2751 if (!pd) 2752 goto out_mutex; 2753 2754 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE, 2755 sizeof(struct pkt_rb_node)); 2756 if (!pd->rb_pool) 2757 goto out_mem; 2758 2759 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2760 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2761 spin_lock_init(&pd->cdrw.active_list_lock); 2762 2763 spin_lock_init(&pd->lock); 2764 spin_lock_init(&pd->iosched.lock); 2765 bio_list_init(&pd->iosched.read_queue); 2766 bio_list_init(&pd->iosched.write_queue); 2767 sprintf(pd->name, DRIVER_NAME"%d", idx); 2768 init_waitqueue_head(&pd->wqueue); 2769 pd->bio_queue = RB_ROOT; 2770 2771 pd->write_congestion_on = write_congestion_on; 2772 pd->write_congestion_off = write_congestion_off; 2773 2774 disk = alloc_disk(1); 2775 if (!disk) 2776 goto out_mem; 2777 pd->disk = disk; 2778 disk->major = pktdev_major; 2779 disk->first_minor = idx; 2780 disk->fops = &pktcdvd_ops; 2781 disk->flags = GENHD_FL_REMOVABLE; 2782 strcpy(disk->disk_name, pd->name); 2783 disk->devnode = pktcdvd_devnode; 2784 disk->private_data = pd; 2785 disk->queue = blk_alloc_queue(GFP_KERNEL); 2786 if (!disk->queue) 2787 goto out_mem2; 2788 2789 pd->pkt_dev = MKDEV(pktdev_major, idx); 2790 ret = pkt_new_dev(pd, dev); 2791 if (ret) 2792 goto out_new_dev; 2793 2794 /* inherit events of the host device */ 2795 disk->events = pd->bdev->bd_disk->events; 2796 disk->async_events = pd->bdev->bd_disk->async_events; 2797 2798 add_disk(disk); 2799 2800 pkt_sysfs_dev_new(pd); 2801 pkt_debugfs_dev_new(pd); 2802 2803 pkt_devs[idx] = pd; 2804 if (pkt_dev) 2805 *pkt_dev = pd->pkt_dev; 2806 2807 mutex_unlock(&ctl_mutex); 2808 return 0; 2809 2810 out_new_dev: 2811 blk_cleanup_queue(disk->queue); 2812 out_mem2: 2813 put_disk(disk); 2814 out_mem: 2815 if (pd->rb_pool) 2816 mempool_destroy(pd->rb_pool); 2817 kfree(pd); 2818 out_mutex: 2819 mutex_unlock(&ctl_mutex); 2820 printk(DRIVER_NAME": setup of pktcdvd device failed\n"); 2821 return ret; 2822 } 2823 2824 /* 2825 * Tear down mapping from pktcdvd device to CD-ROM device. 2826 */ 2827 static int pkt_remove_dev(dev_t pkt_dev) 2828 { 2829 struct pktcdvd_device *pd; 2830 int idx; 2831 int ret = 0; 2832 2833 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2834 2835 for (idx = 0; idx < MAX_WRITERS; idx++) { 2836 pd = pkt_devs[idx]; 2837 if (pd && (pd->pkt_dev == pkt_dev)) 2838 break; 2839 } 2840 if (idx == MAX_WRITERS) { 2841 DPRINTK(DRIVER_NAME": dev not setup\n"); 2842 ret = -ENXIO; 2843 goto out; 2844 } 2845 2846 if (pd->refcnt > 0) { 2847 ret = -EBUSY; 2848 goto out; 2849 } 2850 if (!IS_ERR(pd->cdrw.thread)) 2851 kthread_stop(pd->cdrw.thread); 2852 2853 pkt_devs[idx] = NULL; 2854 2855 pkt_debugfs_dev_remove(pd); 2856 pkt_sysfs_dev_remove(pd); 2857 2858 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY); 2859 2860 remove_proc_entry(pd->name, pkt_proc); 2861 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name); 2862 2863 del_gendisk(pd->disk); 2864 blk_cleanup_queue(pd->disk->queue); 2865 put_disk(pd->disk); 2866 2867 mempool_destroy(pd->rb_pool); 2868 kfree(pd); 2869 2870 /* This is safe: open() is still holding a reference. */ 2871 module_put(THIS_MODULE); 2872 2873 out: 2874 mutex_unlock(&ctl_mutex); 2875 return ret; 2876 } 2877 2878 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 2879 { 2880 struct pktcdvd_device *pd; 2881 2882 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2883 2884 