xref: /openbmc/linux/drivers/block/pktcdvd.c (revision ee89bd6b)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom make_request_fn function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/compat.h>
52 #include <linux/kthread.h>
53 #include <linux/errno.h>
54 #include <linux/spinlock.h>
55 #include <linux/file.h>
56 #include <linux/proc_fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/miscdevice.h>
59 #include <linux/freezer.h>
60 #include <linux/mutex.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_ioctl.h>
64 #include <scsi/scsi.h>
65 #include <linux/debugfs.h>
66 #include <linux/device.h>
67 
68 #include <asm/uaccess.h>
69 
70 #define DRIVER_NAME	"pktcdvd"
71 
72 #if PACKET_DEBUG
73 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74 #else
75 #define DPRINTK(fmt, args...)
76 #endif
77 
78 #if PACKET_DEBUG > 1
79 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
80 #else
81 #define VPRINTK(fmt, args...)
82 #endif
83 
84 #define MAX_SPEED 0xffff
85 
86 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
87 
88 static DEFINE_MUTEX(pktcdvd_mutex);
89 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
90 static struct proc_dir_entry *pkt_proc;
91 static int pktdev_major;
92 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
93 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
94 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
95 static mempool_t *psd_pool;
96 
97 static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
98 static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
99 
100 /* forward declaration */
101 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
102 static int pkt_remove_dev(dev_t pkt_dev);
103 static int pkt_seq_show(struct seq_file *m, void *p);
104 
105 
106 
107 /*
108  * create and register a pktcdvd kernel object.
109  */
110 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
111 					const char* name,
112 					struct kobject* parent,
113 					struct kobj_type* ktype)
114 {
115 	struct pktcdvd_kobj *p;
116 	int error;
117 
118 	p = kzalloc(sizeof(*p), GFP_KERNEL);
119 	if (!p)
120 		return NULL;
121 	p->pd = pd;
122 	error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
123 	if (error) {
124 		kobject_put(&p->kobj);
125 		return NULL;
126 	}
127 	kobject_uevent(&p->kobj, KOBJ_ADD);
128 	return p;
129 }
130 /*
131  * remove a pktcdvd kernel object.
132  */
133 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
134 {
135 	if (p)
136 		kobject_put(&p->kobj);
137 }
138 /*
139  * default release function for pktcdvd kernel objects.
140  */
141 static void pkt_kobj_release(struct kobject *kobj)
142 {
143 	kfree(to_pktcdvdkobj(kobj));
144 }
145 
146 
147 /**********************************************************
148  *
149  * sysfs interface for pktcdvd
150  * by (C) 2006  Thomas Maier <balagi@justmail.de>
151  *
152  **********************************************************/
153 
154 #define DEF_ATTR(_obj,_name,_mode) \
155 	static struct attribute _obj = { .name = _name, .mode = _mode }
156 
157 /**********************************************************
158   /sys/class/pktcdvd/pktcdvd[0-7]/
159                      stat/reset
160                      stat/packets_started
161                      stat/packets_finished
162                      stat/kb_written
163                      stat/kb_read
164                      stat/kb_read_gather
165                      write_queue/size
166                      write_queue/congestion_off
167                      write_queue/congestion_on
168  **********************************************************/
169 
170 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
171 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
172 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
173 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
174 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
175 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
176 
177 static struct attribute *kobj_pkt_attrs_stat[] = {
178 	&kobj_pkt_attr_st1,
179 	&kobj_pkt_attr_st2,
180 	&kobj_pkt_attr_st3,
181 	&kobj_pkt_attr_st4,
182 	&kobj_pkt_attr_st5,
183 	&kobj_pkt_attr_st6,
184 	NULL
185 };
186 
187 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
188 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
189 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
190 
191 static struct attribute *kobj_pkt_attrs_wqueue[] = {
192 	&kobj_pkt_attr_wq1,
193 	&kobj_pkt_attr_wq2,
194 	&kobj_pkt_attr_wq3,
195 	NULL
196 };
197 
198 static ssize_t kobj_pkt_show(struct kobject *kobj,
199 			struct attribute *attr, char *data)
200 {
201 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
202 	int n = 0;
203 	int v;
204 	if (strcmp(attr->name, "packets_started") == 0) {
205 		n = sprintf(data, "%lu\n", pd->stats.pkt_started);
206 
207 	} else if (strcmp(attr->name, "packets_finished") == 0) {
208 		n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
209 
210 	} else if (strcmp(attr->name, "kb_written") == 0) {
211 		n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
212 
213 	} else if (strcmp(attr->name, "kb_read") == 0) {
214 		n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
215 
216 	} else if (strcmp(attr->name, "kb_read_gather") == 0) {
217 		n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
218 
219 	} else if (strcmp(attr->name, "size") == 0) {
220 		spin_lock(&pd->lock);
221 		v = pd->bio_queue_size;
222 		spin_unlock(&pd->lock);
223 		n = sprintf(data, "%d\n", v);
224 
225 	} else if (strcmp(attr->name, "congestion_off") == 0) {
226 		spin_lock(&pd->lock);
227 		v = pd->write_congestion_off;
228 		spin_unlock(&pd->lock);
229 		n = sprintf(data, "%d\n", v);
230 
231 	} else if (strcmp(attr->name, "congestion_on") == 0) {
232 		spin_lock(&pd->lock);
233 		v = pd->write_congestion_on;
234 		spin_unlock(&pd->lock);
235 		n = sprintf(data, "%d\n", v);
236 	}
237 	return n;
238 }
239 
240 static void init_write_congestion_marks(int* lo, int* hi)
241 {
242 	if (*hi > 0) {
243 		*hi = max(*hi, 500);
244 		*hi = min(*hi, 1000000);
245 		if (*lo <= 0)
246 			*lo = *hi - 100;
247 		else {
248 			*lo = min(*lo, *hi - 100);
249 			*lo = max(*lo, 100);
250 		}
251 	} else {
252 		*hi = -1;
253 		*lo = -1;
254 	}
255 }
256 
257 static ssize_t kobj_pkt_store(struct kobject *kobj,
258 			struct attribute *attr,
259 			const char *data, size_t len)
260 {
261 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
262 	int val;
263 
264 	if (strcmp(attr->name, "reset") == 0 && len > 0) {
265 		pd->stats.pkt_started = 0;
266 		pd->stats.pkt_ended = 0;
267 		pd->stats.secs_w = 0;
268 		pd->stats.secs_rg = 0;
269 		pd->stats.secs_r = 0;
270 
271 	} else if (strcmp(attr->name, "congestion_off") == 0
272 		   && sscanf(data, "%d", &val) == 1) {
273 		spin_lock(&pd->lock);
274 		pd->write_congestion_off = val;
275 		init_write_congestion_marks(&pd->write_congestion_off,
276 					&pd->write_congestion_on);
277 		spin_unlock(&pd->lock);
278 
279 	} else if (strcmp(attr->name, "congestion_on") == 0
280 		   && sscanf(data, "%d", &val) == 1) {
281 		spin_lock(&pd->lock);
282 		pd->write_congestion_on = val;
283 		init_write_congestion_marks(&pd->write_congestion_off,
284 					&pd->write_congestion_on);
285 		spin_unlock(&pd->lock);
286 	}
287 	return len;
288 }
289 
290 static const struct sysfs_ops kobj_pkt_ops = {
291 	.show = kobj_pkt_show,
292 	.store = kobj_pkt_store
293 };
294 static struct kobj_type kobj_pkt_type_stat = {
295 	.release = pkt_kobj_release,
296 	.sysfs_ops = &kobj_pkt_ops,
297 	.default_attrs = kobj_pkt_attrs_stat
298 };
299 static struct kobj_type kobj_pkt_type_wqueue = {
300 	.release = pkt_kobj_release,
301 	.sysfs_ops = &kobj_pkt_ops,
302 	.default_attrs = kobj_pkt_attrs_wqueue
303 };
304 
305 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
306 {
307 	if (class_pktcdvd) {
308 		pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
309 					"%s", pd->name);
310 		if (IS_ERR(pd->dev))
311 			pd->dev = NULL;
312 	}
313 	if (pd->dev) {
314 		pd->kobj_stat = pkt_kobj_create(pd, "stat",
315 					&pd->dev->kobj,
316 					&kobj_pkt_type_stat);
317 		pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
318 					&pd->dev->kobj,
319 					&kobj_pkt_type_wqueue);
320 	}
321 }
322 
323 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
324 {
325 	pkt_kobj_remove(pd->kobj_stat);
326 	pkt_kobj_remove(pd->kobj_wqueue);
327 	if (class_pktcdvd)
328 		device_unregister(pd->dev);
329 }
330 
331 
332 /********************************************************************
333   /sys/class/pktcdvd/
334                      add            map block device
335                      remove         unmap packet dev
336                      device_map     show mappings
337  *******************************************************************/
338 
339 static void class_pktcdvd_release(struct class *cls)
340 {
341 	kfree(cls);
342 }
343 static ssize_t class_pktcdvd_show_map(struct class *c,
344 					struct class_attribute *attr,
345 					char *data)
346 {
347 	int n = 0;
348 	int idx;
349 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
350 	for (idx = 0; idx < MAX_WRITERS; idx++) {
351 		struct pktcdvd_device *pd = pkt_devs[idx];
352 		if (!pd)
353 			continue;
354 		n += sprintf(data+n, "%s %u:%u %u:%u\n",
355 			pd->name,
356 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
357 			MAJOR(pd->bdev->bd_dev),
358 			MINOR(pd->bdev->bd_dev));
359 	}
360 	mutex_unlock(&ctl_mutex);
361 	return n;
362 }
363 
364 static ssize_t class_pktcdvd_store_add(struct class *c,
365 					struct class_attribute *attr,
366 					const char *buf,
367 					size_t count)
368 {
369 	unsigned int major, minor;
370 
371 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
372 		/* pkt_setup_dev() expects caller to hold reference to self */
373 		if (!try_module_get(THIS_MODULE))
374 			return -ENODEV;
375 
376 		pkt_setup_dev(MKDEV(major, minor), NULL);
377 
378 		module_put(THIS_MODULE);
379 
380 		return count;
381 	}
382 
383 	return -EINVAL;
384 }
385 
386 static ssize_t class_pktcdvd_store_remove(struct class *c,
387 					  struct class_attribute *attr,
388 					  const char *buf,
389 					size_t count)
390 {
391 	unsigned int major, minor;
392 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
393 		pkt_remove_dev(MKDEV(major, minor));
394 		return count;
395 	}
396 	return -EINVAL;
397 }
398 
399 static struct class_attribute class_pktcdvd_attrs[] = {
400  __ATTR(add,            0200, NULL, class_pktcdvd_store_add),
401  __ATTR(remove,         0200, NULL, class_pktcdvd_store_remove),
402  __ATTR(device_map,     0444, class_pktcdvd_show_map, NULL),
403  __ATTR_NULL
404 };
405 
406 
407 static int pkt_sysfs_init(void)
408 {
409 	int ret = 0;
410 
411 	/*
412 	 * create control files in sysfs
413 	 * /sys/class/pktcdvd/...
