1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * such as drivers/scsi/sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom ->submit_bio function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 48 49 #include <linux/pktcdvd.h> 50 #include <linux/module.h> 51 #include <linux/types.h> 52 #include <linux/kernel.h> 53 #include <linux/compat.h> 54 #include <linux/kthread.h> 55 #include <linux/errno.h> 56 #include <linux/spinlock.h> 57 #include <linux/file.h> 58 #include <linux/proc_fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/miscdevice.h> 61 #include <linux/freezer.h> 62 #include <linux/mutex.h> 63 #include <linux/slab.h> 64 #include <linux/backing-dev.h> 65 #include <scsi/scsi_cmnd.h> 66 #include <scsi/scsi_ioctl.h> 67 #include <scsi/scsi.h> 68 #include <linux/debugfs.h> 69 #include <linux/device.h> 70 #include <linux/nospec.h> 71 #include <linux/uaccess.h> 72 73 #define DRIVER_NAME "pktcdvd" 74 75 #define pkt_err(pd, fmt, ...) \ 76 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__) 77 #define pkt_notice(pd, fmt, ...) \ 78 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__) 79 #define pkt_info(pd, fmt, ...) \ 80 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__) 81 82 #define pkt_dbg(level, pd, fmt, ...) \ 83 do { \ 84 if (level == 2 && PACKET_DEBUG >= 2) \ 85 pr_notice("%s: %s():" fmt, \ 86 pd->name, __func__, ##__VA_ARGS__); \ 87 else if (level == 1 && PACKET_DEBUG >= 1) \ 88 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \ 89 } while (0) 90 91 #define MAX_SPEED 0xffff 92 93 static DEFINE_MUTEX(pktcdvd_mutex); 94 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 95 static struct proc_dir_entry *pkt_proc; 96 static int pktdev_major; 97 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 98 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 99 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 100 static mempool_t psd_pool; 101 static struct bio_set pkt_bio_set; 102 103 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */ 104 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */ 105 106 /* forward declaration */ 107 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 108 static int pkt_remove_dev(dev_t pkt_dev); 109 static int pkt_seq_show(struct seq_file *m, void *p); 110 111 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd) 112 { 113 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1); 114 } 115 116 /********************************************************** 117 * sysfs interface for pktcdvd 118 * by (C) 2006 Thomas Maier <balagi@justmail.de> 119 120 /sys/class/pktcdvd/pktcdvd[0-7]/ 121 stat/reset 122 stat/packets_started 123 stat/packets_finished 124 stat/kb_written 125 stat/kb_read 126 stat/kb_read_gather 127 write_queue/size 128 write_queue/congestion_off 129 write_queue/congestion_on 130 **********************************************************/ 131 132 static ssize_t packets_started_show(struct device *dev, 133 struct device_attribute *attr, char *buf) 134 { 135 struct pktcdvd_device *pd = dev_get_drvdata(dev); 136 137 return sysfs_emit(buf, "%lu\n", pd->stats.pkt_started); 138 } 139 static DEVICE_ATTR_RO(packets_started); 140 141 static ssize_t packets_finished_show(struct device *dev, 142 struct device_attribute *attr, char *buf) 143 { 144 struct pktcdvd_device *pd = dev_get_drvdata(dev); 145 146 return sysfs_emit(buf, "%lu\n", pd->stats.pkt_ended); 147 } 148 static DEVICE_ATTR_RO(packets_finished); 149 150 static ssize_t kb_written_show(struct device *dev, 151 struct device_attribute *attr, char *buf) 152 { 153 struct pktcdvd_device *pd = dev_get_drvdata(dev); 154 155 return sysfs_emit(buf, "%lu\n", pd->stats.secs_w >> 1); 156 } 157 static DEVICE_ATTR_RO(kb_written); 158 159 static ssize_t kb_read_show(struct device *dev, 160 struct device_attribute *attr, char *buf) 161 { 162 struct pktcdvd_device *pd = dev_get_drvdata(dev); 163 164 return sysfs_emit(buf, "%lu\n", pd->stats.secs_r >> 1); 165 } 166 static DEVICE_ATTR_RO(kb_read); 167 168 static ssize_t kb_read_gather_show(struct device *dev, 169 struct device_attribute *attr, char *buf) 170 { 171 struct pktcdvd_device *pd = dev_get_drvdata(dev); 172 173 return sysfs_emit(buf, "%lu\n", pd->stats.secs_rg >> 1); 174 } 175 static DEVICE_ATTR_RO(kb_read_gather); 176 177 static ssize_t reset_store(struct device *dev, struct device_attribute *attr, 178 const char *buf, size_t len) 179 { 180 struct pktcdvd_device *pd = dev_get_drvdata(dev); 181 182 if (len > 0) { 183 pd->stats.pkt_started = 0; 184 pd->stats.pkt_ended = 0; 185 pd->stats.secs_w = 0; 186 pd->stats.secs_rg = 0; 187 pd->stats.secs_r = 0; 188 } 189 return len; 190 } 191 static DEVICE_ATTR_WO(reset); 192 193 static struct attribute *pkt_stat_attrs[] = { 194 &dev_attr_packets_finished.attr, 195 &dev_attr_packets_started.attr, 196 &dev_attr_kb_read.attr, 197 &dev_attr_kb_written.attr, 198 &dev_attr_kb_read_gather.attr, 199 &dev_attr_reset.attr, 200 NULL, 201 }; 202 203 static const struct attribute_group pkt_stat_group = { 204 .name = "stat", 205 .attrs = pkt_stat_attrs, 206 }; 207 208 static ssize_t size_show(struct device *dev, 209 struct device_attribute *attr, char *buf) 210 { 211 struct pktcdvd_device *pd = dev_get_drvdata(dev); 212 int n; 213 214 spin_lock(&pd->lock); 215 n = sysfs_emit(buf, "%d\n", pd->bio_queue_size); 216 spin_unlock(&pd->lock); 217 return n; 218 } 219 static DEVICE_ATTR_RO(size); 220 221 static void init_write_congestion_marks(int* lo, int* hi) 222 { 223 if (*hi > 0) { 224 *hi = max(*hi, 500); 225 *hi = min(*hi, 1000000); 226 if (*lo <= 0) 227 *lo = *hi - 100; 228 else { 229 *lo = min(*lo, *hi - 100); 230 *lo = max(*lo, 100); 231 } 232 } else { 233 *hi = -1; 234 *lo = -1; 235 } 236 } 237 238 static ssize_t congestion_off_show(struct device *dev, 239 struct device_attribute *attr, char *buf) 240 { 241 struct pktcdvd_device *pd = dev_get_drvdata(dev); 242 int n; 243 244 spin_lock(&pd->lock); 245 n = sysfs_emit(buf, "%d\n", pd->write_congestion_off); 246 spin_unlock(&pd->lock); 247 return n; 248 } 249 250 static ssize_t congestion_off_store(struct device *dev, 251 struct device_attribute *attr, 252 const char *buf, size_t len) 253 { 254 struct pktcdvd_device *pd = dev_get_drvdata(dev); 255 int val; 256 257 if (sscanf(buf, "%d", &val) == 1) { 258 spin_lock(&pd->lock); 259 pd->write_congestion_off = val; 260 init_write_congestion_marks(&pd->write_congestion_off, 261 &pd->write_congestion_on); 262 spin_unlock(&pd->lock); 263 } 264 return len; 265 } 266 static DEVICE_ATTR_RW(congestion_off); 267 268 static ssize_t congestion_on_show(struct device *dev, 269 struct device_attribute *attr, char *buf) 270 { 271 struct pktcdvd_device *pd = dev_get_drvdata(dev); 272 int n; 273 274 spin_lock(&pd->lock); 275 n = sysfs_emit(buf, "%d\n", pd->write_congestion_on); 276 spin_unlock(&pd->lock); 277 return n; 278 } 279 280 static ssize_t congestion_on_store(struct device *dev, 281 struct device_attribute *attr, 282 const char *buf, size_t len) 283 { 284 struct pktcdvd_device *pd = dev_get_drvdata(dev); 285 int val; 286 287 if (sscanf(buf, "%d", &val) == 1) { 288 spin_lock(&pd->lock); 289 pd->write_congestion_on = val; 290 init_write_congestion_marks(&pd->write_congestion_off, 291 &pd->write_congestion_on); 292 spin_unlock(&pd->lock); 293 } 294 return len; 295 } 296 static DEVICE_ATTR_RW(congestion_on); 297 298 static struct attribute *pkt_wq_attrs[] = { 299 &dev_attr_congestion_on.attr, 300 &dev_attr_congestion_off.attr, 301 &dev_attr_size.attr, 302 NULL, 303 }; 304 305 static const struct attribute_group pkt_wq_group = { 306 .name = "write_queue", 307 .attrs = pkt_wq_attrs, 308 }; 309 310 static const struct attribute_group *pkt_groups[] = { 311 &pkt_stat_group, 312 &pkt_wq_group, 313 NULL, 314 }; 315 316 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 317 { 318 if (class_pktcdvd) { 319 pd->dev = device_create_with_groups(class_pktcdvd, NULL, 320 MKDEV(0, 0), pd, pkt_groups, 321 "%s", pd->name); 322 if (IS_ERR(pd->dev)) 323 pd->dev = NULL; 324 } 325 } 326 327 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 328 { 329 if (class_pktcdvd) 330 device_unregister(pd->dev); 331 } 332 333 334 /******************************************************************** 335 /sys/class/pktcdvd/ 336 add map block device 337 remove unmap packet dev 338 device_map show mappings 339 *******************************************************************/ 340 341 static void class_pktcdvd_release(struct class *cls) 342 { 343 kfree(cls); 344 } 345 346 static ssize_t device_map_show(struct class *c, struct class_attribute *attr, 347 char *data) 348 { 349 int n = 0; 350 int idx; 351 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 352 for (idx = 0; idx < MAX_WRITERS; idx++) { 353 struct pktcdvd_device *pd = pkt_devs[idx]; 354 if (!pd) 355 continue; 356 n += sprintf(data+n, "%s %u:%u %u:%u\n", 357 pd->name, 358 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 359 MAJOR(pd->bdev->bd_dev), 360 MINOR(pd->bdev->bd_dev)); 361 } 362 mutex_unlock(&ctl_mutex); 363 return n; 364 } 365 static CLASS_ATTR_RO(device_map); 366 367 static ssize_t add_store(struct class *c, struct class_attribute *attr, 368 const char *buf, size_t count) 369 { 370 unsigned int major, minor; 371 372 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 373 /* pkt_setup_dev() expects caller to hold reference to self */ 374 if (!try_module_get(THIS_MODULE)) 375 return -ENODEV; 376 377 pkt_setup_dev(MKDEV(major, minor), NULL); 378 379 module_put(THIS_MODULE); 380 381 return count; 382 } 383 384 return -EINVAL; 385 } 386 static CLASS_ATTR_WO(add); 387 388 static ssize_t remove_store(struct class *c, struct class_attribute *attr, 389 const char *buf, size_t count) 390 { 391 unsigned int major, minor; 392 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 393 pkt_remove_dev(MKDEV(major, minor)); 394 return count; 395 } 396 return -EINVAL; 397 } 398 static CLASS_ATTR_WO(remove); 399 400 static struct attribute *class_pktcdvd_attrs[] = { 401 &class_attr_add.attr, 402 &class_attr_remove.attr, 403 &class_attr_device_map.attr, 404 NULL, 405 }; 406 ATTRIBUTE_GROUPS(class_pktcdvd); 407 408 static int pkt_sysfs_init(void) 409 { 410 int ret = 0; 411 412 /* 413 * create control files in sysfs 414 * /sys/class/pktcdvd/... 