xref: /openbmc/linux/drivers/block/pktcdvd.c (revision c4ee0af3)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom make_request_fn function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_ioctl.h>
66 #include <scsi/scsi.h>
67 #include <linux/debugfs.h>
68 #include <linux/device.h>
69 
70 #include <asm/uaccess.h>
71 
72 #define DRIVER_NAME	"pktcdvd"
73 
74 #define pkt_err(pd, fmt, ...)						\
75 	pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
76 #define pkt_notice(pd, fmt, ...)					\
77 	pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
78 #define pkt_info(pd, fmt, ...)						\
79 	pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
80 
81 #define pkt_dbg(level, pd, fmt, ...)					\
82 do {									\
83 	if (level == 2 && PACKET_DEBUG >= 2)				\
84 		pr_notice("%s: %s():" fmt,				\
85 			  pd->name, __func__, ##__VA_ARGS__);		\
86 	else if (level == 1 && PACKET_DEBUG >= 1)			\
87 		pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__);		\
88 } while (0)
89 
90 #define MAX_SPEED 0xffff
91 
92 static DEFINE_MUTEX(pktcdvd_mutex);
93 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
94 static struct proc_dir_entry *pkt_proc;
95 static int pktdev_major;
96 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
97 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
98 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
99 static mempool_t *psd_pool;
100 
101 static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
102 static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
103 
104 /* forward declaration */
105 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
106 static int pkt_remove_dev(dev_t pkt_dev);
107 static int pkt_seq_show(struct seq_file *m, void *p);
108 
109 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
110 {
111 	return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
112 }
113 
114 /*
115  * create and register a pktcdvd kernel object.
116  */
117 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
118 					const char* name,
119 					struct kobject* parent,
120 					struct kobj_type* ktype)
121 {
122 	struct pktcdvd_kobj *p;
123 	int error;
124 
125 	p = kzalloc(sizeof(*p), GFP_KERNEL);
126 	if (!p)
127 		return NULL;
128 	p->pd = pd;
129 	error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
130 	if (error) {
131 		kobject_put(&p->kobj);
132 		return NULL;
133 	}
134 	kobject_uevent(&p->kobj, KOBJ_ADD);
135 	return p;
136 }
137 /*
138  * remove a pktcdvd kernel object.
139  */
140 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
141 {
142 	if (p)
143 		kobject_put(&p->kobj);
144 }
145 /*
146  * default release function for pktcdvd kernel objects.
147  */
148 static void pkt_kobj_release(struct kobject *kobj)
149 {
150 	kfree(to_pktcdvdkobj(kobj));
151 }
152 
153 
154 /**********************************************************
155  *
156  * sysfs interface for pktcdvd
157  * by (C) 2006  Thomas Maier <balagi@justmail.de>
158  *
159  **********************************************************/
160 
161 #define DEF_ATTR(_obj,_name,_mode) \
162 	static struct attribute _obj = { .name = _name, .mode = _mode }
163 
164 /**********************************************************
165   /sys/class/pktcdvd/pktcdvd[0-7]/
166                      stat/reset
167                      stat/packets_started
168                      stat/packets_finished
169                      stat/kb_written
170                      stat/kb_read
171                      stat/kb_read_gather
172                      write_queue/size
173                      write_queue/congestion_off
174                      write_queue/congestion_on
175  **********************************************************/
176 
177 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
178 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
179 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
180 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
181 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
182 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
183 
184 static struct attribute *kobj_pkt_attrs_stat[] = {
185 	&kobj_pkt_attr_st1,
186 	&kobj_pkt_attr_st2,
187 	&kobj_pkt_attr_st3,
188 	&kobj_pkt_attr_st4,
189 	&kobj_pkt_attr_st5,
190 	&kobj_pkt_attr_st6,
191 	NULL
192 };
193 
194 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
195 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
196 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
197 
198 static struct attribute *kobj_pkt_attrs_wqueue[] = {
199 	&kobj_pkt_attr_wq1,
200 	&kobj_pkt_attr_wq2,
201 	&kobj_pkt_attr_wq3,
202 	NULL
203 };
204 
205 static ssize_t kobj_pkt_show(struct kobject *kobj,
206 			struct attribute *attr, char *data)
207 {
208 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
209 	int n = 0;
210 	int v;
211 	if (strcmp(attr->name, "packets_started") == 0) {
212 		n = sprintf(data, "%lu\n", pd->stats.pkt_started);
213 
214 	} else if (strcmp(attr->name, "packets_finished") == 0) {
215 		n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
216 
217 	} else if (strcmp(attr->name, "kb_written") == 0) {
218 		n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
219 
220 	} else if (strcmp(attr->name, "kb_read") == 0) {
221 		n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
222 
223 	} else if (strcmp(attr->name, "kb_read_gather") == 0) {
224 		n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
225 
226 	} else if (strcmp(attr->name, "size") == 0) {
227 		spin_lock(&pd->lock);
228 		v = pd->bio_queue_size;
229 		spin_unlock(&pd->lock);
230 		n = sprintf(data, "%d\n", v);
231 
232 	} else if (strcmp(attr->name, "congestion_off") == 0) {
233 		spin_lock(&pd->lock);
234 		v = pd->write_congestion_off;
235 		spin_unlock(&pd->lock);
236 		n = sprintf(data, "%d\n", v);
237 
238 	} else if (strcmp(attr->name, "congestion_on") == 0) {
239 		spin_lock(&pd->lock);
240 		v = pd->write_congestion_on;
241 		spin_unlock(&pd->lock);
242 		n = sprintf(data, "%d\n", v);
243 	}
244 	return n;
245 }
246 
247 static void init_write_congestion_marks(int* lo, int* hi)
248 {
249 	if (*hi > 0) {
250 		*hi = max(*hi, 500);
251 		*hi = min(*hi, 1000000);
252 		if (*lo <= 0)
253 			*lo = *hi - 100;
254 		else {
255 			*lo = min(*lo, *hi - 100);
256 			*lo = max(*lo, 100);
257 		}
258 	} else {
259 		*hi = -1;
260 		*lo = -1;
261 	}
262 }
263 
264 static ssize_t kobj_pkt_store(struct kobject *kobj,
265 			struct attribute *attr,
266 			const char *data, size_t len)
267 {
268 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
269 	int val;
270 
271 	if (strcmp(attr->name, "reset") == 0 && len > 0) {
272 		pd->stats.pkt_started = 0;
273 		pd->stats.pkt_ended = 0;
274 		pd->stats.secs_w = 0;
275 		pd->stats.secs_rg = 0;
276 		pd->stats.secs_r = 0;
277 
278 	} else if (strcmp(attr->name, "congestion_off") == 0
279 		   && sscanf(data, "%d", &val) == 1) {
280 		spin_lock(&pd->lock);
281 		pd->write_congestion_off = val;
282 		init_write_congestion_marks(&pd->write_congestion_off,
283 					&pd->write_congestion_on);
284 		spin_unlock(&pd->lock);
285 
286 	} else if (strcmp(attr->name, "congestion_on") == 0
287 		   && sscanf(data, "%d", &val) == 1) {
288 		spin_lock(&pd->lock);
289 		pd->write_congestion_on = val;
290 		init_write_congestion_marks(&pd->write_congestion_off,
291 					&pd->write_congestion_on);
292 		spin_unlock(&pd->lock);
293 	}
294 	return len;
295 }
296 
297 static const struct sysfs_ops kobj_pkt_ops = {
298 	.show = kobj_pkt_show,
299 	.store = kobj_pkt_store
300 };
301 static struct kobj_type kobj_pkt_type_stat = {
302 	.release = pkt_kobj_release,
303 	.sysfs_ops = &kobj_pkt_ops,
304 	.default_attrs = kobj_pkt_attrs_stat
305 };
306 static struct kobj_type kobj_pkt_type_wqueue = {
307 	.release = pkt_kobj_release,
308 	.sysfs_ops = &kobj_pkt_ops,
309 	.default_attrs = kobj_pkt_attrs_wqueue
310 };
311 
312 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
313 {
314 	if (class_pktcdvd) {
315 		pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
316 					"%s", pd->name);
317 		if (IS_ERR(pd->dev))
318 			pd->dev = NULL;
319 	}
320 	if (pd->dev) {
321 		pd->kobj_stat = pkt_kobj_create(pd, "stat",
322 					&pd->dev->kobj,
323 					&kobj_pkt_type_stat);
324 		pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
325 					&pd->dev->kobj,
326 					&kobj_pkt_type_wqueue);
327 	}
328 }
329 
330 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
331 {
332 	pkt_kobj_remove(pd->kobj_stat);
333 	pkt_kobj_remove(pd->kobj_wqueue);
334 	if (class_pktcdvd)
335 		device_unregister(pd->dev);
336 }
337 
338 
339 /********************************************************************
340   /sys/class/pktcdvd/
341                      add            map block device
342                      remove         unmap packet dev
343                      device_map     show mappings
344  *******************************************************************/
345 
346 static void class_pktcdvd_release(struct class *cls)
347 {
348 	kfree(cls);
349 }
350 static ssize_t class_pktcdvd_show_map(struct class *c,
351 					struct class_attribute *attr,
352 					char *data)
353 {
354 	int n = 0;
355 	int idx;
356 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
357 	for (idx = 0; idx < MAX_WRITERS; idx++) {
358 		struct pktcdvd_device *pd = pkt_devs[idx];
359 		if (!pd)
360 			continue;
361 		n += sprintf(data+n, "%s %u:%u %u:%u\n",
362 			pd->name,
363 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
364 			MAJOR(pd->bdev->bd_dev),
365 			MINOR(pd->bdev->bd_dev));
366 	}
367 	mutex_unlock(&ctl_mutex);
368 	return n;
369 }
370 
371 static ssize_t class_pktcdvd_store_add(struct class *c,
372 					struct class_attribute *attr,
373 					const char *buf,
374 					size_t count)
375 {
376 	unsigned int major, minor;
377 
378 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
379 		/* pkt_setup_dev() expects caller to hold reference to self */
380 		if (!try_module_get(THIS_MODULE))
381 			return -ENODEV;
382 
383 		pkt_setup_dev(MKDEV(major, minor), NULL);
384 
385 		module_put(THIS_MODULE);
386 
387 		return count;
388 	}
389 
390 	return -EINVAL;
391 }
392 
393 static ssize_t class_pktcdvd_store_remove(struct class *c,
394 					  struct class_attribute *attr,
395 					  const char *buf,
396 					size_t count)
397 {
398 	unsigned int major, minor;
399 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
400 		pkt_remove_dev(MKDEV(major, minor));
401 		return count;
402 	}
403 	return -EINVAL;
404 }
405 
406 static struct class_attribute class_pktcdvd_attrs[] = {
407  __ATTR(add,            0200, NULL, class_pktcdvd_store_add),
408  __ATTR(remove,         0200, NULL, class_pktcdvd_store_remove),
409  __ATTR(device_map,     0444, class_pktcdvd_show_map, NULL),
410  __ATTR_NULL
411 };
412 
413 
414 static int pkt_sysfs_init(void)
415 {
416 	int ret = 0;
417 
418 	/*
419 	 * create control files in sysfs
420 	 * /sys/class/pktcdvd/...
