xref: /openbmc/linux/drivers/block/pktcdvd.c (revision e190bfe5)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom make_request_fn function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/compat.h>
52 #include <linux/kthread.h>
53 #include <linux/errno.h>
54 #include <linux/spinlock.h>
55 #include <linux/file.h>
56 #include <linux/proc_fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/miscdevice.h>
59 #include <linux/freezer.h>
60 #include <linux/mutex.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_ioctl.h>
64 #include <scsi/scsi.h>
65 #include <linux/debugfs.h>
66 #include <linux/device.h>
67 
68 #include <asm/uaccess.h>
69 
70 #define DRIVER_NAME	"pktcdvd"
71 
72 #if PACKET_DEBUG
73 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74 #else
75 #define DPRINTK(fmt, args...)
76 #endif
77 
78 #if PACKET_DEBUG > 1
79 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
80 #else
81 #define VPRINTK(fmt, args...)
82 #endif
83 
84 #define MAX_SPEED 0xffff
85 
86 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
87 
88 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
89 static struct proc_dir_entry *pkt_proc;
90 static int pktdev_major;
91 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
92 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
93 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
94 static mempool_t *psd_pool;
95 
96 static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
97 static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
98 
99 /* forward declaration */
100 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
101 static int pkt_remove_dev(dev_t pkt_dev);
102 static int pkt_seq_show(struct seq_file *m, void *p);
103 
104 
105 
106 /*
107  * create and register a pktcdvd kernel object.
108  */
109 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
110 					const char* name,
111 					struct kobject* parent,
112 					struct kobj_type* ktype)
113 {
114 	struct pktcdvd_kobj *p;
115 	int error;
116 
117 	p = kzalloc(sizeof(*p), GFP_KERNEL);
118 	if (!p)
119 		return NULL;
120 	p->pd = pd;
121 	error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
122 	if (error) {
123 		kobject_put(&p->kobj);
124 		return NULL;
125 	}
126 	kobject_uevent(&p->kobj, KOBJ_ADD);
127 	return p;
128 }
129 /*
130  * remove a pktcdvd kernel object.
131  */
132 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
133 {
134 	if (p)
135 		kobject_put(&p->kobj);
136 }
137 /*
138  * default release function for pktcdvd kernel objects.
139  */
140 static void pkt_kobj_release(struct kobject *kobj)
141 {
142 	kfree(to_pktcdvdkobj(kobj));
143 }
144 
145 
146 /**********************************************************
147  *
148  * sysfs interface for pktcdvd
149  * by (C) 2006  Thomas Maier <balagi@justmail.de>
150  *
151  **********************************************************/
152 
153 #define DEF_ATTR(_obj,_name,_mode) \
154 	static struct attribute _obj = { .name = _name, .mode = _mode }
155 
156 /**********************************************************
157   /sys/class/pktcdvd/pktcdvd[0-7]/
158                      stat/reset
159                      stat/packets_started
160                      stat/packets_finished
161                      stat/kb_written
162                      stat/kb_read
163                      stat/kb_read_gather
164                      write_queue/size
165                      write_queue/congestion_off
166                      write_queue/congestion_on
167  **********************************************************/
168 
169 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
170 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
171 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
172 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
173 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
174 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
175 
176 static struct attribute *kobj_pkt_attrs_stat[] = {
177 	&kobj_pkt_attr_st1,
178 	&kobj_pkt_attr_st2,
179 	&kobj_pkt_attr_st3,
180 	&kobj_pkt_attr_st4,
181 	&kobj_pkt_attr_st5,
182 	&kobj_pkt_attr_st6,
183 	NULL
184 };
185 
186 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
187 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
188 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
189 
190 static struct attribute *kobj_pkt_attrs_wqueue[] = {
191 	&kobj_pkt_attr_wq1,
192 	&kobj_pkt_attr_wq2,
193 	&kobj_pkt_attr_wq3,
194 	NULL
195 };
196 
197 static ssize_t kobj_pkt_show(struct kobject *kobj,
198 			struct attribute *attr, char *data)
199 {
200 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
201 	int n = 0;
202 	int v;
203 	if (strcmp(attr->name, "packets_started") == 0) {
204 		n = sprintf(data, "%lu\n", pd->stats.pkt_started);
205 
206 	} else if (strcmp(attr->name, "packets_finished") == 0) {
207 		n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
208 
209 	} else if (strcmp(attr->name, "kb_written") == 0) {
210 		n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
211 
212 	} else if (strcmp(attr->name, "kb_read") == 0) {
213 		n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
214 
215 	} else if (strcmp(attr->name, "kb_read_gather") == 0) {
216 		n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
217 
218 	} else if (strcmp(attr->name, "size") == 0) {
219 		spin_lock(&pd->lock);
220 		v = pd->bio_queue_size;
221 		spin_unlock(&pd->lock);
222 		n = sprintf(data, "%d\n", v);
223 
224 	} else if (strcmp(attr->name, "congestion_off") == 0) {
225 		spin_lock(&pd->lock);
226 		v = pd->write_congestion_off;
227 		spin_unlock(&pd->lock);
228 		n = sprintf(data, "%d\n", v);
229 
230 	} else if (strcmp(attr->name, "congestion_on") == 0) {
231 		spin_lock(&pd->lock);
232 		v = pd->write_congestion_on;
233 		spin_unlock(&pd->lock);
234 		n = sprintf(data, "%d\n", v);
235 	}
236 	return n;
237 }
238 
239 static void init_write_congestion_marks(int* lo, int* hi)
240 {
241 	if (*hi > 0) {
242 		*hi = max(*hi, 500);
243 		*hi = min(*hi, 1000000);
244 		if (*lo <= 0)
245 			*lo = *hi - 100;
246 		else {
247 			*lo = min(*lo, *hi - 100);
248 			*lo = max(*lo, 100);
249 		}
250 	} else {
251 		*hi = -1;
252 		*lo = -1;
253 	}
254 }
255 
256 static ssize_t kobj_pkt_store(struct kobject *kobj,
257 			struct attribute *attr,
258 			const char *data, size_t len)
259 {
260 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
261 	int val;
262 
263 	if (strcmp(attr->name, "reset") == 0 && len > 0) {
264 		pd->stats.pkt_started = 0;
265 		pd->stats.pkt_ended = 0;
266 		pd->stats.secs_w = 0;
267 		pd->stats.secs_rg = 0;
268 		pd->stats.secs_r = 0;
269 
270 	} else if (strcmp(attr->name, "congestion_off") == 0
271 		   && sscanf(data, "%d", &val) == 1) {
272 		spin_lock(&pd->lock);
273 		pd->write_congestion_off = val;
274 		init_write_congestion_marks(&pd->write_congestion_off,
275 					&pd->write_congestion_on);
276 		spin_unlock(&pd->lock);
277 
278 	} else if (strcmp(attr->name, "congestion_on") == 0
279 		   && sscanf(data, "%d", &val) == 1) {
280 		spin_lock(&pd->lock);
281 		pd->write_congestion_on = val;
282 		init_write_congestion_marks(&pd->write_congestion_off,
283 					&pd->write_congestion_on);
284 		spin_unlock(&pd->lock);
285 	}
286 	return len;
287 }
288 
289 static const struct sysfs_ops kobj_pkt_ops = {
290 	.show = kobj_pkt_show,
291 	.store = kobj_pkt_store
292 };
293 static struct kobj_type kobj_pkt_type_stat = {
294 	.release = pkt_kobj_release,
295 	.sysfs_ops = &kobj_pkt_ops,
296 	.default_attrs = kobj_pkt_attrs_stat
297 };
298 static struct kobj_type kobj_pkt_type_wqueue = {
299 	.release = pkt_kobj_release,
300 	.sysfs_ops = &kobj_pkt_ops,
301 	.default_attrs = kobj_pkt_attrs_wqueue
302 };
303 
304 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
305 {
306 	if (class_pktcdvd) {
307 		pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
308 					"%s", pd->name);
309 		if (IS_ERR(pd->dev))
310 			pd->dev = NULL;
311 	}
312 	if (pd->dev) {
313 		pd->kobj_stat = pkt_kobj_create(pd, "stat",
314 					&pd->dev->kobj,
315 					&kobj_pkt_type_stat);
316 		pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
317 					&pd->dev->kobj,
318 					&kobj_pkt_type_wqueue);
319 	}
320 }
321 
322 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
323 {
324 	pkt_kobj_remove(pd->kobj_stat);
325 	pkt_kobj_remove(pd->kobj_wqueue);
326 	if (class_pktcdvd)
327 		device_unregister(pd->dev);
328 }
329 
330 
331 /********************************************************************
332   /sys/class/pktcdvd/
333                      add            map block device
334                      remove         unmap packet dev
335                      device_map     show mappings
336  *******************************************************************/
337 
338 static void class_pktcdvd_release(struct class *cls)
339 {
340 	kfree(cls);
341 }
342 static ssize_t class_pktcdvd_show_map(struct class *c,
343 					struct class_attribute *attr,
344 					char *data)
345 {
346 	int n = 0;
347 	int idx;
348 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
349 	for (idx = 0; idx < MAX_WRITERS; idx++) {
350 		struct pktcdvd_device *pd = pkt_devs[idx];
351 		if (!pd)
352 			continue;
353 		n += sprintf(data+n, "%s %u:%u %u:%u\n",
354 			pd->name,
355 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
356 			MAJOR(pd->bdev->bd_dev),
357 			MINOR(pd->bdev->bd_dev));
358 	}
359 	mutex_unlock(&ctl_mutex);
360 	return n;
361 }
362 
363 static ssize_t class_pktcdvd_store_add(struct class *c,
364 					struct class_attribute *attr,
365 					const char *buf,
366 					size_t count)
367 {
368 	unsigned int major, minor;
369 
370 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
371 		/* pkt_setup_dev() expects caller to hold reference to self */
372 		if (!try_module_get(THIS_MODULE))
373 			return -ENODEV;
374 
375 		pkt_setup_dev(MKDEV(major, minor), NULL);
376 
377 		module_put(THIS_MODULE);
378 
379 		return count;
380 	}
381 
382 	return -EINVAL;
383 }
384 
385 static ssize_t class_pktcdvd_store_remove(struct class *c,
386 					  struct class_attribute *attr,
387 					  const char *buf,
388 					size_t count)
389 {
390 	unsigned int major, minor;
391 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
392 		pkt_remove_dev(MKDEV(major, minor));
393 		return count;
394 	}
395 	return -EINVAL;
396 }
397 
398 static struct class_attribute class_pktcdvd_attrs[] = {
399  __ATTR(add,            0200, NULL, class_pktcdvd_store_add),
400  __ATTR(remove,         0200, NULL, class_pktcdvd_store_remove),
401  __ATTR(device_map,     0444, class_pktcdvd_show_map, NULL),
402  __ATTR_NULL
403 };
404 
405 
406 static int pkt_sysfs_init(void)
407 {
408 	int ret = 0;
409 
410 	/*
411 	 * create control files in sysfs
412 	 * /sys/class/pktcdvd/...
