1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom make_request_fn function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 48 49 #include <linux/pktcdvd.h> 50 #include <linux/module.h> 51 #include <linux/types.h> 52 #include <linux/kernel.h> 53 #include <linux/compat.h> 54 #include <linux/kthread.h> 55 #include <linux/errno.h> 56 #include <linux/spinlock.h> 57 #include <linux/file.h> 58 #include <linux/proc_fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/miscdevice.h> 61 #include <linux/freezer.h> 62 #include <linux/mutex.h> 63 #include <linux/slab.h> 64 #include <scsi/scsi_cmnd.h> 65 #include <scsi/scsi_ioctl.h> 66 #include <scsi/scsi.h> 67 #include <linux/debugfs.h> 68 #include <linux/device.h> 69 70 #include <asm/uaccess.h> 71 72 #define DRIVER_NAME "pktcdvd" 73 74 #define pkt_err(pd, fmt, ...) \ 75 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__) 76 #define pkt_notice(pd, fmt, ...) \ 77 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__) 78 #define pkt_info(pd, fmt, ...) \ 79 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__) 80 81 #define pkt_dbg(level, pd, fmt, ...) \ 82 do { \ 83 if (level == 2 && PACKET_DEBUG >= 2) \ 84 pr_notice("%s: %s():" fmt, \ 85 pd->name, __func__, ##__VA_ARGS__); \ 86 else if (level == 1 && PACKET_DEBUG >= 1) \ 87 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \ 88 } while (0) 89 90 #define MAX_SPEED 0xffff 91 92 static DEFINE_MUTEX(pktcdvd_mutex); 93 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 94 static struct proc_dir_entry *pkt_proc; 95 static int pktdev_major; 96 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 97 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 98 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 99 static mempool_t *psd_pool; 100 101 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */ 102 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */ 103 104 /* forward declaration */ 105 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 106 static int pkt_remove_dev(dev_t pkt_dev); 107 static int pkt_seq_show(struct seq_file *m, void *p); 108 109 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd) 110 { 111 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1); 112 } 113 114 /* 115 * create and register a pktcdvd kernel object. 116 */ 117 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd, 118 const char* name, 119 struct kobject* parent, 120 struct kobj_type* ktype) 121 { 122 struct pktcdvd_kobj *p; 123 int error; 124 125 p = kzalloc(sizeof(*p), GFP_KERNEL); 126 if (!p) 127 return NULL; 128 p->pd = pd; 129 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name); 130 if (error) { 131 kobject_put(&p->kobj); 132 return NULL; 133 } 134 kobject_uevent(&p->kobj, KOBJ_ADD); 135 return p; 136 } 137 /* 138 * remove a pktcdvd kernel object. 139 */ 140 static void pkt_kobj_remove(struct pktcdvd_kobj *p) 141 { 142 if (p) 143 kobject_put(&p->kobj); 144 } 145 /* 146 * default release function for pktcdvd kernel objects. 147 */ 148 static void pkt_kobj_release(struct kobject *kobj) 149 { 150 kfree(to_pktcdvdkobj(kobj)); 151 } 152 153 154 /********************************************************** 155 * 156 * sysfs interface for pktcdvd 157 * by (C) 2006 Thomas Maier <balagi@justmail.de> 158 * 159 **********************************************************/ 160 161 #define DEF_ATTR(_obj,_name,_mode) \ 162 static struct attribute _obj = { .name = _name, .mode = _mode } 163 164 /********************************************************** 165 /sys/class/pktcdvd/pktcdvd[0-7]/ 166 stat/reset 167 stat/packets_started 168 stat/packets_finished 169 stat/kb_written 170 stat/kb_read 171 stat/kb_read_gather 172 write_queue/size 173 write_queue/congestion_off 174 write_queue/congestion_on 175 **********************************************************/ 176 177 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200); 178 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444); 179 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444); 180 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444); 181 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444); 182 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444); 183 184 static struct attribute *kobj_pkt_attrs_stat[] = { 185 &kobj_pkt_attr_st1, 186 &kobj_pkt_attr_st2, 187 &kobj_pkt_attr_st3, 188 &kobj_pkt_attr_st4, 189 &kobj_pkt_attr_st5, 190 &kobj_pkt_attr_st6, 191 NULL 192 }; 193 194 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444); 195 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644); 196 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644); 197 198 static struct attribute *kobj_pkt_attrs_wqueue[] = { 199 &kobj_pkt_attr_wq1, 200 &kobj_pkt_attr_wq2, 201 &kobj_pkt_attr_wq3, 202 NULL 203 }; 204 205 static ssize_t kobj_pkt_show(struct kobject *kobj, 206 struct attribute *attr, char *data) 207 { 208 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 209 int n = 0; 210 int v; 211 if (strcmp(attr->name, "packets_started") == 0) { 212 n = sprintf(data, "%lu\n", pd->stats.pkt_started); 213 214 } else if (strcmp(attr->name, "packets_finished") == 0) { 215 n = sprintf(data, "%lu\n", pd->stats.pkt_ended); 216 217 } else if (strcmp(attr->name, "kb_written") == 0) { 218 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1); 219 220 } else if (strcmp(attr->name, "kb_read") == 0) { 221 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1); 222 223 } else if (strcmp(attr->name, "kb_read_gather") == 0) { 224 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1); 225 226 } else if (strcmp(attr->name, "size") == 0) { 227 spin_lock(&pd->lock); 228 v = pd->bio_queue_size; 229 spin_unlock(&pd->lock); 230 n = sprintf(data, "%d\n", v); 231 232 } else if (strcmp(attr->name, "congestion_off") == 0) { 233 spin_lock(&pd->lock); 234 v = pd->write_congestion_off; 235 spin_unlock(&pd->lock); 236 n = sprintf(data, "%d\n", v); 237 238 } else if (strcmp(attr->name, "congestion_on") == 0) { 239 spin_lock(&pd->lock); 240 v = pd->write_congestion_on; 241 spin_unlock(&pd->lock); 242 n = sprintf(data, "%d\n", v); 243 } 244 return n; 245 } 246 247 static void init_write_congestion_marks(int* lo, int* hi) 248 { 249 if (*hi > 0) { 250 *hi = max(*hi, 500); 251 *hi = min(*hi, 1000000); 252 if (*lo <= 0) 253 *lo = *hi - 100; 254 else { 255 *lo = min(*lo, *hi - 100); 256 *lo = max(*lo, 100); 257 } 258 } else { 259 *hi = -1; 260 *lo = -1; 261 } 262 } 263 264 static ssize_t kobj_pkt_store(struct kobject *kobj, 265 struct attribute *attr, 266 const char *data, size_t len) 267 { 268 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 269 int val; 270 271 if (strcmp(attr->name, "reset") == 0 && len > 0) { 272 pd->stats.pkt_started = 0; 273 pd->stats.pkt_ended = 0; 274 pd->stats.secs_w = 0; 275 pd->stats.secs_rg = 0; 276 pd->stats.secs_r = 0; 277 278 } else if (strcmp(attr->name, "congestion_off") == 0 279 && sscanf(data, "%d", &val) == 1) { 280 spin_lock(&pd->lock); 281 pd->write_congestion_off = val; 282 init_write_congestion_marks(&pd->write_congestion_off, 283 &pd->write_congestion_on); 284 spin_unlock(&pd->lock); 285 286 } else if (strcmp(attr->name, "congestion_on") == 0 287 && sscanf(data, "%d", &val) == 1) { 288 spin_lock(&pd->lock); 289 pd->write_congestion_on = val; 290 init_write_congestion_marks(&pd->write_congestion_off, 291 &pd->write_congestion_on); 292 spin_unlock(&pd->lock); 293 } 294 return len; 295 } 296 297 static const struct sysfs_ops kobj_pkt_ops = { 298 .show = kobj_pkt_show, 299 .store = kobj_pkt_store 300 }; 301 static struct kobj_type kobj_pkt_type_stat = { 302 .release = pkt_kobj_release, 303 .sysfs_ops = &kobj_pkt_ops, 304 .default_attrs = kobj_pkt_attrs_stat 305 }; 306 static struct kobj_type kobj_pkt_type_wqueue = { 307 .release = pkt_kobj_release, 308 .sysfs_ops = &kobj_pkt_ops, 309 .default_attrs = kobj_pkt_attrs_wqueue 310 }; 311 312 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 313 { 314 if (class_pktcdvd) { 315 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL, 316 "%s", pd->name); 317 if (IS_ERR(pd->dev)) 318 pd->dev = NULL; 319 } 320 if (pd->dev) { 321 pd->kobj_stat = pkt_kobj_create(pd, "stat", 322 &pd->dev->kobj, 323 &kobj_pkt_type_stat); 324 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue", 325 &pd->dev->kobj, 326 &kobj_pkt_type_wqueue); 327 } 328 } 329 330 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 331 { 332 pkt_kobj_remove(pd->kobj_stat); 333 pkt_kobj_remove(pd->kobj_wqueue); 334 if (class_pktcdvd) 335 device_unregister(pd->dev); 336 } 337 338 339 /******************************************************************** 340 /sys/class/pktcdvd/ 341 add map block device 342 remove unmap packet dev 343 device_map show mappings 344 *******************************************************************/ 345 346 static void class_pktcdvd_release(struct class *cls) 347 { 348 kfree(cls); 349 } 350 static ssize_t class_pktcdvd_show_map(struct class *c, 351 struct class_attribute *attr, 352 char *data) 353 { 354 int n = 0; 355 int idx; 356 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 357 for (idx = 0; idx < MAX_WRITERS; idx++) { 358 struct pktcdvd_device *pd = pkt_devs[idx]; 359 if (!pd) 360 continue; 361 n += sprintf(data+n, "%s %u:%u %u:%u\n", 362 pd->name, 363 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 364 MAJOR(pd->bdev->bd_dev), 365 MINOR(pd->bdev->bd_dev)); 366 } 367 mutex_unlock(&ctl_mutex); 368 return n; 369 } 370 371 static ssize_t class_pktcdvd_store_add(struct class *c, 372 struct class_attribute *attr, 373 const char *buf, 374 size_t count) 375 { 376 unsigned int major, minor; 377 378 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 379 /* pkt_setup_dev() expects caller to hold reference to self */ 380 if (!try_module_get(THIS_MODULE)) 381 return -ENODEV; 382 383 pkt_setup_dev(MKDEV(major, minor), NULL); 384 385 module_put(THIS_MODULE); 386 387 return count; 388 } 389 390 return -EINVAL; 391 } 392 393 static ssize_t class_pktcdvd_store_remove(struct class *c, 394 struct class_attribute *attr, 395 const char *buf, 396 size_t count) 397 { 398 unsigned int major, minor; 399 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 400 pkt_remove_dev(MKDEV(major, minor)); 401 return count; 402 } 403 return -EINVAL; 404 } 405 406 static struct class_attribute class_pktcdvd_attrs[] = { 407 __ATTR(add, 0200, NULL, class_pktcdvd_store_add), 408 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove), 409 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL), 410 __ATTR_NULL 411 }; 412 413 414 static int pkt_sysfs_init(void) 415 { 416 int ret = 0; 417 418 /* 419 * create control files in sysfs 420 * /sys/class/pktcdvd/... 