xref: /openbmc/linux/drivers/block/pktcdvd.c (revision e23feb16)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom make_request_fn function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_ioctl.h>
66 #include <scsi/scsi.h>
67 #include <linux/debugfs.h>
68 #include <linux/device.h>
69 
70 #include <asm/uaccess.h>
71 
72 #define DRIVER_NAME	"pktcdvd"
73 
74 #define pkt_err(pd, fmt, ...)						\
75 	pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
76 #define pkt_notice(pd, fmt, ...)					\
77 	pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
78 #define pkt_info(pd, fmt, ...)						\
79 	pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
80 
81 #define pkt_dbg(level, pd, fmt, ...)					\
82 do {									\
83 	if (level == 2 && PACKET_DEBUG >= 2)				\
84 		pr_notice("%s: %s():" fmt,				\
85 			  pd->name, __func__, ##__VA_ARGS__);		\
86 	else if (level == 1 && PACKET_DEBUG >= 1)			\
87 		pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__);		\
88 } while (0)
89 
90 #define MAX_SPEED 0xffff
91 
92 static DEFINE_MUTEX(pktcdvd_mutex);
93 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
94 static struct proc_dir_entry *pkt_proc;
95 static int pktdev_major;
96 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
97 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
98 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
99 static mempool_t *psd_pool;
100 
101 static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
102 static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
103 
104 /* forward declaration */
105 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
106 static int pkt_remove_dev(dev_t pkt_dev);
107 static int pkt_seq_show(struct seq_file *m, void *p);
108 
109 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
110 {
111 	return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
112 }
113 
114 /*
115  * create and register a pktcdvd kernel object.
116  */
117 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
118 					const char* name,
119 					struct kobject* parent,
120 					struct kobj_type* ktype)
121 {
122 	struct pktcdvd_kobj *p;
123 	int error;
124 
125 	p = kzalloc(sizeof(*p), GFP_KERNEL);
126 	if (!p)
127 		return NULL;
128 	p->pd = pd;
129 	error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
130 	if (error) {
131 		kobject_put(&p->kobj);
132 		return NULL;
133 	}
134 	kobject_uevent(&p->kobj, KOBJ_ADD);
135 	return p;
136 }
137 /*
138  * remove a pktcdvd kernel object.
139  */
140 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
141 {
142 	if (p)
143 		kobject_put(&p->kobj);
144 }
145 /*
146  * default release function for pktcdvd kernel objects.
147  */
148 static void pkt_kobj_release(struct kobject *kobj)
149 {
150 	kfree(to_pktcdvdkobj(kobj));
151 }
152 
153 
154 /**********************************************************
155  *
156  * sysfs interface for pktcdvd
157  * by (C) 2006  Thomas Maier <balagi@justmail.de>
158  *
159  **********************************************************/
160 
161 #define DEF_ATTR(_obj,_name,_mode) \
162 	static struct attribute _obj = { .name = _name, .mode = _mode }
163 
164 /**********************************************************
165   /sys/class/pktcdvd/pktcdvd[0-7]/
166                      stat/reset
167                      stat/packets_started
168                      stat/packets_finished
169                      stat/kb_written
170                      stat/kb_read
171                      stat/kb_read_gather
172                      write_queue/size
173                      write_queue/congestion_off
174                      write_queue/congestion_on
175  **********************************************************/
176 
177 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
178 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
179 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
180 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
181 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
182 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
183 
184 static struct attribute *kobj_pkt_attrs_stat[] = {
185 	&kobj_pkt_attr_st1,
186 	&kobj_pkt_attr_st2,
187 	&kobj_pkt_attr_st3,
188 	&kobj_pkt_attr_st4,
189 	&kobj_pkt_attr_st5,
190 	&kobj_pkt_attr_st6,
191 	NULL
192 };
193 
194 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
195 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
196 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
197 
198 static struct attribute *kobj_pkt_attrs_wqueue[] = {
199 	&kobj_pkt_attr_wq1,
200 	&kobj_pkt_attr_wq2,
201 	&kobj_pkt_attr_wq3,
202 	NULL
203 };
204 
205 static ssize_t kobj_pkt_show(struct kobject *kobj,
206 			struct attribute *attr, char *data)
207 {
208 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
209 	int n = 0;
210 	int v;
211 	if (strcmp(attr->name, "packets_started") == 0) {
212 		n = sprintf(data, "%lu\n", pd->stats.pkt_started);
213 
214 	} else if (strcmp(attr->name, "packets_finished") == 0) {
215 		n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
216 
217 	} else if (strcmp(attr->name, "kb_written") == 0) {
218 		n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
219 
220 	} else if (strcmp(attr->name, "kb_read") == 0) {
221 		n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
222 
223 	} else if (strcmp(attr->name, "kb_read_gather") == 0) {
224 		n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
225 
226 	} else if (strcmp(attr->name, "size") == 0) {
227 		spin_lock(&pd->lock);
228 		v = pd->bio_queue_size;
229 		spin_unlock(&pd->lock);
230 		n = sprintf(data, "%d\n", v);
231 
232 	} else if (strcmp(attr->name, "congestion_off") == 0) {
233 		spin_lock(&pd->lock);
234 		v = pd->write_congestion_off;
235 		spin_unlock(&pd->lock);
236 		n = sprintf(data, "%d\n", v);
237 
238 	} else if (strcmp(attr->name, "congestion_on") == 0) {
239 		spin_lock(&pd->lock);
240 		v = pd->write_congestion_on;
241 		spin_unlock(&pd->lock);
242 		n = sprintf(data, "%d\n", v);
243 	}
244 	return n;
245 }
246 
247 static void init_write_congestion_marks(int* lo, int* hi)
248 {
249 	if (*hi > 0) {
250 		*hi = max(*hi, 500);
251 		*hi = min(*hi, 1000000);
252 		if (*lo <= 0)
253 			*lo = *hi - 100;
254 		else {
255 			*lo = min(*lo, *hi - 100);
256 			*lo = max(*lo, 100);
257 		}
258 	} else {
259 		*hi = -1;
260 		*lo = -1;
261 	}
262 }
263 
264 static ssize_t kobj_pkt_store(struct kobject *kobj,
265 			struct attribute *attr,
266 			const char *data, size_t len)
267 {
268 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
269 	int val;
270 
271 	if (strcmp(attr->name, "reset") == 0 && len > 0) {
272 		pd->stats.pkt_started = 0;
273 		pd->stats.pkt_ended = 0;
274 		pd->stats.secs_w = 0;
275 		pd->stats.secs_rg = 0;
276 		pd->stats.secs_r = 0;
277 
278 	} else if (strcmp(attr->name, "congestion_off") == 0
279 		   && sscanf(data, "%d", &val) == 1) {
280 		spin_lock(&pd->lock);
281 		pd->write_congestion_off = val;
282 		init_write_congestion_marks(&pd->write_congestion_off,
283 					&pd->write_congestion_on);
284 		spin_unlock(&pd->lock);
285 
286 	} else if (strcmp(attr->name, "congestion_on") == 0
287 		   && sscanf(data, "%d", &val) == 1) {
288 		spin_lock(&pd->lock);
289 		pd->write_congestion_on = val;
290 		init_write_congestion_marks(&pd->write_congestion_off,
291 					&pd->write_congestion_on);
292 		spin_unlock(&pd->lock);
293 	}
294 	return len;
295 }
296 
297 static const struct sysfs_ops kobj_pkt_ops = {
298 	.show = kobj_pkt_show,
299 	.store = kobj_pkt_store
300 };
301 static struct kobj_type kobj_pkt_type_stat = {
302 	.release = pkt_kobj_release,
303 	.sysfs_ops = &kobj_pkt_ops,
304 	.default_attrs = kobj_pkt_attrs_stat
305 };
306 static struct kobj_type kobj_pkt_type_wqueue = {
307 	.release = pkt_kobj_release,
308 	.sysfs_ops = &kobj_pkt_ops,
309 	.default_attrs = kobj_pkt_attrs_wqueue
310 };
311 
312 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
313 {
314 	if (class_pktcdvd) {
315 		pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
316 					"%s", pd->name);
317 		if (IS_ERR(pd->dev))
318 			pd->dev = NULL;
319 	}
320 	if (pd->dev) {
321 		pd->kobj_stat = pkt_kobj_create(pd, "stat",
322 					&pd->dev->kobj,
323 					&kobj_pkt_type_stat);
324 		pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
325 					&pd->dev->kobj,
326 					&kobj_pkt_type_wqueue);
327 	}
328 }
329 
330 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
331 {
332 	pkt_kobj_remove(pd->kobj_stat);
333 	pkt_kobj_remove(pd->kobj_wqueue);
334 	if (class_pktcdvd)
335 		device_unregister(pd->dev);
336 }
337 
338 
339 /********************************************************************
340   /sys/class/pktcdvd/
341                      add            map block device
342                      remove         unmap packet dev
343                      device_map     show mappings
344  *******************************************************************/
345 
346 static void class_pktcdvd_release(struct class *cls)
347 {
348 	kfree(cls);
349 }
350 static ssize_t class_pktcdvd_show_map(struct class *c,
351 					struct class_attribute *attr,
352 					char *data)
353 {
354 	int n = 0;
355 	int idx;
356 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
357 	for (idx = 0; idx < MAX_WRITERS; idx++) {
358 		struct pktcdvd_device *pd = pkt_devs[idx];
359 		if (!pd)
360 			continue;
361 		n += sprintf(data+n, "%s %u:%u %u:%u\n",
362 			pd->name,
363 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
364 			MAJOR(pd->bdev->bd_dev),
365 			MINOR(pd->bdev->bd_dev));
366 	}
367 	mutex_unlock(&ctl_mutex);
368 	return n;
369 }
370 
371 static ssize_t class_pktcdvd_store_add(struct class *c,
372 					struct class_attribute *attr,
373 					const char *buf,
374 					size_t count)
375 {
376 	unsigned int major, minor;
377 
378 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
379 		/* pkt_setup_dev() expects caller to hold reference to self */
380 		if (!try_module_get(THIS_MODULE))
381 			return -ENODEV;
382 
383 		pkt_setup_dev(MKDEV(major, minor), NULL);
384 
385 		module_put(THIS_MODULE);
386 
387 		return count;
388 	}
389 
390 	return -EINVAL;
391 }
392 
393 static ssize_t class_pktcdvd_store_remove(struct class *c,
394 					  struct class_attribute *attr,
395 					  const char *buf,
396 					size_t count)
397 {
398 	unsigned int major, minor;
399 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
400 		pkt_remove_dev(MKDEV(major, minor));
401 		return count;
402 	}
403 	return -EINVAL;
404 }
405 
406 static struct class_attribute class_pktcdvd_attrs[] = {
407  __ATTR(add,            0200, NULL, class_pktcdvd_store_add),
408  __ATTR(remove,         0200, NULL, class_pktcdvd_store_remove),
409  __ATTR(device_map,     0444, class_pktcdvd_show_map, NULL),
410  __ATTR_NULL
411 };
412 
413 
414 static int pkt_sysfs_init(void)
415 {
416 	int ret = 0;
417 
418 	/*
419 	 * create control files in sysfs
420 	 * /sys/class/pktcdvd/...