421 	 */
422 	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
423 	if (!class_pktcdvd)
424 		return -ENOMEM;
425 	class_pktcdvd->name = DRIVER_NAME;
426 	class_pktcdvd->owner = THIS_MODULE;
427 	class_pktcdvd->class_release = class_pktcdvd_release;
428 	class_pktcdvd->class_attrs = class_pktcdvd_attrs;
429 	ret = class_register(class_pktcdvd);
430 	if (ret) {
431 		kfree(class_pktcdvd);
432 		class_pktcdvd = NULL;
433 		pr_err("failed to create class pktcdvd\n");
434 		return ret;
435 	}
436 	return 0;
437 }
438 
439 static void pkt_sysfs_cleanup(void)
440 {
441 	if (class_pktcdvd)
442 		class_destroy(class_pktcdvd);
443 	class_pktcdvd = NULL;
444 }
445 
446 /********************************************************************
447   entries in debugfs
448 
449   /sys/kernel/debug/pktcdvd[0-7]/
450 			info
451 
452  *******************************************************************/
453 
454 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
455 {
456 	return pkt_seq_show(m, p);
457 }
458 
459 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
460 {
461 	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
462 }
463 
464 static const struct file_operations debug_fops = {
465 	.open		= pkt_debugfs_fops_open,
466 	.read		= seq_read,
467 	.llseek		= seq_lseek,
468 	.release	= single_release,
469 	.owner		= THIS_MODULE,
470 };
471 
472 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
473 {
474 	if (!pkt_debugfs_root)
475 		return;
476 	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
477 	if (!pd->dfs_d_root)
478 		return;
479 
480 	pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
481 				pd->dfs_d_root, pd, &debug_fops);
482 }
483 
484 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
485 {
486 	if (!pkt_debugfs_root)
487 		return;
488 	debugfs_remove(pd->dfs_f_info);
489 	debugfs_remove(pd->dfs_d_root);
490 	pd->dfs_f_info = NULL;
491 	pd->dfs_d_root = NULL;
492 }
493 
494 static void pkt_debugfs_init(void)
495 {
496 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
497 }
498 
499 static void pkt_debugfs_cleanup(void)
500 {
501 	debugfs_remove(pkt_debugfs_root);
502 	pkt_debugfs_root = NULL;
503 }
504 
505 /* ----------------------------------------------------------*/
506 
507 
508 static void pkt_bio_finished(struct pktcdvd_device *pd)
509 {
510 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
511 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
512 		pkt_dbg(2, pd, "queue empty\n");
513 		atomic_set(&pd->iosched.attention, 1);
514 		wake_up(&pd->wqueue);
515 	}
516 }
517 
518 /*
519  * Allocate a packet_data struct
520  */
521 static struct packet_data *pkt_alloc_packet_data(int frames)
522 {
523 	int i;
524 	struct packet_data *pkt;
525 
526 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
527 	if (!pkt)
528 		goto no_pkt;
529 
530 	pkt->frames = frames;
531 	pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
532 	if (!pkt->w_bio)
533 		goto no_bio;
534 
535 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
536 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
537 		if (!pkt->pages[i])
538 			goto no_page;
539 	}
540 
541 	spin_lock_init(&pkt->lock);
542 	bio_list_init(&pkt->orig_bios);
543 
544 	for (i = 0; i < frames; i++) {
545 		struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
546 		if (!bio)
547 			goto no_rd_bio;
548 
549 		pkt->r_bios[i] = bio;
550 	}
551 
552 	return pkt;
553 
554 no_rd_bio:
555 	for (i = 0; i < frames; i++) {
556 		struct bio *bio = pkt->r_bios[i];
557 		if (bio)
558 			bio_put(bio);
559 	}
560 
561 no_page:
562 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
563 		if (pkt->pages[i])
564 			__free_page(pkt->pages[i]);
565 	bio_put(pkt->w_bio);
566 no_bio:
567 	kfree(pkt);
568 no_pkt:
569 	return NULL;
570 }
571 
572 /*
573  * Free a packet_data struct
574  */
575 static void pkt_free_packet_data(struct packet_data *pkt)
576 {
577 	int i;
578 
579 	for (i = 0; i < pkt->frames; i++) {
580 		struct bio *bio = pkt->r_bios[i];
581 		if (bio)
582 			bio_put(bio);
583 	}
584 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
585 		__free_page(pkt->pages[i]);
586 	bio_put(pkt->w_bio);
587 	kfree(pkt);
588 }
589 
590 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
591 {
592 	struct packet_data *pkt, *next;
593 
594 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
595 
596 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
597 		pkt_free_packet_data(pkt);
598 	}
599 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
600 }
601 
602 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
603 {
604 	struct packet_data *pkt;
605 
606 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
607 
608 	while (nr_packets > 0) {
609 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
610 		if (!pkt) {
611 			pkt_shrink_pktlist(pd);
612 			return 0;
613 		}
614 		pkt->id = nr_packets;
615 		pkt->pd = pd;
616 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
617 		nr_packets--;
618 	}
619 	return 1;
620 }
621 
622 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
623 {
624 	struct rb_node *n = rb_next(&node->rb_node);
625 	if (!n)
626 		return NULL;
627 	return rb_entry(n, struct pkt_rb_node, rb_node);
628 }
629 
630 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
631 {
632 	rb_erase(&node->rb_node, &pd->bio_queue);
633 	mempool_free(node, pd->rb_pool);
634 	pd->bio_queue_size--;
635 	BUG_ON(pd->bio_queue_size < 0);
636 }
637 
638 /*
639  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
640  */
641 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
642 {
643 	struct rb_node *n = pd->bio_queue.rb_node;
644 	struct rb_node *next;
645 	struct pkt_rb_node *tmp;
646 
647 	if (!n) {
648 		BUG_ON(pd->bio_queue_size > 0);
649 		return NULL;
650 	}
651 
652 	for (;;) {
653 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
654 		if (s <= tmp->bio->bi_sector)
655 			next = n->rb_left;
656 		else
657 			next = n->rb_right;
658 		if (!next)
659 			break;
660 		n = next;
661 	}
662 
663 	if (s > tmp->bio->bi_sector) {
664 		tmp = pkt_rbtree_next(tmp);
665 		if (!tmp)
666 			return NULL;
667 	}
668 	BUG_ON(s > tmp->bio->bi_sector);
669 	return tmp;
670 }
671 
672 /*
673  * Insert a node into the pd->bio_queue rb tree.
674  */
675 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
676 {
677 	struct rb_node **p = &pd->bio_queue.rb_node;
678 	struct rb_node *parent = NULL;
679 	sector_t s = node->bio->bi_sector;
680 	struct pkt_rb_node *tmp;
681 
682 	while (*p) {
683 		parent = *p;
684 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
685 		if (s < tmp->bio->bi_sector)
686 			p = &(*p)->rb_left;
687 		else
688 			p = &(*p)->rb_right;
689 	}
690 	rb_link_node(&node->rb_node, parent, p);
691 	rb_insert_color(&node->rb_node, &pd->bio_queue);
692 	pd->bio_queue_size++;
693 }
694 
695 /*
696  * Send a packet_command to the underlying block device and
697  * wait for completion.
698  */
699 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
700 {
701 	struct request_queue *q = bdev_get_queue(pd->bdev);
702 	struct request *rq;
703 	int ret = 0;
704 
705 	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
706 			     WRITE : READ, __GFP_WAIT);
707 
708 	if (cgc->buflen) {
709 		if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
710 			goto out;
711 	}
712 
713 	rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
714 	memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
715 
716 	rq->timeout = 60*HZ;
717 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
718 	if (cgc->quiet)
719 		rq->cmd_flags |= REQ_QUIET;
720 
721 	blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
722 	if (rq->errors)
723 		ret = -EIO;
724 out:
725 	blk_put_request(rq);
726 	return ret;
727 }
728 
729 static const char *sense_key_string(__u8 index)
730 {
731 	static const char * const info[] = {
732 		"No sense", "Recovered error", "Not ready",
733 		"Medium error", "Hardware error", "Illegal request",
734 		"Unit attention", "Data protect", "Blank check",
735 	};
736 
737 	return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
738 }
739 
740 /*
741  * A generic sense dump / resolve mechanism should be implemented across
742  * all ATAPI + SCSI devices.
743  */
744 static void pkt_dump_sense(struct pktcdvd_device *pd,
745 			   struct packet_command *cgc)
746 {
747 	struct request_sense *sense = cgc->sense;
748 
749 	if (sense)
750 		pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
751 			CDROM_PACKET_SIZE, cgc->cmd,
752 			sense->sense_key, sense->asc, sense->ascq,
753 			sense_key_string(sense->sense_key));
754 	else
755 		pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
756 }
757 
758 /*
759  * flush the drive cache to media
760  */
761 static int pkt_flush_cache(struct pktcdvd_device *pd)
762 {
763 	struct packet_command cgc;
764 
765 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
766 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
767 	cgc.quiet = 1;
768 
769 	/*
770 	 * the IMMED bit -- we default to not setting it, although that
771 	 * would allow a much faster close, this is safer
772 	 */
773 #if 0
774 	cgc.cmd[1] = 1 << 1;
775 #endif
776 	return pkt_generic_packet(pd, &cgc);
777 }
778 
779 /*
780  * speed is given as the normal factor, e.g. 4 for 4x
781  */
782 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
783 				unsigned write_speed, unsigned read_speed)
784 {
785 	struct packet_command cgc;
786 	struct request_sense sense;
787 	int ret;
788 
789 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
790 	cgc.sense = &sense;
791 	cgc.cmd[0] = GPCMD_SET_SPEED;
792 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
793 	cgc.cmd[3] = read_speed & 0xff;
794 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
795 	cgc.cmd[5] = write_speed & 0xff;
796 
797 	if ((ret = pkt_generic_packet(pd, &cgc)))
798 		pkt_dump_sense(pd, &cgc);
799 
800 	return ret;
801 }
802 
803 /*
804  * Queue a bio for processing by the low-level CD device. Must be called
805  * from process context.
806  */
807 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
808 {
809 	spin_lock(&pd->iosched.lock);
810 	if (bio_data_dir(bio) == READ)
811 		bio_list_add(&pd->iosched.read_queue, bio);
812 	else
813 		bio_list_add(&pd->iosched.write_queue, bio);
814 	spin_unlock(&pd->iosched.lock);
815 
816 	atomic_set(&pd->iosched.attention, 1);
817 	wake_up(&pd->wqueue);
818 }
819 
820 /*
821  * Process the queued read/write requests. This function handles special
822  * requirements for CDRW drives:
823  * - A cache flush command must be inserted before a read request if the
824  *   previous request was a write.
825  * - Switching between reading and writing is slow, so don't do it more often
826  *   than necessary.
827  * - Optimize for throughput at the expense of latency. This means that streaming
828  *   writes will never be interrupted by a read, but if the drive has to seek
829  *   before the next write, switch to reading instead if there are any pending
830  *   read requests.
831  * - Set the read speed according to current usage pattern. When only reading
832  *   from the device, it's best to use the highest possible read speed, but
833  *   when switching often between reading and writing, it's better to have the
834  *   same read and write speeds.