414 	 */
415 	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
416 	if (!class_pktcdvd)
417 		return -ENOMEM;
418 	class_pktcdvd->name = DRIVER_NAME;
419 	class_pktcdvd->owner = THIS_MODULE;
420 	class_pktcdvd->class_release = class_pktcdvd_release;
421 	class_pktcdvd->class_attrs = class_pktcdvd_attrs;
422 	ret = class_register(class_pktcdvd);
423 	if (ret) {
424 		kfree(class_pktcdvd);
425 		class_pktcdvd = NULL;
426 		printk(DRIVER_NAME": failed to create class pktcdvd\n");
427 		return ret;
428 	}
429 	return 0;
430 }
431 
432 static void pkt_sysfs_cleanup(void)
433 {
434 	if (class_pktcdvd)
435 		class_destroy(class_pktcdvd);
436 	class_pktcdvd = NULL;
437 }
438 
439 /********************************************************************
440   entries in debugfs
441 
442   /sys/kernel/debug/pktcdvd[0-7]/
443 			info
444 
445  *******************************************************************/
446 
447 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
448 {
449 	return pkt_seq_show(m, p);
450 }
451 
452 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
453 {
454 	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
455 }
456 
457 static const struct file_operations debug_fops = {
458 	.open		= pkt_debugfs_fops_open,
459 	.read		= seq_read,
460 	.llseek		= seq_lseek,
461 	.release	= single_release,
462 	.owner		= THIS_MODULE,
463 };
464 
465 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
466 {
467 	if (!pkt_debugfs_root)
468 		return;
469 	pd->dfs_f_info = NULL;
470 	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
471 	if (IS_ERR(pd->dfs_d_root)) {
472 		pd->dfs_d_root = NULL;
473 		return;
474 	}
475 	pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
476 				pd->dfs_d_root, pd, &debug_fops);
477 	if (IS_ERR(pd->dfs_f_info)) {
478 		pd->dfs_f_info = NULL;
479 		return;
480 	}
481 }
482 
483 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
484 {
485 	if (!pkt_debugfs_root)
486 		return;
487 	if (pd->dfs_f_info)
488 		debugfs_remove(pd->dfs_f_info);
489 	pd->dfs_f_info = NULL;
490 	if (pd->dfs_d_root)
491 		debugfs_remove(pd->dfs_d_root);
492 	pd->dfs_d_root = NULL;
493 }
494 
495 static void pkt_debugfs_init(void)
496 {
497 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498 	if (IS_ERR(pkt_debugfs_root)) {
499 		pkt_debugfs_root = NULL;
500 		return;
501 	}
502 }
503 
504 static void pkt_debugfs_cleanup(void)
505 {
506 	if (!pkt_debugfs_root)
507 		return;
508 	debugfs_remove(pkt_debugfs_root);
509 	pkt_debugfs_root = NULL;
510 }
511 
512 /* ----------------------------------------------------------*/
513 
514 
515 static void pkt_bio_finished(struct pktcdvd_device *pd)
516 {
517 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
518 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
519 		VPRINTK(DRIVER_NAME": queue empty\n");
520 		atomic_set(&pd->iosched.attention, 1);
521 		wake_up(&pd->wqueue);
522 	}
523 }
524 
525 /*
526  * Allocate a packet_data struct
527  */
528 static struct packet_data *pkt_alloc_packet_data(int frames)
529 {
530 	int i;
531 	struct packet_data *pkt;
532 
533 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
534 	if (!pkt)
535 		goto no_pkt;
536 
537 	pkt->frames = frames;
538 	pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
539 	if (!pkt->w_bio)
540 		goto no_bio;
541 
542 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
543 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
544 		if (!pkt->pages[i])
545 			goto no_page;
546 	}
547 
548 	spin_lock_init(&pkt->lock);
549 	bio_list_init(&pkt->orig_bios);
550 
551 	for (i = 0; i < frames; i++) {
552 		struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
553 		if (!bio)
554 			goto no_rd_bio;
555 
556 		pkt->r_bios[i] = bio;
557 	}
558 
559 	return pkt;
560 
561 no_rd_bio:
562 	for (i = 0; i < frames; i++) {
563 		struct bio *bio = pkt->r_bios[i];
564 		if (bio)
565 			bio_put(bio);
566 	}
567 
568 no_page:
569 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
570 		if (pkt->pages[i])
571 			__free_page(pkt->pages[i]);
572 	bio_put(pkt->w_bio);
573 no_bio:
574 	kfree(pkt);
575 no_pkt:
576 	return NULL;
577 }
578 
579 /*
580  * Free a packet_data struct
581  */
582 static void pkt_free_packet_data(struct packet_data *pkt)
583 {
584 	int i;
585 
586 	for (i = 0; i < pkt->frames; i++) {
587 		struct bio *bio = pkt->r_bios[i];
588 		if (bio)
589 			bio_put(bio);
590 	}
591 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
592 		__free_page(pkt->pages[i]);
593 	bio_put(pkt->w_bio);
594 	kfree(pkt);
595 }
596 
597 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
598 {
599 	struct packet_data *pkt, *next;
600 
601 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
602 
603 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
604 		pkt_free_packet_data(pkt);
605 	}
606 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
607 }
608 
609 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
610 {
611 	struct packet_data *pkt;
612 
613 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
614 
615 	while (nr_packets > 0) {
616 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
617 		if (!pkt) {
618 			pkt_shrink_pktlist(pd);
619 			return 0;
620 		}
621 		pkt->id = nr_packets;
622 		pkt->pd = pd;
623 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
624 		nr_packets--;
625 	}
626 	return 1;
627 }
628 
629 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
630 {
631 	struct rb_node *n = rb_next(&node->rb_node);
632 	if (!n)
633 		return NULL;
634 	return rb_entry(n, struct pkt_rb_node, rb_node);
635 }
636 
637 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
638 {
639 	rb_erase(&node->rb_node, &pd->bio_queue);
640 	mempool_free(node, pd->rb_pool);
641 	pd->bio_queue_size--;
642 	BUG_ON(pd->bio_queue_size < 0);
643 }
644 
645 /*
646  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
647  */
648 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
649 {
650 	struct rb_node *n = pd->bio_queue.rb_node;
651 	struct rb_node *next;
652 	struct pkt_rb_node *tmp;
653 
654 	if (!n) {
655 		BUG_ON(pd->bio_queue_size > 0);
656 		return NULL;
657 	}
658 
659 	for (;;) {
660 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
661 		if (s <= tmp->bio->bi_sector)
662 			next = n->rb_left;
663 		else
664 			next = n->rb_right;
665 		if (!next)
666 			break;
667 		n = next;
668 	}
669 
670 	if (s > tmp->bio->bi_sector) {
671 		tmp = pkt_rbtree_next(tmp);
672 		if (!tmp)
673 			return NULL;
674 	}
675 	BUG_ON(s > tmp->bio->bi_sector);
676 	return tmp;
677 }
678 
679 /*
680  * Insert a node into the pd->bio_queue rb tree.
681  */
682 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
683 {
684 	struct rb_node **p = &pd->bio_queue.rb_node;
685 	struct rb_node *parent = NULL;
686 	sector_t s = node->bio->bi_sector;
687 	struct pkt_rb_node *tmp;
688 
689 	while (*p) {
690 		parent = *p;
691 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
692 		if (s < tmp->bio->bi_sector)
693 			p = &(*p)->rb_left;
694 		else
695 			p = &(*p)->rb_right;
696 	}
697 	rb_link_node(&node->rb_node, parent, p);
698 	rb_insert_color(&node->rb_node, &pd->bio_queue);
699 	pd->bio_queue_size++;
700 }
701 
702 /*
703  * Send a packet_command to the underlying block device and
704  * wait for completion.
705  */
706 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
707 {
708 	struct request_queue *q = bdev_get_queue(pd->bdev);
709 	struct request *rq;
710 	int ret = 0;
711 
712 	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
713 			     WRITE : READ, __GFP_WAIT);
714 
715 	if (cgc->buflen) {
716 		if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
717 			goto out;
718 	}
719 
720 	rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
721 	memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
722 
723 	rq->timeout = 60*HZ;
724 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
725 	if (cgc->quiet)
726 		rq->cmd_flags |= REQ_QUIET;
727 
728 	blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
729 	if (rq->errors)
730 		ret = -EIO;
731 out:
732 	blk_put_request(rq);
733 	return ret;
734 }
735 
736 /*
737  * A generic sense dump / resolve mechanism should be implemented across
738  * all ATAPI + SCSI devices.
739  */
740 static void pkt_dump_sense(struct packet_command *cgc)
741 {
742 	static char *info[9] = { "No sense", "Recovered error", "Not ready",
743 				 "Medium error", "Hardware error", "Illegal request",
744 				 "Unit attention", "Data protect", "Blank check" };
745 	int i;
746 	struct request_sense *sense = cgc->sense;
747 
748 	printk(DRIVER_NAME":");
749 	for (i = 0; i < CDROM_PACKET_SIZE; i++)
750 		printk(" %02x", cgc->cmd[i]);
751 	printk(" - ");
752 
753 	if (sense == NULL) {
754 		printk("no sense\n");
755 		return;
756 	}
757 
758 	printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
759 
760 	if (sense->sense_key > 8) {
761 		printk(" (INVALID)\n");
762 		return;
763 	}
764 
765 	printk(" (%s)\n", info[sense->sense_key]);
766 }
767 
768 /*
769  * flush the drive cache to media
770  */
771 static int pkt_flush_cache(struct pktcdvd_device *pd)
772 {
773 	struct packet_command cgc;
774 
775 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
776 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
777 	cgc.quiet = 1;
778 
779 	/*
780 	 * the IMMED bit -- we default to not setting it, although that
781 	 * would allow a much faster close, this is safer
782 	 */
783 #if 0
784 	cgc.cmd[1] = 1 << 1;
785 #endif
786 	return pkt_generic_packet(pd, &cgc);
787 }
788 
789 /*
790  * speed is given as the normal factor, e.g. 4 for 4x
791  */
792 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
793 				unsigned write_speed, unsigned read_speed)
794 {
795 	struct packet_command cgc;
796 	struct request_sense sense;
797 	int ret;
798 
799 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
800 	cgc.sense = &sense;
801 	cgc.cmd[0] = GPCMD_SET_SPEED;
802 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
803 	cgc.cmd[3] = read_speed & 0xff;
804 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
805 	cgc.cmd[5] = write_speed & 0xff;
806 
807 	if ((ret = pkt_generic_packet(pd, &cgc)))
808 		pkt_dump_sense(&cgc);
809 
810 	return ret;
811 }
812 
813 /*
814  * Queue a bio for processing by the low-level CD device. Must be called
815  * from process context.
816  */
817 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
818 {
819 	spin_lock(&pd->iosched.lock);
820 	if (bio_data_dir(bio) == READ)
821 		bio_list_add(&pd->iosched.read_queue, bio);
822 	else
823 		bio_list_add(&pd->iosched.write_queue, bio);
824 	spin_unlock(&pd->iosched.lock);
825 
826 	atomic_set(&pd->iosched.attention, 1);
827 	wake_up(&pd->wqueue);
828 }
829 
830 /*
831  * Process the queued read/write requests. This function handles special
832  * requirements for CDRW drives:
833  * - A cache flush command must be inserted before a read request if the
834  *   previous request was a write.