413 	 */
414 	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
415 	if (!class_pktcdvd)
416 		return -ENOMEM;
417 	class_pktcdvd->name = DRIVER_NAME;
418 	class_pktcdvd->owner = THIS_MODULE;
419 	class_pktcdvd->class_release = class_pktcdvd_release;
420 	class_pktcdvd->class_attrs = class_pktcdvd_attrs;
421 	ret = class_register(class_pktcdvd);
422 	if (ret) {
423 		kfree(class_pktcdvd);
424 		class_pktcdvd = NULL;
425 		printk(DRIVER_NAME": failed to create class pktcdvd\n");
426 		return ret;
427 	}
428 	return 0;
429 }
430 
431 static void pkt_sysfs_cleanup(void)
432 {
433 	if (class_pktcdvd)
434 		class_destroy(class_pktcdvd);
435 	class_pktcdvd = NULL;
436 }
437 
438 /********************************************************************
439   entries in debugfs
440 
441   /sys/kernel/debug/pktcdvd[0-7]/
442 			info
443 
444  *******************************************************************/
445 
446 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
447 {
448 	return pkt_seq_show(m, p);
449 }
450 
451 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
452 {
453 	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
454 }
455 
456 static const struct file_operations debug_fops = {
457 	.open		= pkt_debugfs_fops_open,
458 	.read		= seq_read,
459 	.llseek		= seq_lseek,
460 	.release	= single_release,
461 	.owner		= THIS_MODULE,
462 };
463 
464 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
465 {
466 	if (!pkt_debugfs_root)
467 		return;
468 	pd->dfs_f_info = NULL;
469 	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
470 	if (IS_ERR(pd->dfs_d_root)) {
471 		pd->dfs_d_root = NULL;
472 		return;
473 	}
474 	pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
475 				pd->dfs_d_root, pd, &debug_fops);
476 	if (IS_ERR(pd->dfs_f_info)) {
477 		pd->dfs_f_info = NULL;
478 		return;
479 	}
480 }
481 
482 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
483 {
484 	if (!pkt_debugfs_root)
485 		return;
486 	if (pd->dfs_f_info)
487 		debugfs_remove(pd->dfs_f_info);
488 	pd->dfs_f_info = NULL;
489 	if (pd->dfs_d_root)
490 		debugfs_remove(pd->dfs_d_root);
491 	pd->dfs_d_root = NULL;
492 }
493 
494 static void pkt_debugfs_init(void)
495 {
496 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
497 	if (IS_ERR(pkt_debugfs_root)) {
498 		pkt_debugfs_root = NULL;
499 		return;
500 	}
501 }
502 
503 static void pkt_debugfs_cleanup(void)
504 {
505 	if (!pkt_debugfs_root)
506 		return;
507 	debugfs_remove(pkt_debugfs_root);
508 	pkt_debugfs_root = NULL;
509 }
510 
511 /* ----------------------------------------------------------*/
512 
513 
514 static void pkt_bio_finished(struct pktcdvd_device *pd)
515 {
516 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
517 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
518 		VPRINTK(DRIVER_NAME": queue empty\n");
519 		atomic_set(&pd->iosched.attention, 1);
520 		wake_up(&pd->wqueue);
521 	}
522 }
523 
524 static void pkt_bio_destructor(struct bio *bio)
525 {
526 	kfree(bio->bi_io_vec);
527 	kfree(bio);
528 }
529 
530 static struct bio *pkt_bio_alloc(int nr_iovecs)
531 {
532 	struct bio_vec *bvl = NULL;
533 	struct bio *bio;
534 
535 	bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
536 	if (!bio)
537 		goto no_bio;
538 	bio_init(bio);
539 
540 	bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
541 	if (!bvl)
542 		goto no_bvl;
543 
544 	bio->bi_max_vecs = nr_iovecs;
545 	bio->bi_io_vec = bvl;
546 	bio->bi_destructor = pkt_bio_destructor;
547 
548 	return bio;
549 
550  no_bvl:
551 	kfree(bio);
552  no_bio:
553 	return NULL;
554 }
555 
556 /*
557  * Allocate a packet_data struct
558  */
559 static struct packet_data *pkt_alloc_packet_data(int frames)
560 {
561 	int i;
562 	struct packet_data *pkt;
563 
564 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
565 	if (!pkt)
566 		goto no_pkt;
567 
568 	pkt->frames = frames;
569 	pkt->w_bio = pkt_bio_alloc(frames);
570 	if (!pkt->w_bio)
571 		goto no_bio;
572 
573 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
574 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
575 		if (!pkt->pages[i])
576 			goto no_page;
577 	}
578 
579 	spin_lock_init(&pkt->lock);
580 	bio_list_init(&pkt->orig_bios);
581 
582 	for (i = 0; i < frames; i++) {
583 		struct bio *bio = pkt_bio_alloc(1);
584 		if (!bio)
585 			goto no_rd_bio;
586 		pkt->r_bios[i] = bio;
587 	}
588 
589 	return pkt;
590 
591 no_rd_bio:
592 	for (i = 0; i < frames; i++) {
593 		struct bio *bio = pkt->r_bios[i];
594 		if (bio)
595 			bio_put(bio);
596 	}
597 
598 no_page:
599 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
600 		if (pkt->pages[i])
601 			__free_page(pkt->pages[i]);
602 	bio_put(pkt->w_bio);
603 no_bio:
604 	kfree(pkt);
605 no_pkt:
606 	return NULL;
607 }
608 
609 /*
610  * Free a packet_data struct
611  */
612 static void pkt_free_packet_data(struct packet_data *pkt)
613 {
614 	int i;
615 
616 	for (i = 0; i < pkt->frames; i++) {
617 		struct bio *bio = pkt->r_bios[i];
618 		if (bio)
619 			bio_put(bio);
620 	}
621 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
622 		__free_page(pkt->pages[i]);
623 	bio_put(pkt->w_bio);
624 	kfree(pkt);
625 }
626 
627 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
628 {
629 	struct packet_data *pkt, *next;
630 
631 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
632 
633 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
634 		pkt_free_packet_data(pkt);
635 	}
636 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
637 }
638 
639 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
640 {
641 	struct packet_data *pkt;
642 
643 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
644 
645 	while (nr_packets > 0) {
646 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
647 		if (!pkt) {
648 			pkt_shrink_pktlist(pd);
649 			return 0;
650 		}
651 		pkt->id = nr_packets;
652 		pkt->pd = pd;
653 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
654 		nr_packets--;
655 	}
656 	return 1;
657 }
658 
659 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
660 {
661 	struct rb_node *n = rb_next(&node->rb_node);
662 	if (!n)
663 		return NULL;
664 	return rb_entry(n, struct pkt_rb_node, rb_node);
665 }
666 
667 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
668 {
669 	rb_erase(&node->rb_node, &pd->bio_queue);
670 	mempool_free(node, pd->rb_pool);
671 	pd->bio_queue_size--;
672 	BUG_ON(pd->bio_queue_size < 0);
673 }
674 
675 /*
676  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
677  */
678 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
679 {
680 	struct rb_node *n = pd->bio_queue.rb_node;
681 	struct rb_node *next;
682 	struct pkt_rb_node *tmp;
683 
684 	if (!n) {
685 		BUG_ON(pd->bio_queue_size > 0);
686 		return NULL;
687 	}
688 
689 	for (;;) {
690 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
691 		if (s <= tmp->bio->bi_sector)
692 			next = n->rb_left;
693 		else
694 			next = n->rb_right;
695 		if (!next)
696 			break;
697 		n = next;
698 	}
699 
700 	if (s > tmp->bio->bi_sector) {
701 		tmp = pkt_rbtree_next(tmp);
702 		if (!tmp)
703 			return NULL;
704 	}
705 	BUG_ON(s > tmp->bio->bi_sector);
706 	return tmp;
707 }
708 
709 /*
710  * Insert a node into the pd->bio_queue rb tree.
711  */
712 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
713 {
714 	struct rb_node **p = &pd->bio_queue.rb_node;
715 	struct rb_node *parent = NULL;
716 	sector_t s = node->bio->bi_sector;
717 	struct pkt_rb_node *tmp;
718 
719 	while (*p) {
720 		parent = *p;
721 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
722 		if (s < tmp->bio->bi_sector)
723 			p = &(*p)->rb_left;
724 		else
725 			p = &(*p)->rb_right;
726 	}
727 	rb_link_node(&node->rb_node, parent, p);
728 	rb_insert_color(&node->rb_node, &pd->bio_queue);
729 	pd->bio_queue_size++;
730 }
731 
732 /*
733  * Send a packet_command to the underlying block device and
734  * wait for completion.
735  */
736 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
737 {
738 	struct request_queue *q = bdev_get_queue(pd->bdev);
739 	struct request *rq;
740 	int ret = 0;
741 
742 	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
743 			     WRITE : READ, __GFP_WAIT);
744 
745 	if (cgc->buflen) {
746 		if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
747 			goto out;
748 	}
749 
750 	rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
751 	memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
752 
753 	rq->timeout = 60*HZ;
754 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
755 	rq->cmd_flags |= REQ_HARDBARRIER;
756 	if (cgc->quiet)
757 		rq->cmd_flags |= REQ_QUIET;
758 
759 	blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
760 	if (rq->errors)
761 		ret = -EIO;
762 out:
763 	blk_put_request(rq);
764 	return ret;
765 }
766 
767 /*
768  * A generic sense dump / resolve mechanism should be implemented across
769  * all ATAPI + SCSI devices.
770  */
771 static void pkt_dump_sense(struct packet_command *cgc)
772 {
773 	static char *info[9] = { "No sense", "Recovered error", "Not ready",
774 				 "Medium error", "Hardware error", "Illegal request",
775 				 "Unit attention", "Data protect", "Blank check" };
776 	int i;
777 	struct request_sense *sense = cgc->sense;
778 
779 	printk(DRIVER_NAME":");
780 	for (i = 0; i < CDROM_PACKET_SIZE; i++)
781 		printk(" %02x", cgc->cmd[i]);
782 	printk(" - ");
783 
784 	if (sense == NULL) {
785 		printk("no sense\n");
786 		return;
787 	}
788 
789 	printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
790 
791 	if (sense->sense_key > 8) {
792 		printk(" (INVALID)\n");
793 		return;
794 	}
795 
796 	printk(" (%s)\n", info[sense->sense_key]);
797 }
798 
799 /*
800  * flush the drive cache to media
801  */
802 static int pkt_flush_cache(struct pktcdvd_device *pd)
803 {
804 	struct packet_command cgc;
805 
806 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
807 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
808 	cgc.quiet = 1;
809 
810 	/*
811 	 * the IMMED bit -- we default to not setting it, although that
812 	 * would allow a much faster close, this is safer
813 	 */
814 #if 0
815 	cgc.cmd[1] = 1 << 1;
816 #endif
817 	return pkt_generic_packet(pd, &cgc);
818 }
819 
820 /*
821  * speed is given as the normal factor, e.g. 4 for 4x
822  */
823 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
824 				unsigned write_speed, unsigned read_speed)
825 {
826 	struct packet_command cgc;
827 	struct request_sense sense;
828 	int ret;
829 
830 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
831 	cgc.sense = &sense;
832 	cgc.cmd[0] = GPCMD_SET_SPEED;
833 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
834 	cgc.cmd[3] = read_speed & 0xff;
835 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
836 	cgc.cmd[5] = write_speed & 0xff;
837 
838 	if ((ret = pkt_generic_packet(pd, &cgc)))
839 		pkt_dump_sense(&cgc);
840 
841 	return ret;
842 }
843 
844 /*
845  * Queue a bio for processing by the low-level CD device. Must be called
846  * from process context.
847  */
848 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
849 {
850 	spin_lock(&pd->iosched.lock);
851 	if (bio_data_dir(bio) == READ)
852 		bio_list_add(&pd->iosched.read_queue, bio);
853 	else
854 		bio_list_add(&pd->iosched.write_queue, bio);
855 	spin_unlock(&pd->iosched.lock);
856 
857 	atomic_set(&pd->iosched.attention, 1);
858 	wake_up(&pd->wqueue);
859 }
860 
861 /*
862  * Process the queued read/write requests. This function handles special
863  * requirements for CDRW drives:
864  * - A cache flush command must be inserted before a read request if the
865  *   previous request was a write.