421 	 */
422 	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
423 	if (!class_pktcdvd)
424 		return -ENOMEM;
425 	class_pktcdvd->name = DRIVER_NAME;
426 	class_pktcdvd->owner = THIS_MODULE;
427 	class_pktcdvd->class_release = class_pktcdvd_release;
428 	class_pktcdvd->class_attrs = class_pktcdvd_attrs;
429 	ret = class_register(class_pktcdvd);
430 	if (ret) {
431 		kfree(class_pktcdvd);
432 		class_pktcdvd = NULL;
433 		pr_err("failed to create class pktcdvd\n");
434 		return ret;
435 	}
436 	return 0;
437 }
438 
439 static void pkt_sysfs_cleanup(void)
440 {
441 	if (class_pktcdvd)
442 		class_destroy(class_pktcdvd);
443 	class_pktcdvd = NULL;
444 }
445 
446 /********************************************************************
447   entries in debugfs
448 
449   /sys/kernel/debug/pktcdvd[0-7]/
450 			info
451 
452  *******************************************************************/
453 
454 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
455 {
456 	return pkt_seq_show(m, p);
457 }
458 
459 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
460 {
461 	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
462 }
463 
464 static const struct file_operations debug_fops = {
465 	.open		= pkt_debugfs_fops_open,
466 	.read		= seq_read,
467 	.llseek		= seq_lseek,
468 	.release	= single_release,
469 	.owner		= THIS_MODULE,
470 };
471 
472 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
473 {
474 	if (!pkt_debugfs_root)
475 		return;
476 	pd->dfs_f_info = NULL;
477 	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
478 	if (IS_ERR(pd->dfs_d_root)) {
479 		pd->dfs_d_root = NULL;
480 		return;
481 	}
482 	pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
483 				pd->dfs_d_root, pd, &debug_fops);
484 	if (IS_ERR(pd->dfs_f_info)) {
485 		pd->dfs_f_info = NULL;
486 		return;
487 	}
488 }
489 
490 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
491 {
492 	if (!pkt_debugfs_root)
493 		return;
494 	if (pd->dfs_f_info)
495 		debugfs_remove(pd->dfs_f_info);
496 	pd->dfs_f_info = NULL;
497 	if (pd->dfs_d_root)
498 		debugfs_remove(pd->dfs_d_root);
499 	pd->dfs_d_root = NULL;
500 }
501 
502 static void pkt_debugfs_init(void)
503 {
504 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
505 	if (IS_ERR(pkt_debugfs_root)) {
506 		pkt_debugfs_root = NULL;
507 		return;
508 	}
509 }
510 
511 static void pkt_debugfs_cleanup(void)
512 {
513 	if (!pkt_debugfs_root)
514 		return;
515 	debugfs_remove(pkt_debugfs_root);
516 	pkt_debugfs_root = NULL;
517 }
518 
519 /* ----------------------------------------------------------*/
520 
521 
522 static void pkt_bio_finished(struct pktcdvd_device *pd)
523 {
524 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
525 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
526 		pkt_dbg(2, pd, "queue empty\n");
527 		atomic_set(&pd->iosched.attention, 1);
528 		wake_up(&pd->wqueue);
529 	}
530 }
531 
532 /*
533  * Allocate a packet_data struct
534  */
535 static struct packet_data *pkt_alloc_packet_data(int frames)
536 {
537 	int i;
538 	struct packet_data *pkt;
539 
540 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
541 	if (!pkt)
542 		goto no_pkt;
543 
544 	pkt->frames = frames;
545 	pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
546 	if (!pkt->w_bio)
547 		goto no_bio;
548 
549 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
550 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
551 		if (!pkt->pages[i])
552 			goto no_page;
553 	}
554 
555 	spin_lock_init(&pkt->lock);
556 	bio_list_init(&pkt->orig_bios);
557 
558 	for (i = 0; i < frames; i++) {
559 		struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
560 		if (!bio)
561 			goto no_rd_bio;
562 
563 		pkt->r_bios[i] = bio;
564 	}
565 
566 	return pkt;
567 
568 no_rd_bio:
569 	for (i = 0; i < frames; i++) {
570 		struct bio *bio = pkt->r_bios[i];
571 		if (bio)
572 			bio_put(bio);
573 	}
574 
575 no_page:
576 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
577 		if (pkt->pages[i])
578 			__free_page(pkt->pages[i]);
579 	bio_put(pkt->w_bio);
580 no_bio:
581 	kfree(pkt);
582 no_pkt:
583 	return NULL;
584 }
585 
586 /*
587  * Free a packet_data struct
588  */
589 static void pkt_free_packet_data(struct packet_data *pkt)
590 {
591 	int i;
592 
593 	for (i = 0; i < pkt->frames; i++) {
594 		struct bio *bio = pkt->r_bios[i];
595 		if (bio)
596 			bio_put(bio);
597 	}
598 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
599 		__free_page(pkt->pages[i]);
600 	bio_put(pkt->w_bio);
601 	kfree(pkt);
602 }
603 
604 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
605 {
606 	struct packet_data *pkt, *next;
607 
608 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
609 
610 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
611 		pkt_free_packet_data(pkt);
612 	}
613 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
614 }
615 
616 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
617 {
618 	struct packet_data *pkt;
619 
620 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
621 
622 	while (nr_packets > 0) {
623 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
624 		if (!pkt) {
625 			pkt_shrink_pktlist(pd);
626 			return 0;
627 		}
628 		pkt->id = nr_packets;
629 		pkt->pd = pd;
630 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
631 		nr_packets--;
632 	}
633 	return 1;
634 }
635 
636 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
637 {
638 	struct rb_node *n = rb_next(&node->rb_node);
639 	if (!n)
640 		return NULL;
641 	return rb_entry(n, struct pkt_rb_node, rb_node);
642 }
643 
644 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
645 {
646 	rb_erase(&node->rb_node, &pd->bio_queue);
647 	mempool_free(node, pd->rb_pool);
648 	pd->bio_queue_size--;
649 	BUG_ON(pd->bio_queue_size < 0);
650 }
651 
652 /*
653  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
654  */
655 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
656 {
657 	struct rb_node *n = pd->bio_queue.rb_node;
658 	struct rb_node *next;
659 	struct pkt_rb_node *tmp;
660 
661 	if (!n) {
662 		BUG_ON(pd->bio_queue_size > 0);
663 		return NULL;
664 	}
665 
666 	for (;;) {
667 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
668 		if (s <= tmp->bio->bi_sector)
669 			next = n->rb_left;
670 		else
671 			next = n->rb_right;
672 		if (!next)
673 			break;
674 		n = next;
675 	}
676 
677 	if (s > tmp->bio->bi_sector) {
678 		tmp = pkt_rbtree_next(tmp);
679 		if (!tmp)
680 			return NULL;
681 	}
682 	BUG_ON(s > tmp->bio->bi_sector);
683 	return tmp;
684 }
685 
686 /*
687  * Insert a node into the pd->bio_queue rb tree.
688  */
689 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
690 {
691 	struct rb_node **p = &pd->bio_queue.rb_node;
692 	struct rb_node *parent = NULL;
693 	sector_t s = node->bio->bi_sector;
694 	struct pkt_rb_node *tmp;
695 
696 	while (*p) {
697 		parent = *p;
698 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
699 		if (s < tmp->bio->bi_sector)
700 			p = &(*p)->rb_left;
701 		else
702 			p = &(*p)->rb_right;
703 	}
704 	rb_link_node(&node->rb_node, parent, p);
705 	rb_insert_color(&node->rb_node, &pd->bio_queue);
706 	pd->bio_queue_size++;
707 }
708 
709 /*
710  * Send a packet_command to the underlying block device and
711  * wait for completion.
712  */
713 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
714 {
715 	struct request_queue *q = bdev_get_queue(pd->bdev);
716 	struct request *rq;
717 	int ret = 0;
718 
719 	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
720 			     WRITE : READ, __GFP_WAIT);
721 
722 	if (cgc->buflen) {
723 		if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
724 			goto out;
725 	}
726 
727 	rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
728 	memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
729 
730 	rq->timeout = 60*HZ;
731 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
732 	if (cgc->quiet)
733 		rq->cmd_flags |= REQ_QUIET;
734 
735 	blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
736 	if (rq->errors)
737 		ret = -EIO;
738 out:
739 	blk_put_request(rq);
740 	return ret;
741 }
742 
743 static const char *sense_key_string(__u8 index)
744 {
745 	static const char * const info[] = {
746 		"No sense", "Recovered error", "Not ready",
747 		"Medium error", "Hardware error", "Illegal request",
748 		"Unit attention", "Data protect", "Blank check",
749 	};
750 
751 	return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
752 }
753 
754 /*
755  * A generic sense dump / resolve mechanism should be implemented across
756  * all ATAPI + SCSI devices.
757  */
758 static void pkt_dump_sense(struct pktcdvd_device *pd,
759 			   struct packet_command *cgc)
760 {
761 	struct request_sense *sense = cgc->sense;
762 
763 	if (sense)
764 		pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
765 			CDROM_PACKET_SIZE, cgc->cmd,
766 			sense->sense_key, sense->asc, sense->ascq,
767 			sense_key_string(sense->sense_key));
768 	else
769 		pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
770 }
771 
772 /*
773  * flush the drive cache to media
774  */
775 static int pkt_flush_cache(struct pktcdvd_device *pd)
776 {
777 	struct packet_command cgc;
778 
779 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
780 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
781 	cgc.quiet = 1;
782 
783 	/*
784 	 * the IMMED bit -- we default to not setting it, although that
785 	 * would allow a much faster close, this is safer
786 	 */
787 #if 0
788 	cgc.cmd[1] = 1 << 1;
789 #endif
790 	return pkt_generic_packet(pd, &cgc);
791 }
792 
793 /*
794  * speed is given as the normal factor, e.g. 4 for 4x
795  */
796 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
797 				unsigned write_speed, unsigned read_speed)
798 {
799 	struct packet_command cgc;
800 	struct request_sense sense;
801 	int ret;
802 
803 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
804 	cgc.sense = &sense;
805 	cgc.cmd[0] = GPCMD_SET_SPEED;
806 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
807 	cgc.cmd[3] = read_speed & 0xff;
808 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
809 	cgc.cmd[5] = write_speed & 0xff;
810 
811 	if ((ret = pkt_generic_packet(pd, &cgc)))
812 		pkt_dump_sense(pd, &cgc);
813 
814 	return ret;
815 }
816 
817 /*
818  * Queue a bio for processing by the low-level CD device. Must be called
819  * from process context.
820  */
821 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
822 {
823 	spin_lock(&pd->iosched.lock);
824 	if (bio_data_dir(bio) == READ)
825 		bio_list_add(&pd->iosched.read_queue, bio);
826 	else
827 		bio_list_add(&pd->iosched.write_queue, bio);
828 	spin_unlock(&pd->iosched.lock);
829 
830 	atomic_set(&pd->iosched.attention, 1);
831 	wake_up(&pd->wqueue);
832 }
833 
834 /*
835  * Process the queued read/write requests. This function handles special
836  * requirements for CDRW drives:
837  * - A cache flush command must be inserted before a read request if the
838  *   previous request was a write.
839  * - Switching between reading and writing is slow, so don't do it more often
840  *   than necessary.