835  * - Switching between reading and writing is slow, so don't do it more often
836  *   than necessary.
837  * - Optimize for throughput at the expense of latency. This means that streaming
838  *   writes will never be interrupted by a read, but if the drive has to seek
839  *   before the next write, switch to reading instead if there are any pending
840  *   read requests.
841  * - Set the read speed according to current usage pattern. When only reading
842  *   from the device, it's best to use the highest possible read speed, but
843  *   when switching often between reading and writing, it's better to have the
844  *   same read and write speeds.
845  */
846 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
847 {
848 
849 	if (atomic_read(&pd->iosched.attention) == 0)
850 		return;
851 	atomic_set(&pd->iosched.attention, 0);
852 
853 	for (;;) {
854 		struct bio *bio;
855 		int reads_queued, writes_queued;
856 
857 		spin_lock(&pd->iosched.lock);
858 		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
859 		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
860 		spin_unlock(&pd->iosched.lock);
861 
862 		if (!reads_queued && !writes_queued)
863 			break;
864 
865 		if (pd->iosched.writing) {
866 			int need_write_seek = 1;
867 			spin_lock(&pd->iosched.lock);
868 			bio = bio_list_peek(&pd->iosched.write_queue);
869 			spin_unlock(&pd->iosched.lock);
870 			if (bio && (bio->bi_sector == pd->iosched.last_write))
871 				need_write_seek = 0;
872 			if (need_write_seek && reads_queued) {
873 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
874 					VPRINTK(DRIVER_NAME": write, waiting\n");
875 					break;
876 				}
877 				pkt_flush_cache(pd);
878 				pd->iosched.writing = 0;
879 			}
880 		} else {
881 			if (!reads_queued && writes_queued) {
882 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
883 					VPRINTK(DRIVER_NAME": read, waiting\n");
884 					break;
885 				}
886 				pd->iosched.writing = 1;
887 			}
888 		}
889 
890 		spin_lock(&pd->iosched.lock);
891 		if (pd->iosched.writing)
892 			bio = bio_list_pop(&pd->iosched.write_queue);
893 		else
894 			bio = bio_list_pop(&pd->iosched.read_queue);
895 		spin_unlock(&pd->iosched.lock);
896 
897 		if (!bio)
898 			continue;
899 
900 		if (bio_data_dir(bio) == READ)
901 			pd->iosched.successive_reads += bio->bi_size >> 10;
902 		else {
903 			pd->iosched.successive_reads = 0;
904 			pd->iosched.last_write = bio_end_sector(bio);
905 		}
906 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
907 			if (pd->read_speed == pd->write_speed) {
908 				pd->read_speed = MAX_SPEED;
909 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
910 			}
911 		} else {
912 			if (pd->read_speed != pd->write_speed) {
913 				pd->read_speed = pd->write_speed;
914 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
915 			}
916 		}
917 
918 		atomic_inc(&pd->cdrw.pending_bios);
919 		generic_make_request(bio);
920 	}
921 }
922 
923 /*
924  * Special care is needed if the underlying block device has a small
925  * max_phys_segments value.
926  */
927 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
928 {
929 	if ((pd->settings.size << 9) / CD_FRAMESIZE
930 	    <= queue_max_segments(q)) {
931 		/*
932 		 * The cdrom device can handle one segment/frame
933 		 */
934 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
935 		return 0;
936 	} else if ((pd->settings.size << 9) / PAGE_SIZE
937 		   <= queue_max_segments(q)) {
938 		/*
939 		 * We can handle this case at the expense of some extra memory
940 		 * copies during write operations
941 		 */
942 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
943 		return 0;
944 	} else {
945 		printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
946 		return -EIO;
947 	}
948 }
949 
950 /*
951  * Copy all data for this packet to pkt->pages[], so that
952  * a) The number of required segments for the write bio is minimized, which
953  *    is necessary for some scsi controllers.
954  * b) The data can be used as cache to avoid read requests if we receive a
955  *    new write request for the same zone.
956  */
957 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
958 {
959 	int f, p, offs;
960 
961 	/* Copy all data to pkt->pages[] */
962 	p = 0;
963 	offs = 0;
964 	for (f = 0; f < pkt->frames; f++) {
965 		if (bvec[f].bv_page != pkt->pages[p]) {
966 			void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset;
967 			void *vto = page_address(pkt->pages[p]) + offs;
968 			memcpy(vto, vfrom, CD_FRAMESIZE);
969 			kunmap_atomic(vfrom);
970 			bvec[f].bv_page = pkt->pages[p];
971 			bvec[f].bv_offset = offs;
972 		} else {
973 			BUG_ON(bvec[f].bv_offset != offs);
974 		}
975 		offs += CD_FRAMESIZE;
976 		if (offs >= PAGE_SIZE) {
977 			offs = 0;
978 			p++;
979 		}
980 	}
981 }
982 
983 static void pkt_end_io_read(struct bio *bio, int err)
984 {
985 	struct packet_data *pkt = bio->bi_private;
986 	struct pktcdvd_device *pd = pkt->pd;
987 	BUG_ON(!pd);
988 
989 	VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
990 		(unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
991 
992 	if (err)
993 		atomic_inc(&pkt->io_errors);
994 	if (atomic_dec_and_test(&pkt->io_wait)) {
995 		atomic_inc(&pkt->run_sm);
996 		wake_up(&pd->wqueue);
997 	}
998 	pkt_bio_finished(pd);
999 }
1000 
1001 static void pkt_end_io_packet_write(struct bio *bio, int err)
1002 {
1003 	struct packet_data *pkt = bio->bi_private;
1004 	struct pktcdvd_device *pd = pkt->pd;
1005 	BUG_ON(!pd);
1006 
1007 	VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1008 
1009 	pd->stats.pkt_ended++;
1010 
1011 	pkt_bio_finished(pd);
1012 	atomic_dec(&pkt->io_wait);
1013 	atomic_inc(&pkt->run_sm);
1014 	wake_up(&pd->wqueue);
1015 }
1016 
1017 /*
1018  * Schedule reads for the holes in a packet
1019  */
1020 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1021 {
1022 	int frames_read = 0;
1023 	struct bio *bio;
1024 	int f;
1025 	char written[PACKET_MAX_SIZE];
1026 
1027 	BUG_ON(bio_list_empty(&pkt->orig_bios));
1028 
1029 	atomic_set(&pkt->io_wait, 0);
1030 	atomic_set(&pkt->io_errors, 0);
1031 
1032 	/*
1033 	 * Figure out which frames we need to read before we can write.
1034 	 */
1035 	memset(written, 0, sizeof(written));
1036 	spin_lock(&pkt->lock);
1037 	bio_list_for_each(bio, &pkt->orig_bios) {
1038 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1039 		int num_frames = bio->bi_size / CD_FRAMESIZE;
1040 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1041 		BUG_ON(first_frame < 0);
1042 		BUG_ON(first_frame + num_frames > pkt->frames);
1043 		for (f = first_frame; f < first_frame + num_frames; f++)
1044 			written[f] = 1;
1045 	}
1046 	spin_unlock(&pkt->lock);
1047 
1048 	if (pkt->cache_valid) {
1049 		VPRINTK("pkt_gather_data: zone %llx cached\n",
1050 			(unsigned long long)pkt->sector);
1051 		goto out_account;
1052 	}
1053 
1054 	/*
1055 	 * Schedule reads for missing parts of the packet.
1056 	 */
1057 	for (f = 0; f < pkt->frames; f++) {
1058 		int p, offset;
1059 
1060 		if (written[f])
1061 			continue;
1062 
1063 		bio = pkt->r_bios[f];
1064 		bio_reset(bio);
1065 		bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1066 		bio->bi_bdev = pd->bdev;
1067 		bio->bi_end_io = pkt_end_io_read;
1068 		bio->bi_private = pkt;
1069 
1070 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1071 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1072 		VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1073 			f, pkt->pages[p], offset);
1074 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1075 			BUG();
1076 
1077 		atomic_inc(&pkt->io_wait);
1078 		bio->bi_rw = READ;
1079 		pkt_queue_bio(pd, bio);
1080 		frames_read++;
1081 	}
1082 
1083 out_account:
1084 	VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1085 		frames_read, (unsigned long long)pkt->sector);
1086 	pd->stats.pkt_started++;
1087 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1088 }
1089 
1090 /*
1091  * Find a packet matching zone, or the least recently used packet if
1092  * there is no match.
1093  */
1094 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1095 {
1096 	struct packet_data *pkt;
1097 
1098 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1099 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1100 			list_del_init(&pkt->list);
1101 			if (pkt->sector != zone)
1102 				pkt->cache_valid = 0;
1103 			return pkt;
1104 		}
1105 	}
1106 	BUG();
1107 	return NULL;
1108 }
1109 
1110 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1111 {
1112 	if (pkt->cache_valid) {
1113 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1114 	} else {
1115 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1116 	}
1117 }
1118 
1119 /*
1120  * recover a failed write, query for relocation if possible
1121  *
1122  * returns 1 if recovery is possible, or 0 if not
1123  *
1124  */
1125 static int pkt_start_recovery(struct packet_data *pkt)
1126 {
1127 	/*
1128 	 * FIXME. We need help from the file system to implement
1129 	 * recovery handling.
1130 	 */
1131 	return 0;
1132 #if 0
1133 	struct request *rq = pkt->rq;
1134 	struct pktcdvd_device *pd = rq->rq_disk->private_data;
1135 	struct block_device *pkt_bdev;
1136 	struct super_block *sb = NULL;
1137 	unsigned long old_block, new_block;
1138 	sector_t new_sector;
1139 
1140 	pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1141 	if (pkt_bdev) {
1142 		sb = get_super(pkt_bdev);
1143 		bdput(pkt_bdev);
1144 	}
1145 
1146 	if (!sb)
1147 		return 0;
1148 
1149 	if (!sb->s_op->relocate_blocks)
1150 		goto out;
1151 
1152 	old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1153 	if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1154 		goto out;
1155 
1156 	new_sector = new_block * (CD_FRAMESIZE >> 9);
1157 	pkt->sector = new_sector;
1158 
1159 	bio_reset(pkt->bio);
1160 	pkt->bio->bi_bdev = pd->bdev;
1161 	pkt->bio->bi_rw = REQ_WRITE;
1162 	pkt->bio->bi_sector = new_sector;
1163 	pkt->bio->bi_size = pkt->frames * CD_FRAMESIZE;
1164 	pkt->bio->bi_vcnt = pkt->frames;
1165 
1166 	pkt->bio->bi_end_io = pkt_end_io_packet_write;
1167 	pkt->bio->bi_private = pkt;
1168 
1169 	drop_super(sb);
1170 	return 1;
1171 
1172 out:
1173 	drop_super(sb);
1174 	return 0;
1175 #endif
1176 }
1177 
1178 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1179 {
1180 #if PACKET_DEBUG > 1
1181 	static const char *state_name[] = {
1182 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1183 	};
1184 	enum packet_data_state old_state = pkt->state;
1185 	VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1186 		state_name[old_state], state_name[state]);
1187 #endif
1188 	pkt->state = state;
1189 }
1190 
1191 /*
1192  * Scan the work queue to see if we can start a new packet.