866  * - Switching between reading and writing is slow, so don't do it more often
867  *   than necessary.
868  * - Optimize for throughput at the expense of latency. This means that streaming
869  *   writes will never be interrupted by a read, but if the drive has to seek
870  *   before the next write, switch to reading instead if there are any pending
871  *   read requests.
872  * - Set the read speed according to current usage pattern. When only reading
873  *   from the device, it's best to use the highest possible read speed, but
874  *   when switching often between reading and writing, it's better to have the
875  *   same read and write speeds.
876  */
877 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
878 {
879 
880 	if (atomic_read(&pd->iosched.attention) == 0)
881 		return;
882 	atomic_set(&pd->iosched.attention, 0);
883 
884 	for (;;) {
885 		struct bio *bio;
886 		int reads_queued, writes_queued;
887 
888 		spin_lock(&pd->iosched.lock);
889 		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
890 		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
891 		spin_unlock(&pd->iosched.lock);
892 
893 		if (!reads_queued && !writes_queued)
894 			break;
895 
896 		if (pd->iosched.writing) {
897 			int need_write_seek = 1;
898 			spin_lock(&pd->iosched.lock);
899 			bio = bio_list_peek(&pd->iosched.write_queue);
900 			spin_unlock(&pd->iosched.lock);
901 			if (bio && (bio->bi_sector == pd->iosched.last_write))
902 				need_write_seek = 0;
903 			if (need_write_seek && reads_queued) {
904 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
905 					VPRINTK(DRIVER_NAME": write, waiting\n");
906 					break;
907 				}
908 				pkt_flush_cache(pd);
909 				pd->iosched.writing = 0;
910 			}
911 		} else {
912 			if (!reads_queued && writes_queued) {
913 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
914 					VPRINTK(DRIVER_NAME": read, waiting\n");
915 					break;
916 				}
917 				pd->iosched.writing = 1;
918 			}
919 		}
920 
921 		spin_lock(&pd->iosched.lock);
922 		if (pd->iosched.writing)
923 			bio = bio_list_pop(&pd->iosched.write_queue);
924 		else
925 			bio = bio_list_pop(&pd->iosched.read_queue);
926 		spin_unlock(&pd->iosched.lock);
927 
928 		if (!bio)
929 			continue;
930 
931 		if (bio_data_dir(bio) == READ)
932 			pd->iosched.successive_reads += bio->bi_size >> 10;
933 		else {
934 			pd->iosched.successive_reads = 0;
935 			pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
936 		}
937 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
938 			if (pd->read_speed == pd->write_speed) {
939 				pd->read_speed = MAX_SPEED;
940 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
941 			}
942 		} else {
943 			if (pd->read_speed != pd->write_speed) {
944 				pd->read_speed = pd->write_speed;
945 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
946 			}
947 		}
948 
949 		atomic_inc(&pd->cdrw.pending_bios);
950 		generic_make_request(bio);
951 	}
952 }
953 
954 /*
955  * Special care is needed if the underlying block device has a small
956  * max_phys_segments value.
957  */
958 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
959 {
960 	if ((pd->settings.size << 9) / CD_FRAMESIZE
961 	    <= queue_max_segments(q)) {
962 		/*
963 		 * The cdrom device can handle one segment/frame
964 		 */
965 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
966 		return 0;
967 	} else if ((pd->settings.size << 9) / PAGE_SIZE
968 		   <= queue_max_segments(q)) {
969 		/*
970 		 * We can handle this case at the expense of some extra memory
971 		 * copies during write operations
972 		 */
973 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
974 		return 0;
975 	} else {
976 		printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
977 		return -EIO;
978 	}
979 }
980 
981 /*
982  * Copy CD_FRAMESIZE bytes from src_bio into a destination page
983  */
984 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
985 {
986 	unsigned int copy_size = CD_FRAMESIZE;
987 
988 	while (copy_size > 0) {
989 		struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
990 		void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
991 			src_bvl->bv_offset + offs;
992 		void *vto = page_address(dst_page) + dst_offs;
993 		int len = min_t(int, copy_size, src_bvl->bv_len - offs);
994 
995 		BUG_ON(len < 0);
996 		memcpy(vto, vfrom, len);
997 		kunmap_atomic(vfrom, KM_USER0);
998 
999 		seg++;
1000 		offs = 0;
1001 		dst_offs += len;
1002 		copy_size -= len;
1003 	}
1004 }
1005 
1006 /*
1007  * Copy all data for this packet to pkt->pages[], so that
1008  * a) The number of required segments for the write bio is minimized, which
1009  *    is necessary for some scsi controllers.
1010  * b) The data can be used as cache to avoid read requests if we receive a
1011  *    new write request for the same zone.
1012  */
1013 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1014 {
1015 	int f, p, offs;
1016 
1017 	/* Copy all data to pkt->pages[] */
1018 	p = 0;
1019 	offs = 0;
1020 	for (f = 0; f < pkt->frames; f++) {
1021 		if (bvec[f].bv_page != pkt->pages[p]) {
1022 			void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1023 			void *vto = page_address(pkt->pages[p]) + offs;
1024 			memcpy(vto, vfrom, CD_FRAMESIZE);
1025 			kunmap_atomic(vfrom, KM_USER0);
1026 			bvec[f].bv_page = pkt->pages[p];
1027 			bvec[f].bv_offset = offs;
1028 		} else {
1029 			BUG_ON(bvec[f].bv_offset != offs);
1030 		}
1031 		offs += CD_FRAMESIZE;
1032 		if (offs >= PAGE_SIZE) {
1033 			offs = 0;
1034 			p++;
1035 		}
1036 	}
1037 }
1038 
1039 static void pkt_end_io_read(struct bio *bio, int err)
1040 {
1041 	struct packet_data *pkt = bio->bi_private;
1042 	struct pktcdvd_device *pd = pkt->pd;
1043 	BUG_ON(!pd);
1044 
1045 	VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1046 		(unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1047 
1048 	if (err)
1049 		atomic_inc(&pkt->io_errors);
1050 	if (atomic_dec_and_test(&pkt->io_wait)) {
1051 		atomic_inc(&pkt->run_sm);
1052 		wake_up(&pd->wqueue);
1053 	}
1054 	pkt_bio_finished(pd);
1055 }
1056 
1057 static void pkt_end_io_packet_write(struct bio *bio, int err)
1058 {
1059 	struct packet_data *pkt = bio->bi_private;
1060 	struct pktcdvd_device *pd = pkt->pd;
1061 	BUG_ON(!pd);
1062 
1063 	VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1064 
1065 	pd->stats.pkt_ended++;
1066 
1067 	pkt_bio_finished(pd);
1068 	atomic_dec(&pkt->io_wait);
1069 	atomic_inc(&pkt->run_sm);
1070 	wake_up(&pd->wqueue);
1071 }
1072 
1073 /*
1074  * Schedule reads for the holes in a packet
1075  */
1076 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1077 {
1078 	int frames_read = 0;
1079 	struct bio *bio;
1080 	int f;
1081 	char written[PACKET_MAX_SIZE];
1082 
1083 	BUG_ON(bio_list_empty(&pkt->orig_bios));
1084 
1085 	atomic_set(&pkt->io_wait, 0);
1086 	atomic_set(&pkt->io_errors, 0);
1087 
1088 	/*
1089 	 * Figure out which frames we need to read before we can write.
1090 	 */
1091 	memset(written, 0, sizeof(written));
1092 	spin_lock(&pkt->lock);
1093 	bio_list_for_each(bio, &pkt->orig_bios) {
1094 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1095 		int num_frames = bio->bi_size / CD_FRAMESIZE;
1096 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1097 		BUG_ON(first_frame < 0);
1098 		BUG_ON(first_frame + num_frames > pkt->frames);
1099 		for (f = first_frame; f < first_frame + num_frames; f++)
1100 			written[f] = 1;
1101 	}
1102 	spin_unlock(&pkt->lock);
1103 
1104 	if (pkt->cache_valid) {
1105 		VPRINTK("pkt_gather_data: zone %llx cached\n",
1106 			(unsigned long long)pkt->sector);
1107 		goto out_account;
1108 	}
1109 
1110 	/*
1111 	 * Schedule reads for missing parts of the packet.
1112 	 */
1113 	for (f = 0; f < pkt->frames; f++) {
1114 		struct bio_vec *vec;
1115 
1116 		int p, offset;
1117 		if (written[f])
1118 			continue;
1119 		bio = pkt->r_bios[f];
1120 		vec = bio->bi_io_vec;
1121 		bio_init(bio);
1122 		bio->bi_max_vecs = 1;
1123 		bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1124 		bio->bi_bdev = pd->bdev;
1125 		bio->bi_end_io = pkt_end_io_read;
1126 		bio->bi_private = pkt;
1127 		bio->bi_io_vec = vec;
1128 		bio->bi_destructor = pkt_bio_destructor;
1129 
1130 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1131 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1132 		VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1133 			f, pkt->pages[p], offset);
1134 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1135 			BUG();
1136 
1137 		atomic_inc(&pkt->io_wait);
1138 		bio->bi_rw = READ;
1139 		pkt_queue_bio(pd, bio);
1140 		frames_read++;
1141 	}
1142 
1143 out_account:
1144 	VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1145 		frames_read, (unsigned long long)pkt->sector);
1146 	pd->stats.pkt_started++;
1147 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1148 }
1149 
1150 /*
1151  * Find a packet matching zone, or the least recently used packet if
1152  * there is no match.
1153  */
1154 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1155 {
1156 	struct packet_data *pkt;
1157 
1158 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1159 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1160 			list_del_init(&pkt->list);
1161 			if (pkt->sector != zone)
1162 				pkt->cache_valid = 0;
1163 			return pkt;
1164 		}
1165 	}
1166 	BUG();
1167 	return NULL;
1168 }
1169 
1170 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1171 {
1172 	if (pkt->cache_valid) {
1173 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1174 	} else {
1175 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1176 	}
1177 }
1178 
1179 /*
1180  * recover a failed write, query for relocation if possible
1181  *
1182  * returns 1 if recovery is possible, or 0 if not
1183  *
1184  */
1185 static int pkt_start_recovery(struct packet_data *pkt)
1186 {
1187 	/*
1188 	 * FIXME. We need help from the file system to implement
1189 	 * recovery handling.
1190 	 */
1191 	return 0;
1192 #if 0
1193 	struct request *rq = pkt->rq;
1194 	struct pktcdvd_device *pd = rq->rq_disk->private_data;
1195 	struct block_device *pkt_bdev;
1196 	struct super_block *sb = NULL;
1197 	unsigned long old_block, new_block;
1198 	sector_t new_sector;
1199 
1200 	pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1201 	if (pkt_bdev) {
1202 		sb = get_super(pkt_bdev);
1203 		bdput(pkt_bdev);
1204 	}
1205 
1206 	if (!sb)
1207 		return 0;
1208 
1209 	if (!sb->s_op || !sb->s_op->relocate_blocks)
1210 		goto out;
1211 
1212 	old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1213 	if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1214 		goto out;
1215 
1216 	new_sector = new_block * (CD_FRAMESIZE >> 9);
1217 	pkt->sector = new_sector;
1218 
1219 	pkt->bio->bi_sector = new_sector;
1220 	pkt->bio->bi_next = NULL;
1221 	pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1222 	pkt->bio->bi_idx = 0;
1223 
1224 	BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
1225 	BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1226 	BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1227 	BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1228 	BUG_ON(pkt->bio->bi_private != pkt);
1229 
1230 	drop_super(sb);
1231 	return 1;
1232 
1233 out:
1234 	drop_super(sb);
1235 	return 0;
1236 #endif
1237 }
1238 
1239 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1240 {
1241 #if PACKET_DEBUG > 1
1242 	static const char *state_name[] = {
1243 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1244 	};
1245 	enum packet_data_state old_state = pkt->state;
1246 	VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1247 		state_name[old_state], state_name[state]);
1248 #endif
1249 	pkt->state = state;
1250 }
1251 
1252 /*
1253  * Scan the work queue to see if we can start a new packet.