421 */ 422 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL); 423 if (!class_pktcdvd) 424 return -ENOMEM; 425 class_pktcdvd->name = DRIVER_NAME; 426 class_pktcdvd->owner = THIS_MODULE; 427 class_pktcdvd->class_release = class_pktcdvd_release; 428 class_pktcdvd->class_attrs = class_pktcdvd_attrs; 429 ret = class_register(class_pktcdvd); 430 if (ret) { 431 kfree(class_pktcdvd); 432 class_pktcdvd = NULL; 433 pr_err("failed to create class pktcdvd\n"); 434 return ret; 435 } 436 return 0; 437 } 438 439 static void pkt_sysfs_cleanup(void) 440 { 441 if (class_pktcdvd) 442 class_destroy(class_pktcdvd); 443 class_pktcdvd = NULL; 444 } 445 446 /******************************************************************** 447 entries in debugfs 448 449 /sys/kernel/debug/pktcdvd[0-7]/ 450 info 451 452 *******************************************************************/ 453 454 static int pkt_debugfs_seq_show(struct seq_file *m, void *p) 455 { 456 return pkt_seq_show(m, p); 457 } 458 459 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file) 460 { 461 return single_open(file, pkt_debugfs_seq_show, inode->i_private); 462 } 463 464 static const struct file_operations debug_fops = { 465 .open = pkt_debugfs_fops_open, 466 .read = seq_read, 467 .llseek = seq_lseek, 468 .release = single_release, 469 .owner = THIS_MODULE, 470 }; 471 472 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 473 { 474 if (!pkt_debugfs_root) 475 return; 476 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root); 477 if (!pd->dfs_d_root) 478 return; 479 480 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO, 481 pd->dfs_d_root, pd, &debug_fops); 482 } 483 484 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 485 { 486 if (!pkt_debugfs_root) 487 return; 488 debugfs_remove(pd->dfs_f_info); 489 debugfs_remove(pd->dfs_d_root); 490 pd->dfs_f_info = NULL; 491 pd->dfs_d_root = NULL; 492 } 493 494 static void pkt_debugfs_init(void) 495 { 496 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 497 } 498 499 static void pkt_debugfs_cleanup(void) 500 { 501 debugfs_remove(pkt_debugfs_root); 502 pkt_debugfs_root = NULL; 503 } 504 505 /* ----------------------------------------------------------*/ 506 507 508 static void pkt_bio_finished(struct pktcdvd_device *pd) 509 { 510 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 511 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 512 pkt_dbg(2, pd, "queue empty\n"); 513 atomic_set(&pd->iosched.attention, 1); 514 wake_up(&pd->wqueue); 515 } 516 } 517 518 /* 519 * Allocate a packet_data struct 520 */ 521 static struct packet_data *pkt_alloc_packet_data(int frames) 522 { 523 int i; 524 struct packet_data *pkt; 525 526 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 527 if (!pkt) 528 goto no_pkt; 529 530 pkt->frames = frames; 531 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames); 532 if (!pkt->w_bio) 533 goto no_bio; 534 535 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 536 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 537 if (!pkt->pages[i]) 538 goto no_page; 539 } 540 541 spin_lock_init(&pkt->lock); 542 bio_list_init(&pkt->orig_bios); 543 544 for (i = 0; i < frames; i++) { 545 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1); 546 if (!bio) 547 goto no_rd_bio; 548 549 pkt->r_bios[i] = bio; 550 } 551 552 return pkt; 553 554 no_rd_bio: 555 for (i = 0; i < frames; i++) { 556 struct bio *bio = pkt->r_bios[i]; 557 if (bio) 558 bio_put(bio); 559 } 560 561 no_page: 562 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 563 if (pkt->pages[i]) 564 __free_page(pkt->pages[i]); 565 bio_put(pkt->w_bio); 566 no_bio: 567 kfree(pkt); 568 no_pkt: 569 return NULL; 570 } 571 572 /* 573 * Free a packet_data struct 574 */ 575 static void pkt_free_packet_data(struct packet_data *pkt) 576 { 577 int i; 578 579 for (i = 0; i < pkt->frames; i++) { 580 struct bio *bio = pkt->r_bios[i]; 581 if (bio) 582 bio_put(bio); 583 } 584 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 585 __free_page(pkt->pages[i]); 586 bio_put(pkt->w_bio); 587 kfree(pkt); 588 } 589 590 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 591 { 592 struct packet_data *pkt, *next; 593 594 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 595 596 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 597 pkt_free_packet_data(pkt); 598 } 599 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 600 } 601 602 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 603 { 604 struct packet_data *pkt; 605 606 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 607 608 while (nr_packets > 0) { 609 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 610 if (!pkt) { 611 pkt_shrink_pktlist(pd); 612 return 0; 613 } 614 pkt->id = nr_packets; 615 pkt->pd = pd; 616 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 617 nr_packets--; 618 } 619 return 1; 620 } 621 622 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 623 { 624 struct rb_node *n = rb_next(&node->rb_node); 625 if (!n) 626 return NULL; 627 return rb_entry(n, struct pkt_rb_node, rb_node); 628 } 629 630 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 631 { 632 rb_erase(&node->rb_node, &pd->bio_queue); 633 mempool_free(node, pd->rb_pool); 634 pd->bio_queue_size--; 635 BUG_ON(pd->bio_queue_size < 0); 636 } 637 638 /* 639 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 640 */ 641 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 642 { 643 struct rb_node *n = pd->bio_queue.rb_node; 644 struct rb_node *next; 645 struct pkt_rb_node *tmp; 646 647 if (!n) { 648 BUG_ON(pd->bio_queue_size > 0); 649 return NULL; 650 } 651 652 for (;;) { 653 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 654 if (s <= tmp->bio->bi_iter.bi_sector) 655 next = n->rb_left; 656 else 657 next = n->rb_right; 658 if (!next) 659 break; 660 n = next; 661 } 662 663 if (s > tmp->bio->bi_iter.bi_sector) { 664 tmp = pkt_rbtree_next(tmp); 665 if (!tmp) 666 return NULL; 667 } 668 BUG_ON(s > tmp->bio->bi_iter.bi_sector); 669 return tmp; 670 } 671 672 /* 673 * Insert a node into the pd->bio_queue rb tree. 674 */ 675 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 676 { 677 struct rb_node **p = &pd->bio_queue.rb_node; 678 struct rb_node *parent = NULL; 679 sector_t s = node->bio->bi_iter.bi_sector; 680 struct pkt_rb_node *tmp; 681 682 while (*p) { 683 parent = *p; 684 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 685 if (s < tmp->bio->bi_iter.bi_sector) 686 p = &(*p)->rb_left; 687 else 688 p = &(*p)->rb_right; 689 } 690 rb_link_node(&node->rb_node, parent, p); 691 rb_insert_color(&node->rb_node, &pd->bio_queue); 692 pd->bio_queue_size++; 693 } 694 695 /* 696 * Send a packet_command to the underlying block device and 697 * wait for completion. 698 */ 699 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 700 { 701 struct request_queue *q = bdev_get_queue(pd->bdev); 702 struct request *rq; 703 int ret = 0; 704 705 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 706 WRITE : READ, __GFP_WAIT); 707 blk_rq_set_block_pc(rq); 708 709 if (cgc->buflen) { 710 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, 711 __GFP_WAIT); 712 if (ret) 713 goto out; 714 } 715 716 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 717 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE); 718 719 rq->timeout = 60*HZ; 720 if (cgc->quiet) 721 rq->cmd_flags |= REQ_QUIET; 722 723 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0); 724 if (rq->errors) 725 ret = -EIO; 726 out: 727 blk_put_request(rq); 728 return ret; 729 } 730 731 static const char *sense_key_string(__u8 index) 732 { 733 static const char * const info[] = { 734 "No sense", "Recovered error", "Not ready", 735 "Medium error", "Hardware error", "Illegal request", 736 "Unit attention", "Data protect", "Blank check", 737 }; 738 739 return index < ARRAY_SIZE(info) ? info[index] : "INVALID"; 740 } 741 742 /* 743 * A generic sense dump / resolve mechanism should be implemented across 744 * all ATAPI + SCSI devices. 745 */ 746 static void pkt_dump_sense(struct pktcdvd_device *pd, 747 struct packet_command *cgc) 748 { 749 struct request_sense *sense = cgc->sense; 750 751 if (sense) 752 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n", 753 CDROM_PACKET_SIZE, cgc->cmd, 754 sense->sense_key, sense->asc, sense->ascq, 755 sense_key_string(sense->sense_key)); 756 else 757 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd); 758 } 759 760 /* 761 * flush the drive cache to media 762 */ 763 static int pkt_flush_cache(struct pktcdvd_device *pd) 764 { 765 struct packet_command cgc; 766 767 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 768 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 769 cgc.quiet = 1; 770 771 /* 772 * the IMMED bit -- we default to not setting it, although that 773 * would allow a much faster close, this is safer 774 */ 775 #if 0 776 cgc.cmd[1] = 1 << 1; 777 #endif 778 return pkt_generic_packet(pd, &cgc); 779 } 780 781 /* 782 * speed is given as the normal factor, e.g. 4 for 4x 783 */ 784 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd, 785 unsigned write_speed, unsigned read_speed) 786 { 787 struct packet_command cgc; 788 struct request_sense sense; 789 int ret; 790 791 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 792 cgc.sense = &sense; 793 cgc.cmd[0] = GPCMD_SET_SPEED; 794 cgc.cmd[2] = (read_speed >> 8) & 0xff; 795 cgc.cmd[3] = read_speed & 0xff; 796 cgc.cmd[4] = (write_speed >> 8) & 0xff; 797 cgc.cmd[5] = write_speed & 0xff; 798 799 if ((ret = pkt_generic_packet(pd, &cgc))) 800 pkt_dump_sense(pd, &cgc); 801 802 return ret; 803 } 804 805 /* 806 * Queue a bio for processing by the low-level CD device. Must be called 807 * from process context. 