1193  * returns non-zero if any work was done.
1194  */
1195 static int pkt_handle_queue(struct pktcdvd_device *pd)
1196 {
1197 	struct packet_data *pkt, *p;
1198 	struct bio *bio = NULL;
1199 	sector_t zone = 0; /* Suppress gcc warning */
1200 	struct pkt_rb_node *node, *first_node;
1201 	struct rb_node *n;
1202 	int wakeup;
1203 
1204 	VPRINTK("handle_queue\n");
1205 
1206 	atomic_set(&pd->scan_queue, 0);
1207 
1208 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1209 		VPRINTK("handle_queue: no pkt\n");
1210 		return 0;
1211 	}
1212 
1213 	/*
1214 	 * Try to find a zone we are not already working on.
1215 	 */
1216 	spin_lock(&pd->lock);
1217 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1218 	if (!first_node) {
1219 		n = rb_first(&pd->bio_queue);
1220 		if (n)
1221 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1222 	}
1223 	node = first_node;
1224 	while (node) {
1225 		bio = node->bio;
1226 		zone = ZONE(bio->bi_sector, pd);
1227 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1228 			if (p->sector == zone) {
1229 				bio = NULL;
1230 				goto try_next_bio;
1231 			}
1232 		}
1233 		break;
1234 try_next_bio:
1235 		node = pkt_rbtree_next(node);
1236 		if (!node) {
1237 			n = rb_first(&pd->bio_queue);
1238 			if (n)
1239 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1240 		}
1241 		if (node == first_node)
1242 			node = NULL;
1243 	}
1244 	spin_unlock(&pd->lock);
1245 	if (!bio) {
1246 		VPRINTK("handle_queue: no bio\n");
1247 		return 0;
1248 	}
1249 
1250 	pkt = pkt_get_packet_data(pd, zone);
1251 
1252 	pd->current_sector = zone + pd->settings.size;
1253 	pkt->sector = zone;
1254 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1255 	pkt->write_size = 0;
1256 
1257 	/*
1258 	 * Scan work queue for bios in the same zone and link them
1259 	 * to this packet.
1260 	 */
1261 	spin_lock(&pd->lock);
1262 	VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1263 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1264 		bio = node->bio;
1265 		VPRINTK("pkt_handle_queue: found zone=%llx\n",
1266 			(unsigned long long)ZONE(bio->bi_sector, pd));
1267 		if (ZONE(bio->bi_sector, pd) != zone)
1268 			break;
1269 		pkt_rbtree_erase(pd, node);
1270 		spin_lock(&pkt->lock);
1271 		bio_list_add(&pkt->orig_bios, bio);
1272 		pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1273 		spin_unlock(&pkt->lock);
1274 	}
1275 	/* check write congestion marks, and if bio_queue_size is
1276 	   below, wake up any waiters */
1277 	wakeup = (pd->write_congestion_on > 0
1278 	 		&& pd->bio_queue_size <= pd->write_congestion_off);
1279 	spin_unlock(&pd->lock);
1280 	if (wakeup) {
1281 		clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1282 					BLK_RW_ASYNC);
1283 	}
1284 
1285 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1286 	pkt_set_state(pkt, PACKET_WAITING_STATE);
1287 	atomic_set(&pkt->run_sm, 1);
1288 
1289 	spin_lock(&pd->cdrw.active_list_lock);
1290 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1291 	spin_unlock(&pd->cdrw.active_list_lock);
1292 
1293 	return 1;
1294 }
1295 
1296 /*
1297  * Assemble a bio to write one packet and queue the bio for processing
1298  * by the underlying block device.
1299  */
1300 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1301 {
1302 	int f;
1303 	struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1304 
1305 	bio_reset(pkt->w_bio);
1306 	pkt->w_bio->bi_sector = pkt->sector;
1307 	pkt->w_bio->bi_bdev = pd->bdev;
1308 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1309 	pkt->w_bio->bi_private = pkt;
1310 
1311 	/* XXX: locking? */
1312 	for (f = 0; f < pkt->frames; f++) {
1313 		bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1314 		bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1315 		if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1316 			BUG();
1317 	}
1318 	VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1319 
1320 	/*
1321 	 * Fill-in bvec with data from orig_bios.
1322 	 */
1323 	spin_lock(&pkt->lock);
1324 	bio_copy_data(pkt->w_bio, pkt->orig_bios.head);
1325 
1326 	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1327 	spin_unlock(&pkt->lock);
1328 
1329 	VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1330 		pkt->write_size, (unsigned long long)pkt->sector);
1331 
1332 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1333 		pkt_make_local_copy(pkt, bvec);
1334 		pkt->cache_valid = 1;
1335 	} else {
1336 		pkt->cache_valid = 0;
1337 	}
1338 
1339 	/* Start the write request */
1340 	atomic_set(&pkt->io_wait, 1);
1341 	pkt->w_bio->bi_rw = WRITE;
1342 	pkt_queue_bio(pd, pkt->w_bio);
1343 }
1344 
1345 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1346 {
1347 	struct bio *bio;
1348 
1349 	if (!uptodate)
1350 		pkt->cache_valid = 0;
1351 
1352 	/* Finish all bios corresponding to this packet */
1353 	while ((bio = bio_list_pop(&pkt->orig_bios)))
1354 		bio_endio(bio, uptodate ? 0 : -EIO);
1355 }
1356 
1357 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1358 {
1359 	int uptodate;
1360 
1361 	VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1362 
1363 	for (;;) {
1364 		switch (pkt->state) {
1365 		case PACKET_WAITING_STATE:
1366 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1367 				return;
1368 
1369 			pkt->sleep_time = 0;
1370 			pkt_gather_data(pd, pkt);
1371 			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1372 			break;
1373 
1374 		case PACKET_READ_WAIT_STATE:
1375 			if (atomic_read(&pkt->io_wait) > 0)
1376 				return;
1377 
1378 			if (atomic_read(&pkt->io_errors) > 0) {
1379 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1380 			} else {
1381 				pkt_start_write(pd, pkt);
1382 			}
1383 			break;
1384 
1385 		case PACKET_WRITE_WAIT_STATE:
1386 			if (atomic_read(&pkt->io_wait) > 0)
1387 				return;
1388 
1389 			if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1390 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1391 			} else {
1392 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1393 			}
1394 			break;
1395 
1396 		case PACKET_RECOVERY_STATE:
1397 			if (pkt_start_recovery(pkt)) {
1398 				pkt_start_write(pd, pkt);
1399 			} else {
1400 				VPRINTK("No recovery possible\n");
1401 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1402 			}
1403 			break;
1404 
1405 		case PACKET_FINISHED_STATE:
1406 			uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1407 			pkt_finish_packet(pkt, uptodate);
1408 			return;
1409 
1410 		default:
1411 			BUG();
1412 			break;
1413 		}
1414 	}
1415 }
1416 
1417 static void pkt_handle_packets(struct pktcdvd_device *pd)
1418 {
1419 	struct packet_data *pkt, *next;
1420 
1421 	VPRINTK("pkt_handle_packets\n");
1422 
1423 	/*
1424 	 * Run state machine for active packets
1425 	 */
1426 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1427 		if (atomic_read(&pkt->run_sm) > 0) {
1428 			atomic_set(&pkt->run_sm, 0);
1429 			pkt_run_state_machine(pd, pkt);
1430 		}
1431 	}
1432 
1433 	/*
1434 	 * Move no longer active packets to the free list
1435 	 */
1436 	spin_lock(&pd->cdrw.active_list_lock);
1437 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1438 		if (pkt->state == PACKET_FINISHED_STATE) {
1439 			list_del(&pkt->list);
1440 			pkt_put_packet_data(pd, pkt);
1441 			pkt_set_state(pkt, PACKET_IDLE_STATE);
1442 			atomic_set(&pd->scan_queue, 1);
1443 		}
1444 	}
1445 	spin_unlock(&pd->cdrw.active_list_lock);
1446 }
1447 
1448 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1449 {
1450 	struct packet_data *pkt;
1451 	int i;
1452 
1453 	for (i = 0; i < PACKET_NUM_STATES; i++)
1454 		states[i] = 0;
1455 
1456 	spin_lock(&pd->cdrw.active_list_lock);
1457 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1458 		states[pkt->state]++;
1459 	}
1460 	spin_unlock(&pd->cdrw.active_list_lock);
1461 }
1462 
1463 /*
1464  * kcdrwd is woken up when writes have been queued for one of our
1465  * registered devices
1466  */
1467 static int kcdrwd(void *foobar)
1468 {
1469 	struct pktcdvd_device *pd = foobar;
1470 	struct packet_data *pkt;
1471 	long min_sleep_time, residue;
1472 
1473 	set_user_nice(current, -20);
1474 	set_freezable();
1475 
1476 	for (;;) {
1477 		DECLARE_WAITQUEUE(wait, current);
1478 
1479 		/*
1480 		 * Wait until there is something to do
1481 		 */
1482 		add_wait_queue(&pd->wqueue, &wait);
1483 		for (;;) {
1484 			set_current_state(TASK_INTERRUPTIBLE);
1485 
1486 			/* Check if we need to run pkt_handle_queue */
1487 			if (atomic_read(&pd->scan_queue) > 0)
1488 				goto work_to_do;
1489 
1490 			/* Check if we need to run the state machine for some packet */
1491 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1492 				if (atomic_read(&pkt->run_sm) > 0)
1493 					goto work_to_do;
1494 			}
1495 
1496 			/* Check if we need to process the iosched queues */
1497 			if (atomic_read(&pd->iosched.attention) != 0)
1498 				goto work_to_do;
1499 
1500 			/* Otherwise, go to sleep */
1501 			if (PACKET_DEBUG > 1) {
1502 				int states[PACKET_NUM_STATES];
1503 				pkt_count_states(pd, states);
1504 				VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1505 					states[0], states[1], states[2], states[3],
1506 					states[4], states[5]);
1507 			}
1508 
1509 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1510 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1511 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1512 					min_sleep_time = pkt->sleep_time;
1513 			}
1514 
1515 			VPRINTK("kcdrwd: sleeping\n");
1516 			residue = schedule_timeout(min_sleep_time);
1517 			VPRINTK("kcdrwd: wake up\n");
1518 
1519 			/* make swsusp happy with our thread */
1520 			try_to_freeze();
1521 
1522 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1523 				if (!pkt->sleep_time)
1524 					continue;
1525 				pkt->sleep_time -= min_sleep_time - residue;
1526 				if (pkt->sleep_time <= 0) {
1527 					pkt->sleep_time = 0;
1528 					atomic_inc(&pkt->run_sm);
1529 				}
1530 			}
1531 
1532 			if (kthread_should_stop())
1533 				break;
1534 		}
1535 work_to_do:
1536 		set_current_state(TASK_RUNNING);
1537 		remove_wait_queue(&pd->wqueue, &wait);
1538 
1539 		if (kthread_should_stop())
1540 			break;
1541 
1542 		/*
1543 		 * if pkt_handle_queue returns true, we can queue
1544 		 * another request.