841  * - Optimize for throughput at the expense of latency. This means that streaming
842  *   writes will never be interrupted by a read, but if the drive has to seek
843  *   before the next write, switch to reading instead if there are any pending
844  *   read requests.
845  * - Set the read speed according to current usage pattern. When only reading
846  *   from the device, it's best to use the highest possible read speed, but
847  *   when switching often between reading and writing, it's better to have the
848  *   same read and write speeds.
849  */
850 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
851 {
852 
853 	if (atomic_read(&pd->iosched.attention) == 0)
854 		return;
855 	atomic_set(&pd->iosched.attention, 0);
856 
857 	for (;;) {
858 		struct bio *bio;
859 		int reads_queued, writes_queued;
860 
861 		spin_lock(&pd->iosched.lock);
862 		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
863 		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
864 		spin_unlock(&pd->iosched.lock);
865 
866 		if (!reads_queued && !writes_queued)
867 			break;
868 
869 		if (pd->iosched.writing) {
870 			int need_write_seek = 1;
871 			spin_lock(&pd->iosched.lock);
872 			bio = bio_list_peek(&pd->iosched.write_queue);
873 			spin_unlock(&pd->iosched.lock);
874 			if (bio && (bio->bi_sector == pd->iosched.last_write))
875 				need_write_seek = 0;
876 			if (need_write_seek && reads_queued) {
877 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
878 					pkt_dbg(2, pd, "write, waiting\n");
879 					break;
880 				}
881 				pkt_flush_cache(pd);
882 				pd->iosched.writing = 0;
883 			}
884 		} else {
885 			if (!reads_queued && writes_queued) {
886 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
887 					pkt_dbg(2, pd, "read, waiting\n");
888 					break;
889 				}
890 				pd->iosched.writing = 1;
891 			}
892 		}
893 
894 		spin_lock(&pd->iosched.lock);
895 		if (pd->iosched.writing)
896 			bio = bio_list_pop(&pd->iosched.write_queue);
897 		else
898 			bio = bio_list_pop(&pd->iosched.read_queue);
899 		spin_unlock(&pd->iosched.lock);
900 
901 		if (!bio)
902 			continue;
903 
904 		if (bio_data_dir(bio) == READ)
905 			pd->iosched.successive_reads += bio->bi_size >> 10;
906 		else {
907 			pd->iosched.successive_reads = 0;
908 			pd->iosched.last_write = bio_end_sector(bio);
909 		}
910 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
911 			if (pd->read_speed == pd->write_speed) {
912 				pd->read_speed = MAX_SPEED;
913 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
914 			}
915 		} else {
916 			if (pd->read_speed != pd->write_speed) {
917 				pd->read_speed = pd->write_speed;
918 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
919 			}
920 		}
921 
922 		atomic_inc(&pd->cdrw.pending_bios);
923 		generic_make_request(bio);
924 	}
925 }
926 
927 /*
928  * Special care is needed if the underlying block device has a small
929  * max_phys_segments value.
930  */
931 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
932 {
933 	if ((pd->settings.size << 9) / CD_FRAMESIZE
934 	    <= queue_max_segments(q)) {
935 		/*
936 		 * The cdrom device can handle one segment/frame
937 		 */
938 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
939 		return 0;
940 	} else if ((pd->settings.size << 9) / PAGE_SIZE
941 		   <= queue_max_segments(q)) {
942 		/*
943 		 * We can handle this case at the expense of some extra memory
944 		 * copies during write operations
945 		 */
946 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
947 		return 0;
948 	} else {
949 		pkt_err(pd, "cdrom max_phys_segments too small\n");
950 		return -EIO;
951 	}
952 }
953 
954 /*
955  * Copy all data for this packet to pkt->pages[], so that
956  * a) The number of required segments for the write bio is minimized, which
957  *    is necessary for some scsi controllers.
958  * b) The data can be used as cache to avoid read requests if we receive a
959  *    new write request for the same zone.
960  */
961 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
962 {
963 	int f, p, offs;
964 
965 	/* Copy all data to pkt->pages[] */
966 	p = 0;
967 	offs = 0;
968 	for (f = 0; f < pkt->frames; f++) {
969 		if (bvec[f].bv_page != pkt->pages[p]) {
970 			void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset;
971 			void *vto = page_address(pkt->pages[p]) + offs;
972 			memcpy(vto, vfrom, CD_FRAMESIZE);
973 			kunmap_atomic(vfrom);
974 			bvec[f].bv_page = pkt->pages[p];
975 			bvec[f].bv_offset = offs;
976 		} else {
977 			BUG_ON(bvec[f].bv_offset != offs);
978 		}
979 		offs += CD_FRAMESIZE;
980 		if (offs >= PAGE_SIZE) {
981 			offs = 0;
982 			p++;
983 		}
984 	}
985 }
986 
987 static void pkt_end_io_read(struct bio *bio, int err)
988 {
989 	struct packet_data *pkt = bio->bi_private;
990 	struct pktcdvd_device *pd = pkt->pd;
991 	BUG_ON(!pd);
992 
993 	pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
994 		bio, (unsigned long long)pkt->sector,
995 		(unsigned long long)bio->bi_sector, err);
996 
997 	if (err)
998 		atomic_inc(&pkt->io_errors);
999 	if (atomic_dec_and_test(&pkt->io_wait)) {
1000 		atomic_inc(&pkt->run_sm);
1001 		wake_up(&pd->wqueue);
1002 	}
1003 	pkt_bio_finished(pd);
1004 }
1005 
1006 static void pkt_end_io_packet_write(struct bio *bio, int err)
1007 {
1008 	struct packet_data *pkt = bio->bi_private;
1009 	struct pktcdvd_device *pd = pkt->pd;
1010 	BUG_ON(!pd);
1011 
1012 	pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, err);
1013 
1014 	pd->stats.pkt_ended++;
1015 
1016 	pkt_bio_finished(pd);
1017 	atomic_dec(&pkt->io_wait);
1018 	atomic_inc(&pkt->run_sm);
1019 	wake_up(&pd->wqueue);
1020 }
1021 
1022 /*
1023  * Schedule reads for the holes in a packet
1024  */
1025 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1026 {
1027 	int frames_read = 0;
1028 	struct bio *bio;
1029 	int f;
1030 	char written[PACKET_MAX_SIZE];
1031 
1032 	BUG_ON(bio_list_empty(&pkt->orig_bios));
1033 
1034 	atomic_set(&pkt->io_wait, 0);
1035 	atomic_set(&pkt->io_errors, 0);
1036 
1037 	/*
1038 	 * Figure out which frames we need to read before we can write.
1039 	 */
1040 	memset(written, 0, sizeof(written));
1041 	spin_lock(&pkt->lock);
1042 	bio_list_for_each(bio, &pkt->orig_bios) {
1043 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1044 		int num_frames = bio->bi_size / CD_FRAMESIZE;
1045 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1046 		BUG_ON(first_frame < 0);
1047 		BUG_ON(first_frame + num_frames > pkt->frames);
1048 		for (f = first_frame; f < first_frame + num_frames; f++)
1049 			written[f] = 1;
1050 	}
1051 	spin_unlock(&pkt->lock);
1052 
1053 	if (pkt->cache_valid) {
1054 		pkt_dbg(2, pd, "zone %llx cached\n",
1055 			(unsigned long long)pkt->sector);
1056 		goto out_account;
1057 	}
1058 
1059 	/*
1060 	 * Schedule reads for missing parts of the packet.
1061 	 */
1062 	for (f = 0; f < pkt->frames; f++) {
1063 		int p, offset;
1064 
1065 		if (written[f])
1066 			continue;
1067 
1068 		bio = pkt->r_bios[f];
1069 		bio_reset(bio);
1070 		bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1071 		bio->bi_bdev = pd->bdev;
1072 		bio->bi_end_io = pkt_end_io_read;
1073 		bio->bi_private = pkt;
1074 
1075 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1076 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1077 		pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1078 			f, pkt->pages[p], offset);
1079 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1080 			BUG();
1081 
1082 		atomic_inc(&pkt->io_wait);
1083 		bio->bi_rw = READ;
1084 		pkt_queue_bio(pd, bio);
1085 		frames_read++;
1086 	}
1087 
1088 out_account:
1089 	pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1090 		frames_read, (unsigned long long)pkt->sector);
1091 	pd->stats.pkt_started++;
1092 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1093 }
1094 
1095 /*
1096  * Find a packet matching zone, or the least recently used packet if
1097  * there is no match.
1098  */
1099 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1100 {
1101 	struct packet_data *pkt;
1102 
1103 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1104 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1105 			list_del_init(&pkt->list);
1106 			if (pkt->sector != zone)
1107 				pkt->cache_valid = 0;
1108 			return pkt;
1109 		}
1110 	}
1111 	BUG();
1112 	return NULL;
1113 }
1114 
1115 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1116 {
1117 	if (pkt->cache_valid) {
1118 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1119 	} else {
1120 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1121 	}
1122 }
1123 
1124 /*
1125  * recover a failed write, query for relocation if possible
1126  *
1127  * returns 1 if recovery is possible, or 0 if not
1128  *
1129  */
1130 static int pkt_start_recovery(struct packet_data *pkt)
1131 {
1132 	/*
1133 	 * FIXME. We need help from the file system to implement
1134 	 * recovery handling.
1135 	 */
1136 	return 0;
1137 #if 0
1138 	struct request *rq = pkt->rq;
1139 	struct pktcdvd_device *pd = rq->rq_disk->private_data;
1140 	struct block_device *pkt_bdev;
1141 	struct super_block *sb = NULL;
1142 	unsigned long old_block, new_block;
1143 	sector_t new_sector;
1144 
1145 	pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1146 	if (pkt_bdev) {
1147 		sb = get_super(pkt_bdev);
1148 		bdput(pkt_bdev);
1149 	}
1150 
1151 	if (!sb)
1152 		return 0;
1153 
1154 	if (!sb->s_op->relocate_blocks)
1155 		goto out;
1156 
1157 	old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1158 	if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1159 		goto out;
1160 
1161 	new_sector = new_block * (CD_FRAMESIZE >> 9);
1162 	pkt->sector = new_sector;
1163 
1164 	bio_reset(pkt->bio);
1165 	pkt->bio->bi_bdev = pd->bdev;
1166 	pkt->bio->bi_rw = REQ_WRITE;
1167 	pkt->bio->bi_sector = new_sector;
1168 	pkt->bio->bi_size = pkt->frames * CD_FRAMESIZE;
1169 	pkt->bio->bi_vcnt = pkt->frames;
1170 
1171 	pkt->bio->bi_end_io = pkt_end_io_packet_write;
1172 	pkt->bio->bi_private = pkt;
1173 
1174 	drop_super(sb);
1175 	return 1;
1176 
1177 out:
1178 	drop_super(sb);
1179 	return 0;
1180 #endif
1181 }
1182 
1183 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1184 {
1185 #if PACKET_DEBUG > 1
1186 	static const char *state_name[] = {
1187 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1188 	};
1189 	enum packet_data_state old_state = pkt->state;
1190 	pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1191 		pkt->id, (unsigned long long)pkt->sector,
1192 		state_name[old_state], state_name[state]);
1193 #endif
1194 	pkt->state = state;
1195 }
1196 
1197 /*
1198  * Scan the work queue to see if we can start a new packet.
1199  * returns non-zero if any work was done.