835  */
836 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
837 {
838 
839 	if (atomic_read(&pd->iosched.attention) == 0)
840 		return;
841 	atomic_set(&pd->iosched.attention, 0);
842 
843 	for (;;) {
844 		struct bio *bio;
845 		int reads_queued, writes_queued;
846 
847 		spin_lock(&pd->iosched.lock);
848 		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
849 		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
850 		spin_unlock(&pd->iosched.lock);
851 
852 		if (!reads_queued && !writes_queued)
853 			break;
854 
855 		if (pd->iosched.writing) {
856 			int need_write_seek = 1;
857 			spin_lock(&pd->iosched.lock);
858 			bio = bio_list_peek(&pd->iosched.write_queue);
859 			spin_unlock(&pd->iosched.lock);
860 			if (bio && (bio->bi_sector == pd->iosched.last_write))
861 				need_write_seek = 0;
862 			if (need_write_seek && reads_queued) {
863 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
864 					pkt_dbg(2, pd, "write, waiting\n");
865 					break;
866 				}
867 				pkt_flush_cache(pd);
868 				pd->iosched.writing = 0;
869 			}
870 		} else {
871 			if (!reads_queued && writes_queued) {
872 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
873 					pkt_dbg(2, pd, "read, waiting\n");
874 					break;
875 				}
876 				pd->iosched.writing = 1;
877 			}
878 		}
879 
880 		spin_lock(&pd->iosched.lock);
881 		if (pd->iosched.writing)
882 			bio = bio_list_pop(&pd->iosched.write_queue);
883 		else
884 			bio = bio_list_pop(&pd->iosched.read_queue);
885 		spin_unlock(&pd->iosched.lock);
886 
887 		if (!bio)
888 			continue;
889 
890 		if (bio_data_dir(bio) == READ)
891 			pd->iosched.successive_reads += bio->bi_size >> 10;
892 		else {
893 			pd->iosched.successive_reads = 0;
894 			pd->iosched.last_write = bio_end_sector(bio);
895 		}
896 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
897 			if (pd->read_speed == pd->write_speed) {
898 				pd->read_speed = MAX_SPEED;
899 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
900 			}
901 		} else {
902 			if (pd->read_speed != pd->write_speed) {
903 				pd->read_speed = pd->write_speed;
904 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
905 			}
906 		}
907 
908 		atomic_inc(&pd->cdrw.pending_bios);
909 		generic_make_request(bio);
910 	}
911 }
912 
913 /*
914  * Special care is needed if the underlying block device has a small
915  * max_phys_segments value.
916  */
917 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
918 {
919 	if ((pd->settings.size << 9) / CD_FRAMESIZE
920 	    <= queue_max_segments(q)) {
921 		/*
922 		 * The cdrom device can handle one segment/frame
923 		 */
924 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
925 		return 0;
926 	} else if ((pd->settings.size << 9) / PAGE_SIZE
927 		   <= queue_max_segments(q)) {
928 		/*
929 		 * We can handle this case at the expense of some extra memory
930 		 * copies during write operations
931 		 */
932 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
933 		return 0;
934 	} else {
935 		pkt_err(pd, "cdrom max_phys_segments too small\n");
936 		return -EIO;
937 	}
938 }
939 
940 /*
941  * Copy all data for this packet to pkt->pages[], so that
942  * a) The number of required segments for the write bio is minimized, which
943  *    is necessary for some scsi controllers.
944  * b) The data can be used as cache to avoid read requests if we receive a
945  *    new write request for the same zone.
946  */
947 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
948 {
949 	int f, p, offs;
950 
951 	/* Copy all data to pkt->pages[] */
952 	p = 0;
953 	offs = 0;
954 	for (f = 0; f < pkt->frames; f++) {
955 		if (bvec[f].bv_page != pkt->pages[p]) {
956 			void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset;
957 			void *vto = page_address(pkt->pages[p]) + offs;
958 			memcpy(vto, vfrom, CD_FRAMESIZE);
959 			kunmap_atomic(vfrom);
960 			bvec[f].bv_page = pkt->pages[p];
961 			bvec[f].bv_offset = offs;
962 		} else {
963 			BUG_ON(bvec[f].bv_offset != offs);
964 		}
965 		offs += CD_FRAMESIZE;
966 		if (offs >= PAGE_SIZE) {
967 			offs = 0;
968 			p++;
969 		}
970 	}
971 }
972 
973 static void pkt_end_io_read(struct bio *bio, int err)
974 {
975 	struct packet_data *pkt = bio->bi_private;
976 	struct pktcdvd_device *pd = pkt->pd;
977 	BUG_ON(!pd);
978 
979 	pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
980 		bio, (unsigned long long)pkt->sector,
981 		(unsigned long long)bio->bi_sector, err);
982 
983 	if (err)
984 		atomic_inc(&pkt->io_errors);
985 	if (atomic_dec_and_test(&pkt->io_wait)) {
986 		atomic_inc(&pkt->run_sm);
987 		wake_up(&pd->wqueue);
988 	}
989 	pkt_bio_finished(pd);
990 }
991 
992 static void pkt_end_io_packet_write(struct bio *bio, int err)
993 {
994 	struct packet_data *pkt = bio->bi_private;
995 	struct pktcdvd_device *pd = pkt->pd;
996 	BUG_ON(!pd);
997 
998 	pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, err);
999 
1000 	pd->stats.pkt_ended++;
1001 
1002 	pkt_bio_finished(pd);
1003 	atomic_dec(&pkt->io_wait);
1004 	atomic_inc(&pkt->run_sm);
1005 	wake_up(&pd->wqueue);
1006 }
1007 
1008 /*
1009  * Schedule reads for the holes in a packet
1010  */
1011 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1012 {
1013 	int frames_read = 0;
1014 	struct bio *bio;
1015 	int f;
1016 	char written[PACKET_MAX_SIZE];
1017 
1018 	BUG_ON(bio_list_empty(&pkt->orig_bios));
1019 
1020 	atomic_set(&pkt->io_wait, 0);
1021 	atomic_set(&pkt->io_errors, 0);
1022 
1023 	/*
1024 	 * Figure out which frames we need to read before we can write.
1025 	 */
1026 	memset(written, 0, sizeof(written));
1027 	spin_lock(&pkt->lock);
1028 	bio_list_for_each(bio, &pkt->orig_bios) {
1029 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1030 		int num_frames = bio->bi_size / CD_FRAMESIZE;
1031 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1032 		BUG_ON(first_frame < 0);
1033 		BUG_ON(first_frame + num_frames > pkt->frames);
1034 		for (f = first_frame; f < first_frame + num_frames; f++)
1035 			written[f] = 1;
1036 	}
1037 	spin_unlock(&pkt->lock);
1038 
1039 	if (pkt->cache_valid) {
1040 		pkt_dbg(2, pd, "zone %llx cached\n",
1041 			(unsigned long long)pkt->sector);
1042 		goto out_account;
1043 	}
1044 
1045 	/*
1046 	 * Schedule reads for missing parts of the packet.
1047 	 */
1048 	for (f = 0; f < pkt->frames; f++) {
1049 		int p, offset;
1050 
1051 		if (written[f])
1052 			continue;
1053 
1054 		bio = pkt->r_bios[f];
1055 		bio_reset(bio);
1056 		bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1057 		bio->bi_bdev = pd->bdev;
1058 		bio->bi_end_io = pkt_end_io_read;
1059 		bio->bi_private = pkt;
1060 
1061 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1062 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1063 		pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1064 			f, pkt->pages[p], offset);
1065 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1066 			BUG();
1067 
1068 		atomic_inc(&pkt->io_wait);
1069 		bio->bi_rw = READ;
1070 		pkt_queue_bio(pd, bio);
1071 		frames_read++;
1072 	}
1073 
1074 out_account:
1075 	pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1076 		frames_read, (unsigned long long)pkt->sector);
1077 	pd->stats.pkt_started++;
1078 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1079 }
1080 
1081 /*
1082  * Find a packet matching zone, or the least recently used packet if
1083  * there is no match.
1084  */
1085 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1086 {
1087 	struct packet_data *pkt;
1088 
1089 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1090 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1091 			list_del_init(&pkt->list);
1092 			if (pkt->sector != zone)
1093 				pkt->cache_valid = 0;
1094 			return pkt;
1095 		}
1096 	}
1097 	BUG();
1098 	return NULL;
1099 }
1100 
1101 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1102 {
1103 	if (pkt->cache_valid) {
1104 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1105 	} else {
1106 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1107 	}
1108 }
1109 
1110 /*
1111  * recover a failed write, query for relocation if possible
1112  *
1113  * returns 1 if recovery is possible, or 0 if not
1114  *
1115  */
1116 static int pkt_start_recovery(struct packet_data *pkt)
1117 {
1118 	/*
1119 	 * FIXME. We need help from the file system to implement
1120 	 * recovery handling.
1121 	 */
1122 	return 0;
1123 #if 0
1124 	struct request *rq = pkt->rq;
1125 	struct pktcdvd_device *pd = rq->rq_disk->private_data;
1126 	struct block_device *pkt_bdev;
1127 	struct super_block *sb = NULL;
1128 	unsigned long old_block, new_block;
1129 	sector_t new_sector;
1130 
1131 	pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1132 	if (pkt_bdev) {
1133 		sb = get_super(pkt_bdev);
1134 		bdput(pkt_bdev);
1135 	}
1136 
1137 	if (!sb)
1138 		return 0;
1139 
1140 	if (!sb->s_op->relocate_blocks)
1141 		goto out;
1142 
1143 	old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1144 	if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1145 		goto out;
1146 
1147 	new_sector = new_block * (CD_FRAMESIZE >> 9);
1148 	pkt->sector = new_sector;
1149 
1150 	bio_reset(pkt->bio);
1151 	pkt->bio->bi_bdev = pd->bdev;
1152 	pkt->bio->bi_rw = REQ_WRITE;
1153 	pkt->bio->bi_sector = new_sector;
1154 	pkt->bio->bi_size = pkt->frames * CD_FRAMESIZE;
1155 	pkt->bio->bi_vcnt = pkt->frames;
1156 
1157 	pkt->bio->bi_end_io = pkt_end_io_packet_write;
1158 	pkt->bio->bi_private = pkt;
1159 
1160 	drop_super(sb);
1161 	return 1;
1162 
1163 out:
1164 	drop_super(sb);
1165 	return 0;
1166 #endif
1167 }
1168 
1169 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1170 {
1171 #if PACKET_DEBUG > 1
1172 	static const char *state_name[] = {
1173 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1174 	};
1175 	enum packet_data_state old_state = pkt->state;
1176 	pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1177 		pkt->id, (unsigned long long)pkt->sector,
1178 		state_name[old_state], state_name[state]);
1179 #endif
1180 	pkt->state = state;
1181 }
1182 
1183 /*
1184  * Scan the work queue to see if we can start a new packet.
1185  * returns non-zero if any work was done.
1186  */
1187 static int pkt_handle_queue(struct pktcdvd_device *pd)
1188 {
1189 	struct packet_data *pkt, *p;
1190 	struct bio *bio = NULL;
1191 	sector_t zone = 0; /* Suppress gcc warning */
1192 	struct pkt_rb_node *node, *first_node;
1193 	struct rb_node *n;
1194 	int wakeup;
1195 
1196 	atomic_set(&pd->scan_queue, 0);
1197 
1198 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1199 		pkt_dbg(2, pd, "no pkt\n");
1200 		return 0;
1201 	}
1202 
1203 	/*
1204 	 * Try to find a zone we are not already working on.
