xref: /openbmc/linux/drivers/block/pktcdvd.c (revision d40d48e1)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom ->submit_bio function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <linux/backing-dev.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_ioctl.h>
67 #include <scsi/scsi.h>
68 #include <linux/debugfs.h>
69 #include <linux/device.h>
70 #include <linux/nospec.h>
71 #include <linux/uaccess.h>
72 
73 #define DRIVER_NAME	"pktcdvd"
74 
75 #define pkt_err(pd, fmt, ...)						\
76 	pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
77 #define pkt_notice(pd, fmt, ...)					\
78 	pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
79 #define pkt_info(pd, fmt, ...)						\
80 	pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
81 
82 #define pkt_dbg(level, pd, fmt, ...)					\
83 do {									\
84 	if (level == 2 && PACKET_DEBUG >= 2)				\
85 		pr_notice("%s: %s():" fmt,				\
86 			  pd->name, __func__, ##__VA_ARGS__);		\
87 	else if (level == 1 && PACKET_DEBUG >= 1)			\
88 		pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__);		\
89 } while (0)
90 
91 #define MAX_SPEED 0xffff
92 
93 static DEFINE_MUTEX(pktcdvd_mutex);
94 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
95 static struct proc_dir_entry *pkt_proc;
96 static int pktdev_major;
97 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
98 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
99 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
100 static mempool_t psd_pool;
101 static struct bio_set pkt_bio_set;
102 
103 static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
104 static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
105 
106 /* forward declaration */
107 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
108 static int pkt_remove_dev(dev_t pkt_dev);
109 static int pkt_seq_show(struct seq_file *m, void *p);
110 
111 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
112 {
113 	return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
114 }
115 
116 /*
117  * create and register a pktcdvd kernel object.
118  */
119 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
120 					const char* name,
121 					struct kobject* parent,
122 					struct kobj_type* ktype)
123 {
124 	struct pktcdvd_kobj *p;
125 	int error;
126 
127 	p = kzalloc(sizeof(*p), GFP_KERNEL);
128 	if (!p)
129 		return NULL;
130 	p->pd = pd;
131 	error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
132 	if (error) {
133 		kobject_put(&p->kobj);
134 		return NULL;
135 	}
136 	kobject_uevent(&p->kobj, KOBJ_ADD);
137 	return p;
138 }
139 /*
140  * remove a pktcdvd kernel object.
141  */
142 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
143 {
144 	if (p)
145 		kobject_put(&p->kobj);
146 }
147 /*
148  * default release function for pktcdvd kernel objects.
149  */
150 static void pkt_kobj_release(struct kobject *kobj)
151 {
152 	kfree(to_pktcdvdkobj(kobj));
153 }
154 
155 
156 /**********************************************************
157  *
158  * sysfs interface for pktcdvd
159  * by (C) 2006  Thomas Maier <balagi@justmail.de>
160  *
161  **********************************************************/
162 
163 #define DEF_ATTR(_obj,_name,_mode) \
164 	static struct attribute _obj = { .name = _name, .mode = _mode }
165 
166 /**********************************************************
167   /sys/class/pktcdvd/pktcdvd[0-7]/
168                      stat/reset
169                      stat/packets_started
170                      stat/packets_finished
171                      stat/kb_written
172                      stat/kb_read
173                      stat/kb_read_gather
174                      write_queue/size
175                      write_queue/congestion_off
176                      write_queue/congestion_on
177  **********************************************************/
178 
179 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
180 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
181 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
182 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
183 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
184 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
185 
186 static struct attribute *kobj_pkt_attrs_stat[] = {
187 	&kobj_pkt_attr_st1,
188 	&kobj_pkt_attr_st2,
189 	&kobj_pkt_attr_st3,
190 	&kobj_pkt_attr_st4,
191 	&kobj_pkt_attr_st5,
192 	&kobj_pkt_attr_st6,
193 	NULL
194 };
195 
196 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
197 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
198 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
199 
200 static struct attribute *kobj_pkt_attrs_wqueue[] = {
201 	&kobj_pkt_attr_wq1,
202 	&kobj_pkt_attr_wq2,
203 	&kobj_pkt_attr_wq3,
204 	NULL
205 };
206 
207 static ssize_t kobj_pkt_show(struct kobject *kobj,
208 			struct attribute *attr, char *data)
209 {
210 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
211 	int n = 0;
212 	int v;
213 	if (strcmp(attr->name, "packets_started") == 0) {
214 		n = sprintf(data, "%lu\n", pd->stats.pkt_started);
215 
216 	} else if (strcmp(attr->name, "packets_finished") == 0) {
217 		n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
218 
219 	} else if (strcmp(attr->name, "kb_written") == 0) {
220 		n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
221 
222 	} else if (strcmp(attr->name, "kb_read") == 0) {
223 		n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
224 
225 	} else if (strcmp(attr->name, "kb_read_gather") == 0) {
226 		n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
227 
228 	} else if (strcmp(attr->name, "size") == 0) {
229 		spin_lock(&pd->lock);
230 		v = pd->bio_queue_size;
231 		spin_unlock(&pd->lock);
232 		n = sprintf(data, "%d\n", v);
233 
234 	} else if (strcmp(attr->name, "congestion_off") == 0) {
235 		spin_lock(&pd->lock);
236 		v = pd->write_congestion_off;
237 		spin_unlock(&pd->lock);
238 		n = sprintf(data, "%d\n", v);
239 
240 	} else if (strcmp(attr->name, "congestion_on") == 0) {
241 		spin_lock(&pd->lock);
242 		v = pd->write_congestion_on;
243 		spin_unlock(&pd->lock);
244 		n = sprintf(data, "%d\n", v);
245 	}
246 	return n;
247 }
248 
249 static void init_write_congestion_marks(int* lo, int* hi)
250 {
251 	if (*hi > 0) {
252 		*hi = max(*hi, 500);
253 		*hi = min(*hi, 1000000);
254 		if (*lo <= 0)
255 			*lo = *hi - 100;
256 		else {
257 			*lo = min(*lo, *hi - 100);
258 			*lo = max(*lo, 100);
259 		}
260 	} else {
261 		*hi = -1;
262 		*lo = -1;
263 	}
264 }
265 
266 static ssize_t kobj_pkt_store(struct kobject *kobj,
267 			struct attribute *attr,
268 			const char *data, size_t len)
269 {
270 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
271 	int val;
272 
273 	if (strcmp(attr->name, "reset") == 0 && len > 0) {
274 		pd->stats.pkt_started = 0;
275 		pd->stats.pkt_ended = 0;
276 		pd->stats.secs_w = 0;
277 		pd->stats.secs_rg = 0;
278 		pd->stats.secs_r = 0;
279 
280 	} else if (strcmp(attr->name, "congestion_off") == 0
281 		   && sscanf(data, "%d", &val) == 1) {
282 		spin_lock(&pd->lock);
283 		pd->write_congestion_off = val;
284 		init_write_congestion_marks(&pd->write_congestion_off,
285 					&pd->write_congestion_on);
286 		spin_unlock(&pd->lock);
287 
288 	} else if (strcmp(attr->name, "congestion_on") == 0
289 		   && sscanf(data, "%d", &val) == 1) {
290 		spin_lock(&pd->lock);
291 		pd->write_congestion_on = val;
292 		init_write_congestion_marks(&pd->write_congestion_off,
293 					&pd->write_congestion_on);
294 		spin_unlock(&pd->lock);
295 	}
296 	return len;
297 }
298 
299 static const struct sysfs_ops kobj_pkt_ops = {
300 	.show = kobj_pkt_show,
301 	.store = kobj_pkt_store
302 };
303 static struct kobj_type kobj_pkt_type_stat = {
304 	.release = pkt_kobj_release,
305 	.sysfs_ops = &kobj_pkt_ops,
306 	.default_attrs = kobj_pkt_attrs_stat
307 };
308 static struct kobj_type kobj_pkt_type_wqueue = {
309 	.release = pkt_kobj_release,
310 	.sysfs_ops = &kobj_pkt_ops,
311 	.default_attrs = kobj_pkt_attrs_wqueue
312 };
313 
314 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
315 {
316 	if (class_pktcdvd) {
317 		pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
318 					"%s", pd->name);
319 		if (IS_ERR(pd->dev))
320 			pd->dev = NULL;
321 	}
322 	if (pd->dev) {
323 		pd->kobj_stat = pkt_kobj_create(pd, "stat",
324 					&pd->dev->kobj,
325 					&kobj_pkt_type_stat);
326 		pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
327 					&pd->dev->kobj,
328 					&kobj_pkt_type_wqueue);
329 	}
330 }
331 
332 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
333 {
334 	pkt_kobj_remove(pd->kobj_stat);
335 	pkt_kobj_remove(pd->kobj_wqueue);
336 	if (class_pktcdvd)
337 		device_unregister(pd->dev);
338 }
339 
340 
341 /********************************************************************
342   /sys/class/pktcdvd/
343                      add            map block device
344                      remove         unmap packet dev
345                      device_map     show mappings
346  *******************************************************************/
347 
348 static void class_pktcdvd_release(struct class *cls)
349 {
350 	kfree(cls);
351 }
352 
353 static ssize_t device_map_show(struct class *c, struct class_attribute *attr,
354 			       char *data)
355 {
356 	int n = 0;
357 	int idx;
358 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
359 	for (idx = 0; idx < MAX_WRITERS; idx++) {
360 		struct pktcdvd_device *pd = pkt_devs[idx];
361 		if (!pd)
362 			continue;
363 		n += sprintf(data+n, "%s %u:%u %u:%u\n",
364 			pd->name,
365 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
366 			MAJOR(pd->bdev->bd_dev),
367 			MINOR(pd->bdev->bd_dev));
368 	}
369 	mutex_unlock(&ctl_mutex);
370 	return n;
371 }
372 static CLASS_ATTR_RO(device_map);
373 
374 static ssize_t add_store(struct class *c, struct class_attribute *attr,
375 			 const char *buf, size_t count)
376 {
377 	unsigned int major, minor;
378 
379 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
380 		/* pkt_setup_dev() expects caller to hold reference to self */
381 		if (!try_module_get(THIS_MODULE))
382 			return -ENODEV;
383 
384 		pkt_setup_dev(MKDEV(major, minor), NULL);
385 
386 		module_put(THIS_MODULE);
387 
388 		return count;
389 	}
390 
391 	return -EINVAL;
392 }
393 static CLASS_ATTR_WO(add);
394 
395 static ssize_t remove_store(struct class *c, struct class_attribute *attr,
396 			    const char *buf, size_t count)
397 {
398 	unsigned int major, minor;
399 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
400 		pkt_remove_dev(MKDEV(major, minor));
401 		return count;
402 	}
403 	return -EINVAL;
404 }
405 static CLASS_ATTR_WO(remove);
406 
407 static struct attribute *class_pktcdvd_attrs[] = {
408 	&class_attr_add.attr,
409 	&class_attr_remove.attr,
410 	&class_attr_device_map.attr,
411 	NULL,
412 };
413 ATTRIBUTE_GROUPS(class_pktcdvd);
414 
415 static int pkt_sysfs_init(void)
416 {
417 	int ret = 0;
418 
419 	/*
420 	 * create control files in sysfs
421 	 * /sys/class/pktcdvd/...