1200  */
1201 static int pkt_handle_queue(struct pktcdvd_device *pd)
1202 {
1203 	struct packet_data *pkt, *p;
1204 	struct bio *bio = NULL;
1205 	sector_t zone = 0; /* Suppress gcc warning */
1206 	struct pkt_rb_node *node, *first_node;
1207 	struct rb_node *n;
1208 	int wakeup;
1209 
1210 	atomic_set(&pd->scan_queue, 0);
1211 
1212 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1213 		pkt_dbg(2, pd, "no pkt\n");
1214 		return 0;
1215 	}
1216 
1217 	/*
1218 	 * Try to find a zone we are not already working on.
1219 	 */
1220 	spin_lock(&pd->lock);
1221 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1222 	if (!first_node) {
1223 		n = rb_first(&pd->bio_queue);
1224 		if (n)
1225 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1226 	}
1227 	node = first_node;
1228 	while (node) {
1229 		bio = node->bio;
1230 		zone = get_zone(bio->bi_sector, pd);
1231 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1232 			if (p->sector == zone) {
1233 				bio = NULL;
1234 				goto try_next_bio;
1235 			}
1236 		}
1237 		break;
1238 try_next_bio:
1239 		node = pkt_rbtree_next(node);
1240 		if (!node) {
1241 			n = rb_first(&pd->bio_queue);
1242 			if (n)
1243 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1244 		}
1245 		if (node == first_node)
1246 			node = NULL;
1247 	}
1248 	spin_unlock(&pd->lock);
1249 	if (!bio) {
1250 		pkt_dbg(2, pd, "no bio\n");
1251 		return 0;
1252 	}
1253 
1254 	pkt = pkt_get_packet_data(pd, zone);
1255 
1256 	pd->current_sector = zone + pd->settings.size;
1257 	pkt->sector = zone;
1258 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1259 	pkt->write_size = 0;
1260 
1261 	/*
1262 	 * Scan work queue for bios in the same zone and link them
1263 	 * to this packet.
1264 	 */
1265 	spin_lock(&pd->lock);
1266 	pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1267 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1268 		bio = node->bio;
1269 		pkt_dbg(2, pd, "found zone=%llx\n",
1270 			(unsigned long long)get_zone(bio->bi_sector, pd));
1271 		if (get_zone(bio->bi_sector, pd) != zone)
1272 			break;
1273 		pkt_rbtree_erase(pd, node);
1274 		spin_lock(&pkt->lock);
1275 		bio_list_add(&pkt->orig_bios, bio);
1276 		pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1277 		spin_unlock(&pkt->lock);
1278 	}
1279 	/* check write congestion marks, and if bio_queue_size is
1280 	   below, wake up any waiters */
1281 	wakeup = (pd->write_congestion_on > 0
1282 	 		&& pd->bio_queue_size <= pd->write_congestion_off);
1283 	spin_unlock(&pd->lock);
1284 	if (wakeup) {
1285 		clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1286 					BLK_RW_ASYNC);
1287 	}
1288 
1289 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1290 	pkt_set_state(pkt, PACKET_WAITING_STATE);
1291 	atomic_set(&pkt->run_sm, 1);
1292 
1293 	spin_lock(&pd->cdrw.active_list_lock);
1294 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1295 	spin_unlock(&pd->cdrw.active_list_lock);
1296 
1297 	return 1;
1298 }
1299 
1300 /*
1301  * Assemble a bio to write one packet and queue the bio for processing
1302  * by the underlying block device.
1303  */
1304 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1305 {
1306 	int f;
1307 	struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1308 
1309 	bio_reset(pkt->w_bio);
1310 	pkt->w_bio->bi_sector = pkt->sector;
1311 	pkt->w_bio->bi_bdev = pd->bdev;
1312 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1313 	pkt->w_bio->bi_private = pkt;
1314 
1315 	/* XXX: locking? */
1316 	for (f = 0; f < pkt->frames; f++) {
1317 		bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1318 		bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1319 		if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1320 			BUG();
1321 	}
1322 	pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1323 
1324 	/*
1325 	 * Fill-in bvec with data from orig_bios.
1326 	 */
1327 	spin_lock(&pkt->lock);
1328 	bio_copy_data(pkt->w_bio, pkt->orig_bios.head);
1329 
1330 	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1331 	spin_unlock(&pkt->lock);
1332 
1333 	pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1334 		pkt->write_size, (unsigned long long)pkt->sector);
1335 
1336 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1337 		pkt_make_local_copy(pkt, bvec);
1338 		pkt->cache_valid = 1;
1339 	} else {
1340 		pkt->cache_valid = 0;
1341 	}
1342 
1343 	/* Start the write request */
1344 	atomic_set(&pkt->io_wait, 1);
1345 	pkt->w_bio->bi_rw = WRITE;
1346 	pkt_queue_bio(pd, pkt->w_bio);
1347 }
1348 
1349 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1350 {
1351 	struct bio *bio;
1352 
1353 	if (!uptodate)
1354 		pkt->cache_valid = 0;
1355 
1356 	/* Finish all bios corresponding to this packet */
1357 	while ((bio = bio_list_pop(&pkt->orig_bios)))
1358 		bio_endio(bio, uptodate ? 0 : -EIO);
1359 }
1360 
1361 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1362 {
1363 	int uptodate;
1364 
1365 	pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1366 
1367 	for (;;) {
1368 		switch (pkt->state) {
1369 		case PACKET_WAITING_STATE:
1370 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1371 				return;
1372 
1373 			pkt->sleep_time = 0;
1374 			pkt_gather_data(pd, pkt);
1375 			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1376 			break;
1377 
1378 		case PACKET_READ_WAIT_STATE:
1379 			if (atomic_read(&pkt->io_wait) > 0)
1380 				return;
1381 
1382 			if (atomic_read(&pkt->io_errors) > 0) {
1383 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1384 			} else {
1385 				pkt_start_write(pd, pkt);
1386 			}
1387 			break;
1388 
1389 		case PACKET_WRITE_WAIT_STATE:
1390 			if (atomic_read(&pkt->io_wait) > 0)
1391 				return;
1392 
1393 			if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1394 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1395 			} else {
1396 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1397 			}
1398 			break;
1399 
1400 		case PACKET_RECOVERY_STATE:
1401 			if (pkt_start_recovery(pkt)) {
1402 				pkt_start_write(pd, pkt);
1403 			} else {
1404 				pkt_dbg(2, pd, "No recovery possible\n");
1405 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1406 			}
1407 			break;
1408 
1409 		case PACKET_FINISHED_STATE:
1410 			uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1411 			pkt_finish_packet(pkt, uptodate);
1412 			return;
1413 
1414 		default:
1415 			BUG();
1416 			break;
1417 		}
1418 	}
1419 }
1420 
1421 static void pkt_handle_packets(struct pktcdvd_device *pd)
1422 {
1423 	struct packet_data *pkt, *next;
1424 
1425 	/*
1426 	 * Run state machine for active packets
1427 	 */
1428 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1429 		if (atomic_read(&pkt->run_sm) > 0) {
1430 			atomic_set(&pkt->run_sm, 0);
1431 			pkt_run_state_machine(pd, pkt);
1432 		}
1433 	}
1434 
1435 	/*
1436 	 * Move no longer active packets to the free list
1437 	 */
1438 	spin_lock(&pd->cdrw.active_list_lock);
1439 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1440 		if (pkt->state == PACKET_FINISHED_STATE) {
1441 			list_del(&pkt->list);
1442 			pkt_put_packet_data(pd, pkt);
1443 			pkt_set_state(pkt, PACKET_IDLE_STATE);
1444 			atomic_set(&pd->scan_queue, 1);
1445 		}
1446 	}
1447 	spin_unlock(&pd->cdrw.active_list_lock);
1448 }
1449 
1450 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1451 {
1452 	struct packet_data *pkt;
1453 	int i;
1454 
1455 	for (i = 0; i < PACKET_NUM_STATES; i++)
1456 		states[i] = 0;
1457 
1458 	spin_lock(&pd->cdrw.active_list_lock);
1459 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1460 		states[pkt->state]++;
1461 	}
1462 	spin_unlock(&pd->cdrw.active_list_lock);
1463 }
1464 
1465 /*
1466  * kcdrwd is woken up when writes have been queued for one of our
1467  * registered devices
1468  */
1469 static int kcdrwd(void *foobar)
1470 {
1471 	struct pktcdvd_device *pd = foobar;
1472 	struct packet_data *pkt;
1473 	long min_sleep_time, residue;
1474 
1475 	set_user_nice(current, -20);
1476 	set_freezable();
1477 
1478 	for (;;) {
1479 		DECLARE_WAITQUEUE(wait, current);
1480 
1481 		/*
1482 		 * Wait until there is something to do
1483 		 */
1484 		add_wait_queue(&pd->wqueue, &wait);
1485 		for (;;) {
1486 			set_current_state(TASK_INTERRUPTIBLE);
1487 
1488 			/* Check if we need to run pkt_handle_queue */
1489 			if (atomic_read(&pd->scan_queue) > 0)
1490 				goto work_to_do;
1491 
1492 			/* Check if we need to run the state machine for some packet */
1493 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1494 				if (atomic_read(&pkt->run_sm) > 0)
1495 					goto work_to_do;
1496 			}
1497 
1498 			/* Check if we need to process the iosched queues */
1499 			if (atomic_read(&pd->iosched.attention) != 0)
1500 				goto work_to_do;
1501 
1502 			/* Otherwise, go to sleep */
1503 			if (PACKET_DEBUG > 1) {
1504 				int states[PACKET_NUM_STATES];
1505 				pkt_count_states(pd, states);
1506 				pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1507 					states[0], states[1], states[2],
1508 					states[3], states[4], states[5]);
1509 			}
1510 
1511 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1512 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1513 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1514 					min_sleep_time = pkt->sleep_time;
1515 			}
1516 
1517 			pkt_dbg(2, pd, "sleeping\n");
1518 			residue = schedule_timeout(min_sleep_time);
1519 			pkt_dbg(2, pd, "wake up\n");
1520 
1521 			/* make swsusp happy with our thread */
1522 			try_to_freeze();
1523 
1524 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1525 				if (!pkt->sleep_time)
1526 					continue;
1527 				pkt->sleep_time -= min_sleep_time - residue;
1528 				if (pkt->sleep_time <= 0) {
1529 					pkt->sleep_time = 0;
1530 					atomic_inc(&pkt->run_sm);
1531 				}
1532 			}
1533 
1534 			if (kthread_should_stop())
1535 				break;
1536 		}
1537 work_to_do:
1538 		set_current_state(TASK_RUNNING);
1539 		remove_wait_queue(&pd->wqueue, &wait);
1540 
1541 		if (kthread_should_stop())
1542 			break;
1543 
1544 		/*
1545 		 * if pkt_handle_queue returns true, we can queue
1546 		 * another request.