415 */ 416 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL); 417 if (!class_pktcdvd) 418 return -ENOMEM; 419 class_pktcdvd->name = DRIVER_NAME; 420 class_pktcdvd->owner = THIS_MODULE; 421 class_pktcdvd->class_release = class_pktcdvd_release; 422 class_pktcdvd->class_groups = class_pktcdvd_groups; 423 ret = class_register(class_pktcdvd); 424 if (ret) { 425 kfree(class_pktcdvd); 426 class_pktcdvd = NULL; 427 pr_err("failed to create class pktcdvd\n"); 428 return ret; 429 } 430 return 0; 431 } 432 433 static void pkt_sysfs_cleanup(void) 434 { 435 if (class_pktcdvd) 436 class_destroy(class_pktcdvd); 437 class_pktcdvd = NULL; 438 } 439 440 /******************************************************************** 441 entries in debugfs 442 443 /sys/kernel/debug/pktcdvd[0-7]/ 444 info 445 446 *******************************************************************/ 447 448 static int pkt_debugfs_seq_show(struct seq_file *m, void *p) 449 { 450 return pkt_seq_show(m, p); 451 } 452 453 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file) 454 { 455 return single_open(file, pkt_debugfs_seq_show, inode->i_private); 456 } 457 458 static const struct file_operations debug_fops = { 459 .open = pkt_debugfs_fops_open, 460 .read = seq_read, 461 .llseek = seq_lseek, 462 .release = single_release, 463 .owner = THIS_MODULE, 464 }; 465 466 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 467 { 468 if (!pkt_debugfs_root) 469 return; 470 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root); 471 if (!pd->dfs_d_root) 472 return; 473 474 pd->dfs_f_info = debugfs_create_file("info", 0444, 475 pd->dfs_d_root, pd, &debug_fops); 476 } 477 478 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 479 { 480 if (!pkt_debugfs_root) 481 return; 482 debugfs_remove(pd->dfs_f_info); 483 debugfs_remove(pd->dfs_d_root); 484 pd->dfs_f_info = NULL; 485 pd->dfs_d_root = NULL; 486 } 487 488 static void pkt_debugfs_init(void) 489 { 490 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 491 } 492 493 static void pkt_debugfs_cleanup(void) 494 { 495 debugfs_remove(pkt_debugfs_root); 496 pkt_debugfs_root = NULL; 497 } 498 499 /* ----------------------------------------------------------*/ 500 501 502 static void pkt_bio_finished(struct pktcdvd_device *pd) 503 { 504 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 505 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 506 pkt_dbg(2, pd, "queue empty\n"); 507 atomic_set(&pd->iosched.attention, 1); 508 wake_up(&pd->wqueue); 509 } 510 } 511 512 /* 513 * Allocate a packet_data struct 514 */ 515 static struct packet_data *pkt_alloc_packet_data(int frames) 516 { 517 int i; 518 struct packet_data *pkt; 519 520 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 521 if (!pkt) 522 goto no_pkt; 523 524 pkt->frames = frames; 525 pkt->w_bio = bio_kmalloc(frames, GFP_KERNEL); 526 if (!pkt->w_bio) 527 goto no_bio; 528 529 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 530 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 531 if (!pkt->pages[i]) 532 goto no_page; 533 } 534 535 spin_lock_init(&pkt->lock); 536 bio_list_init(&pkt->orig_bios); 537 538 for (i = 0; i < frames; i++) { 539 pkt->r_bios[i] = bio_kmalloc(1, GFP_KERNEL); 540 if (!pkt->r_bios[i]) 541 goto no_rd_bio; 542 } 543 544 return pkt; 545 546 no_rd_bio: 547 for (i = 0; i < frames; i++) 548 kfree(pkt->r_bios[i]); 549 no_page: 550 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 551 if (pkt->pages[i]) 552 __free_page(pkt->pages[i]); 553 kfree(pkt->w_bio); 554 no_bio: 555 kfree(pkt); 556 no_pkt: 557 return NULL; 558 } 559 560 /* 561 * Free a packet_data struct 562 */ 563 static void pkt_free_packet_data(struct packet_data *pkt) 564 { 565 int i; 566 567 for (i = 0; i < pkt->frames; i++) 568 kfree(pkt->r_bios[i]); 569 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 570 __free_page(pkt->pages[i]); 571 kfree(pkt->w_bio); 572 kfree(pkt); 573 } 574 575 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 576 { 577 struct packet_data *pkt, *next; 578 579 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 580 581 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 582 pkt_free_packet_data(pkt); 583 } 584 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 585 } 586 587 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 588 { 589 struct packet_data *pkt; 590 591 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 592 593 while (nr_packets > 0) { 594 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 595 if (!pkt) { 596 pkt_shrink_pktlist(pd); 597 return 0; 598 } 599 pkt->id = nr_packets; 600 pkt->pd = pd; 601 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 602 nr_packets--; 603 } 604 return 1; 605 } 606 607 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 608 { 609 struct rb_node *n = rb_next(&node->rb_node); 610 if (!n) 611 return NULL; 612 return rb_entry(n, struct pkt_rb_node, rb_node); 613 } 614 615 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 616 { 617 rb_erase(&node->rb_node, &pd->bio_queue); 618 mempool_free(node, &pd->rb_pool); 619 pd->bio_queue_size--; 620 BUG_ON(pd->bio_queue_size < 0); 621 } 622 623 /* 624 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 625 */ 626 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 627 { 628 struct rb_node *n = pd->bio_queue.rb_node; 629 struct rb_node *next; 630 struct pkt_rb_node *tmp; 631 632 if (!n) { 633 BUG_ON(pd->bio_queue_size > 0); 634 return NULL; 635 } 636 637 for (;;) { 638 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 639 if (s <= tmp->bio->bi_iter.bi_sector) 640 next = n->rb_left; 641 else 642 next = n->rb_right; 643 if (!next) 644 break; 645 n = next; 646 } 647 648 if (s > tmp->bio->bi_iter.bi_sector) { 649 tmp = pkt_rbtree_next(tmp); 650 if (!tmp) 651 return NULL; 652 } 653 BUG_ON(s > tmp->bio->bi_iter.bi_sector); 654 return tmp; 655 } 656 657 /* 658 * Insert a node into the pd->bio_queue rb tree. 659 */ 660 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 661 { 662 struct rb_node **p = &pd->bio_queue.rb_node; 663 struct rb_node *parent = NULL; 664 sector_t s = node->bio->bi_iter.bi_sector; 665 struct pkt_rb_node *tmp; 666 667 while (*p) { 668 parent = *p; 669 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 670 if (s < tmp->bio->bi_iter.bi_sector) 671 p = &(*p)->rb_left; 672 else 673 p = &(*p)->rb_right; 674 } 675 rb_link_node(&node->rb_node, parent, p); 676 rb_insert_color(&node->rb_node, &pd->bio_queue); 677 pd->bio_queue_size++; 678 } 679 680 /* 681 * Send a packet_command to the underlying block device and 682 * wait for completion. 683 */ 684 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 685 { 686 struct request_queue *q = bdev_get_queue(pd->bdev); 687 struct scsi_cmnd *scmd; 688 struct request *rq; 689 int ret = 0; 690 691 rq = scsi_alloc_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 692 REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 693 if (IS_ERR(rq)) 694 return PTR_ERR(rq); 695 scmd = blk_mq_rq_to_pdu(rq); 696 697 if (cgc->buflen) { 698 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, 699 GFP_NOIO); 700 if (ret) 701 goto out; 702 } 703 704 scmd->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 705 memcpy(scmd->cmnd, cgc->cmd, CDROM_PACKET_SIZE); 706 707 rq->timeout = 60*HZ; 708 if (cgc->quiet) 709 rq->rq_flags |= RQF_QUIET; 710 711 blk_execute_rq(rq, false); 712 if (scmd->result) 713 ret = -EIO; 714 out: 715 blk_mq_free_request(rq); 716 return ret; 717 } 718 719 static const char *sense_key_string(__u8 index) 720 { 721 static const char * const info[] = { 722 "No sense", "Recovered error", "Not ready", 723 "Medium error", "Hardware error", "Illegal request", 724 "Unit attention", "Data protect", "Blank check", 725 }; 726 727 return index < ARRAY_SIZE(info) ? info[index] : "INVALID"; 728 } 729 730 /* 731 * A generic sense dump / resolve mechanism should be implemented across 732 * all ATAPI + SCSI devices. 733 */ 734 static void pkt_dump_sense(struct pktcdvd_device *pd, 735 struct packet_command *cgc) 736 { 737 struct scsi_sense_hdr *sshdr = cgc->sshdr; 738 739 if (sshdr) 740 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n", 741 CDROM_PACKET_SIZE, cgc->cmd, 742 sshdr->sense_key, sshdr->asc, sshdr->ascq, 743 sense_key_string(sshdr->sense_key)); 744 else 745 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd); 746 } 747 748 /* 749 * flush the drive cache to media 750 */ 751 static int pkt_flush_cache(struct pktcdvd_device *pd) 752 { 753 struct packet_command cgc; 754 755 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 756 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 757 cgc.quiet = 1; 758 759 /* 760 * the IMMED bit -- we default to not setting it, although that 761 * would allow a much faster close, this is safer 762 */ 763 #if 0 764 cgc.cmd[1] = 1 << 1; 765 #endif 766 return pkt_generic_packet(pd, &cgc); 767 } 768 769 /* 770 * speed is given as the normal factor, e.g. 4 for 4x 771 */ 772 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd, 773 unsigned write_speed, unsigned read_speed) 774 { 775 struct packet_command cgc; 776 struct scsi_sense_hdr sshdr; 777 int ret; 778 779 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 780 cgc.sshdr = &sshdr; 781 cgc.cmd[0] = GPCMD_SET_SPEED; 782 cgc.cmd[2] = (read_speed >> 8) & 0xff; 783 cgc.cmd[3] = read_speed & 0xff; 784 cgc.cmd[4] = (write_speed >> 8) & 0xff; 785 cgc.cmd[5] = write_speed & 0xff; 786 787 ret = pkt_generic_packet(pd, &cgc); 788 if (ret) 789 pkt_dump_sense(pd, &cgc); 790 791 return ret; 792 } 793 794 /* 795 * Queue a bio for processing by the low-level CD device. Must be called 796 * from process context. 