1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom make_request_fn function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 48 49 #include <linux/pktcdvd.h> 50 #include <linux/module.h> 51 #include <linux/types.h> 52 #include <linux/kernel.h> 53 #include <linux/compat.h> 54 #include <linux/kthread.h> 55 #include <linux/errno.h> 56 #include <linux/spinlock.h> 57 #include <linux/file.h> 58 #include <linux/proc_fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/miscdevice.h> 61 #include <linux/freezer.h> 62 #include <linux/mutex.h> 63 #include <linux/slab.h> 64 #include <scsi/scsi_cmnd.h> 65 #include <scsi/scsi_ioctl.h> 66 #include <scsi/scsi.h> 67 #include <linux/debugfs.h> 68 #include <linux/device.h> 69 70 #include <asm/uaccess.h> 71 72 #define DRIVER_NAME "pktcdvd" 73 74 #define pkt_err(pd, fmt, ...) \ 75 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__) 76 #define pkt_notice(pd, fmt, ...) \ 77 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__) 78 #define pkt_info(pd, fmt, ...) \ 79 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__) 80 81 #define pkt_dbg(level, pd, fmt, ...) \ 82 do { \ 83 if (level == 2 && PACKET_DEBUG >= 2) \ 84 pr_notice("%s: %s():" fmt, \ 85 pd->name, __func__, ##__VA_ARGS__); \ 86 else if (level == 1 && PACKET_DEBUG >= 1) \ 87 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \ 88 } while (0) 89 90 #define MAX_SPEED 0xffff 91 92 static DEFINE_MUTEX(pktcdvd_mutex); 93 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 94 static struct proc_dir_entry *pkt_proc; 95 static int pktdev_major; 96 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 97 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 98 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 99 static mempool_t *psd_pool; 100 101 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */ 102 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */ 103 104 /* forward declaration */ 105 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 106 static int pkt_remove_dev(dev_t pkt_dev); 107 static int pkt_seq_show(struct seq_file *m, void *p); 108 109 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd) 110 { 111 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1); 112 } 113 114 /* 115 * create and register a pktcdvd kernel object. 116 */ 117 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd, 118 const char* name, 119 struct kobject* parent, 120 struct kobj_type* ktype) 121 { 122 struct pktcdvd_kobj *p; 123 int error; 124 125 p = kzalloc(sizeof(*p), GFP_KERNEL); 126 if (!p) 127 return NULL; 128 p->pd = pd; 129 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name); 130 if (error) { 131 kobject_put(&p->kobj); 132 return NULL; 133 } 134 kobject_uevent(&p->kobj, KOBJ_ADD); 135 return p; 136 } 137 /* 138 * remove a pktcdvd kernel object. 139 */ 140 static void pkt_kobj_remove(struct pktcdvd_kobj *p) 141 { 142 if (p) 143 kobject_put(&p->kobj); 144 } 145 /* 146 * default release function for pktcdvd kernel objects. 147 */ 148 static void pkt_kobj_release(struct kobject *kobj) 149 { 150 kfree(to_pktcdvdkobj(kobj)); 151 } 152 153 154 /********************************************************** 155 * 156 * sysfs interface for pktcdvd 157 * by (C) 2006 Thomas Maier <balagi@justmail.de> 158 * 159 **********************************************************/ 160 161 #define DEF_ATTR(_obj,_name,_mode) \ 162 static struct attribute _obj = { .name = _name, .mode = _mode } 163 164 /********************************************************** 165 /sys/class/pktcdvd/pktcdvd[0-7]/ 166 stat/reset 167 stat/packets_started 168 stat/packets_finished 169 stat/kb_written 170 stat/kb_read 171 stat/kb_read_gather 172 write_queue/size 173 write_queue/congestion_off 174 write_queue/congestion_on 175 **********************************************************/ 176 177 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200); 178 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444); 179 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444); 180 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444); 181 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444); 182 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444); 183 184 static struct attribute *kobj_pkt_attrs_stat[] = { 185 &kobj_pkt_attr_st1, 186 &kobj_pkt_attr_st2, 187 &kobj_pkt_attr_st3, 188 &kobj_pkt_attr_st4, 189 &kobj_pkt_attr_st5, 190 &kobj_pkt_attr_st6, 191 NULL 192 }; 193 194 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444); 195 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644); 196 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644); 197 198 static struct attribute *kobj_pkt_attrs_wqueue[] = { 199 &kobj_pkt_attr_wq1, 200 &kobj_pkt_attr_wq2, 201 &kobj_pkt_attr_wq3, 202 NULL 203 }; 204 205 static ssize_t kobj_pkt_show(struct kobject *kobj, 206 struct attribute *attr, char *data) 207 { 208 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 209 int n = 0; 210 int v; 211 if (strcmp(attr->name, "packets_started") == 0) { 212 n = sprintf(data, "%lu\n", pd->stats.pkt_started); 213 214 } else if (strcmp(attr->name, "packets_finished") == 0) { 215 n = sprintf(data, "%lu\n", pd->stats.pkt_ended); 216 217 } else if (strcmp(attr->name, "kb_written") == 0) { 218 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1); 219 220 } else if (strcmp(attr->name, "kb_read") == 0) { 221 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1); 222 223 } else if (strcmp(attr->name, "kb_read_gather") == 0) { 224 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1); 225 226 } else if (strcmp(attr->name, "size") == 0) { 227 spin_lock(&pd->lock); 228 v = pd->bio_queue_size; 229 spin_unlock(&pd->lock); 230 n = sprintf(data, "%d\n", v); 231 232 } else if (strcmp(attr->name, "congestion_off") == 0) { 233 spin_lock(&pd->lock); 234 v = pd->write_congestion_off; 235 spin_unlock(&pd->lock); 236 n = sprintf(data, "%d\n", v); 237 238 } else if (strcmp(attr->name, "congestion_on") == 0) { 239 spin_lock(&pd->lock); 240 v = pd->write_congestion_on; 241 spin_unlock(&pd->lock); 242 n = sprintf(data, "%d\n", v); 243 } 244 return n; 245 } 246 247 static void init_write_congestion_marks(int* lo, int* hi) 248 { 249 if (*hi > 0) { 250 *hi = max(*hi, 500); 251 *hi = min(*hi, 1000000); 252 if (*lo <= 0) 253 *lo = *hi - 100; 254 else { 255 *lo = min(*lo, *hi - 100); 256 *lo = max(*lo, 100); 257 } 258 } else { 259 *hi = -1; 260 *lo = -1; 261 } 262 } 263 264 static ssize_t kobj_pkt_store(struct kobject *kobj, 265 struct attribute *attr, 266 const char *data, size_t len) 267 { 268 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 269 int val; 270 271 if (strcmp(attr->name, "reset") == 0 && len > 0) { 272 pd->stats.pkt_started = 0; 273 pd->stats.pkt_ended = 0; 274 pd->stats.secs_w = 0; 275 pd->stats.secs_rg = 0; 276 pd->stats.secs_r = 0; 277 278 } else if (strcmp(attr->name, "congestion_off") == 0 279 && sscanf(data, "%d", &val) == 1) { 280 spin_lock(&pd->lock); 281 pd->write_congestion_off = val; 282 init_write_congestion_marks(&pd->write_congestion_off, 283 &pd->write_congestion_on); 284 spin_unlock(&pd->lock); 285 286 } else if (strcmp(attr->name, "congestion_on") == 0 287 && sscanf(data, "%d", &val) == 1) { 288 spin_lock(&pd->lock); 289 pd->write_congestion_on = val; 290 init_write_congestion_marks(&pd->write_congestion_off, 291 &pd->write_congestion_on); 292 spin_unlock(&pd->lock); 293 } 294 return len; 295 } 296 297 static const struct sysfs_ops kobj_pkt_ops = { 298 .show = kobj_pkt_show, 299 .store = kobj_pkt_store 300 }; 301 static struct kobj_type kobj_pkt_type_stat = { 302 .release = pkt_kobj_release, 303 .sysfs_ops = &kobj_pkt_ops, 304 .default_attrs = kobj_pkt_attrs_stat 305 }; 306 static struct kobj_type kobj_pkt_type_wqueue = { 307 .release = pkt_kobj_release, 308 .sysfs_ops = &kobj_pkt_ops, 309 .default_attrs = kobj_pkt_attrs_wqueue 310 }; 311 312 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 313 { 314 if (class_pktcdvd) { 315 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL, 316 "%s", pd->name); 317 if (IS_ERR(pd->dev)) 318 pd->dev = NULL; 319 } 320 if (pd->dev) { 321 pd->kobj_stat = pkt_kobj_create(pd, "stat", 322 &pd->dev->kobj, 323 &kobj_pkt_type_stat); 324 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue", 325 &pd->dev->kobj, 326 &kobj_pkt_type_wqueue); 327 } 328 } 329 330 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 331 { 332 pkt_kobj_remove(pd->kobj_stat); 333 pkt_kobj_remove(pd->kobj_wqueue); 334 if (class_pktcdvd) 335 device_unregister(pd->dev); 336 } 337 338 339 /******************************************************************** 340 /sys/class/pktcdvd/ 341 add map block device 342 remove unmap packet dev 343 device_map show mappings 344 *******************************************************************/ 345 346 static void class_pktcdvd_release(struct class *cls) 347 { 348 kfree(cls); 349 } 350 static ssize_t class_pktcdvd_show_map(struct class *c, 351 struct class_attribute *attr, 352 char *data) 353 { 354 int n = 0; 355 int idx; 356 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 357 for (idx = 0; idx < MAX_WRITERS; idx++) { 358 struct pktcdvd_device *pd = pkt_devs[idx]; 359 if (!pd) 360 continue; 361 n += sprintf(data+n, "%s %u:%u %u:%u\n", 362 pd->name, 363 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 364 MAJOR(pd->bdev->bd_dev), 365 MINOR(pd->bdev->bd_dev)); 366 } 367 mutex_unlock(&ctl_mutex); 368 return n; 369 } 370 371 static ssize_t class_pktcdvd_store_add(struct class *c, 372 struct class_attribute *attr, 373 const char *buf, 374 size_t count) 375 { 376 unsigned int major, minor; 377 378 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 379 /* pkt_setup_dev() expects caller to hold reference to self */ 380 if (!try_module_get(THIS_MODULE)) 381 return -ENODEV; 382 383 pkt_setup_dev(MKDEV(major, minor), NULL); 384 385 module_put(THIS_MODULE); 386 387 return count; 388 } 389 390 return -EINVAL; 391 } 392 393 static ssize_t class_pktcdvd_store_remove(struct class *c, 394 struct class_attribute *attr, 395 const char *buf, 396 size_t count) 397 { 398 unsigned int major, minor; 399 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 400 pkt_remove_dev(MKDEV(major, minor)); 401 return count; 402 } 403 return -EINVAL; 404 } 405 406 static struct class_attribute class_pktcdvd_attrs[] = { 407 __ATTR(add, 0200, NULL, class_pktcdvd_store_add), 408 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove), 409 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL), 410 __ATTR_NULL 411 }; 412 413 414 static int pkt_sysfs_init(void) 415 { 416 int ret = 0; 417 418 /* 419 * create control files in sysfs 420 * /sys/class/pktcdvd/... 