1254  * returns non-zero if any work was done.
1255  */
1256 static int pkt_handle_queue(struct pktcdvd_device *pd)
1257 {
1258 	struct packet_data *pkt, *p;
1259 	struct bio *bio = NULL;
1260 	sector_t zone = 0; /* Suppress gcc warning */
1261 	struct pkt_rb_node *node, *first_node;
1262 	struct rb_node *n;
1263 	int wakeup;
1264 
1265 	VPRINTK("handle_queue\n");
1266 
1267 	atomic_set(&pd->scan_queue, 0);
1268 
1269 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1270 		VPRINTK("handle_queue: no pkt\n");
1271 		return 0;
1272 	}
1273 
1274 	/*
1275 	 * Try to find a zone we are not already working on.
1276 	 */
1277 	spin_lock(&pd->lock);
1278 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1279 	if (!first_node) {
1280 		n = rb_first(&pd->bio_queue);
1281 		if (n)
1282 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1283 	}
1284 	node = first_node;
1285 	while (node) {
1286 		bio = node->bio;
1287 		zone = ZONE(bio->bi_sector, pd);
1288 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1289 			if (p->sector == zone) {
1290 				bio = NULL;
1291 				goto try_next_bio;
1292 			}
1293 		}
1294 		break;
1295 try_next_bio:
1296 		node = pkt_rbtree_next(node);
1297 		if (!node) {
1298 			n = rb_first(&pd->bio_queue);
1299 			if (n)
1300 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1301 		}
1302 		if (node == first_node)
1303 			node = NULL;
1304 	}
1305 	spin_unlock(&pd->lock);
1306 	if (!bio) {
1307 		VPRINTK("handle_queue: no bio\n");
1308 		return 0;
1309 	}
1310 
1311 	pkt = pkt_get_packet_data(pd, zone);
1312 
1313 	pd->current_sector = zone + pd->settings.size;
1314 	pkt->sector = zone;
1315 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1316 	pkt->write_size = 0;
1317 
1318 	/*
1319 	 * Scan work queue for bios in the same zone and link them
1320 	 * to this packet.
1321 	 */
1322 	spin_lock(&pd->lock);
1323 	VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1324 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1325 		bio = node->bio;
1326 		VPRINTK("pkt_handle_queue: found zone=%llx\n",
1327 			(unsigned long long)ZONE(bio->bi_sector, pd));
1328 		if (ZONE(bio->bi_sector, pd) != zone)
1329 			break;
1330 		pkt_rbtree_erase(pd, node);
1331 		spin_lock(&pkt->lock);
1332 		bio_list_add(&pkt->orig_bios, bio);
1333 		pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1334 		spin_unlock(&pkt->lock);
1335 	}
1336 	/* check write congestion marks, and if bio_queue_size is
1337 	   below, wake up any waiters */
1338 	wakeup = (pd->write_congestion_on > 0
1339 	 		&& pd->bio_queue_size <= pd->write_congestion_off);
1340 	spin_unlock(&pd->lock);
1341 	if (wakeup) {
1342 		clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1343 					BLK_RW_ASYNC);
1344 	}
1345 
1346 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1347 	pkt_set_state(pkt, PACKET_WAITING_STATE);
1348 	atomic_set(&pkt->run_sm, 1);
1349 
1350 	spin_lock(&pd->cdrw.active_list_lock);
1351 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1352 	spin_unlock(&pd->cdrw.active_list_lock);
1353 
1354 	return 1;
1355 }
1356 
1357 /*
1358  * Assemble a bio to write one packet and queue the bio for processing
1359  * by the underlying block device.
1360  */
1361 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1362 {
1363 	struct bio *bio;
1364 	int f;
1365 	int frames_write;
1366 	struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1367 
1368 	for (f = 0; f < pkt->frames; f++) {
1369 		bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1370 		bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1371 	}
1372 
1373 	/*
1374 	 * Fill-in bvec with data from orig_bios.
1375 	 */
1376 	frames_write = 0;
1377 	spin_lock(&pkt->lock);
1378 	bio_list_for_each(bio, &pkt->orig_bios) {
1379 		int segment = bio->bi_idx;
1380 		int src_offs = 0;
1381 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1382 		int num_frames = bio->bi_size / CD_FRAMESIZE;
1383 		BUG_ON(first_frame < 0);
1384 		BUG_ON(first_frame + num_frames > pkt->frames);
1385 		for (f = first_frame; f < first_frame + num_frames; f++) {
1386 			struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1387 
1388 			while (src_offs >= src_bvl->bv_len) {
1389 				src_offs -= src_bvl->bv_len;
1390 				segment++;
1391 				BUG_ON(segment >= bio->bi_vcnt);
1392 				src_bvl = bio_iovec_idx(bio, segment);
1393 			}
1394 
1395 			if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1396 				bvec[f].bv_page = src_bvl->bv_page;
1397 				bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1398 			} else {
1399 				pkt_copy_bio_data(bio, segment, src_offs,
1400 						  bvec[f].bv_page, bvec[f].bv_offset);
1401 			}
1402 			src_offs += CD_FRAMESIZE;
1403 			frames_write++;
1404 		}
1405 	}
1406 	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1407 	spin_unlock(&pkt->lock);
1408 
1409 	VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1410 		frames_write, (unsigned long long)pkt->sector);
1411 	BUG_ON(frames_write != pkt->write_size);
1412 
1413 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1414 		pkt_make_local_copy(pkt, bvec);
1415 		pkt->cache_valid = 1;
1416 	} else {
1417 		pkt->cache_valid = 0;
1418 	}
1419 
1420 	/* Start the write request */
1421 	bio_init(pkt->w_bio);
1422 	pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1423 	pkt->w_bio->bi_sector = pkt->sector;
1424 	pkt->w_bio->bi_bdev = pd->bdev;
1425 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1426 	pkt->w_bio->bi_private = pkt;
1427 	pkt->w_bio->bi_io_vec = bvec;
1428 	pkt->w_bio->bi_destructor = pkt_bio_destructor;
1429 	for (f = 0; f < pkt->frames; f++)
1430 		if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1431 			BUG();
1432 	VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1433 
1434 	atomic_set(&pkt->io_wait, 1);
1435 	pkt->w_bio->bi_rw = WRITE;
1436 	pkt_queue_bio(pd, pkt->w_bio);
1437 }
1438 
1439 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1440 {
1441 	struct bio *bio;
1442 
1443 	if (!uptodate)
1444 		pkt->cache_valid = 0;
1445 
1446 	/* Finish all bios corresponding to this packet */
1447 	while ((bio = bio_list_pop(&pkt->orig_bios)))
1448 		bio_endio(bio, uptodate ? 0 : -EIO);
1449 }
1450 
1451 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1452 {
1453 	int uptodate;
1454 
1455 	VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1456 
1457 	for (;;) {
1458 		switch (pkt->state) {
1459 		case PACKET_WAITING_STATE:
1460 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1461 				return;
1462 
1463 			pkt->sleep_time = 0;
1464 			pkt_gather_data(pd, pkt);
1465 			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1466 			break;
1467 
1468 		case PACKET_READ_WAIT_STATE:
1469 			if (atomic_read(&pkt->io_wait) > 0)
1470 				return;
1471 
1472 			if (atomic_read(&pkt->io_errors) > 0) {
1473 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1474 			} else {
1475 				pkt_start_write(pd, pkt);
1476 			}
1477 			break;
1478 
1479 		case PACKET_WRITE_WAIT_STATE:
1480 			if (atomic_read(&pkt->io_wait) > 0)
1481 				return;
1482 
1483 			if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1484 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1485 			} else {
1486 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1487 			}
1488 			break;
1489 
1490 		case PACKET_RECOVERY_STATE:
1491 			if (pkt_start_recovery(pkt)) {
1492 				pkt_start_write(pd, pkt);
1493 			} else {
1494 				VPRINTK("No recovery possible\n");
1495 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1496 			}
1497 			break;
1498 
1499 		case PACKET_FINISHED_STATE:
1500 			uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1501 			pkt_finish_packet(pkt, uptodate);
1502 			return;
1503 
1504 		default:
1505 			BUG();
1506 			break;
1507 		}
1508 	}
1509 }
1510 
1511 static void pkt_handle_packets(struct pktcdvd_device *pd)
1512 {
1513 	struct packet_data *pkt, *next;
1514 
1515 	VPRINTK("pkt_handle_packets\n");
1516 
1517 	/*
1518 	 * Run state machine for active packets
1519 	 */
1520 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1521 		if (atomic_read(&pkt->run_sm) > 0) {
1522 			atomic_set(&pkt->run_sm, 0);
1523 			pkt_run_state_machine(pd, pkt);
1524 		}
1525 	}
1526 
1527 	/*
1528 	 * Move no longer active packets to the free list
1529 	 */
1530 	spin_lock(&pd->cdrw.active_list_lock);
1531 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1532 		if (pkt->state == PACKET_FINISHED_STATE) {
1533 			list_del(&pkt->list);
1534 			pkt_put_packet_data(pd, pkt);
1535 			pkt_set_state(pkt, PACKET_IDLE_STATE);
1536 			atomic_set(&pd->scan_queue, 1);
1537 		}
1538 	}
1539 	spin_unlock(&pd->cdrw.active_list_lock);
1540 }
1541 
1542 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1543 {
1544 	struct packet_data *pkt;
1545 	int i;
1546 
1547 	for (i = 0; i < PACKET_NUM_STATES; i++)
1548 		states[i] = 0;
1549 
1550 	spin_lock(&pd->cdrw.active_list_lock);
1551 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1552 		states[pkt->state]++;
1553 	}
1554 	spin_unlock(&pd->cdrw.active_list_lock);
1555 }
1556 
1557 /*
1558  * kcdrwd is woken up when writes have been queued for one of our
1559  * registered devices
1560  */
1561 static int kcdrwd(void *foobar)
1562 {
1563 	struct pktcdvd_device *pd = foobar;
1564 	struct packet_data *pkt;
1565 	long min_sleep_time, residue;
1566 
1567 	set_user_nice(current, -20);
1568 	set_freezable();
1569 
1570 	for (;;) {
1571 		DECLARE_WAITQUEUE(wait, current);
1572 
1573 		/*
1574 		 * Wait until there is something to do
1575 		 */
1576 		add_wait_queue(&pd->wqueue, &wait);
1577 		for (;;) {
1578 			set_current_state(TASK_INTERRUPTIBLE);
1579 
1580 			/* Check if we need to run pkt_handle_queue */
1581 			if (atomic_read(&pd->scan_queue) > 0)
1582 				goto work_to_do;
1583 
1584 			/* Check if we need to run the state machine for some packet */
1585 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1586 				if (atomic_read(&pkt->run_sm) > 0)
1587 					goto work_to_do;
1588 			}
1589 
1590 			/* Check if we need to process the iosched queues */
1591 			if (atomic_read(&pd->iosched.attention) != 0)
1592 				goto work_to_do;
1593 
1594 			/* Otherwise, go to sleep */
1595 			if (PACKET_DEBUG > 1) {
1596 				int states[PACKET_NUM_STATES];
1597 				pkt_count_states(pd, states);
1598 				VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1599 					states[0], states[1], states[2], states[3],
1600 					states[4], states[5]);
1601 			}
1602 
1603 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1604 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1605 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1606 					min_sleep_time = pkt->sleep_time;
1607 			}
1608 
1609 			generic_unplug_device(bdev_get_queue(pd->bdev));
1610 
1611 			VPRINTK("kcdrwd: sleeping\n");
1612 			residue = schedule_timeout(min_sleep_time);
1613 			VPRINTK("kcdrwd: wake up\n");
1614 
1615 			/* make swsusp happy with our thread */
1616 			try_to_freeze();
1617 
1618 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1619 				if (!pkt->sleep_time)
1620 					continue;
1621 				pkt->sleep_time -= min_sleep_time - residue;
1622 				if (pkt->sleep_time <= 0) {
1623 					pkt->sleep_time = 0;
1624 					atomic_inc(&pkt->run_sm);
1625 				}
1626 			}
1627 
1628 			if (kthread_should_stop())
1629 				break;
1630 		}
1631 work_to_do:
1632 		set_current_state(TASK_RUNNING);
1633 		remove_wait_queue(&pd->wqueue, &wait);
1634 
1635 		if (kthread_should_stop())
1636 			break;
1637 
1638 		/*
1639 		 * if pkt_handle_queue returns true, we can queue
1640 		 * another request.