797 */ 798 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 799 { 800 spin_lock(&pd->iosched.lock); 801 if (bio_data_dir(bio) == READ) 802 bio_list_add(&pd->iosched.read_queue, bio); 803 else 804 bio_list_add(&pd->iosched.write_queue, bio); 805 spin_unlock(&pd->iosched.lock); 806 807 atomic_set(&pd->iosched.attention, 1); 808 wake_up(&pd->wqueue); 809 } 810 811 /* 812 * Process the queued read/write requests. This function handles special 813 * requirements for CDRW drives: 814 * - A cache flush command must be inserted before a read request if the 815 * previous request was a write. 816 * - Switching between reading and writing is slow, so don't do it more often 817 * than necessary. 818 * - Optimize for throughput at the expense of latency. This means that streaming 819 * writes will never be interrupted by a read, but if the drive has to seek 820 * before the next write, switch to reading instead if there are any pending 821 * read requests. 822 * - Set the read speed according to current usage pattern. When only reading 823 * from the device, it's best to use the highest possible read speed, but 824 * when switching often between reading and writing, it's better to have the 825 * same read and write speeds. 826 */ 827 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 828 { 829 830 if (atomic_read(&pd->iosched.attention) == 0) 831 return; 832 atomic_set(&pd->iosched.attention, 0); 833 834 for (;;) { 835 struct bio *bio; 836 int reads_queued, writes_queued; 837 838 spin_lock(&pd->iosched.lock); 839 reads_queued = !bio_list_empty(&pd->iosched.read_queue); 840 writes_queued = !bio_list_empty(&pd->iosched.write_queue); 841 spin_unlock(&pd->iosched.lock); 842 843 if (!reads_queued && !writes_queued) 844 break; 845 846 if (pd->iosched.writing) { 847 int need_write_seek = 1; 848 spin_lock(&pd->iosched.lock); 849 bio = bio_list_peek(&pd->iosched.write_queue); 850 spin_unlock(&pd->iosched.lock); 851 if (bio && (bio->bi_iter.bi_sector == 852 pd->iosched.last_write)) 853 need_write_seek = 0; 854 if (need_write_seek && reads_queued) { 855 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 856 pkt_dbg(2, pd, "write, waiting\n"); 857 break; 858 } 859 pkt_flush_cache(pd); 860 pd->iosched.writing = 0; 861 } 862 } else { 863 if (!reads_queued && writes_queued) { 864 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 865 pkt_dbg(2, pd, "read, waiting\n"); 866 break; 867 } 868 pd->iosched.writing = 1; 869 } 870 } 871 872 spin_lock(&pd->iosched.lock); 873 if (pd->iosched.writing) 874 bio = bio_list_pop(&pd->iosched.write_queue); 875 else 876 bio = bio_list_pop(&pd->iosched.read_queue); 877 spin_unlock(&pd->iosched.lock); 878 879 if (!bio) 880 continue; 881 882 if (bio_data_dir(bio) == READ) 883 pd->iosched.successive_reads += 884 bio->bi_iter.bi_size >> 10; 885 else { 886 pd->iosched.successive_reads = 0; 887 pd->iosched.last_write = bio_end_sector(bio); 888 } 889 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 890 if (pd->read_speed == pd->write_speed) { 891 pd->read_speed = MAX_SPEED; 892 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 893 } 894 } else { 895 if (pd->read_speed != pd->write_speed) { 896 pd->read_speed = pd->write_speed; 897 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 898 } 899 } 900 901 atomic_inc(&pd->cdrw.pending_bios); 902 submit_bio_noacct(bio); 903 } 904 } 905 906 /* 907 * Special care is needed if the underlying block device has a small 908 * max_phys_segments value. 909 */ 910 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q) 911 { 912 if ((pd->settings.size << 9) / CD_FRAMESIZE 913 <= queue_max_segments(q)) { 914 /* 915 * The cdrom device can handle one segment/frame 916 */ 917 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 918 return 0; 919 } else if ((pd->settings.size << 9) / PAGE_SIZE 920 <= queue_max_segments(q)) { 921 /* 922 * We can handle this case at the expense of some extra memory 923 * copies during write operations 924 */ 925 set_bit(PACKET_MERGE_SEGS, &pd->flags); 926 return 0; 927 } else { 928 pkt_err(pd, "cdrom max_phys_segments too small\n"); 929 return -EIO; 930 } 931 } 932 933 static void pkt_end_io_read(struct bio *bio) 934 { 935 struct packet_data *pkt = bio->bi_private; 936 struct pktcdvd_device *pd = pkt->pd; 937 BUG_ON(!pd); 938 939 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n", 940 bio, (unsigned long long)pkt->sector, 941 (unsigned long long)bio->bi_iter.bi_sector, bio->bi_status); 942 943 if (bio->bi_status) 944 atomic_inc(&pkt->io_errors); 945 bio_uninit(bio); 946 if (atomic_dec_and_test(&pkt->io_wait)) { 947 atomic_inc(&pkt->run_sm); 948 wake_up(&pd->wqueue); 949 } 950 pkt_bio_finished(pd); 951 } 952 953 static void pkt_end_io_packet_write(struct bio *bio) 954 { 955 struct packet_data *pkt = bio->bi_private; 956 struct pktcdvd_device *pd = pkt->pd; 957 BUG_ON(!pd); 958 959 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_status); 960 961 pd->stats.pkt_ended++; 962 963 bio_uninit(bio); 964 pkt_bio_finished(pd); 965 atomic_dec(&pkt->io_wait); 966 atomic_inc(&pkt->run_sm); 967 wake_up(&pd->wqueue); 968 } 969 970 /* 971 * Schedule reads for the holes in a packet 972 */ 973 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 974 { 975 int frames_read = 0; 976 struct bio *bio; 977 int f; 978 char written[PACKET_MAX_SIZE]; 979 980 BUG_ON(bio_list_empty(&pkt->orig_bios)); 981 982 atomic_set(&pkt->io_wait, 0); 983 atomic_set(&pkt->io_errors, 0); 984 985 /* 986 * Figure out which frames we need to read before we can write. 987 */ 988 memset(written, 0, sizeof(written)); 989 spin_lock(&pkt->lock); 990 bio_list_for_each(bio, &pkt->orig_bios) { 991 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) / 992 (CD_FRAMESIZE >> 9); 993 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE; 994 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 995 BUG_ON(first_frame < 0); 996 BUG_ON(first_frame + num_frames > pkt->frames); 997 for (f = first_frame; f < first_frame + num_frames; f++) 998 written[f] = 1; 999 } 1000 spin_unlock(&pkt->lock); 1001 1002 if (pkt->cache_valid) { 1003 pkt_dbg(2, pd, "zone %llx cached\n", 1004 (unsigned long long)pkt->sector); 1005 goto out_account; 1006 } 1007 1008 /* 1009 * Schedule reads for missing parts of the packet. 1010 */ 1011 for (f = 0; f < pkt->frames; f++) { 1012 int p, offset; 1013 1014 if (written[f]) 1015 continue; 1016 1017 bio = pkt->r_bios[f]; 1018 bio_init(bio, pd->bdev, bio->bi_inline_vecs, 1, REQ_OP_READ); 1019 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1020 bio->bi_end_io = pkt_end_io_read; 1021 bio->bi_private = pkt; 1022 1023 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1024 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1025 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n", 1026 f, pkt->pages[p], offset); 1027 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1028 BUG(); 1029 1030 atomic_inc(&pkt->io_wait); 1031 pkt_queue_bio(pd, bio); 1032 frames_read++; 1033 } 1034 1035 out_account: 1036 pkt_dbg(2, pd, "need %d frames for zone %llx\n", 1037 frames_read, (unsigned long long)pkt->sector); 1038 pd->stats.pkt_started++; 1039 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1040 } 1041 1042 /* 1043 * Find a packet matching zone, or the least recently used packet if 1044 * there is no match. 1045 */ 1046 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1047 { 1048 struct packet_data *pkt; 1049 1050 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1051 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1052 list_del_init(&pkt->list); 1053 if (pkt->sector != zone) 1054 pkt->cache_valid = 0; 1055 return pkt; 1056 } 1057 } 1058 BUG(); 1059 return NULL; 1060 } 1061 1062 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1063 { 1064 if (pkt->cache_valid) { 1065 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1066 } else { 1067 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1068 } 1069 } 1070 1071 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 1072 { 1073 #if PACKET_DEBUG > 1 1074 static const char *state_name[] = { 1075 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1076 }; 1077 enum packet_data_state old_state = pkt->state; 1078 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n", 1079 pkt->id, (unsigned long long)pkt->sector, 1080 state_name[old_state], state_name[state]); 1081 #endif 1082 pkt->state = state; 1083 } 1084 1085 /* 1086 * Scan the work queue to see if we can start a new packet. 1087 * returns non-zero if any work was done. 1088 */ 1089 static int pkt_handle_queue(struct pktcdvd_device *pd) 1090 { 1091 struct packet_data *pkt, *p; 1092 struct bio *bio = NULL; 1093 sector_t zone = 0; /* Suppress gcc warning */ 1094 struct pkt_rb_node *node, *first_node; 1095 struct rb_node *n; 1096 1097 atomic_set(&pd->scan_queue, 0); 1098 1099 if (list_empty(&pd->cdrw.pkt_free_list)) { 1100 pkt_dbg(2, pd, "no pkt\n"); 1101 return 0; 1102 } 1103 1104 /* 1105 * Try to find a zone we are not already working on. 1106 */ 1107 spin_lock(&pd->lock); 1108 first_node = pkt_rbtree_find(pd, pd->current_sector); 1109 if (!first_node) { 1110 n = rb_first(&pd->bio_queue); 1111 if (n) 1112 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1113 } 1114 node = first_node; 1115 while (node) { 1116 bio = node->bio; 1117 zone = get_zone(bio->bi_iter.bi_sector, pd); 1118 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1119 if (p->sector == zone) { 1120 bio = NULL; 1121 goto try_next_bio; 1122 } 1123 } 1124 break; 1125 try_next_bio: 1126 node = pkt_rbtree_next(node); 1127 if (!node) { 1128 n = rb_first(&pd->bio_queue); 1129 if (n) 1130 node = rb_entry(n, struct pkt_rb_node, rb_node); 1131 } 1132 if (node == first_node) 1133 node = NULL; 1134 } 1135 spin_unlock(&pd->lock); 1136 if (!bio) { 1137 pkt_dbg(2, pd, "no bio\n"); 1138 return 0; 1139 } 1140 1141 pkt = pkt_get_packet_data(pd, zone); 1142 1143 pd->current_sector = zone + pd->settings.size; 1144 pkt->sector = zone; 1145 BUG_ON(pkt->frames != pd->settings.size >> 2); 1146 pkt->write_size = 0; 1147 1148 /* 1149 * Scan work queue for bios in the same zone and link them 1150 * to this packet. 