1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom make_request_fn function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #include <linux/pktcdvd.h> 48 #include <linux/module.h> 49 #include <linux/types.h> 50 #include <linux/kernel.h> 51 #include <linux/kthread.h> 52 #include <linux/errno.h> 53 #include <linux/spinlock.h> 54 #include <linux/file.h> 55 #include <linux/proc_fs.h> 56 #include <linux/seq_file.h> 57 #include <linux/miscdevice.h> 58 #include <linux/freezer.h> 59 #include <linux/mutex.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_ioctl.h> 62 #include <scsi/scsi.h> 63 #include <linux/debugfs.h> 64 #include <linux/device.h> 65 66 #include <asm/uaccess.h> 67 68 #define DRIVER_NAME "pktcdvd" 69 70 #if PACKET_DEBUG 71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 72 #else 73 #define DPRINTK(fmt, args...) 74 #endif 75 76 #if PACKET_DEBUG > 1 77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 78 #else 79 #define VPRINTK(fmt, args...) 80 #endif 81 82 #define MAX_SPEED 0xffff 83 84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1)) 85 86 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 87 static struct proc_dir_entry *pkt_proc; 88 static int pktdev_major; 89 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 90 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 91 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 92 static mempool_t *psd_pool; 93 94 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */ 95 static struct dentry *pkt_debugfs_root = NULL; /* /debug/pktcdvd */ 96 97 /* forward declaration */ 98 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 99 static int pkt_remove_dev(dev_t pkt_dev); 100 static int pkt_seq_show(struct seq_file *m, void *p); 101 102 103 104 /* 105 * create and register a pktcdvd kernel object. 106 */ 107 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd, 108 const char* name, 109 struct kobject* parent, 110 struct kobj_type* ktype) 111 { 112 struct pktcdvd_kobj *p; 113 p = kzalloc(sizeof(*p), GFP_KERNEL); 114 if (!p) 115 return NULL; 116 kobject_set_name(&p->kobj, "%s", name); 117 p->kobj.parent = parent; 118 p->kobj.ktype = ktype; 119 p->pd = pd; 120 if (kobject_register(&p->kobj) != 0) 121 return NULL; 122 return p; 123 } 124 /* 125 * remove a pktcdvd kernel object. 126 */ 127 static void pkt_kobj_remove(struct pktcdvd_kobj *p) 128 { 129 if (p) 130 kobject_unregister(&p->kobj); 131 } 132 /* 133 * default release function for pktcdvd kernel objects. 134 */ 135 static void pkt_kobj_release(struct kobject *kobj) 136 { 137 kfree(to_pktcdvdkobj(kobj)); 138 } 139 140 141 /********************************************************** 142 * 143 * sysfs interface for pktcdvd 144 * by (C) 2006 Thomas Maier <balagi@justmail.de> 145 * 146 **********************************************************/ 147 148 #define DEF_ATTR(_obj,_name,_mode) \ 149 static struct attribute _obj = { .name = _name, .mode = _mode } 150 151 /********************************************************** 152 /sys/class/pktcdvd/pktcdvd[0-7]/ 153 stat/reset 154 stat/packets_started 155 stat/packets_finished 156 stat/kb_written 157 stat/kb_read 158 stat/kb_read_gather 159 write_queue/size 160 write_queue/congestion_off 161 write_queue/congestion_on 162 **********************************************************/ 163 164 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200); 165 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444); 166 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444); 167 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444); 168 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444); 169 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444); 170 171 static struct attribute *kobj_pkt_attrs_stat[] = { 172 &kobj_pkt_attr_st1, 173 &kobj_pkt_attr_st2, 174 &kobj_pkt_attr_st3, 175 &kobj_pkt_attr_st4, 176 &kobj_pkt_attr_st5, 177 &kobj_pkt_attr_st6, 178 NULL 179 }; 180 181 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444); 182 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644); 183 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644); 184 185 static struct attribute *kobj_pkt_attrs_wqueue[] = { 