1205 	 */
1206 	spin_lock(&pd->lock);
1207 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1208 	if (!first_node) {
1209 		n = rb_first(&pd->bio_queue);
1210 		if (n)
1211 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1212 	}
1213 	node = first_node;
1214 	while (node) {
1215 		bio = node->bio;
1216 		zone = get_zone(bio->bi_sector, pd);
1217 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1218 			if (p->sector == zone) {
1219 				bio = NULL;
1220 				goto try_next_bio;
1221 			}
1222 		}
1223 		break;
1224 try_next_bio:
1225 		node = pkt_rbtree_next(node);
1226 		if (!node) {
1227 			n = rb_first(&pd->bio_queue);
1228 			if (n)
1229 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1230 		}
1231 		if (node == first_node)
1232 			node = NULL;
1233 	}
1234 	spin_unlock(&pd->lock);
1235 	if (!bio) {
1236 		pkt_dbg(2, pd, "no bio\n");
1237 		return 0;
1238 	}
1239 
1240 	pkt = pkt_get_packet_data(pd, zone);
1241 
1242 	pd->current_sector = zone + pd->settings.size;
1243 	pkt->sector = zone;
1244 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1245 	pkt->write_size = 0;
1246 
1247 	/*
1248 	 * Scan work queue for bios in the same zone and link them
1249 	 * to this packet.
1250 	 */
1251 	spin_lock(&pd->lock);
1252 	pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1253 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1254 		bio = node->bio;
1255 		pkt_dbg(2, pd, "found zone=%llx\n",
1256 			(unsigned long long)get_zone(bio->bi_sector, pd));
1257 		if (get_zone(bio->bi_sector, pd) != zone)
1258 			break;
1259 		pkt_rbtree_erase(pd, node);
1260 		spin_lock(&pkt->lock);
1261 		bio_list_add(&pkt->orig_bios, bio);
1262 		pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1263 		spin_unlock(&pkt->lock);
1264 	}
1265 	/* check write congestion marks, and if bio_queue_size is
1266 	   below, wake up any waiters */
1267 	wakeup = (pd->write_congestion_on > 0
1268 	 		&& pd->bio_queue_size <= pd->write_congestion_off);
1269 	spin_unlock(&pd->lock);
1270 	if (wakeup) {
1271 		clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1272 					BLK_RW_ASYNC);
1273 	}
1274 
1275 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1276 	pkt_set_state(pkt, PACKET_WAITING_STATE);
1277 	atomic_set(&pkt->run_sm, 1);
1278 
1279 	spin_lock(&pd->cdrw.active_list_lock);
1280 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1281 	spin_unlock(&pd->cdrw.active_list_lock);
1282 
1283 	return 1;
1284 }
1285 
1286 /*
1287  * Assemble a bio to write one packet and queue the bio for processing
1288  * by the underlying block device.
1289  */
1290 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1291 {
1292 	int f;
1293 	struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1294 
1295 	bio_reset(pkt->w_bio);
1296 	pkt->w_bio->bi_sector = pkt->sector;
1297 	pkt->w_bio->bi_bdev = pd->bdev;
1298 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1299 	pkt->w_bio->bi_private = pkt;
1300 
1301 	/* XXX: locking? */
1302 	for (f = 0; f < pkt->frames; f++) {
1303 		bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1304 		bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1305 		if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1306 			BUG();
1307 	}
1308 	pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1309 
1310 	/*
1311 	 * Fill-in bvec with data from orig_bios.
1312 	 */
1313 	spin_lock(&pkt->lock);
1314 	bio_copy_data(pkt->w_bio, pkt->orig_bios.head);
1315 
1316 	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1317 	spin_unlock(&pkt->lock);
1318 
1319 	pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1320 		pkt->write_size, (unsigned long long)pkt->sector);
1321 
1322 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1323 		pkt_make_local_copy(pkt, bvec);
1324 		pkt->cache_valid = 1;
1325 	} else {
1326 		pkt->cache_valid = 0;
1327 	}
1328 
1329 	/* Start the write request */
1330 	atomic_set(&pkt->io_wait, 1);
1331 	pkt->w_bio->bi_rw = WRITE;
1332 	pkt_queue_bio(pd, pkt->w_bio);
1333 }
1334 
1335 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1336 {
1337 	struct bio *bio;
1338 
1339 	if (!uptodate)
1340 		pkt->cache_valid = 0;
1341 
1342 	/* Finish all bios corresponding to this packet */
1343 	while ((bio = bio_list_pop(&pkt->orig_bios)))
1344 		bio_endio(bio, uptodate ? 0 : -EIO);
1345 }
1346 
1347 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1348 {
1349 	int uptodate;
1350 
1351 	pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1352 
1353 	for (;;) {
1354 		switch (pkt->state) {
1355 		case PACKET_WAITING_STATE:
1356 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1357 				return;
1358 
1359 			pkt->sleep_time = 0;
1360 			pkt_gather_data(pd, pkt);
1361 			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1362 			break;
1363 
1364 		case PACKET_READ_WAIT_STATE:
1365 			if (atomic_read(&pkt->io_wait) > 0)
1366 				return;
1367 
1368 			if (atomic_read(&pkt->io_errors) > 0) {
1369 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1370 			} else {
1371 				pkt_start_write(pd, pkt);
1372 			}
1373 			break;
1374 
1375 		case PACKET_WRITE_WAIT_STATE:
1376 			if (atomic_read(&pkt->io_wait) > 0)
1377 				return;
1378 
1379 			if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1380 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1381 			} else {
1382 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1383 			}
1384 			break;
1385 
1386 		case PACKET_RECOVERY_STATE:
1387 			if (pkt_start_recovery(pkt)) {
1388 				pkt_start_write(pd, pkt);
1389 			} else {
1390 				pkt_dbg(2, pd, "No recovery possible\n");
1391 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1392 			}
1393 			break;
1394 
1395 		case PACKET_FINISHED_STATE:
1396 			uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1397 			pkt_finish_packet(pkt, uptodate);
1398 			return;
1399 
1400 		default:
1401 			BUG();
1402 			break;
1403 		}
1404 	}
1405 }
1406 
1407 static void pkt_handle_packets(struct pktcdvd_device *pd)
1408 {
1409 	struct packet_data *pkt, *next;
1410 
1411 	/*
1412 	 * Run state machine for active packets
1413 	 */
1414 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1415 		if (atomic_read(&pkt->run_sm) > 0) {
1416 			atomic_set(&pkt->run_sm, 0);
1417 			pkt_run_state_machine(pd, pkt);
1418 		}
1419 	}
1420 
1421 	/*
1422 	 * Move no longer active packets to the free list
1423 	 */
1424 	spin_lock(&pd->cdrw.active_list_lock);
1425 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1426 		if (pkt->state == PACKET_FINISHED_STATE) {
1427 			list_del(&pkt->list);
1428 			pkt_put_packet_data(pd, pkt);
1429 			pkt_set_state(pkt, PACKET_IDLE_STATE);
1430 			atomic_set(&pd->scan_queue, 1);
1431 		}
1432 	}
1433 	spin_unlock(&pd->cdrw.active_list_lock);
1434 }
1435 
1436 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1437 {
1438 	struct packet_data *pkt;
1439 	int i;
1440 
1441 	for (i = 0; i < PACKET_NUM_STATES; i++)
1442 		states[i] = 0;
1443 
1444 	spin_lock(&pd->cdrw.active_list_lock);
1445 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1446 		states[pkt->state]++;
1447 	}
1448 	spin_unlock(&pd->cdrw.active_list_lock);
1449 }
1450 
1451 /*
1452  * kcdrwd is woken up when writes have been queued for one of our
1453  * registered devices
1454  */
1455 static int kcdrwd(void *foobar)
1456 {
1457 	struct pktcdvd_device *pd = foobar;
1458 	struct packet_data *pkt;
1459 	long min_sleep_time, residue;
1460 
1461 	set_user_nice(current, -20);
1462 	set_freezable();
1463 
1464 	for (;;) {
1465 		DECLARE_WAITQUEUE(wait, current);
1466 
1467 		/*
1468 		 * Wait until there is something to do
1469 		 */
1470 		add_wait_queue(&pd->wqueue, &wait);
1471 		for (;;) {
1472 			set_current_state(TASK_INTERRUPTIBLE);
1473 
1474 			/* Check if we need to run pkt_handle_queue */
1475 			if (atomic_read(&pd->scan_queue) > 0)
1476 				goto work_to_do;
1477 
1478 			/* Check if we need to run the state machine for some packet */
1479 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1480 				if (atomic_read(&pkt->run_sm) > 0)
1481 					goto work_to_do;
1482 			}
1483 
1484 			/* Check if we need to process the iosched queues */
1485 			if (atomic_read(&pd->iosched.attention) != 0)
1486 				goto work_to_do;
1487 
1488 			/* Otherwise, go to sleep */
1489 			if (PACKET_DEBUG > 1) {
1490 				int states[PACKET_NUM_STATES];
1491 				pkt_count_states(pd, states);
1492 				pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1493 					states[0], states[1], states[2],
1494 					states[3], states[4], states[5]);
1495 			}
1496 
1497 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1498 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1499 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1500 					min_sleep_time = pkt->sleep_time;
1501 			}
1502 
1503 			pkt_dbg(2, pd, "sleeping\n");
1504 			residue = schedule_timeout(min_sleep_time);
1505 			pkt_dbg(2, pd, "wake up\n");
1506 
1507 			/* make swsusp happy with our thread */
1508 			try_to_freeze();
1509 
1510 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1511 				if (!pkt->sleep_time)
1512 					continue;
1513 				pkt->sleep_time -= min_sleep_time - residue;
1514 				if (pkt->sleep_time <= 0) {
1515 					pkt->sleep_time = 0;
1516 					atomic_inc(&pkt->run_sm);
1517 				}
1518 			}
1519 
1520 			if (kthread_should_stop())
1521 				break;
1522 		}
1523 work_to_do:
1524 		set_current_state(TASK_RUNNING);
1525 		remove_wait_queue(&pd->wqueue, &wait);
1526 
1527 		if (kthread_should_stop())
1528 			break;
1529 
1530 		/*
1531 		 * if pkt_handle_queue returns true, we can queue
1532 		 * another request.
