1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom make_request_fn function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #include <linux/pktcdvd.h> 48 #include <linux/module.h> 49 #include <linux/types.h> 50 #include <linux/kernel.h> 51 #include <linux/compat.h> 52 #include <linux/kthread.h> 53 #include <linux/errno.h> 54 #include <linux/spinlock.h> 55 #include <linux/file.h> 56 #include <linux/proc_fs.h> 57 #include <linux/seq_file.h> 58 #include <linux/miscdevice.h> 59 #include <linux/freezer.h> 60 #include <linux/mutex.h> 61 #include <linux/slab.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_ioctl.h> 64 #include <scsi/scsi.h> 65 #include <linux/debugfs.h> 66 #include <linux/device.h> 67 68 #include <asm/uaccess.h> 69 70 #define DRIVER_NAME "pktcdvd" 71 72 #if PACKET_DEBUG 73 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 74 #else 75 #define DPRINTK(fmt, args...) 76 #endif 77 78 #if PACKET_DEBUG > 1 79 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 80 #else 81 #define VPRINTK(fmt, args...) 82 #endif 83 84 #define MAX_SPEED 0xffff 85 86 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1)) 87 88 static DEFINE_MUTEX(pktcdvd_mutex); 89 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 90 static struct proc_dir_entry *pkt_proc; 91 static int pktdev_major; 92 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 93 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 94 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 95 static mempool_t *psd_pool; 96 97 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */ 98 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */ 99 100 /* forward declaration */ 101 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 102 static int pkt_remove_dev(dev_t pkt_dev); 103 static int pkt_seq_show(struct seq_file *m, void *p); 104 105 106 107 /* 108 * create and register a pktcdvd kernel object. 109 */ 110 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd, 111 const char* name, 112 struct kobject* parent, 113 struct kobj_type* ktype) 114 { 115 struct pktcdvd_kobj *p; 116 int error; 117 118 p = kzalloc(sizeof(*p), GFP_KERNEL); 119 if (!p) 120 return NULL; 121 p->pd = pd; 122 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name); 123 if (error) { 124 kobject_put(&p->kobj); 125 return NULL; 126 } 127 kobject_uevent(&p->kobj, KOBJ_ADD); 128 return p; 129 } 130 /* 131 * remove a pktcdvd kernel object. 132 */ 133 static void pkt_kobj_remove(struct pktcdvd_kobj *p) 134 { 135 if (p) 136 kobject_put(&p->kobj); 137 } 138 /* 139 * default release function for pktcdvd kernel objects. 140 */ 141 static void pkt_kobj_release(struct kobject *kobj) 142 { 143 kfree(to_pktcdvdkobj(kobj)); 144 } 145 146 147 /********************************************************** 148 * 149 * sysfs interface for pktcdvd 150 * by (C) 2006 Thomas Maier <balagi@justmail.de> 151 * 152 **********************************************************/ 153 154 #define DEF_ATTR(_obj,_name,_mode) \ 155 static struct attribute _obj = { .name = _name, .mode = _mode } 156 157 /********************************************************** 158 /sys/class/pktcdvd/pktcdvd[0-7]/ 159 stat/reset 160 stat/packets_started 161 stat/packets_finished 162 stat/kb_written 163 stat/kb_read 164 stat/kb_read_gather 165 write_queue/size 166 write_queue/congestion_off 167 write_queue/congestion_on 168 **********************************************************/ 169 170 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200); 171 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444); 172 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444); 173 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444); 174 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444); 175 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444); 176 177 static struct attribute *kobj_pkt_attrs_stat[] = { 178 &kobj_pkt_attr_st1, 179 &kobj_pkt_attr_st2, 180 &kobj_pkt_attr_st3, 181 &kobj_pkt_attr_st4, 182 &kobj_pkt_attr_st5, 183 &kobj_pkt_attr_st6, 184 NULL 185 }; 186 187 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444); 188 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644); 189 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644); 190 191 static struct attribute *kobj_pkt_attrs_wqueue[] = { 192 &kobj_pkt_attr_wq1, 193 &kobj_pkt_attr_wq2, 194 &kobj_pkt_attr_wq3, 195 NULL 196 }; 197 198 static ssize_t kobj_pkt_show(struct kobject *kobj, 199 struct attribute *attr, char *data) 200 { 201 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 202 int n = 0; 203 int v; 204 if (strcmp(attr->name, "packets_started") == 0) { 205 n = sprintf(data, "%lu\n", pd->stats.pkt_started); 206 207 } else if (strcmp(attr->name, "packets_finished") == 0) { 208 n = sprintf(data, "%lu\n", pd->stats.pkt_ended); 209 210 } else if (strcmp(attr->name, "kb_written") == 0) { 211 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1); 212 213 } else if (strcmp(attr->name, "kb_read") == 0) { 214 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1); 215 216 } else if (strcmp(attr->name, "kb_read_gather") == 0) { 217 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1); 218 219 } else if (strcmp(attr->name, "size") == 0) { 220 spin_lock(&pd->lock); 221 v = pd->bio_queue_size; 222 spin_unlock(&pd->lock); 223 n = sprintf(data, "%d\n", v); 224 225 } else if (strcmp(attr->name, "congestion_off") == 0) { 226 spin_lock(&pd->lock); 227 v = pd->write_congestion_off; 228 spin_unlock(&pd->lock); 229 n = sprintf(data, "%d\n", v); 230 231 } else if (strcmp(attr->name, "congestion_on") == 0) { 232 spin_lock(&pd->lock); 233 v = pd->write_congestion_on; 234 spin_unlock(&pd->lock); 235 n = sprintf(data, "%d\n", v); 236 } 237 return n; 238 } 239 240 static void init_write_congestion_marks(int* lo, int* hi) 241 { 242 if (*hi > 0) { 243 *hi = max(*hi, 500); 244 *hi = min(*hi, 1000000); 245 if (*lo <= 0) 246 *lo = *hi - 100; 247 else { 248 *lo = min(*lo, *hi - 100); 249 *lo = max(*lo, 100); 250 } 251 } else { 252 *hi = -1; 253 *lo = -1; 254 } 255 } 256 257 static ssize_t kobj_pkt_store(struct kobject *kobj, 258 struct attribute *attr, 259 const char *data, size_t len) 260 { 261 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 262 int val; 263 264 if (strcmp(attr->name, "reset") == 0 && len > 0) { 265 pd->stats.pkt_started = 0; 266 pd->stats.pkt_ended = 0; 267 pd->stats.secs_w = 0; 268 pd->stats.secs_rg = 0; 269 pd->stats.secs_r = 0; 270 271 } else if (strcmp(attr->name, "congestion_off") == 0 272 && sscanf(data, "%d", &val) == 1) { 273 spin_lock(&pd->lock); 274 pd->write_congestion_off = val; 275 init_write_congestion_marks(&pd->write_congestion_off, 276 &pd->write_congestion_on); 277 spin_unlock(&pd->lock); 278 279 } else if (strcmp(attr->name, "congestion_on") == 0 280 && sscanf(data, "%d", &val) == 1) { 281 spin_lock(&pd->lock); 282 pd->write_congestion_on = val; 283 init_write_congestion_marks(&pd->write_congestion_off, 284 &pd->write_congestion_on); 285 spin_unlock(&pd->lock); 286 } 287 return len; 288 } 289 290 static const struct sysfs_ops kobj_pkt_ops = { 291 .show = kobj_pkt_show, 292 .store = kobj_pkt_store 293 }; 294 static struct kobj_type kobj_pkt_type_stat = { 295 .release = pkt_kobj_release, 296 .sysfs_ops = &kobj_pkt_ops, 297 .default_attrs = kobj_pkt_attrs_stat 298 }; 299 static struct kobj_type kobj_pkt_type_wqueue = { 300 .release = pkt_kobj_release, 301 .sysfs_ops = &kobj_pkt_ops, 302 .default_attrs = kobj_pkt_attrs_wqueue 303 }; 304 305 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 306 { 307 if (class_pktcdvd) { 308 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL, 309 "%s", pd->name); 310 if (IS_ERR(pd->dev)) 311 pd->dev = NULL; 312 } 313 if (pd->dev) { 314 pd->kobj_stat = pkt_kobj_create(pd, "stat", 315 &pd->dev->kobj, 316 &kobj_pkt_type_stat); 317 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue", 318 &pd->dev->kobj, 319 &kobj_pkt_type_wqueue); 320 } 321 } 322 323 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 324 { 325 pkt_kobj_remove(pd->kobj_stat); 326 pkt_kobj_remove(pd->kobj_wqueue); 327 if (class_pktcdvd) 328 device_unregister(pd->dev); 329 } 330 331 332 /******************************************************************** 333 /sys/class/pktcdvd/ 334 add map block device 335 remove unmap packet dev 336 device_map show mappings 337 *******************************************************************/ 338 339 static void class_pktcdvd_release(struct class *cls) 340 { 341 kfree(cls); 342 } 343 static ssize_t class_pktcdvd_show_map(struct class *c, 344 struct class_attribute *attr, 345 char *data) 346 { 347 int n = 0; 348 int idx; 349 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 350 for (idx = 0; idx < MAX_WRITERS; idx++) { 351 struct pktcdvd_device *pd = pkt_devs[idx]; 352 if (!pd) 353 continue; 354 n += sprintf(data+n, "%s %u:%u %u:%u\n", 355 pd->name, 356 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 357 MAJOR(pd->bdev->bd_dev), 358 MINOR(pd->bdev->bd_dev)); 359 } 360 mutex_unlock(&ctl_mutex); 361 return n; 362 } 363 364 static ssize_t class_pktcdvd_store_add(struct class *c, 365 struct class_attribute *attr, 366 const char *buf, 367 size_t count) 368 { 369 unsigned int major, minor; 370 371 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 372 /* pkt_setup_dev() expects caller to hold reference to self */ 373 if (!try_module_get(THIS_MODULE)) 374 return -ENODEV; 375 376 pkt_setup_dev(MKDEV(major, minor), NULL); 377 378 module_put(THIS_MODULE); 379 380 return count; 381 } 382 383 return -EINVAL; 384 } 385 386 static ssize_t class_pktcdvd_store_remove(struct class *c, 387 struct class_attribute *attr, 388 const char *buf, 389 size_t count) 390 { 391 unsigned int major, minor; 392 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 393 pkt_remove_dev(MKDEV(major, minor)); 394 return count; 395 } 396 return -EINVAL; 397 } 398 399 static struct class_attribute class_pktcdvd_attrs[] = { 400 __ATTR(add, 0200, NULL, class_pktcdvd_store_add), 401 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove), 402 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL), 403 __ATTR_NULL 404 }; 405 406 407 static int pkt_sysfs_init(void) 408 { 409 int ret = 0; 410 411 /* 412 * create control files in sysfs 413 * /sys/class/pktcdvd/... 