186 &kobj_pkt_attr_wq1, 187 &kobj_pkt_attr_wq2, 188 &kobj_pkt_attr_wq3, 189 NULL 190 }; 191 192 static ssize_t kobj_pkt_show(struct kobject *kobj, 193 struct attribute *attr, char *data) 194 { 195 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 196 int n = 0; 197 int v; 198 if (strcmp(attr->name, "packets_started") == 0) { 199 n = sprintf(data, "%lu\n", pd->stats.pkt_started); 200 201 } else if (strcmp(attr->name, "packets_finished") == 0) { 202 n = sprintf(data, "%lu\n", pd->stats.pkt_ended); 203 204 } else if (strcmp(attr->name, "kb_written") == 0) { 205 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1); 206 207 } else if (strcmp(attr->name, "kb_read") == 0) { 208 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1); 209 210 } else if (strcmp(attr->name, "kb_read_gather") == 0) { 211 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1); 212 213 } else if (strcmp(attr->name, "size") == 0) { 214 spin_lock(&pd->lock); 215 v = pd->bio_queue_size; 216 spin_unlock(&pd->lock); 217 n = sprintf(data, "%d\n", v); 218 219 } else if (strcmp(attr->name, "congestion_off") == 0) { 220 spin_lock(&pd->lock); 221 v = pd->write_congestion_off; 222 spin_unlock(&pd->lock); 223 n = sprintf(data, "%d\n", v); 224 225 } else if (strcmp(attr->name, "congestion_on") == 0) { 226 spin_lock(&pd->lock); 227 v = pd->write_congestion_on; 228 spin_unlock(&pd->lock); 229 n = sprintf(data, "%d\n", v); 230 } 231 return n; 232 } 233 234 static void init_write_congestion_marks(int* lo, int* hi) 235 { 236 if (*hi > 0) { 237 *hi = max(*hi, 500); 238 *hi = min(*hi, 1000000); 239 if (*lo <= 0) 240 *lo = *hi - 100; 241 else { 242 *lo = min(*lo, *hi - 100); 243 *lo = max(*lo, 100); 244 } 245 } else { 246 *hi = -1; 247 *lo = -1; 248 } 249 } 250 251 static ssize_t kobj_pkt_store(struct kobject *kobj, 252 struct attribute *attr, 253 const char *data, size_t len) 254 { 255 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 256 int val; 257 258 if (strcmp(attr->name, "reset") == 0 && len > 0) { 259 pd->stats.pkt_started = 0; 260 pd->stats.pkt_ended = 0; 261 pd->stats.secs_w = 0; 262 pd->stats.secs_rg = 0; 263 pd->stats.secs_r = 0; 264 265 } else if (strcmp(attr->name, "congestion_off") == 0 266 && sscanf(data, "%d", &val) == 1) { 267 spin_lock(&pd->lock); 268 pd->write_congestion_off = val; 269 init_write_congestion_marks(&pd->write_congestion_off, 270 &pd->write_congestion_on); 271 spin_unlock(&pd->lock); 272 273 } else if (strcmp(attr->name, "congestion_on") == 0 274 && sscanf(data, "%d", &val) == 1) { 275 spin_lock(&pd->lock); 276 pd->write_congestion_on = val; 277 init_write_congestion_marks(&pd->write_congestion_off, 278 &pd->write_congestion_on); 279 spin_unlock(&pd->lock); 280 } 281 return len; 282 } 283 284 static struct sysfs_ops kobj_pkt_ops = { 285 .show = kobj_pkt_show, 286 .store = kobj_pkt_store 287 }; 288 static struct kobj_type kobj_pkt_type_stat = { 289 .release = pkt_kobj_release, 290 .sysfs_ops = &kobj_pkt_ops, 291 .default_attrs = kobj_pkt_attrs_stat 292 }; 293 static struct kobj_type kobj_pkt_type_wqueue = { 294 .release = pkt_kobj_release, 295 .sysfs_ops = &kobj_pkt_ops, 296 .default_attrs = kobj_pkt_attrs_wqueue 297 }; 298 299 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 300 { 301 if (class_pktcdvd) { 302 pd->clsdev = class_device_create(class_pktcdvd, 303 NULL, pd->pkt_dev, 304 NULL, "%s", pd->name); 305 if (IS_ERR(pd->clsdev)) 306 pd->clsdev = NULL; 307 } 308 if (pd->clsdev) { 309 pd->kobj_stat = pkt_kobj_create(pd, "stat", 310 &pd->clsdev->kobj, 311 &kobj_pkt_type_stat); 312 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue", 313 &pd->clsdev->kobj, 314 &kobj_pkt_type_wqueue); 315 } 316 } 317 318 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 319 { 320 pkt_kobj_remove(pd->kobj_stat); 321 pkt_kobj_remove(pd->kobj_wqueue); 322 if (class_pktcdvd) 323 class_device_destroy(class_pktcdvd, pd->pkt_dev); 324 } 325 326 327 /******************************************************************** 328 /sys/class/pktcdvd/ 329 add map block device 330 remove unmap packet dev 331 device_map show mappings 332 *******************************************************************/ 