1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom make_request_fn function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 48 49 #include <linux/pktcdvd.h> 50 #include <linux/module.h> 51 #include <linux/types.h> 52 #include <linux/kernel.h> 53 #include <linux/compat.h> 54 #include <linux/kthread.h> 55 #include <linux/errno.h> 56 #include <linux/spinlock.h> 57 #include <linux/file.h> 58 #include <linux/proc_fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/miscdevice.h> 61 #include <linux/freezer.h> 62 #include <linux/mutex.h> 63 #include <linux/slab.h> 64 #include <linux/backing-dev.h> 65 #include <scsi/scsi_cmnd.h> 66 #include <scsi/scsi_ioctl.h> 67 #include <scsi/scsi.h> 68 #include <linux/debugfs.h> 69 #include <linux/device.h> 70 71 #include <linux/uaccess.h> 72 73 #define DRIVER_NAME "pktcdvd" 74 75 #define pkt_err(pd, fmt, ...) \ 76 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__) 77 #define pkt_notice(pd, fmt, ...) \ 78 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__) 79 #define pkt_info(pd, fmt, ...) \ 80 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__) 81 82 #define pkt_dbg(level, pd, fmt, ...) \ 83 do { \ 84 if (level == 2 && PACKET_DEBUG >= 2) \ 85 pr_notice("%s: %s():" fmt, \ 86 pd->name, __func__, ##__VA_ARGS__); \ 87 else if (level == 1 && PACKET_DEBUG >= 1) \ 88 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \ 89 } while (0) 90 91 #define MAX_SPEED 0xffff 92 93 static DEFINE_MUTEX(pktcdvd_mutex); 94 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 95 static struct proc_dir_entry *pkt_proc; 96 static int pktdev_major; 97 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 98 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 99 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 100 static mempool_t *psd_pool; 101 static struct bio_set *pkt_bio_set; 102 103 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */ 104 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */ 105 106 /* forward declaration */ 107 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 108 static int pkt_remove_dev(dev_t pkt_dev); 109 static int pkt_seq_show(struct seq_file *m, void *p); 110 111 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd) 112 { 113 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1); 114 } 115 116 /* 117 * create and register a pktcdvd kernel object. 118 */ 119 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd, 120 const char* name, 121 struct kobject* parent, 122 struct kobj_type* ktype) 123 { 124 struct pktcdvd_kobj *p; 125 int error; 126 127 p = kzalloc(sizeof(*p), GFP_KERNEL); 128 if (!p) 129 return NULL; 130 p->pd = pd; 131 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name); 132 if (error) { 133 kobject_put(&p->kobj); 134 return NULL; 135 } 136 kobject_uevent(&p->kobj, KOBJ_ADD); 137 return p; 138 } 139 /* 140 * remove a pktcdvd kernel object. 141 */ 142 static void pkt_kobj_remove(struct pktcdvd_kobj *p) 143 { 144 if (p) 145 kobject_put(&p->kobj); 146 } 147 /* 148 * default release function for pktcdvd kernel objects. 149 */ 150 static void pkt_kobj_release(struct kobject *kobj) 151 { 152 kfree(to_pktcdvdkobj(kobj)); 153 } 154 155 156 /********************************************************** 157 * 158 * sysfs interface for pktcdvd 159 * by (C) 2006 Thomas Maier <balagi@justmail.de> 160 * 161 **********************************************************/ 162 163 #define DEF_ATTR(_obj,_name,_mode) \ 164 static struct attribute _obj = { .name = _name, .mode = _mode } 165 166 /********************************************************** 167 /sys/class/pktcdvd/pktcdvd[0-7]/ 168 stat/reset 169 stat/packets_started 170 stat/packets_finished 171 stat/kb_written 172 stat/kb_read 173 stat/kb_read_gather 174 write_queue/size 175 write_queue/congestion_off 176 write_queue/congestion_on 177 **********************************************************/ 178 179 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200); 180 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444); 181 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444); 182 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444); 183 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444); 184 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444); 185 186 static struct attribute *kobj_pkt_attrs_stat[] = { 187 &kobj_pkt_attr_st1, 188 &kobj_pkt_attr_st2, 189 &kobj_pkt_attr_st3, 190 &kobj_pkt_attr_st4, 191 &kobj_pkt_attr_st5, 192 &kobj_pkt_attr_st6, 193 NULL 194 }; 195 196 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444); 197 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644); 198 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644); 199 200 static struct attribute *kobj_pkt_attrs_wqueue[] = { 201 &kobj_pkt_attr_wq1, 202 &kobj_pkt_attr_wq2, 203 &kobj_pkt_attr_wq3, 204 NULL 205 }; 206 207 static ssize_t kobj_pkt_show(struct kobject *kobj, 208 struct attribute *attr, char *data) 209 { 210 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 211 int n = 0; 212 int v; 213 if (strcmp(attr->name, "packets_started") == 0) { 214 n = sprintf(data, "%lu\n", pd->stats.pkt_started); 215 216 } else if (strcmp(attr->name, "packets_finished") == 0) { 217 n = sprintf(data, "%lu\n", pd->stats.pkt_ended); 218 219 } else if (strcmp(attr->name, "kb_written") == 0) { 220 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1); 221 222 } else if (strcmp(attr->name, "kb_read") == 0) { 223 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1); 224 225 } else if (strcmp(attr->name, "kb_read_gather") == 0) { 226 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1); 227 228 } else if (strcmp(attr->name, "size") == 0) { 229 spin_lock(&pd->lock); 230 v = pd->bio_queue_size; 231 spin_unlock(&pd->lock); 232 n = sprintf(data, "%d\n", v); 233 234 } else if (strcmp(attr->name, "congestion_off") == 0) { 235 spin_lock(&pd->lock); 236 v = pd->write_congestion_off; 237 spin_unlock(&pd->lock); 238 n = sprintf(data, "%d\n", v); 239 240 } else if (strcmp(attr->name, "congestion_on") == 0) { 241 spin_lock(&pd->lock); 242 v = pd->write_congestion_on; 243 spin_unlock(&pd->lock); 244 n = sprintf(data, "%d\n", v); 245 } 246 return n; 247 } 248 249 static void init_write_congestion_marks(int* lo, int* hi) 250 { 251 if (*hi > 0) { 252 *hi = max(*hi, 500); 253 *hi = min(*hi, 1000000); 254 if (*lo <= 0) 255 *lo = *hi - 100; 256 else { 257 *lo = min(*lo, *hi - 100); 258 *lo = max(*lo, 100); 259 } 260 } else { 261 *hi = -1; 262 *lo = -1; 263 } 264 } 265 266 static ssize_t kobj_pkt_store(struct kobject *kobj, 267 struct attribute *attr, 268 const char *data, size_t len) 269 { 270 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 271 int val; 272 273 if (strcmp(attr->name, "reset") == 0 && len > 0) { 274 pd->stats.pkt_started = 0; 275 pd->stats.pkt_ended = 0; 276 pd->stats.secs_w = 0; 277 pd->stats.secs_rg = 0; 278 pd->stats.secs_r = 0; 279 280 } else if (strcmp(attr->name, "congestion_off") == 0 281 && sscanf(data, "%d", &val) == 1) { 282 spin_lock(&pd->lock); 283 pd->write_congestion_off = val; 284 init_write_congestion_marks(&pd->write_congestion_off, 285 &pd->write_congestion_on); 286 spin_unlock(&pd->lock); 287 288 } else if (strcmp(attr->name, "congestion_on") == 0 289 && sscanf(data, "%d", &val) == 1) { 290 spin_lock(&pd->lock); 291 pd->write_congestion_on = val; 292 init_write_congestion_marks(&pd->write_congestion_off, 293 &pd->write_congestion_on); 294 spin_unlock(&pd->lock); 295 } 296 return len; 297 } 298 299 static const struct sysfs_ops kobj_pkt_ops = { 300 .show = kobj_pkt_show, 301 .store = kobj_pkt_store 302 }; 303 static struct kobj_type kobj_pkt_type_stat = { 304 .release = pkt_kobj_release, 305 .sysfs_ops = &kobj_pkt_ops, 306 .default_attrs = kobj_pkt_attrs_stat 307 }; 308 static struct kobj_type kobj_pkt_type_wqueue = { 309 .release = pkt_kobj_release, 310 .sysfs_ops = &kobj_pkt_ops, 311 .default_attrs = kobj_pkt_attrs_wqueue 312 }; 313 314 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 315 { 316 if (class_pktcdvd) { 317 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL, 318 "%s", pd->name); 319 if (IS_ERR(pd->dev)) 320 pd->dev = NULL; 321 } 322 if (pd->dev) { 323 pd->kobj_stat = pkt_kobj_create(pd, "stat", 324 &pd->dev->kobj, 325 &kobj_pkt_type_stat); 326 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue", 327 &pd->dev->kobj, 328 &kobj_pkt_type_wqueue); 329 } 330 } 331 332 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 333 { 334 pkt_kobj_remove(pd->kobj_stat); 335 pkt_kobj_remove(pd->kobj_wqueue); 336 if (class_pktcdvd) 337 device_unregister(pd->dev); 338 } 339 340 341 /******************************************************************** 342 /sys/class/pktcdvd/ 343 add map block device 344 remove unmap packet dev 345 device_map show mappings 346 *******************************************************************/ 347 348 static void class_pktcdvd_release(struct class *cls) 349 { 350 kfree(cls); 351 } 352 353 static ssize_t device_map_show(struct class *c, struct class_attribute *attr, 354 char *data) 355 { 356 int n = 0; 357 int idx; 358 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 359 for (idx = 0; idx < MAX_WRITERS; idx++) { 360 struct pktcdvd_device *pd = pkt_devs[idx]; 361 if (!pd) 362 continue; 363 n += sprintf(data+n, "%s %u:%u %u:%u\n", 364 pd->name, 365 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 366 MAJOR(pd->bdev->bd_dev), 367 MINOR(pd->bdev->bd_dev)); 368 } 369 mutex_unlock(&ctl_mutex); 370 return n; 371 } 372 static CLASS_ATTR_RO(device_map); 373 374 static ssize_t add_store(struct class *c, struct class_attribute *attr, 375 const char *buf, size_t count) 376 { 377 unsigned int major, minor; 378 379 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 380 /* pkt_setup_dev() expects caller to hold reference to self */ 381 if (!try_module_get(THIS_MODULE)) 382 return -ENODEV; 383 384 pkt_setup_dev(MKDEV(major, minor), NULL); 385 386 module_put(THIS_MODULE); 387 388 return count; 389 } 390 391 return -EINVAL; 392 } 393 static CLASS_ATTR_WO(add); 394 395 static ssize_t remove_store(struct class *c, struct class_attribute *attr, 396 const char *buf, size_t count) 397 { 398 unsigned int major, minor; 399 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 400 pkt_remove_dev(MKDEV(major, minor)); 401 return count; 402 } 403 return -EINVAL; 404 } 405 static CLASS_ATTR_WO(remove); 406 407 static struct attribute *class_pktcdvd_attrs[] = { 408 &class_attr_add.attr, 409 &class_attr_remove.attr, 410 &class_attr_device_map.attr, 411 NULL, 412 }; 413 ATTRIBUTE_GROUPS(class_pktcdvd); 414 415 static int pkt_sysfs_init(void) 416 { 417 int ret = 0; 418 419 /* 420 * create control files in sysfs 421 * /sys/class/pktcdvd/... 