1545 		 */
1546 		while (pkt_handle_queue(pd))
1547 			;
1548 
1549 		/*
1550 		 * Handle packet state machine
1551 		 */
1552 		pkt_handle_packets(pd);
1553 
1554 		/*
1555 		 * Handle iosched queues
1556 		 */
1557 		pkt_iosched_process_queue(pd);
1558 	}
1559 
1560 	return 0;
1561 }
1562 
1563 static void pkt_print_settings(struct pktcdvd_device *pd)
1564 {
1565 	printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1566 	printk("%u blocks, ", pd->settings.size >> 2);
1567 	printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1568 }
1569 
1570 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1571 {
1572 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1573 
1574 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1575 	cgc->cmd[2] = page_code | (page_control << 6);
1576 	cgc->cmd[7] = cgc->buflen >> 8;
1577 	cgc->cmd[8] = cgc->buflen & 0xff;
1578 	cgc->data_direction = CGC_DATA_READ;
1579 	return pkt_generic_packet(pd, cgc);
1580 }
1581 
1582 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1583 {
1584 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1585 	memset(cgc->buffer, 0, 2);
1586 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1587 	cgc->cmd[1] = 0x10;		/* PF */
1588 	cgc->cmd[7] = cgc->buflen >> 8;
1589 	cgc->cmd[8] = cgc->buflen & 0xff;
1590 	cgc->data_direction = CGC_DATA_WRITE;
1591 	return pkt_generic_packet(pd, cgc);
1592 }
1593 
1594 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1595 {
1596 	struct packet_command cgc;
1597 	int ret;
1598 
1599 	/* set up command and get the disc info */
1600 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1601 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1602 	cgc.cmd[8] = cgc.buflen = 2;
1603 	cgc.quiet = 1;
1604 
1605 	if ((ret = pkt_generic_packet(pd, &cgc)))
1606 		return ret;
1607 
1608 	/* not all drives have the same disc_info length, so requeue
1609 	 * packet with the length the drive tells us it can supply
1610 	 */
1611 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1612 		     sizeof(di->disc_information_length);
1613 
1614 	if (cgc.buflen > sizeof(disc_information))
1615 		cgc.buflen = sizeof(disc_information);
1616 
1617 	cgc.cmd[8] = cgc.buflen;
1618 	return pkt_generic_packet(pd, &cgc);
1619 }
1620 
1621 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1622 {
1623 	struct packet_command cgc;
1624 	int ret;
1625 
1626 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1627 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1628 	cgc.cmd[1] = type & 3;
1629 	cgc.cmd[4] = (track & 0xff00) >> 8;
1630 	cgc.cmd[5] = track & 0xff;
1631 	cgc.cmd[8] = 8;
1632 	cgc.quiet = 1;
1633 
1634 	if ((ret = pkt_generic_packet(pd, &cgc)))
1635 		return ret;
1636 
1637 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1638 		     sizeof(ti->track_information_length);
1639 
1640 	if (cgc.buflen > sizeof(track_information))
1641 		cgc.buflen = sizeof(track_information);
1642 
1643 	cgc.cmd[8] = cgc.buflen;
1644 	return pkt_generic_packet(pd, &cgc);
1645 }
1646 
1647 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1648 						long *last_written)
1649 {
1650 	disc_information di;
1651 	track_information ti;
1652 	__u32 last_track;
1653 	int ret = -1;
1654 
1655 	if ((ret = pkt_get_disc_info(pd, &di)))
1656 		return ret;
1657 
1658 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1659 	if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1660 		return ret;
1661 
1662 	/* if this track is blank, try the previous. */
1663 	if (ti.blank) {
1664 		last_track--;
1665 		if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1666 			return ret;
1667 	}
1668 
1669 	/* if last recorded field is valid, return it. */
1670 	if (ti.lra_v) {
1671 		*last_written = be32_to_cpu(ti.last_rec_address);
1672 	} else {
1673 		/* make it up instead */
1674 		*last_written = be32_to_cpu(ti.track_start) +
1675 				be32_to_cpu(ti.track_size);
1676 		if (ti.free_blocks)
1677 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1678 	}
1679 	return 0;
1680 }
1681 
1682 /*
1683  * write mode select package based on pd->settings
1684  */
1685 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1686 {
1687 	struct packet_command cgc;
1688 	struct request_sense sense;
1689 	write_param_page *wp;
1690 	char buffer[128];
1691 	int ret, size;
1692 
1693 	/* doesn't apply to DVD+RW or DVD-RAM */
1694 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1695 		return 0;
1696 
1697 	memset(buffer, 0, sizeof(buffer));
1698 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1699 	cgc.sense = &sense;
1700 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1701 		pkt_dump_sense(&cgc);
1702 		return ret;
1703 	}
1704 
1705 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1706 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1707 	if (size > sizeof(buffer))
1708 		size = sizeof(buffer);
1709 
1710 	/*
1711 	 * now get it all
1712 	 */
1713 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1714 	cgc.sense = &sense;
1715 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1716 		pkt_dump_sense(&cgc);
1717 		return ret;
1718 	}
1719 
1720 	/*
1721 	 * write page is offset header + block descriptor length
1722 	 */
1723 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1724 
1725 	wp->fp = pd->settings.fp;
1726 	wp->track_mode = pd->settings.track_mode;
1727 	wp->write_type = pd->settings.write_type;
1728 	wp->data_block_type = pd->settings.block_mode;
1729 
1730 	wp->multi_session = 0;
1731 
1732 #ifdef PACKET_USE_LS
1733 	wp->link_size = 7;
1734 	wp->ls_v = 1;
1735 #endif
1736 
1737 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1738 		wp->session_format = 0;
1739 		wp->subhdr2 = 0x20;
1740 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1741 		wp->session_format = 0x20;
1742 		wp->subhdr2 = 8;
1743 #if 0
1744 		wp->mcn[0] = 0x80;
1745 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1746 #endif
1747 	} else {
1748 		/*
1749 		 * paranoia
1750 		 */
1751 		printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1752 		return 1;
1753 	}
1754 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1755 
1756 	cgc.buflen = cgc.cmd[8] = size;
1757 	if ((ret = pkt_mode_select(pd, &cgc))) {
1758 		pkt_dump_sense(&cgc);
1759 		return ret;
1760 	}
1761 
1762 	pkt_print_settings(pd);
1763 	return 0;
1764 }
1765 
1766 /*
1767  * 1 -- we can write to this track, 0 -- we can't
1768  */
1769 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1770 {
1771 	switch (pd->mmc3_profile) {
1772 		case 0x1a: /* DVD+RW */
1773 		case 0x12: /* DVD-RAM */
1774 			/* The track is always writable on DVD+RW/DVD-RAM */
1775 			return 1;
1776 		default:
1777 			break;
1778 	}
1779 
1780 	if (!ti->packet || !ti->fp)
1781 		return 0;
1782 
1783 	/*
1784 	 * "good" settings as per Mt Fuji.
1785 	 */
1786 	if (ti->rt == 0 && ti->blank == 0)
1787 		return 1;
1788 
1789 	if (ti->rt == 0 && ti->blank == 1)
1790 		return 1;
1791 
1792 	if (ti->rt == 1 && ti->blank == 0)
1793 		return 1;
1794 
1795 	printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1796 	return 0;
1797 }
1798 
1799 /*
1800  * 1 -- we can write to this disc, 0 -- we can't
1801  */
1802 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1803 {
1804 	switch (pd->mmc3_profile) {
1805 		case 0x0a: /* CD-RW */
1806 		case 0xffff: /* MMC3 not supported */
1807 			break;
1808 		case 0x1a: /* DVD+RW */
1809 		case 0x13: /* DVD-RW */
1810 		case 0x12: /* DVD-RAM */
1811 			return 1;
1812 		default:
1813 			VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1814 			return 0;
1815 	}
1816 
1817 	/*
1818 	 * for disc type 0xff we should probably reserve a new track.
1819 	 * but i'm not sure, should we leave this to user apps? probably.
1820 	 */
1821 	if (di->disc_type == 0xff) {
1822 		printk(DRIVER_NAME": Unknown disc. No track?\n");
1823 		return 0;
1824 	}
1825 
1826 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1827 		printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1828 		return 0;
1829 	}
1830 
1831 	if (di->erasable == 0) {
1832 		printk(DRIVER_NAME": Disc not erasable\n");
1833 		return 0;
1834 	}
1835 
1836 	if (di->border_status == PACKET_SESSION_RESERVED) {
1837 		printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1838 		return 0;
1839 	}
1840 
1841 	return 1;
1842 }
1843 
1844 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1845 {
1846 	struct packet_command cgc;
1847 	unsigned char buf[12];
1848 	disc_information di;
1849 	track_information ti;
1850 	int ret, track;
1851 
1852 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1853 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1854 	cgc.cmd[8] = 8;
1855 	ret = pkt_generic_packet(pd, &cgc);
1856 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1857 
1858 	memset(&di, 0, sizeof(disc_information));
1859 	memset(&ti, 0, sizeof(track_information));
1860 
1861 	if ((ret = pkt_get_disc_info(pd, &di))) {
1862 		printk("failed get_disc\n");
1863 		return ret;
1864 	}
1865 
1866 	if (!pkt_writable_disc(pd, &di))
1867 		return -EROFS;
1868 
1869 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1870 
1871 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1872 	if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1873 		printk(DRIVER_NAME": failed get_track\n");
1874 		return ret;
1875 	}
1876 
1877 	if (!pkt_writable_track(pd, &ti)) {
1878 		printk(DRIVER_NAME": can't write to this track\n");
1879 		return -EROFS;
1880 	}
1881 
1882 	/*
1883 	 * we keep packet size in 512 byte units, makes it easier to
1884 	 * deal with request calculations.
1885 	 */
1886 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1887 	if (pd->settings.size == 0) {
1888 		printk(DRIVER_NAME": detected zero packet size!\n");
1889 		return -ENXIO;
1890 	}
1891 	if (pd->settings.size > PACKET_MAX_SECTORS) {
1892 		printk(DRIVER_NAME": packet size is too big\n");
1893 		return -EROFS;
1894 	}
1895 	pd->settings.fp = ti.fp;
1896 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1897 
1898 	if (ti.nwa_v) {
1899 		pd->nwa = be32_to_cpu(ti.next_writable);
1900 		set_bit(PACKET_NWA_VALID, &pd->flags);
1901 	}
1902 
1903 	/*
1904 	 * in theory we could use lra on -RW media as well and just zero
1905 	 * blocks that haven't been written yet, but in practice that
1906 	 * is just a no-go. we'll use that for -R, naturally.