333 334 static void class_pktcdvd_release(struct class *cls) 335 { 336 kfree(cls); 337 } 338 static ssize_t class_pktcdvd_show_map(struct class *c, char *data) 339 { 340 int n = 0; 341 int idx; 342 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 343 for (idx = 0; idx < MAX_WRITERS; idx++) { 344 struct pktcdvd_device *pd = pkt_devs[idx]; 345 if (!pd) 346 continue; 347 n += sprintf(data+n, "%s %u:%u %u:%u\n", 348 pd->name, 349 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 350 MAJOR(pd->bdev->bd_dev), 351 MINOR(pd->bdev->bd_dev)); 352 } 353 mutex_unlock(&ctl_mutex); 354 return n; 355 } 356 357 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf, 358 size_t count) 359 { 360 unsigned int major, minor; 361 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 362 pkt_setup_dev(MKDEV(major, minor), NULL); 363 return count; 364 } 365 return -EINVAL; 366 } 367 368 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf, 369 size_t count) 370 { 371 unsigned int major, minor; 372 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 373 pkt_remove_dev(MKDEV(major, minor)); 374 return count; 375 } 376 return -EINVAL; 377 } 378 379 static struct class_attribute class_pktcdvd_attrs[] = { 380 __ATTR(add, 0200, NULL, class_pktcdvd_store_add), 381 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove), 382 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL), 383 __ATTR_NULL 384 }; 385 386 387 static int pkt_sysfs_init(void) 388 { 389 int ret = 0; 390 391 /* 392 * create control files in sysfs 393 * /sys/class/pktcdvd/... 394 */ 395 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL); 396 if (!class_pktcdvd) 397 return -ENOMEM; 398 class_pktcdvd->name = DRIVER_NAME; 399 class_pktcdvd->owner = THIS_MODULE; 400 class_pktcdvd->class_release = class_pktcdvd_release; 401 class_pktcdvd->class_attrs = class_pktcdvd_attrs; 402 ret = class_register(class_pktcdvd); 403 if (ret) { 404 kfree(class_pktcdvd); 405 class_pktcdvd = NULL; 406 printk(DRIVER_NAME": failed to create class pktcdvd\n"); 407 return ret; 408 } 409 return 0; 410 } 411 412 static void pkt_sysfs_cleanup(void) 413 { 414 if (class_pktcdvd) 415 class_destroy(class_pktcdvd); 416 class_pktcdvd = NULL; 417 } 418 419 /******************************************************************** 420 entries in debugfs 421 422 /debugfs/pktcdvd[0-7]/ 423 info 424 425 *******************************************************************/ 426 427 static int pkt_debugfs_seq_show(struct seq_file *m, void *p) 428 { 429 return pkt_seq_show(m, p); 430 } 431 432 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file) 433 { 434 return single_open(file, pkt_debugfs_seq_show, inode->i_private); 435 } 436 437 static const struct file_operations debug_fops = { 438 .open = pkt_debugfs_fops_open, 439 .read = seq_read, 440 .llseek = seq_lseek, 441 .release = single_release, 442 .owner = THIS_MODULE, 443 }; 444 445 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 446 { 447 if (!pkt_debugfs_root) 448 return; 449 pd->dfs_f_info = NULL; 450 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root); 451 if (IS_ERR(pd->dfs_d_root)) { 452 pd->dfs_d_root = NULL; 453 return; 454 } 455 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO, 456 pd->dfs_d_root, pd, &debug_fops); 457 if (IS_ERR(pd->dfs_f_info)) { 458 pd->dfs_f_info = NULL; 459 return; 460 } 461 } 462 463 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 464 { 465 if (!pkt_debugfs_root) 466 return; 467 if (pd->dfs_f_info) 468 debugfs_remove(pd->dfs_f_info); 469 pd->dfs_f_info = NULL; 470 if (pd->dfs_d_root) 471 debugfs_remove(pd->dfs_d_root); 472 pd->dfs_d_root = NULL; 473 } 474 475 static void pkt_debugfs_init(void) 476 { 477 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 478 if (IS_ERR(pkt_debugfs_root)) { 479 pkt_debugfs_root = NULL; 480 return; 481 } 482 } 483 484 static void pkt_debugfs_cleanup(void) 485 { 486 if (!pkt_debugfs_root) 487 return; 488 debugfs_remove(pkt_debugfs_root); 489 pkt_debugfs_root = NULL; 490 } 491 492 /* ----------------------------------------------------------*/ 493 494 495 static void pkt_bio_finished(struct pktcdvd_device *pd) 496 { 497 