422 */ 423 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL); 424 if (!class_pktcdvd) 425 return -ENOMEM; 426 class_pktcdvd->name = DRIVER_NAME; 427 class_pktcdvd->owner = THIS_MODULE; 428 class_pktcdvd->class_release = class_pktcdvd_release; 429 class_pktcdvd->class_groups = class_pktcdvd_groups; 430 ret = class_register(class_pktcdvd); 431 if (ret) { 432 kfree(class_pktcdvd); 433 class_pktcdvd = NULL; 434 pr_err("failed to create class pktcdvd\n"); 435 return ret; 436 } 437 return 0; 438 } 439 440 static void pkt_sysfs_cleanup(void) 441 { 442 if (class_pktcdvd) 443 class_destroy(class_pktcdvd); 444 class_pktcdvd = NULL; 445 } 446 447 /******************************************************************** 448 entries in debugfs 449 450 /sys/kernel/debug/pktcdvd[0-7]/ 451 info 452 453 *******************************************************************/ 454 455 static int pkt_debugfs_seq_show(struct seq_file *m, void *p) 456 { 457 return pkt_seq_show(m, p); 458 } 459 460 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file) 461 { 462 return single_open(file, pkt_debugfs_seq_show, inode->i_private); 463 } 464 465 static const struct file_operations debug_fops = { 466 .open = pkt_debugfs_fops_open, 467 .read = seq_read, 468 .llseek = seq_lseek, 469 .release = single_release, 470 .owner = THIS_MODULE, 471 }; 472 473 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 474 { 475 if (!pkt_debugfs_root) 476 return; 477 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root); 478 if (!pd->dfs_d_root) 479 return; 480 481 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO, 482 pd->dfs_d_root, pd, &debug_fops); 483 } 484 485 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 486 { 487 if (!pkt_debugfs_root) 488 return; 489 debugfs_remove(pd->dfs_f_info); 490 debugfs_remove(pd->dfs_d_root); 491 pd->dfs_f_info = NULL; 492 pd->dfs_d_root = NULL; 493 } 494 495 static void pkt_debugfs_init(void) 496 { 497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 498 } 499 500 static void pkt_debugfs_cleanup(void) 501 { 502 debugfs_remove(pkt_debugfs_root); 503 pkt_debugfs_root = NULL; 504 } 505 506 /* ----------------------------------------------------------*/ 507 508 509 static void pkt_bio_finished(struct pktcdvd_device *pd) 510 { 511 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 512 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 513 pkt_dbg(2, pd, "queue empty\n"); 514 atomic_set(&pd->iosched.attention, 1); 515 wake_up(&pd->wqueue); 516 } 517 } 518 519 /* 520 * Allocate a packet_data struct 521 */ 522 static struct packet_data *pkt_alloc_packet_data(int frames) 523 { 524 int i; 525 struct packet_data *pkt; 526 527 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 528 if (!pkt) 529 goto no_pkt; 530 531 pkt->frames = frames; 532 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames); 533 if (!pkt->w_bio) 534 goto no_bio; 535 536 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 537 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 538 if (!pkt->pages[i]) 539 goto no_page; 540 } 541 542 spin_lock_init(&pkt->lock); 543 bio_list_init(&pkt->orig_bios); 544 545 for (i = 0; i < frames; i++) { 546 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1); 547 if (!bio) 548 goto no_rd_bio; 549 550 pkt->r_bios[i] = bio; 551 } 552 553 return pkt; 554 555 no_rd_bio: 556 for (i = 0; i < frames; i++) { 557 struct bio *bio = pkt->r_bios[i]; 558 if (bio) 559 bio_put(bio); 560 } 561 562 no_page: 563 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 564 if (pkt->pages[i]) 565 __free_page(pkt->pages[i]); 566 bio_put(pkt->w_bio); 567 no_bio: 568 kfree(pkt); 569 no_pkt: 570 return NULL; 571 } 572 573 /* 574 * Free a packet_data struct 575 */ 576 static void pkt_free_packet_data(struct packet_data *pkt) 577 { 578 int i; 579 580 for (i = 0; i < pkt->frames; i++) { 581 struct bio *bio = pkt->r_bios[i]; 582 if (bio) 583 bio_put(bio); 584 } 585 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 586 __free_page(pkt->pages[i]); 587 bio_put(pkt->w_bio); 588 kfree(pkt); 589 } 590 591 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 592 { 593 struct packet_data *pkt, *next; 594 595 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 596 597 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 598 pkt_free_packet_data(pkt); 599 } 600 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 601 } 602 603 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 604 { 605 struct packet_data *pkt; 606 607 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 608 609 while (nr_packets > 0) { 610 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 611 if (!pkt) { 612 pkt_shrink_pktlist(pd); 613 return 0; 614 } 615 pkt->id = nr_packets; 616 pkt->pd = pd; 617 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 618 nr_packets--; 619 } 620 return 1; 621 } 622 623 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 624 { 625 struct rb_node *n = rb_next(&node->rb_node); 626 if (!n) 627 return NULL; 628 return rb_entry(n, struct pkt_rb_node, rb_node); 629 } 630 631 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 632 { 633 rb_erase(&node->rb_node, &pd->bio_queue); 634 mempool_free(node, pd->rb_pool); 635 pd->bio_queue_size--; 636 BUG_ON(pd->bio_queue_size < 0); 637 } 638 639 /* 640 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 641 */ 642 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 643 { 644 struct rb_node *n = pd->bio_queue.rb_node; 645 struct rb_node *next; 646 struct pkt_rb_node *tmp; 647 648 if (!n) { 649 BUG_ON(pd->bio_queue_size > 0); 650 return NULL; 651 } 652 653 for (;;) { 654 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 655 if (s <= tmp->bio->bi_iter.bi_sector) 656 next = n->rb_left; 657 else 658 next = n->rb_right; 659 if (!next) 660 break; 661 n = next; 662 } 663 664 if (s > tmp->bio->bi_iter.bi_sector) { 665 tmp = pkt_rbtree_next(tmp); 666 if (!tmp) 667 return NULL; 668 } 669 BUG_ON(s > tmp->bio->bi_iter.bi_sector); 670 return tmp; 671 } 672 673 /* 674 * Insert a node into the pd->bio_queue rb tree. 675 */ 676 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 677 { 678 struct rb_node **p = &pd->bio_queue.rb_node; 679 struct rb_node *parent = NULL; 680 sector_t s = node->bio->bi_iter.bi_sector; 681 struct pkt_rb_node *tmp; 682 683 while (*p) { 684 parent = *p; 685 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 686 if (s < tmp->bio->bi_iter.bi_sector) 687 p = &(*p)->rb_left; 688 else 689 p = &(*p)->rb_right; 690 } 691 rb_link_node(&node->rb_node, parent, p); 692 rb_insert_color(&node->rb_node, &pd->bio_queue); 693 pd->bio_queue_size++; 694 } 695 696 /* 697 * Send a packet_command to the underlying block device and 698 * wait for completion. 699 */ 700 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 701 { 702 struct request_queue *q = bdev_get_queue(pd->bdev); 703 struct request *rq; 704 int ret = 0; 705 706 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 707 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM); 708 if (IS_ERR(rq)) 709 return PTR_ERR(rq); 710 711 if (cgc->buflen) { 712 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, 713 __GFP_RECLAIM); 714 if (ret) 715 goto out; 716 } 717 718 scsi_req(rq)->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 719 memcpy(scsi_req(rq)->cmd, cgc->cmd, CDROM_PACKET_SIZE); 720 721 rq->timeout = 60*HZ; 722 if (cgc->quiet) 723 rq->rq_flags |= RQF_QUIET; 724 725 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0); 726 if (scsi_req(rq)->result) 727 ret = -EIO; 728 out: 729 blk_put_request(rq); 730 return ret; 731 } 732 733 static const char *sense_key_string(__u8 index) 734 { 735 static const char * const info[] = { 736 "No sense", "Recovered error", "Not ready", 737 "Medium error", "Hardware error", "Illegal request", 738 "Unit attention", "Data protect", "Blank check", 739 }; 740 741 return index < ARRAY_SIZE(info) ? info[index] : "INVALID"; 742 } 743 744 /* 745 * A generic sense dump / resolve mechanism should be implemented across 746 * all ATAPI + SCSI devices. 747 */ 748 static void pkt_dump_sense(struct pktcdvd_device *pd, 749 struct packet_command *cgc) 750 { 751 struct request_sense *sense = cgc->sense; 752 753 if (sense) 754 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n", 755 CDROM_PACKET_SIZE, cgc->cmd, 756 sense->sense_key, sense->asc, sense->ascq, 757 sense_key_string(sense->sense_key)); 758 else 759 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd); 760 } 761 762 /* 763 * flush the drive cache to media 764 */ 765 static int pkt_flush_cache(struct pktcdvd_device *pd) 766 { 767 struct packet_command cgc; 768 769 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 770 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 771 cgc.quiet = 1; 772 773 /* 774 * the IMMED bit -- we default to not setting it, although that 775 * would allow a much faster close, this is safer 776 */ 777 #if 0 778 cgc.cmd[1] = 1 << 1; 779 #endif 780 return pkt_generic_packet(pd, &cgc); 781 } 782 783 /* 784 * speed is given as the normal factor, e.g. 4 for 4x 785 */ 786 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd, 787 unsigned write_speed, unsigned read_speed) 788 { 789 struct packet_command cgc; 790 struct request_sense sense; 791 int ret; 792 793 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 794 cgc.sense = &sense; 795 cgc.cmd[0] = GPCMD_SET_SPEED; 796 cgc.cmd[2] = (read_speed >> 8) & 0xff; 797 cgc.cmd[3] = read_speed & 0xff; 798 cgc.cmd[4] = (write_speed >> 8) & 0xff; 799 cgc.cmd[5] = write_speed & 0xff; 800 801 if ((ret = pkt_generic_packet(pd, &cgc))) 802 pkt_dump_sense(pd, &cgc); 803 804 return ret; 805 } 806 807 /* 808 * Queue a bio for processing by the low-level CD device. Must be called 809 * from process context. 