421 */ 422 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL); 423 if (!class_pktcdvd) 424 return -ENOMEM; 425 class_pktcdvd->name = DRIVER_NAME; 426 class_pktcdvd->owner = THIS_MODULE; 427 class_pktcdvd->class_release = class_pktcdvd_release; 428 class_pktcdvd->class_attrs = class_pktcdvd_attrs; 429 ret = class_register(class_pktcdvd); 430 if (ret) { 431 kfree(class_pktcdvd); 432 class_pktcdvd = NULL; 433 pr_err("failed to create class pktcdvd\n"); 434 return ret; 435 } 436 return 0; 437 } 438 439 static void pkt_sysfs_cleanup(void) 440 { 441 if (class_pktcdvd) 442 class_destroy(class_pktcdvd); 443 class_pktcdvd = NULL; 444 } 445 446 /******************************************************************** 447 entries in debugfs 448 449 /sys/kernel/debug/pktcdvd[0-7]/ 450 info 451 452 *******************************************************************/ 453 454 static int pkt_debugfs_seq_show(struct seq_file *m, void *p) 455 { 456 return pkt_seq_show(m, p); 457 } 458 459 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file) 460 { 461 return single_open(file, pkt_debugfs_seq_show, inode->i_private); 462 } 463 464 static const struct file_operations debug_fops = { 465 .open = pkt_debugfs_fops_open, 466 .read = seq_read, 467 .llseek = seq_lseek, 468 .release = single_release, 469 .owner = THIS_MODULE, 470 }; 471 472 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 473 { 474 if (!pkt_debugfs_root) 475 return; 476 pd->dfs_f_info = NULL; 477 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root); 478 if (IS_ERR(pd->dfs_d_root)) { 479 pd->dfs_d_root = NULL; 480 return; 481 } 482 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO, 483 pd->dfs_d_root, pd, &debug_fops); 484 if (IS_ERR(pd->dfs_f_info)) { 485 pd->dfs_f_info = NULL; 486 return; 487 } 488 } 489 490 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 491 { 492 if (!pkt_debugfs_root) 493 return; 494 if (pd->dfs_f_info) 495 debugfs_remove(pd->dfs_f_info); 496 pd->dfs_f_info = NULL; 497 if (pd->dfs_d_root) 498 debugfs_remove(pd->dfs_d_root); 499 pd->dfs_d_root = NULL; 500 } 501 502 static void pkt_debugfs_init(void) 503 { 504 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 505 if (IS_ERR(pkt_debugfs_root)) { 506 pkt_debugfs_root = NULL; 507 return; 508 } 509 } 510 511 static void pkt_debugfs_cleanup(void) 512 { 513 if (!pkt_debugfs_root) 514 return; 515 debugfs_remove(pkt_debugfs_root); 516 pkt_debugfs_root = NULL; 517 } 518 519 /* ----------------------------------------------------------*/ 520 521 522 static void pkt_bio_finished(struct pktcdvd_device *pd) 523 { 524 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 525 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 526 pkt_dbg(2, pd, "queue empty\n"); 527 atomic_set(&pd->iosched.attention, 1); 528 wake_up(&pd->wqueue); 529 } 530 } 531 532 /* 533 * Allocate a packet_data struct 534 */ 535 static struct packet_data *pkt_alloc_packet_data(int frames) 536 { 537 int i; 538 struct packet_data *pkt; 539 540 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 541 if (!pkt) 542 goto no_pkt; 543 544 pkt->frames = frames; 545 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames); 546 if (!pkt->w_bio) 547 goto no_bio; 548 549 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 550 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 551 if (!pkt->pages[i]) 552 goto no_page; 553 } 554 555 spin_lock_init(&pkt->lock); 556 bio_list_init(&pkt->orig_bios); 557 558 for (i = 0; i < frames; i++) { 559 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1); 560 if (!bio) 561 goto no_rd_bio; 562 563 pkt->r_bios[i] = bio; 564 } 565 566 return pkt; 567 568 no_rd_bio: 569 for (i = 0; i < frames; i++) { 570 struct bio *bio = pkt->r_bios[i]; 571 if (bio) 572 bio_put(bio); 573 } 574 575 no_page: 576 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 577 if (pkt->pages[i]) 578 __free_page(pkt->pages[i]); 579 bio_put(pkt->w_bio); 580 no_bio: 581 kfree(pkt); 582 no_pkt: 583 return NULL; 584 } 585 586 /* 587 * Free a packet_data struct 588 */ 589 static void pkt_free_packet_data(struct packet_data *pkt) 590 { 591 int i; 592 593 for (i = 0; i < pkt->frames; i++) { 594 struct bio *bio = pkt->r_bios[i]; 595 if (bio) 596 bio_put(bio); 597 } 598 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 599 __free_page(pkt->pages[i]); 600 bio_put(pkt->w_bio); 601 kfree(pkt); 602 } 603 604 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 605 { 606 struct packet_data *pkt, *next; 607 608 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 609 610 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 611 pkt_free_packet_data(pkt); 612 } 613 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 614 } 615 616 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 617 { 618 struct packet_data *pkt; 619 620 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 621 622 while (nr_packets > 0) { 623 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 624 if (!pkt) { 625 pkt_shrink_pktlist(pd); 626 return 0; 627 } 628 pkt->id = nr_packets; 629 pkt->pd = pd; 630 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 631 nr_packets--; 632 } 633 return 1; 634 } 635 636 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 637 { 638 struct rb_node *n = rb_next(&node->rb_node); 639 if (!n) 640 return NULL; 641 return rb_entry(n, struct pkt_rb_node, rb_node); 642 } 643 644 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 645 { 646 rb_erase(&node->rb_node, &pd->bio_queue); 647 mempool_free(node, pd->rb_pool); 648 pd->bio_queue_size--; 649 BUG_ON(pd->bio_queue_size < 0); 650 } 651 652 /* 653 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 654 */ 655 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 656 { 657 struct rb_node *n = pd->bio_queue.rb_node; 658 struct rb_node *next; 659 struct pkt_rb_node *tmp; 660 661 if (!n) { 662 BUG_ON(pd->bio_queue_size > 0); 663 return NULL; 664 } 665 666 for (;;) { 667 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 668 if (s <= tmp->bio->bi_sector) 669 next = n->rb_left; 670 else 671 next = n->rb_right; 672 if (!next) 673 break; 674 n = next; 675 } 676 677 if (s > tmp->bio->bi_sector) { 678 tmp = pkt_rbtree_next(tmp); 679 if (!tmp) 680 return NULL; 681 } 682 BUG_ON(s > tmp->bio->bi_sector); 683 return tmp; 684 } 685 686 /* 687 * Insert a node into the pd->bio_queue rb tree. 688 */ 689 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 690 { 691 struct rb_node **p = &pd->bio_queue.rb_node; 692 struct rb_node *parent = NULL; 693 sector_t s = node->bio->bi_sector; 694 struct pkt_rb_node *tmp; 695 696 while (*p) { 697 parent = *p; 698 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 699 if (s < tmp->bio->bi_sector) 700 p = &(*p)->rb_left; 701 else 702 p = &(*p)->rb_right; 703 } 704 rb_link_node(&node->rb_node, parent, p); 705 rb_insert_color(&node->rb_node, &pd->bio_queue); 706 pd->bio_queue_size++; 707 } 708 709 /* 710 * Send a packet_command to the underlying block device and 711 * wait for completion. 712 */ 713 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 714 { 715 struct request_queue *q = bdev_get_queue(pd->bdev); 716 struct request *rq; 717 int ret = 0; 718 719 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 720 WRITE : READ, __GFP_WAIT); 721 722 if (cgc->buflen) { 723 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT)) 724 goto out; 725 } 726 727 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 728 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE); 729 730 rq->timeout = 60*HZ; 731 rq->cmd_type = REQ_TYPE_BLOCK_PC; 732 if (cgc->quiet) 733 rq->cmd_flags |= REQ_QUIET; 734 735 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0); 736 if (rq->errors) 737 ret = -EIO; 738 out: 739 blk_put_request(rq); 740 return ret; 741 } 742 743 static const char *sense_key_string(__u8 index) 744 { 745 static const char * const info[] = { 746 "No sense", "Recovered error", "Not ready", 747 "Medium error", "Hardware error", "Illegal request", 748 "Unit attention", "Data protect", "Blank check", 749 }; 750 751 return index < ARRAY_SIZE(info) ? info[index] : "INVALID"; 752 } 753 754 /* 755 * A generic sense dump / resolve mechanism should be implemented across 756 * all ATAPI + SCSI devices. 757 */ 758 static void pkt_dump_sense(struct pktcdvd_device *pd, 759 struct packet_command *cgc) 760 { 761 struct request_sense *sense = cgc->sense; 762 763 if (sense) 764 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n", 765 CDROM_PACKET_SIZE, cgc->cmd, 766 sense->sense_key, sense->asc, sense->ascq, 767 sense_key_string(sense->sense_key)); 768 else 769 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd); 770 } 771 772 /* 773 * flush the drive cache to media 774 */ 775 static int pkt_flush_cache(struct pktcdvd_device *pd) 776 { 777 struct packet_command cgc; 778 779 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 780 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 781 cgc.quiet = 1; 782 783 /* 784 * the IMMED bit -- we default to not setting it, although that 785 * would allow a much faster close, this is safer 786 */ 787 #if 0 788 cgc.cmd[1] = 1 << 1; 789 #endif 790 return pkt_generic_packet(pd, &cgc); 791 } 792 793 /* 794 * speed is given as the normal factor, e.g. 4 for 4x 795 */ 796 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd, 797 unsigned write_speed, unsigned read_speed) 798 { 799 struct packet_command cgc; 800 struct request_sense sense; 801 int ret; 802 803 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 804 cgc.sense = &sense; 805 cgc.cmd[0] = GPCMD_SET_SPEED; 806 cgc.cmd[2] = (read_speed >> 8) & 0xff; 807 cgc.cmd[3] = read_speed & 0xff; 808 cgc.cmd[4] = (write_speed >> 8) & 0xff; 809 cgc.cmd[5] = write_speed & 0xff; 810 811 if ((ret = pkt_generic_packet(pd, &cgc))) 812 pkt_dump_sense(pd, &cgc); 813 814 return ret; 815 } 816 817 /* 818 * Queue a bio for processing by the low-level CD device. Must be called 819 * from process context. 