1907 	 */
1908 	if (ti.lra_v) {
1909 		pd->lra = be32_to_cpu(ti.last_rec_address);
1910 		set_bit(PACKET_LRA_VALID, &pd->flags);
1911 	} else {
1912 		pd->lra = 0xffffffff;
1913 		set_bit(PACKET_LRA_VALID, &pd->flags);
1914 	}
1915 
1916 	/*
1917 	 * fine for now
1918 	 */
1919 	pd->settings.link_loss = 7;
1920 	pd->settings.write_type = 0;	/* packet */
1921 	pd->settings.track_mode = ti.track_mode;
1922 
1923 	/*
1924 	 * mode1 or mode2 disc
1925 	 */
1926 	switch (ti.data_mode) {
1927 		case PACKET_MODE1:
1928 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1929 			break;
1930 		case PACKET_MODE2:
1931 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1932 			break;
1933 		default:
1934 			printk(DRIVER_NAME": unknown data mode\n");
1935 			return -EROFS;
1936 	}
1937 	return 0;
1938 }
1939 
1940 /*
1941  * enable/disable write caching on drive
1942  */
1943 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1944 						int set)
1945 {
1946 	struct packet_command cgc;
1947 	struct request_sense sense;
1948 	unsigned char buf[64];
1949 	int ret;
1950 
1951 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1952 	cgc.sense = &sense;
1953 	cgc.buflen = pd->mode_offset + 12;
1954 
1955 	/*
1956 	 * caching mode page might not be there, so quiet this command
1957 	 */
1958 	cgc.quiet = 1;
1959 
1960 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1961 		return ret;
1962 
1963 	buf[pd->mode_offset + 10] |= (!!set << 2);
1964 
1965 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1966 	ret = pkt_mode_select(pd, &cgc);
1967 	if (ret) {
1968 		printk(DRIVER_NAME": write caching control failed\n");
1969 		pkt_dump_sense(&cgc);
1970 	} else if (!ret && set)
1971 		printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
1972 	return ret;
1973 }
1974 
1975 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1976 {
1977 	struct packet_command cgc;
1978 
1979 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1980 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1981 	cgc.cmd[4] = lockflag ? 1 : 0;
1982 	return pkt_generic_packet(pd, &cgc);
1983 }
1984 
1985 /*
1986  * Returns drive maximum write speed
1987  */
1988 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1989 						unsigned *write_speed)
1990 {
1991 	struct packet_command cgc;
1992 	struct request_sense sense;
1993 	unsigned char buf[256+18];
1994 	unsigned char *cap_buf;
1995 	int ret, offset;
1996 
1997 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1998 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1999 	cgc.sense = &sense;
2000 
2001 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2002 	if (ret) {
2003 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2004 			     sizeof(struct mode_page_header);
2005 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2006 		if (ret) {
2007 			pkt_dump_sense(&cgc);
2008 			return ret;
2009 		}
2010 	}
2011 
2012 	offset = 20;			    /* Obsoleted field, used by older drives */
2013 	if (cap_buf[1] >= 28)
2014 		offset = 28;		    /* Current write speed selected */
2015 	if (cap_buf[1] >= 30) {
2016 		/* If the drive reports at least one "Logical Unit Write
2017 		 * Speed Performance Descriptor Block", use the information
2018 		 * in the first block. (contains the highest speed)
2019 		 */
2020 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2021 		if (num_spdb > 0)
2022 			offset = 34;
2023 	}
2024 
2025 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2026 	return 0;
2027 }
2028 
2029 /* These tables from cdrecord - I don't have orange book */
2030 /* standard speed CD-RW (1-4x) */
2031 static char clv_to_speed[16] = {
2032 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2033 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2034 };
2035 /* high speed CD-RW (-10x) */
2036 static char hs_clv_to_speed[16] = {
2037 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2038 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2039 };
2040 /* ultra high speed CD-RW */
2041 static char us_clv_to_speed[16] = {
2042 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2043 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2044 };
2045 
2046 /*
2047  * reads the maximum media speed from ATIP
2048  */
2049 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2050 						unsigned *speed)
2051 {
2052 	struct packet_command cgc;
2053 	struct request_sense sense;
2054 	unsigned char buf[64];
2055 	unsigned int size, st, sp;
2056 	int ret;
2057 
2058 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2059 	cgc.sense = &sense;
2060 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2061 	cgc.cmd[1] = 2;
2062 	cgc.cmd[2] = 4; /* READ ATIP */
2063 	cgc.cmd[8] = 2;
2064 	ret = pkt_generic_packet(pd, &cgc);
2065 	if (ret) {
2066 		pkt_dump_sense(&cgc);
2067 		return ret;
2068 	}
2069 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2070 	if (size > sizeof(buf))
2071 		size = sizeof(buf);
2072 
2073 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2074 	cgc.sense = &sense;
2075 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2076 	cgc.cmd[1] = 2;
2077 	cgc.cmd[2] = 4;
2078 	cgc.cmd[8] = size;
2079 	ret = pkt_generic_packet(pd, &cgc);
2080 	if (ret) {
2081 		pkt_dump_sense(&cgc);
2082 		return ret;
2083 	}
2084 
2085 	if (!(buf[6] & 0x40)) {
2086 		printk(DRIVER_NAME": Disc type is not CD-RW\n");
2087 		return 1;
2088 	}
2089 	if (!(buf[6] & 0x4)) {
2090 		printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2091 		return 1;
2092 	}
2093 
2094 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2095 
2096 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2097 
2098 	/* Info from cdrecord */
2099 	switch (st) {
2100 		case 0: /* standard speed */
2101 			*speed = clv_to_speed[sp];
2102 			break;
2103 		case 1: /* high speed */
2104 			*speed = hs_clv_to_speed[sp];
2105 			break;
2106 		case 2: /* ultra high speed */
2107 			*speed = us_clv_to_speed[sp];
2108 			break;
2109 		default:
2110 			printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2111 			return 1;
2112 	}
2113 	if (*speed) {
2114 		printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2115 		return 0;
2116 	} else {
2117 		printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2118 		return 1;
2119 	}
2120 }
2121 
2122 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2123 {
2124 	struct packet_command cgc;
2125 	struct request_sense sense;
2126 	int ret;
2127 
2128 	VPRINTK(DRIVER_NAME": Performing OPC\n");
2129 
2130 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2131 	cgc.sense = &sense;
2132 	cgc.timeout = 60*HZ;
2133 	cgc.cmd[0] = GPCMD_SEND_OPC;
2134 	cgc.cmd[1] = 1;
2135 	if ((ret = pkt_generic_packet(pd, &cgc)))
2136 		pkt_dump_sense(&cgc);
2137 	return ret;
2138 }
2139 
2140 static int pkt_open_write(struct pktcdvd_device *pd)
2141 {
2142 	int ret;
2143 	unsigned int write_speed, media_write_speed, read_speed;
2144 
2145 	if ((ret = pkt_probe_settings(pd))) {
2146 		VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2147 		return ret;
2148 	}
2149 
2150 	if ((ret = pkt_set_write_settings(pd))) {
2151 		DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2152 		return -EIO;
2153 	}
2154 
2155 	pkt_write_caching(pd, USE_WCACHING);
2156 
2157 	if ((ret = pkt_get_max_speed(pd, &write_speed)))
2158 		write_speed = 16 * 177;
2159 	switch (pd->mmc3_profile) {
2160 		case 0x13: /* DVD-RW */
2161 		case 0x1a: /* DVD+RW */
2162 		case 0x12: /* DVD-RAM */
2163 			DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2164 			break;
2165 		default:
2166 			if ((ret = pkt_media_speed(pd, &media_write_speed)))
2167 				media_write_speed = 16;
2168 			write_speed = min(write_speed, media_write_speed * 177);
2169 			DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2170 			break;
2171 	}
2172 	read_speed = write_speed;
2173 
2174 	if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2175 		DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2176 		return -EIO;
2177 	}
2178 	pd->write_speed = write_speed;
2179 	pd->read_speed = read_speed;
2180 
2181 	if ((ret = pkt_perform_opc(pd))) {
2182 		DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2183 	}
2184 
2185 	return 0;
2186 }
2187 
2188 /*
2189  * called at open time.
2190  */
2191 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2192 {
2193 	int ret;
2194 	long lba;
2195 	struct request_queue *q;
2196 
2197 	/*
2198 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2199 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2200 	 * so bdget() can't fail.
2201 	 */
2202 	bdget(pd->bdev->bd_dev);
2203 	if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2204 		goto out;
2205 
2206 	if ((ret = pkt_get_last_written(pd, &lba))) {
2207 		printk(DRIVER_NAME": pkt_get_last_written failed\n");
2208 		goto out_putdev;
2209 	}
2210 
2211 	set_capacity(pd->disk, lba << 2);
2212 	set_capacity(pd->bdev->bd_disk, lba << 2);
2213 	bd_set_size(pd->bdev, (loff_t)lba << 11);
2214 
2215 	q = bdev_get_queue(pd->bdev);
2216 	if (write) {
2217 		if ((ret = pkt_open_write(pd)))
2218 			goto out_putdev;
2219 		/*
2220 		 * Some CDRW drives can not handle writes larger than one packet,
2221 		 * even if the size is a multiple of the packet size.
2222 		 */
2223 		spin_lock_irq(q->queue_lock);
2224 		blk_queue_max_hw_sectors(q, pd->settings.size);
2225 		spin_unlock_irq(q->queue_lock);
2226 		set_bit(PACKET_WRITABLE, &pd->flags);
2227 	} else {
2228 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2229 		clear_bit(PACKET_WRITABLE, &pd->flags);
2230 	}
2231 
2232 	if ((ret = pkt_set_segment_merging(pd, q)))
2233 		goto out_putdev;
2234 
2235 	if (write) {
2236 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2237 			printk(DRIVER_NAME": not enough memory for buffers\n");
2238 			ret = -ENOMEM;
2239 			goto out_putdev;
2240 		}
2241 		printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2242 	}
2243 
2244 	return 0;
2245 
2246 out_putdev:
2247 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2248 out:
2249 	return ret;
2250 }
2251 
2252 /*
2253  * called when the device is closed. makes sure that the device flushes
2254  * the internal cache before we close.