808 */ 809 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 810 { 811 spin_lock(&pd->iosched.lock); 812 if (bio_data_dir(bio) == READ) 813 bio_list_add(&pd->iosched.read_queue, bio); 814 else 815 bio_list_add(&pd->iosched.write_queue, bio); 816 spin_unlock(&pd->iosched.lock); 817 818 atomic_set(&pd->iosched.attention, 1); 819 wake_up(&pd->wqueue); 820 } 821 822 /* 823 * Process the queued read/write requests. This function handles special 824 * requirements for CDRW drives: 825 * - A cache flush command must be inserted before a read request if the 826 * previous request was a write. 827 * - Switching between reading and writing is slow, so don't do it more often 828 * than necessary. 829 * - Optimize for throughput at the expense of latency. This means that streaming 830 * writes will never be interrupted by a read, but if the drive has to seek 831 * before the next write, switch to reading instead if there are any pending 832 * read requests. 833 * - Set the read speed according to current usage pattern. When only reading 834 * from the device, it's best to use the highest possible read speed, but 835 * when switching often between reading and writing, it's better to have the 836 * same read and write speeds. 837 */ 838 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 839 { 840 841 if (atomic_read(&pd->iosched.attention) == 0) 842 return; 843 atomic_set(&pd->iosched.attention, 0); 844 845 for (;;) { 846 struct bio *bio; 847 int reads_queued, writes_queued; 848 849 spin_lock(&pd->iosched.lock); 850 reads_queued = !bio_list_empty(&pd->iosched.read_queue); 851 writes_queued = !bio_list_empty(&pd->iosched.write_queue); 852 spin_unlock(&pd->iosched.lock); 853 854 if (!reads_queued && !writes_queued) 855 break; 856 857 if (pd->iosched.writing) { 858 int need_write_seek = 1; 859 spin_lock(&pd->iosched.lock); 860 bio = bio_list_peek(&pd->iosched.write_queue); 861 spin_unlock(&pd->iosched.lock); 862 if (bio && (bio->bi_iter.bi_sector == 863 pd->iosched.last_write)) 864 need_write_seek = 0; 865 if (need_write_seek && reads_queued) { 866 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 867 pkt_dbg(2, pd, "write, waiting\n"); 868 break; 869 } 870 pkt_flush_cache(pd); 871 pd->iosched.writing = 0; 872 } 873 } else { 874 if (!reads_queued && writes_queued) { 875 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 876 pkt_dbg(2, pd, "read, waiting\n"); 877 break; 878 } 879 pd->iosched.writing = 1; 880 } 881 } 882 883 spin_lock(&pd->iosched.lock); 884 if (pd->iosched.writing) 885 bio = bio_list_pop(&pd->iosched.write_queue); 886 else 887 bio = bio_list_pop(&pd->iosched.read_queue); 888 spin_unlock(&pd->iosched.lock); 889 890 if (!bio) 891 continue; 892 893 if (bio_data_dir(bio) == READ) 894 pd->iosched.successive_reads += 895 bio->bi_iter.bi_size >> 10; 896 else { 897 pd->iosched.successive_reads = 0; 898 pd->iosched.last_write = bio_end_sector(bio); 899 } 900 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 901 if (pd->read_speed == pd->write_speed) { 902 pd->read_speed = MAX_SPEED; 903 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 904 } 905 } else { 906 if (pd->read_speed != pd->write_speed) { 907 pd->read_speed = pd->write_speed; 908 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 909 } 910 } 911 912 atomic_inc(&pd->cdrw.pending_bios); 913 generic_make_request(bio); 914 } 915 } 916 917 /* 918 * Special care is needed if the underlying block device has a small 919 * max_phys_segments value. 920 */ 921 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q) 922 { 923 if ((pd->settings.size << 9) / CD_FRAMESIZE 924 <= queue_max_segments(q)) { 925 /* 926 * The cdrom device can handle one segment/frame 927 */ 928 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 929 return 0; 930 } else if ((pd->settings.size << 9) / PAGE_SIZE 931 <= queue_max_segments(q)) { 932 /* 933 * We can handle this case at the expense of some extra memory 934 * copies during write operations 935 */ 936 set_bit(PACKET_MERGE_SEGS, &pd->flags); 937 return 0; 938 } else { 939 pkt_err(pd, "cdrom max_phys_segments too small\n"); 940 return -EIO; 941 } 942 } 943 944 /* 945 * Copy all data for this packet to pkt->pages[], so that 946 * a) The number of required segments for the write bio is minimized, which 947 * is necessary for some scsi controllers. 948 * b) The data can be used as cache to avoid read requests if we receive a 949 * new write request for the same zone. 950 */ 951 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec) 952 { 953 int f, p, offs; 954 955 /* Copy all data to pkt->pages[] */ 956 p = 0; 957 offs = 0; 958 for (f = 0; f < pkt->frames; f++) { 959 if (bvec[f].bv_page != pkt->pages[p]) { 960 void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset; 961 void *vto = page_address(pkt->pages[p]) + offs; 962 memcpy(vto, vfrom, CD_FRAMESIZE); 963 kunmap_atomic(vfrom); 964 bvec[f].bv_page = pkt->pages[p]; 965 bvec[f].bv_offset = offs; 966 } else { 967 BUG_ON(bvec[f].bv_offset != offs); 968 } 969 offs += CD_FRAMESIZE; 970 if (offs >= PAGE_SIZE) { 971 offs = 0; 972 p++; 973 } 974 } 975 } 976 977 static void pkt_end_io_read(struct bio *bio, int err) 978 { 979 struct packet_data *pkt = bio->bi_private; 980 struct pktcdvd_device *pd = pkt->pd; 981 BUG_ON(!pd); 982 983 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n", 984 bio, (unsigned long long)pkt->sector, 985 (unsigned long long)bio->bi_iter.bi_sector, err); 986 987 if (err) 988 atomic_inc(&pkt->io_errors); 989 if (atomic_dec_and_test(&pkt->io_wait)) { 990 atomic_inc(&pkt->run_sm); 991 wake_up(&pd->wqueue); 992 } 993 pkt_bio_finished(pd); 994 } 995 996 static void pkt_end_io_packet_write(struct bio *bio, int err) 997 { 998 struct packet_data *pkt = bio->bi_private; 999 struct pktcdvd_device *pd = pkt->pd; 1000 BUG_ON(!pd); 1001 1002 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, err); 1003 1004 pd->stats.pkt_ended++; 1005 1006 pkt_bio_finished(pd); 1007 atomic_dec(&pkt->io_wait); 1008 atomic_inc(&pkt->run_sm); 1009 wake_up(&pd->wqueue); 1010 } 1011 1012 /* 1013 * Schedule reads for the holes in a packet 1014 */ 1015 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1016 { 1017 int frames_read = 0; 1018 struct bio *bio; 1019 int f; 1020 char written[PACKET_MAX_SIZE]; 1021 1022 BUG_ON(bio_list_empty(&pkt->orig_bios)); 1023 1024 atomic_set(&pkt->io_wait, 0); 1025 atomic_set(&pkt->io_errors, 0); 1026 1027 /* 1028 * Figure out which frames we need to read before we can write. 1029 */ 1030 memset(written, 0, sizeof(written)); 1031 spin_lock(&pkt->lock); 1032 bio_list_for_each(bio, &pkt->orig_bios) { 1033 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) / 1034 (CD_FRAMESIZE >> 9); 1035 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE; 1036 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 1037 BUG_ON(first_frame < 0); 1038 BUG_ON(first_frame + num_frames > pkt->frames); 1039 for (f = first_frame; f < first_frame + num_frames; f++) 1040 written[f] = 1; 1041 } 1042 spin_unlock(&pkt->lock); 1043 1044 if (pkt->cache_valid) { 1045 pkt_dbg(2, pd, "zone %llx cached\n", 1046 (unsigned long long)pkt->sector); 1047 goto out_account; 1048 } 1049 1050 /* 1051 * Schedule reads for missing parts of the packet. 1052 */ 1053 for (f = 0; f < pkt->frames; f++) { 1054 int p, offset; 1055 1056 if (written[f]) 1057 continue; 1058 1059 bio = pkt->r_bios[f]; 1060 bio_reset(bio); 1061 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1062 bio->bi_bdev = pd->bdev; 1063 bio->bi_end_io = pkt_end_io_read; 1064 bio->bi_private = pkt; 1065 1066 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1067 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1068 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n", 1069 f, pkt->pages[p], offset); 1070 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1071 BUG(); 1072 1073 atomic_inc(&pkt->io_wait); 1074 bio->bi_rw = READ; 1075 pkt_queue_bio(pd, bio); 1076 frames_read++; 1077 } 1078 1079 out_account: 1080 pkt_dbg(2, pd, "need %d frames for zone %llx\n", 1081 frames_read, (unsigned long long)pkt->sector); 1082 pd->stats.pkt_started++; 1083 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1084 } 1085 1086 /* 1087 * Find a packet matching zone, or the least recently used packet if 1088 * there is no match. 1089 */ 1090 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1091 { 1092 struct packet_data *pkt; 1093 1094 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1095 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1096 list_del_init(&pkt->list); 1097 if (pkt->sector != zone) 1098 pkt->cache_valid = 0; 1099 return pkt; 1100 } 1101 } 1102 BUG(); 1103 return NULL; 1104 } 1105 1106 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1107 { 1108 if (pkt->cache_valid) { 1109 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1110 } else { 1111 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1112 } 1113 } 1114 1115 /* 1116 * recover a failed write, query for relocation if possible 1117 * 1118 * returns 1 if recovery is possible, or 0 if not 1119 * 1120 */ 1121 static int pkt_start_recovery(struct packet_data *pkt) 1122 { 1123 /* 1124 * FIXME. We need help from the file system to implement 1125 * recovery handling. 1126 */ 1127 return 0; 1128 #if 0 1129 struct request *rq = pkt->rq; 1130 struct pktcdvd_device *pd = rq->rq_disk->private_data; 1131 struct block_device *pkt_bdev; 1132 struct super_block *sb = NULL; 1133 unsigned long old_block, new_block; 1134 sector_t new_sector; 1135 1136 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 1137 if (pkt_bdev) { 1138 sb = get_super(pkt_bdev); 1139 bdput(pkt_bdev); 1140 } 1141 1142 if (!sb) 1143 return 0; 1144 1145 if (!sb->s_op->relocate_blocks) 1146 goto out; 1147 1148 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 1149 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 1150 goto out; 1151 1152 new_sector = new_block * (CD_FRAMESIZE >> 9); 1153 pkt->sector = new_sector; 1154 1155 bio_reset(pkt->bio); 1156 pkt->bio->bi_bdev = pd->bdev; 1157 pkt->bio->bi_rw = REQ_WRITE; 1158 pkt->bio->bi_iter.bi_sector = new_sector; 1159 pkt->bio->bi_iter.bi_size = pkt->frames * CD_FRAMESIZE; 1160 pkt->bio->bi_vcnt = pkt->frames; 1161 1162 pkt->bio->bi_end_io = pkt_end_io_packet_write; 1163 pkt->bio->bi_private = pkt; 1164 1165 drop_super(sb); 1166 return 1; 1167 1168 out: 1169 drop_super(sb); 1170 return 0; 1171 #endif 1172 } 1173 1174 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 1175 { 1176 #if PACKET_DEBUG > 1 1177 static const char *state_name[] = { 1178 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1179 }; 1180 enum packet_data_state old_state = pkt->state; 1181 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n", 1182 pkt->id, (unsigned long long)pkt->sector, 1183 state_name[old_state], state_name[state]); 1184 #endif 1185 pkt->state = state; 1186 } 1187 1188 /* 1189 * Scan the work queue to see if we can start a new packet. 