820 */ 821 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 822 { 823 spin_lock(&pd->iosched.lock); 824 if (bio_data_dir(bio) == READ) 825 bio_list_add(&pd->iosched.read_queue, bio); 826 else 827 bio_list_add(&pd->iosched.write_queue, bio); 828 spin_unlock(&pd->iosched.lock); 829 830 atomic_set(&pd->iosched.attention, 1); 831 wake_up(&pd->wqueue); 832 } 833 834 /* 835 * Process the queued read/write requests. This function handles special 836 * requirements for CDRW drives: 837 * - A cache flush command must be inserted before a read request if the 838 * previous request was a write. 839 * - Switching between reading and writing is slow, so don't do it more often 840 * than necessary. 841 * - Optimize for throughput at the expense of latency. This means that streaming 842 * writes will never be interrupted by a read, but if the drive has to seek 843 * before the next write, switch to reading instead if there are any pending 844 * read requests. 845 * - Set the read speed according to current usage pattern. When only reading 846 * from the device, it's best to use the highest possible read speed, but 847 * when switching often between reading and writing, it's better to have the 848 * same read and write speeds. 849 */ 850 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 851 { 852 853 if (atomic_read(&pd->iosched.attention) == 0) 854 return; 855 atomic_set(&pd->iosched.attention, 0); 856 857 for (;;) { 858 struct bio *bio; 859 int reads_queued, writes_queued; 860 861 spin_lock(&pd->iosched.lock); 862 reads_queued = !bio_list_empty(&pd->iosched.read_queue); 863 writes_queued = !bio_list_empty(&pd->iosched.write_queue); 864 spin_unlock(&pd->iosched.lock); 865 866 if (!reads_queued && !writes_queued) 867 break; 868 869 if (pd->iosched.writing) { 870 int need_write_seek = 1; 871 spin_lock(&pd->iosched.lock); 872 bio = bio_list_peek(&pd->iosched.write_queue); 873 spin_unlock(&pd->iosched.lock); 874 if (bio && (bio->bi_sector == pd->iosched.last_write)) 875 need_write_seek = 0; 876 if (need_write_seek && reads_queued) { 877 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 878 pkt_dbg(2, pd, "write, waiting\n"); 879 break; 880 } 881 pkt_flush_cache(pd); 882 pd->iosched.writing = 0; 883 } 884 } else { 885 if (!reads_queued && writes_queued) { 886 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 887 pkt_dbg(2, pd, "read, waiting\n"); 888 break; 889 } 890 pd->iosched.writing = 1; 891 } 892 } 893 894 spin_lock(&pd->iosched.lock); 895 if (pd->iosched.writing) 896 bio = bio_list_pop(&pd->iosched.write_queue); 897 else 898 bio = bio_list_pop(&pd->iosched.read_queue); 899 spin_unlock(&pd->iosched.lock); 900 901 if (!bio) 902 continue; 903 904 if (bio_data_dir(bio) == READ) 905 pd->iosched.successive_reads += bio->bi_size >> 10; 906 else { 907 pd->iosched.successive_reads = 0; 908 pd->iosched.last_write = bio_end_sector(bio); 909 } 910 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 911 if (pd->read_speed == pd->write_speed) { 912 pd->read_speed = MAX_SPEED; 913 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 914 } 915 } else { 916 if (pd->read_speed != pd->write_speed) { 917 pd->read_speed = pd->write_speed; 918 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 919 } 920 } 921 922 atomic_inc(&pd->cdrw.pending_bios); 923 generic_make_request(bio); 924 } 925 } 926 927 /* 928 * Special care is needed if the underlying block device has a small 929 * max_phys_segments value. 930 */ 931 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q) 932 { 933 if ((pd->settings.size << 9) / CD_FRAMESIZE 934 <= queue_max_segments(q)) { 935 /* 936 * The cdrom device can handle one segment/frame 937 */ 938 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 939 return 0; 940 } else if ((pd->settings.size << 9) / PAGE_SIZE 941 <= queue_max_segments(q)) { 942 /* 943 * We can handle this case at the expense of some extra memory 944 * copies during write operations 945 */ 946 set_bit(PACKET_MERGE_SEGS, &pd->flags); 947 return 0; 948 } else { 949 pkt_err(pd, "cdrom max_phys_segments too small\n"); 950 return -EIO; 951 } 952 } 953 954 /* 955 * Copy all data for this packet to pkt->pages[], so that 956 * a) The number of required segments for the write bio is minimized, which 957 * is necessary for some scsi controllers. 958 * b) The data can be used as cache to avoid read requests if we receive a 959 * new write request for the same zone. 960 */ 961 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec) 962 { 963 int f, p, offs; 964 965 /* Copy all data to pkt->pages[] */ 966 p = 0; 967 offs = 0; 968 for (f = 0; f < pkt->frames; f++) { 969 if (bvec[f].bv_page != pkt->pages[p]) { 970 void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset; 971 void *vto = page_address(pkt->pages[p]) + offs; 972 memcpy(vto, vfrom, CD_FRAMESIZE); 973 kunmap_atomic(vfrom); 974 bvec[f].bv_page = pkt->pages[p]; 975 bvec[f].bv_offset = offs; 976 } else { 977 BUG_ON(bvec[f].bv_offset != offs); 978 } 979 offs += CD_FRAMESIZE; 980 if (offs >= PAGE_SIZE) { 981 offs = 0; 982 p++; 983 } 984 } 985 } 986 987 static void pkt_end_io_read(struct bio *bio, int err) 988 { 989 struct packet_data *pkt = bio->bi_private; 990 struct pktcdvd_device *pd = pkt->pd; 991 BUG_ON(!pd); 992 993 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n", 994 bio, (unsigned long long)pkt->sector, 995 (unsigned long long)bio->bi_sector, err); 996 997 if (err) 998 atomic_inc(&pkt->io_errors); 999 if (atomic_dec_and_test(&pkt->io_wait)) { 1000 atomic_inc(&pkt->run_sm); 1001 wake_up(&pd->wqueue); 1002 } 1003 pkt_bio_finished(pd); 1004 } 1005 1006 static void pkt_end_io_packet_write(struct bio *bio, int err) 1007 { 1008 struct packet_data *pkt = bio->bi_private; 1009 struct pktcdvd_device *pd = pkt->pd; 1010 BUG_ON(!pd); 1011 1012 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, err); 1013 1014 pd->stats.pkt_ended++; 1015 1016 pkt_bio_finished(pd); 1017 atomic_dec(&pkt->io_wait); 1018 atomic_inc(&pkt->run_sm); 1019 wake_up(&pd->wqueue); 1020 } 1021 1022 /* 1023 * Schedule reads for the holes in a packet 1024 */ 1025 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1026 { 1027 int frames_read = 0; 1028 struct bio *bio; 1029 int f; 1030 char written[PACKET_MAX_SIZE]; 1031 1032 BUG_ON(bio_list_empty(&pkt->orig_bios)); 1033 1034 atomic_set(&pkt->io_wait, 0); 1035 atomic_set(&pkt->io_errors, 0); 1036 1037 /* 1038 * Figure out which frames we need to read before we can write. 1039 */ 1040 memset(written, 0, sizeof(written)); 1041 spin_lock(&pkt->lock); 1042 bio_list_for_each(bio, &pkt->orig_bios) { 1043 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1044 int num_frames = bio->bi_size / CD_FRAMESIZE; 1045 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 1046 BUG_ON(first_frame < 0); 1047 BUG_ON(first_frame + num_frames > pkt->frames); 1048 for (f = first_frame; f < first_frame + num_frames; f++) 1049 written[f] = 1; 1050 } 1051 spin_unlock(&pkt->lock); 1052 1053 if (pkt->cache_valid) { 1054 pkt_dbg(2, pd, "zone %llx cached\n", 1055 (unsigned long long)pkt->sector); 1056 goto out_account; 1057 } 1058 1059 /* 1060 * Schedule reads for missing parts of the packet. 1061 */ 1062 for (f = 0; f < pkt->frames; f++) { 1063 int p, offset; 1064 1065 if (written[f]) 1066 continue; 1067 1068 bio = pkt->r_bios[f]; 1069 bio_reset(bio); 1070 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1071 bio->bi_bdev = pd->bdev; 1072 bio->bi_end_io = pkt_end_io_read; 1073 bio->bi_private = pkt; 1074 1075 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1076 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1077 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n", 1078 f, pkt->pages[p], offset); 1079 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1080 BUG(); 1081 1082 atomic_inc(&pkt->io_wait); 1083 bio->bi_rw = READ; 1084 pkt_queue_bio(pd, bio); 1085 frames_read++; 1086 } 1087 1088 out_account: 1089 pkt_dbg(2, pd, "need %d frames for zone %llx\n", 1090 frames_read, (unsigned long long)pkt->sector); 1091 pd->stats.pkt_started++; 1092 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1093 } 1094 1095 /* 1096 * Find a packet matching zone, or the least recently used packet if 1097 * there is no match. 1098 */ 1099 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1100 { 1101 struct packet_data *pkt; 1102 1103 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1104 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1105 list_del_init(&pkt->list); 1106 if (pkt->sector != zone) 1107 pkt->cache_valid = 0; 1108 return pkt; 1109 } 1110 } 1111 BUG(); 1112 return NULL; 1113 } 1114 1115 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1116 { 1117 if (pkt->cache_valid) { 1118 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1119 } else { 1120 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1121 } 1122 } 1123 1124 /* 1125 * recover a failed write, query for relocation if possible 1126 * 1127 * returns 1 if recovery is possible, or 0 if not 1128 * 1129 */ 1130 static int pkt_start_recovery(struct packet_data *pkt) 1131 { 1132 /* 1133 * FIXME. We need help from the file system to implement 1134 * recovery handling. 