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 498 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 499 VPRINTK(DRIVER_NAME": queue empty\n"); 500 atomic_set(&pd->iosched.attention, 1); 501 wake_up(&pd->wqueue); 502 } 503 } 504 505 static void pkt_bio_destructor(struct bio *bio) 506 { 507 kfree(bio->bi_io_vec); 508 kfree(bio); 509 } 510 511 static struct bio *pkt_bio_alloc(int nr_iovecs) 512 { 513 struct bio_vec *bvl = NULL; 514 struct bio *bio; 515 516 bio = kmalloc(sizeof(struct bio), GFP_KERNEL); 517 if (!bio) 518 goto no_bio; 519 bio_init(bio); 520 521 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL); 522 if (!bvl) 523 goto no_bvl; 524 525 bio->bi_max_vecs = nr_iovecs; 526 bio->bi_io_vec = bvl; 527 bio->bi_destructor = pkt_bio_destructor; 528 529 return bio; 530 531 no_bvl: 532 kfree(bio); 533 no_bio: 534 return NULL; 535 } 536 537 /* 538 * Allocate a packet_data struct 539 */ 540 static struct packet_data *pkt_alloc_packet_data(int frames) 541 { 542 int i; 543 struct packet_data *pkt; 544 545 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 546 if (!pkt) 547 goto no_pkt; 548 549 pkt->frames = frames; 550 pkt->w_bio = pkt_bio_alloc(frames); 551 if (!pkt->w_bio) 552 goto no_bio; 553 554 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 555 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 556 if (!pkt->pages[i]) 557 goto no_page; 558 } 559 560 spin_lock_init(&pkt->lock); 561 562 for (i = 0; i < frames; i++) { 563 struct bio *bio = pkt_bio_alloc(1); 564 if (!bio) 565 goto no_rd_bio; 566 pkt->r_bios[i] = bio; 567 } 568 569 return pkt; 570 571 no_rd_bio: 572 for (i = 0; i < frames; i++) { 573 struct bio *bio = pkt->r_bios[i]; 574 if (bio) 575 bio_put(bio); 576 } 577 578 no_page: 579 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 580 if (pkt->pages[i]) 581 __free_page(pkt->pages[i]); 582 bio_put(pkt->w_bio); 583 no_bio: 584 kfree(pkt); 585 no_pkt: 586 return NULL; 587 } 588 589 /* 590 * Free a packet_data struct 591 */ 592 static void pkt_free_packet_data(struct packet_data *pkt) 593 { 594 int i; 595 596 for (i = 0; i < pkt->frames; i++) { 597 struct bio *bio = pkt->r_bios[i]; 598 if (bio) 599 bio_put(bio); 600 } 601 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 602 __free_page(pkt->pages[i]); 603 bio_put(pkt->w_bio); 604 kfree(pkt); 605 } 606 607 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 608 { 609 struct packet_data *pkt, *next; 610 611 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 612 613 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 614 pkt_free_packet_data(pkt); 615 } 616 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 617 } 618 619 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 620 { 621 struct packet_data *pkt; 622 623 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 624 625 while (nr_packets > 0) { 626 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 627 if (!pkt) { 628 pkt_shrink_pktlist(pd); 629 return 0; 630 } 631 pkt->id = nr_packets; 632 pkt->pd = pd; 633 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 634 nr_packets--; 635 } 636 return 1; 637 } 638 639 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 640 { 641 struct rb_node *n = rb_next(&node->rb_node); 642 if (!n) 643 return NULL; 644 return rb_entry(n, struct pkt_rb_node, rb_node); 645 } 646 647 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 648 { 649 rb_erase(&node->rb_node, &pd->bio_queue); 650 mempool_free(node, pd->rb_pool); 651 pd->bio_queue_size--; 652 BUG_ON(pd->bio_queue_size < 0); 653 } 654 655 /* 656 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 657 */ 658 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 659 { 660 struct rb_node *n = pd->bio_queue.rb_node; 661 struct rb_node *next; 662 struct pkt_rb_node *tmp; 663 664 if (!n) { 665 BUG_ON(pd->bio_queue_size > 0); 666 return NULL; 667 } 668 669 for (;;) { 670 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 671 if (s <= tmp->bio->bi_sector) 672 next = n->rb_left; 673 else 674 next = n->rb_right; 675 if (!next) 676 break; 677 n = next; 678 } 679 680 if (s > tmp->bio->bi_sector) { 681 tmp = pkt_rbtree_next(tmp); 682 if (!tmp) 683 return NULL; 684 } 685 BUG_ON(s > tmp->bio->bi_sector); 686 return tmp; 687 } 688 689 /* 690 * Insert a node into the pd->bio_queue rb tree. 691 */ 692 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 693 { 694 struct rb_node **p = &pd->bio_queue.rb_node; 695 struct rb_node *parent = NULL; 696 sector_t s = node->bio->bi_sector; 697 struct pkt_rb_node *tmp; 698 699 while (*p) { 700 parent = *p; 701 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 702 if (s < tmp->bio->bi_sector) 703 p = &(*p)->rb_left; 704 else 705 p = &(*p)->rb_right; 706 } 707 rb_link_node(&node->rb_node, parent, p); 708 rb_insert_color(&node->rb_node, &pd->bio_queue); 709 pd->bio_queue_size++; 710 } 711 712 /* 713 * Add a bio to a single linked list defined by its head and tail pointers. 714 */ 715 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail) 716 { 717 bio->bi_next = NULL; 718 if (*list_tail) { 719 BUG_ON((*list_head) == NULL); 720 (*list_tail)->bi_next = bio; 721 (*list_tail) = bio; 722 } else { 723 BUG_ON((*list_head) != NULL); 724 (*list_head) = bio; 725 (*list_tail) = bio; 726 } 727 } 728 729 /* 730 * Remove and return the first bio from a single linked list defined by its 731 * head and tail pointers. 732 */ 733 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail) 734 { 735 struct bio *bio; 736 737 if (*list_head == NULL) 738 return NULL; 739 740 bio = *list_head; 741 *list_head = bio->bi_next; 742 if (*list_head == NULL) 743 *list_tail = NULL; 744 745 bio->bi_next = NULL; 746 return bio; 747 } 748 749 /* 750 * Send a packet_command to the underlying block device and 751 * wait for completion. 752 */ 753 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 754 { 755 struct request_queue *q = bdev_get_queue(pd->bdev); 756 struct request *rq; 757 int ret = 0; 758 759 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 760 WRITE : READ, __GFP_WAIT); 761 762 if (cgc->buflen) { 763 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT)) 764 goto out; 765 } 766 767 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 768 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE); 769 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE) 770 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE); 771 772 rq->timeout = 60*HZ; 773 rq->cmd_type = REQ_TYPE_BLOCK_PC; 774 rq->cmd_flags |= REQ_HARDBARRIER; 775 if (cgc->quiet) 776 rq->cmd_flags |= REQ_QUIET; 777 778 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0); 779 if (rq->errors) 780 ret = -EIO; 781 out: 782 blk_put_request(rq); 783 return ret; 784 } 785 786 /* 787 * A generic sense dump / resolve mechanism should be implemented across 788 * all ATAPI + SCSI devices. 789 */ 790 static void pkt_dump_sense(struct packet_command *cgc) 791 { 792 static char *info[9] = { "No sense", "Recovered error", "Not ready", 793 "Medium error", "Hardware error", "Illegal request", 794 "Unit attention", "Data protect", "Blank check" }; 795 int i; 796 struct request_sense *sense = cgc->sense; 797 798 printk(DRIVER_NAME":"); 799 for (i = 0; i < CDROM_PACKET_SIZE; i++) 800 printk(" %02x", cgc->cmd[i]); 801 printk(" - "); 802 803 if (sense == NULL) { 804 printk("no sense\n"); 805 return; 806 } 807 808 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq); 809 810 if (sense->sense_key > 8) { 811 printk(" (INVALID)\n"); 812 return; 813 } 814 815 printk(" (%s)\n", info[sense->sense_key]); 816 } 817 818 /* 819 * flush the drive cache to media 820 */ 821 static int pkt_flush_cache(struct pktcdvd_device *pd) 822 { 823 struct packet_command cgc; 824 825 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 826 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 827 cgc.quiet = 1; 828 829 /* 830 * the IMMED bit -- we default to not setting it, although that 831 * would allow a much faster close, this is safer 832 */ 833 #if 0 834 cgc.cmd[1] = 1 << 1; 835 #endif 836 return pkt_generic_packet(pd, &cgc); 837 } 838 839 /* 840 * speed is given as the normal factor, e.g. 4 for 4x 841 */ 842 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed) 843 { 844 struct packet_command cgc; 845 struct request_sense sense; 846 int ret; 847 848 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 849 cgc.sense = &sense; 850 cgc.cmd[0] = GPCMD_SET_SPEED; 851 cgc.cmd[2] = (read_speed >> 8) & 0xff; 852 cgc.cmd[3] = read_speed & 0xff; 853 cgc.cmd[4] = (write_speed >> 8) & 0xff; 854 cgc.cmd[5] = write_speed & 0xff; 855 856 if ((ret = pkt_generic_packet(pd, &cgc))) 857 pkt_dump_sense(&cgc); 858 859 return ret; 860 } 861 862 /* 863 * Queue a bio for processing by the low-level CD device. Must be called 864 * from process context. 