414 */ 415 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL); 416 if (!class_pktcdvd) 417 return -ENOMEM; 418 class_pktcdvd->name = DRIVER_NAME; 419 class_pktcdvd->owner = THIS_MODULE; 420 class_pktcdvd->class_release = class_pktcdvd_release; 421 class_pktcdvd->class_attrs = class_pktcdvd_attrs; 422 ret = class_register(class_pktcdvd); 423 if (ret) { 424 kfree(class_pktcdvd); 425 class_pktcdvd = NULL; 426 printk(DRIVER_NAME": failed to create class pktcdvd\n"); 427 return ret; 428 } 429 return 0; 430 } 431 432 static void pkt_sysfs_cleanup(void) 433 { 434 if (class_pktcdvd) 435 class_destroy(class_pktcdvd); 436 class_pktcdvd = NULL; 437 } 438 439 /******************************************************************** 440 entries in debugfs 441 442 /sys/kernel/debug/pktcdvd[0-7]/ 443 info 444 445 *******************************************************************/ 446 447 static int pkt_debugfs_seq_show(struct seq_file *m, void *p) 448 { 449 return pkt_seq_show(m, p); 450 } 451 452 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file) 453 { 454 return single_open(file, pkt_debugfs_seq_show, inode->i_private); 455 } 456 457 static const struct file_operations debug_fops = { 458 .open = pkt_debugfs_fops_open, 459 .read = seq_read, 460 .llseek = seq_lseek, 461 .release = single_release, 462 .owner = THIS_MODULE, 463 }; 464 465 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 466 { 467 if (!pkt_debugfs_root) 468 return; 469 pd->dfs_f_info = NULL; 470 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root); 471 if (IS_ERR(pd->dfs_d_root)) { 472 pd->dfs_d_root = NULL; 473 return; 474 } 475 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO, 476 pd->dfs_d_root, pd, &debug_fops); 477 if (IS_ERR(pd->dfs_f_info)) { 478 pd->dfs_f_info = NULL; 479 return; 480 } 481 } 482 483 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 484 { 485 if (!pkt_debugfs_root) 486 return; 487 if (pd->dfs_f_info) 488 debugfs_remove(pd->dfs_f_info); 489 pd->dfs_f_info = NULL; 490 if (pd->dfs_d_root) 491 debugfs_remove(pd->dfs_d_root); 492 pd->dfs_d_root = NULL; 493 } 494 495 static void pkt_debugfs_init(void) 496 { 497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 498 if (IS_ERR(pkt_debugfs_root)) { 499 pkt_debugfs_root = NULL; 500 return; 501 } 502 } 503 504 static void pkt_debugfs_cleanup(void) 505 { 506 if (!pkt_debugfs_root) 507 return; 508 debugfs_remove(pkt_debugfs_root); 509 pkt_debugfs_root = NULL; 510 } 511 512 /* ----------------------------------------------------------*/ 513 514 515 static void pkt_bio_finished(struct pktcdvd_device *pd) 516 { 517 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 518 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 519 VPRINTK(DRIVER_NAME": queue empty\n"); 520 atomic_set(&pd->iosched.attention, 1); 521 wake_up(&pd->wqueue); 522 } 523 } 524 525 static void pkt_bio_destructor(struct bio *bio) 526 { 527 kfree(bio->bi_io_vec); 528 kfree(bio); 529 } 530 531 static struct bio *pkt_bio_alloc(int nr_iovecs) 532 { 533 struct bio_vec *bvl = NULL; 534 struct bio *bio; 535 536 bio = kmalloc(sizeof(struct bio), GFP_KERNEL); 537 if (!bio) 538 goto no_bio; 539 bio_init(bio); 540 541 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL); 542 if (!bvl) 543 goto no_bvl; 544 545 bio->bi_max_vecs = nr_iovecs; 546 bio->bi_io_vec = bvl; 547 bio->bi_destructor = pkt_bio_destructor; 548 549 return bio; 550 551 no_bvl: 552 kfree(bio); 553 no_bio: 554 return NULL; 555 } 556 557 /* 558 * Allocate a packet_data struct 559 */ 560 static struct packet_data *pkt_alloc_packet_data(int frames) 561 { 562 int i; 563 struct packet_data *pkt; 564 565 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 566 if (!pkt) 567 goto no_pkt; 568 569 pkt->frames = frames; 570 pkt->w_bio = pkt_bio_alloc(frames); 571 if (!pkt->w_bio) 572 goto no_bio; 573 574 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 575 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 576 if (!pkt->pages[i]) 577 goto no_page; 578 } 579 580 spin_lock_init(&pkt->lock); 581 bio_list_init(&pkt->orig_bios); 582 583 for (i = 0; i < frames; i++) { 584 struct bio *bio = pkt_bio_alloc(1); 585 if (!bio) 586 goto no_rd_bio; 587 pkt->r_bios[i] = bio; 588 } 589 590 return pkt; 591 592 no_rd_bio: 593 for (i = 0; i < frames; i++) { 594 struct bio *bio = pkt->r_bios[i]; 595 if (bio) 596 bio_put(bio); 597 } 598 599 no_page: 600 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 601 if (pkt->pages[i]) 602 __free_page(pkt->pages[i]); 603 bio_put(pkt->w_bio); 604 no_bio: 605 kfree(pkt); 606 no_pkt: 607 return NULL; 608 } 609 610 /* 611 * Free a packet_data struct 612 */ 613 static void pkt_free_packet_data(struct packet_data *pkt) 614 { 615 int i; 616 617 for (i = 0; i < pkt->frames; i++) { 618 struct bio *bio = pkt->r_bios[i]; 619 if (bio) 620 bio_put(bio); 621 } 622 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 623 __free_page(pkt->pages[i]); 624 bio_put(pkt->w_bio); 625 kfree(pkt); 626 } 627 628 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 629 { 630 struct packet_data *pkt, *next; 631 632 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 633 634 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 635 pkt_free_packet_data(pkt); 636 } 637 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 638 } 639 640 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 641 { 642 struct packet_data *pkt; 643 644 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 645 646 while (nr_packets > 0) { 647 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 648 if (!pkt) { 649 pkt_shrink_pktlist(pd); 650 return 0; 651 } 652 pkt->id = nr_packets; 653 pkt->pd = pd; 654 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 655 nr_packets--; 656 } 657 return 1; 658 } 659 660 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 661 { 662 struct rb_node *n = rb_next(&node->rb_node); 663 if (!n) 664 return NULL; 665 return rb_entry(n, struct pkt_rb_node, rb_node); 666 } 667 668 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 669 { 670 rb_erase(&node->rb_node, &pd->bio_queue); 671 mempool_free(node, pd->rb_pool); 672 pd->bio_queue_size--; 673 BUG_ON(pd->bio_queue_size < 0); 674 } 675 676 /* 677 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 678 */ 679 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 680 { 681 struct rb_node *n = pd->bio_queue.rb_node; 682 struct rb_node *next; 683 struct pkt_rb_node *tmp; 684 685 if (!n) { 686 BUG_ON(pd->bio_queue_size > 0); 687 return NULL; 688 } 689 690 for (;;) { 691 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 692 if (s <= tmp->bio->bi_sector) 693 next = n->rb_left; 694 else 695 next = n->rb_right; 696 if (!next) 697 break; 698 n = next; 699 } 700 701 if (s > tmp->bio->bi_sector) { 702 tmp = pkt_rbtree_next(tmp); 703 if (!tmp) 704 return NULL; 705 } 706 BUG_ON(s > tmp->bio->bi_sector); 707 return tmp; 708 } 709 710 /* 711 * Insert a node into the pd->bio_queue rb tree. 712 */ 713 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 714 { 715 struct rb_node **p = &pd->bio_queue.rb_node; 716 struct rb_node *parent = NULL; 717 sector_t s = node->bio->bi_sector; 718 struct pkt_rb_node *tmp; 719 720 while (*p) { 721 parent = *p; 722 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 723 if (s < tmp->bio->bi_sector) 724 p = &(*p)->rb_left; 725 else 726 p = &(*p)->rb_right; 727 } 728 rb_link_node(&node->rb_node, parent, p); 729 rb_insert_color(&node->rb_node, &pd->bio_queue); 730 pd->bio_queue_size++; 731 } 732 733 /* 734 * Send a packet_command to the underlying block device and 735 * wait for completion. 736 */ 737 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 738 { 739 struct request_queue *q = bdev_get_queue(pd->bdev); 740 struct request *rq; 741 int ret = 0; 742 743 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 744 WRITE : READ, __GFP_WAIT); 745 746 if (cgc->buflen) { 747 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT)) 748 goto out; 749 } 750 751 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 752 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE); 753 754 rq->timeout = 60*HZ; 755 rq->cmd_type = REQ_TYPE_BLOCK_PC; 756 if (cgc->quiet) 757 rq->cmd_flags |= REQ_QUIET; 758 759 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0); 760 if (rq->errors) 761 ret = -EIO; 762 out: 763 blk_put_request(rq); 764 return ret; 765 } 766 767 /* 768 * A generic sense dump / resolve mechanism should be implemented across 769 * all ATAPI + SCSI devices. 770 */ 771 static void pkt_dump_sense(struct packet_command *cgc) 772 { 773 static char *info[9] = { "No sense", "Recovered error", "Not ready", 774 "Medium error", "Hardware error", "Illegal request", 775 "Unit attention", "Data protect", "Blank check" }; 776 int i; 777 struct request_sense *sense = cgc->sense; 778 779 printk(DRIVER_NAME":"); 780 for (i = 0; i < CDROM_PACKET_SIZE; i++) 781 printk(" %02x", cgc->cmd[i]); 782 printk(" - "); 783 784 if (sense == NULL) { 785 printk("no sense\n"); 786 return; 787 } 788 789 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq); 790 791 if (sense->sense_key > 8) { 792 printk(" (INVALID)\n"); 793 return; 794 } 795 796 printk(" (%s)\n", info[sense->sense_key]); 797 } 798 799 /* 800 * flush the drive cache to media 801 */ 802 static int pkt_flush_cache(struct pktcdvd_device *pd) 803 { 804 struct packet_command cgc; 805 806 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 807 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 808 cgc.quiet = 1; 809 810 /* 811 * the IMMED bit -- we default to not setting it, although that 812 * would allow a much faster close, this is safer 813 */ 814 #if 0 815 cgc.cmd[1] = 1 << 1; 816 #endif 817 return pkt_generic_packet(pd, &cgc); 818 } 819 820 /* 821 * speed is given as the normal factor, e.g. 4 for 4x 822 */ 823 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd, 824 unsigned write_speed, unsigned read_speed) 825 { 826 struct packet_command cgc; 827 struct request_sense sense; 828 int ret; 829 830 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 831 cgc.sense = &sense; 832 cgc.cmd[0] = GPCMD_SET_SPEED; 833 cgc.cmd[2] = (read_speed >> 8) & 0xff; 834 cgc.cmd[3] = read_speed & 0xff; 835 cgc.cmd[4] = (write_speed >> 8) & 0xff; 836 cgc.cmd[5] = write_speed & 0xff; 837 838 if ((ret = pkt_generic_packet(pd, &cgc))) 839 pkt_dump_sense(&cgc); 840 841 return ret; 842 } 843 844 /* 845 * Queue a bio for processing by the low-level CD device. Must be called 846 * from process context. 847 */ 848 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 849 { 850 spin_lock(&pd->iosched.lock); 851 if (bio_data_dir(bio) == READ) 852 bio_list_add(&pd->iosched.read_queue, bio); 853 else 854 bio_list_add(&pd->iosched.write_queue, bio); 855 spin_unlock(&pd->iosched.lock); 856 857 atomic_set(&pd->iosched.attention, 1); 858 wake_up(&pd->wqueue); 859 } 860 861 /* 862 * Process the queued read/write requests. This function handles special 863 * requirements for CDRW drives: 864 * - A cache flush command must be inserted before a read request if the 865 * previous request was a write. 