1135 */ 1136 return 0; 1137 #if 0 1138 struct request *rq = pkt->rq; 1139 struct pktcdvd_device *pd = rq->rq_disk->private_data; 1140 struct block_device *pkt_bdev; 1141 struct super_block *sb = NULL; 1142 unsigned long old_block, new_block; 1143 sector_t new_sector; 1144 1145 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 1146 if (pkt_bdev) { 1147 sb = get_super(pkt_bdev); 1148 bdput(pkt_bdev); 1149 } 1150 1151 if (!sb) 1152 return 0; 1153 1154 if (!sb->s_op->relocate_blocks) 1155 goto out; 1156 1157 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 1158 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 1159 goto out; 1160 1161 new_sector = new_block * (CD_FRAMESIZE >> 9); 1162 pkt->sector = new_sector; 1163 1164 bio_reset(pkt->bio); 1165 pkt->bio->bi_bdev = pd->bdev; 1166 pkt->bio->bi_rw = REQ_WRITE; 1167 pkt->bio->bi_sector = new_sector; 1168 pkt->bio->bi_size = pkt->frames * CD_FRAMESIZE; 1169 pkt->bio->bi_vcnt = pkt->frames; 1170 1171 pkt->bio->bi_end_io = pkt_end_io_packet_write; 1172 pkt->bio->bi_private = pkt; 1173 1174 drop_super(sb); 1175 return 1; 1176 1177 out: 1178 drop_super(sb); 1179 return 0; 1180 #endif 1181 } 1182 1183 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 1184 { 1185 #if PACKET_DEBUG > 1 1186 static const char *state_name[] = { 1187 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1188 }; 1189 enum packet_data_state old_state = pkt->state; 1190 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n", 1191 pkt->id, (unsigned long long)pkt->sector, 1192 state_name[old_state], state_name[state]); 1193 #endif 1194 pkt->state = state; 1195 } 1196 1197 /* 1198 * Scan the work queue to see if we can start a new packet. 1199 * returns non-zero if any work was done. 1200 */ 1201 static int pkt_handle_queue(struct pktcdvd_device *pd) 1202 { 1203 struct packet_data *pkt, *p; 1204 struct bio *bio = NULL; 1205 sector_t zone = 0; /* Suppress gcc warning */ 1206 struct pkt_rb_node *node, *first_node; 1207 struct rb_node *n; 1208 int wakeup; 1209 1210 atomic_set(&pd->scan_queue, 0); 1211 1212 if (list_empty(&pd->cdrw.pkt_free_list)) { 1213 pkt_dbg(2, pd, "no pkt\n"); 1214 return 0; 1215 } 1216 1217 /* 1218 * Try to find a zone we are not already working on. 1219 */ 1220 spin_lock(&pd->lock); 1221 first_node = pkt_rbtree_find(pd, pd->current_sector); 1222 if (!first_node) { 1223 n = rb_first(&pd->bio_queue); 1224 if (n) 1225 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1226 } 1227 node = first_node; 1228 while (node) { 1229 bio = node->bio; 1230 zone = get_zone(bio->bi_sector, pd); 1231 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1232 if (p->sector == zone) { 1233 bio = NULL; 1234 goto try_next_bio; 1235 } 1236 } 1237 break; 1238 try_next_bio: 1239 node = pkt_rbtree_next(node); 1240 if (!node) { 1241 n = rb_first(&pd->bio_queue); 1242 if (n) 1243 node = rb_entry(n, struct pkt_rb_node, rb_node); 1244 } 1245 if (node == first_node) 1246 node = NULL; 1247 } 1248 spin_unlock(&pd->lock); 1249 if (!bio) { 1250 pkt_dbg(2, pd, "no bio\n"); 1251 return 0; 1252 } 1253 1254 pkt = pkt_get_packet_data(pd, zone); 1255 1256 pd->current_sector = zone + pd->settings.size; 1257 pkt->sector = zone; 1258 BUG_ON(pkt->frames != pd->settings.size >> 2); 1259 pkt->write_size = 0; 1260 1261 /* 1262 * Scan work queue for bios in the same zone and link them 1263 * to this packet. 1264 */ 1265 spin_lock(&pd->lock); 1266 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone); 1267 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1268 bio = node->bio; 1269 pkt_dbg(2, pd, "found zone=%llx\n", 1270 (unsigned long long)get_zone(bio->bi_sector, pd)); 1271 if (get_zone(bio->bi_sector, pd) != zone) 1272 break; 1273 pkt_rbtree_erase(pd, node); 1274 spin_lock(&pkt->lock); 1275 bio_list_add(&pkt->orig_bios, bio); 1276 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 1277 spin_unlock(&pkt->lock); 1278 } 1279 /* check write congestion marks, and if bio_queue_size is 1280 below, wake up any waiters */ 1281 wakeup = (pd->write_congestion_on > 0 1282 && pd->bio_queue_size <= pd->write_congestion_off); 1283 spin_unlock(&pd->lock); 1284 if (wakeup) { 1285 clear_bdi_congested(&pd->disk->queue->backing_dev_info, 1286 BLK_RW_ASYNC); 1287 } 1288 1289 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1290 pkt_set_state(pkt, PACKET_WAITING_STATE); 1291 atomic_set(&pkt->run_sm, 1); 1292 1293 spin_lock(&pd->cdrw.active_list_lock); 1294 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1295 spin_unlock(&pd->cdrw.active_list_lock); 1296 1297 return 1; 1298 } 1299 1300 /* 1301 * Assemble a bio to write one packet and queue the bio for processing 1302 * by the underlying block device. 1303 */ 1304 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1305 { 1306 int f; 1307 struct bio_vec *bvec = pkt->w_bio->bi_io_vec; 1308 1309 bio_reset(pkt->w_bio); 1310 pkt->w_bio->bi_sector = pkt->sector; 1311 pkt->w_bio->bi_bdev = pd->bdev; 1312 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1313 pkt->w_bio->bi_private = pkt; 1314 1315 /* XXX: locking? */ 1316 for (f = 0; f < pkt->frames; f++) { 1317 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1318 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1319 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset)) 1320 BUG(); 1321 } 1322 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt); 1323 1324 /* 1325 * Fill-in bvec with data from orig_bios. 1326 */ 1327 spin_lock(&pkt->lock); 1328 bio_copy_data(pkt->w_bio, pkt->orig_bios.head); 1329 1330 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1331 spin_unlock(&pkt->lock); 1332 1333 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n", 1334 pkt->write_size, (unsigned long long)pkt->sector); 1335 1336 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) { 1337 pkt_make_local_copy(pkt, bvec); 1338 pkt->cache_valid = 1; 1339 } else { 1340 pkt->cache_valid = 0; 1341 } 1342 1343 /* Start the write request */ 1344 atomic_set(&pkt->io_wait, 1); 1345 pkt->w_bio->bi_rw = WRITE; 1346 pkt_queue_bio(pd, pkt->w_bio); 1347 } 1348 1349 static void pkt_finish_packet(struct packet_data *pkt, int uptodate) 1350 { 1351 struct bio *bio; 1352 1353 if (!uptodate) 1354 pkt->cache_valid = 0; 1355 1356 /* Finish all bios corresponding to this packet */ 1357 while ((bio = bio_list_pop(&pkt->orig_bios))) 1358 bio_endio(bio, uptodate ? 0 : -EIO); 1359 } 1360 1361 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1362 { 1363 int uptodate; 1364 1365 pkt_dbg(2, pd, "pkt %d\n", pkt->id); 1366 1367 for (;;) { 1368 switch (pkt->state) { 1369 case PACKET_WAITING_STATE: 1370 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1371 return; 1372 1373 pkt->sleep_time = 0; 1374 pkt_gather_data(pd, pkt); 1375 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1376 break; 1377 1378 case PACKET_READ_WAIT_STATE: 1379 if (atomic_read(&pkt->io_wait) > 0) 1380 return; 1381 1382 if (atomic_read(&pkt->io_errors) > 0) { 1383 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1384 } else { 1385 pkt_start_write(pd, pkt); 1386 } 1387 break; 1388 1389 case PACKET_WRITE_WAIT_STATE: 1390 if (atomic_read(&pkt->io_wait) > 0) 1391 return; 1392 1393 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) { 1394 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1395 } else { 1396 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1397 } 1398 break; 1399 1400 case PACKET_RECOVERY_STATE: 1401 if (pkt_start_recovery(pkt)) { 1402 pkt_start_write(pd, pkt); 1403 } else { 1404 pkt_dbg(2, pd, "No recovery possible\n"); 1405 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1406 } 1407 break; 1408 1409 case PACKET_FINISHED_STATE: 1410 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags); 1411 pkt_finish_packet(pkt, uptodate); 1412 return; 1413 1414 default: 1415 BUG(); 1416 break; 1417 } 1418 } 1419 } 1420 1421 static void pkt_handle_packets(struct pktcdvd_device *pd) 1422 { 1423 struct packet_data *pkt, *next; 1424 1425 /* 1426 * Run state machine for active packets 1427 */ 1428 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1429 if (atomic_read(&pkt->run_sm) > 0) { 1430 atomic_set(&pkt->run_sm, 0); 1431 pkt_run_state_machine(pd, pkt); 1432 } 1433 } 1434 1435 /* 1436 * Move no longer active packets to the free list 1437 */ 1438 spin_lock(&pd->cdrw.active_list_lock); 1439 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1440 if (pkt->state == PACKET_FINISHED_STATE) { 1441 list_del(&pkt->list); 1442 pkt_put_packet_data(pd, pkt); 1443 pkt_set_state(pkt, PACKET_IDLE_STATE); 1444 atomic_set(&pd->scan_queue, 1); 1445 } 1446 } 1447 spin_unlock(&pd->cdrw.active_list_lock); 1448 } 1449 1450 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1451 { 1452 struct packet_data *pkt; 1453 int i; 1454 1455 for (i = 0; i < PACKET_NUM_STATES; i++) 1456 states[i] = 0; 1457 1458 spin_lock(&pd->cdrw.active_list_lock); 1459 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1460 states[pkt->state]++; 1461 } 1462 spin_unlock(&pd->cdrw.active_list_lock); 1463 } 1464 1465 /* 1466 * kcdrwd is woken up when writes have been queued for one of our 1467 * registered devices 1468 */ 1469 static int kcdrwd(void *foobar) 1470 { 1471 struct pktcdvd_device *pd = foobar; 1472 struct packet_data *pkt; 1473 long min_sleep_time, residue; 1474 1475 set_user_nice(current, -20); 1476 set_freezable(); 1477 1478 for (;;) { 1479 DECLARE_WAITQUEUE(wait, current); 1480 1481 /* 1482 * Wait until there is something to do 1483 */ 1484 add_wait_queue(&pd->wqueue, &wait); 1485 for (;;) { 1486 set_current_state(TASK_INTERRUPTIBLE); 1487 1488 /* Check if we need to run pkt_handle_queue */ 1489 if (atomic_read(&pd->scan_queue) > 0) 1490 goto work_to_do; 1491 1492 /* Check if we need to run the state machine for some packet */ 1493 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1494 if (atomic_read(&pkt->run_sm) > 0) 1495 goto work_to_do; 1496 } 1497 1498 /* Check if we need to process the iosched queues */ 1499 if (atomic_read(&pd->iosched.attention) != 0) 1500 goto work_to_do; 1501 1502 /* Otherwise, go to sleep */ 1503 if (PACKET_DEBUG > 1) { 1504 int states[PACKET_NUM_STATES]; 1505 pkt_count_states(pd, states); 1506 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1507 states[0], states[1], states[2], 1508 states[3], states[4], states[5]); 1509 } 1510 1511 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1512 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1513 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1514 min_sleep_time = pkt->sleep_time; 1515 } 1516 1517 pkt_dbg(2, pd, "sleeping\n"); 1518 residue = schedule_timeout(min_sleep_time); 1519 pkt_dbg(2, pd, "wake up\n"); 1520 1521 /* make swsusp happy with our thread */ 1522 try_to_freeze(); 1523 1524 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1525 if (!pkt->sleep_time) 1526 continue; 1527 pkt->sleep_time -= min_sleep_time - residue; 1528 if (pkt->sleep_time <= 0) { 1529 pkt->sleep_time = 0; 1530 atomic_inc(&pkt->run_sm); 1531 } 1532 } 1533 1534 if (kthread_should_stop()) 1535 break; 1536 } 1537 work_to_do: 1538 set_current_state(TASK_RUNNING); 1539 remove_wait_queue(&pd->wqueue, &wait); 1540 1541 if (kthread_should_stop()) 1542 break; 1543 1544 /* 1545 * if pkt_handle_queue returns true, we can queue 1546 * another request. 