810 */ 811 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 812 { 813 spin_lock(&pd->iosched.lock); 814 if (bio_data_dir(bio) == READ) 815 bio_list_add(&pd->iosched.read_queue, bio); 816 else 817 bio_list_add(&pd->iosched.write_queue, bio); 818 spin_unlock(&pd->iosched.lock); 819 820 atomic_set(&pd->iosched.attention, 1); 821 wake_up(&pd->wqueue); 822 } 823 824 /* 825 * Process the queued read/write requests. This function handles special 826 * requirements for CDRW drives: 827 * - A cache flush command must be inserted before a read request if the 828 * previous request was a write. 829 * - Switching between reading and writing is slow, so don't do it more often 830 * than necessary. 831 * - Optimize for throughput at the expense of latency. This means that streaming 832 * writes will never be interrupted by a read, but if the drive has to seek 833 * before the next write, switch to reading instead if there are any pending 834 * read requests. 835 * - Set the read speed according to current usage pattern. When only reading 836 * from the device, it's best to use the highest possible read speed, but 837 * when switching often between reading and writing, it's better to have the 838 * same read and write speeds. 839 */ 840 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 841 { 842 843 if (atomic_read(&pd->iosched.attention) == 0) 844 return; 845 atomic_set(&pd->iosched.attention, 0); 846 847 for (;;) { 848 struct bio *bio; 849 int reads_queued, writes_queued; 850 851 spin_lock(&pd->iosched.lock); 852 reads_queued = !bio_list_empty(&pd->iosched.read_queue); 853 writes_queued = !bio_list_empty(&pd->iosched.write_queue); 854 spin_unlock(&pd->iosched.lock); 855 856 if (!reads_queued && !writes_queued) 857 break; 858 859 if (pd->iosched.writing) { 860 int need_write_seek = 1; 861 spin_lock(&pd->iosched.lock); 862 bio = bio_list_peek(&pd->iosched.write_queue); 863 spin_unlock(&pd->iosched.lock); 864 if (bio && (bio->bi_iter.bi_sector == 865 pd->iosched.last_write)) 866 need_write_seek = 0; 867 if (need_write_seek && reads_queued) { 868 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 869 pkt_dbg(2, pd, "write, waiting\n"); 870 break; 871 } 872 pkt_flush_cache(pd); 873 pd->iosched.writing = 0; 874 } 875 } else { 876 if (!reads_queued && writes_queued) { 877 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 878 pkt_dbg(2, pd, "read, waiting\n"); 879 break; 880 } 881 pd->iosched.writing = 1; 882 } 883 } 884 885 spin_lock(&pd->iosched.lock); 886 if (pd->iosched.writing) 887 bio = bio_list_pop(&pd->iosched.write_queue); 888 else 889 bio = bio_list_pop(&pd->iosched.read_queue); 890 spin_unlock(&pd->iosched.lock); 891 892 if (!bio) 893 continue; 894 895 if (bio_data_dir(bio) == READ) 896 pd->iosched.successive_reads += 897 bio->bi_iter.bi_size >> 10; 898 else { 899 pd->iosched.successive_reads = 0; 900 pd->iosched.last_write = bio_end_sector(bio); 901 } 902 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 903 if (pd->read_speed == pd->write_speed) { 904 pd->read_speed = MAX_SPEED; 905 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 906 } 907 } else { 908 if (pd->read_speed != pd->write_speed) { 909 pd->read_speed = pd->write_speed; 910 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 911 } 912 } 913 914 atomic_inc(&pd->cdrw.pending_bios); 915 generic_make_request(bio); 916 } 917 } 918 919 /* 920 * Special care is needed if the underlying block device has a small 921 * max_phys_segments value. 922 */ 923 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q) 924 { 925 if ((pd->settings.size << 9) / CD_FRAMESIZE 926 <= queue_max_segments(q)) { 927 /* 928 * The cdrom device can handle one segment/frame 929 */ 930 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 931 return 0; 932 } else if ((pd->settings.size << 9) / PAGE_SIZE 933 <= queue_max_segments(q)) { 934 /* 935 * We can handle this case at the expense of some extra memory 936 * copies during write operations 937 */ 938 set_bit(PACKET_MERGE_SEGS, &pd->flags); 939 return 0; 940 } else { 941 pkt_err(pd, "cdrom max_phys_segments too small\n"); 942 return -EIO; 943 } 944 } 945 946 static void pkt_end_io_read(struct bio *bio) 947 { 948 struct packet_data *pkt = bio->bi_private; 949 struct pktcdvd_device *pd = pkt->pd; 950 BUG_ON(!pd); 951 952 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n", 953 bio, (unsigned long long)pkt->sector, 954 (unsigned long long)bio->bi_iter.bi_sector, bio->bi_status); 955 956 if (bio->bi_status) 957 atomic_inc(&pkt->io_errors); 958 if (atomic_dec_and_test(&pkt->io_wait)) { 959 atomic_inc(&pkt->run_sm); 960 wake_up(&pd->wqueue); 961 } 962 pkt_bio_finished(pd); 963 } 964 965 static void pkt_end_io_packet_write(struct bio *bio) 966 { 967 struct packet_data *pkt = bio->bi_private; 968 struct pktcdvd_device *pd = pkt->pd; 969 BUG_ON(!pd); 970 971 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_status); 972 973 pd->stats.pkt_ended++; 974 975 pkt_bio_finished(pd); 976 atomic_dec(&pkt->io_wait); 977 atomic_inc(&pkt->run_sm); 978 wake_up(&pd->wqueue); 979 } 980 981 /* 982 * Schedule reads for the holes in a packet 983 */ 984 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 985 { 986 int frames_read = 0; 987 struct bio *bio; 988 int f; 989 char written[PACKET_MAX_SIZE]; 990 991 BUG_ON(bio_list_empty(&pkt->orig_bios)); 992 993 atomic_set(&pkt->io_wait, 0); 994 atomic_set(&pkt->io_errors, 0); 995 996 /* 997 * Figure out which frames we need to read before we can write. 998 */ 999 memset(written, 0, sizeof(written)); 1000 spin_lock(&pkt->lock); 1001 bio_list_for_each(bio, &pkt->orig_bios) { 1002 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) / 1003 (CD_FRAMESIZE >> 9); 1004 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE; 1005 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 1006 BUG_ON(first_frame < 0); 1007 BUG_ON(first_frame + num_frames > pkt->frames); 1008 for (f = first_frame; f < first_frame + num_frames; f++) 1009 written[f] = 1; 1010 } 1011 spin_unlock(&pkt->lock); 1012 1013 if (pkt->cache_valid) { 1014 pkt_dbg(2, pd, "zone %llx cached\n", 1015 (unsigned long long)pkt->sector); 1016 goto out_account; 1017 } 1018 1019 /* 1020 * Schedule reads for missing parts of the packet. 1021 */ 1022 for (f = 0; f < pkt->frames; f++) { 1023 int p, offset; 1024 1025 if (written[f]) 1026 continue; 1027 1028 bio = pkt->r_bios[f]; 1029 bio_reset(bio); 1030 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1031 bio->bi_bdev = pd->bdev; 1032 bio->bi_end_io = pkt_end_io_read; 1033 bio->bi_private = pkt; 1034 1035 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1036 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1037 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n", 1038 f, pkt->pages[p], offset); 1039 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1040 BUG(); 1041 1042 atomic_inc(&pkt->io_wait); 1043 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1044 pkt_queue_bio(pd, bio); 1045 frames_read++; 1046 } 1047 1048 out_account: 1049 pkt_dbg(2, pd, "need %d frames for zone %llx\n", 1050 frames_read, (unsigned long long)pkt->sector); 1051 pd->stats.pkt_started++; 1052 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1053 } 1054 1055 /* 1056 * Find a packet matching zone, or the least recently used packet if 1057 * there is no match. 1058 */ 1059 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1060 { 1061 struct packet_data *pkt; 1062 1063 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1064 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1065 list_del_init(&pkt->list); 1066 if (pkt->sector != zone) 1067 pkt->cache_valid = 0; 1068 return pkt; 1069 } 1070 } 1071 BUG(); 1072 return NULL; 1073 } 1074 1075 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1076 { 1077 if (pkt->cache_valid) { 1078 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1079 } else { 1080 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1081 } 1082 } 1083 1084 /* 1085 * recover a failed write, query for relocation if possible 1086 * 1087 * returns 1 if recovery is possible, or 0 if not 1088 * 1089 */ 1090 static int pkt_start_recovery(struct packet_data *pkt) 1091 { 1092 /* 1093 * FIXME. We need help from the file system to implement 1094 * recovery handling. 1095 */ 1096 return 0; 1097 #if 0 1098 struct request *rq = pkt->rq; 1099 struct pktcdvd_device *pd = rq->rq_disk->private_data; 1100 struct block_device *pkt_bdev; 1101 struct super_block *sb = NULL; 1102 unsigned long old_block, new_block; 1103 sector_t new_sector; 1104 1105 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 1106 if (pkt_bdev) { 1107 sb = get_super(pkt_bdev); 1108 bdput(pkt_bdev); 1109 } 1110 1111 if (!sb) 1112 return 0; 1113 1114 if (!sb->s_op->relocate_blocks) 1115 goto out; 1116 1117 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 1118 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 1119 goto out; 1120 1121 new_sector = new_block * (CD_FRAMESIZE >> 9); 1122 pkt->sector = new_sector; 1123 1124 bio_reset(pkt->bio); 1125 pkt->bio->bi_bdev = pd->bdev; 1126 bio_set_op_attrs(pkt->bio, REQ_OP_WRITE, 0); 1127 pkt->bio->bi_iter.bi_sector = new_sector; 1128 pkt->bio->bi_iter.bi_size = pkt->frames * CD_FRAMESIZE; 1129 pkt->bio->bi_vcnt = pkt->frames; 1130 1131 pkt->bio->bi_end_io = pkt_end_io_packet_write; 1132 pkt->bio->bi_private = pkt; 1133 1134 drop_super(sb); 1135 return 1; 1136 1137 out: 1138 drop_super(sb); 1139 return 0; 1140 #endif 1141 } 1142 1143 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 1144 { 1145 #if PACKET_DEBUG > 1 1146 static const char *state_name[] = { 1147 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1148 }; 1149 enum packet_data_state old_state = pkt->state; 1150 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n", 1151 pkt->id, (unsigned long long)pkt->sector, 1152 state_name[old_state], state_name[state]); 1153 #endif 1154 pkt->state = state; 1155 } 1156 1157 /* 1158 * Scan the work queue to see if we can start a new packet. 