1547 		 */
1548 		while (pkt_handle_queue(pd))
1549 			;
1550 
1551 		/*
1552 		 * Handle packet state machine
1553 		 */
1554 		pkt_handle_packets(pd);
1555 
1556 		/*
1557 		 * Handle iosched queues
1558 		 */
1559 		pkt_iosched_process_queue(pd);
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 static void pkt_print_settings(struct pktcdvd_device *pd)
1566 {
1567 	pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1568 		 pd->settings.fp ? "Fixed" : "Variable",
1569 		 pd->settings.size >> 2,
1570 		 pd->settings.block_mode == 8 ? '1' : '2');
1571 }
1572 
1573 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1574 {
1575 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1576 
1577 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1578 	cgc->cmd[2] = page_code | (page_control << 6);
1579 	cgc->cmd[7] = cgc->buflen >> 8;
1580 	cgc->cmd[8] = cgc->buflen & 0xff;
1581 	cgc->data_direction = CGC_DATA_READ;
1582 	return pkt_generic_packet(pd, cgc);
1583 }
1584 
1585 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1586 {
1587 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1588 	memset(cgc->buffer, 0, 2);
1589 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1590 	cgc->cmd[1] = 0x10;		/* PF */
1591 	cgc->cmd[7] = cgc->buflen >> 8;
1592 	cgc->cmd[8] = cgc->buflen & 0xff;
1593 	cgc->data_direction = CGC_DATA_WRITE;
1594 	return pkt_generic_packet(pd, cgc);
1595 }
1596 
1597 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1598 {
1599 	struct packet_command cgc;
1600 	int ret;
1601 
1602 	/* set up command and get the disc info */
1603 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1604 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1605 	cgc.cmd[8] = cgc.buflen = 2;
1606 	cgc.quiet = 1;
1607 
1608 	if ((ret = pkt_generic_packet(pd, &cgc)))
1609 		return ret;
1610 
1611 	/* not all drives have the same disc_info length, so requeue
1612 	 * packet with the length the drive tells us it can supply
1613 	 */
1614 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1615 		     sizeof(di->disc_information_length);
1616 
1617 	if (cgc.buflen > sizeof(disc_information))
1618 		cgc.buflen = sizeof(disc_information);
1619 
1620 	cgc.cmd[8] = cgc.buflen;
1621 	return pkt_generic_packet(pd, &cgc);
1622 }
1623 
1624 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1625 {
1626 	struct packet_command cgc;
1627 	int ret;
1628 
1629 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1630 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1631 	cgc.cmd[1] = type & 3;
1632 	cgc.cmd[4] = (track & 0xff00) >> 8;
1633 	cgc.cmd[5] = track & 0xff;
1634 	cgc.cmd[8] = 8;
1635 	cgc.quiet = 1;
1636 
1637 	if ((ret = pkt_generic_packet(pd, &cgc)))
1638 		return ret;
1639 
1640 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1641 		     sizeof(ti->track_information_length);
1642 
1643 	if (cgc.buflen > sizeof(track_information))
1644 		cgc.buflen = sizeof(track_information);
1645 
1646 	cgc.cmd[8] = cgc.buflen;
1647 	return pkt_generic_packet(pd, &cgc);
1648 }
1649 
1650 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1651 						long *last_written)
1652 {
1653 	disc_information di;
1654 	track_information ti;
1655 	__u32 last_track;
1656 	int ret = -1;
1657 
1658 	if ((ret = pkt_get_disc_info(pd, &di)))
1659 		return ret;
1660 
1661 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1662 	if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1663 		return ret;
1664 
1665 	/* if this track is blank, try the previous. */
1666 	if (ti.blank) {
1667 		last_track--;
1668 		if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1669 			return ret;
1670 	}
1671 
1672 	/* if last recorded field is valid, return it. */
1673 	if (ti.lra_v) {
1674 		*last_written = be32_to_cpu(ti.last_rec_address);
1675 	} else {
1676 		/* make it up instead */
1677 		*last_written = be32_to_cpu(ti.track_start) +
1678 				be32_to_cpu(ti.track_size);
1679 		if (ti.free_blocks)
1680 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1681 	}
1682 	return 0;
1683 }
1684 
1685 /*
1686  * write mode select package based on pd->settings
1687  */
1688 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1689 {
1690 	struct packet_command cgc;
1691 	struct request_sense sense;
1692 	write_param_page *wp;
1693 	char buffer[128];
1694 	int ret, size;
1695 
1696 	/* doesn't apply to DVD+RW or DVD-RAM */
1697 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1698 		return 0;
1699 
1700 	memset(buffer, 0, sizeof(buffer));
1701 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1702 	cgc.sense = &sense;
1703 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1704 		pkt_dump_sense(pd, &cgc);
1705 		return ret;
1706 	}
1707 
1708 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1709 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1710 	if (size > sizeof(buffer))
1711 		size = sizeof(buffer);
1712 
1713 	/*
1714 	 * now get it all
1715 	 */
1716 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1717 	cgc.sense = &sense;
1718 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1719 		pkt_dump_sense(pd, &cgc);
1720 		return ret;
1721 	}
1722 
1723 	/*
1724 	 * write page is offset header + block descriptor length
1725 	 */
1726 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1727 
1728 	wp->fp = pd->settings.fp;
1729 	wp->track_mode = pd->settings.track_mode;
1730 	wp->write_type = pd->settings.write_type;
1731 	wp->data_block_type = pd->settings.block_mode;
1732 
1733 	wp->multi_session = 0;
1734 
1735 #ifdef PACKET_USE_LS
1736 	wp->link_size = 7;
1737 	wp->ls_v = 1;
1738 #endif
1739 
1740 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1741 		wp->session_format = 0;
1742 		wp->subhdr2 = 0x20;
1743 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1744 		wp->session_format = 0x20;
1745 		wp->subhdr2 = 8;
1746 #if 0
1747 		wp->mcn[0] = 0x80;
1748 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1749 #endif
1750 	} else {
1751 		/*
1752 		 * paranoia
1753 		 */
1754 		pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1755 		return 1;
1756 	}
1757 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1758 
1759 	cgc.buflen = cgc.cmd[8] = size;
1760 	if ((ret = pkt_mode_select(pd, &cgc))) {
1761 		pkt_dump_sense(pd, &cgc);
1762 		return ret;
1763 	}
1764 
1765 	pkt_print_settings(pd);
1766 	return 0;
1767 }
1768 
1769 /*
1770  * 1 -- we can write to this track, 0 -- we can't
1771  */
1772 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1773 {
1774 	switch (pd->mmc3_profile) {
1775 		case 0x1a: /* DVD+RW */
1776 		case 0x12: /* DVD-RAM */
1777 			/* The track is always writable on DVD+RW/DVD-RAM */
1778 			return 1;
1779 		default:
1780 			break;
1781 	}
1782 
1783 	if (!ti->packet || !ti->fp)
1784 		return 0;
1785 
1786 	/*
1787 	 * "good" settings as per Mt Fuji.
1788 	 */
1789 	if (ti->rt == 0 && ti->blank == 0)
1790 		return 1;
1791 
1792 	if (ti->rt == 0 && ti->blank == 1)
1793 		return 1;
1794 
1795 	if (ti->rt == 1 && ti->blank == 0)
1796 		return 1;
1797 
1798 	pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1799 	return 0;
1800 }
1801 
1802 /*
1803  * 1 -- we can write to this disc, 0 -- we can't
1804  */
1805 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1806 {
1807 	switch (pd->mmc3_profile) {
1808 		case 0x0a: /* CD-RW */
1809 		case 0xffff: /* MMC3 not supported */
1810 			break;
1811 		case 0x1a: /* DVD+RW */
1812 		case 0x13: /* DVD-RW */
1813 		case 0x12: /* DVD-RAM */
1814 			return 1;
1815 		default:
1816 			pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1817 				pd->mmc3_profile);
1818 			return 0;
1819 	}
1820 
1821 	/*
1822 	 * for disc type 0xff we should probably reserve a new track.
1823 	 * but i'm not sure, should we leave this to user apps? probably.
1824 	 */
1825 	if (di->disc_type == 0xff) {
1826 		pkt_notice(pd, "unknown disc - no track?\n");
1827 		return 0;
1828 	}
1829 
1830 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1831 		pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1832 		return 0;
1833 	}
1834 
1835 	if (di->erasable == 0) {
1836 		pkt_notice(pd, "disc not erasable\n");
1837 		return 0;
1838 	}
1839 
1840 	if (di->border_status == PACKET_SESSION_RESERVED) {
1841 		pkt_err(pd, "can't write to last track (reserved)\n");
1842 		return 0;
1843 	}
1844 
1845 	return 1;
1846 }
1847 
1848 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1849 {
1850 	struct packet_command cgc;
1851 	unsigned char buf[12];
1852 	disc_information di;
1853 	track_information ti;
1854 	int ret, track;
1855 
1856 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1857 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1858 	cgc.cmd[8] = 8;
1859 	ret = pkt_generic_packet(pd, &cgc);
1860 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1861 
1862 	memset(&di, 0, sizeof(disc_information));
1863 	memset(&ti, 0, sizeof(track_information));
1864 
1865 	if ((ret = pkt_get_disc_info(pd, &di))) {
1866 		pkt_err(pd, "failed get_disc\n");
1867 		return ret;
1868 	}
1869 
1870 	if (!pkt_writable_disc(pd, &di))
1871 		return -EROFS;
1872 
1873 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1874 
1875 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1876 	if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1877 		pkt_err(pd, "failed get_track\n");
1878 		return ret;
1879 	}
1880 
1881 	if (!pkt_writable_track(pd, &ti)) {
1882 		pkt_err(pd, "can't write to this track\n");
1883 		return -EROFS;
1884 	}
1885 
1886 	/*
1887 	 * we keep packet size in 512 byte units, makes it easier to
1888 	 * deal with request calculations.
1889 	 */
1890 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1891 	if (pd->settings.size == 0) {
1892 		pkt_notice(pd, "detected zero packet size!\n");
1893 		return -ENXIO;
1894 	}
1895 	if (pd->settings.size > PACKET_MAX_SECTORS) {
1896 		pkt_err(pd, "packet size is too big\n");
1897 		return -EROFS;
1898 	}
1899 	pd->settings.fp = ti.fp;
1900 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1901 
1902 	if (ti.nwa_v) {
1903 		pd->nwa = be32_to_cpu(ti.next_writable);
1904 		set_bit(PACKET_NWA_VALID, &pd->flags);
1905 	}
1906 
1907 	/*
1908 	 * in theory we could use lra on -RW media as well and just zero
1909 	 * blocks that haven't been written yet, but in practice that
1910 	 * is just a no-go. we'll use that for -R, naturally.