1547 */ 1548 while (pkt_handle_queue(pd)) 1549 ; 1550 1551 /* 1552 * Handle packet state machine 1553 */ 1554 pkt_handle_packets(pd); 1555 1556 /* 1557 * Handle iosched queues 1558 */ 1559 pkt_iosched_process_queue(pd); 1560 } 1561 1562 return 0; 1563 } 1564 1565 static void pkt_print_settings(struct pktcdvd_device *pd) 1566 { 1567 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n", 1568 pd->settings.fp ? "Fixed" : "Variable", 1569 pd->settings.size >> 2, 1570 pd->settings.block_mode == 8 ? '1' : '2'); 1571 } 1572 1573 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1574 { 1575 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1576 1577 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1578 cgc->cmd[2] = page_code | (page_control << 6); 1579 cgc->cmd[7] = cgc->buflen >> 8; 1580 cgc->cmd[8] = cgc->buflen & 0xff; 1581 cgc->data_direction = CGC_DATA_READ; 1582 return pkt_generic_packet(pd, cgc); 1583 } 1584 1585 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1586 { 1587 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1588 memset(cgc->buffer, 0, 2); 1589 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1590 cgc->cmd[1] = 0x10; /* PF */ 1591 cgc->cmd[7] = cgc->buflen >> 8; 1592 cgc->cmd[8] = cgc->buflen & 0xff; 1593 cgc->data_direction = CGC_DATA_WRITE; 1594 return pkt_generic_packet(pd, cgc); 1595 } 1596 1597 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1598 { 1599 struct packet_command cgc; 1600 int ret; 1601 1602 /* set up command and get the disc info */ 1603 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1604 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1605 cgc.cmd[8] = cgc.buflen = 2; 1606 cgc.quiet = 1; 1607 1608 if ((ret = pkt_generic_packet(pd, &cgc))) 1609 return ret; 1610 1611 /* not all drives have the same disc_info length, so requeue 1612 * packet with the length the drive tells us it can supply 1613 */ 1614 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1615 sizeof(di->disc_information_length); 1616 1617 if (cgc.buflen > sizeof(disc_information)) 1618 cgc.buflen = sizeof(disc_information); 1619 1620 cgc.cmd[8] = cgc.buflen; 1621 return pkt_generic_packet(pd, &cgc); 1622 } 1623 1624 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1625 { 1626 struct packet_command cgc; 1627 int ret; 1628 1629 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1630 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1631 cgc.cmd[1] = type & 3; 1632 cgc.cmd[4] = (track & 0xff00) >> 8; 1633 cgc.cmd[5] = track & 0xff; 1634 cgc.cmd[8] = 8; 1635 cgc.quiet = 1; 1636 1637 if ((ret = pkt_generic_packet(pd, &cgc))) 1638 return ret; 1639 1640 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1641 sizeof(ti->track_information_length); 1642 1643 if (cgc.buflen > sizeof(track_information)) 1644 cgc.buflen = sizeof(track_information); 1645 1646 cgc.cmd[8] = cgc.buflen; 1647 return pkt_generic_packet(pd, &cgc); 1648 } 1649 1650 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd, 1651 long *last_written) 1652 { 1653 disc_information di; 1654 track_information ti; 1655 __u32 last_track; 1656 int ret = -1; 1657 1658 if ((ret = pkt_get_disc_info(pd, &di))) 1659 return ret; 1660 1661 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1662 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1663 return ret; 1664 1665 /* if this track is blank, try the previous. */ 1666 if (ti.blank) { 1667 last_track--; 1668 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1669 return ret; 1670 } 1671 1672 /* if last recorded field is valid, return it. */ 1673 if (ti.lra_v) { 1674 *last_written = be32_to_cpu(ti.last_rec_address); 1675 } else { 1676 /* make it up instead */ 1677 *last_written = be32_to_cpu(ti.track_start) + 1678 be32_to_cpu(ti.track_size); 1679 if (ti.free_blocks) 1680 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1681 } 1682 return 0; 1683 } 1684 1685 /* 1686 * write mode select package based on pd->settings 1687 */ 1688 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd) 1689 { 1690 struct packet_command cgc; 1691 struct request_sense sense; 1692 write_param_page *wp; 1693 char buffer[128]; 1694 int ret, size; 1695 1696 /* doesn't apply to DVD+RW or DVD-RAM */ 1697 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1698 return 0; 1699 1700 memset(buffer, 0, sizeof(buffer)); 1701 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1702 cgc.sense = &sense; 1703 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1704 pkt_dump_sense(pd, &cgc); 1705 return ret; 1706 } 1707 1708 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1709 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1710 if (size > sizeof(buffer)) 1711 size = sizeof(buffer); 1712 1713 /* 1714 * now get it all 1715 */ 1716 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1717 cgc.sense = &sense; 1718 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1719 pkt_dump_sense(pd, &cgc); 1720 return ret; 1721 } 1722 1723 /* 1724 * write page is offset header + block descriptor length 1725 */ 1726 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1727 1728 wp->fp = pd->settings.fp; 1729 wp->track_mode = pd->settings.track_mode; 1730 wp->write_type = pd->settings.write_type; 1731 wp->data_block_type = pd->settings.block_mode; 1732 1733 wp->multi_session = 0; 1734 1735 #ifdef PACKET_USE_LS 1736 wp->link_size = 7; 1737 wp->ls_v = 1; 1738 #endif 1739 1740 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1741 wp->session_format = 0; 1742 wp->subhdr2 = 0x20; 1743 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1744 wp->session_format = 0x20; 1745 wp->subhdr2 = 8; 1746 #if 0 1747 wp->mcn[0] = 0x80; 1748 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1749 #endif 1750 } else { 1751 /* 1752 * paranoia 1753 */ 1754 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type); 1755 return 1; 1756 } 1757 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1758 1759 cgc.buflen = cgc.cmd[8] = size; 1760 if ((ret = pkt_mode_select(pd, &cgc))) { 1761 pkt_dump_sense(pd, &cgc); 1762 return ret; 1763 } 1764 1765 pkt_print_settings(pd); 1766 return 0; 1767 } 1768 1769 /* 1770 * 1 -- we can write to this track, 0 -- we can't 1771 */ 1772 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1773 { 1774 switch (pd->mmc3_profile) { 1775 case 0x1a: /* DVD+RW */ 1776 case 0x12: /* DVD-RAM */ 1777 /* The track is always writable on DVD+RW/DVD-RAM */ 1778 return 1; 1779 default: 1780 break; 1781 } 1782 1783 if (!ti->packet || !ti->fp) 1784 return 0; 1785 1786 /* 1787 * "good" settings as per Mt Fuji. 1788 */ 1789 if (ti->rt == 0 && ti->blank == 0) 1790 return 1; 1791 1792 if (ti->rt == 0 && ti->blank == 1) 1793 return 1; 1794 1795 if (ti->rt == 1 && ti->blank == 0) 1796 return 1; 1797 1798 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1799 return 0; 1800 } 1801 1802 /* 1803 * 1 -- we can write to this disc, 0 -- we can't 1804 */ 1805 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1806 { 1807 switch (pd->mmc3_profile) { 1808 case 0x0a: /* CD-RW */ 1809 case 0xffff: /* MMC3 not supported */ 1810 break; 1811 case 0x1a: /* DVD+RW */ 1812 case 0x13: /* DVD-RW */ 1813 case 0x12: /* DVD-RAM */ 1814 return 1; 1815 default: 1816 pkt_dbg(2, pd, "Wrong disc profile (%x)\n", 1817 pd->mmc3_profile); 1818 return 0; 1819 } 1820 1821 /* 1822 * for disc type 0xff we should probably reserve a new track. 1823 * but i'm not sure, should we leave this to user apps? probably. 1824 */ 1825 if (di->disc_type == 0xff) { 1826 pkt_notice(pd, "unknown disc - no track?\n"); 1827 return 0; 1828 } 1829 1830 if (di->disc_type != 0x20 && di->disc_type != 0) { 1831 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type); 1832 return 0; 1833 } 1834 1835 if (di->erasable == 0) { 1836 pkt_notice(pd, "disc not erasable\n"); 1837 return 0; 1838 } 1839 1840 if (di->border_status == PACKET_SESSION_RESERVED) { 1841 pkt_err(pd, "can't write to last track (reserved)\n"); 1842 return 0; 1843 } 1844 1845 return 1; 1846 } 1847 1848 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd) 1849 { 1850 struct packet_command cgc; 1851 unsigned char buf[12]; 1852 disc_information di; 1853 track_information ti; 1854 int ret, track; 1855 1856 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1857 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1858 cgc.cmd[8] = 8; 1859 ret = pkt_generic_packet(pd, &cgc); 1860 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1861 1862 memset(&di, 0, sizeof(disc_information)); 1863 memset(&ti, 0, sizeof(track_information)); 1864 1865 if ((ret = pkt_get_disc_info(pd, &di))) { 1866 pkt_err(pd, "failed get_disc\n"); 1867 return ret; 1868 } 1869 1870 if (!pkt_writable_disc(pd, &di)) 1871 return -EROFS; 1872 1873 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 1874 1875 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 1876 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 1877 pkt_err(pd, "failed get_track\n"); 1878 return ret; 1879 } 1880 1881 if (!pkt_writable_track(pd, &ti)) { 1882 pkt_err(pd, "can't write to this track\n"); 1883 return -EROFS; 1884 } 1885 1886 /* 1887 * we keep packet size in 512 byte units, makes it easier to 1888 * deal with request calculations. 1889 */ 1890 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 1891 if (pd->settings.size == 0) { 1892 pkt_notice(pd, "detected zero packet size!\n"); 1893 return -ENXIO; 1894 } 1895 if (pd->settings.size > PACKET_MAX_SECTORS) { 1896 pkt_err(pd, "packet size is too big\n"); 1897 return -EROFS; 1898 } 1899 pd->settings.fp = ti.fp; 1900 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 1901 1902 if (ti.nwa_v) { 1903 pd->nwa = be32_to_cpu(ti.next_writable); 1904 set_bit(PACKET_NWA_VALID, &pd->flags); 1905 } 1906 1907 /* 1908 * in theory we could use lra on -RW media as well and just zero 1909 * blocks that haven't been written yet, but in practice that 1910 * is just a no-go. we'll use that for -R, naturally. 