1159 * returns non-zero if any work was done. 1160 */ 1161 static int pkt_handle_queue(struct pktcdvd_device *pd) 1162 { 1163 struct packet_data *pkt, *p; 1164 struct bio *bio = NULL; 1165 sector_t zone = 0; /* Suppress gcc warning */ 1166 struct pkt_rb_node *node, *first_node; 1167 struct rb_node *n; 1168 int wakeup; 1169 1170 atomic_set(&pd->scan_queue, 0); 1171 1172 if (list_empty(&pd->cdrw.pkt_free_list)) { 1173 pkt_dbg(2, pd, "no pkt\n"); 1174 return 0; 1175 } 1176 1177 /* 1178 * Try to find a zone we are not already working on. 1179 */ 1180 spin_lock(&pd->lock); 1181 first_node = pkt_rbtree_find(pd, pd->current_sector); 1182 if (!first_node) { 1183 n = rb_first(&pd->bio_queue); 1184 if (n) 1185 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1186 } 1187 node = first_node; 1188 while (node) { 1189 bio = node->bio; 1190 zone = get_zone(bio->bi_iter.bi_sector, pd); 1191 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1192 if (p->sector == zone) { 1193 bio = NULL; 1194 goto try_next_bio; 1195 } 1196 } 1197 break; 1198 try_next_bio: 1199 node = pkt_rbtree_next(node); 1200 if (!node) { 1201 n = rb_first(&pd->bio_queue); 1202 if (n) 1203 node = rb_entry(n, struct pkt_rb_node, rb_node); 1204 } 1205 if (node == first_node) 1206 node = NULL; 1207 } 1208 spin_unlock(&pd->lock); 1209 if (!bio) { 1210 pkt_dbg(2, pd, "no bio\n"); 1211 return 0; 1212 } 1213 1214 pkt = pkt_get_packet_data(pd, zone); 1215 1216 pd->current_sector = zone + pd->settings.size; 1217 pkt->sector = zone; 1218 BUG_ON(pkt->frames != pd->settings.size >> 2); 1219 pkt->write_size = 0; 1220 1221 /* 1222 * Scan work queue for bios in the same zone and link them 1223 * to this packet. 1224 */ 1225 spin_lock(&pd->lock); 1226 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone); 1227 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1228 bio = node->bio; 1229 pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long) 1230 get_zone(bio->bi_iter.bi_sector, pd)); 1231 if (get_zone(bio->bi_iter.bi_sector, pd) != zone) 1232 break; 1233 pkt_rbtree_erase(pd, node); 1234 spin_lock(&pkt->lock); 1235 bio_list_add(&pkt->orig_bios, bio); 1236 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE; 1237 spin_unlock(&pkt->lock); 1238 } 1239 /* check write congestion marks, and if bio_queue_size is 1240 below, wake up any waiters */ 1241 wakeup = (pd->write_congestion_on > 0 1242 && pd->bio_queue_size <= pd->write_congestion_off); 1243 spin_unlock(&pd->lock); 1244 if (wakeup) { 1245 clear_bdi_congested(pd->disk->queue->backing_dev_info, 1246 BLK_RW_ASYNC); 1247 } 1248 1249 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1250 pkt_set_state(pkt, PACKET_WAITING_STATE); 1251 atomic_set(&pkt->run_sm, 1); 1252 1253 spin_lock(&pd->cdrw.active_list_lock); 1254 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1255 spin_unlock(&pd->cdrw.active_list_lock); 1256 1257 return 1; 1258 } 1259 1260 /* 1261 * Assemble a bio to write one packet and queue the bio for processing 1262 * by the underlying block device. 1263 */ 1264 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1265 { 1266 int f; 1267 1268 bio_reset(pkt->w_bio); 1269 pkt->w_bio->bi_iter.bi_sector = pkt->sector; 1270 pkt->w_bio->bi_bdev = pd->bdev; 1271 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1272 pkt->w_bio->bi_private = pkt; 1273 1274 /* XXX: locking? */ 1275 for (f = 0; f < pkt->frames; f++) { 1276 struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1277 unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1278 1279 if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset)) 1280 BUG(); 1281 } 1282 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt); 1283 1284 /* 1285 * Fill-in bvec with data from orig_bios. 1286 */ 1287 spin_lock(&pkt->lock); 1288 bio_copy_data(pkt->w_bio, pkt->orig_bios.head); 1289 1290 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1291 spin_unlock(&pkt->lock); 1292 1293 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n", 1294 pkt->write_size, (unsigned long long)pkt->sector); 1295 1296 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) 1297 pkt->cache_valid = 1; 1298 else 1299 pkt->cache_valid = 0; 1300 1301 /* Start the write request */ 1302 atomic_set(&pkt->io_wait, 1); 1303 bio_set_op_attrs(pkt->w_bio, REQ_OP_WRITE, 0); 1304 pkt_queue_bio(pd, pkt->w_bio); 1305 } 1306 1307 static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status) 1308 { 1309 struct bio *bio; 1310 1311 if (status) 1312 pkt->cache_valid = 0; 1313 1314 /* Finish all bios corresponding to this packet */ 1315 while ((bio = bio_list_pop(&pkt->orig_bios))) { 1316 bio->bi_status = status; 1317 bio_endio(bio); 1318 } 1319 } 1320 1321 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1322 { 1323 pkt_dbg(2, pd, "pkt %d\n", pkt->id); 1324 1325 for (;;) { 1326 switch (pkt->state) { 1327 case PACKET_WAITING_STATE: 1328 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1329 return; 1330 1331 pkt->sleep_time = 0; 1332 pkt_gather_data(pd, pkt); 1333 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1334 break; 1335 1336 case PACKET_READ_WAIT_STATE: 1337 if (atomic_read(&pkt->io_wait) > 0) 1338 return; 1339 1340 if (atomic_read(&pkt->io_errors) > 0) { 1341 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1342 } else { 1343 pkt_start_write(pd, pkt); 1344 } 1345 break; 1346 1347 case PACKET_WRITE_WAIT_STATE: 1348 if (atomic_read(&pkt->io_wait) > 0) 1349 return; 1350 1351 if (!pkt->w_bio->bi_status) { 1352 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1353 } else { 1354 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1355 } 1356 break; 1357 1358 case PACKET_RECOVERY_STATE: 1359 if (pkt_start_recovery(pkt)) { 1360 pkt_start_write(pd, pkt); 1361 } else { 1362 pkt_dbg(2, pd, "No recovery possible\n"); 1363 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1364 } 1365 break; 1366 1367 case PACKET_FINISHED_STATE: 1368 pkt_finish_packet(pkt, pkt->w_bio->bi_status); 1369 return; 1370 1371 default: 1372 BUG(); 1373 break; 1374 } 1375 } 1376 } 1377 1378 static void pkt_handle_packets(struct pktcdvd_device *pd) 1379 { 1380 struct packet_data *pkt, *next; 1381 1382 /* 1383 * Run state machine for active packets 1384 */ 1385 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1386 if (atomic_read(&pkt->run_sm) > 0) { 1387 atomic_set(&pkt->run_sm, 0); 1388 pkt_run_state_machine(pd, pkt); 1389 } 1390 } 1391 1392 /* 1393 * Move no longer active packets to the free list 1394 */ 1395 spin_lock(&pd->cdrw.active_list_lock); 1396 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1397 if (pkt->state == PACKET_FINISHED_STATE) { 1398 list_del(&pkt->list); 1399 pkt_put_packet_data(pd, pkt); 1400 pkt_set_state(pkt, PACKET_IDLE_STATE); 1401 atomic_set(&pd->scan_queue, 1); 1402 } 1403 } 1404 spin_unlock(&pd->cdrw.active_list_lock); 1405 } 1406 1407 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1408 { 1409 struct packet_data *pkt; 1410 int i; 1411 1412 for (i = 0; i < PACKET_NUM_STATES; i++) 1413 states[i] = 0; 1414 1415 spin_lock(&pd->cdrw.active_list_lock); 1416 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1417 states[pkt->state]++; 1418 } 1419 spin_unlock(&pd->cdrw.active_list_lock); 1420 } 1421 1422 /* 1423 * kcdrwd is woken up when writes have been queued for one of our 1424 * registered devices 1425 */ 1426 static int kcdrwd(void *foobar) 1427 { 1428 struct pktcdvd_device *pd = foobar; 1429 struct packet_data *pkt; 1430 long min_sleep_time, residue; 1431 1432 set_user_nice(current, MIN_NICE); 1433 set_freezable(); 1434 1435 for (;;) { 1436 DECLARE_WAITQUEUE(wait, current); 1437 1438 /* 1439 * Wait until there is something to do 1440 */ 1441 add_wait_queue(&pd->wqueue, &wait); 1442 for (;;) { 1443 set_current_state(TASK_INTERRUPTIBLE); 1444 1445 /* Check if we need to run pkt_handle_queue */ 1446 if (atomic_read(&pd->scan_queue) > 0) 1447 goto work_to_do; 1448 1449 /* Check if we need to run the state machine for some packet */ 1450 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1451 if (atomic_read(&pkt->run_sm) > 0) 1452 goto work_to_do; 1453 } 1454 1455 /* Check if we need to process the iosched queues */ 1456 if (atomic_read(&pd->iosched.attention) != 0) 1457 goto work_to_do; 1458 1459 /* Otherwise, go to sleep */ 1460 if (PACKET_DEBUG > 1) { 1461 int states[PACKET_NUM_STATES]; 1462 pkt_count_states(pd, states); 1463 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1464 states[0], states[1], states[2], 1465 states[3], states[4], states[5]); 1466 } 1467 1468 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1469 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1470 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1471 min_sleep_time = pkt->sleep_time; 1472 } 1473 1474 pkt_dbg(2, pd, "sleeping\n"); 1475 residue = schedule_timeout(min_sleep_time); 1476 pkt_dbg(2, pd, "wake up\n"); 1477 1478 /* make swsusp happy with our thread */ 1479 try_to_freeze(); 1480 1481 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1482 if (!pkt->sleep_time) 1483 continue; 1484 pkt->sleep_time -= min_sleep_time - residue; 1485 if (pkt->sleep_time <= 0) { 1486 pkt->sleep_time = 0; 1487 atomic_inc(&pkt->run_sm); 1488 } 1489 } 1490 1491 if (kthread_should_stop()) 1492 break; 1493 } 1494 work_to_do: 1495 set_current_state(TASK_RUNNING); 1496 remove_wait_queue(&pd->wqueue, &wait); 1497 1498 if (kthread_should_stop()) 1499 break; 1500 1501 /* 1502 * if pkt_handle_queue returns true, we can queue 1503 * another request. 