1533 		 */
1534 		while (pkt_handle_queue(pd))
1535 			;
1536 
1537 		/*
1538 		 * Handle packet state machine
1539 		 */
1540 		pkt_handle_packets(pd);
1541 
1542 		/*
1543 		 * Handle iosched queues
1544 		 */
1545 		pkt_iosched_process_queue(pd);
1546 	}
1547 
1548 	return 0;
1549 }
1550 
1551 static void pkt_print_settings(struct pktcdvd_device *pd)
1552 {
1553 	pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1554 		 pd->settings.fp ? "Fixed" : "Variable",
1555 		 pd->settings.size >> 2,
1556 		 pd->settings.block_mode == 8 ? '1' : '2');
1557 }
1558 
1559 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1560 {
1561 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1562 
1563 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1564 	cgc->cmd[2] = page_code | (page_control << 6);
1565 	cgc->cmd[7] = cgc->buflen >> 8;
1566 	cgc->cmd[8] = cgc->buflen & 0xff;
1567 	cgc->data_direction = CGC_DATA_READ;
1568 	return pkt_generic_packet(pd, cgc);
1569 }
1570 
1571 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1572 {
1573 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1574 	memset(cgc->buffer, 0, 2);
1575 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1576 	cgc->cmd[1] = 0x10;		/* PF */
1577 	cgc->cmd[7] = cgc->buflen >> 8;
1578 	cgc->cmd[8] = cgc->buflen & 0xff;
1579 	cgc->data_direction = CGC_DATA_WRITE;
1580 	return pkt_generic_packet(pd, cgc);
1581 }
1582 
1583 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1584 {
1585 	struct packet_command cgc;
1586 	int ret;
1587 
1588 	/* set up command and get the disc info */
1589 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1590 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1591 	cgc.cmd[8] = cgc.buflen = 2;
1592 	cgc.quiet = 1;
1593 
1594 	if ((ret = pkt_generic_packet(pd, &cgc)))
1595 		return ret;
1596 
1597 	/* not all drives have the same disc_info length, so requeue
1598 	 * packet with the length the drive tells us it can supply
1599 	 */
1600 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1601 		     sizeof(di->disc_information_length);
1602 
1603 	if (cgc.buflen > sizeof(disc_information))
1604 		cgc.buflen = sizeof(disc_information);
1605 
1606 	cgc.cmd[8] = cgc.buflen;
1607 	return pkt_generic_packet(pd, &cgc);
1608 }
1609 
1610 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1611 {
1612 	struct packet_command cgc;
1613 	int ret;
1614 
1615 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1616 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1617 	cgc.cmd[1] = type & 3;
1618 	cgc.cmd[4] = (track & 0xff00) >> 8;
1619 	cgc.cmd[5] = track & 0xff;
1620 	cgc.cmd[8] = 8;
1621 	cgc.quiet = 1;
1622 
1623 	if ((ret = pkt_generic_packet(pd, &cgc)))
1624 		return ret;
1625 
1626 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1627 		     sizeof(ti->track_information_length);
1628 
1629 	if (cgc.buflen > sizeof(track_information))
1630 		cgc.buflen = sizeof(track_information);
1631 
1632 	cgc.cmd[8] = cgc.buflen;
1633 	return pkt_generic_packet(pd, &cgc);
1634 }
1635 
1636 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1637 						long *last_written)
1638 {
1639 	disc_information di;
1640 	track_information ti;
1641 	__u32 last_track;
1642 	int ret = -1;
1643 
1644 	if ((ret = pkt_get_disc_info(pd, &di)))
1645 		return ret;
1646 
1647 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1648 	if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1649 		return ret;
1650 
1651 	/* if this track is blank, try the previous. */
1652 	if (ti.blank) {
1653 		last_track--;
1654 		if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1655 			return ret;
1656 	}
1657 
1658 	/* if last recorded field is valid, return it. */
1659 	if (ti.lra_v) {
1660 		*last_written = be32_to_cpu(ti.last_rec_address);
1661 	} else {
1662 		/* make it up instead */
1663 		*last_written = be32_to_cpu(ti.track_start) +
1664 				be32_to_cpu(ti.track_size);
1665 		if (ti.free_blocks)
1666 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1667 	}
1668 	return 0;
1669 }
1670 
1671 /*
1672  * write mode select package based on pd->settings
1673  */
1674 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1675 {
1676 	struct packet_command cgc;
1677 	struct request_sense sense;
1678 	write_param_page *wp;
1679 	char buffer[128];
1680 	int ret, size;
1681 
1682 	/* doesn't apply to DVD+RW or DVD-RAM */
1683 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1684 		return 0;
1685 
1686 	memset(buffer, 0, sizeof(buffer));
1687 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1688 	cgc.sense = &sense;
1689 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1690 		pkt_dump_sense(pd, &cgc);
1691 		return ret;
1692 	}
1693 
1694 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1695 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1696 	if (size > sizeof(buffer))
1697 		size = sizeof(buffer);
1698 
1699 	/*
1700 	 * now get it all
1701 	 */
1702 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1703 	cgc.sense = &sense;
1704 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1705 		pkt_dump_sense(pd, &cgc);
1706 		return ret;
1707 	}
1708 
1709 	/*
1710 	 * write page is offset header + block descriptor length
1711 	 */
1712 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1713 
1714 	wp->fp = pd->settings.fp;
1715 	wp->track_mode = pd->settings.track_mode;
1716 	wp->write_type = pd->settings.write_type;
1717 	wp->data_block_type = pd->settings.block_mode;
1718 
1719 	wp->multi_session = 0;
1720 
1721 #ifdef PACKET_USE_LS
1722 	wp->link_size = 7;
1723 	wp->ls_v = 1;
1724 #endif
1725 
1726 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1727 		wp->session_format = 0;
1728 		wp->subhdr2 = 0x20;
1729 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1730 		wp->session_format = 0x20;
1731 		wp->subhdr2 = 8;
1732 #if 0
1733 		wp->mcn[0] = 0x80;
1734 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1735 #endif
1736 	} else {
1737 		/*
1738 		 * paranoia
1739 		 */
1740 		pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1741 		return 1;
1742 	}
1743 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1744 
1745 	cgc.buflen = cgc.cmd[8] = size;
1746 	if ((ret = pkt_mode_select(pd, &cgc))) {
1747 		pkt_dump_sense(pd, &cgc);
1748 		return ret;
1749 	}
1750 
1751 	pkt_print_settings(pd);
1752 	return 0;
1753 }
1754 
1755 /*
1756  * 1 -- we can write to this track, 0 -- we can't
1757  */
1758 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1759 {
1760 	switch (pd->mmc3_profile) {
1761 		case 0x1a: /* DVD+RW */
1762 		case 0x12: /* DVD-RAM */
1763 			/* The track is always writable on DVD+RW/DVD-RAM */
1764 			return 1;
1765 		default:
1766 			break;
1767 	}
1768 
1769 	if (!ti->packet || !ti->fp)
1770 		return 0;
1771 
1772 	/*
1773 	 * "good" settings as per Mt Fuji.
1774 	 */
1775 	if (ti->rt == 0 && ti->blank == 0)
1776 		return 1;
1777 
1778 	if (ti->rt == 0 && ti->blank == 1)
1779 		return 1;
1780 
1781 	if (ti->rt == 1 && ti->blank == 0)
1782 		return 1;
1783 
1784 	pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1785 	return 0;
1786 }
1787 
1788 /*
1789  * 1 -- we can write to this disc, 0 -- we can't
1790  */
1791 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1792 {
1793 	switch (pd->mmc3_profile) {
1794 		case 0x0a: /* CD-RW */
1795 		case 0xffff: /* MMC3 not supported */
1796 			break;
1797 		case 0x1a: /* DVD+RW */
1798 		case 0x13: /* DVD-RW */
1799 		case 0x12: /* DVD-RAM */
1800 			return 1;
1801 		default:
1802 			pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1803 				pd->mmc3_profile);
1804 			return 0;
1805 	}
1806 
1807 	/*
1808 	 * for disc type 0xff we should probably reserve a new track.
1809 	 * but i'm not sure, should we leave this to user apps? probably.
1810 	 */
1811 	if (di->disc_type == 0xff) {
1812 		pkt_notice(pd, "unknown disc - no track?\n");
1813 		return 0;
1814 	}
1815 
1816 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1817 		pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1818 		return 0;
1819 	}
1820 
1821 	if (di->erasable == 0) {
1822 		pkt_notice(pd, "disc not erasable\n");
1823 		return 0;
1824 	}
1825 
1826 	if (di->border_status == PACKET_SESSION_RESERVED) {
1827 		pkt_err(pd, "can't write to last track (reserved)\n");
1828 		return 0;
1829 	}
1830 
1831 	return 1;
1832 }
1833 
1834 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1835 {
1836 	struct packet_command cgc;
1837 	unsigned char buf[12];
1838 	disc_information di;
1839 	track_information ti;
1840 	int ret, track;
1841 
1842 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1843 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1844 	cgc.cmd[8] = 8;
1845 	ret = pkt_generic_packet(pd, &cgc);
1846 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1847 
1848 	memset(&di, 0, sizeof(disc_information));
1849 	memset(&ti, 0, sizeof(track_information));
1850 
1851 	if ((ret = pkt_get_disc_info(pd, &di))) {
1852 		pkt_err(pd, "failed get_disc\n");
1853 		return ret;
1854 	}
1855 
1856 	if (!pkt_writable_disc(pd, &di))
1857 		return -EROFS;
1858 
1859 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1860 
1861 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1862 	if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1863 		pkt_err(pd, "failed get_track\n");
1864 		return ret;
1865 	}
1866 
1867 	if (!pkt_writable_track(pd, &ti)) {
1868 		pkt_err(pd, "can't write to this track\n");
1869 		return -EROFS;
1870 	}
1871 
1872 	/*
1873 	 * we keep packet size in 512 byte units, makes it easier to
1874 	 * deal with request calculations.
1875 	 */
1876 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1877 	if (pd->settings.size == 0) {
1878 		pkt_notice(pd, "detected zero packet size!\n");
1879 		return -ENXIO;
1880 	}
1881 	if (pd->settings.size > PACKET_MAX_SECTORS) {
1882 		pkt_err(pd, "packet size is too big\n");
1883 		return -EROFS;
1884 	}
1885 	pd->settings.fp = ti.fp;
1886 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1887 
1888 	if (ti.nwa_v) {
1889 		pd->nwa = be32_to_cpu(ti.next_writable);
1890 		set_bit(PACKET_NWA_VALID, &pd->flags);
1891 	}
1892 
1893 	/*
1894 	 * in theory we could use lra on -RW media as well and just zero
1895 	 * blocks that haven't been written yet, but in practice that
1896 	 * is just a no-go. we'll use that for -R, naturally.