1641 		 */
1642 		while (pkt_handle_queue(pd))
1643 			;
1644 
1645 		/*
1646 		 * Handle packet state machine
1647 		 */
1648 		pkt_handle_packets(pd);
1649 
1650 		/*
1651 		 * Handle iosched queues
1652 		 */
1653 		pkt_iosched_process_queue(pd);
1654 	}
1655 
1656 	return 0;
1657 }
1658 
1659 static void pkt_print_settings(struct pktcdvd_device *pd)
1660 {
1661 	printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1662 	printk("%u blocks, ", pd->settings.size >> 2);
1663 	printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1664 }
1665 
1666 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1667 {
1668 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1669 
1670 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1671 	cgc->cmd[2] = page_code | (page_control << 6);
1672 	cgc->cmd[7] = cgc->buflen >> 8;
1673 	cgc->cmd[8] = cgc->buflen & 0xff;
1674 	cgc->data_direction = CGC_DATA_READ;
1675 	return pkt_generic_packet(pd, cgc);
1676 }
1677 
1678 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1679 {
1680 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1681 	memset(cgc->buffer, 0, 2);
1682 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1683 	cgc->cmd[1] = 0x10;		/* PF */
1684 	cgc->cmd[7] = cgc->buflen >> 8;
1685 	cgc->cmd[8] = cgc->buflen & 0xff;
1686 	cgc->data_direction = CGC_DATA_WRITE;
1687 	return pkt_generic_packet(pd, cgc);
1688 }
1689 
1690 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1691 {
1692 	struct packet_command cgc;
1693 	int ret;
1694 
1695 	/* set up command and get the disc info */
1696 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1697 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1698 	cgc.cmd[8] = cgc.buflen = 2;
1699 	cgc.quiet = 1;
1700 
1701 	if ((ret = pkt_generic_packet(pd, &cgc)))
1702 		return ret;
1703 
1704 	/* not all drives have the same disc_info length, so requeue
1705 	 * packet with the length the drive tells us it can supply
1706 	 */
1707 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1708 		     sizeof(di->disc_information_length);
1709 
1710 	if (cgc.buflen > sizeof(disc_information))
1711 		cgc.buflen = sizeof(disc_information);
1712 
1713 	cgc.cmd[8] = cgc.buflen;
1714 	return pkt_generic_packet(pd, &cgc);
1715 }
1716 
1717 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1718 {
1719 	struct packet_command cgc;
1720 	int ret;
1721 
1722 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1723 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1724 	cgc.cmd[1] = type & 3;
1725 	cgc.cmd[4] = (track & 0xff00) >> 8;
1726 	cgc.cmd[5] = track & 0xff;
1727 	cgc.cmd[8] = 8;
1728 	cgc.quiet = 1;
1729 
1730 	if ((ret = pkt_generic_packet(pd, &cgc)))
1731 		return ret;
1732 
1733 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1734 		     sizeof(ti->track_information_length);
1735 
1736 	if (cgc.buflen > sizeof(track_information))
1737 		cgc.buflen = sizeof(track_information);
1738 
1739 	cgc.cmd[8] = cgc.buflen;
1740 	return pkt_generic_packet(pd, &cgc);
1741 }
1742 
1743 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1744 						long *last_written)
1745 {
1746 	disc_information di;
1747 	track_information ti;
1748 	__u32 last_track;
1749 	int ret = -1;
1750 
1751 	if ((ret = pkt_get_disc_info(pd, &di)))
1752 		return ret;
1753 
1754 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1755 	if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1756 		return ret;
1757 
1758 	/* if this track is blank, try the previous. */
1759 	if (ti.blank) {
1760 		last_track--;
1761 		if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1762 			return ret;
1763 	}
1764 
1765 	/* if last recorded field is valid, return it. */
1766 	if (ti.lra_v) {
1767 		*last_written = be32_to_cpu(ti.last_rec_address);
1768 	} else {
1769 		/* make it up instead */
1770 		*last_written = be32_to_cpu(ti.track_start) +
1771 				be32_to_cpu(ti.track_size);
1772 		if (ti.free_blocks)
1773 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1774 	}
1775 	return 0;
1776 }
1777 
1778 /*
1779  * write mode select package based on pd->settings
1780  */
1781 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1782 {
1783 	struct packet_command cgc;
1784 	struct request_sense sense;
1785 	write_param_page *wp;
1786 	char buffer[128];
1787 	int ret, size;
1788 
1789 	/* doesn't apply to DVD+RW or DVD-RAM */
1790 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1791 		return 0;
1792 
1793 	memset(buffer, 0, sizeof(buffer));
1794 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1795 	cgc.sense = &sense;
1796 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1797 		pkt_dump_sense(&cgc);
1798 		return ret;
1799 	}
1800 
1801 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1802 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1803 	if (size > sizeof(buffer))
1804 		size = sizeof(buffer);
1805 
1806 	/*
1807 	 * now get it all
1808 	 */
1809 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1810 	cgc.sense = &sense;
1811 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1812 		pkt_dump_sense(&cgc);
1813 		return ret;
1814 	}
1815 
1816 	/*
1817 	 * write page is offset header + block descriptor length
1818 	 */
1819 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1820 
1821 	wp->fp = pd->settings.fp;
1822 	wp->track_mode = pd->settings.track_mode;
1823 	wp->write_type = pd->settings.write_type;
1824 	wp->data_block_type = pd->settings.block_mode;
1825 
1826 	wp->multi_session = 0;
1827 
1828 #ifdef PACKET_USE_LS
1829 	wp->link_size = 7;
1830 	wp->ls_v = 1;
1831 #endif
1832 
1833 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1834 		wp->session_format = 0;
1835 		wp->subhdr2 = 0x20;
1836 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1837 		wp->session_format = 0x20;
1838 		wp->subhdr2 = 8;
1839 #if 0
1840 		wp->mcn[0] = 0x80;
1841 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1842 #endif
1843 	} else {
1844 		/*
1845 		 * paranoia
1846 		 */
1847 		printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1848 		return 1;
1849 	}
1850 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1851 
1852 	cgc.buflen = cgc.cmd[8] = size;
1853 	if ((ret = pkt_mode_select(pd, &cgc))) {
1854 		pkt_dump_sense(&cgc);
1855 		return ret;
1856 	}
1857 
1858 	pkt_print_settings(pd);
1859 	return 0;
1860 }
1861 
1862 /*
1863  * 1 -- we can write to this track, 0 -- we can't
1864  */
1865 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1866 {
1867 	switch (pd->mmc3_profile) {
1868 		case 0x1a: /* DVD+RW */
1869 		case 0x12: /* DVD-RAM */
1870 			/* The track is always writable on DVD+RW/DVD-RAM */
1871 			return 1;
1872 		default:
1873 			break;
1874 	}
1875 
1876 	if (!ti->packet || !ti->fp)
1877 		return 0;
1878 
1879 	/*
1880 	 * "good" settings as per Mt Fuji.
1881 	 */
1882 	if (ti->rt == 0 && ti->blank == 0)
1883 		return 1;
1884 
1885 	if (ti->rt == 0 && ti->blank == 1)
1886 		return 1;
1887 
1888 	if (ti->rt == 1 && ti->blank == 0)
1889 		return 1;
1890 
1891 	printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1892 	return 0;
1893 }
1894 
1895 /*
1896  * 1 -- we can write to this disc, 0 -- we can't
1897  */
1898 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1899 {
1900 	switch (pd->mmc3_profile) {
1901 		case 0x0a: /* CD-RW */
1902 		case 0xffff: /* MMC3 not supported */
1903 			break;
1904 		case 0x1a: /* DVD+RW */
1905 		case 0x13: /* DVD-RW */
1906 		case 0x12: /* DVD-RAM */
1907 			return 1;
1908 		default:
1909 			VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1910 			return 0;
1911 	}
1912 
1913 	/*
1914 	 * for disc type 0xff we should probably reserve a new track.
1915 	 * but i'm not sure, should we leave this to user apps? probably.
1916 	 */
1917 	if (di->disc_type == 0xff) {
1918 		printk(DRIVER_NAME": Unknown disc. No track?\n");
1919 		return 0;
1920 	}
1921 
1922 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1923 		printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1924 		return 0;
1925 	}
1926 
1927 	if (di->erasable == 0) {
1928 		printk(DRIVER_NAME": Disc not erasable\n");
1929 		return 0;
1930 	}
1931 
1932 	if (di->border_status == PACKET_SESSION_RESERVED) {
1933 		printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1934 		return 0;
1935 	}
1936 
1937 	return 1;
1938 }
1939 
1940 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1941 {
1942 	struct packet_command cgc;
1943 	unsigned char buf[12];
1944 	disc_information di;
1945 	track_information ti;
1946 	int ret, track;
1947 
1948 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1949 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1950 	cgc.cmd[8] = 8;
1951 	ret = pkt_generic_packet(pd, &cgc);
1952 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1953 
1954 	memset(&di, 0, sizeof(disc_information));
1955 	memset(&ti, 0, sizeof(track_information));
1956 
1957 	if ((ret = pkt_get_disc_info(pd, &di))) {
1958 		printk("failed get_disc\n");
1959 		return ret;
1960 	}
1961 
1962 	if (!pkt_writable_disc(pd, &di))
1963 		return -EROFS;
1964 
1965 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1966 
1967 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1968 	if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1969 		printk(DRIVER_NAME": failed get_track\n");
1970 		return ret;
1971 	}
1972 
1973 	if (!pkt_writable_track(pd, &ti)) {
1974 		printk(DRIVER_NAME": can't write to this track\n");
1975 		return -EROFS;
1976 	}
1977 
1978 	/*
1979 	 * we keep packet size in 512 byte units, makes it easier to
1980 	 * deal with request calculations.