1504 */ 1505 while (pkt_handle_queue(pd)) 1506 ; 1507 1508 /* 1509 * Handle packet state machine 1510 */ 1511 pkt_handle_packets(pd); 1512 1513 /* 1514 * Handle iosched queues 1515 */ 1516 pkt_iosched_process_queue(pd); 1517 } 1518 1519 return 0; 1520 } 1521 1522 static void pkt_print_settings(struct pktcdvd_device *pd) 1523 { 1524 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n", 1525 pd->settings.fp ? "Fixed" : "Variable", 1526 pd->settings.size >> 2, 1527 pd->settings.block_mode == 8 ? '1' : '2'); 1528 } 1529 1530 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1531 { 1532 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1533 1534 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1535 cgc->cmd[2] = page_code | (page_control << 6); 1536 cgc->cmd[7] = cgc->buflen >> 8; 1537 cgc->cmd[8] = cgc->buflen & 0xff; 1538 cgc->data_direction = CGC_DATA_READ; 1539 return pkt_generic_packet(pd, cgc); 1540 } 1541 1542 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1543 { 1544 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1545 memset(cgc->buffer, 0, 2); 1546 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1547 cgc->cmd[1] = 0x10; /* PF */ 1548 cgc->cmd[7] = cgc->buflen >> 8; 1549 cgc->cmd[8] = cgc->buflen & 0xff; 1550 cgc->data_direction = CGC_DATA_WRITE; 1551 return pkt_generic_packet(pd, cgc); 1552 } 1553 1554 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1555 { 1556 struct packet_command cgc; 1557 int ret; 1558 1559 /* set up command and get the disc info */ 1560 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1561 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1562 cgc.cmd[8] = cgc.buflen = 2; 1563 cgc.quiet = 1; 1564 1565 if ((ret = pkt_generic_packet(pd, &cgc))) 1566 return ret; 1567 1568 /* not all drives have the same disc_info length, so requeue 1569 * packet with the length the drive tells us it can supply 1570 */ 1571 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1572 sizeof(di->disc_information_length); 1573 1574 if (cgc.buflen > sizeof(disc_information)) 1575 cgc.buflen = sizeof(disc_information); 1576 1577 cgc.cmd[8] = cgc.buflen; 1578 return pkt_generic_packet(pd, &cgc); 1579 } 1580 1581 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1582 { 1583 struct packet_command cgc; 1584 int ret; 1585 1586 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1587 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1588 cgc.cmd[1] = type & 3; 1589 cgc.cmd[4] = (track & 0xff00) >> 8; 1590 cgc.cmd[5] = track & 0xff; 1591 cgc.cmd[8] = 8; 1592 cgc.quiet = 1; 1593 1594 if ((ret = pkt_generic_packet(pd, &cgc))) 1595 return ret; 1596 1597 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1598 sizeof(ti->track_information_length); 1599 1600 if (cgc.buflen > sizeof(track_information)) 1601 cgc.buflen = sizeof(track_information); 1602 1603 cgc.cmd[8] = cgc.buflen; 1604 return pkt_generic_packet(pd, &cgc); 1605 } 1606 1607 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd, 1608 long *last_written) 1609 { 1610 disc_information di; 1611 track_information ti; 1612 __u32 last_track; 1613 int ret = -1; 1614 1615 if ((ret = pkt_get_disc_info(pd, &di))) 1616 return ret; 1617 1618 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1619 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1620 return ret; 1621 1622 /* if this track is blank, try the previous. */ 1623 if (ti.blank) { 1624 last_track--; 1625 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1626 return ret; 1627 } 1628 1629 /* if last recorded field is valid, return it. */ 1630 if (ti.lra_v) { 1631 *last_written = be32_to_cpu(ti.last_rec_address); 1632 } else { 1633 /* make it up instead */ 1634 *last_written = be32_to_cpu(ti.track_start) + 1635 be32_to_cpu(ti.track_size); 1636 if (ti.free_blocks) 1637 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1638 } 1639 return 0; 1640 } 1641 1642 /* 1643 * write mode select package based on pd->settings 1644 */ 1645 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd) 1646 { 1647 struct packet_command cgc; 1648 struct request_sense sense; 1649 write_param_page *wp; 1650 char buffer[128]; 1651 int ret, size; 1652 1653 /* doesn't apply to DVD+RW or DVD-RAM */ 1654 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1655 return 0; 1656 1657 memset(buffer, 0, sizeof(buffer)); 1658 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1659 cgc.sense = &sense; 1660 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1661 pkt_dump_sense(pd, &cgc); 1662 return ret; 1663 } 1664 1665 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1666 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1667 if (size > sizeof(buffer)) 1668 size = sizeof(buffer); 1669 1670 /* 1671 * now get it all 1672 */ 1673 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1674 cgc.sense = &sense; 1675 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1676 pkt_dump_sense(pd, &cgc); 1677 return ret; 1678 } 1679 1680 /* 1681 * write page is offset header + block descriptor length 1682 */ 1683 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1684 1685 wp->fp = pd->settings.fp; 1686 wp->track_mode = pd->settings.track_mode; 1687 wp->write_type = pd->settings.write_type; 1688 wp->data_block_type = pd->settings.block_mode; 1689 1690 wp->multi_session = 0; 1691 1692 #ifdef PACKET_USE_LS 1693 wp->link_size = 7; 1694 wp->ls_v = 1; 1695 #endif 1696 1697 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1698 wp->session_format = 0; 1699 wp->subhdr2 = 0x20; 1700 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1701 wp->session_format = 0x20; 1702 wp->subhdr2 = 8; 1703 #if 0 1704 wp->mcn[0] = 0x80; 1705 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1706 #endif 1707 } else { 1708 /* 1709 * paranoia 1710 */ 1711 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type); 1712 return 1; 1713 } 1714 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1715 1716 cgc.buflen = cgc.cmd[8] = size; 1717 if ((ret = pkt_mode_select(pd, &cgc))) { 1718 pkt_dump_sense(pd, &cgc); 1719 return ret; 1720 } 1721 1722 pkt_print_settings(pd); 1723 return 0; 1724 } 1725 1726 /* 1727 * 1 -- we can write to this track, 0 -- we can't 1728 */ 1729 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1730 { 1731 switch (pd->mmc3_profile) { 1732 case 0x1a: /* DVD+RW */ 1733 case 0x12: /* DVD-RAM */ 1734 /* The track is always writable on DVD+RW/DVD-RAM */ 1735 return 1; 1736 default: 1737 break; 1738 } 1739 1740 if (!ti->packet || !ti->fp) 1741 return 0; 1742 1743 /* 1744 * "good" settings as per Mt Fuji. 1745 */ 1746 if (ti->rt == 0 && ti->blank == 0) 1747 return 1; 1748 1749 if (ti->rt == 0 && ti->blank == 1) 1750 return 1; 1751 1752 if (ti->rt == 1 && ti->blank == 0) 1753 return 1; 1754 1755 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1756 return 0; 1757 } 1758 1759 /* 1760 * 1 -- we can write to this disc, 0 -- we can't 1761 */ 1762 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1763 { 1764 switch (pd->mmc3_profile) { 1765 case 0x0a: /* CD-RW */ 1766 case 0xffff: /* MMC3 not supported */ 1767 break; 1768 case 0x1a: /* DVD+RW */ 1769 case 0x13: /* DVD-RW */ 1770 case 0x12: /* DVD-RAM */ 1771 return 1; 1772 default: 1773 pkt_dbg(2, pd, "Wrong disc profile (%x)\n", 1774 pd->mmc3_profile); 1775 return 0; 1776 } 1777 1778 /* 1779 * for disc type 0xff we should probably reserve a new track. 1780 * but i'm not sure, should we leave this to user apps? probably. 1781 */ 1782 if (di->disc_type == 0xff) { 1783 pkt_notice(pd, "unknown disc - no track?\n"); 1784 return 0; 1785 } 1786 1787 if (di->disc_type != 0x20 && di->disc_type != 0) { 1788 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type); 1789 return 0; 1790 } 1791 1792 if (di->erasable == 0) { 1793 pkt_notice(pd, "disc not erasable\n"); 1794 return 0; 1795 } 1796 1797 if (di->border_status == PACKET_SESSION_RESERVED) { 1798 pkt_err(pd, "can't write to last track (reserved)\n"); 1799 return 0; 1800 } 1801 1802 return 1; 1803 } 1804 1805 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd) 1806 { 1807 struct packet_command cgc; 1808 unsigned char buf[12]; 1809 disc_information di; 1810 track_information ti; 1811 int ret, track; 1812 1813 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1814 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1815 cgc.cmd[8] = 8; 1816 ret = pkt_generic_packet(pd, &cgc); 1817 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1818 1819 memset(&di, 0, sizeof(disc_information)); 1820 memset(&ti, 0, sizeof(track_information)); 1821 1822 if ((ret = pkt_get_disc_info(pd, &di))) { 1823 pkt_err(pd, "failed get_disc\n"); 1824 return ret; 1825 } 1826 1827 if (!pkt_writable_disc(pd, &di)) 1828 return -EROFS; 1829 1830 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 1831 1832 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 1833 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 1834 pkt_err(pd, "failed get_track\n"); 1835 return ret; 1836 } 1837 1838 if (!pkt_writable_track(pd, &ti)) { 1839 pkt_err(pd, "can't write to this track\n"); 1840 return -EROFS; 1841 } 1842 1843 /* 1844 * we keep packet size in 512 byte units, makes it easier to 1845 * deal with request calculations. 1846 */ 1847 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 1848 if (pd->settings.size == 0) { 1849 pkt_notice(pd, "detected zero packet size!\n"); 1850 return -ENXIO; 1851 } 1852 if (pd->settings.size > PACKET_MAX_SECTORS) { 1853 pkt_err(pd, "packet size is too big\n"); 1854 return -EROFS; 1855 } 1856 pd->settings.fp = ti.fp; 1857 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 1858 1859 if (ti.nwa_v) { 1860 pd->nwa = be32_to_cpu(ti.next_writable); 1861 set_bit(PACKET_NWA_VALID, &pd->flags); 1862 } 1863 1864 /* 1865 * in theory we could use lra on -RW media as well and just zero 1866 * blocks that haven't been written yet, but in practice that 1867 * is just a no-go. we'll use that for -R, naturally. 