865 */ 866 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 867 { 868 spin_lock(&pd->iosched.lock); 869 if (bio_data_dir(bio) == READ) { 870 pkt_add_list_last(bio, &pd->iosched.read_queue, 871 &pd->iosched.read_queue_tail); 872 } else { 873 pkt_add_list_last(bio, &pd->iosched.write_queue, 874 &pd->iosched.write_queue_tail); 875 } 876 spin_unlock(&pd->iosched.lock); 877 878 atomic_set(&pd->iosched.attention, 1); 879 wake_up(&pd->wqueue); 880 } 881 882 /* 883 * Process the queued read/write requests. This function handles special 884 * requirements for CDRW drives: 885 * - A cache flush command must be inserted before a read request if the 886 * previous request was a write. 887 * - Switching between reading and writing is slow, so don't do it more often 888 * than necessary. 889 * - Optimize for throughput at the expense of latency. This means that streaming 890 * writes will never be interrupted by a read, but if the drive has to seek 891 * before the next write, switch to reading instead if there are any pending 892 * read requests. 893 * - Set the read speed according to current usage pattern. When only reading 894 * from the device, it's best to use the highest possible read speed, but 895 * when switching often between reading and writing, it's better to have the 896 * same read and write speeds. 897 */ 898 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 899 { 900 901 if (atomic_read(&pd->iosched.attention) == 0) 902 return; 903 atomic_set(&pd->iosched.attention, 0); 904 905 for (;;) { 906 struct bio *bio; 907 int reads_queued, writes_queued; 908 909 spin_lock(&pd->iosched.lock); 910 reads_queued = (pd->iosched.read_queue != NULL); 911 writes_queued = (pd->iosched.write_queue != NULL); 912 spin_unlock(&pd->iosched.lock); 913 914 if (!reads_queued && !writes_queued) 915 break; 916 917 if (pd->iosched.writing) { 918 int need_write_seek = 1; 919 spin_lock(&pd->iosched.lock); 920 bio = pd->iosched.write_queue; 921 spin_unlock(&pd->iosched.lock); 922 if (bio && (bio->bi_sector == pd->iosched.last_write)) 923 need_write_seek = 0; 924 if (need_write_seek && reads_queued) { 925 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 926 VPRINTK(DRIVER_NAME": write, waiting\n"); 927 break; 928 } 929 pkt_flush_cache(pd); 930 pd->iosched.writing = 0; 931 } 932 } else { 933 if (!reads_queued && writes_queued) { 934 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 935 VPRINTK(DRIVER_NAME": read, waiting\n"); 936 break; 937 } 938 pd->iosched.writing = 1; 939 } 940 } 941 942 spin_lock(&pd->iosched.lock); 943 if (pd->iosched.writing) { 944 bio = pkt_get_list_first(&pd->iosched.write_queue, 945 &pd->iosched.write_queue_tail); 946 } else { 947 bio = pkt_get_list_first(&pd->iosched.read_queue, 948 &pd->iosched.read_queue_tail); 949 } 950 spin_unlock(&pd->iosched.lock); 951 952 if (!bio) 953 continue; 954 955 if (bio_data_dir(bio) == READ) 956 pd->iosched.successive_reads += bio->bi_size >> 10; 957 else { 958 pd->iosched.successive_reads = 0; 959 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio); 960 } 961 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 962 if (pd->read_speed == pd->write_speed) { 963 pd->read_speed = MAX_SPEED; 964 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 965 } 966 } else { 967 if (pd->read_speed != pd->write_speed) { 968 pd->read_speed = pd->write_speed; 969 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 970 } 971 } 972 973 atomic_inc(&pd->cdrw.pending_bios); 974 generic_make_request(bio); 975 } 976 } 977 978 /* 979 * Special care is needed if the underlying block device has a small 980 * max_phys_segments value. 