1911 */ 1912 if (ti.lra_v) { 1913 pd->lra = be32_to_cpu(ti.last_rec_address); 1914 set_bit(PACKET_LRA_VALID, &pd->flags); 1915 } else { 1916 pd->lra = 0xffffffff; 1917 set_bit(PACKET_LRA_VALID, &pd->flags); 1918 } 1919 1920 /* 1921 * fine for now 1922 */ 1923 pd->settings.link_loss = 7; 1924 pd->settings.write_type = 0; /* packet */ 1925 pd->settings.track_mode = ti.track_mode; 1926 1927 /* 1928 * mode1 or mode2 disc 1929 */ 1930 switch (ti.data_mode) { 1931 case PACKET_MODE1: 1932 pd->settings.block_mode = PACKET_BLOCK_MODE1; 1933 break; 1934 case PACKET_MODE2: 1935 pd->settings.block_mode = PACKET_BLOCK_MODE2; 1936 break; 1937 default: 1938 pkt_err(pd, "unknown data mode\n"); 1939 return -EROFS; 1940 } 1941 return 0; 1942 } 1943 1944 /* 1945 * enable/disable write caching on drive 1946 */ 1947 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd, 1948 int set) 1949 { 1950 struct packet_command cgc; 1951 struct request_sense sense; 1952 unsigned char buf[64]; 1953 int ret; 1954 1955 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1956 cgc.sense = &sense; 1957 cgc.buflen = pd->mode_offset + 12; 1958 1959 /* 1960 * caching mode page might not be there, so quiet this command 1961 */ 1962 cgc.quiet = 1; 1963 1964 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 1965 return ret; 1966 1967 buf[pd->mode_offset + 10] |= (!!set << 2); 1968 1969 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 1970 ret = pkt_mode_select(pd, &cgc); 1971 if (ret) { 1972 pkt_err(pd, "write caching control failed\n"); 1973 pkt_dump_sense(pd, &cgc); 1974 } else if (!ret && set) 1975 pkt_notice(pd, "enabled write caching\n"); 1976 return ret; 1977 } 1978 1979 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 1980 { 1981 struct packet_command cgc; 1982 1983 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 1984 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 1985 cgc.cmd[4] = lockflag ? 1 : 0; 1986 return pkt_generic_packet(pd, &cgc); 1987 } 1988 1989 /* 1990 * Returns drive maximum write speed 1991 */ 1992 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd, 1993 unsigned *write_speed) 1994 { 1995 struct packet_command cgc; 1996 struct request_sense sense; 1997 unsigned char buf[256+18]; 1998 unsigned char *cap_buf; 1999 int ret, offset; 2000 2001 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 2002 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 2003 cgc.sense = &sense; 2004 2005 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2006 if (ret) { 2007 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 2008 sizeof(struct mode_page_header); 2009 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2010 if (ret) { 2011 pkt_dump_sense(pd, &cgc); 2012 return ret; 2013 } 2014 } 2015 2016 offset = 20; /* Obsoleted field, used by older drives */ 2017 if (cap_buf[1] >= 28) 2018 offset = 28; /* Current write speed selected */ 2019 if (cap_buf[1] >= 30) { 2020 /* If the drive reports at least one "Logical Unit Write 2021 * Speed Performance Descriptor Block", use the information 2022 * in the first block. (contains the highest speed) 2023 */ 2024 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 2025 if (num_spdb > 0) 2026 offset = 34; 2027 } 2028 2029 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 2030 return 0; 2031 } 2032 2033 /* These tables from cdrecord - I don't have orange book */ 2034 /* standard speed CD-RW (1-4x) */ 2035 static char clv_to_speed[16] = { 2036 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2037 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2038 }; 2039 /* high speed CD-RW (-10x) */ 2040 static char hs_clv_to_speed[16] = { 2041 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2042 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2043 }; 2044 /* ultra high speed CD-RW */ 2045 static char us_clv_to_speed[16] = { 2046 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2047 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 2048 }; 2049 2050 /* 2051 * reads the maximum media speed from ATIP 2052 */ 2053 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd, 2054 unsigned *speed) 2055 { 2056 struct packet_command cgc; 2057 struct request_sense sense; 2058 unsigned char buf[64]; 2059 unsigned int size, st, sp; 2060 int ret; 2061 2062 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 2063 cgc.sense = &sense; 2064 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2065 cgc.cmd[1] = 2; 2066 cgc.cmd[2] = 4; /* READ ATIP */ 2067 cgc.cmd[8] = 2; 2068 ret = pkt_generic_packet(pd, &cgc); 2069 if (ret) { 2070 pkt_dump_sense(pd, &cgc); 2071 return ret; 2072 } 2073 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 2074 if (size > sizeof(buf)) 2075 size = sizeof(buf); 2076 2077 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2078 cgc.sense = &sense; 2079 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2080 cgc.cmd[1] = 2; 2081 cgc.cmd[2] = 4; 2082 cgc.cmd[8] = size; 2083 ret = pkt_generic_packet(pd, &cgc); 2084 if (ret) { 2085 pkt_dump_sense(pd, &cgc); 2086 return ret; 2087 } 2088 2089 if (!(buf[6] & 0x40)) { 2090 pkt_notice(pd, "disc type is not CD-RW\n"); 2091 return 1; 2092 } 2093 if (!(buf[6] & 0x4)) { 2094 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n"); 2095 return 1; 2096 } 2097 2098 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2099 2100 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2101 2102 /* Info from cdrecord */ 2103 switch (st) { 2104 case 0: /* standard speed */ 2105 *speed = clv_to_speed[sp]; 2106 break; 2107 case 1: /* high speed */ 2108 *speed = hs_clv_to_speed[sp]; 2109 break; 2110 case 2: /* ultra high speed */ 2111 *speed = us_clv_to_speed[sp]; 2112 break; 2113 default: 2114 pkt_notice(pd, "unknown disc sub-type %d\n", st); 2115 return 1; 2116 } 2117 if (*speed) { 2118 pkt_info(pd, "maximum media speed: %d\n", *speed); 2119 return 0; 2120 } else { 2121 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st); 2122 return 1; 2123 } 2124 } 2125 2126 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd) 2127 { 2128 struct packet_command cgc; 2129 struct request_sense sense; 2130 int ret; 2131 2132 pkt_dbg(2, pd, "Performing OPC\n"); 2133 2134 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2135 cgc.sense = &sense; 2136 cgc.timeout = 60*HZ; 2137 cgc.cmd[0] = GPCMD_SEND_OPC; 2138 cgc.cmd[1] = 1; 2139 if ((ret = pkt_generic_packet(pd, &cgc))) 2140 pkt_dump_sense(pd, &cgc); 2141 return ret; 2142 } 2143 2144 static int pkt_open_write(struct pktcdvd_device *pd) 2145 { 2146 int ret; 2147 unsigned int write_speed, media_write_speed, read_speed; 2148 2149 if ((ret = pkt_probe_settings(pd))) { 2150 pkt_dbg(2, pd, "failed probe\n"); 2151 return ret; 2152 } 2153 2154 if ((ret = pkt_set_write_settings(pd))) { 2155 pkt_dbg(1, pd, "failed saving write settings\n"); 2156 return -EIO; 2157 } 2158 2159 pkt_write_caching(pd, USE_WCACHING); 2160 2161 if ((ret = pkt_get_max_speed(pd, &write_speed))) 2162 write_speed = 16 * 177; 2163 switch (pd->mmc3_profile) { 2164 case 0x13: /* DVD-RW */ 2165 case 0x1a: /* DVD+RW */ 2166 case 0x12: /* DVD-RAM */ 2167 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed); 2168 break; 2169 default: 2170 if ((ret = pkt_media_speed(pd, &media_write_speed))) 2171 media_write_speed = 16; 2172 write_speed = min(write_speed, media_write_speed * 177); 2173 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176); 2174 break; 2175 } 2176 read_speed = write_speed; 2177 2178 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 2179 pkt_dbg(1, pd, "couldn't set write speed\n"); 2180 return -EIO; 2181 } 2182 pd->write_speed = write_speed; 2183 pd->read_speed = read_speed; 2184 2185 if ((ret = pkt_perform_opc(pd))) { 2186 pkt_dbg(1, pd, "Optimum Power Calibration failed\n"); 2187 } 2188 2189 return 0; 2190 } 2191 2192 /* 2193 * called at open time. 2194 */ 2195 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write) 2196 { 2197 int ret; 2198 long lba; 2199 struct request_queue *q; 2200 2201 /* 2202 * We need to re-open the cdrom device without O_NONBLOCK to be able 2203 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2204 * so bdget() can't fail. 2205 */ 2206 bdget(pd->bdev->bd_dev); 2207 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd))) 2208 goto out; 2209 2210 if ((ret = pkt_get_last_written(pd, &lba))) { 2211 pkt_err(pd, "pkt_get_last_written failed\n"); 2212 goto out_putdev; 2213 } 2214 2215 set_capacity(pd->disk, lba << 2); 2216 set_capacity(pd->bdev->bd_disk, lba << 2); 2217 bd_set_size(pd->bdev, (loff_t)lba << 11); 2218 2219 q = bdev_get_queue(pd->bdev); 2220 if (write) { 2221 if ((ret = pkt_open_write(pd))) 2222 goto out_putdev; 2223 /* 2224 * Some CDRW drives can not handle writes larger than one packet, 2225 * even if the size is a multiple of the packet size. 2226 */ 2227 spin_lock_irq(q->queue_lock); 2228 blk_queue_max_hw_sectors(q, pd->settings.size); 2229 spin_unlock_irq(q->queue_lock); 2230 set_bit(PACKET_WRITABLE, &pd->flags); 2231 } else { 2232 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2233 clear_bit(PACKET_WRITABLE, &pd->flags); 2234 } 2235 2236 if ((ret = pkt_set_segment_merging(pd, q))) 2237 goto out_putdev; 2238 2239 if (write) { 2240 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2241 pkt_err(pd, "not enough memory for buffers\n"); 2242 ret = -ENOMEM; 2243 goto out_putdev; 2244 } 2245 pkt_info(pd, "%lukB available on disc\n", lba << 1); 2246 } 2247 2248 return 0; 2249 2250 out_putdev: 2251 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL); 2252 out: 2253 return ret; 2254 } 2255 2256 /* 2257 * called when the device is closed. makes sure that the device flushes 2258 * the internal cache before we close. 