422 	 */
423 	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
424 	if (!class_pktcdvd)
425 		return -ENOMEM;
426 	class_pktcdvd->name = DRIVER_NAME;
427 	class_pktcdvd->owner = THIS_MODULE;
428 	class_pktcdvd->class_release = class_pktcdvd_release;
429 	class_pktcdvd->class_groups = class_pktcdvd_groups;
430 	ret = class_register(class_pktcdvd);
431 	if (ret) {
432 		kfree(class_pktcdvd);
433 		class_pktcdvd = NULL;
434 		pr_err("failed to create class pktcdvd\n");
435 		return ret;
436 	}
437 	return 0;
438 }
439 
440 static void pkt_sysfs_cleanup(void)
441 {
442 	if (class_pktcdvd)
443 		class_destroy(class_pktcdvd);
444 	class_pktcdvd = NULL;
445 }
446 
447 /********************************************************************
448   entries in debugfs
449 
450   /sys/kernel/debug/pktcdvd[0-7]/
451 			info
452 
453  *******************************************************************/
454 
455 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
456 {
457 	return pkt_seq_show(m, p);
458 }
459 
460 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
461 {
462 	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
463 }
464 
465 static const struct file_operations debug_fops = {
466 	.open		= pkt_debugfs_fops_open,
467 	.read		= seq_read,
468 	.llseek		= seq_lseek,
469 	.release	= single_release,
470 	.owner		= THIS_MODULE,
471 };
472 
473 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
474 {
475 	if (!pkt_debugfs_root)
476 		return;
477 	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
478 	if (!pd->dfs_d_root)
479 		return;
480 
481 	pd->dfs_f_info = debugfs_create_file("info", 0444,
482 					     pd->dfs_d_root, pd, &debug_fops);
483 }
484 
485 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
486 {
487 	if (!pkt_debugfs_root)
488 		return;
489 	debugfs_remove(pd->dfs_f_info);
490 	debugfs_remove(pd->dfs_d_root);
491 	pd->dfs_f_info = NULL;
492 	pd->dfs_d_root = NULL;
493 }
494 
495 static void pkt_debugfs_init(void)
496 {
497 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498 }
499 
500 static void pkt_debugfs_cleanup(void)
501 {
502 	debugfs_remove(pkt_debugfs_root);
503 	pkt_debugfs_root = NULL;
504 }
505 
506 /* ----------------------------------------------------------*/
507 
508 
509 static void pkt_bio_finished(struct pktcdvd_device *pd)
510 {
511 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
512 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
513 		pkt_dbg(2, pd, "queue empty\n");
514 		atomic_set(&pd->iosched.attention, 1);
515 		wake_up(&pd->wqueue);
516 	}
517 }
518 
519 /*
520  * Allocate a packet_data struct
521  */
522 static struct packet_data *pkt_alloc_packet_data(int frames)
523 {
524 	int i;
525 	struct packet_data *pkt;
526 
527 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
528 	if (!pkt)
529 		goto no_pkt;
530 
531 	pkt->frames = frames;
532 	pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
533 	if (!pkt->w_bio)
534 		goto no_bio;
535 
536 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
537 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
538 		if (!pkt->pages[i])
539 			goto no_page;
540 	}
541 
542 	spin_lock_init(&pkt->lock);
543 	bio_list_init(&pkt->orig_bios);
544 
545 	for (i = 0; i < frames; i++) {
546 		struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
547 		if (!bio)
548 			goto no_rd_bio;
549 
550 		pkt->r_bios[i] = bio;
551 	}
552 
553 	return pkt;
554 
555 no_rd_bio:
556 	for (i = 0; i < frames; i++) {
557 		struct bio *bio = pkt->r_bios[i];
558 		if (bio)
559 			bio_put(bio);
560 	}
561 
562 no_page:
563 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
564 		if (pkt->pages[i])
565 			__free_page(pkt->pages[i]);
566 	bio_put(pkt->w_bio);
567 no_bio:
568 	kfree(pkt);
569 no_pkt:
570 	return NULL;
571 }
572 
573 /*
574  * Free a packet_data struct
575  */
576 static void pkt_free_packet_data(struct packet_data *pkt)
577 {
578 	int i;
579 
580 	for (i = 0; i < pkt->frames; i++) {
581 		struct bio *bio = pkt->r_bios[i];
582 		if (bio)
583 			bio_put(bio);
584 	}
585 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
586 		__free_page(pkt->pages[i]);
587 	bio_put(pkt->w_bio);
588 	kfree(pkt);
589 }
590 
591 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
592 {
593 	struct packet_data *pkt, *next;
594 
595 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
596 
597 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
598 		pkt_free_packet_data(pkt);
599 	}
600 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
601 }
602 
603 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
604 {
605 	struct packet_data *pkt;
606 
607 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
608 
609 	while (nr_packets > 0) {
610 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
611 		if (!pkt) {
612 			pkt_shrink_pktlist(pd);
613 			return 0;
614 		}
615 		pkt->id = nr_packets;
616 		pkt->pd = pd;
617 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
618 		nr_packets--;
619 	}
620 	return 1;
621 }
622 
623 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
624 {
625 	struct rb_node *n = rb_next(&node->rb_node);
626 	if (!n)
627 		return NULL;
628 	return rb_entry(n, struct pkt_rb_node, rb_node);
629 }
630 
631 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
632 {
633 	rb_erase(&node->rb_node, &pd->bio_queue);
634 	mempool_free(node, &pd->rb_pool);
635 	pd->bio_queue_size--;
636 	BUG_ON(pd->bio_queue_size < 0);
637 }
638 
639 /*
640  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
641  */
642 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
643 {
644 	struct rb_node *n = pd->bio_queue.rb_node;
645 	struct rb_node *next;
646 	struct pkt_rb_node *tmp;
647 
648 	if (!n) {
649 		BUG_ON(pd->bio_queue_size > 0);
650 		return NULL;
651 	}
652 
653 	for (;;) {
654 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
655 		if (s <= tmp->bio->bi_iter.bi_sector)
656 			next = n->rb_left;
657 		else
658 			next = n->rb_right;
659 		if (!next)
660 			break;
661 		n = next;
662 	}
663 
664 	if (s > tmp->bio->bi_iter.bi_sector) {
665 		tmp = pkt_rbtree_next(tmp);
666 		if (!tmp)
667 			return NULL;
668 	}
669 	BUG_ON(s > tmp->bio->bi_iter.bi_sector);
670 	return tmp;
671 }
672 
673 /*
674  * Insert a node into the pd->bio_queue rb tree.
675  */
676 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
677 {
678 	struct rb_node **p = &pd->bio_queue.rb_node;
679 	struct rb_node *parent = NULL;
680 	sector_t s = node->bio->bi_iter.bi_sector;
681 	struct pkt_rb_node *tmp;
682 
683 	while (*p) {
684 		parent = *p;
685 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
686 		if (s < tmp->bio->bi_iter.bi_sector)
687 			p = &(*p)->rb_left;
688 		else
689 			p = &(*p)->rb_right;
690 	}
691 	rb_link_node(&node->rb_node, parent, p);
692 	rb_insert_color(&node->rb_node, &pd->bio_queue);
693 	pd->bio_queue_size++;
694 }
695 
696 /*
697  * Send a packet_command to the underlying block device and
698  * wait for completion.
699  */
700 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
701 {
702 	struct request_queue *q = bdev_get_queue(pd->bdev);
703 	struct request *rq;
704 	int ret = 0;
705 
706 	rq = scsi_alloc_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
707 			     REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
708 	if (IS_ERR(rq))
709 		return PTR_ERR(rq);
710 
711 	if (cgc->buflen) {
712 		ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
713 				      GFP_NOIO);
714 		if (ret)
715 			goto out;
716 	}
717 
718 	scsi_req(rq)->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
719 	memcpy(scsi_req(rq)->cmd, cgc->cmd, CDROM_PACKET_SIZE);
720 
721 	rq->timeout = 60*HZ;
722 	if (cgc->quiet)
723 		rq->rq_flags |= RQF_QUIET;
724 
725 	blk_execute_rq(pd->bdev->bd_disk, rq, 0);
726 	if (scsi_req(rq)->result)
727 		ret = -EIO;
728 out:
729 	blk_mq_free_request(rq);
730 	return ret;
731 }
732 
733 static const char *sense_key_string(__u8 index)
734 {
735 	static const char * const info[] = {
736 		"No sense", "Recovered error", "Not ready",
737 		"Medium error", "Hardware error", "Illegal request",
738 		"Unit attention", "Data protect", "Blank check",
739 	};
740 
741 	return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
742 }
743 
744 /*
745  * A generic sense dump / resolve mechanism should be implemented across
746  * all ATAPI + SCSI devices.
747  */
748 static void pkt_dump_sense(struct pktcdvd_device *pd,
749 			   struct packet_command *cgc)
750 {
751 	struct scsi_sense_hdr *sshdr = cgc->sshdr;
752 
753 	if (sshdr)
754 		pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
755 			CDROM_PACKET_SIZE, cgc->cmd,
756 			sshdr->sense_key, sshdr->asc, sshdr->ascq,
757 			sense_key_string(sshdr->sense_key));
758 	else
759 		pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
760 }
761 
762 /*
763  * flush the drive cache to media
764  */
765 static int pkt_flush_cache(struct pktcdvd_device *pd)
766 {
767 	struct packet_command cgc;
768 
769 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
770 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
771 	cgc.quiet = 1;
772 
773 	/*
774 	 * the IMMED bit -- we default to not setting it, although that
775 	 * would allow a much faster close, this is safer
776 	 */
777 #if 0
778 	cgc.cmd[1] = 1 << 1;
779 #endif
780 	return pkt_generic_packet(pd, &cgc);
781 }
782 
783 /*
784  * speed is given as the normal factor, e.g. 4 for 4x
785  */
786 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
787 				unsigned write_speed, unsigned read_speed)
788 {
789 	struct packet_command cgc;
790 	struct scsi_sense_hdr sshdr;
791 	int ret;
792 
793 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
794 	cgc.sshdr = &sshdr;
795 	cgc.cmd[0] = GPCMD_SET_SPEED;
796 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
797 	cgc.cmd[3] = read_speed & 0xff;
798 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
799 	cgc.cmd[5] = write_speed & 0xff;
800 
801 	ret = pkt_generic_packet(pd, &cgc);
802 	if (ret)
803 		pkt_dump_sense(pd, &cgc);
804 
805 	return ret;
806 }
807 
808 /*
809  * Queue a bio for processing by the low-level CD device. Must be called
810  * from process context.