2255  */
2256 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2257 {
2258 	if (flush && pkt_flush_cache(pd))
2259 		DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2260 
2261 	pkt_lock_door(pd, 0);
2262 
2263 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2264 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2265 
2266 	pkt_shrink_pktlist(pd);
2267 }
2268 
2269 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2270 {
2271 	if (dev_minor >= MAX_WRITERS)
2272 		return NULL;
2273 	return pkt_devs[dev_minor];
2274 }
2275 
2276 static int pkt_open(struct block_device *bdev, fmode_t mode)
2277 {
2278 	struct pktcdvd_device *pd = NULL;
2279 	int ret;
2280 
2281 	VPRINTK(DRIVER_NAME": entering open\n");
2282 
2283 	mutex_lock(&pktcdvd_mutex);
2284 	mutex_lock(&ctl_mutex);
2285 	pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2286 	if (!pd) {
2287 		ret = -ENODEV;
2288 		goto out;
2289 	}
2290 	BUG_ON(pd->refcnt < 0);
2291 
2292 	pd->refcnt++;
2293 	if (pd->refcnt > 1) {
2294 		if ((mode & FMODE_WRITE) &&
2295 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2296 			ret = -EBUSY;
2297 			goto out_dec;
2298 		}
2299 	} else {
2300 		ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2301 		if (ret)
2302 			goto out_dec;
2303 		/*
2304 		 * needed here as well, since ext2 (among others) may change
2305 		 * the blocksize at mount time
2306 		 */
2307 		set_blocksize(bdev, CD_FRAMESIZE);
2308 	}
2309 
2310 	mutex_unlock(&ctl_mutex);
2311 	mutex_unlock(&pktcdvd_mutex);
2312 	return 0;
2313 
2314 out_dec:
2315 	pd->refcnt--;
2316 out:
2317 	VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2318 	mutex_unlock(&ctl_mutex);
2319 	mutex_unlock(&pktcdvd_mutex);
2320 	return ret;
2321 }
2322 
2323 static void pkt_close(struct gendisk *disk, fmode_t mode)
2324 {
2325 	struct pktcdvd_device *pd = disk->private_data;
2326 
2327 	mutex_lock(&pktcdvd_mutex);
2328 	mutex_lock(&ctl_mutex);
2329 	pd->refcnt--;
2330 	BUG_ON(pd->refcnt < 0);
2331 	if (pd->refcnt == 0) {
2332 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2333 		pkt_release_dev(pd, flush);
2334 	}
2335 	mutex_unlock(&ctl_mutex);
2336 	mutex_unlock(&pktcdvd_mutex);
2337 }
2338 
2339 
2340 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2341 {
2342 	struct packet_stacked_data *psd = bio->bi_private;
2343 	struct pktcdvd_device *pd = psd->pd;
2344 
2345 	bio_put(bio);
2346 	bio_endio(psd->bio, err);
2347 	mempool_free(psd, psd_pool);
2348 	pkt_bio_finished(pd);
2349 }
2350 
2351 static void pkt_make_request(struct request_queue *q, struct bio *bio)
2352 {
2353 	struct pktcdvd_device *pd;
2354 	char b[BDEVNAME_SIZE];
2355 	sector_t zone;
2356 	struct packet_data *pkt;
2357 	int was_empty, blocked_bio;
2358 	struct pkt_rb_node *node;
2359 
2360 	pd = q->queuedata;
2361 	if (!pd) {
2362 		printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2363 		goto end_io;
2364 	}
2365 
2366 	/*
2367 	 * Clone READ bios so we can have our own bi_end_io callback.
2368 	 */
2369 	if (bio_data_dir(bio) == READ) {
2370 		struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2371 		struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2372 
2373 		psd->pd = pd;
2374 		psd->bio = bio;
2375 		cloned_bio->bi_bdev = pd->bdev;
2376 		cloned_bio->bi_private = psd;
2377 		cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2378 		pd->stats.secs_r += bio_sectors(bio);
2379 		pkt_queue_bio(pd, cloned_bio);
2380 		return;
2381 	}
2382 
2383 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2384 		printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2385 			pd->name, (unsigned long long)bio->bi_sector);
2386 		goto end_io;
2387 	}
2388 
2389 	if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2390 		printk(DRIVER_NAME": wrong bio size\n");
2391 		goto end_io;
2392 	}
2393 
2394 	blk_queue_bounce(q, &bio);
2395 
2396 	zone = ZONE(bio->bi_sector, pd);
2397 	VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2398 		(unsigned long long)bio->bi_sector,
2399 		(unsigned long long)bio_end_sector(bio));
2400 
2401 	/* Check if we have to split the bio */
2402 	{
2403 		struct bio_pair *bp;
2404 		sector_t last_zone;
2405 		int first_sectors;
2406 
2407 		last_zone = ZONE(bio_end_sector(bio) - 1, pd);
2408 		if (last_zone != zone) {
2409 			BUG_ON(last_zone != zone + pd->settings.size);
2410 			first_sectors = last_zone - bio->bi_sector;
2411 			bp = bio_split(bio, first_sectors);
2412 			BUG_ON(!bp);
2413 			pkt_make_request(q, &bp->bio1);
2414 			pkt_make_request(q, &bp->bio2);
2415 			bio_pair_release(bp);
2416 			return;
2417 		}
2418 	}
2419 
2420 	/*
2421 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2422 	 * just append this bio to that packet.
2423 	 */
2424 	spin_lock(&pd->cdrw.active_list_lock);
2425 	blocked_bio = 0;
2426 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2427 		if (pkt->sector == zone) {
2428 			spin_lock(&pkt->lock);
2429 			if ((pkt->state == PACKET_WAITING_STATE) ||
2430 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2431 				bio_list_add(&pkt->orig_bios, bio);
2432 				pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2433 				if ((pkt->write_size >= pkt->frames) &&
2434 				    (pkt->state == PACKET_WAITING_STATE)) {
2435 					atomic_inc(&pkt->run_sm);
2436 					wake_up(&pd->wqueue);
2437 				}
2438 				spin_unlock(&pkt->lock);
2439 				spin_unlock(&pd->cdrw.active_list_lock);
2440 				return;
2441 			} else {
2442 				blocked_bio = 1;
2443 			}
2444 			spin_unlock(&pkt->lock);
2445 		}
2446 	}
2447 	spin_unlock(&pd->cdrw.active_list_lock);
2448 
2449  	/*
2450 	 * Test if there is enough room left in the bio work queue
2451 	 * (queue size >= congestion on mark).
2452 	 * If not, wait till the work queue size is below the congestion off mark.
2453 	 */
2454 	spin_lock(&pd->lock);
2455 	if (pd->write_congestion_on > 0
2456 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2457 		set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2458 		do {
2459 			spin_unlock(&pd->lock);
2460 			congestion_wait(BLK_RW_ASYNC, HZ);
2461 			spin_lock(&pd->lock);
2462 		} while(pd->bio_queue_size > pd->write_congestion_off);
2463 	}
2464 	spin_unlock(&pd->lock);
2465 
2466 	/*
2467 	 * No matching packet found. Store the bio in the work queue.
2468 	 */
2469 	node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2470 	node->bio = bio;
2471 	spin_lock(&pd->lock);
2472 	BUG_ON(pd->bio_queue_size < 0);
2473 	was_empty = (pd->bio_queue_size == 0);
2474 	pkt_rbtree_insert(pd, node);
2475 	spin_unlock(&pd->lock);
2476 
2477 	/*
2478 	 * Wake up the worker thread.
2479 	 */
2480 	atomic_set(&pd->scan_queue, 1);
2481 	if (was_empty) {
2482 		/* This wake_up is required for correct operation */
2483 		wake_up(&pd->wqueue);
2484 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2485 		/*
2486 		 * This wake up is not required for correct operation,
2487 		 * but improves performance in some cases.
2488 		 */
2489 		wake_up(&pd->wqueue);
2490 	}
2491 	return;
2492 end_io:
2493 	bio_io_error(bio);
2494 }
2495 
2496 
2497 
2498 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2499 			  struct bio_vec *bvec)
2500 {
2501 	struct pktcdvd_device *pd = q->queuedata;
2502 	sector_t zone = ZONE(bmd->bi_sector, pd);
2503 	int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2504 	int remaining = (pd->settings.size << 9) - used;
2505 	int remaining2;
2506 
2507 	/*
2508 	 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2509 	 * boundary, pkt_make_request() will split the bio.
2510 	 */
2511 	remaining2 = PAGE_SIZE - bmd->bi_size;
2512 	remaining = max(remaining, remaining2);
2513 
2514 	BUG_ON(remaining < 0);
2515 	return remaining;
2516 }
2517 
2518 static void pkt_init_queue(struct pktcdvd_device *pd)
2519 {
2520 	struct request_queue *q = pd->disk->queue;
2521 
2522 	blk_queue_make_request(q, pkt_make_request);
2523 	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2524 	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2525 	blk_queue_merge_bvec(q, pkt_merge_bvec);
2526 	q->queuedata = pd;
2527 }
2528 
2529 static int pkt_seq_show(struct seq_file *m, void *p)
2530 {
2531 	struct pktcdvd_device *pd = m->private;
2532 	char *msg;
2533 	char bdev_buf[BDEVNAME_SIZE];
2534 	int states[PACKET_NUM_STATES];
2535 
2536 	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2537 		   bdevname(pd->bdev, bdev_buf));
2538 
2539 	seq_printf(m, "\nSettings:\n");
2540 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2541 
2542 	if (pd->settings.write_type == 0)
2543 		msg = "Packet";
2544 	else
2545 		msg = "Unknown";
2546 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2547 
2548 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2549 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2550 
2551 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2552 
2553 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2554 		msg = "Mode 1";
2555 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2556 		msg = "Mode 2";
2557 	else
2558 		msg = "Unknown";
2559 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2560 
2561 	seq_printf(m, "\nStatistics:\n");
2562 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2563 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2564 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2565 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2566 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2567 
2568 	seq_printf(m, "\nMisc:\n");
2569 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2570 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2571 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2572 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2573 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2574 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2575 
2576 	seq_printf(m, "\nQueue state:\n");
2577 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2578 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2579 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2580 
2581 	pkt_count_states(pd, states);
2582 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2583 		   states[0], states[1], states[2], states[3], states[4], states[5]);
2584 
2585 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2586 			pd->write_congestion_off,
2587 			pd->write_congestion_on);
2588 	return 0;
2589 }
2590 
2591 static int pkt_seq_open(struct inode *inode, struct file *file)
2592 {
2593 	return single_open(file, pkt_seq_show, PDE_DATA(inode));
2594 }
2595 
2596 static const struct file_operations pkt_proc_fops = {
2597 	.open	= pkt_seq_open,
2598 	.read	= seq_read,
2599 	.llseek	= seq_lseek,
2600 	.release = single_release
2601 };
2602 
2603 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2604 {
2605 	int i;
2606 	int ret = 0;
2607 	char b[BDEVNAME_SIZE];
2608 	struct block_device *bdev;
2609 
2610 	if (pd->pkt_dev == dev) {
2611 		printk(DRIVER_NAME": Recursive setup not allowed\n");
2612 		return -EBUSY;
2613 	}
2614 	for (i = 0; i < MAX_WRITERS; i++) {
2615 		struct pktcdvd_device *pd2 = pkt_devs[i];
2616 		if (!pd2)
2617 			continue;
2618 		if (pd2->bdev->bd_dev == dev) {
2619 			printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2620 			return -EBUSY;
2621 		}
2622 		if (pd2->pkt_dev == dev) {
2623 			printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2624 			return -EBUSY;
2625 		}
2626 	}
2627 
2628 	bdev = bdget(dev);
2629 	if (!bdev)
2630 		return -ENOMEM;
2631 	ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2632 	if (ret)
2633 		return ret;
2634 
2635 	/* This is safe, since we have a reference from open(). */
2636 	__module_get(THIS_MODULE);
2637 
2638 	pd->bdev = bdev;
2639 	set_blocksize(bdev, CD_FRAMESIZE);
2640 
2641 	pkt_init_queue(pd);
2642 
2643 	atomic_set(&pd->cdrw.pending_bios, 0);
2644 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2645 	if (IS_ERR(pd->cdrw.thread)) {
2646 		printk(DRIVER_NAME": can't start kernel thread\n");
2647 		ret = -ENOMEM;
2648 		goto out_mem;
2649 	}
2650 
2651 	proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2652 	DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2653 	return 0;
2654 
2655 out_mem:
2656 	blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2657 	/* This is safe: open() is still holding a reference. */
2658 	module_put(THIS_MODULE);
2659 	return ret;
2660 }
2661 
2662 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2663 {
2664 	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2665 	int ret;
2666 
2667 	VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2668 		MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2669 
2670 	mutex_lock(&pktcdvd_mutex);
2671 	switch (cmd) {
2672 	case CDROMEJECT:
2673 		/*
2674 		 * The door gets locked when the device is opened, so we
2675 		 * have to unlock it or else the eject command fails.