1981 	 */
1982 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1983 	if (pd->settings.size == 0) {
1984 		printk(DRIVER_NAME": detected zero packet size!\n");
1985 		return -ENXIO;
1986 	}
1987 	if (pd->settings.size > PACKET_MAX_SECTORS) {
1988 		printk(DRIVER_NAME": packet size is too big\n");
1989 		return -EROFS;
1990 	}
1991 	pd->settings.fp = ti.fp;
1992 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1993 
1994 	if (ti.nwa_v) {
1995 		pd->nwa = be32_to_cpu(ti.next_writable);
1996 		set_bit(PACKET_NWA_VALID, &pd->flags);
1997 	}
1998 
1999 	/*
2000 	 * in theory we could use lra on -RW media as well and just zero
2001 	 * blocks that haven't been written yet, but in practice that
2002 	 * is just a no-go. we'll use that for -R, naturally.
2003 	 */
2004 	if (ti.lra_v) {
2005 		pd->lra = be32_to_cpu(ti.last_rec_address);
2006 		set_bit(PACKET_LRA_VALID, &pd->flags);
2007 	} else {
2008 		pd->lra = 0xffffffff;
2009 		set_bit(PACKET_LRA_VALID, &pd->flags);
2010 	}
2011 
2012 	/*
2013 	 * fine for now
2014 	 */
2015 	pd->settings.link_loss = 7;
2016 	pd->settings.write_type = 0;	/* packet */
2017 	pd->settings.track_mode = ti.track_mode;
2018 
2019 	/*
2020 	 * mode1 or mode2 disc
2021 	 */
2022 	switch (ti.data_mode) {
2023 		case PACKET_MODE1:
2024 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
2025 			break;
2026 		case PACKET_MODE2:
2027 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
2028 			break;
2029 		default:
2030 			printk(DRIVER_NAME": unknown data mode\n");
2031 			return -EROFS;
2032 	}
2033 	return 0;
2034 }
2035 
2036 /*
2037  * enable/disable write caching on drive
2038  */
2039 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2040 						int set)
2041 {
2042 	struct packet_command cgc;
2043 	struct request_sense sense;
2044 	unsigned char buf[64];
2045 	int ret;
2046 
2047 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2048 	cgc.sense = &sense;
2049 	cgc.buflen = pd->mode_offset + 12;
2050 
2051 	/*
2052 	 * caching mode page might not be there, so quiet this command
2053 	 */
2054 	cgc.quiet = 1;
2055 
2056 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2057 		return ret;
2058 
2059 	buf[pd->mode_offset + 10] |= (!!set << 2);
2060 
2061 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2062 	ret = pkt_mode_select(pd, &cgc);
2063 	if (ret) {
2064 		printk(DRIVER_NAME": write caching control failed\n");
2065 		pkt_dump_sense(&cgc);
2066 	} else if (!ret && set)
2067 		printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2068 	return ret;
2069 }
2070 
2071 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2072 {
2073 	struct packet_command cgc;
2074 
2075 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2076 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2077 	cgc.cmd[4] = lockflag ? 1 : 0;
2078 	return pkt_generic_packet(pd, &cgc);
2079 }
2080 
2081 /*
2082  * Returns drive maximum write speed
2083  */
2084 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2085 						unsigned *write_speed)
2086 {
2087 	struct packet_command cgc;
2088 	struct request_sense sense;
2089 	unsigned char buf[256+18];
2090 	unsigned char *cap_buf;
2091 	int ret, offset;
2092 
2093 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2094 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2095 	cgc.sense = &sense;
2096 
2097 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2098 	if (ret) {
2099 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2100 			     sizeof(struct mode_page_header);
2101 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2102 		if (ret) {
2103 			pkt_dump_sense(&cgc);
2104 			return ret;
2105 		}
2106 	}
2107 
2108 	offset = 20;			    /* Obsoleted field, used by older drives */
2109 	if (cap_buf[1] >= 28)
2110 		offset = 28;		    /* Current write speed selected */
2111 	if (cap_buf[1] >= 30) {
2112 		/* If the drive reports at least one "Logical Unit Write
2113 		 * Speed Performance Descriptor Block", use the information
2114 		 * in the first block. (contains the highest speed)
2115 		 */
2116 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2117 		if (num_spdb > 0)
2118 			offset = 34;
2119 	}
2120 
2121 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2122 	return 0;
2123 }
2124 
2125 /* These tables from cdrecord - I don't have orange book */
2126 /* standard speed CD-RW (1-4x) */
2127 static char clv_to_speed[16] = {
2128 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2129 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2130 };
2131 /* high speed CD-RW (-10x) */
2132 static char hs_clv_to_speed[16] = {
2133 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2134 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2135 };
2136 /* ultra high speed CD-RW */
2137 static char us_clv_to_speed[16] = {
2138 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2139 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2140 };
2141 
2142 /*
2143  * reads the maximum media speed from ATIP
2144  */
2145 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2146 						unsigned *speed)
2147 {
2148 	struct packet_command cgc;
2149 	struct request_sense sense;
2150 	unsigned char buf[64];
2151 	unsigned int size, st, sp;
2152 	int ret;
2153 
2154 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2155 	cgc.sense = &sense;
2156 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2157 	cgc.cmd[1] = 2;
2158 	cgc.cmd[2] = 4; /* READ ATIP */
2159 	cgc.cmd[8] = 2;
2160 	ret = pkt_generic_packet(pd, &cgc);
2161 	if (ret) {
2162 		pkt_dump_sense(&cgc);
2163 		return ret;
2164 	}
2165 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2166 	if (size > sizeof(buf))
2167 		size = sizeof(buf);
2168 
2169 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2170 	cgc.sense = &sense;
2171 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2172 	cgc.cmd[1] = 2;
2173 	cgc.cmd[2] = 4;
2174 	cgc.cmd[8] = size;
2175 	ret = pkt_generic_packet(pd, &cgc);
2176 	if (ret) {
2177 		pkt_dump_sense(&cgc);
2178 		return ret;
2179 	}
2180 
2181 	if (!(buf[6] & 0x40)) {
2182 		printk(DRIVER_NAME": Disc type is not CD-RW\n");
2183 		return 1;
2184 	}
2185 	if (!(buf[6] & 0x4)) {
2186 		printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2187 		return 1;
2188 	}
2189 
2190 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2191 
2192 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2193 
2194 	/* Info from cdrecord */
2195 	switch (st) {
2196 		case 0: /* standard speed */
2197 			*speed = clv_to_speed[sp];
2198 			break;
2199 		case 1: /* high speed */
2200 			*speed = hs_clv_to_speed[sp];
2201 			break;
2202 		case 2: /* ultra high speed */
2203 			*speed = us_clv_to_speed[sp];
2204 			break;
2205 		default:
2206 			printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2207 			return 1;
2208 	}
2209 	if (*speed) {
2210 		printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2211 		return 0;
2212 	} else {
2213 		printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2214 		return 1;
2215 	}
2216 }
2217 
2218 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2219 {
2220 	struct packet_command cgc;
2221 	struct request_sense sense;
2222 	int ret;
2223 
2224 	VPRINTK(DRIVER_NAME": Performing OPC\n");
2225 
2226 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2227 	cgc.sense = &sense;
2228 	cgc.timeout = 60*HZ;
2229 	cgc.cmd[0] = GPCMD_SEND_OPC;
2230 	cgc.cmd[1] = 1;
2231 	if ((ret = pkt_generic_packet(pd, &cgc)))
2232 		pkt_dump_sense(&cgc);
2233 	return ret;
2234 }
2235 
2236 static int pkt_open_write(struct pktcdvd_device *pd)
2237 {
2238 	int ret;
2239 	unsigned int write_speed, media_write_speed, read_speed;
2240 
2241 	if ((ret = pkt_probe_settings(pd))) {
2242 		VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2243 		return ret;
2244 	}
2245 
2246 	if ((ret = pkt_set_write_settings(pd))) {
2247 		DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2248 		return -EIO;
2249 	}
2250 
2251 	pkt_write_caching(pd, USE_WCACHING);
2252 
2253 	if ((ret = pkt_get_max_speed(pd, &write_speed)))
2254 		write_speed = 16 * 177;
2255 	switch (pd->mmc3_profile) {
2256 		case 0x13: /* DVD-RW */
2257 		case 0x1a: /* DVD+RW */
2258 		case 0x12: /* DVD-RAM */
2259 			DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2260 			break;
2261 		default:
2262 			if ((ret = pkt_media_speed(pd, &media_write_speed)))
2263 				media_write_speed = 16;
2264 			write_speed = min(write_speed, media_write_speed * 177);
2265 			DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2266 			break;
2267 	}
2268 	read_speed = write_speed;
2269 
2270 	if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2271 		DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2272 		return -EIO;
2273 	}
2274 	pd->write_speed = write_speed;
2275 	pd->read_speed = read_speed;
2276 
2277 	if ((ret = pkt_perform_opc(pd))) {
2278 		DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2279 	}
2280 
2281 	return 0;
2282 }
2283 
2284 /*
2285  * called at open time.
2286  */
2287 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2288 {
2289 	int ret;
2290 	long lba;
2291 	struct request_queue *q;
2292 
2293 	/*
2294 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2295 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2296 	 * so bdget() can't fail.
2297 	 */
2298 	bdget(pd->bdev->bd_dev);
2299 	if ((ret = blkdev_get(pd->bdev, FMODE_READ)))
2300 		goto out;
2301 
2302 	if ((ret = bd_claim(pd->bdev, pd)))
2303 		goto out_putdev;
2304 
2305 	if ((ret = pkt_get_last_written(pd, &lba))) {
2306 		printk(DRIVER_NAME": pkt_get_last_written failed\n");
2307 		goto out_unclaim;
2308 	}
2309 
2310 	set_capacity(pd->disk, lba << 2);
2311 	set_capacity(pd->bdev->bd_disk, lba << 2);
2312 	bd_set_size(pd->bdev, (loff_t)lba << 11);
2313 
2314 	q = bdev_get_queue(pd->bdev);
2315 	if (write) {
2316 		if ((ret = pkt_open_write(pd)))
2317 			goto out_unclaim;
2318 		/*
2319 		 * Some CDRW drives can not handle writes larger than one packet,
2320 		 * even if the size is a multiple of the packet size.
2321 		 */
2322 		spin_lock_irq(q->queue_lock);
2323 		blk_queue_max_hw_sectors(q, pd->settings.size);
2324 		spin_unlock_irq(q->queue_lock);
2325 		set_bit(PACKET_WRITABLE, &pd->flags);
2326 	} else {
2327 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2328 		clear_bit(PACKET_WRITABLE, &pd->flags);
2329 	}
2330 
2331 	if ((ret = pkt_set_segment_merging(pd, q)))
2332 		goto out_unclaim;
2333 
2334 	if (write) {
2335 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2336 			printk(DRIVER_NAME": not enough memory for buffers\n");
2337 			ret = -ENOMEM;
2338 			goto out_unclaim;
2339 		}
2340 		printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2341 	}
2342 
2343 	return 0;
2344 
2345 out_unclaim:
2346 	bd_release(pd->bdev);
2347 out_putdev:
2348 	blkdev_put(pd->bdev, FMODE_READ);
2349 out:
2350 	return ret;
2351 }
2352 
2353 /*
2354  * called when the device is closed. makes sure that the device flushes
2355  * the internal cache before we close.