1190 * returns non-zero if any work was done. 1191 */ 1192 static int pkt_handle_queue(struct pktcdvd_device *pd) 1193 { 1194 struct packet_data *pkt, *p; 1195 struct bio *bio = NULL; 1196 sector_t zone = 0; /* Suppress gcc warning */ 1197 struct pkt_rb_node *node, *first_node; 1198 struct rb_node *n; 1199 int wakeup; 1200 1201 atomic_set(&pd->scan_queue, 0); 1202 1203 if (list_empty(&pd->cdrw.pkt_free_list)) { 1204 pkt_dbg(2, pd, "no pkt\n"); 1205 return 0; 1206 } 1207 1208 /* 1209 * Try to find a zone we are not already working on. 1210 */ 1211 spin_lock(&pd->lock); 1212 first_node = pkt_rbtree_find(pd, pd->current_sector); 1213 if (!first_node) { 1214 n = rb_first(&pd->bio_queue); 1215 if (n) 1216 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1217 } 1218 node = first_node; 1219 while (node) { 1220 bio = node->bio; 1221 zone = get_zone(bio->bi_iter.bi_sector, pd); 1222 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1223 if (p->sector == zone) { 1224 bio = NULL; 1225 goto try_next_bio; 1226 } 1227 } 1228 break; 1229 try_next_bio: 1230 node = pkt_rbtree_next(node); 1231 if (!node) { 1232 n = rb_first(&pd->bio_queue); 1233 if (n) 1234 node = rb_entry(n, struct pkt_rb_node, rb_node); 1235 } 1236 if (node == first_node) 1237 node = NULL; 1238 } 1239 spin_unlock(&pd->lock); 1240 if (!bio) { 1241 pkt_dbg(2, pd, "no bio\n"); 1242 return 0; 1243 } 1244 1245 pkt = pkt_get_packet_data(pd, zone); 1246 1247 pd->current_sector = zone + pd->settings.size; 1248 pkt->sector = zone; 1249 BUG_ON(pkt->frames != pd->settings.size >> 2); 1250 pkt->write_size = 0; 1251 1252 /* 1253 * Scan work queue for bios in the same zone and link them 1254 * to this packet. 1255 */ 1256 spin_lock(&pd->lock); 1257 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone); 1258 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1259 bio = node->bio; 1260 pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long) 1261 get_zone(bio->bi_iter.bi_sector, pd)); 1262 if (get_zone(bio->bi_iter.bi_sector, pd) != zone) 1263 break; 1264 pkt_rbtree_erase(pd, node); 1265 spin_lock(&pkt->lock); 1266 bio_list_add(&pkt->orig_bios, bio); 1267 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE; 1268 spin_unlock(&pkt->lock); 1269 } 1270 /* check write congestion marks, and if bio_queue_size is 1271 below, wake up any waiters */ 1272 wakeup = (pd->write_congestion_on > 0 1273 && pd->bio_queue_size <= pd->write_congestion_off); 1274 spin_unlock(&pd->lock); 1275 if (wakeup) { 1276 clear_bdi_congested(&pd->disk->queue->backing_dev_info, 1277 BLK_RW_ASYNC); 1278 } 1279 1280 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1281 pkt_set_state(pkt, PACKET_WAITING_STATE); 1282 atomic_set(&pkt->run_sm, 1); 1283 1284 spin_lock(&pd->cdrw.active_list_lock); 1285 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1286 spin_unlock(&pd->cdrw.active_list_lock); 1287 1288 return 1; 1289 } 1290 1291 /* 1292 * Assemble a bio to write one packet and queue the bio for processing 1293 * by the underlying block device. 1294 */ 1295 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1296 { 1297 int f; 1298 struct bio_vec *bvec = pkt->w_bio->bi_io_vec; 1299 1300 bio_reset(pkt->w_bio); 1301 pkt->w_bio->bi_iter.bi_sector = pkt->sector; 1302 pkt->w_bio->bi_bdev = pd->bdev; 1303 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1304 pkt->w_bio->bi_private = pkt; 1305 1306 /* XXX: locking? */ 1307 for (f = 0; f < pkt->frames; f++) { 1308 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1309 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1310 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset)) 1311 BUG(); 1312 } 1313 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt); 1314 1315 /* 1316 * Fill-in bvec with data from orig_bios. 1317 */ 1318 spin_lock(&pkt->lock); 1319 bio_copy_data(pkt->w_bio, pkt->orig_bios.head); 1320 1321 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1322 spin_unlock(&pkt->lock); 1323 1324 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n", 1325 pkt->write_size, (unsigned long long)pkt->sector); 1326 1327 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) { 1328 pkt_make_local_copy(pkt, bvec); 1329 pkt->cache_valid = 1; 1330 } else { 1331 pkt->cache_valid = 0; 1332 } 1333 1334 /* Start the write request */ 1335 atomic_set(&pkt->io_wait, 1); 1336 pkt->w_bio->bi_rw = WRITE; 1337 pkt_queue_bio(pd, pkt->w_bio); 1338 } 1339 1340 static void pkt_finish_packet(struct packet_data *pkt, int uptodate) 1341 { 1342 struct bio *bio; 1343 1344 if (!uptodate) 1345 pkt->cache_valid = 0; 1346 1347 /* Finish all bios corresponding to this packet */ 1348 while ((bio = bio_list_pop(&pkt->orig_bios))) 1349 bio_endio(bio, uptodate ? 0 : -EIO); 1350 } 1351 1352 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1353 { 1354 int uptodate; 1355 1356 pkt_dbg(2, pd, "pkt %d\n", pkt->id); 1357 1358 for (;;) { 1359 switch (pkt->state) { 1360 case PACKET_WAITING_STATE: 1361 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1362 return; 1363 1364 pkt->sleep_time = 0; 1365 pkt_gather_data(pd, pkt); 1366 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1367 break; 1368 1369 case PACKET_READ_WAIT_STATE: 1370 if (atomic_read(&pkt->io_wait) > 0) 1371 return; 1372 1373 if (atomic_read(&pkt->io_errors) > 0) { 1374 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1375 } else { 1376 pkt_start_write(pd, pkt); 1377 } 1378 break; 1379 1380 case PACKET_WRITE_WAIT_STATE: 1381 if (atomic_read(&pkt->io_wait) > 0) 1382 return; 1383 1384 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) { 1385 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1386 } else { 1387 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1388 } 1389 break; 1390 1391 case PACKET_RECOVERY_STATE: 1392 if (pkt_start_recovery(pkt)) { 1393 pkt_start_write(pd, pkt); 1394 } else { 1395 pkt_dbg(2, pd, "No recovery possible\n"); 1396 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1397 } 1398 break; 1399 1400 case PACKET_FINISHED_STATE: 1401 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags); 1402 pkt_finish_packet(pkt, uptodate); 1403 return; 1404 1405 default: 1406 BUG(); 1407 break; 1408 } 1409 } 1410 } 1411 1412 static void pkt_handle_packets(struct pktcdvd_device *pd) 1413 { 1414 struct packet_data *pkt, *next; 1415 1416 /* 1417 * Run state machine for active packets 1418 */ 1419 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1420 if (atomic_read(&pkt->run_sm) > 0) { 1421 atomic_set(&pkt->run_sm, 0); 1422 pkt_run_state_machine(pd, pkt); 1423 } 1424 } 1425 1426 /* 1427 * Move no longer active packets to the free list 1428 */ 1429 spin_lock(&pd->cdrw.active_list_lock); 1430 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1431 if (pkt->state == PACKET_FINISHED_STATE) { 1432 list_del(&pkt->list); 1433 pkt_put_packet_data(pd, pkt); 1434 pkt_set_state(pkt, PACKET_IDLE_STATE); 1435 atomic_set(&pd->scan_queue, 1); 1436 } 1437 } 1438 spin_unlock(&pd->cdrw.active_list_lock); 1439 } 1440 1441 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1442 { 1443 struct packet_data *pkt; 1444 int i; 1445 1446 for (i = 0; i < PACKET_NUM_STATES; i++) 1447 states[i] = 0; 1448 1449 spin_lock(&pd->cdrw.active_list_lock); 1450 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1451 states[pkt->state]++; 1452 } 1453 spin_unlock(&pd->cdrw.active_list_lock); 1454 } 1455 1456 /* 1457 * kcdrwd is woken up when writes have been queued for one of our 1458 * registered devices 1459 */ 1460 static int kcdrwd(void *foobar) 1461 { 1462 struct pktcdvd_device *pd = foobar; 1463 struct packet_data *pkt; 1464 long min_sleep_time, residue; 1465 1466 set_user_nice(current, MIN_NICE); 1467 set_freezable(); 1468 1469 for (;;) { 1470 DECLARE_WAITQUEUE(wait, current); 1471 1472 /* 1473 * Wait until there is something to do 1474 */ 1475 add_wait_queue(&pd->wqueue, &wait); 1476 for (;;) { 1477 set_current_state(TASK_INTERRUPTIBLE); 1478 1479 /* Check if we need to run pkt_handle_queue */ 1480 if (atomic_read(&pd->scan_queue) > 0) 1481 goto work_to_do; 1482 1483 /* Check if we need to run the state machine for some packet */ 1484 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1485 if (atomic_read(&pkt->run_sm) > 0) 1486 goto work_to_do; 1487 } 1488 1489 /* Check if we need to process the iosched queues */ 1490 if (atomic_read(&pd->iosched.attention) != 0) 1491 goto work_to_do; 1492 1493 /* Otherwise, go to sleep */ 1494 if (PACKET_DEBUG > 1) { 1495 int states[PACKET_NUM_STATES]; 1496 pkt_count_states(pd, states); 1497 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1498 states[0], states[1], states[2], 1499 states[3], states[4], states[5]); 1500 } 1501 1502 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1503 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1504 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1505 min_sleep_time = pkt->sleep_time; 1506 } 1507 1508 pkt_dbg(2, pd, "sleeping\n"); 1509 residue = schedule_timeout(min_sleep_time); 1510 pkt_dbg(2, pd, "wake up\n"); 1511 1512 /* make swsusp happy with our thread */ 1513 try_to_freeze(); 1514 1515 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1516 if (!pkt->sleep_time) 1517 continue; 1518 pkt->sleep_time -= min_sleep_time - residue; 1519 if (pkt->sleep_time <= 0) { 1520 pkt->sleep_time = 0; 1521 atomic_inc(&pkt->run_sm); 1522 } 1523 } 1524 1525 if (kthread_should_stop()) 1526 break; 1527 } 1528 work_to_do: 1529 set_current_state(TASK_RUNNING); 1530 remove_wait_queue(&pd->wqueue, &wait); 1531 1532 if (kthread_should_stop()) 1533 break; 1534 1535 /* 1536 * if pkt_handle_queue returns true, we can queue 1537 * another request. 