1151 */ 1152 spin_lock(&pd->lock); 1153 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone); 1154 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1155 bio = node->bio; 1156 pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long) 1157 get_zone(bio->bi_iter.bi_sector, pd)); 1158 if (get_zone(bio->bi_iter.bi_sector, pd) != zone) 1159 break; 1160 pkt_rbtree_erase(pd, node); 1161 spin_lock(&pkt->lock); 1162 bio_list_add(&pkt->orig_bios, bio); 1163 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE; 1164 spin_unlock(&pkt->lock); 1165 } 1166 /* check write congestion marks, and if bio_queue_size is 1167 * below, wake up any waiters 1168 */ 1169 if (pd->congested && 1170 pd->bio_queue_size <= pd->write_congestion_off) { 1171 pd->congested = false; 1172 wake_up_var(&pd->congested); 1173 } 1174 spin_unlock(&pd->lock); 1175 1176 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1177 pkt_set_state(pkt, PACKET_WAITING_STATE); 1178 atomic_set(&pkt->run_sm, 1); 1179 1180 spin_lock(&pd->cdrw.active_list_lock); 1181 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1182 spin_unlock(&pd->cdrw.active_list_lock); 1183 1184 return 1; 1185 } 1186 1187 /** 1188 * bio_list_copy_data - copy contents of data buffers from one chain of bios to 1189 * another 1190 * @src: source bio list 1191 * @dst: destination bio list 1192 * 1193 * Stops when it reaches the end of either the @src list or @dst list - that is, 1194 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of 1195 * bios). 1196 */ 1197 static void bio_list_copy_data(struct bio *dst, struct bio *src) 1198 { 1199 struct bvec_iter src_iter = src->bi_iter; 1200 struct bvec_iter dst_iter = dst->bi_iter; 1201 1202 while (1) { 1203 if (!src_iter.bi_size) { 1204 src = src->bi_next; 1205 if (!src) 1206 break; 1207 1208 src_iter = src->bi_iter; 1209 } 1210 1211 if (!dst_iter.bi_size) { 1212 dst = dst->bi_next; 1213 if (!dst) 1214 break; 1215 1216 dst_iter = dst->bi_iter; 1217 } 1218 1219 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1220 } 1221 } 1222 1223 /* 1224 * Assemble a bio to write one packet and queue the bio for processing 1225 * by the underlying block device. 1226 */ 1227 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1228 { 1229 int f; 1230 1231 bio_init(pkt->w_bio, pd->bdev, pkt->w_bio->bi_inline_vecs, pkt->frames, 1232 REQ_OP_WRITE); 1233 pkt->w_bio->bi_iter.bi_sector = pkt->sector; 1234 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1235 pkt->w_bio->bi_private = pkt; 1236 1237 /* XXX: locking? */ 1238 for (f = 0; f < pkt->frames; f++) { 1239 struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1240 unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1241 1242 if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset)) 1243 BUG(); 1244 } 1245 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt); 1246 1247 /* 1248 * Fill-in bvec with data from orig_bios. 1249 */ 1250 spin_lock(&pkt->lock); 1251 bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head); 1252 1253 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1254 spin_unlock(&pkt->lock); 1255 1256 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n", 1257 pkt->write_size, (unsigned long long)pkt->sector); 1258 1259 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) 1260 pkt->cache_valid = 1; 1261 else 1262 pkt->cache_valid = 0; 1263 1264 /* Start the write request */ 1265 atomic_set(&pkt->io_wait, 1); 1266 pkt_queue_bio(pd, pkt->w_bio); 1267 } 1268 1269 static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status) 1270 { 1271 struct bio *bio; 1272 1273 if (status) 1274 pkt->cache_valid = 0; 1275 1276 /* Finish all bios corresponding to this packet */ 1277 while ((bio = bio_list_pop(&pkt->orig_bios))) { 1278 bio->bi_status = status; 1279 bio_endio(bio); 1280 } 1281 } 1282 1283 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1284 { 1285 pkt_dbg(2, pd, "pkt %d\n", pkt->id); 1286 1287 for (;;) { 1288 switch (pkt->state) { 1289 case PACKET_WAITING_STATE: 1290 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1291 return; 1292 1293 pkt->sleep_time = 0; 1294 pkt_gather_data(pd, pkt); 1295 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1296 break; 1297 1298 case PACKET_READ_WAIT_STATE: 1299 if (atomic_read(&pkt->io_wait) > 0) 1300 return; 1301 1302 if (atomic_read(&pkt->io_errors) > 0) { 1303 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1304 } else { 1305 pkt_start_write(pd, pkt); 1306 } 1307 break; 1308 1309 case PACKET_WRITE_WAIT_STATE: 1310 if (atomic_read(&pkt->io_wait) > 0) 1311 return; 1312 1313 if (!pkt->w_bio->bi_status) { 1314 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1315 } else { 1316 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1317 } 1318 break; 1319 1320 case PACKET_RECOVERY_STATE: 1321 pkt_dbg(2, pd, "No recovery possible\n"); 1322 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1323 break; 1324 1325 case PACKET_FINISHED_STATE: 1326 pkt_finish_packet(pkt, pkt->w_bio->bi_status); 1327 return; 1328 1329 default: 1330 BUG(); 1331 break; 1332 } 1333 } 1334 } 1335 1336 static void pkt_handle_packets(struct pktcdvd_device *pd) 1337 { 1338 struct packet_data *pkt, *next; 1339 1340 /* 1341 * Run state machine for active packets 1342 */ 1343 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1344 if (atomic_read(&pkt->run_sm) > 0) { 1345 atomic_set(&pkt->run_sm, 0); 1346 pkt_run_state_machine(pd, pkt); 1347 } 1348 } 1349 1350 /* 1351 * Move no longer active packets to the free list 1352 */ 1353 spin_lock(&pd->cdrw.active_list_lock); 1354 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1355 if (pkt->state == PACKET_FINISHED_STATE) { 1356 list_del(&pkt->list); 1357 pkt_put_packet_data(pd, pkt); 1358 pkt_set_state(pkt, PACKET_IDLE_STATE); 1359 atomic_set(&pd->scan_queue, 1); 1360 } 1361 } 1362 spin_unlock(&pd->cdrw.active_list_lock); 1363 } 1364 1365 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1366 { 1367 struct packet_data *pkt; 1368 int i; 1369 1370 for (i = 0; i < PACKET_NUM_STATES; i++) 1371 states[i] = 0; 1372 1373 spin_lock(&pd->cdrw.active_list_lock); 1374 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1375 states[pkt->state]++; 1376 } 1377 spin_unlock(&pd->cdrw.active_list_lock); 1378 } 1379 1380 /* 1381 * kcdrwd is woken up when writes have been queued for one of our 1382 * registered devices 1383 */ 1384 static int kcdrwd(void *foobar) 1385 { 1386 struct pktcdvd_device *pd = foobar; 1387 struct packet_data *pkt; 1388 long min_sleep_time, residue; 1389 1390 set_user_nice(current, MIN_NICE); 1391 set_freezable(); 1392 1393 for (;;) { 1394 DECLARE_WAITQUEUE(wait, current); 1395 1396 /* 1397 * Wait until there is something to do 1398 */ 1399 add_wait_queue(&pd->wqueue, &wait); 1400 for (;;) { 1401 set_current_state(TASK_INTERRUPTIBLE); 1402 1403 /* Check if we need to run pkt_handle_queue */ 1404 if (atomic_read(&pd->scan_queue) > 0) 1405 goto work_to_do; 1406 1407 /* Check if we need to run the state machine for some packet */ 1408 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1409 if (atomic_read(&pkt->run_sm) > 0) 1410 goto work_to_do; 1411 } 1412 1413 /* Check if we need to process the iosched queues */ 1414 if (atomic_read(&pd->iosched.attention) != 0) 1415 goto work_to_do; 1416 1417 /* Otherwise, go to sleep */ 1418 if (PACKET_DEBUG > 1) { 1419 int states[PACKET_NUM_STATES]; 1420 pkt_count_states(pd, states); 1421 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1422 states[0], states[1], states[2], 1423 states[3], states[4], states[5]); 1424 } 1425 1426 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1427 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1428 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1429 min_sleep_time = pkt->sleep_time; 1430 } 1431 1432 pkt_dbg(2, pd, "sleeping\n"); 1433 residue = schedule_timeout(min_sleep_time); 1434 pkt_dbg(2, pd, "wake up\n"); 1435 1436 /* make swsusp happy with our thread */ 1437 try_to_freeze(); 1438 1439 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1440 if (!pkt->sleep_time) 1441 continue; 1442 pkt->sleep_time -= min_sleep_time - residue; 1443 if (pkt->sleep_time <= 0) { 1444 pkt->sleep_time = 0; 1445 atomic_inc(&pkt->run_sm); 1446 } 1447 } 1448 1449 if (kthread_should_stop()) 1450 break; 1451 } 1452 work_to_do: 1453 set_current_state(TASK_RUNNING); 1454 remove_wait_queue(&pd->wqueue, &wait); 1455 1456 if (kthread_should_stop()) 1457 break; 1458 1459 /* 1460 * if pkt_handle_queue returns true, we can queue 1461 * another request. 