1897 	 */
1898 	if (ti.lra_v) {
1899 		pd->lra = be32_to_cpu(ti.last_rec_address);
1900 		set_bit(PACKET_LRA_VALID, &pd->flags);
1901 	} else {
1902 		pd->lra = 0xffffffff;
1903 		set_bit(PACKET_LRA_VALID, &pd->flags);
1904 	}
1905 
1906 	/*
1907 	 * fine for now
1908 	 */
1909 	pd->settings.link_loss = 7;
1910 	pd->settings.write_type = 0;	/* packet */
1911 	pd->settings.track_mode = ti.track_mode;
1912 
1913 	/*
1914 	 * mode1 or mode2 disc
1915 	 */
1916 	switch (ti.data_mode) {
1917 		case PACKET_MODE1:
1918 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1919 			break;
1920 		case PACKET_MODE2:
1921 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1922 			break;
1923 		default:
1924 			pkt_err(pd, "unknown data mode\n");
1925 			return -EROFS;
1926 	}
1927 	return 0;
1928 }
1929 
1930 /*
1931  * enable/disable write caching on drive
1932  */
1933 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1934 						int set)
1935 {
1936 	struct packet_command cgc;
1937 	struct request_sense sense;
1938 	unsigned char buf[64];
1939 	int ret;
1940 
1941 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1942 	cgc.sense = &sense;
1943 	cgc.buflen = pd->mode_offset + 12;
1944 
1945 	/*
1946 	 * caching mode page might not be there, so quiet this command
1947 	 */
1948 	cgc.quiet = 1;
1949 
1950 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1951 		return ret;
1952 
1953 	buf[pd->mode_offset + 10] |= (!!set << 2);
1954 
1955 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1956 	ret = pkt_mode_select(pd, &cgc);
1957 	if (ret) {
1958 		pkt_err(pd, "write caching control failed\n");
1959 		pkt_dump_sense(pd, &cgc);
1960 	} else if (!ret && set)
1961 		pkt_notice(pd, "enabled write caching\n");
1962 	return ret;
1963 }
1964 
1965 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1966 {
1967 	struct packet_command cgc;
1968 
1969 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1970 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1971 	cgc.cmd[4] = lockflag ? 1 : 0;
1972 	return pkt_generic_packet(pd, &cgc);
1973 }
1974 
1975 /*
1976  * Returns drive maximum write speed
1977  */
1978 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1979 						unsigned *write_speed)
1980 {
1981 	struct packet_command cgc;
1982 	struct request_sense sense;
1983 	unsigned char buf[256+18];
1984 	unsigned char *cap_buf;
1985 	int ret, offset;
1986 
1987 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1988 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1989 	cgc.sense = &sense;
1990 
1991 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1992 	if (ret) {
1993 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1994 			     sizeof(struct mode_page_header);
1995 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1996 		if (ret) {
1997 			pkt_dump_sense(pd, &cgc);
1998 			return ret;
1999 		}
2000 	}
2001 
2002 	offset = 20;			    /* Obsoleted field, used by older drives */
2003 	if (cap_buf[1] >= 28)
2004 		offset = 28;		    /* Current write speed selected */
2005 	if (cap_buf[1] >= 30) {
2006 		/* If the drive reports at least one "Logical Unit Write
2007 		 * Speed Performance Descriptor Block", use the information
2008 		 * in the first block. (contains the highest speed)
2009 		 */
2010 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2011 		if (num_spdb > 0)
2012 			offset = 34;
2013 	}
2014 
2015 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2016 	return 0;
2017 }
2018 
2019 /* These tables from cdrecord - I don't have orange book */
2020 /* standard speed CD-RW (1-4x) */
2021 static char clv_to_speed[16] = {
2022 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2023 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2024 };
2025 /* high speed CD-RW (-10x) */
2026 static char hs_clv_to_speed[16] = {
2027 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2028 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2029 };
2030 /* ultra high speed CD-RW */
2031 static char us_clv_to_speed[16] = {
2032 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2033 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2034 };
2035 
2036 /*
2037  * reads the maximum media speed from ATIP
2038  */
2039 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2040 						unsigned *speed)
2041 {
2042 	struct packet_command cgc;
2043 	struct request_sense sense;
2044 	unsigned char buf[64];
2045 	unsigned int size, st, sp;
2046 	int ret;
2047 
2048 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2049 	cgc.sense = &sense;
2050 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2051 	cgc.cmd[1] = 2;
2052 	cgc.cmd[2] = 4; /* READ ATIP */
2053 	cgc.cmd[8] = 2;
2054 	ret = pkt_generic_packet(pd, &cgc);
2055 	if (ret) {
2056 		pkt_dump_sense(pd, &cgc);
2057 		return ret;
2058 	}
2059 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2060 	if (size > sizeof(buf))
2061 		size = sizeof(buf);
2062 
2063 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2064 	cgc.sense = &sense;
2065 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2066 	cgc.cmd[1] = 2;
2067 	cgc.cmd[2] = 4;
2068 	cgc.cmd[8] = size;
2069 	ret = pkt_generic_packet(pd, &cgc);
2070 	if (ret) {
2071 		pkt_dump_sense(pd, &cgc);
2072 		return ret;
2073 	}
2074 
2075 	if (!(buf[6] & 0x40)) {
2076 		pkt_notice(pd, "disc type is not CD-RW\n");
2077 		return 1;
2078 	}
2079 	if (!(buf[6] & 0x4)) {
2080 		pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2081 		return 1;
2082 	}
2083 
2084 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2085 
2086 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2087 
2088 	/* Info from cdrecord */
2089 	switch (st) {
2090 		case 0: /* standard speed */
2091 			*speed = clv_to_speed[sp];
2092 			break;
2093 		case 1: /* high speed */
2094 			*speed = hs_clv_to_speed[sp];
2095 			break;
2096 		case 2: /* ultra high speed */
2097 			*speed = us_clv_to_speed[sp];
2098 			break;
2099 		default:
2100 			pkt_notice(pd, "unknown disc sub-type %d\n", st);
2101 			return 1;
2102 	}
2103 	if (*speed) {
2104 		pkt_info(pd, "maximum media speed: %d\n", *speed);
2105 		return 0;
2106 	} else {
2107 		pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2108 		return 1;
2109 	}
2110 }
2111 
2112 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2113 {
2114 	struct packet_command cgc;
2115 	struct request_sense sense;
2116 	int ret;
2117 
2118 	pkt_dbg(2, pd, "Performing OPC\n");
2119 
2120 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2121 	cgc.sense = &sense;
2122 	cgc.timeout = 60*HZ;
2123 	cgc.cmd[0] = GPCMD_SEND_OPC;
2124 	cgc.cmd[1] = 1;
2125 	if ((ret = pkt_generic_packet(pd, &cgc)))
2126 		pkt_dump_sense(pd, &cgc);
2127 	return ret;
2128 }
2129 
2130 static int pkt_open_write(struct pktcdvd_device *pd)
2131 {
2132 	int ret;
2133 	unsigned int write_speed, media_write_speed, read_speed;
2134 
2135 	if ((ret = pkt_probe_settings(pd))) {
2136 		pkt_dbg(2, pd, "failed probe\n");
2137 		return ret;
2138 	}
2139 
2140 	if ((ret = pkt_set_write_settings(pd))) {
2141 		pkt_dbg(1, pd, "failed saving write settings\n");
2142 		return -EIO;
2143 	}
2144 
2145 	pkt_write_caching(pd, USE_WCACHING);
2146 
2147 	if ((ret = pkt_get_max_speed(pd, &write_speed)))
2148 		write_speed = 16 * 177;
2149 	switch (pd->mmc3_profile) {
2150 		case 0x13: /* DVD-RW */
2151 		case 0x1a: /* DVD+RW */
2152 		case 0x12: /* DVD-RAM */
2153 			pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2154 			break;
2155 		default:
2156 			if ((ret = pkt_media_speed(pd, &media_write_speed)))
2157 				media_write_speed = 16;
2158 			write_speed = min(write_speed, media_write_speed * 177);
2159 			pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2160 			break;
2161 	}
2162 	read_speed = write_speed;
2163 
2164 	if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2165 		pkt_dbg(1, pd, "couldn't set write speed\n");
2166 		return -EIO;
2167 	}
2168 	pd->write_speed = write_speed;
2169 	pd->read_speed = read_speed;
2170 
2171 	if ((ret = pkt_perform_opc(pd))) {
2172 		pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2173 	}
2174 
2175 	return 0;
2176 }
2177 
2178 /*
2179  * called at open time.
2180  */
2181 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2182 {
2183 	int ret;
2184 	long lba;
2185 	struct request_queue *q;
2186 
2187 	/*
2188 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2189 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2190 	 * so bdget() can't fail.
2191 	 */
2192 	bdget(pd->bdev->bd_dev);
2193 	if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2194 		goto out;
2195 
2196 	if ((ret = pkt_get_last_written(pd, &lba))) {
2197 		pkt_err(pd, "pkt_get_last_written failed\n");
2198 		goto out_putdev;
2199 	}
2200 
2201 	set_capacity(pd->disk, lba << 2);
2202 	set_capacity(pd->bdev->bd_disk, lba << 2);
2203 	bd_set_size(pd->bdev, (loff_t)lba << 11);
2204 
2205 	q = bdev_get_queue(pd->bdev);
2206 	if (write) {
2207 		if ((ret = pkt_open_write(pd)))
2208 			goto out_putdev;
2209 		/*
2210 		 * Some CDRW drives can not handle writes larger than one packet,
2211 		 * even if the size is a multiple of the packet size.
2212 		 */
2213 		spin_lock_irq(q->queue_lock);
2214 		blk_queue_max_hw_sectors(q, pd->settings.size);
2215 		spin_unlock_irq(q->queue_lock);
2216 		set_bit(PACKET_WRITABLE, &pd->flags);
2217 	} else {
2218 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2219 		clear_bit(PACKET_WRITABLE, &pd->flags);
2220 	}
2221 
2222 	if ((ret = pkt_set_segment_merging(pd, q)))
2223 		goto out_putdev;
2224 
2225 	if (write) {
2226 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2227 			pkt_err(pd, "not enough memory for buffers\n");
2228 			ret = -ENOMEM;
2229 			goto out_putdev;
2230 		}
2231 		pkt_info(pd, "%lukB available on disc\n", lba << 1);
2232 	}
2233 
2234 	return 0;
2235 
2236 out_putdev:
2237 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2238 out:
2239 	return ret;
2240 }
2241 
2242 /*
2243  * called when the device is closed. makes sure that the device flushes
2244  * the internal cache before we close.