1868 */ 1869 if (ti.lra_v) { 1870 pd->lra = be32_to_cpu(ti.last_rec_address); 1871 set_bit(PACKET_LRA_VALID, &pd->flags); 1872 } else { 1873 pd->lra = 0xffffffff; 1874 set_bit(PACKET_LRA_VALID, &pd->flags); 1875 } 1876 1877 /* 1878 * fine for now 1879 */ 1880 pd->settings.link_loss = 7; 1881 pd->settings.write_type = 0; /* packet */ 1882 pd->settings.track_mode = ti.track_mode; 1883 1884 /* 1885 * mode1 or mode2 disc 1886 */ 1887 switch (ti.data_mode) { 1888 case PACKET_MODE1: 1889 pd->settings.block_mode = PACKET_BLOCK_MODE1; 1890 break; 1891 case PACKET_MODE2: 1892 pd->settings.block_mode = PACKET_BLOCK_MODE2; 1893 break; 1894 default: 1895 pkt_err(pd, "unknown data mode\n"); 1896 return -EROFS; 1897 } 1898 return 0; 1899 } 1900 1901 /* 1902 * enable/disable write caching on drive 1903 */ 1904 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd, 1905 int set) 1906 { 1907 struct packet_command cgc; 1908 struct request_sense sense; 1909 unsigned char buf[64]; 1910 int ret; 1911 1912 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1913 cgc.sense = &sense; 1914 cgc.buflen = pd->mode_offset + 12; 1915 1916 /* 1917 * caching mode page might not be there, so quiet this command 1918 */ 1919 cgc.quiet = 1; 1920 1921 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 1922 return ret; 1923 1924 buf[pd->mode_offset + 10] |= (!!set << 2); 1925 1926 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 1927 ret = pkt_mode_select(pd, &cgc); 1928 if (ret) { 1929 pkt_err(pd, "write caching control failed\n"); 1930 pkt_dump_sense(pd, &cgc); 1931 } else if (!ret && set) 1932 pkt_notice(pd, "enabled write caching\n"); 1933 return ret; 1934 } 1935 1936 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 1937 { 1938 struct packet_command cgc; 1939 1940 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 1941 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 1942 cgc.cmd[4] = lockflag ? 1 : 0; 1943 return pkt_generic_packet(pd, &cgc); 1944 } 1945 1946 /* 1947 * Returns drive maximum write speed 1948 */ 1949 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd, 1950 unsigned *write_speed) 1951 { 1952 struct packet_command cgc; 1953 struct request_sense sense; 1954 unsigned char buf[256+18]; 1955 unsigned char *cap_buf; 1956 int ret, offset; 1957 1958 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 1959 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 1960 cgc.sense = &sense; 1961 1962 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1963 if (ret) { 1964 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 1965 sizeof(struct mode_page_header); 1966 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1967 if (ret) { 1968 pkt_dump_sense(pd, &cgc); 1969 return ret; 1970 } 1971 } 1972 1973 offset = 20; /* Obsoleted field, used by older drives */ 1974 if (cap_buf[1] >= 28) 1975 offset = 28; /* Current write speed selected */ 1976 if (cap_buf[1] >= 30) { 1977 /* If the drive reports at least one "Logical Unit Write 1978 * Speed Performance Descriptor Block", use the information 1979 * in the first block. (contains the highest speed) 1980 */ 1981 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 1982 if (num_spdb > 0) 1983 offset = 34; 1984 } 1985 1986 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 1987 return 0; 1988 } 1989 1990 /* These tables from cdrecord - I don't have orange book */ 1991 /* standard speed CD-RW (1-4x) */ 1992 static char clv_to_speed[16] = { 1993 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1994 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1995 }; 1996 /* high speed CD-RW (-10x) */ 1997 static char hs_clv_to_speed[16] = { 1998 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1999 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2000 }; 2001 /* ultra high speed CD-RW */ 2002 static char us_clv_to_speed[16] = { 2003 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2004 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 2005 }; 2006 2007 /* 2008 * reads the maximum media speed from ATIP 2009 */ 2010 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd, 2011 unsigned *speed) 2012 { 2013 struct packet_command cgc; 2014 struct request_sense sense; 2015 unsigned char buf[64]; 2016 unsigned int size, st, sp; 2017 int ret; 2018 2019 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 2020 cgc.sense = &sense; 2021 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2022 cgc.cmd[1] = 2; 2023 cgc.cmd[2] = 4; /* READ ATIP */ 2024 cgc.cmd[8] = 2; 2025 ret = pkt_generic_packet(pd, &cgc); 2026 if (ret) { 2027 pkt_dump_sense(pd, &cgc); 2028 return ret; 2029 } 2030 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 2031 if (size > sizeof(buf)) 2032 size = sizeof(buf); 2033 2034 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2035 cgc.sense = &sense; 2036 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2037 cgc.cmd[1] = 2; 2038 cgc.cmd[2] = 4; 2039 cgc.cmd[8] = size; 2040 ret = pkt_generic_packet(pd, &cgc); 2041 if (ret) { 2042 pkt_dump_sense(pd, &cgc); 2043 return ret; 2044 } 2045 2046 if (!(buf[6] & 0x40)) { 2047 pkt_notice(pd, "disc type is not CD-RW\n"); 2048 return 1; 2049 } 2050 if (!(buf[6] & 0x4)) { 2051 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n"); 2052 return 1; 2053 } 2054 2055 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2056 2057 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2058 2059 /* Info from cdrecord */ 2060 switch (st) { 2061 case 0: /* standard speed */ 2062 *speed = clv_to_speed[sp]; 2063 break; 2064 case 1: /* high speed */ 2065 *speed = hs_clv_to_speed[sp]; 2066 break; 2067 case 2: /* ultra high speed */ 2068 *speed = us_clv_to_speed[sp]; 2069 break; 2070 default: 2071 pkt_notice(pd, "unknown disc sub-type %d\n", st); 2072 return 1; 2073 } 2074 if (*speed) { 2075 pkt_info(pd, "maximum media speed: %d\n", *speed); 2076 return 0; 2077 } else { 2078 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st); 2079 return 1; 2080 } 2081 } 2082 2083 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd) 2084 { 2085 struct packet_command cgc; 2086 struct request_sense sense; 2087 int ret; 2088 2089 pkt_dbg(2, pd, "Performing OPC\n"); 2090 2091 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2092 cgc.sense = &sense; 2093 cgc.timeout = 60*HZ; 2094 cgc.cmd[0] = GPCMD_SEND_OPC; 2095 cgc.cmd[1] = 1; 2096 if ((ret = pkt_generic_packet(pd, &cgc))) 2097 pkt_dump_sense(pd, &cgc); 2098 return ret; 2099 } 2100 2101 static int pkt_open_write(struct pktcdvd_device *pd) 2102 { 2103 int ret; 2104 unsigned int write_speed, media_write_speed, read_speed; 2105 2106 if ((ret = pkt_probe_settings(pd))) { 2107 pkt_dbg(2, pd, "failed probe\n"); 2108 return ret; 2109 } 2110 2111 if ((ret = pkt_set_write_settings(pd))) { 2112 pkt_dbg(1, pd, "failed saving write settings\n"); 2113 return -EIO; 2114 } 2115 2116 pkt_write_caching(pd, USE_WCACHING); 2117 2118 if ((ret = pkt_get_max_speed(pd, &write_speed))) 2119 write_speed = 16 * 177; 2120 switch (pd->mmc3_profile) { 2121 case 0x13: /* DVD-RW */ 2122 case 0x1a: /* DVD+RW */ 2123 case 0x12: /* DVD-RAM */ 2124 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed); 2125 break; 2126 default: 2127 if ((ret = pkt_media_speed(pd, &media_write_speed))) 2128 media_write_speed = 16; 2129 write_speed = min(write_speed, media_write_speed * 177); 2130 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176); 2131 break; 2132 } 2133 read_speed = write_speed; 2134 2135 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 2136 pkt_dbg(1, pd, "couldn't set write speed\n"); 2137 return -EIO; 2138 } 2139 pd->write_speed = write_speed; 2140 pd->read_speed = read_speed; 2141 2142 if ((ret = pkt_perform_opc(pd))) { 2143 pkt_dbg(1, pd, "Optimum Power Calibration failed\n"); 2144 } 2145 2146 return 0; 2147 } 2148 2149 /* 2150 * called at open time. 2151 */ 2152 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write) 2153 { 2154 int ret; 2155 long lba; 2156 struct request_queue *q; 2157 2158 /* 2159 * We need to re-open the cdrom device without O_NONBLOCK to be able 2160 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2161 * so bdget() can't fail. 2162 */ 2163 bdget(pd->bdev->bd_dev); 2164 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd))) 2165 goto out; 2166 2167 if ((ret = pkt_get_last_written(pd, &lba))) { 2168 pkt_err(pd, "pkt_get_last_written failed\n"); 2169 goto out_putdev; 2170 } 2171 2172 set_capacity(pd->disk, lba << 2); 2173 set_capacity(pd->bdev->bd_disk, lba << 2); 2174 bd_set_size(pd->bdev, (loff_t)lba << 11); 2175 2176 q = bdev_get_queue(pd->bdev); 2177 if (write) { 2178 if ((ret = pkt_open_write(pd))) 2179 goto out_putdev; 2180 /* 2181 * Some CDRW drives can not handle writes larger than one packet, 2182 * even if the size is a multiple of the packet size. 2183 */ 2184 spin_lock_irq(q->queue_lock); 2185 blk_queue_max_hw_sectors(q, pd->settings.size); 2186 spin_unlock_irq(q->queue_lock); 2187 set_bit(PACKET_WRITABLE, &pd->flags); 2188 } else { 2189 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2190 clear_bit(PACKET_WRITABLE, &pd->flags); 2191 } 2192 2193 if ((ret = pkt_set_segment_merging(pd, q))) 2194 goto out_putdev; 2195 2196 if (write) { 2197 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2198 pkt_err(pd, "not enough memory for buffers\n"); 2199 ret = -ENOMEM; 2200 goto out_putdev; 2201 } 2202 pkt_info(pd, "%lukB available on disc\n", lba << 1); 2203 } 2204 2205 return 0; 2206 2207 out_putdev: 2208 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL); 2209 out: 2210 return ret; 2211 } 2212 2213 /* 2214 * called when the device is closed. makes sure that the device flushes 2215 * the internal cache before we close. 