866 * - Switching between reading and writing is slow, so don't do it more often 867 * than necessary. 868 * - Optimize for throughput at the expense of latency. This means that streaming 869 * writes will never be interrupted by a read, but if the drive has to seek 870 * before the next write, switch to reading instead if there are any pending 871 * read requests. 872 * - Set the read speed according to current usage pattern. When only reading 873 * from the device, it's best to use the highest possible read speed, but 874 * when switching often between reading and writing, it's better to have the 875 * same read and write speeds. 876 */ 877 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 878 { 879 880 if (atomic_read(&pd->iosched.attention) == 0) 881 return; 882 atomic_set(&pd->iosched.attention, 0); 883 884 for (;;) { 885 struct bio *bio; 886 int reads_queued, writes_queued; 887 888 spin_lock(&pd->iosched.lock); 889 reads_queued = !bio_list_empty(&pd->iosched.read_queue); 890 writes_queued = !bio_list_empty(&pd->iosched.write_queue); 891 spin_unlock(&pd->iosched.lock); 892 893 if (!reads_queued && !writes_queued) 894 break; 895 896 if (pd->iosched.writing) { 897 int need_write_seek = 1; 898 spin_lock(&pd->iosched.lock); 899 bio = bio_list_peek(&pd->iosched.write_queue); 900 spin_unlock(&pd->iosched.lock); 901 if (bio && (bio->bi_sector == pd->iosched.last_write)) 902 need_write_seek = 0; 903 if (need_write_seek && reads_queued) { 904 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 905 VPRINTK(DRIVER_NAME": write, waiting\n"); 906 break; 907 } 908 pkt_flush_cache(pd); 909 pd->iosched.writing = 0; 910 } 911 } else { 912 if (!reads_queued && writes_queued) { 913 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 914 VPRINTK(DRIVER_NAME": read, waiting\n"); 915 break; 916 } 917 pd->iosched.writing = 1; 918 } 919 } 920 921 spin_lock(&pd->iosched.lock); 922 if (pd->iosched.writing) 923 bio = bio_list_pop(&pd->iosched.write_queue); 924 else 925 bio = bio_list_pop(&pd->iosched.read_queue); 926 spin_unlock(&pd->iosched.lock); 927 928 if (!bio) 929 continue; 930 931 if (bio_data_dir(bio) == READ) 932 pd->iosched.successive_reads += bio->bi_size >> 10; 933 else { 934 pd->iosched.successive_reads = 0; 935 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio); 936 } 937 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 938 if (pd->read_speed == pd->write_speed) { 939 pd->read_speed = MAX_SPEED; 940 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 941 } 942 } else { 943 if (pd->read_speed != pd->write_speed) { 944 pd->read_speed = pd->write_speed; 945 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 946 } 947 } 948 949 atomic_inc(&pd->cdrw.pending_bios); 950 generic_make_request(bio); 951 } 952 } 953 954 /* 955 * Special care is needed if the underlying block device has a small 956 * max_phys_segments value. 957 */ 958 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q) 959 { 960 if ((pd->settings.size << 9) / CD_FRAMESIZE 961 <= queue_max_segments(q)) { 962 /* 963 * The cdrom device can handle one segment/frame 964 */ 965 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 966 return 0; 967 } else if ((pd->settings.size << 9) / PAGE_SIZE 968 <= queue_max_segments(q)) { 969 /* 970 * We can handle this case at the expense of some extra memory 971 * copies during write operations 972 */ 973 set_bit(PACKET_MERGE_SEGS, &pd->flags); 974 return 0; 975 } else { 976 printk(DRIVER_NAME": cdrom max_phys_segments too small\n"); 977 return -EIO; 978 } 979 } 980 981 /* 982 * Copy CD_FRAMESIZE bytes from src_bio into a destination page 983 */ 984 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs) 985 { 986 unsigned int copy_size = CD_FRAMESIZE; 987 988 while (copy_size > 0) { 989 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg); 990 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) + 991 src_bvl->bv_offset + offs; 992 void *vto = page_address(dst_page) + dst_offs; 993 int len = min_t(int, copy_size, src_bvl->bv_len - offs); 994 995 BUG_ON(len < 0); 996 memcpy(vto, vfrom, len); 997 kunmap_atomic(vfrom, KM_USER0); 998 999 seg++; 1000 offs = 0; 1001 dst_offs += len; 1002 copy_size -= len; 1003 } 1004 } 1005 1006 /* 1007 * Copy all data for this packet to pkt->pages[], so that 1008 * a) The number of required segments for the write bio is minimized, which 1009 * is necessary for some scsi controllers. 1010 * b) The data can be used as cache to avoid read requests if we receive a 1011 * new write request for the same zone. 1012 */ 1013 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec) 1014 { 1015 int f, p, offs; 1016 1017 /* Copy all data to pkt->pages[] */ 1018 p = 0; 1019 offs = 0; 1020 for (f = 0; f < pkt->frames; f++) { 1021 if (bvec[f].bv_page != pkt->pages[p]) { 1022 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset; 1023 void *vto = page_address(pkt->pages[p]) + offs; 1024 memcpy(vto, vfrom, CD_FRAMESIZE); 1025 kunmap_atomic(vfrom, KM_USER0); 1026 bvec[f].bv_page = pkt->pages[p]; 1027 bvec[f].bv_offset = offs; 1028 } else { 1029 BUG_ON(bvec[f].bv_offset != offs); 1030 } 1031 offs += CD_FRAMESIZE; 1032 if (offs >= PAGE_SIZE) { 1033 offs = 0; 1034 p++; 1035 } 1036 } 1037 } 1038 1039 static void pkt_end_io_read(struct bio *bio, int err) 1040 { 1041 struct packet_data *pkt = bio->bi_private; 1042 struct pktcdvd_device *pd = pkt->pd; 1043 BUG_ON(!pd); 1044 1045 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio, 1046 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err); 1047 1048 if (err) 1049 atomic_inc(&pkt->io_errors); 1050 if (atomic_dec_and_test(&pkt->io_wait)) { 1051 atomic_inc(&pkt->run_sm); 1052 wake_up(&pd->wqueue); 1053 } 1054 pkt_bio_finished(pd); 1055 } 1056 1057 static void pkt_end_io_packet_write(struct bio *bio, int err) 1058 { 1059 struct packet_data *pkt = bio->bi_private; 1060 struct pktcdvd_device *pd = pkt->pd; 1061 BUG_ON(!pd); 1062 1063 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err); 1064 1065 pd->stats.pkt_ended++; 1066 1067 pkt_bio_finished(pd); 1068 atomic_dec(&pkt->io_wait); 1069 atomic_inc(&pkt->run_sm); 1070 wake_up(&pd->wqueue); 1071 } 1072 1073 /* 1074 * Schedule reads for the holes in a packet 1075 */ 1076 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1077 { 1078 int frames_read = 0; 1079 struct bio *bio; 1080 int f; 1081 char written[PACKET_MAX_SIZE]; 1082 1083 BUG_ON(bio_list_empty(&pkt->orig_bios)); 1084 1085 atomic_set(&pkt->io_wait, 0); 1086 atomic_set(&pkt->io_errors, 0); 1087 1088 /* 1089 * Figure out which frames we need to read before we can write. 1090 */ 1091 memset(written, 0, sizeof(written)); 1092 spin_lock(&pkt->lock); 1093 bio_list_for_each(bio, &pkt->orig_bios) { 1094 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1095 int num_frames = bio->bi_size / CD_FRAMESIZE; 1096 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 1097 BUG_ON(first_frame < 0); 1098 BUG_ON(first_frame + num_frames > pkt->frames); 1099 for (f = first_frame; f < first_frame + num_frames; f++) 1100 written[f] = 1; 1101 } 1102 spin_unlock(&pkt->lock); 1103 1104 if (pkt->cache_valid) { 1105 VPRINTK("pkt_gather_data: zone %llx cached\n", 1106 (unsigned long long)pkt->sector); 1107 goto out_account; 1108 } 1109 1110 /* 1111 * Schedule reads for missing parts of the packet. 1112 */ 1113 for (f = 0; f < pkt->frames; f++) { 1114 struct bio_vec *vec; 1115 1116 int p, offset; 1117 if (written[f]) 1118 continue; 1119 bio = pkt->r_bios[f]; 1120 vec = bio->bi_io_vec; 1121 bio_init(bio); 1122 bio->bi_max_vecs = 1; 1123 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1124 bio->bi_bdev = pd->bdev; 1125 bio->bi_end_io = pkt_end_io_read; 1126 bio->bi_private = pkt; 1127 bio->bi_io_vec = vec; 1128 bio->bi_destructor = pkt_bio_destructor; 1129 1130 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1131 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1132 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n", 1133 f, pkt->pages[p], offset); 1134 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1135 BUG(); 1136 1137 atomic_inc(&pkt->io_wait); 1138 bio->bi_rw = READ; 1139 pkt_queue_bio(pd, bio); 1140 frames_read++; 1141 } 1142 1143 out_account: 1144 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n", 1145 frames_read, (unsigned long long)pkt->sector); 1146 pd->stats.pkt_started++; 1147 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1148 } 1149 1150 /* 1151 * Find a packet matching zone, or the least recently used packet if 1152 * there is no match. 1153 */ 1154 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1155 { 1156 struct packet_data *pkt; 1157 1158 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1159 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1160 list_del_init(&pkt->list); 1161 if (pkt->sector != zone) 1162 pkt->cache_valid = 0; 1163 return pkt; 1164 } 1165 } 1166 BUG(); 1167 return NULL; 1168 } 1169 1170 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1171 { 1172 if (pkt->cache_valid) { 1173 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1174 } else { 1175 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1176 } 1177 } 1178 1179 /* 1180 * recover a failed write, query for relocation if possible 1181 * 1182 * returns 1 if recovery is possible, or 0 if not 1183 * 1184 */ 1185 static int pkt_start_recovery(struct packet_data *pkt) 1186 { 1187 /* 1188 * FIXME. We need help from the file system to implement 1189 * recovery handling. 