1911 	 */
1912 	if (ti.lra_v) {
1913 		pd->lra = be32_to_cpu(ti.last_rec_address);
1914 		set_bit(PACKET_LRA_VALID, &pd->flags);
1915 	} else {
1916 		pd->lra = 0xffffffff;
1917 		set_bit(PACKET_LRA_VALID, &pd->flags);
1918 	}
1919 
1920 	/*
1921 	 * fine for now
1922 	 */
1923 	pd->settings.link_loss = 7;
1924 	pd->settings.write_type = 0;	/* packet */
1925 	pd->settings.track_mode = ti.track_mode;
1926 
1927 	/*
1928 	 * mode1 or mode2 disc
1929 	 */
1930 	switch (ti.data_mode) {
1931 		case PACKET_MODE1:
1932 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1933 			break;
1934 		case PACKET_MODE2:
1935 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1936 			break;
1937 		default:
1938 			pkt_err(pd, "unknown data mode\n");
1939 			return -EROFS;
1940 	}
1941 	return 0;
1942 }
1943 
1944 /*
1945  * enable/disable write caching on drive
1946  */
1947 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1948 						int set)
1949 {
1950 	struct packet_command cgc;
1951 	struct request_sense sense;
1952 	unsigned char buf[64];
1953 	int ret;
1954 
1955 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1956 	cgc.sense = &sense;
1957 	cgc.buflen = pd->mode_offset + 12;
1958 
1959 	/*
1960 	 * caching mode page might not be there, so quiet this command
1961 	 */
1962 	cgc.quiet = 1;
1963 
1964 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1965 		return ret;
1966 
1967 	buf[pd->mode_offset + 10] |= (!!set << 2);
1968 
1969 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1970 	ret = pkt_mode_select(pd, &cgc);
1971 	if (ret) {
1972 		pkt_err(pd, "write caching control failed\n");
1973 		pkt_dump_sense(pd, &cgc);
1974 	} else if (!ret && set)
1975 		pkt_notice(pd, "enabled write caching\n");
1976 	return ret;
1977 }
1978 
1979 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1980 {
1981 	struct packet_command cgc;
1982 
1983 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1984 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1985 	cgc.cmd[4] = lockflag ? 1 : 0;
1986 	return pkt_generic_packet(pd, &cgc);
1987 }
1988 
1989 /*
1990  * Returns drive maximum write speed
1991  */
1992 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1993 						unsigned *write_speed)
1994 {
1995 	struct packet_command cgc;
1996 	struct request_sense sense;
1997 	unsigned char buf[256+18];
1998 	unsigned char *cap_buf;
1999 	int ret, offset;
2000 
2001 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2002 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2003 	cgc.sense = &sense;
2004 
2005 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2006 	if (ret) {
2007 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2008 			     sizeof(struct mode_page_header);
2009 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2010 		if (ret) {
2011 			pkt_dump_sense(pd, &cgc);
2012 			return ret;
2013 		}
2014 	}
2015 
2016 	offset = 20;			    /* Obsoleted field, used by older drives */
2017 	if (cap_buf[1] >= 28)
2018 		offset = 28;		    /* Current write speed selected */
2019 	if (cap_buf[1] >= 30) {
2020 		/* If the drive reports at least one "Logical Unit Write
2021 		 * Speed Performance Descriptor Block", use the information
2022 		 * in the first block. (contains the highest speed)
2023 		 */
2024 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2025 		if (num_spdb > 0)
2026 			offset = 34;
2027 	}
2028 
2029 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2030 	return 0;
2031 }
2032 
2033 /* These tables from cdrecord - I don't have orange book */
2034 /* standard speed CD-RW (1-4x) */
2035 static char clv_to_speed[16] = {
2036 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2037 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2038 };
2039 /* high speed CD-RW (-10x) */
2040 static char hs_clv_to_speed[16] = {
2041 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2042 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2043 };
2044 /* ultra high speed CD-RW */
2045 static char us_clv_to_speed[16] = {
2046 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2047 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2048 };
2049 
2050 /*
2051  * reads the maximum media speed from ATIP
2052  */
2053 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2054 						unsigned *speed)
2055 {
2056 	struct packet_command cgc;
2057 	struct request_sense sense;
2058 	unsigned char buf[64];
2059 	unsigned int size, st, sp;
2060 	int ret;
2061 
2062 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2063 	cgc.sense = &sense;
2064 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2065 	cgc.cmd[1] = 2;
2066 	cgc.cmd[2] = 4; /* READ ATIP */
2067 	cgc.cmd[8] = 2;
2068 	ret = pkt_generic_packet(pd, &cgc);
2069 	if (ret) {
2070 		pkt_dump_sense(pd, &cgc);
2071 		return ret;
2072 	}
2073 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2074 	if (size > sizeof(buf))
2075 		size = sizeof(buf);
2076 
2077 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2078 	cgc.sense = &sense;
2079 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2080 	cgc.cmd[1] = 2;
2081 	cgc.cmd[2] = 4;
2082 	cgc.cmd[8] = size;
2083 	ret = pkt_generic_packet(pd, &cgc);
2084 	if (ret) {
2085 		pkt_dump_sense(pd, &cgc);
2086 		return ret;
2087 	}
2088 
2089 	if (!(buf[6] & 0x40)) {
2090 		pkt_notice(pd, "disc type is not CD-RW\n");
2091 		return 1;
2092 	}
2093 	if (!(buf[6] & 0x4)) {
2094 		pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2095 		return 1;
2096 	}
2097 
2098 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2099 
2100 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2101 
2102 	/* Info from cdrecord */
2103 	switch (st) {
2104 		case 0: /* standard speed */
2105 			*speed = clv_to_speed[sp];
2106 			break;
2107 		case 1: /* high speed */
2108 			*speed = hs_clv_to_speed[sp];
2109 			break;
2110 		case 2: /* ultra high speed */
2111 			*speed = us_clv_to_speed[sp];
2112 			break;
2113 		default:
2114 			pkt_notice(pd, "unknown disc sub-type %d\n", st);
2115 			return 1;
2116 	}
2117 	if (*speed) {
2118 		pkt_info(pd, "maximum media speed: %d\n", *speed);
2119 		return 0;
2120 	} else {
2121 		pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2122 		return 1;
2123 	}
2124 }
2125 
2126 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2127 {
2128 	struct packet_command cgc;
2129 	struct request_sense sense;
2130 	int ret;
2131 
2132 	pkt_dbg(2, pd, "Performing OPC\n");
2133 
2134 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2135 	cgc.sense = &sense;
2136 	cgc.timeout = 60*HZ;
2137 	cgc.cmd[0] = GPCMD_SEND_OPC;
2138 	cgc.cmd[1] = 1;
2139 	if ((ret = pkt_generic_packet(pd, &cgc)))
2140 		pkt_dump_sense(pd, &cgc);
2141 	return ret;
2142 }
2143 
2144 static int pkt_open_write(struct pktcdvd_device *pd)
2145 {
2146 	int ret;
2147 	unsigned int write_speed, media_write_speed, read_speed;
2148 
2149 	if ((ret = pkt_probe_settings(pd))) {
2150 		pkt_dbg(2, pd, "failed probe\n");
2151 		return ret;
2152 	}
2153 
2154 	if ((ret = pkt_set_write_settings(pd))) {
2155 		pkt_dbg(1, pd, "failed saving write settings\n");
2156 		return -EIO;
2157 	}
2158 
2159 	pkt_write_caching(pd, USE_WCACHING);
2160 
2161 	if ((ret = pkt_get_max_speed(pd, &write_speed)))
2162 		write_speed = 16 * 177;
2163 	switch (pd->mmc3_profile) {
2164 		case 0x13: /* DVD-RW */
2165 		case 0x1a: /* DVD+RW */
2166 		case 0x12: /* DVD-RAM */
2167 			pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2168 			break;
2169 		default:
2170 			if ((ret = pkt_media_speed(pd, &media_write_speed)))
2171 				media_write_speed = 16;
2172 			write_speed = min(write_speed, media_write_speed * 177);
2173 			pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2174 			break;
2175 	}
2176 	read_speed = write_speed;
2177 
2178 	if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2179 		pkt_dbg(1, pd, "couldn't set write speed\n");
2180 		return -EIO;
2181 	}
2182 	pd->write_speed = write_speed;
2183 	pd->read_speed = read_speed;
2184 
2185 	if ((ret = pkt_perform_opc(pd))) {
2186 		pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2187 	}
2188 
2189 	return 0;
2190 }
2191 
2192 /*
2193  * called at open time.
2194  */
2195 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2196 {
2197 	int ret;
2198 	long lba;
2199 	struct request_queue *q;
2200 
2201 	/*
2202 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2203 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2204 	 * so bdget() can't fail.
2205 	 */
2206 	bdget(pd->bdev->bd_dev);
2207 	if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2208 		goto out;
2209 
2210 	if ((ret = pkt_get_last_written(pd, &lba))) {
2211 		pkt_err(pd, "pkt_get_last_written failed\n");
2212 		goto out_putdev;
2213 	}
2214 
2215 	set_capacity(pd->disk, lba << 2);
2216 	set_capacity(pd->bdev->bd_disk, lba << 2);
2217 	bd_set_size(pd->bdev, (loff_t)lba << 11);
2218 
2219 	q = bdev_get_queue(pd->bdev);
2220 	if (write) {
2221 		if ((ret = pkt_open_write(pd)))
2222 			goto out_putdev;
2223 		/*
2224 		 * Some CDRW drives can not handle writes larger than one packet,
2225 		 * even if the size is a multiple of the packet size.
2226 		 */
2227 		spin_lock_irq(q->queue_lock);
2228 		blk_queue_max_hw_sectors(q, pd->settings.size);
2229 		spin_unlock_irq(q->queue_lock);
2230 		set_bit(PACKET_WRITABLE, &pd->flags);
2231 	} else {
2232 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2233 		clear_bit(PACKET_WRITABLE, &pd->flags);
2234 	}
2235 
2236 	if ((ret = pkt_set_segment_merging(pd, q)))
2237 		goto out_putdev;
2238 
2239 	if (write) {
2240 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2241 			pkt_err(pd, "not enough memory for buffers\n");
2242 			ret = -ENOMEM;
2243 			goto out_putdev;
2244 		}
2245 		pkt_info(pd, "%lukB available on disc\n", lba << 1);
2246 	}
2247 
2248 	return 0;
2249 
2250 out_putdev:
2251 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2252 out:
2253 	return ret;
2254 }
2255 
2256 /*
2257  * called when the device is closed. makes sure that the device flushes
2258  * the internal cache before we close.