1462 */ 1463 while (pkt_handle_queue(pd)) 1464 ; 1465 1466 /* 1467 * Handle packet state machine 1468 */ 1469 pkt_handle_packets(pd); 1470 1471 /* 1472 * Handle iosched queues 1473 */ 1474 pkt_iosched_process_queue(pd); 1475 } 1476 1477 return 0; 1478 } 1479 1480 static void pkt_print_settings(struct pktcdvd_device *pd) 1481 { 1482 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n", 1483 pd->settings.fp ? "Fixed" : "Variable", 1484 pd->settings.size >> 2, 1485 pd->settings.block_mode == 8 ? '1' : '2'); 1486 } 1487 1488 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1489 { 1490 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1491 1492 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1493 cgc->cmd[2] = page_code | (page_control << 6); 1494 cgc->cmd[7] = cgc->buflen >> 8; 1495 cgc->cmd[8] = cgc->buflen & 0xff; 1496 cgc->data_direction = CGC_DATA_READ; 1497 return pkt_generic_packet(pd, cgc); 1498 } 1499 1500 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1501 { 1502 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1503 memset(cgc->buffer, 0, 2); 1504 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1505 cgc->cmd[1] = 0x10; /* PF */ 1506 cgc->cmd[7] = cgc->buflen >> 8; 1507 cgc->cmd[8] = cgc->buflen & 0xff; 1508 cgc->data_direction = CGC_DATA_WRITE; 1509 return pkt_generic_packet(pd, cgc); 1510 } 1511 1512 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1513 { 1514 struct packet_command cgc; 1515 int ret; 1516 1517 /* set up command and get the disc info */ 1518 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1519 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1520 cgc.cmd[8] = cgc.buflen = 2; 1521 cgc.quiet = 1; 1522 1523 ret = pkt_generic_packet(pd, &cgc); 1524 if (ret) 1525 return ret; 1526 1527 /* not all drives have the same disc_info length, so requeue 1528 * packet with the length the drive tells us it can supply 1529 */ 1530 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1531 sizeof(di->disc_information_length); 1532 1533 if (cgc.buflen > sizeof(disc_information)) 1534 cgc.buflen = sizeof(disc_information); 1535 1536 cgc.cmd[8] = cgc.buflen; 1537 return pkt_generic_packet(pd, &cgc); 1538 } 1539 1540 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1541 { 1542 struct packet_command cgc; 1543 int ret; 1544 1545 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1546 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1547 cgc.cmd[1] = type & 3; 1548 cgc.cmd[4] = (track & 0xff00) >> 8; 1549 cgc.cmd[5] = track & 0xff; 1550 cgc.cmd[8] = 8; 1551 cgc.quiet = 1; 1552 1553 ret = pkt_generic_packet(pd, &cgc); 1554 if (ret) 1555 return ret; 1556 1557 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1558 sizeof(ti->track_information_length); 1559 1560 if (cgc.buflen > sizeof(track_information)) 1561 cgc.buflen = sizeof(track_information); 1562 1563 cgc.cmd[8] = cgc.buflen; 1564 return pkt_generic_packet(pd, &cgc); 1565 } 1566 1567 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd, 1568 long *last_written) 1569 { 1570 disc_information di; 1571 track_information ti; 1572 __u32 last_track; 1573 int ret; 1574 1575 ret = pkt_get_disc_info(pd, &di); 1576 if (ret) 1577 return ret; 1578 1579 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1580 ret = pkt_get_track_info(pd, last_track, 1, &ti); 1581 if (ret) 1582 return ret; 1583 1584 /* if this track is blank, try the previous. */ 1585 if (ti.blank) { 1586 last_track--; 1587 ret = pkt_get_track_info(pd, last_track, 1, &ti); 1588 if (ret) 1589 return ret; 1590 } 1591 1592 /* if last recorded field is valid, return it. */ 1593 if (ti.lra_v) { 1594 *last_written = be32_to_cpu(ti.last_rec_address); 1595 } else { 1596 /* make it up instead */ 1597 *last_written = be32_to_cpu(ti.track_start) + 1598 be32_to_cpu(ti.track_size); 1599 if (ti.free_blocks) 1600 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1601 } 1602 return 0; 1603 } 1604 1605 /* 1606 * write mode select package based on pd->settings 1607 */ 1608 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd) 1609 { 1610 struct packet_command cgc; 1611 struct scsi_sense_hdr sshdr; 1612 write_param_page *wp; 1613 char buffer[128]; 1614 int ret, size; 1615 1616 /* doesn't apply to DVD+RW or DVD-RAM */ 1617 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1618 return 0; 1619 1620 memset(buffer, 0, sizeof(buffer)); 1621 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1622 cgc.sshdr = &sshdr; 1623 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0); 1624 if (ret) { 1625 pkt_dump_sense(pd, &cgc); 1626 return ret; 1627 } 1628 1629 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1630 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1631 if (size > sizeof(buffer)) 1632 size = sizeof(buffer); 1633 1634 /* 1635 * now get it all 1636 */ 1637 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1638 cgc.sshdr = &sshdr; 1639 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0); 1640 if (ret) { 1641 pkt_dump_sense(pd, &cgc); 1642 return ret; 1643 } 1644 1645 /* 1646 * write page is offset header + block descriptor length 1647 */ 1648 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1649 1650 wp->fp = pd->settings.fp; 1651 wp->track_mode = pd->settings.track_mode; 1652 wp->write_type = pd->settings.write_type; 1653 wp->data_block_type = pd->settings.block_mode; 1654 1655 wp->multi_session = 0; 1656 1657 #ifdef PACKET_USE_LS 1658 wp->link_size = 7; 1659 wp->ls_v = 1; 1660 #endif 1661 1662 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1663 wp->session_format = 0; 1664 wp->subhdr2 = 0x20; 1665 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1666 wp->session_format = 0x20; 1667 wp->subhdr2 = 8; 1668 #if 0 1669 wp->mcn[0] = 0x80; 1670 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1671 #endif 1672 } else { 1673 /* 1674 * paranoia 1675 */ 1676 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type); 1677 return 1; 1678 } 1679 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1680 1681 cgc.buflen = cgc.cmd[8] = size; 1682 ret = pkt_mode_select(pd, &cgc); 1683 if (ret) { 1684 pkt_dump_sense(pd, &cgc); 1685 return ret; 1686 } 1687 1688 pkt_print_settings(pd); 1689 return 0; 1690 } 1691 1692 /* 1693 * 1 -- we can write to this track, 0 -- we can't 1694 */ 1695 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1696 { 1697 switch (pd->mmc3_profile) { 1698 case 0x1a: /* DVD+RW */ 1699 case 0x12: /* DVD-RAM */ 1700 /* The track is always writable on DVD+RW/DVD-RAM */ 1701 return 1; 1702 default: 1703 break; 1704 } 1705 1706 if (!ti->packet || !ti->fp) 1707 return 0; 1708 1709 /* 1710 * "good" settings as per Mt Fuji. 1711 */ 1712 if (ti->rt == 0 && ti->blank == 0) 1713 return 1; 1714 1715 if (ti->rt == 0 && ti->blank == 1) 1716 return 1; 1717 1718 if (ti->rt == 1 && ti->blank == 0) 1719 return 1; 1720 1721 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1722 return 0; 1723 } 1724 1725 /* 1726 * 1 -- we can write to this disc, 0 -- we can't 1727 */ 1728 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1729 { 1730 switch (pd->mmc3_profile) { 1731 case 0x0a: /* CD-RW */ 1732 case 0xffff: /* MMC3 not supported */ 1733 break; 1734 case 0x1a: /* DVD+RW */ 1735 case 0x13: /* DVD-RW */ 1736 case 0x12: /* DVD-RAM */ 1737 return 1; 1738 default: 1739 pkt_dbg(2, pd, "Wrong disc profile (%x)\n", 1740 pd->mmc3_profile); 1741 return 0; 1742 } 1743 1744 /* 1745 * for disc type 0xff we should probably reserve a new track. 1746 * but i'm not sure, should we leave this to user apps? probably. 1747 */ 1748 if (di->disc_type == 0xff) { 1749 pkt_notice(pd, "unknown disc - no track?\n"); 1750 return 0; 1751 } 1752 1753 if (di->disc_type != 0x20 && di->disc_type != 0) { 1754 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type); 1755 return 0; 1756 } 1757 1758 if (di->erasable == 0) { 1759 pkt_notice(pd, "disc not erasable\n"); 1760 return 0; 1761 } 1762 1763 if (di->border_status == PACKET_SESSION_RESERVED) { 1764 pkt_err(pd, "can't write to last track (reserved)\n"); 1765 return 0; 1766 } 1767 1768 return 1; 1769 } 1770 1771 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd) 1772 { 1773 struct packet_command cgc; 1774 unsigned char buf[12]; 1775 disc_information di; 1776 track_information ti; 1777 int ret, track; 1778 1779 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1780 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1781 cgc.cmd[8] = 8; 1782 ret = pkt_generic_packet(pd, &cgc); 1783 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1784 1785 memset(&di, 0, sizeof(disc_information)); 1786 memset(&ti, 0, sizeof(track_information)); 1787 1788 ret = pkt_get_disc_info(pd, &di); 1789 if (ret) { 1790 pkt_err(pd, "failed get_disc\n"); 1791 return ret; 1792 } 1793 1794 if (!pkt_writable_disc(pd, &di)) 1795 return -EROFS; 1796 1797 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 1798 1799 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 1800 ret = pkt_get_track_info(pd, track, 1, &ti); 1801 if (ret) { 1802 pkt_err(pd, "failed get_track\n"); 1803 return ret; 1804 } 1805 1806 if (!pkt_writable_track(pd, &ti)) { 1807 pkt_err(pd, "can't write to this track\n"); 1808 return -EROFS; 1809 } 1810 1811 /* 1812 * we keep packet size in 512 byte units, makes it easier to 1813 * deal with request calculations. 1814 */ 1815 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 1816 if (pd->settings.size == 0) { 1817 pkt_notice(pd, "detected zero packet size!\n"); 1818 return -ENXIO; 1819 } 1820 if (pd->settings.size > PACKET_MAX_SECTORS) { 1821 pkt_err(pd, "packet size is too big\n"); 1822 return -EROFS; 1823 } 1824 pd->settings.fp = ti.fp; 1825 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 1826 1827 if (ti.nwa_v) { 1828 pd->nwa = be32_to_cpu(ti.next_writable); 1829 set_bit(PACKET_NWA_VALID, &pd->flags); 1830 } 1831 1832 /* 1833 * in theory we could use lra on -RW media as well and just zero 1834 * blocks that haven't been written yet, but in practice that 1835 * is just a no-go. we'll use that for -R, naturally. 