1190 */ 1191 return 0; 1192 #if 0 1193 struct request *rq = pkt->rq; 1194 struct pktcdvd_device *pd = rq->rq_disk->private_data; 1195 struct block_device *pkt_bdev; 1196 struct super_block *sb = NULL; 1197 unsigned long old_block, new_block; 1198 sector_t new_sector; 1199 1200 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 1201 if (pkt_bdev) { 1202 sb = get_super(pkt_bdev); 1203 bdput(pkt_bdev); 1204 } 1205 1206 if (!sb) 1207 return 0; 1208 1209 if (!sb->s_op || !sb->s_op->relocate_blocks) 1210 goto out; 1211 1212 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 1213 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 1214 goto out; 1215 1216 new_sector = new_block * (CD_FRAMESIZE >> 9); 1217 pkt->sector = new_sector; 1218 1219 pkt->bio->bi_sector = new_sector; 1220 pkt->bio->bi_next = NULL; 1221 pkt->bio->bi_flags = 1 << BIO_UPTODATE; 1222 pkt->bio->bi_idx = 0; 1223 1224 BUG_ON(pkt->bio->bi_rw != REQ_WRITE); 1225 BUG_ON(pkt->bio->bi_vcnt != pkt->frames); 1226 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE); 1227 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write); 1228 BUG_ON(pkt->bio->bi_private != pkt); 1229 1230 drop_super(sb); 1231 return 1; 1232 1233 out: 1234 drop_super(sb); 1235 return 0; 1236 #endif 1237 } 1238 1239 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 1240 { 1241 #if PACKET_DEBUG > 1 1242 static const char *state_name[] = { 1243 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1244 }; 1245 enum packet_data_state old_state = pkt->state; 1246 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector, 1247 state_name[old_state], state_name[state]); 1248 #endif 1249 pkt->state = state; 1250 } 1251 1252 /* 1253 * Scan the work queue to see if we can start a new packet. 1254 * returns non-zero if any work was done. 1255 */ 1256 static int pkt_handle_queue(struct pktcdvd_device *pd) 1257 { 1258 struct packet_data *pkt, *p; 1259 struct bio *bio = NULL; 1260 sector_t zone = 0; /* Suppress gcc warning */ 1261 struct pkt_rb_node *node, *first_node; 1262 struct rb_node *n; 1263 int wakeup; 1264 1265 VPRINTK("handle_queue\n"); 1266 1267 atomic_set(&pd->scan_queue, 0); 1268 1269 if (list_empty(&pd->cdrw.pkt_free_list)) { 1270 VPRINTK("handle_queue: no pkt\n"); 1271 return 0; 1272 } 1273 1274 /* 1275 * Try to find a zone we are not already working on. 1276 */ 1277 spin_lock(&pd->lock); 1278 first_node = pkt_rbtree_find(pd, pd->current_sector); 1279 if (!first_node) { 1280 n = rb_first(&pd->bio_queue); 1281 if (n) 1282 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1283 } 1284 node = first_node; 1285 while (node) { 1286 bio = node->bio; 1287 zone = ZONE(bio->bi_sector, pd); 1288 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1289 if (p->sector == zone) { 1290 bio = NULL; 1291 goto try_next_bio; 1292 } 1293 } 1294 break; 1295 try_next_bio: 1296 node = pkt_rbtree_next(node); 1297 if (!node) { 1298 n = rb_first(&pd->bio_queue); 1299 if (n) 1300 node = rb_entry(n, struct pkt_rb_node, rb_node); 1301 } 1302 if (node == first_node) 1303 node = NULL; 1304 } 1305 spin_unlock(&pd->lock); 1306 if (!bio) { 1307 VPRINTK("handle_queue: no bio\n"); 1308 return 0; 1309 } 1310 1311 pkt = pkt_get_packet_data(pd, zone); 1312 1313 pd->current_sector = zone + pd->settings.size; 1314 pkt->sector = zone; 1315 BUG_ON(pkt->frames != pd->settings.size >> 2); 1316 pkt->write_size = 0; 1317 1318 /* 1319 * Scan work queue for bios in the same zone and link them 1320 * to this packet. 1321 */ 1322 spin_lock(&pd->lock); 1323 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone); 1324 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1325 bio = node->bio; 1326 VPRINTK("pkt_handle_queue: found zone=%llx\n", 1327 (unsigned long long)ZONE(bio->bi_sector, pd)); 1328 if (ZONE(bio->bi_sector, pd) != zone) 1329 break; 1330 pkt_rbtree_erase(pd, node); 1331 spin_lock(&pkt->lock); 1332 bio_list_add(&pkt->orig_bios, bio); 1333 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 1334 spin_unlock(&pkt->lock); 1335 } 1336 /* check write congestion marks, and if bio_queue_size is 1337 below, wake up any waiters */ 1338 wakeup = (pd->write_congestion_on > 0 1339 && pd->bio_queue_size <= pd->write_congestion_off); 1340 spin_unlock(&pd->lock); 1341 if (wakeup) { 1342 clear_bdi_congested(&pd->disk->queue->backing_dev_info, 1343 BLK_RW_ASYNC); 1344 } 1345 1346 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1347 pkt_set_state(pkt, PACKET_WAITING_STATE); 1348 atomic_set(&pkt->run_sm, 1); 1349 1350 spin_lock(&pd->cdrw.active_list_lock); 1351 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1352 spin_unlock(&pd->cdrw.active_list_lock); 1353 1354 return 1; 1355 } 1356 1357 /* 1358 * Assemble a bio to write one packet and queue the bio for processing 1359 * by the underlying block device. 1360 */ 1361 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1362 { 1363 struct bio *bio; 1364 int f; 1365 int frames_write; 1366 struct bio_vec *bvec = pkt->w_bio->bi_io_vec; 1367 1368 for (f = 0; f < pkt->frames; f++) { 1369 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1370 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1371 } 1372 1373 /* 1374 * Fill-in bvec with data from orig_bios. 1375 */ 1376 frames_write = 0; 1377 spin_lock(&pkt->lock); 1378 bio_list_for_each(bio, &pkt->orig_bios) { 1379 int segment = bio->bi_idx; 1380 int src_offs = 0; 1381 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1382 int num_frames = bio->bi_size / CD_FRAMESIZE; 1383 BUG_ON(first_frame < 0); 1384 BUG_ON(first_frame + num_frames > pkt->frames); 1385 for (f = first_frame; f < first_frame + num_frames; f++) { 1386 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment); 1387 1388 while (src_offs >= src_bvl->bv_len) { 1389 src_offs -= src_bvl->bv_len; 1390 segment++; 1391 BUG_ON(segment >= bio->bi_vcnt); 1392 src_bvl = bio_iovec_idx(bio, segment); 1393 } 1394 1395 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) { 1396 bvec[f].bv_page = src_bvl->bv_page; 1397 bvec[f].bv_offset = src_bvl->bv_offset + src_offs; 1398 } else { 1399 pkt_copy_bio_data(bio, segment, src_offs, 1400 bvec[f].bv_page, bvec[f].bv_offset); 1401 } 1402 src_offs += CD_FRAMESIZE; 1403 frames_write++; 1404 } 1405 } 1406 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1407 spin_unlock(&pkt->lock); 1408 1409 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n", 1410 frames_write, (unsigned long long)pkt->sector); 1411 BUG_ON(frames_write != pkt->write_size); 1412 1413 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) { 1414 pkt_make_local_copy(pkt, bvec); 1415 pkt->cache_valid = 1; 1416 } else { 1417 pkt->cache_valid = 0; 1418 } 1419 1420 /* Start the write request */ 1421 bio_init(pkt->w_bio); 1422 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE; 1423 pkt->w_bio->bi_sector = pkt->sector; 1424 pkt->w_bio->bi_bdev = pd->bdev; 1425 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1426 pkt->w_bio->bi_private = pkt; 1427 pkt->w_bio->bi_io_vec = bvec; 1428 pkt->w_bio->bi_destructor = pkt_bio_destructor; 1429 for (f = 0; f < pkt->frames; f++) 1430 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset)) 1431 BUG(); 1432 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt); 1433 1434 atomic_set(&pkt->io_wait, 1); 1435 pkt->w_bio->bi_rw = WRITE; 1436 pkt_queue_bio(pd, pkt->w_bio); 1437 } 1438 1439 static void pkt_finish_packet(struct packet_data *pkt, int uptodate) 1440 { 1441 struct bio *bio; 1442 1443 if (!uptodate) 1444 pkt->cache_valid = 0; 1445 1446 /* Finish all bios corresponding to this packet */ 1447 while ((bio = bio_list_pop(&pkt->orig_bios))) 1448 bio_endio(bio, uptodate ? 0 : -EIO); 1449 } 1450 1451 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1452 { 1453 int uptodate; 1454 1455 VPRINTK("run_state_machine: pkt %d\n", pkt->id); 1456 1457 for (;;) { 1458 switch (pkt->state) { 1459 case PACKET_WAITING_STATE: 1460 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1461 return; 1462 1463 pkt->sleep_time = 0; 1464 pkt_gather_data(pd, pkt); 1465 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1466 break; 1467 1468 case PACKET_READ_WAIT_STATE: 1469 if (atomic_read(&pkt->io_wait) > 0) 1470 return; 1471 1472 if (atomic_read(&pkt->io_errors) > 0) { 1473 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1474 } else { 1475 pkt_start_write(pd, pkt); 1476 } 1477 break; 1478 1479 case PACKET_WRITE_WAIT_STATE: 1480 if (atomic_read(&pkt->io_wait) > 0) 1481 return; 1482 1483 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) { 1484 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1485 } else { 1486 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1487 } 1488 break; 1489 1490 case PACKET_RECOVERY_STATE: 1491 if (pkt_start_recovery(pkt)) { 1492 pkt_start_write(pd, pkt); 1493 } else { 1494 VPRINTK("No recovery possible\n"); 1495 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1496 } 1497 break; 1498 1499 case PACKET_FINISHED_STATE: 1500 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags); 1501 pkt_finish_packet(pkt, uptodate); 1502 return; 1503 1504 default: 1505 BUG(); 1506 break; 1507 } 1508 } 1509 } 1510 1511 static void pkt_handle_packets(struct pktcdvd_device *pd) 1512 { 1513 struct packet_data *pkt, *next; 1514 1515 VPRINTK("pkt_handle_packets\n"); 1516 1517 /* 1518 * Run state machine for active packets 1519 */ 1520 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1521 if (atomic_read(&pkt->run_sm) > 0) { 1522 atomic_set(&pkt->run_sm, 0); 1523 pkt_run_state_machine(pd, pkt); 1524 } 1525 } 1526 1527 /* 1528 * Move no longer active packets to the free list 1529 */ 1530 spin_lock(&pd->cdrw.active_list_lock); 1531 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1532 if (pkt->state == PACKET_FINISHED_STATE) { 1533 list_del(&pkt->list); 1534 pkt_put_packet_data(pd, pkt); 1535 pkt_set_state(pkt, PACKET_IDLE_STATE); 1536 atomic_set(&pd->scan_queue, 1); 1537 } 1538 } 1539 spin_unlock(&pd->cdrw.active_list_lock); 1540 } 1541 1542 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1543 { 1544 struct packet_data *pkt; 1545 int i; 1546 1547 for (i = 0; i < PACKET_NUM_STATES; i++) 1548 states[i] = 0; 1549 1550 spin_lock(&pd->cdrw.active_list_lock); 1551 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1552 states[pkt->state]++; 1553 } 1554 spin_unlock(&pd->cdrw.active_list_lock); 1555 } 1556 1557 /* 1558 * kcdrwd is woken up when writes have been queued for one of our 1559 * registered devices 1560 */ 1561 static int kcdrwd(void *foobar) 1562 { 1563 struct pktcdvd_device *pd = foobar; 1564 struct packet_data *pkt; 1565 long min_sleep_time, residue; 1566 1567 set_user_nice(current, -20); 1568 set_freezable(); 1569 1570 for (;;) { 1571 DECLARE_WAITQUEUE(wait, current); 1572 1573 /* 1574 * Wait until there is something to do 1575 */ 1576 add_wait_queue(&pd->wqueue, &wait); 1577 for (;;) { 1578 set_current_state(TASK_INTERRUPTIBLE); 1579 1580 /* Check if we need to run pkt_handle_queue */ 1581 if (atomic_read(&pd->scan_queue) > 0) 1582 goto work_to_do; 1583 1584 /* Check if we need to run the state machine for some packet */ 1585 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1586 if (atomic_read(&pkt->run_sm) > 0) 1587 goto work_to_do; 1588 } 1589 1590 /* Check if we need to process the iosched queues */ 1591 if (atomic_read(&pd->iosched.attention) != 0) 1592 goto work_to_do; 1593 1594 /* Otherwise, go to sleep */ 1595 if (PACKET_DEBUG > 1) { 1596 int states[PACKET_NUM_STATES]; 1597 pkt_count_states(pd, states); 1598 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1599 states[0], states[1], states[2], states[3], 1600 states[4], states[5]); 1601 } 1602 1603 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1604 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1605 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1606 min_sleep_time = pkt->sleep_time; 1607 } 1608 1609 generic_unplug_device(bdev_get_queue(pd->bdev)); 1610 1611 VPRINTK("kcdrwd: sleeping\n"); 1612 residue = schedule_timeout(min_sleep_time); 1613 VPRINTK("kcdrwd: wake up\n"); 1614 1615 /* make swsusp happy with our thread */ 1616 try_to_freeze(); 1617 1618 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1619 if (!pkt->sleep_time) 1620 continue; 1621 pkt->sleep_time -= min_sleep_time - residue; 1622 if (pkt->sleep_time <= 0) { 1623 pkt->sleep_time = 0; 1624 atomic_inc(&pkt->run_sm); 1625 } 1626 } 1627 1628 if (kthread_should_stop()) 1629 break; 1630 } 1631 work_to_do: 1632 set_current_state(TASK_RUNNING); 1633 remove_wait_queue(&pd->wqueue, &wait); 1634 1635 if (kthread_should_stop()) 1636 break; 1637 1638 /* 1639 * if pkt_handle_queue returns true, we can queue 1640 * another request. 