811  */
812 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
813 {
814 	spin_lock(&pd->iosched.lock);
815 	if (bio_data_dir(bio) == READ)
816 		bio_list_add(&pd->iosched.read_queue, bio);
817 	else
818 		bio_list_add(&pd->iosched.write_queue, bio);
819 	spin_unlock(&pd->iosched.lock);
820 
821 	atomic_set(&pd->iosched.attention, 1);
822 	wake_up(&pd->wqueue);
823 }
824 
825 /*
826  * Process the queued read/write requests. This function handles special
827  * requirements for CDRW drives:
828  * - A cache flush command must be inserted before a read request if the
829  *   previous request was a write.
830  * - Switching between reading and writing is slow, so don't do it more often
831  *   than necessary.
832  * - Optimize for throughput at the expense of latency. This means that streaming
833  *   writes will never be interrupted by a read, but if the drive has to seek
834  *   before the next write, switch to reading instead if there are any pending
835  *   read requests.
836  * - Set the read speed according to current usage pattern. When only reading
837  *   from the device, it's best to use the highest possible read speed, but
838  *   when switching often between reading and writing, it's better to have the
839  *   same read and write speeds.
840  */
841 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
842 {
843 
844 	if (atomic_read(&pd->iosched.attention) == 0)
845 		return;
846 	atomic_set(&pd->iosched.attention, 0);
847 
848 	for (;;) {
849 		struct bio *bio;
850 		int reads_queued, writes_queued;
851 
852 		spin_lock(&pd->iosched.lock);
853 		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
854 		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
855 		spin_unlock(&pd->iosched.lock);
856 
857 		if (!reads_queued && !writes_queued)
858 			break;
859 
860 		if (pd->iosched.writing) {
861 			int need_write_seek = 1;
862 			spin_lock(&pd->iosched.lock);
863 			bio = bio_list_peek(&pd->iosched.write_queue);
864 			spin_unlock(&pd->iosched.lock);
865 			if (bio && (bio->bi_iter.bi_sector ==
866 				    pd->iosched.last_write))
867 				need_write_seek = 0;
868 			if (need_write_seek && reads_queued) {
869 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
870 					pkt_dbg(2, pd, "write, waiting\n");
871 					break;
872 				}
873 				pkt_flush_cache(pd);
874 				pd->iosched.writing = 0;
875 			}
876 		} else {
877 			if (!reads_queued && writes_queued) {
878 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
879 					pkt_dbg(2, pd, "read, waiting\n");
880 					break;
881 				}
882 				pd->iosched.writing = 1;
883 			}
884 		}
885 
886 		spin_lock(&pd->iosched.lock);
887 		if (pd->iosched.writing)
888 			bio = bio_list_pop(&pd->iosched.write_queue);
889 		else
890 			bio = bio_list_pop(&pd->iosched.read_queue);
891 		spin_unlock(&pd->iosched.lock);
892 
893 		if (!bio)
894 			continue;
895 
896 		if (bio_data_dir(bio) == READ)
897 			pd->iosched.successive_reads +=
898 				bio->bi_iter.bi_size >> 10;
899 		else {
900 			pd->iosched.successive_reads = 0;
901 			pd->iosched.last_write = bio_end_sector(bio);
902 		}
903 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
904 			if (pd->read_speed == pd->write_speed) {
905 				pd->read_speed = MAX_SPEED;
906 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
907 			}
908 		} else {
909 			if (pd->read_speed != pd->write_speed) {
910 				pd->read_speed = pd->write_speed;
911 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
912 			}
913 		}
914 
915 		atomic_inc(&pd->cdrw.pending_bios);
916 		submit_bio_noacct(bio);
917 	}
918 }
919 
920 /*
921  * Special care is needed if the underlying block device has a small
922  * max_phys_segments value.
923  */
924 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
925 {
926 	if ((pd->settings.size << 9) / CD_FRAMESIZE
927 	    <= queue_max_segments(q)) {
928 		/*
929 		 * The cdrom device can handle one segment/frame
930 		 */
931 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
932 		return 0;
933 	} else if ((pd->settings.size << 9) / PAGE_SIZE
934 		   <= queue_max_segments(q)) {
935 		/*
936 		 * We can handle this case at the expense of some extra memory
937 		 * copies during write operations
938 		 */
939 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
940 		return 0;
941 	} else {
942 		pkt_err(pd, "cdrom max_phys_segments too small\n");
943 		return -EIO;
944 	}
945 }
946 
947 static void pkt_end_io_read(struct bio *bio)
948 {
949 	struct packet_data *pkt = bio->bi_private;
950 	struct pktcdvd_device *pd = pkt->pd;
951 	BUG_ON(!pd);
952 
953 	pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
954 		bio, (unsigned long long)pkt->sector,
955 		(unsigned long long)bio->bi_iter.bi_sector, bio->bi_status);
956 
957 	if (bio->bi_status)
958 		atomic_inc(&pkt->io_errors);
959 	if (atomic_dec_and_test(&pkt->io_wait)) {
960 		atomic_inc(&pkt->run_sm);
961 		wake_up(&pd->wqueue);
962 	}
963 	pkt_bio_finished(pd);
964 }
965 
966 static void pkt_end_io_packet_write(struct bio *bio)
967 {
968 	struct packet_data *pkt = bio->bi_private;
969 	struct pktcdvd_device *pd = pkt->pd;
970 	BUG_ON(!pd);
971 
972 	pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_status);
973 
974 	pd->stats.pkt_ended++;
975 
976 	pkt_bio_finished(pd);
977 	atomic_dec(&pkt->io_wait);
978 	atomic_inc(&pkt->run_sm);
979 	wake_up(&pd->wqueue);
980 }
981 
982 /*
983  * Schedule reads for the holes in a packet
984  */
985 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
986 {
987 	int frames_read = 0;
988 	struct bio *bio;
989 	int f;
990 	char written[PACKET_MAX_SIZE];
991 
992 	BUG_ON(bio_list_empty(&pkt->orig_bios));
993 
994 	atomic_set(&pkt->io_wait, 0);
995 	atomic_set(&pkt->io_errors, 0);
996 
997 	/*
998 	 * Figure out which frames we need to read before we can write.
999 	 */
1000 	memset(written, 0, sizeof(written));
1001 	spin_lock(&pkt->lock);
1002 	bio_list_for_each(bio, &pkt->orig_bios) {
1003 		int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1004 			(CD_FRAMESIZE >> 9);
1005 		int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1006 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1007 		BUG_ON(first_frame < 0);
1008 		BUG_ON(first_frame + num_frames > pkt->frames);
1009 		for (f = first_frame; f < first_frame + num_frames; f++)
1010 			written[f] = 1;
1011 	}
1012 	spin_unlock(&pkt->lock);
1013 
1014 	if (pkt->cache_valid) {
1015 		pkt_dbg(2, pd, "zone %llx cached\n",
1016 			(unsigned long long)pkt->sector);
1017 		goto out_account;
1018 	}
1019 
1020 	/*
1021 	 * Schedule reads for missing parts of the packet.
1022 	 */
1023 	for (f = 0; f < pkt->frames; f++) {
1024 		int p, offset;
1025 
1026 		if (written[f])
1027 			continue;
1028 
1029 		bio = pkt->r_bios[f];
1030 		bio_reset(bio);
1031 		bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1032 		bio_set_dev(bio, pd->bdev);
1033 		bio->bi_end_io = pkt_end_io_read;
1034 		bio->bi_private = pkt;
1035 
1036 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1037 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1038 		pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1039 			f, pkt->pages[p], offset);
1040 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1041 			BUG();
1042 
1043 		atomic_inc(&pkt->io_wait);
1044 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
1045 		pkt_queue_bio(pd, bio);
1046 		frames_read++;
1047 	}
1048 
1049 out_account:
1050 	pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1051 		frames_read, (unsigned long long)pkt->sector);
1052 	pd->stats.pkt_started++;
1053 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1054 }
1055 
1056 /*
1057  * Find a packet matching zone, or the least recently used packet if
1058  * there is no match.
1059  */
1060 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1061 {
1062 	struct packet_data *pkt;
1063 
1064 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1065 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1066 			list_del_init(&pkt->list);
1067 			if (pkt->sector != zone)
1068 				pkt->cache_valid = 0;
1069 			return pkt;
1070 		}
1071 	}
1072 	BUG();
1073 	return NULL;
1074 }
1075 
1076 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1077 {
1078 	if (pkt->cache_valid) {
1079 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1080 	} else {
1081 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1082 	}
1083 }
1084 
1085 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1086 {
1087 #if PACKET_DEBUG > 1
1088 	static const char *state_name[] = {
1089 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1090 	};
1091 	enum packet_data_state old_state = pkt->state;
1092 	pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1093 		pkt->id, (unsigned long long)pkt->sector,
1094 		state_name[old_state], state_name[state]);
1095 #endif
1096 	pkt->state = state;
1097 }
1098 
1099 /*
1100  * Scan the work queue to see if we can start a new packet.
1101  * returns non-zero if any work was done.
1102  */
1103 static int pkt_handle_queue(struct pktcdvd_device *pd)
1104 {
1105 	struct packet_data *pkt, *p;
1106 	struct bio *bio = NULL;
1107 	sector_t zone = 0; /* Suppress gcc warning */
1108 	struct pkt_rb_node *node, *first_node;
1109 	struct rb_node *n;
1110 	int wakeup;
1111 
1112 	atomic_set(&pd->scan_queue, 0);
1113 
1114 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1115 		pkt_dbg(2, pd, "no pkt\n");
1116 		return 0;
1117 	}
1118 
1119 	/*
1120 	 * Try to find a zone we are not already working on.
1121 	 */
1122 	spin_lock(&pd->lock);
1123 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1124 	if (!first_node) {
1125 		n = rb_first(&pd->bio_queue);
1126 		if (n)
1127 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1128 	}
1129 	node = first_node;
1130 	while (node) {
1131 		bio = node->bio;
1132 		zone = get_zone(bio->bi_iter.bi_sector, pd);
1133 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1134 			if (p->sector == zone) {
1135 				bio = NULL;
1136 				goto try_next_bio;
1137 			}
1138 		}
1139 		break;
1140 try_next_bio:
1141 		node = pkt_rbtree_next(node);
1142 		if (!node) {
1143 			n = rb_first(&pd->bio_queue);
1144 			if (n)
1145 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1146 		}
1147 		if (node == first_node)
1148 			node = NULL;
1149 	}
1150 	spin_unlock(&pd->lock);
1151 	if (!bio) {
1152 		pkt_dbg(2, pd, "no bio\n");
1153 		return 0;
1154 	}
1155 
1156 	pkt = pkt_get_packet_data(pd, zone);
1157 
1158 	pd->current_sector = zone + pd->settings.size;
1159 	pkt->sector = zone;
1160 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1161 	pkt->write_size = 0;
1162 
1163 	/*
1164 	 * Scan work queue for bios in the same zone and link them
1165 	 * to this packet.