1538 */ 1539 while (pkt_handle_queue(pd)) 1540 ; 1541 1542 /* 1543 * Handle packet state machine 1544 */ 1545 pkt_handle_packets(pd); 1546 1547 /* 1548 * Handle iosched queues 1549 */ 1550 pkt_iosched_process_queue(pd); 1551 } 1552 1553 return 0; 1554 } 1555 1556 static void pkt_print_settings(struct pktcdvd_device *pd) 1557 { 1558 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n", 1559 pd->settings.fp ? "Fixed" : "Variable", 1560 pd->settings.size >> 2, 1561 pd->settings.block_mode == 8 ? '1' : '2'); 1562 } 1563 1564 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1565 { 1566 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1567 1568 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1569 cgc->cmd[2] = page_code | (page_control << 6); 1570 cgc->cmd[7] = cgc->buflen >> 8; 1571 cgc->cmd[8] = cgc->buflen & 0xff; 1572 cgc->data_direction = CGC_DATA_READ; 1573 return pkt_generic_packet(pd, cgc); 1574 } 1575 1576 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1577 { 1578 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1579 memset(cgc->buffer, 0, 2); 1580 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1581 cgc->cmd[1] = 0x10; /* PF */ 1582 cgc->cmd[7] = cgc->buflen >> 8; 1583 cgc->cmd[8] = cgc->buflen & 0xff; 1584 cgc->data_direction = CGC_DATA_WRITE; 1585 return pkt_generic_packet(pd, cgc); 1586 } 1587 1588 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1589 { 1590 struct packet_command cgc; 1591 int ret; 1592 1593 /* set up command and get the disc info */ 1594 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1595 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1596 cgc.cmd[8] = cgc.buflen = 2; 1597 cgc.quiet = 1; 1598 1599 if ((ret = pkt_generic_packet(pd, &cgc))) 1600 return ret; 1601 1602 /* not all drives have the same disc_info length, so requeue 1603 * packet with the length the drive tells us it can supply 1604 */ 1605 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1606 sizeof(di->disc_information_length); 1607 1608 if (cgc.buflen > sizeof(disc_information)) 1609 cgc.buflen = sizeof(disc_information); 1610 1611 cgc.cmd[8] = cgc.buflen; 1612 return pkt_generic_packet(pd, &cgc); 1613 } 1614 1615 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1616 { 1617 struct packet_command cgc; 1618 int ret; 1619 1620 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1621 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1622 cgc.cmd[1] = type & 3; 1623 cgc.cmd[4] = (track & 0xff00) >> 8; 1624 cgc.cmd[5] = track & 0xff; 1625 cgc.cmd[8] = 8; 1626 cgc.quiet = 1; 1627 1628 if ((ret = pkt_generic_packet(pd, &cgc))) 1629 return ret; 1630 1631 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1632 sizeof(ti->track_information_length); 1633 1634 if (cgc.buflen > sizeof(track_information)) 1635 cgc.buflen = sizeof(track_information); 1636 1637 cgc.cmd[8] = cgc.buflen; 1638 return pkt_generic_packet(pd, &cgc); 1639 } 1640 1641 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd, 1642 long *last_written) 1643 { 1644 disc_information di; 1645 track_information ti; 1646 __u32 last_track; 1647 int ret = -1; 1648 1649 if ((ret = pkt_get_disc_info(pd, &di))) 1650 return ret; 1651 1652 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1653 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1654 return ret; 1655 1656 /* if this track is blank, try the previous. */ 1657 if (ti.blank) { 1658 last_track--; 1659 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1660 return ret; 1661 } 1662 1663 /* if last recorded field is valid, return it. */ 1664 if (ti.lra_v) { 1665 *last_written = be32_to_cpu(ti.last_rec_address); 1666 } else { 1667 /* make it up instead */ 1668 *last_written = be32_to_cpu(ti.track_start) + 1669 be32_to_cpu(ti.track_size); 1670 if (ti.free_blocks) 1671 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1672 } 1673 return 0; 1674 } 1675 1676 /* 1677 * write mode select package based on pd->settings 1678 */ 1679 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd) 1680 { 1681 struct packet_command cgc; 1682 struct request_sense sense; 1683 write_param_page *wp; 1684 char buffer[128]; 1685 int ret, size; 1686 1687 /* doesn't apply to DVD+RW or DVD-RAM */ 1688 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1689 return 0; 1690 1691 memset(buffer, 0, sizeof(buffer)); 1692 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1693 cgc.sense = &sense; 1694 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1695 pkt_dump_sense(pd, &cgc); 1696 return ret; 1697 } 1698 1699 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1700 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1701 if (size > sizeof(buffer)) 1702 size = sizeof(buffer); 1703 1704 /* 1705 * now get it all 1706 */ 1707 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1708 cgc.sense = &sense; 1709 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1710 pkt_dump_sense(pd, &cgc); 1711 return ret; 1712 } 1713 1714 /* 1715 * write page is offset header + block descriptor length 1716 */ 1717 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1718 1719 wp->fp = pd->settings.fp; 1720 wp->track_mode = pd->settings.track_mode; 1721 wp->write_type = pd->settings.write_type; 1722 wp->data_block_type = pd->settings.block_mode; 1723 1724 wp->multi_session = 0; 1725 1726 #ifdef PACKET_USE_LS 1727 wp->link_size = 7; 1728 wp->ls_v = 1; 1729 #endif 1730 1731 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1732 wp->session_format = 0; 1733 wp->subhdr2 = 0x20; 1734 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1735 wp->session_format = 0x20; 1736 wp->subhdr2 = 8; 1737 #if 0 1738 wp->mcn[0] = 0x80; 1739 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1740 #endif 1741 } else { 1742 /* 1743 * paranoia 1744 */ 1745 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type); 1746 return 1; 1747 } 1748 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1749 1750 cgc.buflen = cgc.cmd[8] = size; 1751 if ((ret = pkt_mode_select(pd, &cgc))) { 1752 pkt_dump_sense(pd, &cgc); 1753 return ret; 1754 } 1755 1756 pkt_print_settings(pd); 1757 return 0; 1758 } 1759 1760 /* 1761 * 1 -- we can write to this track, 0 -- we can't 1762 */ 1763 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1764 { 1765 switch (pd->mmc3_profile) { 1766 case 0x1a: /* DVD+RW */ 1767 case 0x12: /* DVD-RAM */ 1768 /* The track is always writable on DVD+RW/DVD-RAM */ 1769 return 1; 1770 default: 1771 break; 1772 } 1773 1774 if (!ti->packet || !ti->fp) 1775 return 0; 1776 1777 /* 1778 * "good" settings as per Mt Fuji. 1779 */ 1780 if (ti->rt == 0 && ti->blank == 0) 1781 return 1; 1782 1783 if (ti->rt == 0 && ti->blank == 1) 1784 return 1; 1785 1786 if (ti->rt == 1 && ti->blank == 0) 1787 return 1; 1788 1789 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1790 return 0; 1791 } 1792 1793 /* 1794 * 1 -- we can write to this disc, 0 -- we can't 1795 */ 1796 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1797 { 1798 switch (pd->mmc3_profile) { 1799 case 0x0a: /* CD-RW */ 1800 case 0xffff: /* MMC3 not supported */ 1801 break; 1802 case 0x1a: /* DVD+RW */ 1803 case 0x13: /* DVD-RW */ 1804 case 0x12: /* DVD-RAM */ 1805 return 1; 1806 default: 1807 pkt_dbg(2, pd, "Wrong disc profile (%x)\n", 1808 pd->mmc3_profile); 1809 return 0; 1810 } 1811 1812 /* 1813 * for disc type 0xff we should probably reserve a new track. 1814 * but i'm not sure, should we leave this to user apps? probably. 1815 */ 1816 if (di->disc_type == 0xff) { 1817 pkt_notice(pd, "unknown disc - no track?\n"); 1818 return 0; 1819 } 1820 1821 if (di->disc_type != 0x20 && di->disc_type != 0) { 1822 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type); 1823 return 0; 1824 } 1825 1826 if (di->erasable == 0) { 1827 pkt_notice(pd, "disc not erasable\n"); 1828 return 0; 1829 } 1830 1831 if (di->border_status == PACKET_SESSION_RESERVED) { 1832 pkt_err(pd, "can't write to last track (reserved)\n"); 1833 return 0; 1834 } 1835 1836 return 1; 1837 } 1838 1839 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd) 1840 { 1841 struct packet_command cgc; 1842 unsigned char buf[12]; 1843 disc_information di; 1844 track_information ti; 1845 int ret, track; 1846 1847 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1848 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1849 cgc.cmd[8] = 8; 1850 ret = pkt_generic_packet(pd, &cgc); 1851 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1852 1853 memset(&di, 0, sizeof(disc_information)); 1854 memset(&ti, 0, sizeof(track_information)); 1855 1856 if ((ret = pkt_get_disc_info(pd, &di))) { 1857 pkt_err(pd, "failed get_disc\n"); 1858 return ret; 1859 } 1860 1861 if (!pkt_writable_disc(pd, &di)) 1862 return -EROFS; 1863 1864 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 1865 1866 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 1867 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 1868 pkt_err(pd, "failed get_track\n"); 1869 return ret; 1870 } 1871 1872 if (!pkt_writable_track(pd, &ti)) { 1873 pkt_err(pd, "can't write to this track\n"); 1874 return -EROFS; 1875 } 1876 1877 /* 1878 * we keep packet size in 512 byte units, makes it easier to 1879 * deal with request calculations. 1880 */ 1881 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 1882 if (pd->settings.size == 0) { 1883 pkt_notice(pd, "detected zero packet size!\n"); 1884 return -ENXIO; 1885 } 1886 if (pd->settings.size > PACKET_MAX_SECTORS) { 1887 pkt_err(pd, "packet size is too big\n"); 1888 return -EROFS; 1889 } 1890 pd->settings.fp = ti.fp; 1891 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 1892 1893 if (ti.nwa_v) { 1894 pd->nwa = be32_to_cpu(ti.next_writable); 1895 set_bit(PACKET_NWA_VALID, &pd->flags); 1896 } 1897 1898 /* 1899 * in theory we could use lra on -RW media as well and just zero 1900 * blocks that haven't been written yet, but in practice that 1901 * is just a no-go. we'll use that for -R, naturally. 