2356  */
2357 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2358 {
2359 	if (flush && pkt_flush_cache(pd))
2360 		DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2361 
2362 	pkt_lock_door(pd, 0);
2363 
2364 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2365 	bd_release(pd->bdev);
2366 	blkdev_put(pd->bdev, FMODE_READ);
2367 
2368 	pkt_shrink_pktlist(pd);
2369 }
2370 
2371 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2372 {
2373 	if (dev_minor >= MAX_WRITERS)
2374 		return NULL;
2375 	return pkt_devs[dev_minor];
2376 }
2377 
2378 static int pkt_open(struct block_device *bdev, fmode_t mode)
2379 {
2380 	struct pktcdvd_device *pd = NULL;
2381 	int ret;
2382 
2383 	VPRINTK(DRIVER_NAME": entering open\n");
2384 
2385 	mutex_lock(&ctl_mutex);
2386 	pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2387 	if (!pd) {
2388 		ret = -ENODEV;
2389 		goto out;
2390 	}
2391 	BUG_ON(pd->refcnt < 0);
2392 
2393 	pd->refcnt++;
2394 	if (pd->refcnt > 1) {
2395 		if ((mode & FMODE_WRITE) &&
2396 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2397 			ret = -EBUSY;
2398 			goto out_dec;
2399 		}
2400 	} else {
2401 		ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2402 		if (ret)
2403 			goto out_dec;
2404 		/*
2405 		 * needed here as well, since ext2 (among others) may change
2406 		 * the blocksize at mount time
2407 		 */
2408 		set_blocksize(bdev, CD_FRAMESIZE);
2409 	}
2410 
2411 	mutex_unlock(&ctl_mutex);
2412 	return 0;
2413 
2414 out_dec:
2415 	pd->refcnt--;
2416 out:
2417 	VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2418 	mutex_unlock(&ctl_mutex);
2419 	return ret;
2420 }
2421 
2422 static int pkt_close(struct gendisk *disk, fmode_t mode)
2423 {
2424 	struct pktcdvd_device *pd = disk->private_data;
2425 	int ret = 0;
2426 
2427 	mutex_lock(&ctl_mutex);
2428 	pd->refcnt--;
2429 	BUG_ON(pd->refcnt < 0);
2430 	if (pd->refcnt == 0) {
2431 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2432 		pkt_release_dev(pd, flush);
2433 	}
2434 	mutex_unlock(&ctl_mutex);
2435 	return ret;
2436 }
2437 
2438 
2439 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2440 {
2441 	struct packet_stacked_data *psd = bio->bi_private;
2442 	struct pktcdvd_device *pd = psd->pd;
2443 
2444 	bio_put(bio);
2445 	bio_endio(psd->bio, err);
2446 	mempool_free(psd, psd_pool);
2447 	pkt_bio_finished(pd);
2448 }
2449 
2450 static int pkt_make_request(struct request_queue *q, struct bio *bio)
2451 {
2452 	struct pktcdvd_device *pd;
2453 	char b[BDEVNAME_SIZE];
2454 	sector_t zone;
2455 	struct packet_data *pkt;
2456 	int was_empty, blocked_bio;
2457 	struct pkt_rb_node *node;
2458 
2459 	pd = q->queuedata;
2460 	if (!pd) {
2461 		printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2462 		goto end_io;
2463 	}
2464 
2465 	/*
2466 	 * Clone READ bios so we can have our own bi_end_io callback.
2467 	 */
2468 	if (bio_data_dir(bio) == READ) {
2469 		struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2470 		struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2471 
2472 		psd->pd = pd;
2473 		psd->bio = bio;
2474 		cloned_bio->bi_bdev = pd->bdev;
2475 		cloned_bio->bi_private = psd;
2476 		cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2477 		pd->stats.secs_r += bio->bi_size >> 9;
2478 		pkt_queue_bio(pd, cloned_bio);
2479 		return 0;
2480 	}
2481 
2482 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2483 		printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2484 			pd->name, (unsigned long long)bio->bi_sector);
2485 		goto end_io;
2486 	}
2487 
2488 	if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2489 		printk(DRIVER_NAME": wrong bio size\n");
2490 		goto end_io;
2491 	}
2492 
2493 	blk_queue_bounce(q, &bio);
2494 
2495 	zone = ZONE(bio->bi_sector, pd);
2496 	VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2497 		(unsigned long long)bio->bi_sector,
2498 		(unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2499 
2500 	/* Check if we have to split the bio */
2501 	{
2502 		struct bio_pair *bp;
2503 		sector_t last_zone;
2504 		int first_sectors;
2505 
2506 		last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2507 		if (last_zone != zone) {
2508 			BUG_ON(last_zone != zone + pd->settings.size);
2509 			first_sectors = last_zone - bio->bi_sector;
2510 			bp = bio_split(bio, first_sectors);
2511 			BUG_ON(!bp);
2512 			pkt_make_request(q, &bp->bio1);
2513 			pkt_make_request(q, &bp->bio2);
2514 			bio_pair_release(bp);
2515 			return 0;
2516 		}
2517 	}
2518 
2519 	/*
2520 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2521 	 * just append this bio to that packet.
2522 	 */
2523 	spin_lock(&pd->cdrw.active_list_lock);
2524 	blocked_bio = 0;
2525 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2526 		if (pkt->sector == zone) {
2527 			spin_lock(&pkt->lock);
2528 			if ((pkt->state == PACKET_WAITING_STATE) ||
2529 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2530 				bio_list_add(&pkt->orig_bios, bio);
2531 				pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2532 				if ((pkt->write_size >= pkt->frames) &&
2533 				    (pkt->state == PACKET_WAITING_STATE)) {
2534 					atomic_inc(&pkt->run_sm);
2535 					wake_up(&pd->wqueue);
2536 				}
2537 				spin_unlock(&pkt->lock);
2538 				spin_unlock(&pd->cdrw.active_list_lock);
2539 				return 0;
2540 			} else {
2541 				blocked_bio = 1;
2542 			}
2543 			spin_unlock(&pkt->lock);
2544 		}
2545 	}
2546 	spin_unlock(&pd->cdrw.active_list_lock);
2547 
2548  	/*
2549 	 * Test if there is enough room left in the bio work queue
2550 	 * (queue size >= congestion on mark).
2551 	 * If not, wait till the work queue size is below the congestion off mark.
2552 	 */
2553 	spin_lock(&pd->lock);
2554 	if (pd->write_congestion_on > 0
2555 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2556 		set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2557 		do {
2558 			spin_unlock(&pd->lock);
2559 			congestion_wait(BLK_RW_ASYNC, HZ);
2560 			spin_lock(&pd->lock);
2561 		} while(pd->bio_queue_size > pd->write_congestion_off);
2562 	}
2563 	spin_unlock(&pd->lock);
2564 
2565 	/*
2566 	 * No matching packet found. Store the bio in the work queue.
2567 	 */
2568 	node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2569 	node->bio = bio;
2570 	spin_lock(&pd->lock);
2571 	BUG_ON(pd->bio_queue_size < 0);
2572 	was_empty = (pd->bio_queue_size == 0);
2573 	pkt_rbtree_insert(pd, node);
2574 	spin_unlock(&pd->lock);
2575 
2576 	/*
2577 	 * Wake up the worker thread.
2578 	 */
2579 	atomic_set(&pd->scan_queue, 1);
2580 	if (was_empty) {
2581 		/* This wake_up is required for correct operation */
2582 		wake_up(&pd->wqueue);
2583 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2584 		/*
2585 		 * This wake up is not required for correct operation,
2586 		 * but improves performance in some cases.
2587 		 */
2588 		wake_up(&pd->wqueue);
2589 	}
2590 	return 0;
2591 end_io:
2592 	bio_io_error(bio);
2593 	return 0;
2594 }
2595 
2596 
2597 
2598 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2599 			  struct bio_vec *bvec)
2600 {
2601 	struct pktcdvd_device *pd = q->queuedata;
2602 	sector_t zone = ZONE(bmd->bi_sector, pd);
2603 	int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2604 	int remaining = (pd->settings.size << 9) - used;
2605 	int remaining2;
2606 
2607 	/*
2608 	 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2609 	 * boundary, pkt_make_request() will split the bio.
2610 	 */
2611 	remaining2 = PAGE_SIZE - bmd->bi_size;
2612 	remaining = max(remaining, remaining2);
2613 
2614 	BUG_ON(remaining < 0);
2615 	return remaining;
2616 }
2617 
2618 static void pkt_init_queue(struct pktcdvd_device *pd)
2619 {
2620 	struct request_queue *q = pd->disk->queue;
2621 
2622 	blk_queue_make_request(q, pkt_make_request);
2623 	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2624 	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2625 	blk_queue_merge_bvec(q, pkt_merge_bvec);
2626 	q->queuedata = pd;
2627 }
2628 
2629 static int pkt_seq_show(struct seq_file *m, void *p)
2630 {
2631 	struct pktcdvd_device *pd = m->private;
2632 	char *msg;
2633 	char bdev_buf[BDEVNAME_SIZE];
2634 	int states[PACKET_NUM_STATES];
2635 
2636 	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2637 		   bdevname(pd->bdev, bdev_buf));
2638 
2639 	seq_printf(m, "\nSettings:\n");
2640 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2641 
2642 	if (pd->settings.write_type == 0)
2643 		msg = "Packet";
2644 	else
2645 		msg = "Unknown";
2646 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2647 
2648 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2649 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2650 
2651 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2652 
2653 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2654 		msg = "Mode 1";
2655 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2656 		msg = "Mode 2";
2657 	else
2658 		msg = "Unknown";
2659 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2660 
2661 	seq_printf(m, "\nStatistics:\n");
2662 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2663 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2664 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2665 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2666 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2667 
2668 	seq_printf(m, "\nMisc:\n");
2669 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2670 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2671 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2672 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2673 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2674 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2675 
2676 	seq_printf(m, "\nQueue state:\n");
2677 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2678 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2679 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2680 
2681 	pkt_count_states(pd, states);
2682 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2683 		   states[0], states[1], states[2], states[3], states[4], states[5]);
2684 
2685 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2686 			pd->write_congestion_off,
2687 			pd->write_congestion_on);
2688 	return 0;
2689 }
2690 
2691 static int pkt_seq_open(struct inode *inode, struct file *file)
2692 {
2693 	return single_open(file, pkt_seq_show, PDE(inode)->data);
2694 }
2695 
2696 static const struct file_operations pkt_proc_fops = {
2697 	.open	= pkt_seq_open,
2698 	.read	= seq_read,
2699 	.llseek	= seq_lseek,
2700 	.release = single_release
2701 };
2702 
2703 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2704 {
2705 	int i;
2706 	int ret = 0;
2707 	char b[BDEVNAME_SIZE];
2708 	struct block_device *bdev;
2709 
2710 	if (pd->pkt_dev == dev) {
2711 		printk(DRIVER_NAME": Recursive setup not allowed\n");
2712 		return -EBUSY;
2713 	}
2714 	for (i = 0; i < MAX_WRITERS; i++) {
2715 		struct pktcdvd_device *pd2 = pkt_devs[i];
2716 		if (!pd2)
2717 			continue;
2718 		if (pd2->bdev->bd_dev == dev) {
2719 			printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2720 			return -EBUSY;
2721 		}
2722 		if (pd2->pkt_dev == dev) {
2723 			printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2724 			return -EBUSY;
2725 		}
2726 	}
2727 
2728 	bdev = bdget(dev);
2729 	if (!bdev)
2730 		return -ENOMEM;
2731 	ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY);
2732 	if (ret)
2733 		return ret;
2734 
2735 	/* This is safe, since we have a reference from open(). */
2736 	__module_get(THIS_MODULE);
2737 
2738 	pd->bdev = bdev;
2739 	set_blocksize(bdev, CD_FRAMESIZE);
2740 
2741 	pkt_init_queue(pd);
2742 
2743 	atomic_set(&pd->cdrw.pending_bios, 0);
2744 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2745 	if (IS_ERR(pd->cdrw.thread)) {
2746 		printk(DRIVER_NAME": can't start kernel thread\n");
2747 		ret = -ENOMEM;
2748 		goto out_mem;
2749 	}
2750 
2751 	proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2752 	DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2753 	return 0;
2754 
2755 out_mem:
2756 	blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2757 	/* This is safe: open() is still holding a reference. */
2758 	module_put(THIS_MODULE);
2759 	return ret;
2760 }
2761 
2762 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2763 {
2764 	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2765 
2766 	VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2767 		MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2768 
2769 	switch (cmd) {
2770 	case CDROMEJECT:
2771 		/*
2772 		 * The door gets locked when the device is opened, so we
2773 		 * have to unlock it or else the eject command fails.