1166 	 */
1167 	spin_lock(&pd->lock);
1168 	pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1169 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1170 		bio = node->bio;
1171 		pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1172 			get_zone(bio->bi_iter.bi_sector, pd));
1173 		if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1174 			break;
1175 		pkt_rbtree_erase(pd, node);
1176 		spin_lock(&pkt->lock);
1177 		bio_list_add(&pkt->orig_bios, bio);
1178 		pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1179 		spin_unlock(&pkt->lock);
1180 	}
1181 	/* check write congestion marks, and if bio_queue_size is
1182 	   below, wake up any waiters */
1183 	wakeup = (pd->write_congestion_on > 0
1184 	 		&& pd->bio_queue_size <= pd->write_congestion_off);
1185 	spin_unlock(&pd->lock);
1186 	if (wakeup)
1187 		clear_bdi_congested(pd->disk->bdi, BLK_RW_ASYNC);
1188 
1189 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1190 	pkt_set_state(pkt, PACKET_WAITING_STATE);
1191 	atomic_set(&pkt->run_sm, 1);
1192 
1193 	spin_lock(&pd->cdrw.active_list_lock);
1194 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1195 	spin_unlock(&pd->cdrw.active_list_lock);
1196 
1197 	return 1;
1198 }
1199 
1200 /**
1201  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1202  * another
1203  * @src: source bio list
1204  * @dst: destination bio list
1205  *
1206  * Stops when it reaches the end of either the @src list or @dst list - that is,
1207  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1208  * bios).
1209  */
1210 static void bio_list_copy_data(struct bio *dst, struct bio *src)
1211 {
1212 	struct bvec_iter src_iter = src->bi_iter;
1213 	struct bvec_iter dst_iter = dst->bi_iter;
1214 
1215 	while (1) {
1216 		if (!src_iter.bi_size) {
1217 			src = src->bi_next;
1218 			if (!src)
1219 				break;
1220 
1221 			src_iter = src->bi_iter;
1222 		}
1223 
1224 		if (!dst_iter.bi_size) {
1225 			dst = dst->bi_next;
1226 			if (!dst)
1227 				break;
1228 
1229 			dst_iter = dst->bi_iter;
1230 		}
1231 
1232 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1233 	}
1234 }
1235 
1236 /*
1237  * Assemble a bio to write one packet and queue the bio for processing
1238  * by the underlying block device.
1239  */
1240 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1241 {
1242 	int f;
1243 
1244 	bio_reset(pkt->w_bio);
1245 	pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1246 	bio_set_dev(pkt->w_bio, pd->bdev);
1247 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1248 	pkt->w_bio->bi_private = pkt;
1249 
1250 	/* XXX: locking? */
1251 	for (f = 0; f < pkt->frames; f++) {
1252 		struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1253 		unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1254 
1255 		if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1256 			BUG();
1257 	}
1258 	pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1259 
1260 	/*
1261 	 * Fill-in bvec with data from orig_bios.
1262 	 */
1263 	spin_lock(&pkt->lock);
1264 	bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1265 
1266 	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1267 	spin_unlock(&pkt->lock);
1268 
1269 	pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1270 		pkt->write_size, (unsigned long long)pkt->sector);
1271 
1272 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1273 		pkt->cache_valid = 1;
1274 	else
1275 		pkt->cache_valid = 0;
1276 
1277 	/* Start the write request */
1278 	atomic_set(&pkt->io_wait, 1);
1279 	bio_set_op_attrs(pkt->w_bio, REQ_OP_WRITE, 0);
1280 	pkt_queue_bio(pd, pkt->w_bio);
1281 }
1282 
1283 static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1284 {
1285 	struct bio *bio;
1286 
1287 	if (status)
1288 		pkt->cache_valid = 0;
1289 
1290 	/* Finish all bios corresponding to this packet */
1291 	while ((bio = bio_list_pop(&pkt->orig_bios))) {
1292 		bio->bi_status = status;
1293 		bio_endio(bio);
1294 	}
1295 }
1296 
1297 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1298 {
1299 	pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1300 
1301 	for (;;) {
1302 		switch (pkt->state) {
1303 		case PACKET_WAITING_STATE:
1304 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1305 				return;
1306 
1307 			pkt->sleep_time = 0;
1308 			pkt_gather_data(pd, pkt);
1309 			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1310 			break;
1311 
1312 		case PACKET_READ_WAIT_STATE:
1313 			if (atomic_read(&pkt->io_wait) > 0)
1314 				return;
1315 
1316 			if (atomic_read(&pkt->io_errors) > 0) {
1317 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1318 			} else {
1319 				pkt_start_write(pd, pkt);
1320 			}
1321 			break;
1322 
1323 		case PACKET_WRITE_WAIT_STATE:
1324 			if (atomic_read(&pkt->io_wait) > 0)
1325 				return;
1326 
1327 			if (!pkt->w_bio->bi_status) {
1328 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1329 			} else {
1330 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1331 			}
1332 			break;
1333 
1334 		case PACKET_RECOVERY_STATE:
1335 			pkt_dbg(2, pd, "No recovery possible\n");
1336 			pkt_set_state(pkt, PACKET_FINISHED_STATE);
1337 			break;
1338 
1339 		case PACKET_FINISHED_STATE:
1340 			pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1341 			return;
1342 
1343 		default:
1344 			BUG();
1345 			break;
1346 		}
1347 	}
1348 }
1349 
1350 static void pkt_handle_packets(struct pktcdvd_device *pd)
1351 {
1352 	struct packet_data *pkt, *next;
1353 
1354 	/*
1355 	 * Run state machine for active packets
1356 	 */
1357 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1358 		if (atomic_read(&pkt->run_sm) > 0) {
1359 			atomic_set(&pkt->run_sm, 0);
1360 			pkt_run_state_machine(pd, pkt);
1361 		}
1362 	}
1363 
1364 	/*
1365 	 * Move no longer active packets to the free list
1366 	 */
1367 	spin_lock(&pd->cdrw.active_list_lock);
1368 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1369 		if (pkt->state == PACKET_FINISHED_STATE) {
1370 			list_del(&pkt->list);
1371 			pkt_put_packet_data(pd, pkt);
1372 			pkt_set_state(pkt, PACKET_IDLE_STATE);
1373 			atomic_set(&pd->scan_queue, 1);
1374 		}
1375 	}
1376 	spin_unlock(&pd->cdrw.active_list_lock);
1377 }
1378 
1379 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1380 {
1381 	struct packet_data *pkt;
1382 	int i;
1383 
1384 	for (i = 0; i < PACKET_NUM_STATES; i++)
1385 		states[i] = 0;
1386 
1387 	spin_lock(&pd->cdrw.active_list_lock);
1388 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1389 		states[pkt->state]++;
1390 	}
1391 	spin_unlock(&pd->cdrw.active_list_lock);
1392 }
1393 
1394 /*
1395  * kcdrwd is woken up when writes have been queued for one of our
1396  * registered devices
1397  */
1398 static int kcdrwd(void *foobar)
1399 {
1400 	struct pktcdvd_device *pd = foobar;
1401 	struct packet_data *pkt;
1402 	long min_sleep_time, residue;
1403 
1404 	set_user_nice(current, MIN_NICE);
1405 	set_freezable();
1406 
1407 	for (;;) {
1408 		DECLARE_WAITQUEUE(wait, current);
1409 
1410 		/*
1411 		 * Wait until there is something to do
1412 		 */
1413 		add_wait_queue(&pd->wqueue, &wait);
1414 		for (;;) {
1415 			set_current_state(TASK_INTERRUPTIBLE);
1416 
1417 			/* Check if we need to run pkt_handle_queue */
1418 			if (atomic_read(&pd->scan_queue) > 0)
1419 				goto work_to_do;
1420 
1421 			/* Check if we need to run the state machine for some packet */
1422 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1423 				if (atomic_read(&pkt->run_sm) > 0)
1424 					goto work_to_do;
1425 			}
1426 
1427 			/* Check if we need to process the iosched queues */
1428 			if (atomic_read(&pd->iosched.attention) != 0)
1429 				goto work_to_do;
1430 
1431 			/* Otherwise, go to sleep */
1432 			if (PACKET_DEBUG > 1) {
1433 				int states[PACKET_NUM_STATES];
1434 				pkt_count_states(pd, states);
1435 				pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1436 					states[0], states[1], states[2],
1437 					states[3], states[4], states[5]);
1438 			}
1439 
1440 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1441 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1442 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1443 					min_sleep_time = pkt->sleep_time;
1444 			}
1445 
1446 			pkt_dbg(2, pd, "sleeping\n");
1447 			residue = schedule_timeout(min_sleep_time);
1448 			pkt_dbg(2, pd, "wake up\n");
1449 
1450 			/* make swsusp happy with our thread */
1451 			try_to_freeze();
1452 
1453 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1454 				if (!pkt->sleep_time)
1455 					continue;
1456 				pkt->sleep_time -= min_sleep_time - residue;
1457 				if (pkt->sleep_time <= 0) {
1458 					pkt->sleep_time = 0;
1459 					atomic_inc(&pkt->run_sm);
1460 				}
1461 			}
1462 
1463 			if (kthread_should_stop())
1464 				break;
1465 		}
1466 work_to_do:
1467 		set_current_state(TASK_RUNNING);
1468 		remove_wait_queue(&pd->wqueue, &wait);
1469 
1470 		if (kthread_should_stop())
1471 			break;
1472 
1473 		/*
1474 		 * if pkt_handle_queue returns true, we can queue
1475 		 * another request.