981 */ 982 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q) 983 { 984 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) { 985 /* 986 * The cdrom device can handle one segment/frame 987 */ 988 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 989 return 0; 990 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) { 991 /* 992 * We can handle this case at the expense of some extra memory 993 * copies during write operations 994 */ 995 set_bit(PACKET_MERGE_SEGS, &pd->flags); 996 return 0; 997 } else { 998 printk(DRIVER_NAME": cdrom max_phys_segments too small\n"); 999 return -EIO; 1000 } 1001 } 1002 1003 /* 1004 * Copy CD_FRAMESIZE bytes from src_bio into a destination page 1005 */ 1006 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs) 1007 { 1008 unsigned int copy_size = CD_FRAMESIZE; 1009 1010 while (copy_size > 0) { 1011 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg); 1012 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) + 1013 src_bvl->bv_offset + offs; 1014 void *vto = page_address(dst_page) + dst_offs; 1015 int len = min_t(int, copy_size, src_bvl->bv_len - offs); 1016 1017 BUG_ON(len < 0); 1018 memcpy(vto, vfrom, len); 1019 kunmap_atomic(vfrom, KM_USER0); 1020 1021 seg++; 1022 offs = 0; 1023 dst_offs += len; 1024 copy_size -= len; 1025 } 1026 } 1027 1028 /* 1029 * Copy all data for this packet to pkt->pages[], so that 1030 * a) The number of required segments for the write bio is minimized, which 1031 * is necessary for some scsi controllers. 1032 * b) The data can be used as cache to avoid read requests if we receive a 1033 * new write request for the same zone. 1034 */ 1035 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec) 1036 { 1037 int f, p, offs; 1038 1039 /* Copy all data to pkt->pages[] */ 1040 p = 0; 1041 offs = 0; 1042 for (f = 0; f < pkt->frames; f++) { 1043 if (bvec[f].bv_page != pkt->pages[p]) { 1044 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset; 1045 void *vto = page_address(pkt->pages[p]) + offs; 1046 memcpy(vto, vfrom, CD_FRAMESIZE); 1047 kunmap_atomic(vfrom, KM_USER0); 1048 bvec[f].bv_page = pkt->pages[p]; 1049 bvec[f].bv_offset = offs; 1050 } else { 1051 BUG_ON(bvec[f].bv_offset != offs); 1052 } 1053 offs += CD_FRAMESIZE; 1054 if (offs >= PAGE_SIZE) { 1055 offs = 0; 1056 p++; 1057 } 1058 } 1059 } 1060 1061 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err) 1062 { 1063 struct packet_data *pkt = bio->bi_private; 1064 struct pktcdvd_device *pd = pkt->pd; 1065 BUG_ON(!pd); 1066 1067 if (bio->bi_size) 1068 return 1; 1069 1070 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio, 1071 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err); 1072 1073 if (err) 1074 atomic_inc(&pkt->io_errors); 1075 if (atomic_dec_and_test(&pkt->io_wait)) { 1076 atomic_inc(&pkt->run_sm); 1077 wake_up(&pd->wqueue); 1078 } 1079 pkt_bio_finished(pd); 1080 1081 return 0; 1082 } 1083 1084 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err) 1085 { 1086 struct packet_data *pkt = bio->bi_private; 1087 struct pktcdvd_device *pd = pkt->pd; 1088 BUG_ON(!pd); 1089 1090 if (bio->bi_size) 1091 return 1; 1092 1093 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err); 1094 1095 pd->stats.pkt_ended++; 1096 1097 pkt_bio_finished(pd); 1098 atomic_dec(&pkt->io_wait); 1099 atomic_inc(&pkt->run_sm); 1100 wake_up(&pd->wqueue); 1101 return 0; 1102 } 1103 1104 /* 1105 * Schedule reads for the holes in a packet 1106 */ 1107 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1108 { 1109 int frames_read = 0; 1110 struct bio *bio; 1111 int f; 1112 char written[PACKET_MAX_SIZE]; 1113 1114 BUG_ON(!pkt->orig_bios); 1115 1116 atomic_set(&pkt->io_wait, 0); 1117 atomic_set(&pkt->io_errors, 0); 1118 1119 /* 1120 * Figure out which frames we need to read before we can write. 1121 */ 1122 memset(written, 0, sizeof(written)); 1123 spin_lock(&pkt->lock); 1124 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1125 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1126 int num_frames = bio->bi_size / CD_FRAMESIZE; 1127 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 1128 BUG_ON(first_frame < 0); 1129 BUG_ON(first_frame + num_frames > pkt->frames); 1130 for (f = first_frame; f < first_frame + num_frames; f++) 1131 written[f] = 1; 1132 } 1133 spin_unlock(&pkt->lock); 1134 1135 if (pkt->cache_valid) { 1136 VPRINTK("pkt_gather_data: zone %llx cached\n", 1137 (unsigned long long)pkt->sector); 1138 goto out_account; 1139 } 1140 1141 /* 1142 * Schedule reads for missing parts of the packet. 