1836 */ 1837 if (ti.lra_v) { 1838 pd->lra = be32_to_cpu(ti.last_rec_address); 1839 set_bit(PACKET_LRA_VALID, &pd->flags); 1840 } else { 1841 pd->lra = 0xffffffff; 1842 set_bit(PACKET_LRA_VALID, &pd->flags); 1843 } 1844 1845 /* 1846 * fine for now 1847 */ 1848 pd->settings.link_loss = 7; 1849 pd->settings.write_type = 0; /* packet */ 1850 pd->settings.track_mode = ti.track_mode; 1851 1852 /* 1853 * mode1 or mode2 disc 1854 */ 1855 switch (ti.data_mode) { 1856 case PACKET_MODE1: 1857 pd->settings.block_mode = PACKET_BLOCK_MODE1; 1858 break; 1859 case PACKET_MODE2: 1860 pd->settings.block_mode = PACKET_BLOCK_MODE2; 1861 break; 1862 default: 1863 pkt_err(pd, "unknown data mode\n"); 1864 return -EROFS; 1865 } 1866 return 0; 1867 } 1868 1869 /* 1870 * enable/disable write caching on drive 1871 */ 1872 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd, 1873 int set) 1874 { 1875 struct packet_command cgc; 1876 struct scsi_sense_hdr sshdr; 1877 unsigned char buf[64]; 1878 int ret; 1879 1880 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1881 cgc.sshdr = &sshdr; 1882 cgc.buflen = pd->mode_offset + 12; 1883 1884 /* 1885 * caching mode page might not be there, so quiet this command 1886 */ 1887 cgc.quiet = 1; 1888 1889 ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0); 1890 if (ret) 1891 return ret; 1892 1893 buf[pd->mode_offset + 10] |= (!!set << 2); 1894 1895 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 1896 ret = pkt_mode_select(pd, &cgc); 1897 if (ret) { 1898 pkt_err(pd, "write caching control failed\n"); 1899 pkt_dump_sense(pd, &cgc); 1900 } else if (!ret && set) 1901 pkt_notice(pd, "enabled write caching\n"); 1902 return ret; 1903 } 1904 1905 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 1906 { 1907 struct packet_command cgc; 1908 1909 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 1910 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 1911 cgc.cmd[4] = lockflag ? 1 : 0; 1912 return pkt_generic_packet(pd, &cgc); 1913 } 1914 1915 /* 1916 * Returns drive maximum write speed 1917 */ 1918 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd, 1919 unsigned *write_speed) 1920 { 1921 struct packet_command cgc; 1922 struct scsi_sense_hdr sshdr; 1923 unsigned char buf[256+18]; 1924 unsigned char *cap_buf; 1925 int ret, offset; 1926 1927 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 1928 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 1929 cgc.sshdr = &sshdr; 1930 1931 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1932 if (ret) { 1933 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 1934 sizeof(struct mode_page_header); 1935 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1936 if (ret) { 1937 pkt_dump_sense(pd, &cgc); 1938 return ret; 1939 } 1940 } 1941 1942 offset = 20; /* Obsoleted field, used by older drives */ 1943 if (cap_buf[1] >= 28) 1944 offset = 28; /* Current write speed selected */ 1945 if (cap_buf[1] >= 30) { 1946 /* If the drive reports at least one "Logical Unit Write 1947 * Speed Performance Descriptor Block", use the information 1948 * in the first block. (contains the highest speed) 1949 */ 1950 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 1951 if (num_spdb > 0) 1952 offset = 34; 1953 } 1954 1955 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 1956 return 0; 1957 } 1958 1959 /* These tables from cdrecord - I don't have orange book */ 1960 /* standard speed CD-RW (1-4x) */ 1961 static char clv_to_speed[16] = { 1962 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1963 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1964 }; 1965 /* high speed CD-RW (-10x) */ 1966 static char hs_clv_to_speed[16] = { 1967 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1968 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1969 }; 1970 /* ultra high speed CD-RW */ 1971 static char us_clv_to_speed[16] = { 1972 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1973 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 1974 }; 1975 1976 /* 1977 * reads the maximum media speed from ATIP 1978 */ 1979 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd, 1980 unsigned *speed) 1981 { 1982 struct packet_command cgc; 1983 struct scsi_sense_hdr sshdr; 1984 unsigned char buf[64]; 1985 unsigned int size, st, sp; 1986 int ret; 1987 1988 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 1989 cgc.sshdr = &sshdr; 1990 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 1991 cgc.cmd[1] = 2; 1992 cgc.cmd[2] = 4; /* READ ATIP */ 1993 cgc.cmd[8] = 2; 1994 ret = pkt_generic_packet(pd, &cgc); 1995 if (ret) { 1996 pkt_dump_sense(pd, &cgc); 1997 return ret; 1998 } 1999 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 2000 if (size > sizeof(buf)) 2001 size = sizeof(buf); 2002 2003 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2004 cgc.sshdr = &sshdr; 2005 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2006 cgc.cmd[1] = 2; 2007 cgc.cmd[2] = 4; 2008 cgc.cmd[8] = size; 2009 ret = pkt_generic_packet(pd, &cgc); 2010 if (ret) { 2011 pkt_dump_sense(pd, &cgc); 2012 return ret; 2013 } 2014 2015 if (!(buf[6] & 0x40)) { 2016 pkt_notice(pd, "disc type is not CD-RW\n"); 2017 return 1; 2018 } 2019 if (!(buf[6] & 0x4)) { 2020 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n"); 2021 return 1; 2022 } 2023 2024 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2025 2026 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2027 2028 /* Info from cdrecord */ 2029 switch (st) { 2030 case 0: /* standard speed */ 2031 *speed = clv_to_speed[sp]; 2032 break; 2033 case 1: /* high speed */ 2034 *speed = hs_clv_to_speed[sp]; 2035 break; 2036 case 2: /* ultra high speed */ 2037 *speed = us_clv_to_speed[sp]; 2038 break; 2039 default: 2040 pkt_notice(pd, "unknown disc sub-type %d\n", st); 2041 return 1; 2042 } 2043 if (*speed) { 2044 pkt_info(pd, "maximum media speed: %d\n", *speed); 2045 return 0; 2046 } else { 2047 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st); 2048 return 1; 2049 } 2050 } 2051 2052 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd) 2053 { 2054 struct packet_command cgc; 2055 struct scsi_sense_hdr sshdr; 2056 int ret; 2057 2058 pkt_dbg(2, pd, "Performing OPC\n"); 2059 2060 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2061 cgc.sshdr = &sshdr; 2062 cgc.timeout = 60*HZ; 2063 cgc.cmd[0] = GPCMD_SEND_OPC; 2064 cgc.cmd[1] = 1; 2065 ret = pkt_generic_packet(pd, &cgc); 2066 if (ret) 2067 pkt_dump_sense(pd, &cgc); 2068 return ret; 2069 } 2070 2071 static int pkt_open_write(struct pktcdvd_device *pd) 2072 { 2073 int ret; 2074 unsigned int write_speed, media_write_speed, read_speed; 2075 2076 ret = pkt_probe_settings(pd); 2077 if (ret) { 2078 pkt_dbg(2, pd, "failed probe\n"); 2079 return ret; 2080 } 2081 2082 ret = pkt_set_write_settings(pd); 2083 if (ret) { 2084 pkt_dbg(1, pd, "failed saving write settings\n"); 2085 return -EIO; 2086 } 2087 2088 pkt_write_caching(pd, USE_WCACHING); 2089 2090 ret = pkt_get_max_speed(pd, &write_speed); 2091 if (ret) 2092 write_speed = 16 * 177; 2093 switch (pd->mmc3_profile) { 2094 case 0x13: /* DVD-RW */ 2095 case 0x1a: /* DVD+RW */ 2096 case 0x12: /* DVD-RAM */ 2097 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed); 2098 break; 2099 default: 2100 ret = pkt_media_speed(pd, &media_write_speed); 2101 if (ret) 2102 media_write_speed = 16; 2103 write_speed = min(write_speed, media_write_speed * 177); 2104 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176); 2105 break; 2106 } 2107 read_speed = write_speed; 2108 2109 ret = pkt_set_speed(pd, write_speed, read_speed); 2110 if (ret) { 2111 pkt_dbg(1, pd, "couldn't set write speed\n"); 2112 return -EIO; 2113 } 2114 pd->write_speed = write_speed; 2115 pd->read_speed = read_speed; 2116 2117 ret = pkt_perform_opc(pd); 2118 if (ret) { 2119 pkt_dbg(1, pd, "Optimum Power Calibration failed\n"); 2120 } 2121 2122 return 0; 2123 } 2124 2125 /* 2126 * called at open time. 2127 */ 2128 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write) 2129 { 2130 int ret; 2131 long lba; 2132 struct request_queue *q; 2133 struct block_device *bdev; 2134 2135 /* 2136 * We need to re-open the cdrom device without O_NONBLOCK to be able 2137 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2138 * so open should not fail. 2139 */ 2140 bdev = blkdev_get_by_dev(pd->bdev->bd_dev, FMODE_READ | FMODE_EXCL, pd); 2141 if (IS_ERR(bdev)) { 2142 ret = PTR_ERR(bdev); 2143 goto out; 2144 } 2145 2146 ret = pkt_get_last_written(pd, &lba); 2147 if (ret) { 2148 pkt_err(pd, "pkt_get_last_written failed\n"); 2149 goto out_putdev; 2150 } 2151 2152 set_capacity(pd->disk, lba << 2); 2153 set_capacity_and_notify(pd->bdev->bd_disk, lba << 2); 2154 2155 q = bdev_get_queue(pd->bdev); 2156 if (write) { 2157 ret = pkt_open_write(pd); 2158 if (ret) 2159 goto out_putdev; 2160 /* 2161 * Some CDRW drives can not handle writes larger than one packet, 2162 * even if the size is a multiple of the packet size. 2163 */ 2164 blk_queue_max_hw_sectors(q, pd->settings.size); 2165 set_bit(PACKET_WRITABLE, &pd->flags); 2166 } else { 2167 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2168 clear_bit(PACKET_WRITABLE, &pd->flags); 2169 } 2170 2171 ret = pkt_set_segment_merging(pd, q); 2172 if (ret) 2173 goto out_putdev; 2174 2175 if (write) { 2176 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2177 pkt_err(pd, "not enough memory for buffers\n"); 2178 ret = -ENOMEM; 2179 goto out_putdev; 2180 } 2181 pkt_info(pd, "%lukB available on disc\n", lba << 1); 2182 } 2183 2184 return 0; 2185 2186 out_putdev: 2187 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 2188 out: 2189 return ret; 2190 } 2191 2192 /* 2193 * called when the device is closed. makes sure that the device flushes 2194 * the internal cache before we close. 