1476 		 */
1477 		while (pkt_handle_queue(pd))
1478 			;
1479 
1480 		/*
1481 		 * Handle packet state machine
1482 		 */
1483 		pkt_handle_packets(pd);
1484 
1485 		/*
1486 		 * Handle iosched queues
1487 		 */
1488 		pkt_iosched_process_queue(pd);
1489 	}
1490 
1491 	return 0;
1492 }
1493 
1494 static void pkt_print_settings(struct pktcdvd_device *pd)
1495 {
1496 	pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1497 		 pd->settings.fp ? "Fixed" : "Variable",
1498 		 pd->settings.size >> 2,
1499 		 pd->settings.block_mode == 8 ? '1' : '2');
1500 }
1501 
1502 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1503 {
1504 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1505 
1506 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1507 	cgc->cmd[2] = page_code | (page_control << 6);
1508 	cgc->cmd[7] = cgc->buflen >> 8;
1509 	cgc->cmd[8] = cgc->buflen & 0xff;
1510 	cgc->data_direction = CGC_DATA_READ;
1511 	return pkt_generic_packet(pd, cgc);
1512 }
1513 
1514 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1515 {
1516 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1517 	memset(cgc->buffer, 0, 2);
1518 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1519 	cgc->cmd[1] = 0x10;		/* PF */
1520 	cgc->cmd[7] = cgc->buflen >> 8;
1521 	cgc->cmd[8] = cgc->buflen & 0xff;
1522 	cgc->data_direction = CGC_DATA_WRITE;
1523 	return pkt_generic_packet(pd, cgc);
1524 }
1525 
1526 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1527 {
1528 	struct packet_command cgc;
1529 	int ret;
1530 
1531 	/* set up command and get the disc info */
1532 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1533 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1534 	cgc.cmd[8] = cgc.buflen = 2;
1535 	cgc.quiet = 1;
1536 
1537 	ret = pkt_generic_packet(pd, &cgc);
1538 	if (ret)
1539 		return ret;
1540 
1541 	/* not all drives have the same disc_info length, so requeue
1542 	 * packet with the length the drive tells us it can supply
1543 	 */
1544 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1545 		     sizeof(di->disc_information_length);
1546 
1547 	if (cgc.buflen > sizeof(disc_information))
1548 		cgc.buflen = sizeof(disc_information);
1549 
1550 	cgc.cmd[8] = cgc.buflen;
1551 	return pkt_generic_packet(pd, &cgc);
1552 }
1553 
1554 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1555 {
1556 	struct packet_command cgc;
1557 	int ret;
1558 
1559 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1560 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1561 	cgc.cmd[1] = type & 3;
1562 	cgc.cmd[4] = (track & 0xff00) >> 8;
1563 	cgc.cmd[5] = track & 0xff;
1564 	cgc.cmd[8] = 8;
1565 	cgc.quiet = 1;
1566 
1567 	ret = pkt_generic_packet(pd, &cgc);
1568 	if (ret)
1569 		return ret;
1570 
1571 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1572 		     sizeof(ti->track_information_length);
1573 
1574 	if (cgc.buflen > sizeof(track_information))
1575 		cgc.buflen = sizeof(track_information);
1576 
1577 	cgc.cmd[8] = cgc.buflen;
1578 	return pkt_generic_packet(pd, &cgc);
1579 }
1580 
1581 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1582 						long *last_written)
1583 {
1584 	disc_information di;
1585 	track_information ti;
1586 	__u32 last_track;
1587 	int ret;
1588 
1589 	ret = pkt_get_disc_info(pd, &di);
1590 	if (ret)
1591 		return ret;
1592 
1593 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1594 	ret = pkt_get_track_info(pd, last_track, 1, &ti);
1595 	if (ret)
1596 		return ret;
1597 
1598 	/* if this track is blank, try the previous. */
1599 	if (ti.blank) {
1600 		last_track--;
1601 		ret = pkt_get_track_info(pd, last_track, 1, &ti);
1602 		if (ret)
1603 			return ret;
1604 	}
1605 
1606 	/* if last recorded field is valid, return it. */
1607 	if (ti.lra_v) {
1608 		*last_written = be32_to_cpu(ti.last_rec_address);
1609 	} else {
1610 		/* make it up instead */
1611 		*last_written = be32_to_cpu(ti.track_start) +
1612 				be32_to_cpu(ti.track_size);
1613 		if (ti.free_blocks)
1614 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1615 	}
1616 	return 0;
1617 }
1618 
1619 /*
1620  * write mode select package based on pd->settings
1621  */
1622 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1623 {
1624 	struct packet_command cgc;
1625 	struct scsi_sense_hdr sshdr;
1626 	write_param_page *wp;
1627 	char buffer[128];
1628 	int ret, size;
1629 
1630 	/* doesn't apply to DVD+RW or DVD-RAM */
1631 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1632 		return 0;
1633 
1634 	memset(buffer, 0, sizeof(buffer));
1635 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1636 	cgc.sshdr = &sshdr;
1637 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1638 	if (ret) {
1639 		pkt_dump_sense(pd, &cgc);
1640 		return ret;
1641 	}
1642 
1643 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1644 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1645 	if (size > sizeof(buffer))
1646 		size = sizeof(buffer);
1647 
1648 	/*
1649 	 * now get it all
1650 	 */
1651 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1652 	cgc.sshdr = &sshdr;
1653 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1654 	if (ret) {
1655 		pkt_dump_sense(pd, &cgc);
1656 		return ret;
1657 	}
1658 
1659 	/*
1660 	 * write page is offset header + block descriptor length
1661 	 */
1662 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1663 
1664 	wp->fp = pd->settings.fp;
1665 	wp->track_mode = pd->settings.track_mode;
1666 	wp->write_type = pd->settings.write_type;
1667 	wp->data_block_type = pd->settings.block_mode;
1668 
1669 	wp->multi_session = 0;
1670 
1671 #ifdef PACKET_USE_LS
1672 	wp->link_size = 7;
1673 	wp->ls_v = 1;
1674 #endif
1675 
1676 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1677 		wp->session_format = 0;
1678 		wp->subhdr2 = 0x20;
1679 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1680 		wp->session_format = 0x20;
1681 		wp->subhdr2 = 8;
1682 #if 0
1683 		wp->mcn[0] = 0x80;
1684 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1685 #endif
1686 	} else {
1687 		/*
1688 		 * paranoia
1689 		 */
1690 		pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1691 		return 1;
1692 	}
1693 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1694 
1695 	cgc.buflen = cgc.cmd[8] = size;
1696 	ret = pkt_mode_select(pd, &cgc);
1697 	if (ret) {
1698 		pkt_dump_sense(pd, &cgc);
1699 		return ret;
1700 	}
1701 
1702 	pkt_print_settings(pd);
1703 	return 0;
1704 }
1705 
1706 /*
1707  * 1 -- we can write to this track, 0 -- we can't
1708  */
1709 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1710 {
1711 	switch (pd->mmc3_profile) {
1712 		case 0x1a: /* DVD+RW */
1713 		case 0x12: /* DVD-RAM */
1714 			/* The track is always writable on DVD+RW/DVD-RAM */
1715 			return 1;
1716 		default:
1717 			break;
1718 	}
1719 
1720 	if (!ti->packet || !ti->fp)
1721 		return 0;
1722 
1723 	/*
1724 	 * "good" settings as per Mt Fuji.
1725 	 */
1726 	if (ti->rt == 0 && ti->blank == 0)
1727 		return 1;
1728 
1729 	if (ti->rt == 0 && ti->blank == 1)
1730 		return 1;
1731 
1732 	if (ti->rt == 1 && ti->blank == 0)
1733 		return 1;
1734 
1735 	pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1736 	return 0;
1737 }
1738 
1739 /*
1740  * 1 -- we can write to this disc, 0 -- we can't
1741  */
1742 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1743 {
1744 	switch (pd->mmc3_profile) {
1745 		case 0x0a: /* CD-RW */
1746 		case 0xffff: /* MMC3 not supported */
1747 			break;
1748 		case 0x1a: /* DVD+RW */
1749 		case 0x13: /* DVD-RW */
1750 		case 0x12: /* DVD-RAM */
1751 			return 1;
1752 		default:
1753 			pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1754 				pd->mmc3_profile);
1755 			return 0;
1756 	}
1757 
1758 	/*
1759 	 * for disc type 0xff we should probably reserve a new track.
1760 	 * but i'm not sure, should we leave this to user apps? probably.
1761 	 */
1762 	if (di->disc_type == 0xff) {
1763 		pkt_notice(pd, "unknown disc - no track?\n");
1764 		return 0;
1765 	}
1766 
1767 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1768 		pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1769 		return 0;
1770 	}
1771 
1772 	if (di->erasable == 0) {
1773 		pkt_notice(pd, "disc not erasable\n");
1774 		return 0;
1775 	}
1776 
1777 	if (di->border_status == PACKET_SESSION_RESERVED) {
1778 		pkt_err(pd, "can't write to last track (reserved)\n");
1779 		return 0;
1780 	}
1781 
1782 	return 1;
1783 }
1784 
1785 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1786 {
1787 	struct packet_command cgc;
1788 	unsigned char buf[12];
1789 	disc_information di;
1790 	track_information ti;
1791 	int ret, track;
1792 
1793 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1794 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1795 	cgc.cmd[8] = 8;
1796 	ret = pkt_generic_packet(pd, &cgc);
1797 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1798 
1799 	memset(&di, 0, sizeof(disc_information));
1800 	memset(&ti, 0, sizeof(track_information));
1801 
1802 	ret = pkt_get_disc_info(pd, &di);
1803 	if (ret) {
1804 		pkt_err(pd, "failed get_disc\n");
1805 		return ret;
1806 	}
1807 
1808 	if (!pkt_writable_disc(pd, &di))
1809 		return -EROFS;
1810 
1811 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1812 
1813 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1814 	ret = pkt_get_track_info(pd, track, 1, &ti);
1815 	if (ret) {
1816 		pkt_err(pd, "failed get_track\n");
1817 		return ret;
1818 	}
1819 
1820 	if (!pkt_writable_track(pd, &ti)) {
1821 		pkt_err(pd, "can't write to this track\n");
1822 		return -EROFS;
1823 	}
1824 
1825 	/*
1826 	 * we keep packet size in 512 byte units, makes it easier to
1827 	 * deal with request calculations.
1828 	 */
1829 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1830 	if (pd->settings.size == 0) {
1831 		pkt_notice(pd, "detected zero packet size!\n");
1832 		return -ENXIO;
1833 	}
1834 	if (pd->settings.size > PACKET_MAX_SECTORS) {
1835 		pkt_err(pd, "packet size is too big\n");
1836 		return -EROFS;
1837 	}
1838 	pd->settings.fp = ti.fp;
1839 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1840 
1841 	if (ti.nwa_v) {
1842 		pd->nwa = be32_to_cpu(ti.next_writable);
1843 		set_bit(PACKET_NWA_VALID, &pd->flags);
1844 	}
1845 
1846 	/*
1847 	 * in theory we could use lra on -RW media as well and just zero
1848 	 * blocks that haven't been written yet, but in practice that
1849 	 * is just a no-go. we'll use that for -R, naturally.