1641 */ 1642 while (pkt_handle_queue(pd)) 1643 ; 1644 1645 /* 1646 * Handle packet state machine 1647 */ 1648 pkt_handle_packets(pd); 1649 1650 /* 1651 * Handle iosched queues 1652 */ 1653 pkt_iosched_process_queue(pd); 1654 } 1655 1656 return 0; 1657 } 1658 1659 static void pkt_print_settings(struct pktcdvd_device *pd) 1660 { 1661 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable"); 1662 printk("%u blocks, ", pd->settings.size >> 2); 1663 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2'); 1664 } 1665 1666 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1667 { 1668 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1669 1670 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1671 cgc->cmd[2] = page_code | (page_control << 6); 1672 cgc->cmd[7] = cgc->buflen >> 8; 1673 cgc->cmd[8] = cgc->buflen & 0xff; 1674 cgc->data_direction = CGC_DATA_READ; 1675 return pkt_generic_packet(pd, cgc); 1676 } 1677 1678 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1679 { 1680 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1681 memset(cgc->buffer, 0, 2); 1682 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1683 cgc->cmd[1] = 0x10; /* PF */ 1684 cgc->cmd[7] = cgc->buflen >> 8; 1685 cgc->cmd[8] = cgc->buflen & 0xff; 1686 cgc->data_direction = CGC_DATA_WRITE; 1687 return pkt_generic_packet(pd, cgc); 1688 } 1689 1690 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1691 { 1692 struct packet_command cgc; 1693 int ret; 1694 1695 /* set up command and get the disc info */ 1696 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1697 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1698 cgc.cmd[8] = cgc.buflen = 2; 1699 cgc.quiet = 1; 1700 1701 if ((ret = pkt_generic_packet(pd, &cgc))) 1702 return ret; 1703 1704 /* not all drives have the same disc_info length, so requeue 1705 * packet with the length the drive tells us it can supply 1706 */ 1707 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1708 sizeof(di->disc_information_length); 1709 1710 if (cgc.buflen > sizeof(disc_information)) 1711 cgc.buflen = sizeof(disc_information); 1712 1713 cgc.cmd[8] = cgc.buflen; 1714 return pkt_generic_packet(pd, &cgc); 1715 } 1716 1717 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1718 { 1719 struct packet_command cgc; 1720 int ret; 1721 1722 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1723 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1724 cgc.cmd[1] = type & 3; 1725 cgc.cmd[4] = (track & 0xff00) >> 8; 1726 cgc.cmd[5] = track & 0xff; 1727 cgc.cmd[8] = 8; 1728 cgc.quiet = 1; 1729 1730 if ((ret = pkt_generic_packet(pd, &cgc))) 1731 return ret; 1732 1733 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1734 sizeof(ti->track_information_length); 1735 1736 if (cgc.buflen > sizeof(track_information)) 1737 cgc.buflen = sizeof(track_information); 1738 1739 cgc.cmd[8] = cgc.buflen; 1740 return pkt_generic_packet(pd, &cgc); 1741 } 1742 1743 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd, 1744 long *last_written) 1745 { 1746 disc_information di; 1747 track_information ti; 1748 __u32 last_track; 1749 int ret = -1; 1750 1751 if ((ret = pkt_get_disc_info(pd, &di))) 1752 return ret; 1753 1754 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1755 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1756 return ret; 1757 1758 /* if this track is blank, try the previous. */ 1759 if (ti.blank) { 1760 last_track--; 1761 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1762 return ret; 1763 } 1764 1765 /* if last recorded field is valid, return it. */ 1766 if (ti.lra_v) { 1767 *last_written = be32_to_cpu(ti.last_rec_address); 1768 } else { 1769 /* make it up instead */ 1770 *last_written = be32_to_cpu(ti.track_start) + 1771 be32_to_cpu(ti.track_size); 1772 if (ti.free_blocks) 1773 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1774 } 1775 return 0; 1776 } 1777 1778 /* 1779 * write mode select package based on pd->settings 1780 */ 1781 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd) 1782 { 1783 struct packet_command cgc; 1784 struct request_sense sense; 1785 write_param_page *wp; 1786 char buffer[128]; 1787 int ret, size; 1788 1789 /* doesn't apply to DVD+RW or DVD-RAM */ 1790 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1791 return 0; 1792 1793 memset(buffer, 0, sizeof(buffer)); 1794 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1795 cgc.sense = &sense; 1796 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1797 pkt_dump_sense(&cgc); 1798 return ret; 1799 } 1800 1801 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1802 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1803 if (size > sizeof(buffer)) 1804 size = sizeof(buffer); 1805 1806 /* 1807 * now get it all 1808 */ 1809 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1810 cgc.sense = &sense; 1811 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1812 pkt_dump_sense(&cgc); 1813 return ret; 1814 } 1815 1816 /* 1817 * write page is offset header + block descriptor length 1818 */ 1819 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1820 1821 wp->fp = pd->settings.fp; 1822 wp->track_mode = pd->settings.track_mode; 1823 wp->write_type = pd->settings.write_type; 1824 wp->data_block_type = pd->settings.block_mode; 1825 1826 wp->multi_session = 0; 1827 1828 #ifdef PACKET_USE_LS 1829 wp->link_size = 7; 1830 wp->ls_v = 1; 1831 #endif 1832 1833 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1834 wp->session_format = 0; 1835 wp->subhdr2 = 0x20; 1836 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1837 wp->session_format = 0x20; 1838 wp->subhdr2 = 8; 1839 #if 0 1840 wp->mcn[0] = 0x80; 1841 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1842 #endif 1843 } else { 1844 /* 1845 * paranoia 1846 */ 1847 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type); 1848 return 1; 1849 } 1850 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1851 1852 cgc.buflen = cgc.cmd[8] = size; 1853 if ((ret = pkt_mode_select(pd, &cgc))) { 1854 pkt_dump_sense(&cgc); 1855 return ret; 1856 } 1857 1858 pkt_print_settings(pd); 1859 return 0; 1860 } 1861 1862 /* 1863 * 1 -- we can write to this track, 0 -- we can't 1864 */ 1865 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1866 { 1867 switch (pd->mmc3_profile) { 1868 case 0x1a: /* DVD+RW */ 1869 case 0x12: /* DVD-RAM */ 1870 /* The track is always writable on DVD+RW/DVD-RAM */ 1871 return 1; 1872 default: 1873 break; 1874 } 1875 1876 if (!ti->packet || !ti->fp) 1877 return 0; 1878 1879 /* 1880 * "good" settings as per Mt Fuji. 1881 */ 1882 if (ti->rt == 0 && ti->blank == 0) 1883 return 1; 1884 1885 if (ti->rt == 0 && ti->blank == 1) 1886 return 1; 1887 1888 if (ti->rt == 1 && ti->blank == 0) 1889 return 1; 1890 1891 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1892 return 0; 1893 } 1894 1895 /* 1896 * 1 -- we can write to this disc, 0 -- we can't 1897 */ 1898 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1899 { 1900 switch (pd->mmc3_profile) { 1901 case 0x0a: /* CD-RW */ 1902 case 0xffff: /* MMC3 not supported */ 1903 break; 1904 case 0x1a: /* DVD+RW */ 1905 case 0x13: /* DVD-RW */ 1906 case 0x12: /* DVD-RAM */ 1907 return 1; 1908 default: 1909 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile); 1910 return 0; 1911 } 1912 1913 /* 1914 * for disc type 0xff we should probably reserve a new track. 1915 * but i'm not sure, should we leave this to user apps? probably. 1916 */ 1917 if (di->disc_type == 0xff) { 1918 printk(DRIVER_NAME": Unknown disc. No track?\n"); 1919 return 0; 1920 } 1921 1922 if (di->disc_type != 0x20 && di->disc_type != 0) { 1923 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type); 1924 return 0; 1925 } 1926 1927 if (di->erasable == 0) { 1928 printk(DRIVER_NAME": Disc not erasable\n"); 1929 return 0; 1930 } 1931 1932 if (di->border_status == PACKET_SESSION_RESERVED) { 1933 printk(DRIVER_NAME": Can't write to last track (reserved)\n"); 1934 return 0; 1935 } 1936 1937 return 1; 1938 } 1939 1940 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd) 1941 { 1942 struct packet_command cgc; 1943 unsigned char buf[12]; 1944 disc_information di; 1945 track_information ti; 1946 int ret, track; 1947 1948 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1949 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1950 cgc.cmd[8] = 8; 1951 ret = pkt_generic_packet(pd, &cgc); 1952 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1953 1954 memset(&di, 0, sizeof(disc_information)); 1955 memset(&ti, 0, sizeof(track_information)); 1956 1957 if ((ret = pkt_get_disc_info(pd, &di))) { 1958 printk("failed get_disc\n"); 1959 return ret; 1960 } 1961 1962 if (!pkt_writable_disc(pd, &di)) 1963 return -EROFS; 1964 1965 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 1966 1967 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 1968 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 1969 printk(DRIVER_NAME": failed get_track\n"); 1970 return ret; 1971 } 1972 1973 if (!pkt_writable_track(pd, &ti)) { 1974 printk(DRIVER_NAME": can't write to this track\n"); 1975 return -EROFS; 1976 } 1977 1978 /* 1979 * we keep packet size in 512 byte units, makes it easier to 1980 * deal with request calculations. 