2195 */ 2196 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2197 { 2198 if (flush && pkt_flush_cache(pd)) 2199 pkt_dbg(1, pd, "not flushing cache\n"); 2200 2201 pkt_lock_door(pd, 0); 2202 2203 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2204 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL); 2205 2206 pkt_shrink_pktlist(pd); 2207 } 2208 2209 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor) 2210 { 2211 if (dev_minor >= MAX_WRITERS) 2212 return NULL; 2213 2214 dev_minor = array_index_nospec(dev_minor, MAX_WRITERS); 2215 return pkt_devs[dev_minor]; 2216 } 2217 2218 static int pkt_open(struct block_device *bdev, fmode_t mode) 2219 { 2220 struct pktcdvd_device *pd = NULL; 2221 int ret; 2222 2223 mutex_lock(&pktcdvd_mutex); 2224 mutex_lock(&ctl_mutex); 2225 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev)); 2226 if (!pd) { 2227 ret = -ENODEV; 2228 goto out; 2229 } 2230 BUG_ON(pd->refcnt < 0); 2231 2232 pd->refcnt++; 2233 if (pd->refcnt > 1) { 2234 if ((mode & FMODE_WRITE) && 2235 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2236 ret = -EBUSY; 2237 goto out_dec; 2238 } 2239 } else { 2240 ret = pkt_open_dev(pd, mode & FMODE_WRITE); 2241 if (ret) 2242 goto out_dec; 2243 /* 2244 * needed here as well, since ext2 (among others) may change 2245 * the blocksize at mount time 2246 */ 2247 set_blocksize(bdev, CD_FRAMESIZE); 2248 } 2249 2250 mutex_unlock(&ctl_mutex); 2251 mutex_unlock(&pktcdvd_mutex); 2252 return 0; 2253 2254 out_dec: 2255 pd->refcnt--; 2256 out: 2257 mutex_unlock(&ctl_mutex); 2258 mutex_unlock(&pktcdvd_mutex); 2259 return ret; 2260 } 2261 2262 static void pkt_close(struct gendisk *disk, fmode_t mode) 2263 { 2264 struct pktcdvd_device *pd = disk->private_data; 2265 2266 mutex_lock(&pktcdvd_mutex); 2267 mutex_lock(&ctl_mutex); 2268 pd->refcnt--; 2269 BUG_ON(pd->refcnt < 0); 2270 if (pd->refcnt == 0) { 2271 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2272 pkt_release_dev(pd, flush); 2273 } 2274 mutex_unlock(&ctl_mutex); 2275 mutex_unlock(&pktcdvd_mutex); 2276 } 2277 2278 2279 static void pkt_end_io_read_cloned(struct bio *bio) 2280 { 2281 struct packet_stacked_data *psd = bio->bi_private; 2282 struct pktcdvd_device *pd = psd->pd; 2283 2284 psd->bio->bi_status = bio->bi_status; 2285 bio_put(bio); 2286 bio_endio(psd->bio); 2287 mempool_free(psd, &psd_pool); 2288 pkt_bio_finished(pd); 2289 } 2290 2291 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio) 2292 { 2293 struct bio *cloned_bio = 2294 bio_alloc_clone(pd->bdev, bio, GFP_NOIO, &pkt_bio_set); 2295 struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO); 2296 2297 psd->pd = pd; 2298 psd->bio = bio; 2299 cloned_bio->bi_private = psd; 2300 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2301 pd->stats.secs_r += bio_sectors(bio); 2302 pkt_queue_bio(pd, cloned_bio); 2303 } 2304 2305 static void pkt_make_request_write(struct request_queue *q, struct bio *bio) 2306 { 2307 struct pktcdvd_device *pd = q->queuedata; 2308 sector_t zone; 2309 struct packet_data *pkt; 2310 int was_empty, blocked_bio; 2311 struct pkt_rb_node *node; 2312 2313 zone = get_zone(bio->bi_iter.bi_sector, pd); 2314 2315 /* 2316 * If we find a matching packet in state WAITING or READ_WAIT, we can 2317 * just append this bio to that packet. 2318 */ 2319 spin_lock(&pd->cdrw.active_list_lock); 2320 blocked_bio = 0; 2321 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2322 if (pkt->sector == zone) { 2323 spin_lock(&pkt->lock); 2324 if ((pkt->state == PACKET_WAITING_STATE) || 2325 (pkt->state == PACKET_READ_WAIT_STATE)) { 2326 bio_list_add(&pkt->orig_bios, bio); 2327 pkt->write_size += 2328 bio->bi_iter.bi_size / CD_FRAMESIZE; 2329 if ((pkt->write_size >= pkt->frames) && 2330 (pkt->state == PACKET_WAITING_STATE)) { 2331 atomic_inc(&pkt->run_sm); 2332 wake_up(&pd->wqueue); 2333 } 2334 spin_unlock(&pkt->lock); 2335 spin_unlock(&pd->cdrw.active_list_lock); 2336 return; 2337 } else { 2338 blocked_bio = 1; 2339 } 2340 spin_unlock(&pkt->lock); 2341 } 2342 } 2343 spin_unlock(&pd->cdrw.active_list_lock); 2344 2345 /* 2346 * Test if there is enough room left in the bio work queue 2347 * (queue size >= congestion on mark). 2348 * If not, wait till the work queue size is below the congestion off mark. 2349 */ 2350 spin_lock(&pd->lock); 2351 if (pd->write_congestion_on > 0 2352 && pd->bio_queue_size >= pd->write_congestion_on) { 2353 struct wait_bit_queue_entry wqe; 2354 2355 init_wait_var_entry(&wqe, &pd->congested, 0); 2356 for (;;) { 2357 prepare_to_wait_event(__var_waitqueue(&pd->congested), 2358 &wqe.wq_entry, 2359 TASK_UNINTERRUPTIBLE); 2360 if (pd->bio_queue_size <= pd->write_congestion_off) 2361 break; 2362 pd->congested = true; 2363 spin_unlock(&pd->lock); 2364 schedule(); 2365 spin_lock(&pd->lock); 2366 } 2367 } 2368 spin_unlock(&pd->lock); 2369 2370 /* 2371 * No matching packet found. Store the bio in the work queue. 2372 */ 2373 node = mempool_alloc(&pd->rb_pool, GFP_NOIO); 2374 node->bio = bio; 2375 spin_lock(&pd->lock); 2376 BUG_ON(pd->bio_queue_size < 0); 2377 was_empty = (pd->bio_queue_size == 0); 2378 pkt_rbtree_insert(pd, node); 2379 spin_unlock(&pd->lock); 2380 2381 /* 2382 * Wake up the worker thread. 2383 */ 2384 atomic_set(&pd->scan_queue, 1); 2385 if (was_empty) { 2386 /* This wake_up is required for correct operation */ 2387 wake_up(&pd->wqueue); 2388 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2389 /* 2390 * This wake up is not required for correct operation, 2391 * but improves performance in some cases. 2392 */ 2393 wake_up(&pd->wqueue); 2394 } 2395 } 2396 2397 static void pkt_submit_bio(struct bio *bio) 2398 { 2399 struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->queue->queuedata; 2400 struct bio *split; 2401 2402 blk_queue_split(&bio); 2403 2404 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n", 2405 (unsigned long long)bio->bi_iter.bi_sector, 2406 (unsigned long long)bio_end_sector(bio)); 2407 2408 /* 2409 * Clone READ bios so we can have our own bi_end_io callback. 2410 */ 2411 if (bio_data_dir(bio) == READ) { 2412 pkt_make_request_read(pd, bio); 2413 return; 2414 } 2415 2416 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2417 pkt_notice(pd, "WRITE for ro device (%llu)\n", 2418 (unsigned long long)bio->bi_iter.bi_sector); 2419 goto end_io; 2420 } 2421 2422 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) { 2423 pkt_err(pd, "wrong bio size\n"); 2424 goto end_io; 2425 } 2426 2427 do { 2428 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd); 2429 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd); 2430 2431 if (last_zone != zone) { 2432 BUG_ON(last_zone != zone + pd->settings.size); 2433 2434 split = bio_split(bio, last_zone - 2435 bio->bi_iter.bi_sector, 2436 GFP_NOIO, &pkt_bio_set); 2437 bio_chain(split, bio); 2438 } else { 2439 split = bio; 2440 } 2441 2442 pkt_make_request_write(bio->bi_bdev->bd_disk->queue, split); 2443 } while (split != bio); 2444 2445 return; 2446 end_io: 2447 bio_io_error(bio); 2448 } 2449 2450 static void pkt_init_queue(struct pktcdvd_device *pd) 2451 { 2452 struct request_queue *q = pd->disk->queue; 2453 2454 blk_queue_logical_block_size(q, CD_FRAMESIZE); 2455 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS); 2456 q->queuedata = pd; 2457 } 2458 2459 static int pkt_seq_show(struct seq_file *m, void *p) 2460 { 2461 struct pktcdvd_device *pd = m->private; 2462 char *msg; 2463 char bdev_buf[BDEVNAME_SIZE]; 2464 int states[PACKET_NUM_STATES]; 2465 2466 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2467 bdevname(pd->bdev, bdev_buf)); 2468 2469 seq_printf(m, "\nSettings:\n"); 2470 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2471 2472 if (pd->settings.write_type == 0) 2473 msg = "Packet"; 2474 else 2475 msg = "Unknown"; 2476 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2477 2478 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2479 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2480 2481 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2482 2483 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2484 msg = "Mode 1"; 2485 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2486 msg = "Mode 2"; 2487 else 2488 msg = "Unknown"; 2489 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2490 2491 seq_printf(m, "\nStatistics:\n"); 2492 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2493 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2494 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2495 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2496 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2497 2498 seq_printf(m, "\nMisc:\n"); 2499 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2500 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2501 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2502 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2503 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2504 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2505 2506 seq_printf(m, "\nQueue state:\n"); 2507 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2508 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2509 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2510 2511 pkt_count_states(pd, states); 2512 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2513 states[0], states[1], states[2], states[3], states[4], states[5]); 2514 2515 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 2516 pd->write_congestion_off, 2517 pd->write_congestion_on); 2518 return 0; 2519 } 2520 2521 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2522 { 2523 int i; 2524 char b[BDEVNAME_SIZE]; 2525 struct block_device *bdev; 2526 struct scsi_device *sdev; 2527 2528 if (pd->pkt_dev == dev) { 2529 pkt_err(pd, "recursive setup not allowed\n"); 2530 return -EBUSY; 2531 } 2532 for (i = 0; i < MAX_WRITERS; i++) { 2533 struct pktcdvd_device *pd2 = pkt_devs[i]; 2534 if (!pd2) 2535 continue; 2536 if (pd2->bdev->bd_dev == dev) { 2537 pkt_err(pd, "%s already setup\n", 2538 bdevname(pd2->bdev, b)); 2539 return -EBUSY; 2540 } 2541 if (pd2->pkt_dev == dev) { 2542 pkt_err(pd, "can't chain pktcdvd devices\n"); 2543 return -EBUSY; 2544 } 2545 } 2546 2547 bdev = blkdev_get_by_dev(dev, FMODE_READ | FMODE_NDELAY, NULL); 2548 if (IS_ERR(bdev)) 2549 return PTR_ERR(bdev); 2550 sdev = scsi_device_from_queue(bdev->bd_disk->queue); 2551 if (!sdev) { 2552 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY); 2553 return -EINVAL; 2554 } 2555 put_device(&sdev->sdev_gendev); 2556 2557 /* This is safe, since we have a reference from open(). */ 2558 __module_get(THIS_MODULE); 2559 2560 pd->bdev = bdev; 2561 set_blocksize(bdev, CD_FRAMESIZE); 2562 2563 pkt_init_queue(pd); 2564 2565 atomic_set(&pd->cdrw.pending_bios, 0); 2566 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2567 if (IS_ERR(pd->cdrw.thread)) { 2568 pkt_err(pd, "can't start kernel thread\n"); 2569 goto out_mem; 2570 } 2571 2572 proc_create_single_data(pd->name, 0, pkt_proc, pkt_seq_show, pd); 2573 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b)); 2574 return 0; 2575 2576 out_mem: 2577 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY); 2578 /* This is safe: open() is still holding a reference. */ 2579 module_put(THIS_MODULE); 2580 return -ENOMEM; 2581 } 2582 2583 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) 2584 { 2585 struct pktcdvd_device *pd = bdev->bd_disk->private_data; 2586 int ret; 2587 2588 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n", 2589 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2590 2591 mutex_lock(&pktcdvd_mutex); 2592 switch (cmd) { 2593 case CDROMEJECT: 2594 /* 2595 * The door gets locked when the device is opened, so we 2596 * have to unlock it or else the eject command fails. 