2259  */
2260 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2261 {
2262 	if (flush && pkt_flush_cache(pd))
2263 		pkt_dbg(1, pd, "not flushing cache\n");
2264 
2265 	pkt_lock_door(pd, 0);
2266 
2267 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2268 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2269 
2270 	pkt_shrink_pktlist(pd);
2271 }
2272 
2273 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2274 {
2275 	if (dev_minor >= MAX_WRITERS)
2276 		return NULL;
2277 	return pkt_devs[dev_minor];
2278 }
2279 
2280 static int pkt_open(struct block_device *bdev, fmode_t mode)
2281 {
2282 	struct pktcdvd_device *pd = NULL;
2283 	int ret;
2284 
2285 	mutex_lock(&pktcdvd_mutex);
2286 	mutex_lock(&ctl_mutex);
2287 	pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2288 	if (!pd) {
2289 		ret = -ENODEV;
2290 		goto out;
2291 	}
2292 	BUG_ON(pd->refcnt < 0);
2293 
2294 	pd->refcnt++;
2295 	if (pd->refcnt > 1) {
2296 		if ((mode & FMODE_WRITE) &&
2297 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2298 			ret = -EBUSY;
2299 			goto out_dec;
2300 		}
2301 	} else {
2302 		ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2303 		if (ret)
2304 			goto out_dec;
2305 		/*
2306 		 * needed here as well, since ext2 (among others) may change
2307 		 * the blocksize at mount time
2308 		 */
2309 		set_blocksize(bdev, CD_FRAMESIZE);
2310 	}
2311 
2312 	mutex_unlock(&ctl_mutex);
2313 	mutex_unlock(&pktcdvd_mutex);
2314 	return 0;
2315 
2316 out_dec:
2317 	pd->refcnt--;
2318 out:
2319 	mutex_unlock(&ctl_mutex);
2320 	mutex_unlock(&pktcdvd_mutex);
2321 	return ret;
2322 }
2323 
2324 static void pkt_close(struct gendisk *disk, fmode_t mode)
2325 {
2326 	struct pktcdvd_device *pd = disk->private_data;
2327 
2328 	mutex_lock(&pktcdvd_mutex);
2329 	mutex_lock(&ctl_mutex);
2330 	pd->refcnt--;
2331 	BUG_ON(pd->refcnt < 0);
2332 	if (pd->refcnt == 0) {
2333 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2334 		pkt_release_dev(pd, flush);
2335 	}
2336 	mutex_unlock(&ctl_mutex);
2337 	mutex_unlock(&pktcdvd_mutex);
2338 }
2339 
2340 
2341 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2342 {
2343 	struct packet_stacked_data *psd = bio->bi_private;
2344 	struct pktcdvd_device *pd = psd->pd;
2345 
2346 	bio_put(bio);
2347 	bio_endio(psd->bio, err);
2348 	mempool_free(psd, psd_pool);
2349 	pkt_bio_finished(pd);
2350 }
2351 
2352 static void pkt_make_request(struct request_queue *q, struct bio *bio)
2353 {
2354 	struct pktcdvd_device *pd;
2355 	char b[BDEVNAME_SIZE];
2356 	sector_t zone;
2357 	struct packet_data *pkt;
2358 	int was_empty, blocked_bio;
2359 	struct pkt_rb_node *node;
2360 
2361 	pd = q->queuedata;
2362 	if (!pd) {
2363 		pr_err("%s incorrect request queue\n",
2364 		       bdevname(bio->bi_bdev, b));
2365 		goto end_io;
2366 	}
2367 
2368 	/*
2369 	 * Clone READ bios so we can have our own bi_end_io callback.
2370 	 */
2371 	if (bio_data_dir(bio) == READ) {
2372 		struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2373 		struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2374 
2375 		psd->pd = pd;
2376 		psd->bio = bio;
2377 		cloned_bio->bi_bdev = pd->bdev;
2378 		cloned_bio->bi_private = psd;
2379 		cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2380 		pd->stats.secs_r += bio_sectors(bio);
2381 		pkt_queue_bio(pd, cloned_bio);
2382 		return;
2383 	}
2384 
2385 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2386 		pkt_notice(pd, "WRITE for ro device (%llu)\n",
2387 			   (unsigned long long)bio->bi_sector);
2388 		goto end_io;
2389 	}
2390 
2391 	if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2392 		pkt_err(pd, "wrong bio size\n");
2393 		goto end_io;
2394 	}
2395 
2396 	blk_queue_bounce(q, &bio);
2397 
2398 	zone = get_zone(bio->bi_sector, pd);
2399 	pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2400 		(unsigned long long)bio->bi_sector,
2401 		(unsigned long long)bio_end_sector(bio));
2402 
2403 	/* Check if we have to split the bio */
2404 	{
2405 		struct bio_pair *bp;
2406 		sector_t last_zone;
2407 		int first_sectors;
2408 
2409 		last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2410 		if (last_zone != zone) {
2411 			BUG_ON(last_zone != zone + pd->settings.size);
2412 			first_sectors = last_zone - bio->bi_sector;
2413 			bp = bio_split(bio, first_sectors);
2414 			BUG_ON(!bp);
2415 			pkt_make_request(q, &bp->bio1);
2416 			pkt_make_request(q, &bp->bio2);
2417 			bio_pair_release(bp);
2418 			return;
2419 		}
2420 	}
2421 
2422 	/*
2423 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2424 	 * just append this bio to that packet.
2425 	 */
2426 	spin_lock(&pd->cdrw.active_list_lock);
2427 	blocked_bio = 0;
2428 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2429 		if (pkt->sector == zone) {
2430 			spin_lock(&pkt->lock);
2431 			if ((pkt->state == PACKET_WAITING_STATE) ||
2432 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2433 				bio_list_add(&pkt->orig_bios, bio);
2434 				pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2435 				if ((pkt->write_size >= pkt->frames) &&
2436 				    (pkt->state == PACKET_WAITING_STATE)) {
2437 					atomic_inc(&pkt->run_sm);
2438 					wake_up(&pd->wqueue);
2439 				}
2440 				spin_unlock(&pkt->lock);
2441 				spin_unlock(&pd->cdrw.active_list_lock);
2442 				return;
2443 			} else {
2444 				blocked_bio = 1;
2445 			}
2446 			spin_unlock(&pkt->lock);
2447 		}
2448 	}
2449 	spin_unlock(&pd->cdrw.active_list_lock);
2450 
2451  	/*
2452 	 * Test if there is enough room left in the bio work queue
2453 	 * (queue size >= congestion on mark).
2454 	 * If not, wait till the work queue size is below the congestion off mark.
2455 	 */
2456 	spin_lock(&pd->lock);
2457 	if (pd->write_congestion_on > 0
2458 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2459 		set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2460 		do {
2461 			spin_unlock(&pd->lock);
2462 			congestion_wait(BLK_RW_ASYNC, HZ);
2463 			spin_lock(&pd->lock);
2464 		} while(pd->bio_queue_size > pd->write_congestion_off);
2465 	}
2466 	spin_unlock(&pd->lock);
2467 
2468 	/*
2469 	 * No matching packet found. Store the bio in the work queue.
2470 	 */
2471 	node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2472 	node->bio = bio;
2473 	spin_lock(&pd->lock);
2474 	BUG_ON(pd->bio_queue_size < 0);
2475 	was_empty = (pd->bio_queue_size == 0);
2476 	pkt_rbtree_insert(pd, node);
2477 	spin_unlock(&pd->lock);
2478 
2479 	/*
2480 	 * Wake up the worker thread.
2481 	 */
2482 	atomic_set(&pd->scan_queue, 1);
2483 	if (was_empty) {
2484 		/* This wake_up is required for correct operation */
2485 		wake_up(&pd->wqueue);
2486 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2487 		/*
2488 		 * This wake up is not required for correct operation,
2489 		 * but improves performance in some cases.
2490 		 */
2491 		wake_up(&pd->wqueue);
2492 	}
2493 	return;
2494 end_io:
2495 	bio_io_error(bio);
2496 }
2497 
2498 
2499 
2500 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2501 			  struct bio_vec *bvec)
2502 {
2503 	struct pktcdvd_device *pd = q->queuedata;
2504 	sector_t zone = get_zone(bmd->bi_sector, pd);
2505 	int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2506 	int remaining = (pd->settings.size << 9) - used;
2507 	int remaining2;
2508 
2509 	/*
2510 	 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2511 	 * boundary, pkt_make_request() will split the bio.
2512 	 */
2513 	remaining2 = PAGE_SIZE - bmd->bi_size;
2514 	remaining = max(remaining, remaining2);
2515 
2516 	BUG_ON(remaining < 0);
2517 	return remaining;
2518 }
2519 
2520 static void pkt_init_queue(struct pktcdvd_device *pd)
2521 {
2522 	struct request_queue *q = pd->disk->queue;
2523 
2524 	blk_queue_make_request(q, pkt_make_request);
2525 	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2526 	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2527 	blk_queue_merge_bvec(q, pkt_merge_bvec);
2528 	q->queuedata = pd;
2529 }
2530 
2531 static int pkt_seq_show(struct seq_file *m, void *p)
2532 {
2533 	struct pktcdvd_device *pd = m->private;
2534 	char *msg;
2535 	char bdev_buf[BDEVNAME_SIZE];
2536 	int states[PACKET_NUM_STATES];
2537 
2538 	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2539 		   bdevname(pd->bdev, bdev_buf));
2540 
2541 	seq_printf(m, "\nSettings:\n");
2542 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2543 
2544 	if (pd->settings.write_type == 0)
2545 		msg = "Packet";
2546 	else
2547 		msg = "Unknown";
2548 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2549 
2550 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2551 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2552 
2553 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2554 
2555 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2556 		msg = "Mode 1";
2557 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2558 		msg = "Mode 2";
2559 	else
2560 		msg = "Unknown";
2561 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2562 
2563 	seq_printf(m, "\nStatistics:\n");
2564 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2565 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2566 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2567 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2568 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2569 
2570 	seq_printf(m, "\nMisc:\n");
2571 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2572 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2573 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2574 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2575 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2576 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2577 
2578 	seq_printf(m, "\nQueue state:\n");
2579 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2580 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2581 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2582 
2583 	pkt_count_states(pd, states);
2584 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2585 		   states[0], states[1], states[2], states[3], states[4], states[5]);
2586 
2587 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2588 			pd->write_congestion_off,
2589 			pd->write_congestion_on);
2590 	return 0;
2591 }
2592 
2593 static int pkt_seq_open(struct inode *inode, struct file *file)
2594 {
2595 	return single_open(file, pkt_seq_show, PDE_DATA(inode));
2596 }
2597 
2598 static const struct file_operations pkt_proc_fops = {
2599 	.open	= pkt_seq_open,
2600 	.read	= seq_read,
2601 	.llseek	= seq_lseek,
2602 	.release = single_release
2603 };
2604 
2605 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2606 {
2607 	int i;
2608 	int ret = 0;
2609 	char b[BDEVNAME_SIZE];
2610 	struct block_device *bdev;
2611 
2612 	if (pd->pkt_dev == dev) {
2613 		pkt_err(pd, "recursive setup not allowed\n");
2614 		return -EBUSY;
2615 	}
2616 	for (i = 0; i < MAX_WRITERS; i++) {
2617 		struct pktcdvd_device *pd2 = pkt_devs[i];
2618 		if (!pd2)
2619 			continue;
2620 		if (pd2->bdev->bd_dev == dev) {
2621 			pkt_err(pd, "%s already setup\n",
2622 				bdevname(pd2->bdev, b));
2623 			return -EBUSY;
2624 		}
2625 		if (pd2->pkt_dev == dev) {
2626 			pkt_err(pd, "can't chain pktcdvd devices\n");
2627 			return -EBUSY;
2628 		}
2629 	}
2630 
2631 	bdev = bdget(dev);
2632 	if (!bdev)
2633 		return -ENOMEM;
2634 	ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2635 	if (ret)
2636 		return ret;
2637 
2638 	/* This is safe, since we have a reference from open(). */
2639 	__module_get(THIS_MODULE);
2640 
2641 	pd->bdev = bdev;
2642 	set_blocksize(bdev, CD_FRAMESIZE);
2643 
2644 	pkt_init_queue(pd);
2645 
2646 	atomic_set(&pd->cdrw.pending_bios, 0);
2647 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2648 	if (IS_ERR(pd->cdrw.thread)) {
2649 		pkt_err(pd, "can't start kernel thread\n");
2650 		ret = -ENOMEM;
2651 		goto out_mem;
2652 	}
2653 
2654 	proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2655 	pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2656 	return 0;
2657 
2658 out_mem:
2659 	blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2660 	/* This is safe: open() is still holding a reference. */
2661 	module_put(THIS_MODULE);
2662 	return ret;
2663 }
2664 
2665 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2666 {
2667 	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2668 	int ret;
2669 
2670 	pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2671 		cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2672 
2673 	mutex_lock(&pktcdvd_mutex);
2674 	switch (cmd) {
2675 	case CDROMEJECT:
2676 		/*
2677 		 * The door gets locked when the device is opened, so we
2678 		 * have to unlock it or else the eject command fails.