1902 */ 1903 if (ti.lra_v) { 1904 pd->lra = be32_to_cpu(ti.last_rec_address); 1905 set_bit(PACKET_LRA_VALID, &pd->flags); 1906 } else { 1907 pd->lra = 0xffffffff; 1908 set_bit(PACKET_LRA_VALID, &pd->flags); 1909 } 1910 1911 /* 1912 * fine for now 1913 */ 1914 pd->settings.link_loss = 7; 1915 pd->settings.write_type = 0; /* packet */ 1916 pd->settings.track_mode = ti.track_mode; 1917 1918 /* 1919 * mode1 or mode2 disc 1920 */ 1921 switch (ti.data_mode) { 1922 case PACKET_MODE1: 1923 pd->settings.block_mode = PACKET_BLOCK_MODE1; 1924 break; 1925 case PACKET_MODE2: 1926 pd->settings.block_mode = PACKET_BLOCK_MODE2; 1927 break; 1928 default: 1929 pkt_err(pd, "unknown data mode\n"); 1930 return -EROFS; 1931 } 1932 return 0; 1933 } 1934 1935 /* 1936 * enable/disable write caching on drive 1937 */ 1938 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd, 1939 int set) 1940 { 1941 struct packet_command cgc; 1942 struct request_sense sense; 1943 unsigned char buf[64]; 1944 int ret; 1945 1946 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1947 cgc.sense = &sense; 1948 cgc.buflen = pd->mode_offset + 12; 1949 1950 /* 1951 * caching mode page might not be there, so quiet this command 1952 */ 1953 cgc.quiet = 1; 1954 1955 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 1956 return ret; 1957 1958 buf[pd->mode_offset + 10] |= (!!set << 2); 1959 1960 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 1961 ret = pkt_mode_select(pd, &cgc); 1962 if (ret) { 1963 pkt_err(pd, "write caching control failed\n"); 1964 pkt_dump_sense(pd, &cgc); 1965 } else if (!ret && set) 1966 pkt_notice(pd, "enabled write caching\n"); 1967 return ret; 1968 } 1969 1970 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 1971 { 1972 struct packet_command cgc; 1973 1974 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 1975 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 1976 cgc.cmd[4] = lockflag ? 1 : 0; 1977 return pkt_generic_packet(pd, &cgc); 1978 } 1979 1980 /* 1981 * Returns drive maximum write speed 1982 */ 1983 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd, 1984 unsigned *write_speed) 1985 { 1986 struct packet_command cgc; 1987 struct request_sense sense; 1988 unsigned char buf[256+18]; 1989 unsigned char *cap_buf; 1990 int ret, offset; 1991 1992 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 1993 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 1994 cgc.sense = &sense; 1995 1996 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1997 if (ret) { 1998 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 1999 sizeof(struct mode_page_header); 2000 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2001 if (ret) { 2002 pkt_dump_sense(pd, &cgc); 2003 return ret; 2004 } 2005 } 2006 2007 offset = 20; /* Obsoleted field, used by older drives */ 2008 if (cap_buf[1] >= 28) 2009 offset = 28; /* Current write speed selected */ 2010 if (cap_buf[1] >= 30) { 2011 /* If the drive reports at least one "Logical Unit Write 2012 * Speed Performance Descriptor Block", use the information 2013 * in the first block. (contains the highest speed) 2014 */ 2015 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 2016 if (num_spdb > 0) 2017 offset = 34; 2018 } 2019 2020 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 2021 return 0; 2022 } 2023 2024 /* These tables from cdrecord - I don't have orange book */ 2025 /* standard speed CD-RW (1-4x) */ 2026 static char clv_to_speed[16] = { 2027 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2028 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2029 }; 2030 /* high speed CD-RW (-10x) */ 2031 static char hs_clv_to_speed[16] = { 2032 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2033 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2034 }; 2035 /* ultra high speed CD-RW */ 2036 static char us_clv_to_speed[16] = { 2037 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2038 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 2039 }; 2040 2041 /* 2042 * reads the maximum media speed from ATIP 2043 */ 2044 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd, 2045 unsigned *speed) 2046 { 2047 struct packet_command cgc; 2048 struct request_sense sense; 2049 unsigned char buf[64]; 2050 unsigned int size, st, sp; 2051 int ret; 2052 2053 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 2054 cgc.sense = &sense; 2055 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2056 cgc.cmd[1] = 2; 2057 cgc.cmd[2] = 4; /* READ ATIP */ 2058 cgc.cmd[8] = 2; 2059 ret = pkt_generic_packet(pd, &cgc); 2060 if (ret) { 2061 pkt_dump_sense(pd, &cgc); 2062 return ret; 2063 } 2064 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 2065 if (size > sizeof(buf)) 2066 size = sizeof(buf); 2067 2068 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2069 cgc.sense = &sense; 2070 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2071 cgc.cmd[1] = 2; 2072 cgc.cmd[2] = 4; 2073 cgc.cmd[8] = size; 2074 ret = pkt_generic_packet(pd, &cgc); 2075 if (ret) { 2076 pkt_dump_sense(pd, &cgc); 2077 return ret; 2078 } 2079 2080 if (!(buf[6] & 0x40)) { 2081 pkt_notice(pd, "disc type is not CD-RW\n"); 2082 return 1; 2083 } 2084 if (!(buf[6] & 0x4)) { 2085 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n"); 2086 return 1; 2087 } 2088 2089 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2090 2091 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2092 2093 /* Info from cdrecord */ 2094 switch (st) { 2095 case 0: /* standard speed */ 2096 *speed = clv_to_speed[sp]; 2097 break; 2098 case 1: /* high speed */ 2099 *speed = hs_clv_to_speed[sp]; 2100 break; 2101 case 2: /* ultra high speed */ 2102 *speed = us_clv_to_speed[sp]; 2103 break; 2104 default: 2105 pkt_notice(pd, "unknown disc sub-type %d\n", st); 2106 return 1; 2107 } 2108 if (*speed) { 2109 pkt_info(pd, "maximum media speed: %d\n", *speed); 2110 return 0; 2111 } else { 2112 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st); 2113 return 1; 2114 } 2115 } 2116 2117 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd) 2118 { 2119 struct packet_command cgc; 2120 struct request_sense sense; 2121 int ret; 2122 2123 pkt_dbg(2, pd, "Performing OPC\n"); 2124 2125 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2126 cgc.sense = &sense; 2127 cgc.timeout = 60*HZ; 2128 cgc.cmd[0] = GPCMD_SEND_OPC; 2129 cgc.cmd[1] = 1; 2130 if ((ret = pkt_generic_packet(pd, &cgc))) 2131 pkt_dump_sense(pd, &cgc); 2132 return ret; 2133 } 2134 2135 static int pkt_open_write(struct pktcdvd_device *pd) 2136 { 2137 int ret; 2138 unsigned int write_speed, media_write_speed, read_speed; 2139 2140 if ((ret = pkt_probe_settings(pd))) { 2141 pkt_dbg(2, pd, "failed probe\n"); 2142 return ret; 2143 } 2144 2145 if ((ret = pkt_set_write_settings(pd))) { 2146 pkt_dbg(1, pd, "failed saving write settings\n"); 2147 return -EIO; 2148 } 2149 2150 pkt_write_caching(pd, USE_WCACHING); 2151 2152 if ((ret = pkt_get_max_speed(pd, &write_speed))) 2153 write_speed = 16 * 177; 2154 switch (pd->mmc3_profile) { 2155 case 0x13: /* DVD-RW */ 2156 case 0x1a: /* DVD+RW */ 2157 case 0x12: /* DVD-RAM */ 2158 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed); 2159 break; 2160 default: 2161 if ((ret = pkt_media_speed(pd, &media_write_speed))) 2162 media_write_speed = 16; 2163 write_speed = min(write_speed, media_write_speed * 177); 2164 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176); 2165 break; 2166 } 2167 read_speed = write_speed; 2168 2169 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 2170 pkt_dbg(1, pd, "couldn't set write speed\n"); 2171 return -EIO; 2172 } 2173 pd->write_speed = write_speed; 2174 pd->read_speed = read_speed; 2175 2176 if ((ret = pkt_perform_opc(pd))) { 2177 pkt_dbg(1, pd, "Optimum Power Calibration failed\n"); 2178 } 2179 2180 return 0; 2181 } 2182 2183 /* 2184 * called at open time. 2185 */ 2186 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write) 2187 { 2188 int ret; 2189 long lba; 2190 struct request_queue *q; 2191 2192 /* 2193 * We need to re-open the cdrom device without O_NONBLOCK to be able 2194 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2195 * so bdget() can't fail. 2196 */ 2197 bdget(pd->bdev->bd_dev); 2198 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd))) 2199 goto out; 2200 2201 if ((ret = pkt_get_last_written(pd, &lba))) { 2202 pkt_err(pd, "pkt_get_last_written failed\n"); 2203 goto out_putdev; 2204 } 2205 2206 set_capacity(pd->disk, lba << 2); 2207 set_capacity(pd->bdev->bd_disk, lba << 2); 2208 bd_set_size(pd->bdev, (loff_t)lba << 11); 2209 2210 q = bdev_get_queue(pd->bdev); 2211 if (write) { 2212 if ((ret = pkt_open_write(pd))) 2213 goto out_putdev; 2214 /* 2215 * Some CDRW drives can not handle writes larger than one packet, 2216 * even if the size is a multiple of the packet size. 2217 */ 2218 spin_lock_irq(q->queue_lock); 2219 blk_queue_max_hw_sectors(q, pd->settings.size); 2220 spin_unlock_irq(q->queue_lock); 2221 set_bit(PACKET_WRITABLE, &pd->flags); 2222 } else { 2223 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2224 clear_bit(PACKET_WRITABLE, &pd->flags); 2225 } 2226 2227 if ((ret = pkt_set_segment_merging(pd, q))) 2228 goto out_putdev; 2229 2230 if (write) { 2231 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2232 pkt_err(pd, "not enough memory for buffers\n"); 2233 ret = -ENOMEM; 2234 goto out_putdev; 2235 } 2236 pkt_info(pd, "%lukB available on disc\n", lba << 1); 2237 } 2238 2239 return 0; 2240 2241 out_putdev: 2242 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL); 2243 out: 2244 return ret; 2245 } 2246 2247 /* 2248 * called when the device is closed. makes sure that the device flushes 2249 * the internal cache before we close. 