2216 */ 2217 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2218 { 2219 if (flush && pkt_flush_cache(pd)) 2220 pkt_dbg(1, pd, "not flushing cache\n"); 2221 2222 pkt_lock_door(pd, 0); 2223 2224 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2225 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL); 2226 2227 pkt_shrink_pktlist(pd); 2228 } 2229 2230 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor) 2231 { 2232 if (dev_minor >= MAX_WRITERS) 2233 return NULL; 2234 return pkt_devs[dev_minor]; 2235 } 2236 2237 static int pkt_open(struct block_device *bdev, fmode_t mode) 2238 { 2239 struct pktcdvd_device *pd = NULL; 2240 int ret; 2241 2242 mutex_lock(&pktcdvd_mutex); 2243 mutex_lock(&ctl_mutex); 2244 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev)); 2245 if (!pd) { 2246 ret = -ENODEV; 2247 goto out; 2248 } 2249 BUG_ON(pd->refcnt < 0); 2250 2251 pd->refcnt++; 2252 if (pd->refcnt > 1) { 2253 if ((mode & FMODE_WRITE) && 2254 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2255 ret = -EBUSY; 2256 goto out_dec; 2257 } 2258 } else { 2259 ret = pkt_open_dev(pd, mode & FMODE_WRITE); 2260 if (ret) 2261 goto out_dec; 2262 /* 2263 * needed here as well, since ext2 (among others) may change 2264 * the blocksize at mount time 2265 */ 2266 set_blocksize(bdev, CD_FRAMESIZE); 2267 } 2268 2269 mutex_unlock(&ctl_mutex); 2270 mutex_unlock(&pktcdvd_mutex); 2271 return 0; 2272 2273 out_dec: 2274 pd->refcnt--; 2275 out: 2276 mutex_unlock(&ctl_mutex); 2277 mutex_unlock(&pktcdvd_mutex); 2278 return ret; 2279 } 2280 2281 static void pkt_close(struct gendisk *disk, fmode_t mode) 2282 { 2283 struct pktcdvd_device *pd = disk->private_data; 2284 2285 mutex_lock(&pktcdvd_mutex); 2286 mutex_lock(&ctl_mutex); 2287 pd->refcnt--; 2288 BUG_ON(pd->refcnt < 0); 2289 if (pd->refcnt == 0) { 2290 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2291 pkt_release_dev(pd, flush); 2292 } 2293 mutex_unlock(&ctl_mutex); 2294 mutex_unlock(&pktcdvd_mutex); 2295 } 2296 2297 2298 static void pkt_end_io_read_cloned(struct bio *bio) 2299 { 2300 struct packet_stacked_data *psd = bio->bi_private; 2301 struct pktcdvd_device *pd = psd->pd; 2302 2303 psd->bio->bi_status = bio->bi_status; 2304 bio_put(bio); 2305 bio_endio(psd->bio); 2306 mempool_free(psd, psd_pool); 2307 pkt_bio_finished(pd); 2308 } 2309 2310 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio) 2311 { 2312 struct bio *cloned_bio = bio_clone_fast(bio, GFP_NOIO, pkt_bio_set); 2313 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2314 2315 psd->pd = pd; 2316 psd->bio = bio; 2317 cloned_bio->bi_bdev = pd->bdev; 2318 cloned_bio->bi_private = psd; 2319 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2320 pd->stats.secs_r += bio_sectors(bio); 2321 pkt_queue_bio(pd, cloned_bio); 2322 } 2323 2324 static void pkt_make_request_write(struct request_queue *q, struct bio *bio) 2325 { 2326 struct pktcdvd_device *pd = q->queuedata; 2327 sector_t zone; 2328 struct packet_data *pkt; 2329 int was_empty, blocked_bio; 2330 struct pkt_rb_node *node; 2331 2332 zone = get_zone(bio->bi_iter.bi_sector, pd); 2333 2334 /* 2335 * If we find a matching packet in state WAITING or READ_WAIT, we can 2336 * just append this bio to that packet. 2337 */ 2338 spin_lock(&pd->cdrw.active_list_lock); 2339 blocked_bio = 0; 2340 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2341 if (pkt->sector == zone) { 2342 spin_lock(&pkt->lock); 2343 if ((pkt->state == PACKET_WAITING_STATE) || 2344 (pkt->state == PACKET_READ_WAIT_STATE)) { 2345 bio_list_add(&pkt->orig_bios, bio); 2346 pkt->write_size += 2347 bio->bi_iter.bi_size / CD_FRAMESIZE; 2348 if ((pkt->write_size >= pkt->frames) && 2349 (pkt->state == PACKET_WAITING_STATE)) { 2350 atomic_inc(&pkt->run_sm); 2351 wake_up(&pd->wqueue); 2352 } 2353 spin_unlock(&pkt->lock); 2354 spin_unlock(&pd->cdrw.active_list_lock); 2355 return; 2356 } else { 2357 blocked_bio = 1; 2358 } 2359 spin_unlock(&pkt->lock); 2360 } 2361 } 2362 spin_unlock(&pd->cdrw.active_list_lock); 2363 2364 /* 2365 * Test if there is enough room left in the bio work queue 2366 * (queue size >= congestion on mark). 2367 * If not, wait till the work queue size is below the congestion off mark. 2368 */ 2369 spin_lock(&pd->lock); 2370 if (pd->write_congestion_on > 0 2371 && pd->bio_queue_size >= pd->write_congestion_on) { 2372 set_bdi_congested(q->backing_dev_info, BLK_RW_ASYNC); 2373 do { 2374 spin_unlock(&pd->lock); 2375 congestion_wait(BLK_RW_ASYNC, HZ); 2376 spin_lock(&pd->lock); 2377 } while(pd->bio_queue_size > pd->write_congestion_off); 2378 } 2379 spin_unlock(&pd->lock); 2380 2381 /* 2382 * No matching packet found. Store the bio in the work queue. 2383 */ 2384 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2385 node->bio = bio; 2386 spin_lock(&pd->lock); 2387 BUG_ON(pd->bio_queue_size < 0); 2388 was_empty = (pd->bio_queue_size == 0); 2389 pkt_rbtree_insert(pd, node); 2390 spin_unlock(&pd->lock); 2391 2392 /* 2393 * Wake up the worker thread. 2394 */ 2395 atomic_set(&pd->scan_queue, 1); 2396 if (was_empty) { 2397 /* This wake_up is required for correct operation */ 2398 wake_up(&pd->wqueue); 2399 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2400 /* 2401 * This wake up is not required for correct operation, 2402 * but improves performance in some cases. 2403 */ 2404 wake_up(&pd->wqueue); 2405 } 2406 } 2407 2408 static blk_qc_t pkt_make_request(struct request_queue *q, struct bio *bio) 2409 { 2410 struct pktcdvd_device *pd; 2411 char b[BDEVNAME_SIZE]; 2412 struct bio *split; 2413 2414 blk_queue_split(q, &bio); 2415 2416 pd = q->queuedata; 2417 if (!pd) { 2418 pr_err("%s incorrect request queue\n", 2419 bdevname(bio->bi_bdev, b)); 2420 goto end_io; 2421 } 2422 2423 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n", 2424 (unsigned long long)bio->bi_iter.bi_sector, 2425 (unsigned long long)bio_end_sector(bio)); 2426 2427 /* 2428 * Clone READ bios so we can have our own bi_end_io callback. 2429 */ 2430 if (bio_data_dir(bio) == READ) { 2431 pkt_make_request_read(pd, bio); 2432 return BLK_QC_T_NONE; 2433 } 2434 2435 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2436 pkt_notice(pd, "WRITE for ro device (%llu)\n", 2437 (unsigned long long)bio->bi_iter.bi_sector); 2438 goto end_io; 2439 } 2440 2441 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) { 2442 pkt_err(pd, "wrong bio size\n"); 2443 goto end_io; 2444 } 2445 2446 do { 2447 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd); 2448 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd); 2449 2450 if (last_zone != zone) { 2451 BUG_ON(last_zone != zone + pd->settings.size); 2452 2453 split = bio_split(bio, last_zone - 2454 bio->bi_iter.bi_sector, 2455 GFP_NOIO, pkt_bio_set); 2456 bio_chain(split, bio); 2457 } else { 2458 split = bio; 2459 } 2460 2461 pkt_make_request_write(q, split); 2462 } while (split != bio); 2463 2464 return BLK_QC_T_NONE; 2465 end_io: 2466 bio_io_error(bio); 2467 return BLK_QC_T_NONE; 2468 } 2469 2470 static void pkt_init_queue(struct pktcdvd_device *pd) 2471 { 2472 struct request_queue *q = pd->disk->queue; 2473 2474 blk_queue_make_request(q, pkt_make_request); 2475 blk_queue_logical_block_size(q, CD_FRAMESIZE); 2476 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS); 2477 q->queuedata = pd; 2478 } 2479 2480 static int pkt_seq_show(struct seq_file *m, void *p) 2481 { 2482 struct pktcdvd_device *pd = m->private; 2483 char *msg; 2484 char bdev_buf[BDEVNAME_SIZE]; 2485 int states[PACKET_NUM_STATES]; 2486 2487 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2488 bdevname(pd->bdev, bdev_buf)); 2489 2490 seq_printf(m, "\nSettings:\n"); 2491 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2492 2493 if (pd->settings.write_type == 0) 2494 msg = "Packet"; 2495 else 2496 msg = "Unknown"; 2497 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2498 2499 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2500 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2501 2502 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2503 2504 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2505 msg = "Mode 1"; 2506 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2507 msg = "Mode 2"; 2508 else 2509 msg = "Unknown"; 2510 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2511 2512 seq_printf(m, "\nStatistics:\n"); 2513 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2514 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2515 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2516 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2517 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2518 2519 seq_printf(m, "\nMisc:\n"); 2520 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2521 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2522 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2523 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2524 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2525 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2526 2527 seq_printf(m, "\nQueue state:\n"); 2528 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2529 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2530 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2531 2532 pkt_count_states(pd, states); 2533 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2534 states[0], states[1], states[2], states[3], states[4], states[5]); 2535 2536 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 2537 pd->write_congestion_off, 2538 pd->write_congestion_on); 2539 return 0; 2540 } 2541 2542 static int pkt_seq_open(struct inode *inode, struct file *file) 2543 { 2544 return single_open(file, pkt_seq_show, PDE_DATA(inode)); 2545 } 2546 2547 static const struct file_operations pkt_proc_fops = { 2548 .open = pkt_seq_open, 2549 .read = seq_read, 2550 .llseek = seq_lseek, 2551 .release = single_release 2552 }; 2553 2554 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2555 { 2556 int i; 2557 int ret = 0; 2558 char b[BDEVNAME_SIZE]; 2559 struct block_device *bdev; 2560 2561 if (pd->pkt_dev == dev) { 2562 pkt_err(pd, "recursive setup not allowed\n"); 2563 return -EBUSY; 2564 } 2565 for (i = 0; i < MAX_WRITERS; i++) { 2566 struct pktcdvd_device *pd2 = pkt_devs[i]; 2567 if (!pd2) 2568 continue; 2569 if (pd2->bdev->bd_dev == dev) { 2570 pkt_err(pd, "%s already setup\n", 2571 bdevname(pd2->bdev, b)); 2572 return -EBUSY; 2573 } 2574 if (pd2->pkt_dev == dev) { 2575 pkt_err(pd, "can't chain pktcdvd devices\n"); 2576 return -EBUSY; 2577 } 2578 } 2579 2580 bdev = bdget(dev); 2581 if (!bdev) 2582 return -ENOMEM; 2583 if (!blk_queue_scsi_passthrough(bdev_get_queue(bdev))) { 2584 WARN_ONCE(true, "Attempt to register a non-SCSI queue\n"); 2585 bdput(bdev); 2586 return -EINVAL; 2587 } 2588 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL); 2589 if (ret) 2590 return ret; 2591 2592 /* This is safe, since we have a reference from open(). */ 2593 __module_get(THIS_MODULE); 2594 2595 pd->bdev = bdev; 2596 set_blocksize(bdev, CD_FRAMESIZE); 2597 2598 pkt_init_queue(pd); 2599 2600 atomic_set(&pd->cdrw.pending_bios, 0); 2601 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2602 if (IS_ERR(pd->cdrw.thread)) { 2603 pkt_err(pd, "can't start kernel thread\n"); 2604 ret = -ENOMEM; 2605 goto out_mem; 2606 } 2607 2608 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd); 2609 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b)); 2610 return 0; 2611 2612 out_mem: 2613 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY); 2614 /* This is safe: open() is still holding a reference. */ 2615 module_put(THIS_MODULE); 2616 return ret; 2617 } 2618 2619 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) 2620 { 2621 struct pktcdvd_device *pd = bdev->bd_disk->private_data; 2622 int ret; 2623 2624 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n", 2625 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2626 2627 mutex_lock(&pktcdvd_mutex); 2628 switch (cmd) { 2629 case CDROMEJECT: 2630 /* 2631 * The door gets locked when the device is opened, so we 2632 * have to unlock it or else the eject command fails. 