2259 */ 2260 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2261 { 2262 if (flush && pkt_flush_cache(pd)) 2263 pkt_dbg(1, pd, "not flushing cache\n"); 2264 2265 pkt_lock_door(pd, 0); 2266 2267 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2268 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL); 2269 2270 pkt_shrink_pktlist(pd); 2271 } 2272 2273 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor) 2274 { 2275 if (dev_minor >= MAX_WRITERS) 2276 return NULL; 2277 return pkt_devs[dev_minor]; 2278 } 2279 2280 static int pkt_open(struct block_device *bdev, fmode_t mode) 2281 { 2282 struct pktcdvd_device *pd = NULL; 2283 int ret; 2284 2285 mutex_lock(&pktcdvd_mutex); 2286 mutex_lock(&ctl_mutex); 2287 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev)); 2288 if (!pd) { 2289 ret = -ENODEV; 2290 goto out; 2291 } 2292 BUG_ON(pd->refcnt < 0); 2293 2294 pd->refcnt++; 2295 if (pd->refcnt > 1) { 2296 if ((mode & FMODE_WRITE) && 2297 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2298 ret = -EBUSY; 2299 goto out_dec; 2300 } 2301 } else { 2302 ret = pkt_open_dev(pd, mode & FMODE_WRITE); 2303 if (ret) 2304 goto out_dec; 2305 /* 2306 * needed here as well, since ext2 (among others) may change 2307 * the blocksize at mount time 2308 */ 2309 set_blocksize(bdev, CD_FRAMESIZE); 2310 } 2311 2312 mutex_unlock(&ctl_mutex); 2313 mutex_unlock(&pktcdvd_mutex); 2314 return 0; 2315 2316 out_dec: 2317 pd->refcnt--; 2318 out: 2319 mutex_unlock(&ctl_mutex); 2320 mutex_unlock(&pktcdvd_mutex); 2321 return ret; 2322 } 2323 2324 static void pkt_close(struct gendisk *disk, fmode_t mode) 2325 { 2326 struct pktcdvd_device *pd = disk->private_data; 2327 2328 mutex_lock(&pktcdvd_mutex); 2329 mutex_lock(&ctl_mutex); 2330 pd->refcnt--; 2331 BUG_ON(pd->refcnt < 0); 2332 if (pd->refcnt == 0) { 2333 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2334 pkt_release_dev(pd, flush); 2335 } 2336 mutex_unlock(&ctl_mutex); 2337 mutex_unlock(&pktcdvd_mutex); 2338 } 2339 2340 2341 static void pkt_end_io_read_cloned(struct bio *bio, int err) 2342 { 2343 struct packet_stacked_data *psd = bio->bi_private; 2344 struct pktcdvd_device *pd = psd->pd; 2345 2346 bio_put(bio); 2347 bio_endio(psd->bio, err); 2348 mempool_free(psd, psd_pool); 2349 pkt_bio_finished(pd); 2350 } 2351 2352 static void pkt_make_request(struct request_queue *q, struct bio *bio) 2353 { 2354 struct pktcdvd_device *pd; 2355 char b[BDEVNAME_SIZE]; 2356 sector_t zone; 2357 struct packet_data *pkt; 2358 int was_empty, blocked_bio; 2359 struct pkt_rb_node *node; 2360 2361 pd = q->queuedata; 2362 if (!pd) { 2363 pr_err("%s incorrect request queue\n", 2364 bdevname(bio->bi_bdev, b)); 2365 goto end_io; 2366 } 2367 2368 /* 2369 * Clone READ bios so we can have our own bi_end_io callback. 2370 */ 2371 if (bio_data_dir(bio) == READ) { 2372 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); 2373 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2374 2375 psd->pd = pd; 2376 psd->bio = bio; 2377 cloned_bio->bi_bdev = pd->bdev; 2378 cloned_bio->bi_private = psd; 2379 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2380 pd->stats.secs_r += bio_sectors(bio); 2381 pkt_queue_bio(pd, cloned_bio); 2382 return; 2383 } 2384 2385 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2386 pkt_notice(pd, "WRITE for ro device (%llu)\n", 2387 (unsigned long long)bio->bi_sector); 2388 goto end_io; 2389 } 2390 2391 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) { 2392 pkt_err(pd, "wrong bio size\n"); 2393 goto end_io; 2394 } 2395 2396 blk_queue_bounce(q, &bio); 2397 2398 zone = get_zone(bio->bi_sector, pd); 2399 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n", 2400 (unsigned long long)bio->bi_sector, 2401 (unsigned long long)bio_end_sector(bio)); 2402 2403 /* Check if we have to split the bio */ 2404 { 2405 struct bio_pair *bp; 2406 sector_t last_zone; 2407 int first_sectors; 2408 2409 last_zone = get_zone(bio_end_sector(bio) - 1, pd); 2410 if (last_zone != zone) { 2411 BUG_ON(last_zone != zone + pd->settings.size); 2412 first_sectors = last_zone - bio->bi_sector; 2413 bp = bio_split(bio, first_sectors); 2414 BUG_ON(!bp); 2415 pkt_make_request(q, &bp->bio1); 2416 pkt_make_request(q, &bp->bio2); 2417 bio_pair_release(bp); 2418 return; 2419 } 2420 } 2421 2422 /* 2423 * If we find a matching packet in state WAITING or READ_WAIT, we can 2424 * just append this bio to that packet. 2425 */ 2426 spin_lock(&pd->cdrw.active_list_lock); 2427 blocked_bio = 0; 2428 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2429 if (pkt->sector == zone) { 2430 spin_lock(&pkt->lock); 2431 if ((pkt->state == PACKET_WAITING_STATE) || 2432 (pkt->state == PACKET_READ_WAIT_STATE)) { 2433 bio_list_add(&pkt->orig_bios, bio); 2434 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 2435 if ((pkt->write_size >= pkt->frames) && 2436 (pkt->state == PACKET_WAITING_STATE)) { 2437 atomic_inc(&pkt->run_sm); 2438 wake_up(&pd->wqueue); 2439 } 2440 spin_unlock(&pkt->lock); 2441 spin_unlock(&pd->cdrw.active_list_lock); 2442 return; 2443 } else { 2444 blocked_bio = 1; 2445 } 2446 spin_unlock(&pkt->lock); 2447 } 2448 } 2449 spin_unlock(&pd->cdrw.active_list_lock); 2450 2451 /* 2452 * Test if there is enough room left in the bio work queue 2453 * (queue size >= congestion on mark). 2454 * If not, wait till the work queue size is below the congestion off mark. 2455 */ 2456 spin_lock(&pd->lock); 2457 if (pd->write_congestion_on > 0 2458 && pd->bio_queue_size >= pd->write_congestion_on) { 2459 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC); 2460 do { 2461 spin_unlock(&pd->lock); 2462 congestion_wait(BLK_RW_ASYNC, HZ); 2463 spin_lock(&pd->lock); 2464 } while(pd->bio_queue_size > pd->write_congestion_off); 2465 } 2466 spin_unlock(&pd->lock); 2467 2468 /* 2469 * No matching packet found. Store the bio in the work queue. 2470 */ 2471 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2472 node->bio = bio; 2473 spin_lock(&pd->lock); 2474 BUG_ON(pd->bio_queue_size < 0); 2475 was_empty = (pd->bio_queue_size == 0); 2476 pkt_rbtree_insert(pd, node); 2477 spin_unlock(&pd->lock); 2478 2479 /* 2480 * Wake up the worker thread. 2481 */ 2482 atomic_set(&pd->scan_queue, 1); 2483 if (was_empty) { 2484 /* This wake_up is required for correct operation */ 2485 wake_up(&pd->wqueue); 2486 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2487 /* 2488 * This wake up is not required for correct operation, 2489 * but improves performance in some cases. 2490 */ 2491 wake_up(&pd->wqueue); 2492 } 2493 return; 2494 end_io: 2495 bio_io_error(bio); 2496 } 2497 2498 2499 2500 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 2501 struct bio_vec *bvec) 2502 { 2503 struct pktcdvd_device *pd = q->queuedata; 2504 sector_t zone = get_zone(bmd->bi_sector, pd); 2505 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size; 2506 int remaining = (pd->settings.size << 9) - used; 2507 int remaining2; 2508 2509 /* 2510 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet 2511 * boundary, pkt_make_request() will split the bio. 2512 */ 2513 remaining2 = PAGE_SIZE - bmd->bi_size; 2514 remaining = max(remaining, remaining2); 2515 2516 BUG_ON(remaining < 0); 2517 return remaining; 2518 } 2519 2520 static void pkt_init_queue(struct pktcdvd_device *pd) 2521 { 2522 struct request_queue *q = pd->disk->queue; 2523 2524 blk_queue_make_request(q, pkt_make_request); 2525 blk_queue_logical_block_size(q, CD_FRAMESIZE); 2526 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS); 2527 blk_queue_merge_bvec(q, pkt_merge_bvec); 2528 q->queuedata = pd; 2529 } 2530 2531 static int pkt_seq_show(struct seq_file *m, void *p) 2532 { 2533 struct pktcdvd_device *pd = m->private; 2534 char *msg; 2535 char bdev_buf[BDEVNAME_SIZE]; 2536 int states[PACKET_NUM_STATES]; 2537 2538 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2539 bdevname(pd->bdev, bdev_buf)); 2540 2541 seq_printf(m, "\nSettings:\n"); 2542 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2543 2544 if (pd->settings.write_type == 0) 2545 msg = "Packet"; 2546 else 2547 msg = "Unknown"; 2548 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2549 2550 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2551 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2552 2553 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2554 2555 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2556 msg = "Mode 1"; 2557 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2558 msg = "Mode 2"; 2559 else 2560 msg = "Unknown"; 2561 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2562 2563 seq_printf(m, "\nStatistics:\n"); 2564 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2565 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2566 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2567 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2568 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2569 2570 seq_printf(m, "\nMisc:\n"); 2571 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2572 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2573 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2574 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2575 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2576 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2577 2578 seq_printf(m, "\nQueue state:\n"); 2579 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2580 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2581 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2582 2583 pkt_count_states(pd, states); 2584 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2585 states[0], states[1], states[2], states[3], states[4], states[5]); 2586 2587 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 2588 pd->write_congestion_off, 2589 pd->write_congestion_on); 2590 return 0; 2591 } 2592 2593 static int pkt_seq_open(struct inode *inode, struct file *file) 2594 { 2595 return single_open(file, pkt_seq_show, PDE_DATA(inode)); 2596 } 2597 2598 static const struct file_operations pkt_proc_fops = { 2599 .open = pkt_seq_open, 2600 .read = seq_read, 2601 .llseek = seq_lseek, 2602 .release = single_release 2603 }; 2604 2605 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2606 { 2607 int i; 2608 int ret = 0; 2609 char b[BDEVNAME_SIZE]; 2610 struct block_device *bdev; 2611 2612 if (pd->pkt_dev == dev) { 2613 pkt_err(pd, "recursive setup not allowed\n"); 2614 return -EBUSY; 2615 } 2616 for (i = 0; i < MAX_WRITERS; i++) { 2617 struct pktcdvd_device *pd2 = pkt_devs[i]; 2618 if (!pd2) 2619 continue; 2620 if (pd2->bdev->bd_dev == dev) { 2621 pkt_err(pd, "%s already setup\n", 2622 bdevname(pd2->bdev, b)); 2623 return -EBUSY; 2624 } 2625 if (pd2->pkt_dev == dev) { 2626 pkt_err(pd, "can't chain pktcdvd devices\n"); 2627 return -EBUSY; 2628 } 2629 } 2630 2631 bdev = bdget(dev); 2632 if (!bdev) 2633 return -ENOMEM; 2634 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL); 2635 if (ret) 2636 return ret; 2637 2638 /* This is safe, since we have a reference from open(). */ 2639 __module_get(THIS_MODULE); 2640 2641 pd->bdev = bdev; 2642 set_blocksize(bdev, CD_FRAMESIZE); 2643 2644 pkt_init_queue(pd); 2645 2646 atomic_set(&pd->cdrw.pending_bios, 0); 2647 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2648 if (IS_ERR(pd->cdrw.thread)) { 2649 pkt_err(pd, "can't start kernel thread\n"); 2650 ret = -ENOMEM; 2651 goto out_mem; 2652 } 2653 2654 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd); 2655 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b)); 2656 return 0; 2657 2658 out_mem: 2659 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY); 2660 /* This is safe: open() is still holding a reference. */ 2661 module_put(THIS_MODULE); 2662 return ret; 2663 } 2664 2665 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) 2666 { 2667 struct pktcdvd_device *pd = bdev->bd_disk->private_data; 2668 int ret; 2669 2670 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n", 2671 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2672 2673 mutex_lock(&pktcdvd_mutex); 2674 switch (cmd) { 2675 case CDROMEJECT: 2676 /* 2677 * The door gets locked when the device is opened, so we 2678 * have to unlock it or else the eject command fails. 