1850 	 */
1851 	if (ti.lra_v) {
1852 		pd->lra = be32_to_cpu(ti.last_rec_address);
1853 		set_bit(PACKET_LRA_VALID, &pd->flags);
1854 	} else {
1855 		pd->lra = 0xffffffff;
1856 		set_bit(PACKET_LRA_VALID, &pd->flags);
1857 	}
1858 
1859 	/*
1860 	 * fine for now
1861 	 */
1862 	pd->settings.link_loss = 7;
1863 	pd->settings.write_type = 0;	/* packet */
1864 	pd->settings.track_mode = ti.track_mode;
1865 
1866 	/*
1867 	 * mode1 or mode2 disc
1868 	 */
1869 	switch (ti.data_mode) {
1870 		case PACKET_MODE1:
1871 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1872 			break;
1873 		case PACKET_MODE2:
1874 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1875 			break;
1876 		default:
1877 			pkt_err(pd, "unknown data mode\n");
1878 			return -EROFS;
1879 	}
1880 	return 0;
1881 }
1882 
1883 /*
1884  * enable/disable write caching on drive
1885  */
1886 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1887 						int set)
1888 {
1889 	struct packet_command cgc;
1890 	struct scsi_sense_hdr sshdr;
1891 	unsigned char buf[64];
1892 	int ret;
1893 
1894 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1895 	cgc.sshdr = &sshdr;
1896 	cgc.buflen = pd->mode_offset + 12;
1897 
1898 	/*
1899 	 * caching mode page might not be there, so quiet this command
1900 	 */
1901 	cgc.quiet = 1;
1902 
1903 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1904 	if (ret)
1905 		return ret;
1906 
1907 	buf[pd->mode_offset + 10] |= (!!set << 2);
1908 
1909 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1910 	ret = pkt_mode_select(pd, &cgc);
1911 	if (ret) {
1912 		pkt_err(pd, "write caching control failed\n");
1913 		pkt_dump_sense(pd, &cgc);
1914 	} else if (!ret && set)
1915 		pkt_notice(pd, "enabled write caching\n");
1916 	return ret;
1917 }
1918 
1919 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1920 {
1921 	struct packet_command cgc;
1922 
1923 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1924 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1925 	cgc.cmd[4] = lockflag ? 1 : 0;
1926 	return pkt_generic_packet(pd, &cgc);
1927 }
1928 
1929 /*
1930  * Returns drive maximum write speed
1931  */
1932 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1933 						unsigned *write_speed)
1934 {
1935 	struct packet_command cgc;
1936 	struct scsi_sense_hdr sshdr;
1937 	unsigned char buf[256+18];
1938 	unsigned char *cap_buf;
1939 	int ret, offset;
1940 
1941 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1942 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1943 	cgc.sshdr = &sshdr;
1944 
1945 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1946 	if (ret) {
1947 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1948 			     sizeof(struct mode_page_header);
1949 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1950 		if (ret) {
1951 			pkt_dump_sense(pd, &cgc);
1952 			return ret;
1953 		}
1954 	}
1955 
1956 	offset = 20;			    /* Obsoleted field, used by older drives */
1957 	if (cap_buf[1] >= 28)
1958 		offset = 28;		    /* Current write speed selected */
1959 	if (cap_buf[1] >= 30) {
1960 		/* If the drive reports at least one "Logical Unit Write
1961 		 * Speed Performance Descriptor Block", use the information
1962 		 * in the first block. (contains the highest speed)
1963 		 */
1964 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1965 		if (num_spdb > 0)
1966 			offset = 34;
1967 	}
1968 
1969 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1970 	return 0;
1971 }
1972 
1973 /* These tables from cdrecord - I don't have orange book */
1974 /* standard speed CD-RW (1-4x) */
1975 static char clv_to_speed[16] = {
1976 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1977 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1978 };
1979 /* high speed CD-RW (-10x) */
1980 static char hs_clv_to_speed[16] = {
1981 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1982 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1983 };
1984 /* ultra high speed CD-RW */
1985 static char us_clv_to_speed[16] = {
1986 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1987 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1988 };
1989 
1990 /*
1991  * reads the maximum media speed from ATIP
1992  */
1993 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
1994 						unsigned *speed)
1995 {
1996 	struct packet_command cgc;
1997 	struct scsi_sense_hdr sshdr;
1998 	unsigned char buf[64];
1999 	unsigned int size, st, sp;
2000 	int ret;
2001 
2002 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2003 	cgc.sshdr = &sshdr;
2004 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2005 	cgc.cmd[1] = 2;
2006 	cgc.cmd[2] = 4; /* READ ATIP */
2007 	cgc.cmd[8] = 2;
2008 	ret = pkt_generic_packet(pd, &cgc);
2009 	if (ret) {
2010 		pkt_dump_sense(pd, &cgc);
2011 		return ret;
2012 	}
2013 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2014 	if (size > sizeof(buf))
2015 		size = sizeof(buf);
2016 
2017 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2018 	cgc.sshdr = &sshdr;
2019 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2020 	cgc.cmd[1] = 2;
2021 	cgc.cmd[2] = 4;
2022 	cgc.cmd[8] = size;
2023 	ret = pkt_generic_packet(pd, &cgc);
2024 	if (ret) {
2025 		pkt_dump_sense(pd, &cgc);
2026 		return ret;
2027 	}
2028 
2029 	if (!(buf[6] & 0x40)) {
2030 		pkt_notice(pd, "disc type is not CD-RW\n");
2031 		return 1;
2032 	}
2033 	if (!(buf[6] & 0x4)) {
2034 		pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2035 		return 1;
2036 	}
2037 
2038 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2039 
2040 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2041 
2042 	/* Info from cdrecord */
2043 	switch (st) {
2044 		case 0: /* standard speed */
2045 			*speed = clv_to_speed[sp];
2046 			break;
2047 		case 1: /* high speed */
2048 			*speed = hs_clv_to_speed[sp];
2049 			break;
2050 		case 2: /* ultra high speed */
2051 			*speed = us_clv_to_speed[sp];
2052 			break;
2053 		default:
2054 			pkt_notice(pd, "unknown disc sub-type %d\n", st);
2055 			return 1;
2056 	}
2057 	if (*speed) {
2058 		pkt_info(pd, "maximum media speed: %d\n", *speed);
2059 		return 0;
2060 	} else {
2061 		pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2062 		return 1;
2063 	}
2064 }
2065 
2066 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2067 {
2068 	struct packet_command cgc;
2069 	struct scsi_sense_hdr sshdr;
2070 	int ret;
2071 
2072 	pkt_dbg(2, pd, "Performing OPC\n");
2073 
2074 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2075 	cgc.sshdr = &sshdr;
2076 	cgc.timeout = 60*HZ;
2077 	cgc.cmd[0] = GPCMD_SEND_OPC;
2078 	cgc.cmd[1] = 1;
2079 	ret = pkt_generic_packet(pd, &cgc);
2080 	if (ret)
2081 		pkt_dump_sense(pd, &cgc);
2082 	return ret;
2083 }
2084 
2085 static int pkt_open_write(struct pktcdvd_device *pd)
2086 {
2087 	int ret;
2088 	unsigned int write_speed, media_write_speed, read_speed;
2089 
2090 	ret = pkt_probe_settings(pd);
2091 	if (ret) {
2092 		pkt_dbg(2, pd, "failed probe\n");
2093 		return ret;
2094 	}
2095 
2096 	ret = pkt_set_write_settings(pd);
2097 	if (ret) {
2098 		pkt_dbg(1, pd, "failed saving write settings\n");
2099 		return -EIO;
2100 	}
2101 
2102 	pkt_write_caching(pd, USE_WCACHING);
2103 
2104 	ret = pkt_get_max_speed(pd, &write_speed);
2105 	if (ret)
2106 		write_speed = 16 * 177;
2107 	switch (pd->mmc3_profile) {
2108 		case 0x13: /* DVD-RW */
2109 		case 0x1a: /* DVD+RW */
2110 		case 0x12: /* DVD-RAM */
2111 			pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2112 			break;
2113 		default:
2114 			ret = pkt_media_speed(pd, &media_write_speed);
2115 			if (ret)
2116 				media_write_speed = 16;
2117 			write_speed = min(write_speed, media_write_speed * 177);
2118 			pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2119 			break;
2120 	}
2121 	read_speed = write_speed;
2122 
2123 	ret = pkt_set_speed(pd, write_speed, read_speed);
2124 	if (ret) {
2125 		pkt_dbg(1, pd, "couldn't set write speed\n");
2126 		return -EIO;
2127 	}
2128 	pd->write_speed = write_speed;
2129 	pd->read_speed = read_speed;
2130 
2131 	ret = pkt_perform_opc(pd);
2132 	if (ret) {
2133 		pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2134 	}
2135 
2136 	return 0;
2137 }
2138 
2139 /*
2140  * called at open time.
2141  */
2142 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2143 {
2144 	int ret;
2145 	long lba;
2146 	struct request_queue *q;
2147 	struct block_device *bdev;
2148 
2149 	/*
2150 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2151 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2152 	 * so open should not fail.
2153 	 */
2154 	bdev = blkdev_get_by_dev(pd->bdev->bd_dev, FMODE_READ | FMODE_EXCL, pd);
2155 	if (IS_ERR(bdev)) {
2156 		ret = PTR_ERR(bdev);
2157 		goto out;
2158 	}
2159 
2160 	ret = pkt_get_last_written(pd, &lba);
2161 	if (ret) {
2162 		pkt_err(pd, "pkt_get_last_written failed\n");
2163 		goto out_putdev;
2164 	}
2165 
2166 	set_capacity(pd->disk, lba << 2);
2167 	set_capacity_and_notify(pd->bdev->bd_disk, lba << 2);
2168 
2169 	q = bdev_get_queue(pd->bdev);
2170 	if (write) {
2171 		ret = pkt_open_write(pd);
2172 		if (ret)
2173 			goto out_putdev;
2174 		/*
2175 		 * Some CDRW drives can not handle writes larger than one packet,
2176 		 * even if the size is a multiple of the packet size.
2177 		 */
2178 		blk_queue_max_hw_sectors(q, pd->settings.size);
2179 		set_bit(PACKET_WRITABLE, &pd->flags);
2180 	} else {
2181 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2182 		clear_bit(PACKET_WRITABLE, &pd->flags);
2183 	}
2184 
2185 	ret = pkt_set_segment_merging(pd, q);
2186 	if (ret)
2187 		goto out_putdev;
2188 
2189 	if (write) {
2190 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2191 			pkt_err(pd, "not enough memory for buffers\n");
2192 			ret = -ENOMEM;
2193 			goto out_putdev;
2194 		}
2195 		pkt_info(pd, "%lukB available on disc\n", lba << 1);
2196 	}
2197 
2198 	return 0;
2199 
2200 out_putdev:
2201 	blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
2202 out:
2203 	return ret;
2204 }
2205 
2206 /*
2207  * called when the device is closed. makes sure that the device flushes
2208  * the internal cache before we close.