2676 		 */
2677 		if (pd->refcnt == 1)
2678 			pkt_lock_door(pd, 0);
2679 		/* fallthru */
2680 	/*
2681 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2682 	 */
2683 	case CDROMMULTISESSION:
2684 	case CDROMREADTOCENTRY:
2685 	case CDROM_LAST_WRITTEN:
2686 	case CDROM_SEND_PACKET:
2687 	case SCSI_IOCTL_SEND_COMMAND:
2688 		ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2689 		break;
2690 
2691 	default:
2692 		VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2693 		ret = -ENOTTY;
2694 	}
2695 	mutex_unlock(&pktcdvd_mutex);
2696 
2697 	return ret;
2698 }
2699 
2700 static unsigned int pkt_check_events(struct gendisk *disk,
2701 				     unsigned int clearing)
2702 {
2703 	struct pktcdvd_device *pd = disk->private_data;
2704 	struct gendisk *attached_disk;
2705 
2706 	if (!pd)
2707 		return 0;
2708 	if (!pd->bdev)
2709 		return 0;
2710 	attached_disk = pd->bdev->bd_disk;
2711 	if (!attached_disk || !attached_disk->fops->check_events)
2712 		return 0;
2713 	return attached_disk->fops->check_events(attached_disk, clearing);
2714 }
2715 
2716 static const struct block_device_operations pktcdvd_ops = {
2717 	.owner =		THIS_MODULE,
2718 	.open =			pkt_open,
2719 	.release =		pkt_close,
2720 	.ioctl =		pkt_ioctl,
2721 	.check_events =		pkt_check_events,
2722 };
2723 
2724 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2725 {
2726 	return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2727 }
2728 
2729 /*
2730  * Set up mapping from pktcdvd device to CD-ROM device.
2731  */
2732 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2733 {
2734 	int idx;
2735 	int ret = -ENOMEM;
2736 	struct pktcdvd_device *pd;
2737 	struct gendisk *disk;
2738 
2739 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2740 
2741 	for (idx = 0; idx < MAX_WRITERS; idx++)
2742 		if (!pkt_devs[idx])
2743 			break;
2744 	if (idx == MAX_WRITERS) {
2745 		printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2746 		ret = -EBUSY;
2747 		goto out_mutex;
2748 	}
2749 
2750 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2751 	if (!pd)
2752 		goto out_mutex;
2753 
2754 	pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2755 						  sizeof(struct pkt_rb_node));
2756 	if (!pd->rb_pool)
2757 		goto out_mem;
2758 
2759 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2760 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2761 	spin_lock_init(&pd->cdrw.active_list_lock);
2762 
2763 	spin_lock_init(&pd->lock);
2764 	spin_lock_init(&pd->iosched.lock);
2765 	bio_list_init(&pd->iosched.read_queue);
2766 	bio_list_init(&pd->iosched.write_queue);
2767 	sprintf(pd->name, DRIVER_NAME"%d", idx);
2768 	init_waitqueue_head(&pd->wqueue);
2769 	pd->bio_queue = RB_ROOT;
2770 
2771 	pd->write_congestion_on  = write_congestion_on;
2772 	pd->write_congestion_off = write_congestion_off;
2773 
2774 	disk = alloc_disk(1);
2775 	if (!disk)
2776 		goto out_mem;
2777 	pd->disk = disk;
2778 	disk->major = pktdev_major;
2779 	disk->first_minor = idx;
2780 	disk->fops = &pktcdvd_ops;
2781 	disk->flags = GENHD_FL_REMOVABLE;
2782 	strcpy(disk->disk_name, pd->name);
2783 	disk->devnode = pktcdvd_devnode;
2784 	disk->private_data = pd;
2785 	disk->queue = blk_alloc_queue(GFP_KERNEL);
2786 	if (!disk->queue)
2787 		goto out_mem2;
2788 
2789 	pd->pkt_dev = MKDEV(pktdev_major, idx);
2790 	ret = pkt_new_dev(pd, dev);
2791 	if (ret)
2792 		goto out_new_dev;
2793 
2794 	/* inherit events of the host device */
2795 	disk->events = pd->bdev->bd_disk->events;
2796 	disk->async_events = pd->bdev->bd_disk->async_events;
2797 
2798 	add_disk(disk);
2799 
2800 	pkt_sysfs_dev_new(pd);
2801 	pkt_debugfs_dev_new(pd);
2802 
2803 	pkt_devs[idx] = pd;
2804 	if (pkt_dev)
2805 		*pkt_dev = pd->pkt_dev;
2806 
2807 	mutex_unlock(&ctl_mutex);
2808 	return 0;
2809 
2810 out_new_dev:
2811 	blk_cleanup_queue(disk->queue);
2812 out_mem2:
2813 	put_disk(disk);
2814 out_mem:
2815 	if (pd->rb_pool)
2816 		mempool_destroy(pd->rb_pool);
2817 	kfree(pd);
2818 out_mutex:
2819 	mutex_unlock(&ctl_mutex);
2820 	printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2821 	return ret;
2822 }
2823 
2824 /*
2825  * Tear down mapping from pktcdvd device to CD-ROM device.
2826  */
2827 static int pkt_remove_dev(dev_t pkt_dev)
2828 {
2829 	struct pktcdvd_device *pd;
2830 	int idx;
2831 	int ret = 0;
2832 
2833 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2834 
2835 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2836 		pd = pkt_devs[idx];
2837 		if (pd && (pd->pkt_dev == pkt_dev))
2838 			break;
2839 	}
2840 	if (idx == MAX_WRITERS) {
2841 		DPRINTK(DRIVER_NAME": dev not setup\n");
2842 		ret = -ENXIO;
2843 		goto out;
2844 	}
2845 
2846 	if (pd->refcnt > 0) {
2847 		ret = -EBUSY;
2848 		goto out;
2849 	}
2850 	if (!IS_ERR(pd->cdrw.thread))
2851 		kthread_stop(pd->cdrw.thread);
2852 
2853 	pkt_devs[idx] = NULL;
2854 
2855 	pkt_debugfs_dev_remove(pd);
2856 	pkt_sysfs_dev_remove(pd);
2857 
2858 	blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2859 
2860 	remove_proc_entry(pd->name, pkt_proc);
2861 	DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2862 
2863 	del_gendisk(pd->disk);
2864 	blk_cleanup_queue(pd->disk->queue);
2865 	put_disk(pd->disk);
2866 
2867 	mempool_destroy(pd->rb_pool);
2868 	kfree(pd);
2869 
2870 	/* This is safe: open() is still holding a reference. */
2871 	module_put(THIS_MODULE);
2872 
2873 out:
2874 	mutex_unlock(&ctl_mutex);
2875 	return ret;
2876 }
2877 
2878 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2879 {
2880 	struct pktcdvd_device *pd;
2881 
2882 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2883 
2884 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2885 	if (pd) {
2886 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2887 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2888 	} else {
2889 		ctrl_cmd->dev = 0;
2890 		ctrl_cmd->pkt_dev = 0;
2891 	}
2892 	ctrl_cmd->num_devices = MAX_WRITERS;
2893 
2894 	mutex_unlock(&ctl_mutex);
2895 }
2896 
2897 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2898 {
2899 	void __user *argp = (void __user *)arg;
2900 	struct pkt_ctrl_command ctrl_cmd;
2901 	int ret = 0;
2902 	dev_t pkt_dev = 0;
2903 
2904 	if (cmd != PACKET_CTRL_CMD)
2905 		return -ENOTTY;
2906 
2907 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2908 		return -EFAULT;
2909 
2910 	switch (ctrl_cmd.command) {
2911 	case PKT_CTRL_CMD_SETUP:
2912 		if (!capable(CAP_SYS_ADMIN))
2913 			return -EPERM;
2914 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2915 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2916 		break;
2917 	case PKT_CTRL_CMD_TEARDOWN:
2918 		if (!capable(CAP_SYS_ADMIN))
2919 			return -EPERM;
2920 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2921 		break;
2922 	case PKT_CTRL_CMD_STATUS:
2923 		pkt_get_status(&ctrl_cmd);
2924 		break;
2925 	default:
2926 		return -ENOTTY;
2927 	}
2928 
2929 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2930 		return -EFAULT;
2931 	return ret;
2932 }
2933 
2934 #ifdef CONFIG_COMPAT
2935 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2936 {
2937 	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2938 }
2939 #endif
2940 
2941 static const struct file_operations pkt_ctl_fops = {
2942 	.open		= nonseekable_open,
2943 	.unlocked_ioctl	= pkt_ctl_ioctl,
2944 #ifdef CONFIG_COMPAT
2945 	.compat_ioctl	= pkt_ctl_compat_ioctl,
2946 #endif
2947 	.owner		= THIS_MODULE,
2948 	.llseek		= no_llseek,
2949 };
2950 
2951 static struct miscdevice pkt_misc = {
2952 	.minor 		= MISC_DYNAMIC_MINOR,
2953 	.name  		= DRIVER_NAME,
2954 	.nodename	= "pktcdvd/control",
2955 	.fops  		= &pkt_ctl_fops
2956 };
2957 
2958 static int __init pkt_init(void)
2959 {
2960 	int ret;
2961 
2962 	mutex_init(&ctl_mutex);
2963 
2964 	psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2965 					sizeof(struct packet_stacked_data));
2966 	if (!psd_pool)
2967 		return -ENOMEM;
2968 
2969 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2970 	if (ret < 0) {
2971 		printk(DRIVER_NAME": Unable to register block device\n");
2972 		goto out2;
2973 	}
2974 	if (!pktdev_major)
2975 		pktdev_major = ret;
2976 
2977 	ret = pkt_sysfs_init();
2978 	if (ret)
2979 		goto out;
2980 
2981 	pkt_debugfs_init();
2982 
2983 	ret = misc_register(&pkt_misc);
2984 	if (ret) {
2985 		printk(DRIVER_NAME": Unable to register misc device\n");
2986 		goto out_misc;
2987 	}
2988 
2989 	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2990 
2991 	return 0;
2992 
2993 out_misc:
2994 	pkt_debugfs_cleanup();
2995 	pkt_sysfs_cleanup();
2996 out:
2997 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2998 out2:
2999 	mempool_destroy(psd_pool);
3000 	return ret;
3001 }
3002 
3003 static void __exit pkt_exit(void)
3004 {
3005 	remove_proc_entry("driver/"DRIVER_NAME, NULL);
3006 	misc_deregister(&pkt_misc);
3007 
3008 	pkt_debugfs_cleanup();
3009 	pkt_sysfs_cleanup();
3010 
3011 	unregister_blkdev(pktdev_major, DRIVER_NAME);
3012 	mempool_destroy(psd_pool);
3013 }
3014 
3015 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3016 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3017 MODULE_LICENSE("GPL");
3018 
3019 module_init(pkt_init);
3020 module_exit(pkt_exit);
3021