2679 */ 2680 if (pd->refcnt == 1) 2681 pkt_lock_door(pd, 0); 2682 /* fallthru */ 2683 /* 2684 * forward selected CDROM ioctls to CD-ROM, for UDF 2685 */ 2686 case CDROMMULTISESSION: 2687 case CDROMREADTOCENTRY: 2688 case CDROM_LAST_WRITTEN: 2689 case CDROM_SEND_PACKET: 2690 case SCSI_IOCTL_SEND_COMMAND: 2691 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg); 2692 break; 2693 2694 default: 2695 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd); 2696 ret = -ENOTTY; 2697 } 2698 mutex_unlock(&pktcdvd_mutex); 2699 2700 return ret; 2701 } 2702 2703 static unsigned int pkt_check_events(struct gendisk *disk, 2704 unsigned int clearing) 2705 { 2706 struct pktcdvd_device *pd = disk->private_data; 2707 struct gendisk *attached_disk; 2708 2709 if (!pd) 2710 return 0; 2711 if (!pd->bdev) 2712 return 0; 2713 attached_disk = pd->bdev->bd_disk; 2714 if (!attached_disk || !attached_disk->fops->check_events) 2715 return 0; 2716 return attached_disk->fops->check_events(attached_disk, clearing); 2717 } 2718 2719 static const struct block_device_operations pktcdvd_ops = { 2720 .owner = THIS_MODULE, 2721 .open = pkt_open, 2722 .release = pkt_close, 2723 .ioctl = pkt_ioctl, 2724 .check_events = pkt_check_events, 2725 }; 2726 2727 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode) 2728 { 2729 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name); 2730 } 2731 2732 /* 2733 * Set up mapping from pktcdvd device to CD-ROM device. 2734 */ 2735 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2736 { 2737 int idx; 2738 int ret = -ENOMEM; 2739 struct pktcdvd_device *pd; 2740 struct gendisk *disk; 2741 2742 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2743 2744 for (idx = 0; idx < MAX_WRITERS; idx++) 2745 if (!pkt_devs[idx]) 2746 break; 2747 if (idx == MAX_WRITERS) { 2748 pr_err("max %d writers supported\n", MAX_WRITERS); 2749 ret = -EBUSY; 2750 goto out_mutex; 2751 } 2752 2753 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2754 if (!pd) 2755 goto out_mutex; 2756 2757 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE, 2758 sizeof(struct pkt_rb_node)); 2759 if (!pd->rb_pool) 2760 goto out_mem; 2761 2762 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2763 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2764 spin_lock_init(&pd->cdrw.active_list_lock); 2765 2766 spin_lock_init(&pd->lock); 2767 spin_lock_init(&pd->iosched.lock); 2768 bio_list_init(&pd->iosched.read_queue); 2769 bio_list_init(&pd->iosched.write_queue); 2770 sprintf(pd->name, DRIVER_NAME"%d", idx); 2771 init_waitqueue_head(&pd->wqueue); 2772 pd->bio_queue = RB_ROOT; 2773 2774 pd->write_congestion_on = write_congestion_on; 2775 pd->write_congestion_off = write_congestion_off; 2776 2777 disk = alloc_disk(1); 2778 if (!disk) 2779 goto out_mem; 2780 pd->disk = disk; 2781 disk->major = pktdev_major; 2782 disk->first_minor = idx; 2783 disk->fops = &pktcdvd_ops; 2784 disk->flags = GENHD_FL_REMOVABLE; 2785 strcpy(disk->disk_name, pd->name); 2786 disk->devnode = pktcdvd_devnode; 2787 disk->private_data = pd; 2788 disk->queue = blk_alloc_queue(GFP_KERNEL); 2789 if (!disk->queue) 2790 goto out_mem2; 2791 2792 pd->pkt_dev = MKDEV(pktdev_major, idx); 2793 ret = pkt_new_dev(pd, dev); 2794 if (ret) 2795 goto out_new_dev; 2796 2797 /* inherit events of the host device */ 2798 disk->events = pd->bdev->bd_disk->events; 2799 disk->async_events = pd->bdev->bd_disk->async_events; 2800 2801 add_disk(disk); 2802 2803 pkt_sysfs_dev_new(pd); 2804 pkt_debugfs_dev_new(pd); 2805 2806 pkt_devs[idx] = pd; 2807 if (pkt_dev) 2808 *pkt_dev = pd->pkt_dev; 2809 2810 mutex_unlock(&ctl_mutex); 2811 return 0; 2812 2813 out_new_dev: 2814 blk_cleanup_queue(disk->queue); 2815 out_mem2: 2816 put_disk(disk); 2817 out_mem: 2818 if (pd->rb_pool) 2819 mempool_destroy(pd->rb_pool); 2820 kfree(pd); 2821 out_mutex: 2822 mutex_unlock(&ctl_mutex); 2823 pr_err("setup of pktcdvd device failed\n"); 2824 return ret; 2825 } 2826 2827 /* 2828 * Tear down mapping from pktcdvd device to CD-ROM device. 2829 */ 2830 static int pkt_remove_dev(dev_t pkt_dev) 2831 { 2832 struct pktcdvd_device *pd; 2833 int idx; 2834 int ret = 0; 2835 2836 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2837 2838 for (idx = 0; idx < MAX_WRITERS; idx++) { 2839 pd = pkt_devs[idx]; 2840 if (pd && (pd->pkt_dev == pkt_dev)) 2841 break; 2842 } 2843 if (idx == MAX_WRITERS) { 2844 pr_debug("dev not setup\n"); 2845 ret = -ENXIO; 2846 goto out; 2847 } 2848 2849 if (pd->refcnt > 0) { 2850 ret = -EBUSY; 2851 goto out; 2852 } 2853 if (!IS_ERR(pd->cdrw.thread)) 2854 kthread_stop(pd->cdrw.thread); 2855 2856 pkt_devs[idx] = NULL; 2857 2858 pkt_debugfs_dev_remove(pd); 2859 pkt_sysfs_dev_remove(pd); 2860 2861 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY); 2862 2863 remove_proc_entry(pd->name, pkt_proc); 2864 pkt_dbg(1, pd, "writer unmapped\n"); 2865 2866 del_gendisk(pd->disk); 2867 blk_cleanup_queue(pd->disk->queue); 2868 put_disk(pd->disk); 2869 2870 mempool_destroy(pd->rb_pool); 2871 kfree(pd); 2872 2873 /* This is safe: open() is still holding a reference. */ 2874 module_put(THIS_MODULE); 2875 2876 out: 2877 mutex_unlock(&ctl_mutex); 2878 return ret; 2879 } 2880 2881 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 2882 { 2883 struct pktcdvd_device *pd; 2884 2885 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2886 2887 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 2888 if (pd) { 2889 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 2890 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2891 } else { 2892 ctrl_cmd->dev = 0; 2893 ctrl_cmd->pkt_dev = 0; 2894 } 2895 ctrl_cmd->num_devices = MAX_WRITERS; 2896 2897 mutex_unlock(&ctl_mutex); 2898 } 2899 2900 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2901 { 2902 void __user *argp = (void __user *)arg; 2903 struct pkt_ctrl_command ctrl_cmd; 2904 int ret = 0; 2905 dev_t pkt_dev = 0; 2906 2907 if (cmd != PACKET_CTRL_CMD) 2908 return -ENOTTY; 2909 2910 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 2911 return -EFAULT; 2912 2913 switch (ctrl_cmd.command) { 2914 case PKT_CTRL_CMD_SETUP: 2915 if (!capable(CAP_SYS_ADMIN)) 2916 return -EPERM; 2917 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 2918 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 2919 break; 2920 case PKT_CTRL_CMD_TEARDOWN: 2921 if (!capable(CAP_SYS_ADMIN)) 2922 return -EPERM; 2923 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 2924 break; 2925 case PKT_CTRL_CMD_STATUS: 2926 pkt_get_status(&ctrl_cmd); 2927 break; 2928 default: 2929 return -ENOTTY; 2930 } 2931 2932 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 2933 return -EFAULT; 2934 return ret; 2935 } 2936 2937 #ifdef CONFIG_COMPAT 2938 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2939 { 2940 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); 2941 } 2942 #endif 2943 2944 static const struct file_operations pkt_ctl_fops = { 2945 .open = nonseekable_open, 2946 .unlocked_ioctl = pkt_ctl_ioctl, 2947 #ifdef CONFIG_COMPAT 2948 .compat_ioctl = pkt_ctl_compat_ioctl, 2949 #endif 2950 .owner = THIS_MODULE, 2951 .llseek = no_llseek, 2952 }; 2953 2954 static struct miscdevice pkt_misc = { 2955 .minor = MISC_DYNAMIC_MINOR, 2956 .name = DRIVER_NAME, 2957 .nodename = "pktcdvd/control", 2958 .fops = &pkt_ctl_fops 2959 }; 2960 2961 static int __init pkt_init(void) 2962 { 2963 int ret; 2964 2965 mutex_init(&ctl_mutex); 2966 2967 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE, 2968 sizeof(struct packet_stacked_data)); 2969 if (!psd_pool) 2970 return -ENOMEM; 2971 2972 ret = register_blkdev(pktdev_major, DRIVER_NAME); 2973 if (ret < 0) { 2974 pr_err("unable to register block device\n"); 2975 goto out2; 2976 } 2977 if (!pktdev_major) 2978 pktdev_major = ret; 2979 2980 ret = pkt_sysfs_init(); 2981 if (ret) 2982 goto out; 2983 2984 pkt_debugfs_init(); 2985 2986 ret = misc_register(&pkt_misc); 2987 if (ret) { 2988 pr_err("unable to register misc device\n"); 2989 goto out_misc; 2990 } 2991 2992 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL); 2993 2994 return 0; 2995 2996 out_misc: 2997 pkt_debugfs_cleanup(); 2998 pkt_sysfs_cleanup(); 2999 out: 3000 unregister_blkdev(pktdev_major, DRIVER_NAME); 3001 out2: 3002 mempool_destroy(psd_pool); 3003 return ret; 3004 } 3005 3006 static void __exit pkt_exit(void) 3007 { 3008 remove_proc_entry("driver/"DRIVER_NAME, NULL); 3009 misc_deregister(&pkt_misc); 3010 3011 pkt_debugfs_cleanup(); 3012 pkt_sysfs_cleanup(); 3013 3014 unregister_blkdev(pktdev_major, DRIVER_NAME); 3015 mempool_destroy(psd_pool); 3016 } 3017 3018 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 3019 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 3020 MODULE_LICENSE("GPL"); 3021 3022 module_init(pkt_init); 3023 module_exit(pkt_exit); 3024