2633 */ 2634 if (pd->refcnt == 1) 2635 pkt_lock_door(pd, 0); 2636 /* fallthru */ 2637 /* 2638 * forward selected CDROM ioctls to CD-ROM, for UDF 2639 */ 2640 case CDROMMULTISESSION: 2641 case CDROMREADTOCENTRY: 2642 case CDROM_LAST_WRITTEN: 2643 case CDROM_SEND_PACKET: 2644 case SCSI_IOCTL_SEND_COMMAND: 2645 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg); 2646 break; 2647 2648 default: 2649 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd); 2650 ret = -ENOTTY; 2651 } 2652 mutex_unlock(&pktcdvd_mutex); 2653 2654 return ret; 2655 } 2656 2657 static unsigned int pkt_check_events(struct gendisk *disk, 2658 unsigned int clearing) 2659 { 2660 struct pktcdvd_device *pd = disk->private_data; 2661 struct gendisk *attached_disk; 2662 2663 if (!pd) 2664 return 0; 2665 if (!pd->bdev) 2666 return 0; 2667 attached_disk = pd->bdev->bd_disk; 2668 if (!attached_disk || !attached_disk->fops->check_events) 2669 return 0; 2670 return attached_disk->fops->check_events(attached_disk, clearing); 2671 } 2672 2673 static const struct block_device_operations pktcdvd_ops = { 2674 .owner = THIS_MODULE, 2675 .open = pkt_open, 2676 .release = pkt_close, 2677 .ioctl = pkt_ioctl, 2678 .check_events = pkt_check_events, 2679 }; 2680 2681 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode) 2682 { 2683 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name); 2684 } 2685 2686 /* 2687 * Set up mapping from pktcdvd device to CD-ROM device. 2688 */ 2689 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2690 { 2691 int idx; 2692 int ret = -ENOMEM; 2693 struct pktcdvd_device *pd; 2694 struct gendisk *disk; 2695 2696 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2697 2698 for (idx = 0; idx < MAX_WRITERS; idx++) 2699 if (!pkt_devs[idx]) 2700 break; 2701 if (idx == MAX_WRITERS) { 2702 pr_err("max %d writers supported\n", MAX_WRITERS); 2703 ret = -EBUSY; 2704 goto out_mutex; 2705 } 2706 2707 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2708 if (!pd) 2709 goto out_mutex; 2710 2711 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE, 2712 sizeof(struct pkt_rb_node)); 2713 if (!pd->rb_pool) 2714 goto out_mem; 2715 2716 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2717 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2718 spin_lock_init(&pd->cdrw.active_list_lock); 2719 2720 spin_lock_init(&pd->lock); 2721 spin_lock_init(&pd->iosched.lock); 2722 bio_list_init(&pd->iosched.read_queue); 2723 bio_list_init(&pd->iosched.write_queue); 2724 sprintf(pd->name, DRIVER_NAME"%d", idx); 2725 init_waitqueue_head(&pd->wqueue); 2726 pd->bio_queue = RB_ROOT; 2727 2728 pd->write_congestion_on = write_congestion_on; 2729 pd->write_congestion_off = write_congestion_off; 2730 2731 disk = alloc_disk(1); 2732 if (!disk) 2733 goto out_mem; 2734 pd->disk = disk; 2735 disk->major = pktdev_major; 2736 disk->first_minor = idx; 2737 disk->fops = &pktcdvd_ops; 2738 disk->flags = GENHD_FL_REMOVABLE; 2739 strcpy(disk->disk_name, pd->name); 2740 disk->devnode = pktcdvd_devnode; 2741 disk->private_data = pd; 2742 disk->queue = blk_alloc_queue(GFP_KERNEL); 2743 if (!disk->queue) 2744 goto out_mem2; 2745 2746 pd->pkt_dev = MKDEV(pktdev_major, idx); 2747 ret = pkt_new_dev(pd, dev); 2748 if (ret) 2749 goto out_new_dev; 2750 2751 /* inherit events of the host device */ 2752 disk->events = pd->bdev->bd_disk->events; 2753 disk->async_events = pd->bdev->bd_disk->async_events; 2754 2755 add_disk(disk); 2756 2757 pkt_sysfs_dev_new(pd); 2758 pkt_debugfs_dev_new(pd); 2759 2760 pkt_devs[idx] = pd; 2761 if (pkt_dev) 2762 *pkt_dev = pd->pkt_dev; 2763 2764 mutex_unlock(&ctl_mutex); 2765 return 0; 2766 2767 out_new_dev: 2768 blk_cleanup_queue(disk->queue); 2769 out_mem2: 2770 put_disk(disk); 2771 out_mem: 2772 mempool_destroy(pd->rb_pool); 2773 kfree(pd); 2774 out_mutex: 2775 mutex_unlock(&ctl_mutex); 2776 pr_err("setup of pktcdvd device failed\n"); 2777 return ret; 2778 } 2779 2780 /* 2781 * Tear down mapping from pktcdvd device to CD-ROM device. 2782 */ 2783 static int pkt_remove_dev(dev_t pkt_dev) 2784 { 2785 struct pktcdvd_device *pd; 2786 int idx; 2787 int ret = 0; 2788 2789 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2790 2791 for (idx = 0; idx < MAX_WRITERS; idx++) { 2792 pd = pkt_devs[idx]; 2793 if (pd && (pd->pkt_dev == pkt_dev)) 2794 break; 2795 } 2796 if (idx == MAX_WRITERS) { 2797 pr_debug("dev not setup\n"); 2798 ret = -ENXIO; 2799 goto out; 2800 } 2801 2802 if (pd->refcnt > 0) { 2803 ret = -EBUSY; 2804 goto out; 2805 } 2806 if (!IS_ERR(pd->cdrw.thread)) 2807 kthread_stop(pd->cdrw.thread); 2808 2809 pkt_devs[idx] = NULL; 2810 2811 pkt_debugfs_dev_remove(pd); 2812 pkt_sysfs_dev_remove(pd); 2813 2814 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY); 2815 2816 remove_proc_entry(pd->name, pkt_proc); 2817 pkt_dbg(1, pd, "writer unmapped\n"); 2818 2819 del_gendisk(pd->disk); 2820 blk_cleanup_queue(pd->disk->queue); 2821 put_disk(pd->disk); 2822 2823 mempool_destroy(pd->rb_pool); 2824 kfree(pd); 2825 2826 /* This is safe: open() is still holding a reference. */ 2827 module_put(THIS_MODULE); 2828 2829 out: 2830 mutex_unlock(&ctl_mutex); 2831 return ret; 2832 } 2833 2834 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 2835 { 2836 struct pktcdvd_device *pd; 2837 2838 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2839 2840 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 2841 if (pd) { 2842 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 2843 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2844 } else { 2845 ctrl_cmd->dev = 0; 2846 ctrl_cmd->pkt_dev = 0; 2847 } 2848 ctrl_cmd->num_devices = MAX_WRITERS; 2849 2850 mutex_unlock(&ctl_mutex); 2851 } 2852 2853 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2854 { 2855 void __user *argp = (void __user *)arg; 2856 struct pkt_ctrl_command ctrl_cmd; 2857 int ret = 0; 2858 dev_t pkt_dev = 0; 2859 2860 if (cmd != PACKET_CTRL_CMD) 2861 return -ENOTTY; 2862 2863 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 2864 return -EFAULT; 2865 2866 switch (ctrl_cmd.command) { 2867 case PKT_CTRL_CMD_SETUP: 2868 if (!capable(CAP_SYS_ADMIN)) 2869 return -EPERM; 2870 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 2871 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 2872 break; 2873 case PKT_CTRL_CMD_TEARDOWN: 2874 if (!capable(CAP_SYS_ADMIN)) 2875 return -EPERM; 2876 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 2877 break; 2878 case PKT_CTRL_CMD_STATUS: 2879 pkt_get_status(&ctrl_cmd); 2880 break; 2881 default: 2882 return -ENOTTY; 2883 } 2884 2885 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 2886 return -EFAULT; 2887 return ret; 2888 } 2889 2890 #ifdef CONFIG_COMPAT 2891 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2892 { 2893 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); 2894 } 2895 #endif 2896 2897 static const struct file_operations pkt_ctl_fops = { 2898 .open = nonseekable_open, 2899 .unlocked_ioctl = pkt_ctl_ioctl, 2900 #ifdef CONFIG_COMPAT 2901 .compat_ioctl = pkt_ctl_compat_ioctl, 2902 #endif 2903 .owner = THIS_MODULE, 2904 .llseek = no_llseek, 2905 }; 2906 2907 static struct miscdevice pkt_misc = { 2908 .minor = MISC_DYNAMIC_MINOR, 2909 .name = DRIVER_NAME, 2910 .nodename = "pktcdvd/control", 2911 .fops = &pkt_ctl_fops 2912 }; 2913 2914 static int __init pkt_init(void) 2915 { 2916 int ret; 2917 2918 mutex_init(&ctl_mutex); 2919 2920 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE, 2921 sizeof(struct packet_stacked_data)); 2922 if (!psd_pool) 2923 return -ENOMEM; 2924 pkt_bio_set = bioset_create(BIO_POOL_SIZE, 0, 0); 2925 if (!pkt_bio_set) { 2926 mempool_destroy(psd_pool); 2927 return -ENOMEM; 2928 } 2929 2930 ret = register_blkdev(pktdev_major, DRIVER_NAME); 2931 if (ret < 0) { 2932 pr_err("unable to register block device\n"); 2933 goto out2; 2934 } 2935 if (!pktdev_major) 2936 pktdev_major = ret; 2937 2938 ret = pkt_sysfs_init(); 2939 if (ret) 2940 goto out; 2941 2942 pkt_debugfs_init(); 2943 2944 ret = misc_register(&pkt_misc); 2945 if (ret) { 2946 pr_err("unable to register misc device\n"); 2947 goto out_misc; 2948 } 2949 2950 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL); 2951 2952 return 0; 2953 2954 out_misc: 2955 pkt_debugfs_cleanup(); 2956 pkt_sysfs_cleanup(); 2957 out: 2958 unregister_blkdev(pktdev_major, DRIVER_NAME); 2959 out2: 2960 mempool_destroy(psd_pool); 2961 bioset_free(pkt_bio_set); 2962 return ret; 2963 } 2964 2965 static void __exit pkt_exit(void) 2966 { 2967 remove_proc_entry("driver/"DRIVER_NAME, NULL); 2968 misc_deregister(&pkt_misc); 2969 2970 pkt_debugfs_cleanup(); 2971 pkt_sysfs_cleanup(); 2972 2973 unregister_blkdev(pktdev_major, DRIVER_NAME); 2974 mempool_destroy(psd_pool); 2975 bioset_free(pkt_bio_set); 2976 } 2977 2978 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 2979 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 2980 MODULE_LICENSE("GPL"); 2981 2982 module_init(pkt_init); 2983 module_exit(pkt_exit); 2984