2245  */
2246 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2247 {
2248 	if (flush && pkt_flush_cache(pd))
2249 		pkt_dbg(1, pd, "not flushing cache\n");
2250 
2251 	pkt_lock_door(pd, 0);
2252 
2253 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2254 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2255 
2256 	pkt_shrink_pktlist(pd);
2257 }
2258 
2259 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2260 {
2261 	if (dev_minor >= MAX_WRITERS)
2262 		return NULL;
2263 	return pkt_devs[dev_minor];
2264 }
2265 
2266 static int pkt_open(struct block_device *bdev, fmode_t mode)
2267 {
2268 	struct pktcdvd_device *pd = NULL;
2269 	int ret;
2270 
2271 	mutex_lock(&pktcdvd_mutex);
2272 	mutex_lock(&ctl_mutex);
2273 	pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2274 	if (!pd) {
2275 		ret = -ENODEV;
2276 		goto out;
2277 	}
2278 	BUG_ON(pd->refcnt < 0);
2279 
2280 	pd->refcnt++;
2281 	if (pd->refcnt > 1) {
2282 		if ((mode & FMODE_WRITE) &&
2283 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2284 			ret = -EBUSY;
2285 			goto out_dec;
2286 		}
2287 	} else {
2288 		ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2289 		if (ret)
2290 			goto out_dec;
2291 		/*
2292 		 * needed here as well, since ext2 (among others) may change
2293 		 * the blocksize at mount time
2294 		 */
2295 		set_blocksize(bdev, CD_FRAMESIZE);
2296 	}
2297 
2298 	mutex_unlock(&ctl_mutex);
2299 	mutex_unlock(&pktcdvd_mutex);
2300 	return 0;
2301 
2302 out_dec:
2303 	pd->refcnt--;
2304 out:
2305 	mutex_unlock(&ctl_mutex);
2306 	mutex_unlock(&pktcdvd_mutex);
2307 	return ret;
2308 }
2309 
2310 static void pkt_close(struct gendisk *disk, fmode_t mode)
2311 {
2312 	struct pktcdvd_device *pd = disk->private_data;
2313 
2314 	mutex_lock(&pktcdvd_mutex);
2315 	mutex_lock(&ctl_mutex);
2316 	pd->refcnt--;
2317 	BUG_ON(pd->refcnt < 0);
2318 	if (pd->refcnt == 0) {
2319 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2320 		pkt_release_dev(pd, flush);
2321 	}
2322 	mutex_unlock(&ctl_mutex);
2323 	mutex_unlock(&pktcdvd_mutex);
2324 }
2325 
2326 
2327 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2328 {
2329 	struct packet_stacked_data *psd = bio->bi_private;
2330 	struct pktcdvd_device *pd = psd->pd;
2331 
2332 	bio_put(bio);
2333 	bio_endio(psd->bio, err);
2334 	mempool_free(psd, psd_pool);
2335 	pkt_bio_finished(pd);
2336 }
2337 
2338 static void pkt_make_request(struct request_queue *q, struct bio *bio)
2339 {
2340 	struct pktcdvd_device *pd;
2341 	char b[BDEVNAME_SIZE];
2342 	sector_t zone;
2343 	struct packet_data *pkt;
2344 	int was_empty, blocked_bio;
2345 	struct pkt_rb_node *node;
2346 
2347 	pd = q->queuedata;
2348 	if (!pd) {
2349 		pr_err("%s incorrect request queue\n",
2350 		       bdevname(bio->bi_bdev, b));
2351 		goto end_io;
2352 	}
2353 
2354 	/*
2355 	 * Clone READ bios so we can have our own bi_end_io callback.
2356 	 */
2357 	if (bio_data_dir(bio) == READ) {
2358 		struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2359 		struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2360 
2361 		psd->pd = pd;
2362 		psd->bio = bio;
2363 		cloned_bio->bi_bdev = pd->bdev;
2364 		cloned_bio->bi_private = psd;
2365 		cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2366 		pd->stats.secs_r += bio_sectors(bio);
2367 		pkt_queue_bio(pd, cloned_bio);
2368 		return;
2369 	}
2370 
2371 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2372 		pkt_notice(pd, "WRITE for ro device (%llu)\n",
2373 			   (unsigned long long)bio->bi_sector);
2374 		goto end_io;
2375 	}
2376 
2377 	if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2378 		pkt_err(pd, "wrong bio size\n");
2379 		goto end_io;
2380 	}
2381 
2382 	blk_queue_bounce(q, &bio);
2383 
2384 	zone = get_zone(bio->bi_sector, pd);
2385 	pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2386 		(unsigned long long)bio->bi_sector,
2387 		(unsigned long long)bio_end_sector(bio));
2388 
2389 	/* Check if we have to split the bio */
2390 	{
2391 		struct bio_pair *bp;
2392 		sector_t last_zone;
2393 		int first_sectors;
2394 
2395 		last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2396 		if (last_zone != zone) {
2397 			BUG_ON(last_zone != zone + pd->settings.size);
2398 			first_sectors = last_zone - bio->bi_sector;
2399 			bp = bio_split(bio, first_sectors);
2400 			BUG_ON(!bp);
2401 			pkt_make_request(q, &bp->bio1);
2402 			pkt_make_request(q, &bp->bio2);
2403 			bio_pair_release(bp);
2404 			return;
2405 		}
2406 	}
2407 
2408 	/*
2409 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2410 	 * just append this bio to that packet.
2411 	 */
2412 	spin_lock(&pd->cdrw.active_list_lock);
2413 	blocked_bio = 0;
2414 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2415 		if (pkt->sector == zone) {
2416 			spin_lock(&pkt->lock);
2417 			if ((pkt->state == PACKET_WAITING_STATE) ||
2418 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2419 				bio_list_add(&pkt->orig_bios, bio);
2420 				pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2421 				if ((pkt->write_size >= pkt->frames) &&
2422 				    (pkt->state == PACKET_WAITING_STATE)) {
2423 					atomic_inc(&pkt->run_sm);
2424 					wake_up(&pd->wqueue);
2425 				}
2426 				spin_unlock(&pkt->lock);
2427 				spin_unlock(&pd->cdrw.active_list_lock);
2428 				return;
2429 			} else {
2430 				blocked_bio = 1;
2431 			}
2432 			spin_unlock(&pkt->lock);
2433 		}
2434 	}
2435 	spin_unlock(&pd->cdrw.active_list_lock);
2436 
2437  	/*
2438 	 * Test if there is enough room left in the bio work queue
2439 	 * (queue size >= congestion on mark).
2440 	 * If not, wait till the work queue size is below the congestion off mark.
2441 	 */
2442 	spin_lock(&pd->lock);
2443 	if (pd->write_congestion_on > 0
2444 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2445 		set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2446 		do {
2447 			spin_unlock(&pd->lock);
2448 			congestion_wait(BLK_RW_ASYNC, HZ);
2449 			spin_lock(&pd->lock);
2450 		} while(pd->bio_queue_size > pd->write_congestion_off);
2451 	}
2452 	spin_unlock(&pd->lock);
2453 
2454 	/*
2455 	 * No matching packet found. Store the bio in the work queue.
2456 	 */
2457 	node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2458 	node->bio = bio;
2459 	spin_lock(&pd->lock);
2460 	BUG_ON(pd->bio_queue_size < 0);
2461 	was_empty = (pd->bio_queue_size == 0);
2462 	pkt_rbtree_insert(pd, node);
2463 	spin_unlock(&pd->lock);
2464 
2465 	/*
2466 	 * Wake up the worker thread.
2467 	 */
2468 	atomic_set(&pd->scan_queue, 1);
2469 	if (was_empty) {
2470 		/* This wake_up is required for correct operation */
2471 		wake_up(&pd->wqueue);
2472 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2473 		/*
2474 		 * This wake up is not required for correct operation,
2475 		 * but improves performance in some cases.
2476 		 */
2477 		wake_up(&pd->wqueue);
2478 	}
2479 	return;
2480 end_io:
2481 	bio_io_error(bio);
2482 }
2483 
2484 
2485 
2486 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2487 			  struct bio_vec *bvec)
2488 {
2489 	struct pktcdvd_device *pd = q->queuedata;
2490 	sector_t zone = get_zone(bmd->bi_sector, pd);
2491 	int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2492 	int remaining = (pd->settings.size << 9) - used;
2493 	int remaining2;
2494 
2495 	/*
2496 	 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2497 	 * boundary, pkt_make_request() will split the bio.
2498 	 */
2499 	remaining2 = PAGE_SIZE - bmd->bi_size;
2500 	remaining = max(remaining, remaining2);
2501 
2502 	BUG_ON(remaining < 0);
2503 	return remaining;
2504 }
2505 
2506 static void pkt_init_queue(struct pktcdvd_device *pd)
2507 {
2508 	struct request_queue *q = pd->disk->queue;
2509 
2510 	blk_queue_make_request(q, pkt_make_request);
2511 	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2512 	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2513 	blk_queue_merge_bvec(q, pkt_merge_bvec);
2514 	q->queuedata = pd;
2515 }
2516 
2517 static int pkt_seq_show(struct seq_file *m, void *p)
2518 {
2519 	struct pktcdvd_device *pd = m->private;
2520 	char *msg;
2521 	char bdev_buf[BDEVNAME_SIZE];
2522 	int states[PACKET_NUM_STATES];
2523 
2524 	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2525 		   bdevname(pd->bdev, bdev_buf));
2526 
2527 	seq_printf(m, "\nSettings:\n");
2528 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2529 
2530 	if (pd->settings.write_type == 0)
2531 		msg = "Packet";
2532 	else
2533 		msg = "Unknown";
2534 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2535 
2536 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2537 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2538 
2539 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2540 
2541 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2542 		msg = "Mode 1";
2543 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2544 		msg = "Mode 2";
2545 	else
2546 		msg = "Unknown";
2547 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2548 
2549 	seq_printf(m, "\nStatistics:\n");
2550 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2551 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2552 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2553 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2554 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2555 
2556 	seq_printf(m, "\nMisc:\n");
2557 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2558 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2559 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2560 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2561 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2562 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2563 
2564 	seq_printf(m, "\nQueue state:\n");
2565 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2566 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2567 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2568 
2569 	pkt_count_states(pd, states);
2570 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2571 		   states[0], states[1], states[2], states[3], states[4], states[5]);
2572 
2573 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2574 			pd->write_congestion_off,
2575 			pd->write_congestion_on);
2576 	return 0;
2577 }
2578 
2579 static int pkt_seq_open(struct inode *inode, struct file *file)
2580 {
2581 	return single_open(file, pkt_seq_show, PDE_DATA(inode));
2582 }
2583 
2584 static const struct file_operations pkt_proc_fops = {
2585 	.open	= pkt_seq_open,
2586 	.read	= seq_read,
2587 	.llseek	= seq_lseek,
2588 	.release = single_release
2589 };
2590 
2591 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2592 {
2593 	int i;
2594 	int ret = 0;
2595 	char b[BDEVNAME_SIZE];
2596 	struct block_device *bdev;
2597 
2598 	if (pd->pkt_dev == dev) {
2599 		pkt_err(pd, "recursive setup not allowed\n");
2600 		return -EBUSY;
2601 	}
2602 	for (i = 0; i < MAX_WRITERS; i++) {
2603 		struct pktcdvd_device *pd2 = pkt_devs[i];
2604 		if (!pd2)
2605 			continue;
2606 		if (pd2->bdev->bd_dev == dev) {
2607 			pkt_err(pd, "%s already setup\n",
2608 				bdevname(pd2->bdev, b));
2609 			return -EBUSY;
2610 		}
2611 		if (pd2->pkt_dev == dev) {
2612 			pkt_err(pd, "can't chain pktcdvd devices\n");
2613 			return -EBUSY;
2614 		}
2615 	}
2616 
2617 	bdev = bdget(dev);
2618 	if (!bdev)
2619 		return -ENOMEM;
2620 	ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2621 	if (ret)
2622 		return ret;
2623 
2624 	/* This is safe, since we have a reference from open(). */
2625 	__module_get(THIS_MODULE);
2626 
2627 	pd->bdev = bdev;
2628 	set_blocksize(bdev, CD_FRAMESIZE);
2629 
2630 	pkt_init_queue(pd);
2631 
2632 	atomic_set(&pd->cdrw.pending_bios, 0);
2633 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2634 	if (IS_ERR(pd->cdrw.thread)) {
2635 		pkt_err(pd, "can't start kernel thread\n");
2636 		ret = -ENOMEM;
2637 		goto out_mem;
2638 	}
2639 
2640 	proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2641 	pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2642 	return 0;
2643 
2644 out_mem:
2645 	blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2646 	/* This is safe: open() is still holding a reference. */
2647 	module_put(THIS_MODULE);
2648 	return ret;
2649 }
2650 
2651 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2652 {
2653 	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2654 	int ret;
2655 
2656 	pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2657 		cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2658 
2659 	mutex_lock(&pktcdvd_mutex);
2660 	switch (cmd) {
2661 	case CDROMEJECT:
2662 		/*
2663 		 * The door gets locked when the device is opened, so we
2664 		 * have to unlock it or else the eject command fails.