1981 */ 1982 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 1983 if (pd->settings.size == 0) { 1984 printk(DRIVER_NAME": detected zero packet size!\n"); 1985 return -ENXIO; 1986 } 1987 if (pd->settings.size > PACKET_MAX_SECTORS) { 1988 printk(DRIVER_NAME": packet size is too big\n"); 1989 return -EROFS; 1990 } 1991 pd->settings.fp = ti.fp; 1992 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 1993 1994 if (ti.nwa_v) { 1995 pd->nwa = be32_to_cpu(ti.next_writable); 1996 set_bit(PACKET_NWA_VALID, &pd->flags); 1997 } 1998 1999 /* 2000 * in theory we could use lra on -RW media as well and just zero 2001 * blocks that haven't been written yet, but in practice that 2002 * is just a no-go. we'll use that for -R, naturally. 2003 */ 2004 if (ti.lra_v) { 2005 pd->lra = be32_to_cpu(ti.last_rec_address); 2006 set_bit(PACKET_LRA_VALID, &pd->flags); 2007 } else { 2008 pd->lra = 0xffffffff; 2009 set_bit(PACKET_LRA_VALID, &pd->flags); 2010 } 2011 2012 /* 2013 * fine for now 2014 */ 2015 pd->settings.link_loss = 7; 2016 pd->settings.write_type = 0; /* packet */ 2017 pd->settings.track_mode = ti.track_mode; 2018 2019 /* 2020 * mode1 or mode2 disc 2021 */ 2022 switch (ti.data_mode) { 2023 case PACKET_MODE1: 2024 pd->settings.block_mode = PACKET_BLOCK_MODE1; 2025 break; 2026 case PACKET_MODE2: 2027 pd->settings.block_mode = PACKET_BLOCK_MODE2; 2028 break; 2029 default: 2030 printk(DRIVER_NAME": unknown data mode\n"); 2031 return -EROFS; 2032 } 2033 return 0; 2034 } 2035 2036 /* 2037 * enable/disable write caching on drive 2038 */ 2039 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd, 2040 int set) 2041 { 2042 struct packet_command cgc; 2043 struct request_sense sense; 2044 unsigned char buf[64]; 2045 int ret; 2046 2047 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 2048 cgc.sense = &sense; 2049 cgc.buflen = pd->mode_offset + 12; 2050 2051 /* 2052 * caching mode page might not be there, so quiet this command 2053 */ 2054 cgc.quiet = 1; 2055 2056 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 2057 return ret; 2058 2059 buf[pd->mode_offset + 10] |= (!!set << 2); 2060 2061 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 2062 ret = pkt_mode_select(pd, &cgc); 2063 if (ret) { 2064 printk(DRIVER_NAME": write caching control failed\n"); 2065 pkt_dump_sense(&cgc); 2066 } else if (!ret && set) 2067 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name); 2068 return ret; 2069 } 2070 2071 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 2072 { 2073 struct packet_command cgc; 2074 2075 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2076 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 2077 cgc.cmd[4] = lockflag ? 1 : 0; 2078 return pkt_generic_packet(pd, &cgc); 2079 } 2080 2081 /* 2082 * Returns drive maximum write speed 2083 */ 2084 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd, 2085 unsigned *write_speed) 2086 { 2087 struct packet_command cgc; 2088 struct request_sense sense; 2089 unsigned char buf[256+18]; 2090 unsigned char *cap_buf; 2091 int ret, offset; 2092 2093 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 2094 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 2095 cgc.sense = &sense; 2096 2097 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2098 if (ret) { 2099 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 2100 sizeof(struct mode_page_header); 2101 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2102 if (ret) { 2103 pkt_dump_sense(&cgc); 2104 return ret; 2105 } 2106 } 2107 2108 offset = 20; /* Obsoleted field, used by older drives */ 2109 if (cap_buf[1] >= 28) 2110 offset = 28; /* Current write speed selected */ 2111 if (cap_buf[1] >= 30) { 2112 /* If the drive reports at least one "Logical Unit Write 2113 * Speed Performance Descriptor Block", use the information 2114 * in the first block. (contains the highest speed) 2115 */ 2116 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 2117 if (num_spdb > 0) 2118 offset = 34; 2119 } 2120 2121 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 2122 return 0; 2123 } 2124 2125 /* These tables from cdrecord - I don't have orange book */ 2126 /* standard speed CD-RW (1-4x) */ 2127 static char clv_to_speed[16] = { 2128 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2129 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2130 }; 2131 /* high speed CD-RW (-10x) */ 2132 static char hs_clv_to_speed[16] = { 2133 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2134 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2135 }; 2136 /* ultra high speed CD-RW */ 2137 static char us_clv_to_speed[16] = { 2138 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2139 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 2140 }; 2141 2142 /* 2143 * reads the maximum media speed from ATIP 2144 */ 2145 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd, 2146 unsigned *speed) 2147 { 2148 struct packet_command cgc; 2149 struct request_sense sense; 2150 unsigned char buf[64]; 2151 unsigned int size, st, sp; 2152 int ret; 2153 2154 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 2155 cgc.sense = &sense; 2156 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2157 cgc.cmd[1] = 2; 2158 cgc.cmd[2] = 4; /* READ ATIP */ 2159 cgc.cmd[8] = 2; 2160 ret = pkt_generic_packet(pd, &cgc); 2161 if (ret) { 2162 pkt_dump_sense(&cgc); 2163 return ret; 2164 } 2165 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 2166 if (size > sizeof(buf)) 2167 size = sizeof(buf); 2168 2169 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2170 cgc.sense = &sense; 2171 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2172 cgc.cmd[1] = 2; 2173 cgc.cmd[2] = 4; 2174 cgc.cmd[8] = size; 2175 ret = pkt_generic_packet(pd, &cgc); 2176 if (ret) { 2177 pkt_dump_sense(&cgc); 2178 return ret; 2179 } 2180 2181 if (!(buf[6] & 0x40)) { 2182 printk(DRIVER_NAME": Disc type is not CD-RW\n"); 2183 return 1; 2184 } 2185 if (!(buf[6] & 0x4)) { 2186 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n"); 2187 return 1; 2188 } 2189 2190 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2191 2192 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2193 2194 /* Info from cdrecord */ 2195 switch (st) { 2196 case 0: /* standard speed */ 2197 *speed = clv_to_speed[sp]; 2198 break; 2199 case 1: /* high speed */ 2200 *speed = hs_clv_to_speed[sp]; 2201 break; 2202 case 2: /* ultra high speed */ 2203 *speed = us_clv_to_speed[sp]; 2204 break; 2205 default: 2206 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st); 2207 return 1; 2208 } 2209 if (*speed) { 2210 printk(DRIVER_NAME": Max. media speed: %d\n",*speed); 2211 return 0; 2212 } else { 2213 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st); 2214 return 1; 2215 } 2216 } 2217 2218 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd) 2219 { 2220 struct packet_command cgc; 2221 struct request_sense sense; 2222 int ret; 2223 2224 VPRINTK(DRIVER_NAME": Performing OPC\n"); 2225 2226 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2227 cgc.sense = &sense; 2228 cgc.timeout = 60*HZ; 2229 cgc.cmd[0] = GPCMD_SEND_OPC; 2230 cgc.cmd[1] = 1; 2231 if ((ret = pkt_generic_packet(pd, &cgc))) 2232 pkt_dump_sense(&cgc); 2233 return ret; 2234 } 2235 2236 static int pkt_open_write(struct pktcdvd_device *pd) 2237 { 2238 int ret; 2239 unsigned int write_speed, media_write_speed, read_speed; 2240 2241 if ((ret = pkt_probe_settings(pd))) { 2242 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name); 2243 return ret; 2244 } 2245 2246 if ((ret = pkt_set_write_settings(pd))) { 2247 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name); 2248 return -EIO; 2249 } 2250 2251 pkt_write_caching(pd, USE_WCACHING); 2252 2253 if ((ret = pkt_get_max_speed(pd, &write_speed))) 2254 write_speed = 16 * 177; 2255 switch (pd->mmc3_profile) { 2256 case 0x13: /* DVD-RW */ 2257 case 0x1a: /* DVD+RW */ 2258 case 0x12: /* DVD-RAM */ 2259 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed); 2260 break; 2261 default: 2262 if ((ret = pkt_media_speed(pd, &media_write_speed))) 2263 media_write_speed = 16; 2264 write_speed = min(write_speed, media_write_speed * 177); 2265 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176); 2266 break; 2267 } 2268 read_speed = write_speed; 2269 2270 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 2271 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name); 2272 return -EIO; 2273 } 2274 pd->write_speed = write_speed; 2275 pd->read_speed = read_speed; 2276 2277 if ((ret = pkt_perform_opc(pd))) { 2278 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name); 2279 } 2280 2281 return 0; 2282 } 2283 2284 /* 2285 * called at open time. 2286 */ 2287 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write) 2288 { 2289 int ret; 2290 long lba; 2291 struct request_queue *q; 2292 2293 /* 2294 * We need to re-open the cdrom device without O_NONBLOCK to be able 2295 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2296 * so bdget() can't fail. 2297 */ 2298 bdget(pd->bdev->bd_dev); 2299 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd))) 2300 goto out; 2301 2302 if ((ret = pkt_get_last_written(pd, &lba))) { 2303 printk(DRIVER_NAME": pkt_get_last_written failed\n"); 2304 goto out_putdev; 2305 } 2306 2307 set_capacity(pd->disk, lba << 2); 2308 set_capacity(pd->bdev->bd_disk, lba << 2); 2309 bd_set_size(pd->bdev, (loff_t)lba << 11); 2310 2311 q = bdev_get_queue(pd->bdev); 2312 if (write) { 2313 if ((ret = pkt_open_write(pd))) 2314 goto out_putdev; 2315 /* 2316 * Some CDRW drives can not handle writes larger than one packet, 2317 * even if the size is a multiple of the packet size. 2318 */ 2319 spin_lock_irq(q->queue_lock); 2320 blk_queue_max_hw_sectors(q, pd->settings.size); 2321 spin_unlock_irq(q->queue_lock); 2322 set_bit(PACKET_WRITABLE, &pd->flags); 2323 } else { 2324 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2325 clear_bit(PACKET_WRITABLE, &pd->flags); 2326 } 2327 2328 if ((ret = pkt_set_segment_merging(pd, q))) 2329 goto out_putdev; 2330 2331 if (write) { 2332 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2333 printk(DRIVER_NAME": not enough memory for buffers\n"); 2334 ret = -ENOMEM; 2335 goto out_putdev; 2336 } 2337 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1); 2338 } 2339 2340 return 0; 2341 2342 out_putdev: 2343 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL); 2344 out: 2345 return ret; 2346 } 2347 2348 /* 2349 * called when the device is closed. makes sure that the device flushes 2350 * the internal cache before we close. 