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 2885 if (pd) { 2886 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 2887 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2888 } else { 2889 ctrl_cmd->dev = 0; 2890 ctrl_cmd->pkt_dev = 0; 2891 } 2892 ctrl_cmd->num_devices = MAX_WRITERS; 2893 2894 mutex_unlock(&ctl_mutex); 2895 } 2896 2897 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2898 { 2899 void __user *argp = (void __user *)arg; 2900 struct pkt_ctrl_command ctrl_cmd; 2901 int ret = 0; 2902 dev_t pkt_dev = 0; 2903 2904 if (cmd != PACKET_CTRL_CMD) 2905 return -ENOTTY; 2906 2907 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 2908 return -EFAULT; 2909 2910 switch (ctrl_cmd.command) { 2911 case PKT_CTRL_CMD_SETUP: 2912 if (!capable(CAP_SYS_ADMIN)) 2913 return -EPERM; 2914 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 2915 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 2916 break; 2917 case PKT_CTRL_CMD_TEARDOWN: 2918 if (!capable(CAP_SYS_ADMIN)) 2919 return -EPERM; 2920 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 2921 break; 2922 case PKT_CTRL_CMD_STATUS: 2923 pkt_get_status(&ctrl_cmd); 2924 break; 2925 default: 2926 return -ENOTTY; 2927 } 2928 2929 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 2930 return -EFAULT; 2931 return ret; 2932 } 2933 2934 #ifdef CONFIG_COMPAT 2935 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2936 { 2937 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); 2938 } 2939 #endif 2940 2941 static const struct file_operations pkt_ctl_fops = { 2942 .open = nonseekable_open, 2943 .unlocked_ioctl = pkt_ctl_ioctl, 2944 #ifdef CONFIG_COMPAT 2945 .compat_ioctl = pkt_ctl_compat_ioctl, 2946 #endif 2947 .owner = THIS_MODULE, 2948 .llseek = no_llseek, 2949 }; 2950 2951 static struct miscdevice pkt_misc = { 2952 .minor = MISC_DYNAMIC_MINOR, 2953 .name = DRIVER_NAME, 2954 .nodename = "pktcdvd/control", 2955 .fops = &pkt_ctl_fops 2956 }; 2957 2958 static int __init pkt_init(void) 2959 { 2960 int ret; 2961 2962 mutex_init(&ctl_mutex); 2963 2964 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE, 2965 sizeof(struct packet_stacked_data)); 2966 if (!psd_pool) 2967 return -ENOMEM; 2968 2969 ret = register_blkdev(pktdev_major, DRIVER_NAME); 2970 if (ret < 0) { 2971 printk(DRIVER_NAME": Unable to register block device\n"); 2972 goto out2; 2973 } 2974 if (!pktdev_major) 2975 pktdev_major = ret; 2976 2977 ret = pkt_sysfs_init(); 2978 if (ret) 2979 goto out; 2980 2981 pkt_debugfs_init(); 2982 2983 ret = misc_register(&pkt_misc); 2984 if (ret) { 2985 printk(DRIVER_NAME": Unable to register misc device\n"); 2986 goto out_misc; 2987 } 2988 2989 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL); 2990 2991 return 0; 2992 2993 out_misc: 2994 pkt_debugfs_cleanup(); 2995 pkt_sysfs_cleanup(); 2996 out: 2997 unregister_blkdev(pktdev_major, DRIVER_NAME); 2998 out2: 2999 mempool_destroy(psd_pool); 3000 return ret; 3001 } 3002 3003 static void __exit pkt_exit(void) 3004 { 3005 remove_proc_entry("driver/"DRIVER_NAME, NULL); 3006 misc_deregister(&pkt_misc); 3007 3008 pkt_debugfs_cleanup(); 3009 pkt_sysfs_cleanup(); 3010 3011 unregister_blkdev(pktdev_major, DRIVER_NAME); 3012 mempool_destroy(psd_pool); 3013 } 3014 3015 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 3016 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 3017 MODULE_LICENSE("GPL"); 3018 3019 module_init(pkt_init); 3020 module_exit(pkt_exit); 3021