2209  */
2210 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2211 {
2212 	if (flush && pkt_flush_cache(pd))
2213 		pkt_dbg(1, pd, "not flushing cache\n");
2214 
2215 	pkt_lock_door(pd, 0);
2216 
2217 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2218 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2219 
2220 	pkt_shrink_pktlist(pd);
2221 }
2222 
2223 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2224 {
2225 	if (dev_minor >= MAX_WRITERS)
2226 		return NULL;
2227 
2228 	dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2229 	return pkt_devs[dev_minor];
2230 }
2231 
2232 static int pkt_open(struct block_device *bdev, fmode_t mode)
2233 {
2234 	struct pktcdvd_device *pd = NULL;
2235 	int ret;
2236 
2237 	mutex_lock(&pktcdvd_mutex);
2238 	mutex_lock(&ctl_mutex);
2239 	pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2240 	if (!pd) {
2241 		ret = -ENODEV;
2242 		goto out;
2243 	}
2244 	BUG_ON(pd->refcnt < 0);
2245 
2246 	pd->refcnt++;
2247 	if (pd->refcnt > 1) {
2248 		if ((mode & FMODE_WRITE) &&
2249 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2250 			ret = -EBUSY;
2251 			goto out_dec;
2252 		}
2253 	} else {
2254 		ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2255 		if (ret)
2256 			goto out_dec;
2257 		/*
2258 		 * needed here as well, since ext2 (among others) may change
2259 		 * the blocksize at mount time
2260 		 */
2261 		set_blocksize(bdev, CD_FRAMESIZE);
2262 	}
2263 
2264 	mutex_unlock(&ctl_mutex);
2265 	mutex_unlock(&pktcdvd_mutex);
2266 	return 0;
2267 
2268 out_dec:
2269 	pd->refcnt--;
2270 out:
2271 	mutex_unlock(&ctl_mutex);
2272 	mutex_unlock(&pktcdvd_mutex);
2273 	return ret;
2274 }
2275 
2276 static void pkt_close(struct gendisk *disk, fmode_t mode)
2277 {
2278 	struct pktcdvd_device *pd = disk->private_data;
2279 
2280 	mutex_lock(&pktcdvd_mutex);
2281 	mutex_lock(&ctl_mutex);
2282 	pd->refcnt--;
2283 	BUG_ON(pd->refcnt < 0);
2284 	if (pd->refcnt == 0) {
2285 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2286 		pkt_release_dev(pd, flush);
2287 	}
2288 	mutex_unlock(&ctl_mutex);
2289 	mutex_unlock(&pktcdvd_mutex);
2290 }
2291 
2292 
2293 static void pkt_end_io_read_cloned(struct bio *bio)
2294 {
2295 	struct packet_stacked_data *psd = bio->bi_private;
2296 	struct pktcdvd_device *pd = psd->pd;
2297 
2298 	psd->bio->bi_status = bio->bi_status;
2299 	bio_put(bio);
2300 	bio_endio(psd->bio);
2301 	mempool_free(psd, &psd_pool);
2302 	pkt_bio_finished(pd);
2303 }
2304 
2305 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2306 {
2307 	struct bio *cloned_bio = bio_clone_fast(bio, GFP_NOIO, &pkt_bio_set);
2308 	struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2309 
2310 	psd->pd = pd;
2311 	psd->bio = bio;
2312 	bio_set_dev(cloned_bio, pd->bdev);
2313 	cloned_bio->bi_private = psd;
2314 	cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2315 	pd->stats.secs_r += bio_sectors(bio);
2316 	pkt_queue_bio(pd, cloned_bio);
2317 }
2318 
2319 static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2320 {
2321 	struct pktcdvd_device *pd = q->queuedata;
2322 	sector_t zone;
2323 	struct packet_data *pkt;
2324 	int was_empty, blocked_bio;
2325 	struct pkt_rb_node *node;
2326 
2327 	zone = get_zone(bio->bi_iter.bi_sector, pd);
2328 
2329 	/*
2330 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2331 	 * just append this bio to that packet.
2332 	 */
2333 	spin_lock(&pd->cdrw.active_list_lock);
2334 	blocked_bio = 0;
2335 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2336 		if (pkt->sector == zone) {
2337 			spin_lock(&pkt->lock);
2338 			if ((pkt->state == PACKET_WAITING_STATE) ||
2339 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2340 				bio_list_add(&pkt->orig_bios, bio);
2341 				pkt->write_size +=
2342 					bio->bi_iter.bi_size / CD_FRAMESIZE;
2343 				if ((pkt->write_size >= pkt->frames) &&
2344 				    (pkt->state == PACKET_WAITING_STATE)) {
2345 					atomic_inc(&pkt->run_sm);
2346 					wake_up(&pd->wqueue);
2347 				}
2348 				spin_unlock(&pkt->lock);
2349 				spin_unlock(&pd->cdrw.active_list_lock);
2350 				return;
2351 			} else {
2352 				blocked_bio = 1;
2353 			}
2354 			spin_unlock(&pkt->lock);
2355 		}
2356 	}
2357 	spin_unlock(&pd->cdrw.active_list_lock);
2358 
2359  	/*
2360 	 * Test if there is enough room left in the bio work queue
2361 	 * (queue size >= congestion on mark).
2362 	 * If not, wait till the work queue size is below the congestion off mark.
2363 	 */
2364 	spin_lock(&pd->lock);
2365 	if (pd->write_congestion_on > 0
2366 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2367 		set_bdi_congested(bio->bi_bdev->bd_disk->bdi, BLK_RW_ASYNC);
2368 		do {
2369 			spin_unlock(&pd->lock);
2370 			congestion_wait(BLK_RW_ASYNC, HZ);
2371 			spin_lock(&pd->lock);
2372 		} while(pd->bio_queue_size > pd->write_congestion_off);
2373 	}
2374 	spin_unlock(&pd->lock);
2375 
2376 	/*
2377 	 * No matching packet found. Store the bio in the work queue.
2378 	 */
2379 	node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2380 	node->bio = bio;
2381 	spin_lock(&pd->lock);
2382 	BUG_ON(pd->bio_queue_size < 0);
2383 	was_empty = (pd->bio_queue_size == 0);
2384 	pkt_rbtree_insert(pd, node);
2385 	spin_unlock(&pd->lock);
2386 
2387 	/*
2388 	 * Wake up the worker thread.
2389 	 */
2390 	atomic_set(&pd->scan_queue, 1);
2391 	if (was_empty) {
2392 		/* This wake_up is required for correct operation */
2393 		wake_up(&pd->wqueue);
2394 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2395 		/*
2396 		 * This wake up is not required for correct operation,
2397 		 * but improves performance in some cases.
2398 		 */
2399 		wake_up(&pd->wqueue);
2400 	}
2401 }
2402 
2403 static void pkt_submit_bio(struct bio *bio)
2404 {
2405 	struct pktcdvd_device *pd;
2406 	char b[BDEVNAME_SIZE];
2407 	struct bio *split;
2408 
2409 	blk_queue_split(&bio);
2410 
2411 	pd = bio->bi_bdev->bd_disk->queue->queuedata;
2412 	if (!pd) {
2413 		pr_err("%s incorrect request queue\n", bio_devname(bio, b));
2414 		goto end_io;
2415 	}
2416 
2417 	pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2418 		(unsigned long long)bio->bi_iter.bi_sector,
2419 		(unsigned long long)bio_end_sector(bio));
2420 
2421 	/*
2422 	 * Clone READ bios so we can have our own bi_end_io callback.
2423 	 */
2424 	if (bio_data_dir(bio) == READ) {
2425 		pkt_make_request_read(pd, bio);
2426 		return;
2427 	}
2428 
2429 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2430 		pkt_notice(pd, "WRITE for ro device (%llu)\n",
2431 			   (unsigned long long)bio->bi_iter.bi_sector);
2432 		goto end_io;
2433 	}
2434 
2435 	if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2436 		pkt_err(pd, "wrong bio size\n");
2437 		goto end_io;
2438 	}
2439 
2440 	do {
2441 		sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2442 		sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2443 
2444 		if (last_zone != zone) {
2445 			BUG_ON(last_zone != zone + pd->settings.size);
2446 
2447 			split = bio_split(bio, last_zone -
2448 					  bio->bi_iter.bi_sector,
2449 					  GFP_NOIO, &pkt_bio_set);
2450 			bio_chain(split, bio);
2451 		} else {
2452 			split = bio;
2453 		}
2454 
2455 		pkt_make_request_write(bio->bi_bdev->bd_disk->queue, split);
2456 	} while (split != bio);
2457 
2458 	return;
2459 end_io:
2460 	bio_io_error(bio);
2461 }
2462 
2463 static void pkt_init_queue(struct pktcdvd_device *pd)
2464 {
2465 	struct request_queue *q = pd->disk->queue;
2466 
2467 	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2468 	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2469 	q->queuedata = pd;
2470 }
2471 
2472 static int pkt_seq_show(struct seq_file *m, void *p)
2473 {
2474 	struct pktcdvd_device *pd = m->private;
2475 	char *msg;
2476 	char bdev_buf[BDEVNAME_SIZE];
2477 	int states[PACKET_NUM_STATES];
2478 
2479 	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2480 		   bdevname(pd->bdev, bdev_buf));
2481 
2482 	seq_printf(m, "\nSettings:\n");
2483 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2484 
2485 	if (pd->settings.write_type == 0)
2486 		msg = "Packet";
2487 	else
2488 		msg = "Unknown";
2489 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2490 
2491 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2492 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2493 
2494 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2495 
2496 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2497 		msg = "Mode 1";
2498 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2499 		msg = "Mode 2";
2500 	else
2501 		msg = "Unknown";
2502 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2503 
2504 	seq_printf(m, "\nStatistics:\n");
2505 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2506 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2507 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2508 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2509 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2510 
2511 	seq_printf(m, "\nMisc:\n");
2512 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2513 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2514 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2515 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2516 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2517 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2518 
2519 	seq_printf(m, "\nQueue state:\n");
2520 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2521 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2522 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2523 
2524 	pkt_count_states(pd, states);
2525 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2526 		   states[0], states[1], states[2], states[3], states[4], states[5]);
2527 
2528 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2529 			pd->write_congestion_off,
2530 			pd->write_congestion_on);
2531 	return 0;
2532 }
2533 
2534 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2535 {
2536 	int i;
2537 	char b[BDEVNAME_SIZE];
2538 	struct block_device *bdev;
2539 	struct scsi_device *sdev;
2540 
2541 	if (pd->pkt_dev == dev) {
2542 		pkt_err(pd, "recursive setup not allowed\n");
2543 		return -EBUSY;
2544 	}
2545 	for (i = 0; i < MAX_WRITERS; i++) {
2546 		struct pktcdvd_device *pd2 = pkt_devs[i];
2547 		if (!pd2)
2548 			continue;
2549 		if (pd2->bdev->bd_dev == dev) {
2550 			pkt_err(pd, "%s already setup\n",
2551 				bdevname(pd2->bdev, b));
2552 			return -EBUSY;
2553 		}
2554 		if (pd2->pkt_dev == dev) {
2555 			pkt_err(pd, "can't chain pktcdvd devices\n");
2556 			return -EBUSY;
2557 		}
2558 	}
2559 
2560 	bdev = blkdev_get_by_dev(dev, FMODE_READ | FMODE_NDELAY, NULL);
2561 	if (IS_ERR(bdev))
2562 		return PTR_ERR(bdev);
2563 	sdev = scsi_device_from_queue(bdev->bd_disk->queue);
2564 	if (!sdev) {
2565 		blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2566 		return -EINVAL;
2567 	}
2568 	put_device(&sdev->sdev_gendev);
2569 
2570 	/* This is safe, since we have a reference from open(). */
2571 	__module_get(THIS_MODULE);
2572 
2573 	pd->bdev = bdev;
2574 	set_blocksize(bdev, CD_FRAMESIZE);
2575 
2576 	pkt_init_queue(pd);
2577 
2578 	atomic_set(&pd->cdrw.pending_bios, 0);
2579 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2580 	if (IS_ERR(pd->cdrw.thread)) {
2581 		pkt_err(pd, "can't start kernel thread\n");
2582 		goto out_mem;
2583 	}
2584 
2585 	proc_create_single_data(pd->name, 0, pkt_proc, pkt_seq_show, pd);
2586 	pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2587 	return 0;
2588 
2589 out_mem:
2590 	blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2591 	/* This is safe: open() is still holding a reference. */
2592 	module_put(THIS_MODULE);
2593 	return -ENOMEM;
2594 }
2595 
2596 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2597 {
2598 	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2599 	int ret;
2600 
2601 	pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2602 		cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2603 
2604 	mutex_lock(&pktcdvd_mutex);
2605 	switch (cmd) {
2606 	case CDROMEJECT:
2607 		/*
2608 		 * The door gets locked when the device is opened, so we
2609 		 * have to unlock it or else the eject command fails.