2679 		 */
2680 		if (pd->refcnt == 1)
2681 			pkt_lock_door(pd, 0);
2682 		/* fallthru */
2683 	/*
2684 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2685 	 */
2686 	case CDROMMULTISESSION:
2687 	case CDROMREADTOCENTRY:
2688 	case CDROM_LAST_WRITTEN:
2689 	case CDROM_SEND_PACKET:
2690 	case SCSI_IOCTL_SEND_COMMAND:
2691 		ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2692 		break;
2693 
2694 	default:
2695 		pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2696 		ret = -ENOTTY;
2697 	}
2698 	mutex_unlock(&pktcdvd_mutex);
2699 
2700 	return ret;
2701 }
2702 
2703 static unsigned int pkt_check_events(struct gendisk *disk,
2704 				     unsigned int clearing)
2705 {
2706 	struct pktcdvd_device *pd = disk->private_data;
2707 	struct gendisk *attached_disk;
2708 
2709 	if (!pd)
2710 		return 0;
2711 	if (!pd->bdev)
2712 		return 0;
2713 	attached_disk = pd->bdev->bd_disk;
2714 	if (!attached_disk || !attached_disk->fops->check_events)
2715 		return 0;
2716 	return attached_disk->fops->check_events(attached_disk, clearing);
2717 }
2718 
2719 static const struct block_device_operations pktcdvd_ops = {
2720 	.owner =		THIS_MODULE,
2721 	.open =			pkt_open,
2722 	.release =		pkt_close,
2723 	.ioctl =		pkt_ioctl,
2724 	.check_events =		pkt_check_events,
2725 };
2726 
2727 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2728 {
2729 	return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2730 }
2731 
2732 /*
2733  * Set up mapping from pktcdvd device to CD-ROM device.
2734  */
2735 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2736 {
2737 	int idx;
2738 	int ret = -ENOMEM;
2739 	struct pktcdvd_device *pd;
2740 	struct gendisk *disk;
2741 
2742 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2743 
2744 	for (idx = 0; idx < MAX_WRITERS; idx++)
2745 		if (!pkt_devs[idx])
2746 			break;
2747 	if (idx == MAX_WRITERS) {
2748 		pr_err("max %d writers supported\n", MAX_WRITERS);
2749 		ret = -EBUSY;
2750 		goto out_mutex;
2751 	}
2752 
2753 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2754 	if (!pd)
2755 		goto out_mutex;
2756 
2757 	pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2758 						  sizeof(struct pkt_rb_node));
2759 	if (!pd->rb_pool)
2760 		goto out_mem;
2761 
2762 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2763 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2764 	spin_lock_init(&pd->cdrw.active_list_lock);
2765 
2766 	spin_lock_init(&pd->lock);
2767 	spin_lock_init(&pd->iosched.lock);
2768 	bio_list_init(&pd->iosched.read_queue);
2769 	bio_list_init(&pd->iosched.write_queue);
2770 	sprintf(pd->name, DRIVER_NAME"%d", idx);
2771 	init_waitqueue_head(&pd->wqueue);
2772 	pd->bio_queue = RB_ROOT;
2773 
2774 	pd->write_congestion_on  = write_congestion_on;
2775 	pd->write_congestion_off = write_congestion_off;
2776 
2777 	disk = alloc_disk(1);
2778 	if (!disk)
2779 		goto out_mem;
2780 	pd->disk = disk;
2781 	disk->major = pktdev_major;
2782 	disk->first_minor = idx;
2783 	disk->fops = &pktcdvd_ops;
2784 	disk->flags = GENHD_FL_REMOVABLE;
2785 	strcpy(disk->disk_name, pd->name);
2786 	disk->devnode = pktcdvd_devnode;
2787 	disk->private_data = pd;
2788 	disk->queue = blk_alloc_queue(GFP_KERNEL);
2789 	if (!disk->queue)
2790 		goto out_mem2;
2791 
2792 	pd->pkt_dev = MKDEV(pktdev_major, idx);
2793 	ret = pkt_new_dev(pd, dev);
2794 	if (ret)
2795 		goto out_new_dev;
2796 
2797 	/* inherit events of the host device */
2798 	disk->events = pd->bdev->bd_disk->events;
2799 	disk->async_events = pd->bdev->bd_disk->async_events;
2800 
2801 	add_disk(disk);
2802 
2803 	pkt_sysfs_dev_new(pd);
2804 	pkt_debugfs_dev_new(pd);
2805 
2806 	pkt_devs[idx] = pd;
2807 	if (pkt_dev)
2808 		*pkt_dev = pd->pkt_dev;
2809 
2810 	mutex_unlock(&ctl_mutex);
2811 	return 0;
2812 
2813 out_new_dev:
2814 	blk_cleanup_queue(disk->queue);
2815 out_mem2:
2816 	put_disk(disk);
2817 out_mem:
2818 	if (pd->rb_pool)
2819 		mempool_destroy(pd->rb_pool);
2820 	kfree(pd);
2821 out_mutex:
2822 	mutex_unlock(&ctl_mutex);
2823 	pr_err("setup of pktcdvd device failed\n");
2824 	return ret;
2825 }
2826 
2827 /*
2828  * Tear down mapping from pktcdvd device to CD-ROM device.
2829  */
2830 static int pkt_remove_dev(dev_t pkt_dev)
2831 {
2832 	struct pktcdvd_device *pd;
2833 	int idx;
2834 	int ret = 0;
2835 
2836 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2837 
2838 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2839 		pd = pkt_devs[idx];
2840 		if (pd && (pd->pkt_dev == pkt_dev))
2841 			break;
2842 	}
2843 	if (idx == MAX_WRITERS) {
2844 		pr_debug("dev not setup\n");
2845 		ret = -ENXIO;
2846 		goto out;
2847 	}
2848 
2849 	if (pd->refcnt > 0) {
2850 		ret = -EBUSY;
2851 		goto out;
2852 	}
2853 	if (!IS_ERR(pd->cdrw.thread))
2854 		kthread_stop(pd->cdrw.thread);
2855 
2856 	pkt_devs[idx] = NULL;
2857 
2858 	pkt_debugfs_dev_remove(pd);
2859 	pkt_sysfs_dev_remove(pd);
2860 
2861 	blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2862 
2863 	remove_proc_entry(pd->name, pkt_proc);
2864 	pkt_dbg(1, pd, "writer unmapped\n");
2865 
2866 	del_gendisk(pd->disk);
2867 	blk_cleanup_queue(pd->disk->queue);
2868 	put_disk(pd->disk);
2869 
2870 	mempool_destroy(pd->rb_pool);
2871 	kfree(pd);
2872 
2873 	/* This is safe: open() is still holding a reference. */
2874 	module_put(THIS_MODULE);
2875 
2876 out:
2877 	mutex_unlock(&ctl_mutex);
2878 	return ret;
2879 }
2880 
2881 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2882 {
2883 	struct pktcdvd_device *pd;
2884 
2885 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2886 
2887 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2888 	if (pd) {
2889 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2890 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2891 	} else {
2892 		ctrl_cmd->dev = 0;
2893 		ctrl_cmd->pkt_dev = 0;
2894 	}
2895 	ctrl_cmd->num_devices = MAX_WRITERS;
2896 
2897 	mutex_unlock(&ctl_mutex);
2898 }
2899 
2900 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2901 {
2902 	void __user *argp = (void __user *)arg;
2903 	struct pkt_ctrl_command ctrl_cmd;
2904 	int ret = 0;
2905 	dev_t pkt_dev = 0;
2906 
2907 	if (cmd != PACKET_CTRL_CMD)
2908 		return -ENOTTY;
2909 
2910 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2911 		return -EFAULT;
2912 
2913 	switch (ctrl_cmd.command) {
2914 	case PKT_CTRL_CMD_SETUP:
2915 		if (!capable(CAP_SYS_ADMIN))
2916 			return -EPERM;
2917 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2918 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2919 		break;
2920 	case PKT_CTRL_CMD_TEARDOWN:
2921 		if (!capable(CAP_SYS_ADMIN))
2922 			return -EPERM;
2923 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2924 		break;
2925 	case PKT_CTRL_CMD_STATUS:
2926 		pkt_get_status(&ctrl_cmd);
2927 		break;
2928 	default:
2929 		return -ENOTTY;
2930 	}
2931 
2932 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2933 		return -EFAULT;
2934 	return ret;
2935 }
2936 
2937 #ifdef CONFIG_COMPAT
2938 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2939 {
2940 	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2941 }
2942 #endif
2943 
2944 static const struct file_operations pkt_ctl_fops = {
2945 	.open		= nonseekable_open,
2946 	.unlocked_ioctl	= pkt_ctl_ioctl,
2947 #ifdef CONFIG_COMPAT
2948 	.compat_ioctl	= pkt_ctl_compat_ioctl,
2949 #endif
2950 	.owner		= THIS_MODULE,
2951 	.llseek		= no_llseek,
2952 };
2953 
2954 static struct miscdevice pkt_misc = {
2955 	.minor 		= MISC_DYNAMIC_MINOR,
2956 	.name  		= DRIVER_NAME,
2957 	.nodename	= "pktcdvd/control",
2958 	.fops  		= &pkt_ctl_fops
2959 };
2960 
2961 static int __init pkt_init(void)
2962 {
2963 	int ret;
2964 
2965 	mutex_init(&ctl_mutex);
2966 
2967 	psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2968 					sizeof(struct packet_stacked_data));
2969 	if (!psd_pool)
2970 		return -ENOMEM;
2971 
2972 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2973 	if (ret < 0) {
2974 		pr_err("unable to register block device\n");
2975 		goto out2;
2976 	}
2977 	if (!pktdev_major)
2978 		pktdev_major = ret;
2979 
2980 	ret = pkt_sysfs_init();
2981 	if (ret)
2982 		goto out;
2983 
2984 	pkt_debugfs_init();
2985 
2986 	ret = misc_register(&pkt_misc);
2987 	if (ret) {
2988 		pr_err("unable to register misc device\n");
2989 		goto out_misc;
2990 	}
2991 
2992 	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2993 
2994 	return 0;
2995 
2996 out_misc:
2997 	pkt_debugfs_cleanup();
2998 	pkt_sysfs_cleanup();
2999 out:
3000 	unregister_blkdev(pktdev_major, DRIVER_NAME);
3001 out2:
3002 	mempool_destroy(psd_pool);
3003 	return ret;
3004 }
3005 
3006 static void __exit pkt_exit(void)
3007 {
3008 	remove_proc_entry("driver/"DRIVER_NAME, NULL);
3009 	misc_deregister(&pkt_misc);
3010 
3011 	pkt_debugfs_cleanup();
3012 	pkt_sysfs_cleanup();
3013 
3014 	unregister_blkdev(pktdev_major, DRIVER_NAME);
3015 	mempool_destroy(psd_pool);
3016 }
3017 
3018 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3019 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3020 MODULE_LICENSE("GPL");
3021 
3022 module_init(pkt_init);
3023 module_exit(pkt_exit);
3024