2597 */ 2598 if (pd->refcnt == 1) 2599 pkt_lock_door(pd, 0); 2600 fallthrough; 2601 /* 2602 * forward selected CDROM ioctls to CD-ROM, for UDF 2603 */ 2604 case CDROMMULTISESSION: 2605 case CDROMREADTOCENTRY: 2606 case CDROM_LAST_WRITTEN: 2607 case CDROM_SEND_PACKET: 2608 case SCSI_IOCTL_SEND_COMMAND: 2609 if (!bdev->bd_disk->fops->ioctl) 2610 ret = -ENOTTY; 2611 else 2612 ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 2613 break; 2614 default: 2615 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd); 2616 ret = -ENOTTY; 2617 } 2618 mutex_unlock(&pktcdvd_mutex); 2619 2620 return ret; 2621 } 2622 2623 static unsigned int pkt_check_events(struct gendisk *disk, 2624 unsigned int clearing) 2625 { 2626 struct pktcdvd_device *pd = disk->private_data; 2627 struct gendisk *attached_disk; 2628 2629 if (!pd) 2630 return 0; 2631 if (!pd->bdev) 2632 return 0; 2633 attached_disk = pd->bdev->bd_disk; 2634 if (!attached_disk || !attached_disk->fops->check_events) 2635 return 0; 2636 return attached_disk->fops->check_events(attached_disk, clearing); 2637 } 2638 2639 static char *pkt_devnode(struct gendisk *disk, umode_t *mode) 2640 { 2641 return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name); 2642 } 2643 2644 static const struct block_device_operations pktcdvd_ops = { 2645 .owner = THIS_MODULE, 2646 .submit_bio = pkt_submit_bio, 2647 .open = pkt_open, 2648 .release = pkt_close, 2649 .ioctl = pkt_ioctl, 2650 .compat_ioctl = blkdev_compat_ptr_ioctl, 2651 .check_events = pkt_check_events, 2652 .devnode = pkt_devnode, 2653 }; 2654 2655 /* 2656 * Set up mapping from pktcdvd device to CD-ROM device. 2657 */ 2658 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2659 { 2660 int idx; 2661 int ret = -ENOMEM; 2662 struct pktcdvd_device *pd; 2663 struct gendisk *disk; 2664 2665 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2666 2667 for (idx = 0; idx < MAX_WRITERS; idx++) 2668 if (!pkt_devs[idx]) 2669 break; 2670 if (idx == MAX_WRITERS) { 2671 pr_err("max %d writers supported\n", MAX_WRITERS); 2672 ret = -EBUSY; 2673 goto out_mutex; 2674 } 2675 2676 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2677 if (!pd) 2678 goto out_mutex; 2679 2680 ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE, 2681 sizeof(struct pkt_rb_node)); 2682 if (ret) 2683 goto out_mem; 2684 2685 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2686 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2687 spin_lock_init(&pd->cdrw.active_list_lock); 2688 2689 spin_lock_init(&pd->lock); 2690 spin_lock_init(&pd->iosched.lock); 2691 bio_list_init(&pd->iosched.read_queue); 2692 bio_list_init(&pd->iosched.write_queue); 2693 sprintf(pd->name, DRIVER_NAME"%d", idx); 2694 init_waitqueue_head(&pd->wqueue); 2695 pd->bio_queue = RB_ROOT; 2696 2697 pd->write_congestion_on = write_congestion_on; 2698 pd->write_congestion_off = write_congestion_off; 2699 2700 ret = -ENOMEM; 2701 disk = blk_alloc_disk(NUMA_NO_NODE); 2702 if (!disk) 2703 goto out_mem; 2704 pd->disk = disk; 2705 disk->major = pktdev_major; 2706 disk->first_minor = idx; 2707 disk->minors = 1; 2708 disk->fops = &pktcdvd_ops; 2709 disk->flags = GENHD_FL_REMOVABLE | GENHD_FL_NO_PART; 2710 strcpy(disk->disk_name, pd->name); 2711 disk->private_data = pd; 2712 2713 pd->pkt_dev = MKDEV(pktdev_major, idx); 2714 ret = pkt_new_dev(pd, dev); 2715 if (ret) 2716 goto out_mem2; 2717 2718 /* inherit events of the host device */ 2719 disk->events = pd->bdev->bd_disk->events; 2720 2721 ret = add_disk(disk); 2722 if (ret) 2723 goto out_mem2; 2724 2725 pkt_sysfs_dev_new(pd); 2726 pkt_debugfs_dev_new(pd); 2727 2728 pkt_devs[idx] = pd; 2729 if (pkt_dev) 2730 *pkt_dev = pd->pkt_dev; 2731 2732 mutex_unlock(&ctl_mutex); 2733 return 0; 2734 2735 out_mem2: 2736 blk_cleanup_disk(disk); 2737 out_mem: 2738 mempool_exit(&pd->rb_pool); 2739 kfree(pd); 2740 out_mutex: 2741 mutex_unlock(&ctl_mutex); 2742 pr_err("setup of pktcdvd device failed\n"); 2743 return ret; 2744 } 2745 2746 /* 2747 * Tear down mapping from pktcdvd device to CD-ROM device. 2748 */ 2749 static int pkt_remove_dev(dev_t pkt_dev) 2750 { 2751 struct pktcdvd_device *pd; 2752 int idx; 2753 int ret = 0; 2754 2755 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2756 2757 for (idx = 0; idx < MAX_WRITERS; idx++) { 2758 pd = pkt_devs[idx]; 2759 if (pd && (pd->pkt_dev == pkt_dev)) 2760 break; 2761 } 2762 if (idx == MAX_WRITERS) { 2763 pr_debug("dev not setup\n"); 2764 ret = -ENXIO; 2765 goto out; 2766 } 2767 2768 if (pd->refcnt > 0) { 2769 ret = -EBUSY; 2770 goto out; 2771 } 2772 if (!IS_ERR(pd->cdrw.thread)) 2773 kthread_stop(pd->cdrw.thread); 2774 2775 pkt_devs[idx] = NULL; 2776 2777 pkt_debugfs_dev_remove(pd); 2778 pkt_sysfs_dev_remove(pd); 2779 2780 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY); 2781 2782 remove_proc_entry(pd->name, pkt_proc); 2783 pkt_dbg(1, pd, "writer unmapped\n"); 2784 2785 del_gendisk(pd->disk); 2786 blk_cleanup_disk(pd->disk); 2787 2788 mempool_exit(&pd->rb_pool); 2789 kfree(pd); 2790 2791 /* This is safe: open() is still holding a reference. */ 2792 module_put(THIS_MODULE); 2793 2794 out: 2795 mutex_unlock(&ctl_mutex); 2796 return ret; 2797 } 2798 2799 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 2800 { 2801 struct pktcdvd_device *pd; 2802 2803 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2804 2805 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 2806 if (pd) { 2807 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 2808 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2809 } else { 2810 ctrl_cmd->dev = 0; 2811 ctrl_cmd->pkt_dev = 0; 2812 } 2813 ctrl_cmd->num_devices = MAX_WRITERS; 2814 2815 mutex_unlock(&ctl_mutex); 2816 } 2817 2818 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2819 { 2820 void __user *argp = (void __user *)arg; 2821 struct pkt_ctrl_command ctrl_cmd; 2822 int ret = 0; 2823 dev_t pkt_dev = 0; 2824 2825 if (cmd != PACKET_CTRL_CMD) 2826 return -ENOTTY; 2827 2828 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 2829 return -EFAULT; 2830 2831 switch (ctrl_cmd.command) { 2832 case PKT_CTRL_CMD_SETUP: 2833 if (!capable(CAP_SYS_ADMIN)) 2834 return -EPERM; 2835 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 2836 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 2837 break; 2838 case PKT_CTRL_CMD_TEARDOWN: 2839 if (!capable(CAP_SYS_ADMIN)) 2840 return -EPERM; 2841 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 2842 break; 2843 case PKT_CTRL_CMD_STATUS: 2844 pkt_get_status(&ctrl_cmd); 2845 break; 2846 default: 2847 return -ENOTTY; 2848 } 2849 2850 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 2851 return -EFAULT; 2852 return ret; 2853 } 2854 2855 #ifdef CONFIG_COMPAT 2856 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2857 { 2858 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); 2859 } 2860 #endif 2861 2862 static const struct file_operations pkt_ctl_fops = { 2863 .open = nonseekable_open, 2864 .unlocked_ioctl = pkt_ctl_ioctl, 2865 #ifdef CONFIG_COMPAT 2866 .compat_ioctl = pkt_ctl_compat_ioctl, 2867 #endif 2868 .owner = THIS_MODULE, 2869 .llseek = no_llseek, 2870 }; 2871 2872 static struct miscdevice pkt_misc = { 2873 .minor = MISC_DYNAMIC_MINOR, 2874 .name = DRIVER_NAME, 2875 .nodename = "pktcdvd/control", 2876 .fops = &pkt_ctl_fops 2877 }; 2878 2879 static int __init pkt_init(void) 2880 { 2881 int ret; 2882 2883 mutex_init(&ctl_mutex); 2884 2885 ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE, 2886 sizeof(struct packet_stacked_data)); 2887 if (ret) 2888 return ret; 2889 ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0); 2890 if (ret) { 2891 mempool_exit(&psd_pool); 2892 return ret; 2893 } 2894 2895 ret = register_blkdev(pktdev_major, DRIVER_NAME); 2896 if (ret < 0) { 2897 pr_err("unable to register block device\n"); 2898 goto out2; 2899 } 2900 if (!pktdev_major) 2901 pktdev_major = ret; 2902 2903 ret = pkt_sysfs_init(); 2904 if (ret) 2905 goto out; 2906 2907 pkt_debugfs_init(); 2908 2909 ret = misc_register(&pkt_misc); 2910 if (ret) { 2911 pr_err("unable to register misc device\n"); 2912 goto out_misc; 2913 } 2914 2915 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL); 2916 2917 return 0; 2918 2919 out_misc: 2920 pkt_debugfs_cleanup(); 2921 pkt_sysfs_cleanup(); 2922 out: 2923 unregister_blkdev(pktdev_major, DRIVER_NAME); 2924 out2: 2925 mempool_exit(&psd_pool); 2926 bioset_exit(&pkt_bio_set); 2927 return ret; 2928 } 2929 2930 static void __exit pkt_exit(void) 2931 { 2932 remove_proc_entry("driver/"DRIVER_NAME, NULL); 2933 misc_deregister(&pkt_misc); 2934 2935 pkt_debugfs_cleanup(); 2936 pkt_sysfs_cleanup(); 2937 2938 unregister_blkdev(pktdev_major, DRIVER_NAME); 2939 mempool_exit(&psd_pool); 2940 bioset_exit(&pkt_bio_set); 2941 } 2942 2943 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 2944 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 2945 MODULE_LICENSE("GPL"); 2946 2947 module_init(pkt_init); 2948 module_exit(pkt_exit); 2949