2665 		 */
2666 		if (pd->refcnt == 1)
2667 			pkt_lock_door(pd, 0);
2668 		/* fallthru */
2669 	/*
2670 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2671 	 */
2672 	case CDROMMULTISESSION:
2673 	case CDROMREADTOCENTRY:
2674 	case CDROM_LAST_WRITTEN:
2675 	case CDROM_SEND_PACKET:
2676 	case SCSI_IOCTL_SEND_COMMAND:
2677 		ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2678 		break;
2679 
2680 	default:
2681 		pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2682 		ret = -ENOTTY;
2683 	}
2684 	mutex_unlock(&pktcdvd_mutex);
2685 
2686 	return ret;
2687 }
2688 
2689 static unsigned int pkt_check_events(struct gendisk *disk,
2690 				     unsigned int clearing)
2691 {
2692 	struct pktcdvd_device *pd = disk->private_data;
2693 	struct gendisk *attached_disk;
2694 
2695 	if (!pd)
2696 		return 0;
2697 	if (!pd->bdev)
2698 		return 0;
2699 	attached_disk = pd->bdev->bd_disk;
2700 	if (!attached_disk || !attached_disk->fops->check_events)
2701 		return 0;
2702 	return attached_disk->fops->check_events(attached_disk, clearing);
2703 }
2704 
2705 static const struct block_device_operations pktcdvd_ops = {
2706 	.owner =		THIS_MODULE,
2707 	.open =			pkt_open,
2708 	.release =		pkt_close,
2709 	.ioctl =		pkt_ioctl,
2710 	.check_events =		pkt_check_events,
2711 };
2712 
2713 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2714 {
2715 	return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2716 }
2717 
2718 /*
2719  * Set up mapping from pktcdvd device to CD-ROM device.
2720  */
2721 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2722 {
2723 	int idx;
2724 	int ret = -ENOMEM;
2725 	struct pktcdvd_device *pd;
2726 	struct gendisk *disk;
2727 
2728 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2729 
2730 	for (idx = 0; idx < MAX_WRITERS; idx++)
2731 		if (!pkt_devs[idx])
2732 			break;
2733 	if (idx == MAX_WRITERS) {
2734 		pr_err("max %d writers supported\n", MAX_WRITERS);
2735 		ret = -EBUSY;
2736 		goto out_mutex;
2737 	}
2738 
2739 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2740 	if (!pd)
2741 		goto out_mutex;
2742 
2743 	pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2744 						  sizeof(struct pkt_rb_node));
2745 	if (!pd->rb_pool)
2746 		goto out_mem;
2747 
2748 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2749 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2750 	spin_lock_init(&pd->cdrw.active_list_lock);
2751 
2752 	spin_lock_init(&pd->lock);
2753 	spin_lock_init(&pd->iosched.lock);
2754 	bio_list_init(&pd->iosched.read_queue);
2755 	bio_list_init(&pd->iosched.write_queue);
2756 	sprintf(pd->name, DRIVER_NAME"%d", idx);
2757 	init_waitqueue_head(&pd->wqueue);
2758 	pd->bio_queue = RB_ROOT;
2759 
2760 	pd->write_congestion_on  = write_congestion_on;
2761 	pd->write_congestion_off = write_congestion_off;
2762 
2763 	disk = alloc_disk(1);
2764 	if (!disk)
2765 		goto out_mem;
2766 	pd->disk = disk;
2767 	disk->major = pktdev_major;
2768 	disk->first_minor = idx;
2769 	disk->fops = &pktcdvd_ops;
2770 	disk->flags = GENHD_FL_REMOVABLE;
2771 	strcpy(disk->disk_name, pd->name);
2772 	disk->devnode = pktcdvd_devnode;
2773 	disk->private_data = pd;
2774 	disk->queue = blk_alloc_queue(GFP_KERNEL);
2775 	if (!disk->queue)
2776 		goto out_mem2;
2777 
2778 	pd->pkt_dev = MKDEV(pktdev_major, idx);
2779 	ret = pkt_new_dev(pd, dev);
2780 	if (ret)
2781 		goto out_new_dev;
2782 
2783 	/* inherit events of the host device */
2784 	disk->events = pd->bdev->bd_disk->events;
2785 	disk->async_events = pd->bdev->bd_disk->async_events;
2786 
2787 	add_disk(disk);
2788 
2789 	pkt_sysfs_dev_new(pd);
2790 	pkt_debugfs_dev_new(pd);
2791 
2792 	pkt_devs[idx] = pd;
2793 	if (pkt_dev)
2794 		*pkt_dev = pd->pkt_dev;
2795 
2796 	mutex_unlock(&ctl_mutex);
2797 	return 0;
2798 
2799 out_new_dev:
2800 	blk_cleanup_queue(disk->queue);
2801 out_mem2:
2802 	put_disk(disk);
2803 out_mem:
2804 	if (pd->rb_pool)
2805 		mempool_destroy(pd->rb_pool);
2806 	kfree(pd);
2807 out_mutex:
2808 	mutex_unlock(&ctl_mutex);
2809 	pr_err("setup of pktcdvd device failed\n");
2810 	return ret;
2811 }
2812 
2813 /*
2814  * Tear down mapping from pktcdvd device to CD-ROM device.
2815  */
2816 static int pkt_remove_dev(dev_t pkt_dev)
2817 {
2818 	struct pktcdvd_device *pd;
2819 	int idx;
2820 	int ret = 0;
2821 
2822 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2823 
2824 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2825 		pd = pkt_devs[idx];
2826 		if (pd && (pd->pkt_dev == pkt_dev))
2827 			break;
2828 	}
2829 	if (idx == MAX_WRITERS) {
2830 		pr_debug("dev not setup\n");
2831 		ret = -ENXIO;
2832 		goto out;
2833 	}
2834 
2835 	if (pd->refcnt > 0) {
2836 		ret = -EBUSY;
2837 		goto out;
2838 	}
2839 	if (!IS_ERR(pd->cdrw.thread))
2840 		kthread_stop(pd->cdrw.thread);
2841 
2842 	pkt_devs[idx] = NULL;
2843 
2844 	pkt_debugfs_dev_remove(pd);
2845 	pkt_sysfs_dev_remove(pd);
2846 
2847 	blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2848 
2849 	remove_proc_entry(pd->name, pkt_proc);
2850 	pkt_dbg(1, pd, "writer unmapped\n");
2851 
2852 	del_gendisk(pd->disk);
2853 	blk_cleanup_queue(pd->disk->queue);
2854 	put_disk(pd->disk);
2855 
2856 	mempool_destroy(pd->rb_pool);
2857 	kfree(pd);
2858 
2859 	/* This is safe: open() is still holding a reference. */
2860 	module_put(THIS_MODULE);
2861 
2862 out:
2863 	mutex_unlock(&ctl_mutex);
2864 	return ret;
2865 }
2866 
2867 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2868 {
2869 	struct pktcdvd_device *pd;
2870 
2871 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2872 
2873 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2874 	if (pd) {
2875 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2876 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2877 	} else {
2878 		ctrl_cmd->dev = 0;
2879 		ctrl_cmd->pkt_dev = 0;
2880 	}
2881 	ctrl_cmd->num_devices = MAX_WRITERS;
2882 
2883 	mutex_unlock(&ctl_mutex);
2884 }
2885 
2886 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2887 {
2888 	void __user *argp = (void __user *)arg;
2889 	struct pkt_ctrl_command ctrl_cmd;
2890 	int ret = 0;
2891 	dev_t pkt_dev = 0;
2892 
2893 	if (cmd != PACKET_CTRL_CMD)
2894 		return -ENOTTY;
2895 
2896 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2897 		return -EFAULT;
2898 
2899 	switch (ctrl_cmd.command) {
2900 	case PKT_CTRL_CMD_SETUP:
2901 		if (!capable(CAP_SYS_ADMIN))
2902 			return -EPERM;
2903 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2904 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2905 		break;
2906 	case PKT_CTRL_CMD_TEARDOWN:
2907 		if (!capable(CAP_SYS_ADMIN))
2908 			return -EPERM;
2909 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2910 		break;
2911 	case PKT_CTRL_CMD_STATUS:
2912 		pkt_get_status(&ctrl_cmd);
2913 		break;
2914 	default:
2915 		return -ENOTTY;
2916 	}
2917 
2918 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2919 		return -EFAULT;
2920 	return ret;
2921 }
2922 
2923 #ifdef CONFIG_COMPAT
2924 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2925 {
2926 	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2927 }
2928 #endif
2929 
2930 static const struct file_operations pkt_ctl_fops = {
2931 	.open		= nonseekable_open,
2932 	.unlocked_ioctl	= pkt_ctl_ioctl,
2933 #ifdef CONFIG_COMPAT
2934 	.compat_ioctl	= pkt_ctl_compat_ioctl,
2935 #endif
2936 	.owner		= THIS_MODULE,
2937 	.llseek		= no_llseek,
2938 };
2939 
2940 static struct miscdevice pkt_misc = {
2941 	.minor 		= MISC_DYNAMIC_MINOR,
2942 	.name  		= DRIVER_NAME,
2943 	.nodename	= "pktcdvd/control",
2944 	.fops  		= &pkt_ctl_fops
2945 };
2946 
2947 static int __init pkt_init(void)
2948 {
2949 	int ret;
2950 
2951 	mutex_init(&ctl_mutex);
2952 
2953 	psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2954 					sizeof(struct packet_stacked_data));
2955 	if (!psd_pool)
2956 		return -ENOMEM;
2957 
2958 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2959 	if (ret < 0) {
2960 		pr_err("unable to register block device\n");
2961 		goto out2;
2962 	}
2963 	if (!pktdev_major)
2964 		pktdev_major = ret;
2965 
2966 	ret = pkt_sysfs_init();
2967 	if (ret)
2968 		goto out;
2969 
2970 	pkt_debugfs_init();
2971 
2972 	ret = misc_register(&pkt_misc);
2973 	if (ret) {
2974 		pr_err("unable to register misc device\n");
2975 		goto out_misc;
2976 	}
2977 
2978 	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2979 
2980 	return 0;
2981 
2982 out_misc:
2983 	pkt_debugfs_cleanup();
2984 	pkt_sysfs_cleanup();
2985 out:
2986 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2987 out2:
2988 	mempool_destroy(psd_pool);
2989 	return ret;
2990 }
2991 
2992 static void __exit pkt_exit(void)
2993 {
2994 	remove_proc_entry("driver/"DRIVER_NAME, NULL);
2995 	misc_deregister(&pkt_misc);
2996 
2997 	pkt_debugfs_cleanup();
2998 	pkt_sysfs_cleanup();
2999 
3000 	unregister_blkdev(pktdev_major, DRIVER_NAME);
3001 	mempool_destroy(psd_pool);
3002 }
3003 
3004 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3005 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3006 MODULE_LICENSE("GPL");
3007 
3008 module_init(pkt_init);
3009 module_exit(pkt_exit);
3010