2250 */ 2251 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2252 { 2253 if (flush && pkt_flush_cache(pd)) 2254 pkt_dbg(1, pd, "not flushing cache\n"); 2255 2256 pkt_lock_door(pd, 0); 2257 2258 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2259 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL); 2260 2261 pkt_shrink_pktlist(pd); 2262 } 2263 2264 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor) 2265 { 2266 if (dev_minor >= MAX_WRITERS) 2267 return NULL; 2268 return pkt_devs[dev_minor]; 2269 } 2270 2271 static int pkt_open(struct block_device *bdev, fmode_t mode) 2272 { 2273 struct pktcdvd_device *pd = NULL; 2274 int ret; 2275 2276 mutex_lock(&pktcdvd_mutex); 2277 mutex_lock(&ctl_mutex); 2278 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev)); 2279 if (!pd) { 2280 ret = -ENODEV; 2281 goto out; 2282 } 2283 BUG_ON(pd->refcnt < 0); 2284 2285 pd->refcnt++; 2286 if (pd->refcnt > 1) { 2287 if ((mode & FMODE_WRITE) && 2288 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2289 ret = -EBUSY; 2290 goto out_dec; 2291 } 2292 } else { 2293 ret = pkt_open_dev(pd, mode & FMODE_WRITE); 2294 if (ret) 2295 goto out_dec; 2296 /* 2297 * needed here as well, since ext2 (among others) may change 2298 * the blocksize at mount time 2299 */ 2300 set_blocksize(bdev, CD_FRAMESIZE); 2301 } 2302 2303 mutex_unlock(&ctl_mutex); 2304 mutex_unlock(&pktcdvd_mutex); 2305 return 0; 2306 2307 out_dec: 2308 pd->refcnt--; 2309 out: 2310 mutex_unlock(&ctl_mutex); 2311 mutex_unlock(&pktcdvd_mutex); 2312 return ret; 2313 } 2314 2315 static void pkt_close(struct gendisk *disk, fmode_t mode) 2316 { 2317 struct pktcdvd_device *pd = disk->private_data; 2318 2319 mutex_lock(&pktcdvd_mutex); 2320 mutex_lock(&ctl_mutex); 2321 pd->refcnt--; 2322 BUG_ON(pd->refcnt < 0); 2323 if (pd->refcnt == 0) { 2324 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2325 pkt_release_dev(pd, flush); 2326 } 2327 mutex_unlock(&ctl_mutex); 2328 mutex_unlock(&pktcdvd_mutex); 2329 } 2330 2331 2332 static void pkt_end_io_read_cloned(struct bio *bio, int err) 2333 { 2334 struct packet_stacked_data *psd = bio->bi_private; 2335 struct pktcdvd_device *pd = psd->pd; 2336 2337 bio_put(bio); 2338 bio_endio(psd->bio, err); 2339 mempool_free(psd, psd_pool); 2340 pkt_bio_finished(pd); 2341 } 2342 2343 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio) 2344 { 2345 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); 2346 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2347 2348 psd->pd = pd; 2349 psd->bio = bio; 2350 cloned_bio->bi_bdev = pd->bdev; 2351 cloned_bio->bi_private = psd; 2352 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2353 pd->stats.secs_r += bio_sectors(bio); 2354 pkt_queue_bio(pd, cloned_bio); 2355 } 2356 2357 static void pkt_make_request_write(struct request_queue *q, struct bio *bio) 2358 { 2359 struct pktcdvd_device *pd = q->queuedata; 2360 sector_t zone; 2361 struct packet_data *pkt; 2362 int was_empty, blocked_bio; 2363 struct pkt_rb_node *node; 2364 2365 zone = get_zone(bio->bi_iter.bi_sector, pd); 2366 2367 /* 2368 * If we find a matching packet in state WAITING or READ_WAIT, we can 2369 * just append this bio to that packet. 2370 */ 2371 spin_lock(&pd->cdrw.active_list_lock); 2372 blocked_bio = 0; 2373 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2374 if (pkt->sector == zone) { 2375 spin_lock(&pkt->lock); 2376 if ((pkt->state == PACKET_WAITING_STATE) || 2377 (pkt->state == PACKET_READ_WAIT_STATE)) { 2378 bio_list_add(&pkt->orig_bios, bio); 2379 pkt->write_size += 2380 bio->bi_iter.bi_size / CD_FRAMESIZE; 2381 if ((pkt->write_size >= pkt->frames) && 2382 (pkt->state == PACKET_WAITING_STATE)) { 2383 atomic_inc(&pkt->run_sm); 2384 wake_up(&pd->wqueue); 2385 } 2386 spin_unlock(&pkt->lock); 2387 spin_unlock(&pd->cdrw.active_list_lock); 2388 return; 2389 } else { 2390 blocked_bio = 1; 2391 } 2392 spin_unlock(&pkt->lock); 2393 } 2394 } 2395 spin_unlock(&pd->cdrw.active_list_lock); 2396 2397 /* 2398 * Test if there is enough room left in the bio work queue 2399 * (queue size >= congestion on mark). 2400 * If not, wait till the work queue size is below the congestion off mark. 2401 */ 2402 spin_lock(&pd->lock); 2403 if (pd->write_congestion_on > 0 2404 && pd->bio_queue_size >= pd->write_congestion_on) { 2405 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC); 2406 do { 2407 spin_unlock(&pd->lock); 2408 congestion_wait(BLK_RW_ASYNC, HZ); 2409 spin_lock(&pd->lock); 2410 } while(pd->bio_queue_size > pd->write_congestion_off); 2411 } 2412 spin_unlock(&pd->lock); 2413 2414 /* 2415 * No matching packet found. Store the bio in the work queue. 2416 */ 2417 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2418 node->bio = bio; 2419 spin_lock(&pd->lock); 2420 BUG_ON(pd->bio_queue_size < 0); 2421 was_empty = (pd->bio_queue_size == 0); 2422 pkt_rbtree_insert(pd, node); 2423 spin_unlock(&pd->lock); 2424 2425 /* 2426 * Wake up the worker thread. 2427 */ 2428 atomic_set(&pd->scan_queue, 1); 2429 if (was_empty) { 2430 /* This wake_up is required for correct operation */ 2431 wake_up(&pd->wqueue); 2432 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2433 /* 2434 * This wake up is not required for correct operation, 2435 * but improves performance in some cases. 2436 */ 2437 wake_up(&pd->wqueue); 2438 } 2439 } 2440 2441 static void pkt_make_request(struct request_queue *q, struct bio *bio) 2442 { 2443 struct pktcdvd_device *pd; 2444 char b[BDEVNAME_SIZE]; 2445 struct bio *split; 2446 2447 pd = q->queuedata; 2448 if (!pd) { 2449 pr_err("%s incorrect request queue\n", 2450 bdevname(bio->bi_bdev, b)); 2451 goto end_io; 2452 } 2453 2454 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n", 2455 (unsigned long long)bio->bi_iter.bi_sector, 2456 (unsigned long long)bio_end_sector(bio)); 2457 2458 /* 2459 * Clone READ bios so we can have our own bi_end_io callback. 2460 */ 2461 if (bio_data_dir(bio) == READ) { 2462 pkt_make_request_read(pd, bio); 2463 return; 2464 } 2465 2466 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2467 pkt_notice(pd, "WRITE for ro device (%llu)\n", 2468 (unsigned long long)bio->bi_iter.bi_sector); 2469 goto end_io; 2470 } 2471 2472 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) { 2473 pkt_err(pd, "wrong bio size\n"); 2474 goto end_io; 2475 } 2476 2477 blk_queue_bounce(q, &bio); 2478 2479 do { 2480 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd); 2481 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd); 2482 2483 if (last_zone != zone) { 2484 BUG_ON(last_zone != zone + pd->settings.size); 2485 2486 split = bio_split(bio, last_zone - 2487 bio->bi_iter.bi_sector, 2488 GFP_NOIO, fs_bio_set); 2489 bio_chain(split, bio); 2490 } else { 2491 split = bio; 2492 } 2493 2494 pkt_make_request_write(q, split); 2495 } while (split != bio); 2496 2497 return; 2498 end_io: 2499 bio_io_error(bio); 2500 } 2501 2502 2503 2504 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 2505 struct bio_vec *bvec) 2506 { 2507 struct pktcdvd_device *pd = q->queuedata; 2508 sector_t zone = get_zone(bmd->bi_sector, pd); 2509 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size; 2510 int remaining = (pd->settings.size << 9) - used; 2511 int remaining2; 2512 2513 /* 2514 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet 2515 * boundary, pkt_make_request() will split the bio. 2516 */ 2517 remaining2 = PAGE_SIZE - bmd->bi_size; 2518 remaining = max(remaining, remaining2); 2519 2520 BUG_ON(remaining < 0); 2521 return remaining; 2522 } 2523 2524 static void pkt_init_queue(struct pktcdvd_device *pd) 2525 { 2526 struct request_queue *q = pd->disk->queue; 2527 2528 blk_queue_make_request(q, pkt_make_request); 2529 blk_queue_logical_block_size(q, CD_FRAMESIZE); 2530 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS); 2531 blk_queue_merge_bvec(q, pkt_merge_bvec); 2532 q->queuedata = pd; 2533 } 2534 2535 static int pkt_seq_show(struct seq_file *m, void *p) 2536 { 2537 struct pktcdvd_device *pd = m->private; 2538 char *msg; 2539 char bdev_buf[BDEVNAME_SIZE]; 2540 int states[PACKET_NUM_STATES]; 2541 2542 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2543 bdevname(pd->bdev, bdev_buf)); 2544 2545 seq_printf(m, "\nSettings:\n"); 2546 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2547 2548 if (pd->settings.write_type == 0) 2549 msg = "Packet"; 2550 else 2551 msg = "Unknown"; 2552 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2553 2554 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2555 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2556 2557 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2558 2559 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2560 msg = "Mode 1"; 2561 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2562 msg = "Mode 2"; 2563 else 2564 msg = "Unknown"; 2565 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2566 2567 seq_printf(m, "\nStatistics:\n"); 2568 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2569 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2570 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2571 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2572 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2573 2574 seq_printf(m, "\nMisc:\n"); 2575 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2576 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2577 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2578 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2579 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2580 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2581 2582 seq_printf(m, "\nQueue state:\n"); 2583 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2584 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2585 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2586 2587 pkt_count_states(pd, states); 2588 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2589 states[0], states[1], states[2], states[3], states[4], states[5]); 2590 2591 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 2592 pd->write_congestion_off, 2593 pd->write_congestion_on); 2594 return 0; 2595 } 2596 2597 static int pkt_seq_open(struct inode *inode, struct file *file) 2598 { 2599 return single_open(file, pkt_seq_show, PDE_DATA(inode)); 2600 } 2601 2602 static const struct file_operations pkt_proc_fops = { 2603 .open = pkt_seq_open, 2604 .read = seq_read, 2605 .llseek = seq_lseek, 2606 .release = single_release 2607 }; 2608 2609 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2610 { 2611 int i; 2612 int ret = 0; 2613 char b[BDEVNAME_SIZE]; 2614 struct block_device *bdev; 2615 2616 if (pd->pkt_dev == dev) { 2617 pkt_err(pd, "recursive setup not allowed\n"); 2618 return -EBUSY; 2619 } 2620 for (i = 0; i < MAX_WRITERS; i++) { 2621 struct pktcdvd_device *pd2 = pkt_devs[i]; 2622 if (!pd2) 2623 continue; 2624 if (pd2->bdev->bd_dev == dev) { 2625 pkt_err(pd, "%s already setup\n", 2626 bdevname(pd2->bdev, b)); 2627 return -EBUSY; 2628 } 2629 if (pd2->pkt_dev == dev) { 2630 pkt_err(pd, "can't chain pktcdvd devices\n"); 2631 return -EBUSY; 2632 } 2633 } 2634 2635 bdev = bdget(dev); 2636 if (!bdev) 2637 return -ENOMEM; 2638 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL); 2639 if (ret) 2640 return ret; 2641 2642 /* This is safe, since we have a reference from open(). */ 2643 __module_get(THIS_MODULE); 2644 2645 pd->bdev = bdev; 2646 set_blocksize(bdev, CD_FRAMESIZE); 2647 2648 pkt_init_queue(pd); 2649 2650 atomic_set(&pd->cdrw.pending_bios, 0); 2651 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2652 if (IS_ERR(pd->cdrw.thread)) { 2653 pkt_err(pd, "can't start kernel thread\n"); 2654 ret = -ENOMEM; 2655 goto out_mem; 2656 } 2657 2658 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd); 2659 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b)); 2660 return 0; 2661 2662 out_mem: 2663 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY); 2664 /* This is safe: open() is still holding a reference. */ 2665 module_put(THIS_MODULE); 2666 return ret; 2667 } 2668 2669 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) 2670 { 2671 struct pktcdvd_device *pd = bdev->bd_disk->private_data; 2672 int ret; 2673 2674 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n", 2675 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2676 2677 mutex_lock(&pktcdvd_mutex); 2678 switch (cmd) { 2679 case CDROMEJECT: 2680 /* 2681 * The door gets locked when the device is opened, so we 2682 * have to unlock it or else the eject command fails. 