2774 		 */
2775 		if (pd->refcnt == 1)
2776 			pkt_lock_door(pd, 0);
2777 		/* fallthru */
2778 	/*
2779 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2780 	 */
2781 	case CDROMMULTISESSION:
2782 	case CDROMREADTOCENTRY:
2783 	case CDROM_LAST_WRITTEN:
2784 	case CDROM_SEND_PACKET:
2785 	case SCSI_IOCTL_SEND_COMMAND:
2786 		return __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2787 
2788 	default:
2789 		VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2790 		return -ENOTTY;
2791 	}
2792 
2793 	return 0;
2794 }
2795 
2796 static int pkt_media_changed(struct gendisk *disk)
2797 {
2798 	struct pktcdvd_device *pd = disk->private_data;
2799 	struct gendisk *attached_disk;
2800 
2801 	if (!pd)
2802 		return 0;
2803 	if (!pd->bdev)
2804 		return 0;
2805 	attached_disk = pd->bdev->bd_disk;
2806 	if (!attached_disk)
2807 		return 0;
2808 	return attached_disk->fops->media_changed(attached_disk);
2809 }
2810 
2811 static const struct block_device_operations pktcdvd_ops = {
2812 	.owner =		THIS_MODULE,
2813 	.open =			pkt_open,
2814 	.release =		pkt_close,
2815 	.locked_ioctl =		pkt_ioctl,
2816 	.media_changed =	pkt_media_changed,
2817 };
2818 
2819 static char *pktcdvd_devnode(struct gendisk *gd, mode_t *mode)
2820 {
2821 	return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2822 }
2823 
2824 /*
2825  * Set up mapping from pktcdvd device to CD-ROM device.
2826  */
2827 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2828 {
2829 	int idx;
2830 	int ret = -ENOMEM;
2831 	struct pktcdvd_device *pd;
2832 	struct gendisk *disk;
2833 
2834 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2835 
2836 	for (idx = 0; idx < MAX_WRITERS; idx++)
2837 		if (!pkt_devs[idx])
2838 			break;
2839 	if (idx == MAX_WRITERS) {
2840 		printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2841 		ret = -EBUSY;
2842 		goto out_mutex;
2843 	}
2844 
2845 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2846 	if (!pd)
2847 		goto out_mutex;
2848 
2849 	pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2850 						  sizeof(struct pkt_rb_node));
2851 	if (!pd->rb_pool)
2852 		goto out_mem;
2853 
2854 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2855 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2856 	spin_lock_init(&pd->cdrw.active_list_lock);
2857 
2858 	spin_lock_init(&pd->lock);
2859 	spin_lock_init(&pd->iosched.lock);
2860 	bio_list_init(&pd->iosched.read_queue);
2861 	bio_list_init(&pd->iosched.write_queue);
2862 	sprintf(pd->name, DRIVER_NAME"%d", idx);
2863 	init_waitqueue_head(&pd->wqueue);
2864 	pd->bio_queue = RB_ROOT;
2865 
2866 	pd->write_congestion_on  = write_congestion_on;
2867 	pd->write_congestion_off = write_congestion_off;
2868 
2869 	disk = alloc_disk(1);
2870 	if (!disk)
2871 		goto out_mem;
2872 	pd->disk = disk;
2873 	disk->major = pktdev_major;
2874 	disk->first_minor = idx;
2875 	disk->fops = &pktcdvd_ops;
2876 	disk->flags = GENHD_FL_REMOVABLE;
2877 	strcpy(disk->disk_name, pd->name);
2878 	disk->devnode = pktcdvd_devnode;
2879 	disk->private_data = pd;
2880 	disk->queue = blk_alloc_queue(GFP_KERNEL);
2881 	if (!disk->queue)
2882 		goto out_mem2;
2883 
2884 	pd->pkt_dev = MKDEV(pktdev_major, idx);
2885 	ret = pkt_new_dev(pd, dev);
2886 	if (ret)
2887 		goto out_new_dev;
2888 
2889 	add_disk(disk);
2890 
2891 	pkt_sysfs_dev_new(pd);
2892 	pkt_debugfs_dev_new(pd);
2893 
2894 	pkt_devs[idx] = pd;
2895 	if (pkt_dev)
2896 		*pkt_dev = pd->pkt_dev;
2897 
2898 	mutex_unlock(&ctl_mutex);
2899 	return 0;
2900 
2901 out_new_dev:
2902 	blk_cleanup_queue(disk->queue);
2903 out_mem2:
2904 	put_disk(disk);
2905 out_mem:
2906 	if (pd->rb_pool)
2907 		mempool_destroy(pd->rb_pool);
2908 	kfree(pd);
2909 out_mutex:
2910 	mutex_unlock(&ctl_mutex);
2911 	printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2912 	return ret;
2913 }
2914 
2915 /*
2916  * Tear down mapping from pktcdvd device to CD-ROM device.
2917  */
2918 static int pkt_remove_dev(dev_t pkt_dev)
2919 {
2920 	struct pktcdvd_device *pd;
2921 	int idx;
2922 	int ret = 0;
2923 
2924 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2925 
2926 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2927 		pd = pkt_devs[idx];
2928 		if (pd && (pd->pkt_dev == pkt_dev))
2929 			break;
2930 	}
2931 	if (idx == MAX_WRITERS) {
2932 		DPRINTK(DRIVER_NAME": dev not setup\n");
2933 		ret = -ENXIO;
2934 		goto out;
2935 	}
2936 
2937 	if (pd->refcnt > 0) {
2938 		ret = -EBUSY;
2939 		goto out;
2940 	}
2941 	if (!IS_ERR(pd->cdrw.thread))
2942 		kthread_stop(pd->cdrw.thread);
2943 
2944 	pkt_devs[idx] = NULL;
2945 
2946 	pkt_debugfs_dev_remove(pd);
2947 	pkt_sysfs_dev_remove(pd);
2948 
2949 	blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2950 
2951 	remove_proc_entry(pd->name, pkt_proc);
2952 	DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2953 
2954 	del_gendisk(pd->disk);
2955 	blk_cleanup_queue(pd->disk->queue);
2956 	put_disk(pd->disk);
2957 
2958 	mempool_destroy(pd->rb_pool);
2959 	kfree(pd);
2960 
2961 	/* This is safe: open() is still holding a reference. */
2962 	module_put(THIS_MODULE);
2963 
2964 out:
2965 	mutex_unlock(&ctl_mutex);
2966 	return ret;
2967 }
2968 
2969 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2970 {
2971 	struct pktcdvd_device *pd;
2972 
2973 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2974 
2975 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2976 	if (pd) {
2977 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2978 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2979 	} else {
2980 		ctrl_cmd->dev = 0;
2981 		ctrl_cmd->pkt_dev = 0;
2982 	}
2983 	ctrl_cmd->num_devices = MAX_WRITERS;
2984 
2985 	mutex_unlock(&ctl_mutex);
2986 }
2987 
2988 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2989 {
2990 	void __user *argp = (void __user *)arg;
2991 	struct pkt_ctrl_command ctrl_cmd;
2992 	int ret = 0;
2993 	dev_t pkt_dev = 0;
2994 
2995 	if (cmd != PACKET_CTRL_CMD)
2996 		return -ENOTTY;
2997 
2998 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2999 		return -EFAULT;
3000 
3001 	switch (ctrl_cmd.command) {
3002 	case PKT_CTRL_CMD_SETUP:
3003 		if (!capable(CAP_SYS_ADMIN))
3004 			return -EPERM;
3005 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3006 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3007 		break;
3008 	case PKT_CTRL_CMD_TEARDOWN:
3009 		if (!capable(CAP_SYS_ADMIN))
3010 			return -EPERM;
3011 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3012 		break;
3013 	case PKT_CTRL_CMD_STATUS:
3014 		pkt_get_status(&ctrl_cmd);
3015 		break;
3016 	default:
3017 		return -ENOTTY;
3018 	}
3019 
3020 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3021 		return -EFAULT;
3022 	return ret;
3023 }
3024 
3025 #ifdef CONFIG_COMPAT
3026 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3027 {
3028 	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
3029 }
3030 #endif
3031 
3032 static const struct file_operations pkt_ctl_fops = {
3033 	.open		= nonseekable_open,
3034 	.unlocked_ioctl	= pkt_ctl_ioctl,
3035 #ifdef CONFIG_COMPAT
3036 	.compat_ioctl	= pkt_ctl_compat_ioctl,
3037 #endif
3038 	.owner		= THIS_MODULE,
3039 };
3040 
3041 static struct miscdevice pkt_misc = {
3042 	.minor 		= MISC_DYNAMIC_MINOR,
3043 	.name  		= DRIVER_NAME,
3044 	.nodename	= "pktcdvd/control",
3045 	.fops  		= &pkt_ctl_fops
3046 };
3047 
3048 static int __init pkt_init(void)
3049 {
3050 	int ret;
3051 
3052 	mutex_init(&ctl_mutex);
3053 
3054 	psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3055 					sizeof(struct packet_stacked_data));
3056 	if (!psd_pool)
3057 		return -ENOMEM;
3058 
3059 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
3060 	if (ret < 0) {
3061 		printk(DRIVER_NAME": Unable to register block device\n");
3062 		goto out2;
3063 	}
3064 	if (!pktdev_major)
3065 		pktdev_major = ret;
3066 
3067 	ret = pkt_sysfs_init();
3068 	if (ret)
3069 		goto out;
3070 
3071 	pkt_debugfs_init();
3072 
3073 	ret = misc_register(&pkt_misc);
3074 	if (ret) {
3075 		printk(DRIVER_NAME": Unable to register misc device\n");
3076 		goto out_misc;
3077 	}
3078 
3079 	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3080 
3081 	return 0;
3082 
3083 out_misc:
3084 	pkt_debugfs_cleanup();
3085 	pkt_sysfs_cleanup();
3086 out:
3087 	unregister_blkdev(pktdev_major, DRIVER_NAME);
3088 out2:
3089 	mempool_destroy(psd_pool);
3090 	return ret;
3091 }
3092 
3093 static void __exit pkt_exit(void)
3094 {
3095 	remove_proc_entry("driver/"DRIVER_NAME, NULL);
3096 	misc_deregister(&pkt_misc);
3097 
3098 	pkt_debugfs_cleanup();
3099 	pkt_sysfs_cleanup();
3100 
3101 	unregister_blkdev(pktdev_major, DRIVER_NAME);
3102 	mempool_destroy(psd_pool);
3103 }
3104 
3105 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3106 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3107 MODULE_LICENSE("GPL");
3108 
3109 module_init(pkt_init);
3110 module_exit(pkt_exit);
3111