2610 		 */
2611 		if (pd->refcnt == 1)
2612 			pkt_lock_door(pd, 0);
2613 		fallthrough;
2614 	/*
2615 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2616 	 */
2617 	case CDROMMULTISESSION:
2618 	case CDROMREADTOCENTRY:
2619 	case CDROM_LAST_WRITTEN:
2620 	case CDROM_SEND_PACKET:
2621 	case SCSI_IOCTL_SEND_COMMAND:
2622 		if (!bdev->bd_disk->fops->ioctl)
2623 			ret = -ENOTTY;
2624 		else
2625 			ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
2626 		break;
2627 	default:
2628 		pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2629 		ret = -ENOTTY;
2630 	}
2631 	mutex_unlock(&pktcdvd_mutex);
2632 
2633 	return ret;
2634 }
2635 
2636 static unsigned int pkt_check_events(struct gendisk *disk,
2637 				     unsigned int clearing)
2638 {
2639 	struct pktcdvd_device *pd = disk->private_data;
2640 	struct gendisk *attached_disk;
2641 
2642 	if (!pd)
2643 		return 0;
2644 	if (!pd->bdev)
2645 		return 0;
2646 	attached_disk = pd->bdev->bd_disk;
2647 	if (!attached_disk || !attached_disk->fops->check_events)
2648 		return 0;
2649 	return attached_disk->fops->check_events(attached_disk, clearing);
2650 }
2651 
2652 static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2653 {
2654 	return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2655 }
2656 
2657 static const struct block_device_operations pktcdvd_ops = {
2658 	.owner =		THIS_MODULE,
2659 	.submit_bio =		pkt_submit_bio,
2660 	.open =			pkt_open,
2661 	.release =		pkt_close,
2662 	.ioctl =		pkt_ioctl,
2663 	.compat_ioctl =		blkdev_compat_ptr_ioctl,
2664 	.check_events =		pkt_check_events,
2665 	.devnode =		pkt_devnode,
2666 };
2667 
2668 /*
2669  * Set up mapping from pktcdvd device to CD-ROM device.
2670  */
2671 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2672 {
2673 	int idx;
2674 	int ret = -ENOMEM;
2675 	struct pktcdvd_device *pd;
2676 	struct gendisk *disk;
2677 
2678 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2679 
2680 	for (idx = 0; idx < MAX_WRITERS; idx++)
2681 		if (!pkt_devs[idx])
2682 			break;
2683 	if (idx == MAX_WRITERS) {
2684 		pr_err("max %d writers supported\n", MAX_WRITERS);
2685 		ret = -EBUSY;
2686 		goto out_mutex;
2687 	}
2688 
2689 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2690 	if (!pd)
2691 		goto out_mutex;
2692 
2693 	ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2694 					sizeof(struct pkt_rb_node));
2695 	if (ret)
2696 		goto out_mem;
2697 
2698 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2699 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2700 	spin_lock_init(&pd->cdrw.active_list_lock);
2701 
2702 	spin_lock_init(&pd->lock);
2703 	spin_lock_init(&pd->iosched.lock);
2704 	bio_list_init(&pd->iosched.read_queue);
2705 	bio_list_init(&pd->iosched.write_queue);
2706 	sprintf(pd->name, DRIVER_NAME"%d", idx);
2707 	init_waitqueue_head(&pd->wqueue);
2708 	pd->bio_queue = RB_ROOT;
2709 
2710 	pd->write_congestion_on  = write_congestion_on;
2711 	pd->write_congestion_off = write_congestion_off;
2712 
2713 	ret = -ENOMEM;
2714 	disk = blk_alloc_disk(NUMA_NO_NODE);
2715 	if (!disk)
2716 		goto out_mem;
2717 	pd->disk = disk;
2718 	disk->major = pktdev_major;
2719 	disk->first_minor = idx;
2720 	disk->minors = 1;
2721 	disk->fops = &pktcdvd_ops;
2722 	disk->flags = GENHD_FL_REMOVABLE;
2723 	strcpy(disk->disk_name, pd->name);
2724 	disk->private_data = pd;
2725 
2726 	pd->pkt_dev = MKDEV(pktdev_major, idx);
2727 	ret = pkt_new_dev(pd, dev);
2728 	if (ret)
2729 		goto out_mem2;
2730 
2731 	/* inherit events of the host device */
2732 	disk->events = pd->bdev->bd_disk->events;
2733 
2734 	ret = add_disk(disk);
2735 	if (ret)
2736 		goto out_mem2;
2737 
2738 	pkt_sysfs_dev_new(pd);
2739 	pkt_debugfs_dev_new(pd);
2740 
2741 	pkt_devs[idx] = pd;
2742 	if (pkt_dev)
2743 		*pkt_dev = pd->pkt_dev;
2744 
2745 	mutex_unlock(&ctl_mutex);
2746 	return 0;
2747 
2748 out_mem2:
2749 	blk_cleanup_disk(disk);
2750 out_mem:
2751 	mempool_exit(&pd->rb_pool);
2752 	kfree(pd);
2753 out_mutex:
2754 	mutex_unlock(&ctl_mutex);
2755 	pr_err("setup of pktcdvd device failed\n");
2756 	return ret;
2757 }
2758 
2759 /*
2760  * Tear down mapping from pktcdvd device to CD-ROM device.
2761  */
2762 static int pkt_remove_dev(dev_t pkt_dev)
2763 {
2764 	struct pktcdvd_device *pd;
2765 	int idx;
2766 	int ret = 0;
2767 
2768 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2769 
2770 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2771 		pd = pkt_devs[idx];
2772 		if (pd && (pd->pkt_dev == pkt_dev))
2773 			break;
2774 	}
2775 	if (idx == MAX_WRITERS) {
2776 		pr_debug("dev not setup\n");
2777 		ret = -ENXIO;
2778 		goto out;
2779 	}
2780 
2781 	if (pd->refcnt > 0) {
2782 		ret = -EBUSY;
2783 		goto out;
2784 	}
2785 	if (!IS_ERR(pd->cdrw.thread))
2786 		kthread_stop(pd->cdrw.thread);
2787 
2788 	pkt_devs[idx] = NULL;
2789 
2790 	pkt_debugfs_dev_remove(pd);
2791 	pkt_sysfs_dev_remove(pd);
2792 
2793 	blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2794 
2795 	remove_proc_entry(pd->name, pkt_proc);
2796 	pkt_dbg(1, pd, "writer unmapped\n");
2797 
2798 	del_gendisk(pd->disk);
2799 	blk_cleanup_disk(pd->disk);
2800 
2801 	mempool_exit(&pd->rb_pool);
2802 	kfree(pd);
2803 
2804 	/* This is safe: open() is still holding a reference. */
2805 	module_put(THIS_MODULE);
2806 
2807 out:
2808 	mutex_unlock(&ctl_mutex);
2809 	return ret;
2810 }
2811 
2812 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2813 {
2814 	struct pktcdvd_device *pd;
2815 
2816 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2817 
2818 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2819 	if (pd) {
2820 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2821 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2822 	} else {
2823 		ctrl_cmd->dev = 0;
2824 		ctrl_cmd->pkt_dev = 0;
2825 	}
2826 	ctrl_cmd->num_devices = MAX_WRITERS;
2827 
2828 	mutex_unlock(&ctl_mutex);
2829 }
2830 
2831 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2832 {
2833 	void __user *argp = (void __user *)arg;
2834 	struct pkt_ctrl_command ctrl_cmd;
2835 	int ret = 0;
2836 	dev_t pkt_dev = 0;
2837 
2838 	if (cmd != PACKET_CTRL_CMD)
2839 		return -ENOTTY;
2840 
2841 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2842 		return -EFAULT;
2843 
2844 	switch (ctrl_cmd.command) {
2845 	case PKT_CTRL_CMD_SETUP:
2846 		if (!capable(CAP_SYS_ADMIN))
2847 			return -EPERM;
2848 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2849 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2850 		break;
2851 	case PKT_CTRL_CMD_TEARDOWN:
2852 		if (!capable(CAP_SYS_ADMIN))
2853 			return -EPERM;
2854 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2855 		break;
2856 	case PKT_CTRL_CMD_STATUS:
2857 		pkt_get_status(&ctrl_cmd);
2858 		break;
2859 	default:
2860 		return -ENOTTY;
2861 	}
2862 
2863 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2864 		return -EFAULT;
2865 	return ret;
2866 }
2867 
2868 #ifdef CONFIG_COMPAT
2869 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2870 {
2871 	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2872 }
2873 #endif
2874 
2875 static const struct file_operations pkt_ctl_fops = {
2876 	.open		= nonseekable_open,
2877 	.unlocked_ioctl	= pkt_ctl_ioctl,
2878 #ifdef CONFIG_COMPAT
2879 	.compat_ioctl	= pkt_ctl_compat_ioctl,
2880 #endif
2881 	.owner		= THIS_MODULE,
2882 	.llseek		= no_llseek,
2883 };
2884 
2885 static struct miscdevice pkt_misc = {
2886 	.minor 		= MISC_DYNAMIC_MINOR,
2887 	.name  		= DRIVER_NAME,
2888 	.nodename	= "pktcdvd/control",
2889 	.fops  		= &pkt_ctl_fops
2890 };
2891 
2892 static int __init pkt_init(void)
2893 {
2894 	int ret;
2895 
2896 	mutex_init(&ctl_mutex);
2897 
2898 	ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2899 				    sizeof(struct packet_stacked_data));
2900 	if (ret)
2901 		return ret;
2902 	ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2903 	if (ret) {
2904 		mempool_exit(&psd_pool);
2905 		return ret;
2906 	}
2907 
2908 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2909 	if (ret < 0) {
2910 		pr_err("unable to register block device\n");
2911 		goto out2;
2912 	}
2913 	if (!pktdev_major)
2914 		pktdev_major = ret;
2915 
2916 	ret = pkt_sysfs_init();
2917 	if (ret)
2918 		goto out;
2919 
2920 	pkt_debugfs_init();
2921 
2922 	ret = misc_register(&pkt_misc);
2923 	if (ret) {
2924 		pr_err("unable to register misc device\n");
2925 		goto out_misc;
2926 	}
2927 
2928 	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2929 
2930 	return 0;
2931 
2932 out_misc:
2933 	pkt_debugfs_cleanup();
2934 	pkt_sysfs_cleanup();
2935 out:
2936 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2937 out2:
2938 	mempool_exit(&psd_pool);
2939 	bioset_exit(&pkt_bio_set);
2940 	return ret;
2941 }
2942 
2943 static void __exit pkt_exit(void)
2944 {
2945 	remove_proc_entry("driver/"DRIVER_NAME, NULL);
2946 	misc_deregister(&pkt_misc);
2947 
2948 	pkt_debugfs_cleanup();
2949 	pkt_sysfs_cleanup();
2950 
2951 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2952 	mempool_exit(&psd_pool);
2953 	bioset_exit(&pkt_bio_set);
2954 }
2955 
2956 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2957 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2958 MODULE_LICENSE("GPL");
2959 
2960 module_init(pkt_init);
2961 module_exit(pkt_exit);
2962