2683 */ 2684 if (pd->refcnt == 1) 2685 pkt_lock_door(pd, 0); 2686 /* fallthru */ 2687 /* 2688 * forward selected CDROM ioctls to CD-ROM, for UDF 2689 */ 2690 case CDROMMULTISESSION: 2691 case CDROMREADTOCENTRY: 2692 case CDROM_LAST_WRITTEN: 2693 case CDROM_SEND_PACKET: 2694 case SCSI_IOCTL_SEND_COMMAND: 2695 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg); 2696 break; 2697 2698 default: 2699 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd); 2700 ret = -ENOTTY; 2701 } 2702 mutex_unlock(&pktcdvd_mutex); 2703 2704 return ret; 2705 } 2706 2707 static unsigned int pkt_check_events(struct gendisk *disk, 2708 unsigned int clearing) 2709 { 2710 struct pktcdvd_device *pd = disk->private_data; 2711 struct gendisk *attached_disk; 2712 2713 if (!pd) 2714 return 0; 2715 if (!pd->bdev) 2716 return 0; 2717 attached_disk = pd->bdev->bd_disk; 2718 if (!attached_disk || !attached_disk->fops->check_events) 2719 return 0; 2720 return attached_disk->fops->check_events(attached_disk, clearing); 2721 } 2722 2723 static const struct block_device_operations pktcdvd_ops = { 2724 .owner = THIS_MODULE, 2725 .open = pkt_open, 2726 .release = pkt_close, 2727 .ioctl = pkt_ioctl, 2728 .check_events = pkt_check_events, 2729 }; 2730 2731 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode) 2732 { 2733 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name); 2734 } 2735 2736 /* 2737 * Set up mapping from pktcdvd device to CD-ROM device. 2738 */ 2739 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2740 { 2741 int idx; 2742 int ret = -ENOMEM; 2743 struct pktcdvd_device *pd; 2744 struct gendisk *disk; 2745 2746 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2747 2748 for (idx = 0; idx < MAX_WRITERS; idx++) 2749 if (!pkt_devs[idx]) 2750 break; 2751 if (idx == MAX_WRITERS) { 2752 pr_err("max %d writers supported\n", MAX_WRITERS); 2753 ret = -EBUSY; 2754 goto out_mutex; 2755 } 2756 2757 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2758 if (!pd) 2759 goto out_mutex; 2760 2761 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE, 2762 sizeof(struct pkt_rb_node)); 2763 if (!pd->rb_pool) 2764 goto out_mem; 2765 2766 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2767 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2768 spin_lock_init(&pd->cdrw.active_list_lock); 2769 2770 spin_lock_init(&pd->lock); 2771 spin_lock_init(&pd->iosched.lock); 2772 bio_list_init(&pd->iosched.read_queue); 2773 bio_list_init(&pd->iosched.write_queue); 2774 sprintf(pd->name, DRIVER_NAME"%d", idx); 2775 init_waitqueue_head(&pd->wqueue); 2776 pd->bio_queue = RB_ROOT; 2777 2778 pd->write_congestion_on = write_congestion_on; 2779 pd->write_congestion_off = write_congestion_off; 2780 2781 disk = alloc_disk(1); 2782 if (!disk) 2783 goto out_mem; 2784 pd->disk = disk; 2785 disk->major = pktdev_major; 2786 disk->first_minor = idx; 2787 disk->fops = &pktcdvd_ops; 2788 disk->flags = GENHD_FL_REMOVABLE; 2789 strcpy(disk->disk_name, pd->name); 2790 disk->devnode = pktcdvd_devnode; 2791 disk->private_data = pd; 2792 disk->queue = blk_alloc_queue(GFP_KERNEL); 2793 if (!disk->queue) 2794 goto out_mem2; 2795 2796 pd->pkt_dev = MKDEV(pktdev_major, idx); 2797 ret = pkt_new_dev(pd, dev); 2798 if (ret) 2799 goto out_new_dev; 2800 2801 /* inherit events of the host device */ 2802 disk->events = pd->bdev->bd_disk->events; 2803 disk->async_events = pd->bdev->bd_disk->async_events; 2804 2805 add_disk(disk); 2806 2807 pkt_sysfs_dev_new(pd); 2808 pkt_debugfs_dev_new(pd); 2809 2810 pkt_devs[idx] = pd; 2811 if (pkt_dev) 2812 *pkt_dev = pd->pkt_dev; 2813 2814 mutex_unlock(&ctl_mutex); 2815 return 0; 2816 2817 out_new_dev: 2818 blk_cleanup_queue(disk->queue); 2819 out_mem2: 2820 put_disk(disk); 2821 out_mem: 2822 if (pd->rb_pool) 2823 mempool_destroy(pd->rb_pool); 2824 kfree(pd); 2825 out_mutex: 2826 mutex_unlock(&ctl_mutex); 2827 pr_err("setup of pktcdvd device failed\n"); 2828 return ret; 2829 } 2830 2831 /* 2832 * Tear down mapping from pktcdvd device to CD-ROM device. 2833 */ 2834 static int pkt_remove_dev(dev_t pkt_dev) 2835 { 2836 struct pktcdvd_device *pd; 2837 int idx; 2838 int ret = 0; 2839 2840 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2841 2842 for (idx = 0; idx < MAX_WRITERS; idx++) { 2843 pd = pkt_devs[idx]; 2844 if (pd && (pd->pkt_dev == pkt_dev)) 2845 break; 2846 } 2847 if (idx == MAX_WRITERS) { 2848 pr_debug("dev not setup\n"); 2849 ret = -ENXIO; 2850 goto out; 2851 } 2852 2853 if (pd->refcnt > 0) { 2854 ret = -EBUSY; 2855 goto out; 2856 } 2857 if (!IS_ERR(pd->cdrw.thread)) 2858 kthread_stop(pd->cdrw.thread); 2859 2860 pkt_devs[idx] = NULL; 2861 2862 pkt_debugfs_dev_remove(pd); 2863 pkt_sysfs_dev_remove(pd); 2864 2865 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY); 2866 2867 remove_proc_entry(pd->name, pkt_proc); 2868 pkt_dbg(1, pd, "writer unmapped\n"); 2869 2870 del_gendisk(pd->disk); 2871 blk_cleanup_queue(pd->disk->queue); 2872 put_disk(pd->disk); 2873 2874 mempool_destroy(pd->rb_pool); 2875 kfree(pd); 2876 2877 /* This is safe: open() is still holding a reference. */ 2878 module_put(THIS_MODULE); 2879 2880 out: 2881 mutex_unlock(&ctl_mutex); 2882 return ret; 2883 } 2884 2885 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 2886 { 2887 struct pktcdvd_device *pd; 2888 2889 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2890 2891 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 2892 if (pd) { 2893 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 2894 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2895 } else { 2896 ctrl_cmd->dev = 0; 2897 ctrl_cmd->pkt_dev = 0; 2898 } 2899 ctrl_cmd->num_devices = MAX_WRITERS; 2900 2901 mutex_unlock(&ctl_mutex); 2902 } 2903 2904 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2905 { 2906 void __user *argp = (void __user *)arg; 2907 struct pkt_ctrl_command ctrl_cmd; 2908 int ret = 0; 2909 dev_t pkt_dev = 0; 2910 2911 if (cmd != PACKET_CTRL_CMD) 2912 return -ENOTTY; 2913 2914 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 2915 return -EFAULT; 2916 2917 switch (ctrl_cmd.command) { 2918 case PKT_CTRL_CMD_SETUP: 2919 if (!capable(CAP_SYS_ADMIN)) 2920 return -EPERM; 2921 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 2922 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 2923 break; 2924 case PKT_CTRL_CMD_TEARDOWN: 2925 if (!capable(CAP_SYS_ADMIN)) 2926 return -EPERM; 2927 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 2928 break; 2929 case PKT_CTRL_CMD_STATUS: 2930 pkt_get_status(&ctrl_cmd); 2931 break; 2932 default: 2933 return -ENOTTY; 2934 } 2935 2936 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 2937 return -EFAULT; 2938 return ret; 2939 } 2940 2941 #ifdef CONFIG_COMPAT 2942 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2943 { 2944 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); 2945 } 2946 #endif 2947 2948 static const struct file_operations pkt_ctl_fops = { 2949 .open = nonseekable_open, 2950 .unlocked_ioctl = pkt_ctl_ioctl, 2951 #ifdef CONFIG_COMPAT 2952 .compat_ioctl = pkt_ctl_compat_ioctl, 2953 #endif 2954 .owner = THIS_MODULE, 2955 .llseek = no_llseek, 2956 }; 2957 2958 static struct miscdevice pkt_misc = { 2959 .minor = MISC_DYNAMIC_MINOR, 2960 .name = DRIVER_NAME, 2961 .nodename = "pktcdvd/control", 2962 .fops = &pkt_ctl_fops 2963 }; 2964 2965 static int __init pkt_init(void) 2966 { 2967 int ret; 2968 2969 mutex_init(&ctl_mutex); 2970 2971 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE, 2972 sizeof(struct packet_stacked_data)); 2973 if (!psd_pool) 2974 return -ENOMEM; 2975 2976 ret = register_blkdev(pktdev_major, DRIVER_NAME); 2977 if (ret < 0) { 2978 pr_err("unable to register block device\n"); 2979 goto out2; 2980 } 2981 if (!pktdev_major) 2982 pktdev_major = ret; 2983 2984 ret = pkt_sysfs_init(); 2985 if (ret) 2986 goto out; 2987 2988 pkt_debugfs_init(); 2989 2990 ret = misc_register(&pkt_misc); 2991 if (ret) { 2992 pr_err("unable to register misc device\n"); 2993 goto out_misc; 2994 } 2995 2996 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL); 2997 2998 return 0; 2999 3000 out_misc: 3001 pkt_debugfs_cleanup(); 3002 pkt_sysfs_cleanup(); 3003 out: 3004 unregister_blkdev(pktdev_major, DRIVER_NAME); 3005 out2: 3006 mempool_destroy(psd_pool); 3007 return ret; 3008 } 3009 3010 static void __exit pkt_exit(void) 3011 { 3012 remove_proc_entry("driver/"DRIVER_NAME, NULL); 3013 misc_deregister(&pkt_misc); 3014 3015 pkt_debugfs_cleanup(); 3016 pkt_sysfs_cleanup(); 3017 3018 unregister_blkdev(pktdev_major, DRIVER_NAME); 3019 mempool_destroy(psd_pool); 3020 } 3021 3022 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 3023 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 3024 MODULE_LICENSE("GPL"); 3025 3026 module_init(pkt_init); 3027 module_exit(pkt_exit); 3028