2351 */ 2352 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2353 { 2354 if (flush && pkt_flush_cache(pd)) 2355 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name); 2356 2357 pkt_lock_door(pd, 0); 2358 2359 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2360 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL); 2361 2362 pkt_shrink_pktlist(pd); 2363 } 2364 2365 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor) 2366 { 2367 if (dev_minor >= MAX_WRITERS) 2368 return NULL; 2369 return pkt_devs[dev_minor]; 2370 } 2371 2372 static int pkt_open(struct block_device *bdev, fmode_t mode) 2373 { 2374 struct pktcdvd_device *pd = NULL; 2375 int ret; 2376 2377 VPRINTK(DRIVER_NAME": entering open\n"); 2378 2379 mutex_lock(&pktcdvd_mutex); 2380 mutex_lock(&ctl_mutex); 2381 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev)); 2382 if (!pd) { 2383 ret = -ENODEV; 2384 goto out; 2385 } 2386 BUG_ON(pd->refcnt < 0); 2387 2388 pd->refcnt++; 2389 if (pd->refcnt > 1) { 2390 if ((mode & FMODE_WRITE) && 2391 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2392 ret = -EBUSY; 2393 goto out_dec; 2394 } 2395 } else { 2396 ret = pkt_open_dev(pd, mode & FMODE_WRITE); 2397 if (ret) 2398 goto out_dec; 2399 /* 2400 * needed here as well, since ext2 (among others) may change 2401 * the blocksize at mount time 2402 */ 2403 set_blocksize(bdev, CD_FRAMESIZE); 2404 } 2405 2406 mutex_unlock(&ctl_mutex); 2407 mutex_unlock(&pktcdvd_mutex); 2408 return 0; 2409 2410 out_dec: 2411 pd->refcnt--; 2412 out: 2413 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret); 2414 mutex_unlock(&ctl_mutex); 2415 mutex_unlock(&pktcdvd_mutex); 2416 return ret; 2417 } 2418 2419 static int pkt_close(struct gendisk *disk, fmode_t mode) 2420 { 2421 struct pktcdvd_device *pd = disk->private_data; 2422 int ret = 0; 2423 2424 mutex_lock(&pktcdvd_mutex); 2425 mutex_lock(&ctl_mutex); 2426 pd->refcnt--; 2427 BUG_ON(pd->refcnt < 0); 2428 if (pd->refcnt == 0) { 2429 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2430 pkt_release_dev(pd, flush); 2431 } 2432 mutex_unlock(&ctl_mutex); 2433 mutex_unlock(&pktcdvd_mutex); 2434 return ret; 2435 } 2436 2437 2438 static void pkt_end_io_read_cloned(struct bio *bio, int err) 2439 { 2440 struct packet_stacked_data *psd = bio->bi_private; 2441 struct pktcdvd_device *pd = psd->pd; 2442 2443 bio_put(bio); 2444 bio_endio(psd->bio, err); 2445 mempool_free(psd, psd_pool); 2446 pkt_bio_finished(pd); 2447 } 2448 2449 static int pkt_make_request(struct request_queue *q, struct bio *bio) 2450 { 2451 struct pktcdvd_device *pd; 2452 char b[BDEVNAME_SIZE]; 2453 sector_t zone; 2454 struct packet_data *pkt; 2455 int was_empty, blocked_bio; 2456 struct pkt_rb_node *node; 2457 2458 pd = q->queuedata; 2459 if (!pd) { 2460 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b)); 2461 goto end_io; 2462 } 2463 2464 /* 2465 * Clone READ bios so we can have our own bi_end_io callback. 2466 */ 2467 if (bio_data_dir(bio) == READ) { 2468 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); 2469 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2470 2471 psd->pd = pd; 2472 psd->bio = bio; 2473 cloned_bio->bi_bdev = pd->bdev; 2474 cloned_bio->bi_private = psd; 2475 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2476 pd->stats.secs_r += bio->bi_size >> 9; 2477 pkt_queue_bio(pd, cloned_bio); 2478 return 0; 2479 } 2480 2481 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2482 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n", 2483 pd->name, (unsigned long long)bio->bi_sector); 2484 goto end_io; 2485 } 2486 2487 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) { 2488 printk(DRIVER_NAME": wrong bio size\n"); 2489 goto end_io; 2490 } 2491 2492 blk_queue_bounce(q, &bio); 2493 2494 zone = ZONE(bio->bi_sector, pd); 2495 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n", 2496 (unsigned long long)bio->bi_sector, 2497 (unsigned long long)(bio->bi_sector + bio_sectors(bio))); 2498 2499 /* Check if we have to split the bio */ 2500 { 2501 struct bio_pair *bp; 2502 sector_t last_zone; 2503 int first_sectors; 2504 2505 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd); 2506 if (last_zone != zone) { 2507 BUG_ON(last_zone != zone + pd->settings.size); 2508 first_sectors = last_zone - bio->bi_sector; 2509 bp = bio_split(bio, first_sectors); 2510 BUG_ON(!bp); 2511 pkt_make_request(q, &bp->bio1); 2512 pkt_make_request(q, &bp->bio2); 2513 bio_pair_release(bp); 2514 return 0; 2515 } 2516 } 2517 2518 /* 2519 * If we find a matching packet in state WAITING or READ_WAIT, we can 2520 * just append this bio to that packet. 2521 */ 2522 spin_lock(&pd->cdrw.active_list_lock); 2523 blocked_bio = 0; 2524 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2525 if (pkt->sector == zone) { 2526 spin_lock(&pkt->lock); 2527 if ((pkt->state == PACKET_WAITING_STATE) || 2528 (pkt->state == PACKET_READ_WAIT_STATE)) { 2529 bio_list_add(&pkt->orig_bios, bio); 2530 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 2531 if ((pkt->write_size >= pkt->frames) && 2532 (pkt->state == PACKET_WAITING_STATE)) { 2533 atomic_inc(&pkt->run_sm); 2534 wake_up(&pd->wqueue); 2535 } 2536 spin_unlock(&pkt->lock); 2537 spin_unlock(&pd->cdrw.active_list_lock); 2538 return 0; 2539 } else { 2540 blocked_bio = 1; 2541 } 2542 spin_unlock(&pkt->lock); 2543 } 2544 } 2545 spin_unlock(&pd->cdrw.active_list_lock); 2546 2547 /* 2548 * Test if there is enough room left in the bio work queue 2549 * (queue size >= congestion on mark). 2550 * If not, wait till the work queue size is below the congestion off mark. 2551 */ 2552 spin_lock(&pd->lock); 2553 if (pd->write_congestion_on > 0 2554 && pd->bio_queue_size >= pd->write_congestion_on) { 2555 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC); 2556 do { 2557 spin_unlock(&pd->lock); 2558 congestion_wait(BLK_RW_ASYNC, HZ); 2559 spin_lock(&pd->lock); 2560 } while(pd->bio_queue_size > pd->write_congestion_off); 2561 } 2562 spin_unlock(&pd->lock); 2563 2564 /* 2565 * No matching packet found. Store the bio in the work queue. 2566 */ 2567 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2568 node->bio = bio; 2569 spin_lock(&pd->lock); 2570 BUG_ON(pd->bio_queue_size < 0); 2571 was_empty = (pd->bio_queue_size == 0); 2572 pkt_rbtree_insert(pd, node); 2573 spin_unlock(&pd->lock); 2574 2575 /* 2576 * Wake up the worker thread. 2577 */ 2578 atomic_set(&pd->scan_queue, 1); 2579 if (was_empty) { 2580 /* This wake_up is required for correct operation */ 2581 wake_up(&pd->wqueue); 2582 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2583 /* 2584 * This wake up is not required for correct operation, 2585 * but improves performance in some cases. 2586 */ 2587 wake_up(&pd->wqueue); 2588 } 2589 return 0; 2590 end_io: 2591 bio_io_error(bio); 2592 return 0; 2593 } 2594 2595 2596 2597 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 2598 struct bio_vec *bvec) 2599 { 2600 struct pktcdvd_device *pd = q->queuedata; 2601 sector_t zone = ZONE(bmd->bi_sector, pd); 2602 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size; 2603 int remaining = (pd->settings.size << 9) - used; 2604 int remaining2; 2605 2606 /* 2607 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet 2608 * boundary, pkt_make_request() will split the bio. 2609 */ 2610 remaining2 = PAGE_SIZE - bmd->bi_size; 2611 remaining = max(remaining, remaining2); 2612 2613 BUG_ON(remaining < 0); 2614 return remaining; 2615 } 2616 2617 static void pkt_init_queue(struct pktcdvd_device *pd) 2618 { 2619 struct request_queue *q = pd->disk->queue; 2620 2621 blk_queue_make_request(q, pkt_make_request); 2622 blk_queue_logical_block_size(q, CD_FRAMESIZE); 2623 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS); 2624 blk_queue_merge_bvec(q, pkt_merge_bvec); 2625 q->queuedata = pd; 2626 } 2627 2628 static int pkt_seq_show(struct seq_file *m, void *p) 2629 { 2630 struct pktcdvd_device *pd = m->private; 2631 char *msg; 2632 char bdev_buf[BDEVNAME_SIZE]; 2633 int states[PACKET_NUM_STATES]; 2634 2635 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2636 bdevname(pd->bdev, bdev_buf)); 2637 2638 seq_printf(m, "\nSettings:\n"); 2639 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2640 2641 if (pd->settings.write_type == 0) 2642 msg = "Packet"; 2643 else 2644 msg = "Unknown"; 2645 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2646 2647 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2648 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2649 2650 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2651 2652 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2653 msg = "Mode 1"; 2654 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2655 msg = "Mode 2"; 2656 else 2657 msg = "Unknown"; 2658 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2659 2660 seq_printf(m, "\nStatistics:\n"); 2661 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2662 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2663 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2664 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2665 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2666 2667 seq_printf(m, "\nMisc:\n"); 2668 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2669 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2670 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2671 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2672 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2673 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2674 2675 seq_printf(m, "\nQueue state:\n"); 2676 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2677 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2678 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2679 2680 pkt_count_states(pd, states); 2681 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2682 states[0], states[1], states[2], states[3], states[4], states[5]); 2683 2684 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 2685 pd->write_congestion_off, 2686 pd->write_congestion_on); 2687 return 0; 2688 } 2689 2690 static int pkt_seq_open(struct inode *inode, struct file *file) 2691 { 2692 return single_open(file, pkt_seq_show, PDE(inode)->data); 2693 } 2694 2695 static const struct file_operations pkt_proc_fops = { 2696 .open = pkt_seq_open, 2697 .read = seq_read, 2698 .llseek = seq_lseek, 2699 .release = single_release 2700 }; 2701 2702 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2703 { 2704 int i; 2705 int ret = 0; 2706 char b[BDEVNAME_SIZE]; 2707 struct block_device *bdev; 2708 2709 if (pd->pkt_dev == dev) { 2710 printk(DRIVER_NAME": Recursive setup not allowed\n"); 2711 return -EBUSY; 2712 } 2713 for (i = 0; i < MAX_WRITERS; i++) { 2714 struct pktcdvd_device *pd2 = pkt_devs[i]; 2715 if (!pd2) 2716 continue; 2717 if (pd2->bdev->bd_dev == dev) { 2718 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b)); 2719 return -EBUSY; 2720 } 2721 if (pd2->pkt_dev == dev) { 2722 printk(DRIVER_NAME": Can't chain pktcdvd devices\n"); 2723 return -EBUSY; 2724 } 2725 } 2726 2727 bdev = bdget(dev); 2728 if (!bdev) 2729 return -ENOMEM; 2730 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL); 2731 if (ret) 2732 return ret; 2733 2734 /* This is safe, since we have a reference from open(). */ 2735 __module_get(THIS_MODULE); 2736 2737 pd->bdev = bdev; 2738 set_blocksize(bdev, CD_FRAMESIZE); 2739 2740 pkt_init_queue(pd); 2741 2742 atomic_set(&pd->cdrw.pending_bios, 0); 2743 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2744 if (IS_ERR(pd->cdrw.thread)) { 2745 printk(DRIVER_NAME": can't start kernel thread\n"); 2746 ret = -ENOMEM; 2747 goto out_mem; 2748 } 2749 2750 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd); 2751 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b)); 2752 return 0; 2753 2754 out_mem: 2755 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY); 2756 /* This is safe: open() is still holding a reference. */ 2757 module_put(THIS_MODULE); 2758 return ret; 2759 } 2760 2761 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) 2762 { 2763 struct pktcdvd_device *pd = bdev->bd_disk->private_data; 2764 int ret; 2765 2766 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, 2767 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2768 2769 mutex_lock(&pktcdvd_mutex); 2770 switch (cmd) { 2771 case CDROMEJECT: 2772 /* 2773 * The door gets locked when the device is opened, so we 2774 * have to unlock it or else the eject command fails. 2775 */ 2776 if (pd->refcnt == 1) 2777 pkt_lock_door(pd, 0); 2778 /* fallthru */ 2779 /* 2780 * forward selected CDROM ioctls to CD-ROM, for UDF 2781 */ 2782 case CDROMMULTISESSION: 2783 case CDROMREADTOCENTRY: 2784 case CDROM_LAST_WRITTEN: 2785 case CDROM_SEND_PACKET: 2786 case SCSI_IOCTL_SEND_COMMAND: 2787 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg); 2788 break; 2789 2790 default: 2791 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd); 2792 ret = -ENOTTY; 2793 } 2794 mutex_unlock(&pktcdvd_mutex); 2795 2796 return ret; 2797 } 2798 2799 static int pkt_media_changed(struct gendisk *disk) 2800 { 2801 struct pktcdvd_device *pd = disk->private_data; 2802 struct gendisk *attached_disk; 2803 2804 if (!pd) 2805 return 0; 2806 if (!pd->bdev) 2807 return 0; 2808 attached_disk = pd->bdev->bd_disk; 2809 if (!attached_disk) 2810 return 0; 2811 return attached_disk->fops->media_changed(attached_disk); 2812 } 2813 2814 static const struct block_device_operations pktcdvd_ops = { 2815 .owner = THIS_MODULE, 2816 .open = pkt_open, 2817 .release = pkt_close, 2818 .ioctl = pkt_ioctl, 2819 .media_changed = pkt_media_changed, 2820 }; 2821 2822 static char *pktcdvd_devnode(struct gendisk *gd, mode_t *mode) 2823 { 2824 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name); 2825 } 2826 2827 /* 2828 * Set up mapping from pktcdvd device to CD-ROM device. 2829 */ 2830 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2831 { 2832 int idx; 2833 int ret = -ENOMEM; 2834 struct pktcdvd_device *pd; 2835 struct gendisk *disk; 2836 2837 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2838 2839 for (idx = 0; idx < MAX_WRITERS; idx++) 2840 if (!pkt_devs[idx]) 2841 break; 2842 if (idx == MAX_WRITERS) { 2843 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS); 2844 ret = -EBUSY; 2845 goto out_mutex; 2846 } 2847 2848 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2849 if (!pd) 2850 goto out_mutex; 2851 2852 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE, 2853 sizeof(struct pkt_rb_node)); 2854 if (!pd->rb_pool) 2855 goto out_mem; 2856 2857 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2858 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2859 spin_lock_init(&pd->cdrw.active_list_lock); 2860 2861 spin_lock_init(&pd->lock); 2862 spin_lock_init(&pd->iosched.lock); 2863 bio_list_init(&pd->iosched.read_queue); 2864 bio_list_init(&pd->iosched.write_queue); 2865 sprintf(pd->name, DRIVER_NAME"%d", idx); 2866 init_waitqueue_head(&pd->wqueue); 2867 pd->bio_queue = RB_ROOT; 2868 2869 pd->write_congestion_on = write_congestion_on; 2870 pd->write_congestion_off = write_congestion_off; 2871 2872 disk = alloc_disk(1); 2873 if (!disk) 2874 goto out_mem; 2875 pd->disk = disk; 2876 disk->major = pktdev_major; 2877 disk->first_minor = idx; 2878 disk->fops = &pktcdvd_ops; 2879 disk->flags = GENHD_FL_REMOVABLE; 2880 strcpy(disk->disk_name, pd->name); 2881 disk->devnode = pktcdvd_devnode; 2882 disk->private_data = pd; 2883 disk->queue = blk_alloc_queue(GFP_KERNEL); 2884 if (!disk->queue) 2885 goto out_mem2; 2886 2887 pd->pkt_dev = MKDEV(pktdev_major, idx); 2888 ret = pkt_new_dev(pd, dev); 2889 if (ret) 2890 goto out_new_dev; 2891 2892 add_disk(disk); 2893 2894 pkt_sysfs_dev_new(pd); 2895 pkt_debugfs_dev_new(pd); 2896 2897 pkt_devs[idx] = pd; 2898 if (pkt_dev) 2899 *pkt_dev = pd->pkt_dev; 2900 2901 mutex_unlock(&ctl_mutex); 2902 return 0; 2903 2904 out_new_dev: 2905 blk_cleanup_queue(disk->queue); 2906 out_mem2: 2907 put_disk(disk); 2908 out_mem: 2909 if (pd->rb_pool) 2910 mempool_destroy(pd->rb_pool); 2911 kfree(pd); 2912 out_mutex: 2913 mutex_unlock(&ctl_mutex); 2914 printk(DRIVER_NAME": setup of pktcdvd device failed\n"); 2915 return ret; 2916 } 2917 2918 /* 2919 * Tear down mapping from pktcdvd device to CD-ROM device. 2920 */ 2921 static int pkt_remove_dev(dev_t pkt_dev) 2922 { 2923 struct pktcdvd_device *pd; 2924 int idx; 2925 int ret = 0; 2926 2927 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2928 2929 for (idx = 0; idx < MAX_WRITERS; idx++) { 2930 pd = pkt_devs[idx]; 2931 if (pd && (pd->pkt_dev == pkt_dev)) 2932 break; 2933 } 2934 if (idx == MAX_WRITERS) { 2935 DPRINTK(DRIVER_NAME": dev not setup\n"); 2936 ret = -ENXIO; 2937 goto out; 2938 } 2939 2940 if (pd->refcnt > 0) { 2941 ret = -EBUSY; 2942 goto out; 2943 } 2944 if (!IS_ERR(pd->cdrw.thread)) 2945 kthread_stop(pd->cdrw.thread); 2946 2947 pkt_devs[idx] = NULL; 2948 2949 pkt_debugfs_dev_remove(pd); 2950 pkt_sysfs_dev_remove(pd); 2951 2952 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY); 2953 2954 remove_proc_entry(pd->name, pkt_proc); 2955 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name); 2956 2957 del_gendisk(pd->disk); 2958 blk_cleanup_queue(pd->disk->queue); 2959 put_disk(pd->disk); 2960 2961 mempool_destroy(pd->rb_pool); 2962 kfree(pd); 2963 2964 /* This is safe: open() is still holding a reference. */ 2965 module_put(THIS_MODULE); 2966 2967 out: 2968 mutex_unlock(&ctl_mutex); 2969 return ret; 2970 } 2971 2972 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 2973 { 2974 struct pktcdvd_device *pd; 2975 2976 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2977 2978 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 2979 if (pd) { 2980 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 2981 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2982 } else { 2983 ctrl_cmd->dev = 0; 2984 ctrl_cmd->pkt_dev = 0; 2985 } 2986 ctrl_cmd->num_devices = MAX_WRITERS; 2987 2988 mutex_unlock(&ctl_mutex); 2989 } 2990 2991 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2992 { 2993 void __user *argp = (void __user *)arg; 2994 struct pkt_ctrl_command ctrl_cmd; 2995 int ret = 0; 2996 dev_t pkt_dev = 0; 2997 2998 if (cmd != PACKET_CTRL_CMD) 2999 return -ENOTTY; 3000 3001 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 3002 return -EFAULT; 3003 3004 switch (ctrl_cmd.command) { 3005 case PKT_CTRL_CMD_SETUP: 3006 if (!capable(CAP_SYS_ADMIN)) 3007 return -EPERM; 3008 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 3009 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 3010 break; 3011 case PKT_CTRL_CMD_TEARDOWN: 3012 if (!capable(CAP_SYS_ADMIN)) 3013 return -EPERM; 3014 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 3015 break; 3016 case PKT_CTRL_CMD_STATUS: 3017 pkt_get_status(&ctrl_cmd); 3018 break; 3019 default: 3020 return -ENOTTY; 3021 } 3022 3023 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 3024 return -EFAULT; 3025 return ret; 3026 } 3027 3028 #ifdef CONFIG_COMPAT 3029 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3030 { 3031 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); 3032 } 3033 #endif 3034 3035 static const struct file_operations pkt_ctl_fops = { 3036 .open = nonseekable_open, 3037 .unlocked_ioctl = pkt_ctl_ioctl, 3038 #ifdef CONFIG_COMPAT 3039 .compat_ioctl = pkt_ctl_compat_ioctl, 3040 #endif 3041 .owner = THIS_MODULE, 3042 .llseek = no_llseek, 3043 }; 3044 3045 static struct miscdevice pkt_misc = { 3046 .minor = MISC_DYNAMIC_MINOR, 3047 .name = DRIVER_NAME, 3048 .nodename = "pktcdvd/control", 3049 .fops = &pkt_ctl_fops 3050 }; 3051 3052 static int __init pkt_init(void) 3053 { 3054 int ret; 3055 3056 mutex_init(&ctl_mutex); 3057 3058 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE, 3059 sizeof(struct packet_stacked_data)); 3060 if (!psd_pool) 3061 return -ENOMEM; 3062 3063 ret = register_blkdev(pktdev_major, DRIVER_NAME); 3064 if (ret < 0) { 3065 printk(DRIVER_NAME": Unable to register block device\n"); 3066 goto out2; 3067 } 3068 if (!pktdev_major) 3069 pktdev_major = ret; 3070 3071 ret = pkt_sysfs_init(); 3072 if (ret) 3073 goto out; 3074 3075 pkt_debugfs_init(); 3076 3077 ret = misc_register(&pkt_misc); 3078 if (ret) { 3079 printk(DRIVER_NAME": Unable to register misc device\n"); 3080 goto out_misc; 3081 } 3082 3083 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL); 3084 3085 return 0; 3086 3087 out_misc: 3088 pkt_debugfs_cleanup(); 3089 pkt_sysfs_cleanup(); 3090 out: 3091 unregister_blkdev(pktdev_major, DRIVER_NAME); 3092 out2: 3093 mempool_destroy(psd_pool); 3094 return ret; 3095 } 3096 3097 static void __exit pkt_exit(void) 3098 { 3099 remove_proc_entry("driver/"DRIVER_NAME, NULL); 3100 misc_deregister(&pkt_misc); 3101 3102 pkt_debugfs_cleanup(); 3103 pkt_sysfs_cleanup(); 3104 3105 unregister_blkdev(pktdev_major, DRIVER_NAME); 3106 mempool_destroy(psd_pool); 3107 } 3108 3109 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 3110 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 3111 MODULE_LICENSE("GPL"); 3112 3113 module_init(pkt_init); 3114 module_exit(pkt_exit); 3115