1143 */ 1144 for (f = 0; f < pkt->frames; f++) { 1145 int p, offset; 1146 if (written[f]) 1147 continue; 1148 bio = pkt->r_bios[f]; 1149 bio_init(bio); 1150 bio->bi_max_vecs = 1; 1151 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1152 bio->bi_bdev = pd->bdev; 1153 bio->bi_end_io = pkt_end_io_read; 1154 bio->bi_private = pkt; 1155 1156 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1157 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1158 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n", 1159 f, pkt->pages[p], offset); 1160 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1161 BUG(); 1162 1163 atomic_inc(&pkt->io_wait); 1164 bio->bi_rw = READ; 1165 pkt_queue_bio(pd, bio); 1166 frames_read++; 1167 } 1168 1169 out_account: 1170 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n", 1171 frames_read, (unsigned long long)pkt->sector); 1172 pd->stats.pkt_started++; 1173 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1174 } 1175 1176 /* 1177 * Find a packet matching zone, or the least recently used packet if 1178 * there is no match. 1179 */ 1180 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1181 { 1182 struct packet_data *pkt; 1183 1184 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1185 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1186 list_del_init(&pkt->list); 1187 if (pkt->sector != zone) 1188 pkt->cache_valid = 0; 1189 return pkt; 1190 } 1191 } 1192 BUG(); 1193 return NULL; 1194 } 1195 1196 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1197 { 1198 if (pkt->cache_valid) { 1199 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1200 } else { 1201 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1202 } 1203 } 1204 1205 /* 1206 * recover a failed write, query for relocation if possible 1207 * 1208 * returns 1 if recovery is possible, or 0 if not 1209 * 1210 */ 1211 static int pkt_start_recovery(struct packet_data *pkt) 1212 { 1213 /* 1214 * FIXME. We need help from the file system to implement 1215 * recovery handling. 1216 */ 1217 return 0; 1218 #if 0 1219 struct request *rq = pkt->rq; 1220 struct pktcdvd_device *pd = rq->rq_disk->private_data; 1221 struct block_device *pkt_bdev; 1222 struct super_block *sb = NULL; 1223 unsigned long old_block, new_block; 1224 sector_t new_sector; 1225 1226 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 1227 if (pkt_bdev) { 1228 sb = get_super(pkt_bdev); 1229 bdput(pkt_bdev); 1230 } 1231 1232 if (!sb) 1233 return 0; 1234 1235 if (!sb->s_op || !sb->s_op->relocate_blocks) 1236 goto out; 1237 1238 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 1239 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 1240 goto out; 1241 1242 new_sector = new_block * (CD_FRAMESIZE >> 9); 1243 pkt->sector = new_sector; 1244 1245 pkt->bio->bi_sector = new_sector; 1246 pkt->bio->bi_next = NULL; 1247 pkt->bio->bi_flags = 1 << BIO_UPTODATE; 1248 pkt->bio->bi_idx = 0; 1249 1250 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW)); 1251 BUG_ON(pkt->bio->bi_vcnt != pkt->frames); 1252 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE); 1253 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write); 1254 BUG_ON(pkt->bio->bi_private != pkt); 1255 1256 drop_super(sb); 1257 return 1; 1258 1259 out: 1260 drop_super(sb); 1261 return 0; 1262 #endif 1263 } 1264 1265 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 1266 { 1267 #if PACKET_DEBUG > 1 1268 static const char *state_name[] = { 1269 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1270 }; 1271 enum packet_data_state old_state = pkt->state; 1272 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector, 1273 state_name[old_state], state_name[state]); 1274 #endif 1275 pkt->state = state; 1276 } 1277 1278 /* 1279 * Scan the work queue to see if we can start a new packet. 1280 * returns non-zero if any work was done. 1281 */ 1282 static int pkt_handle_queue(struct pktcdvd_device *pd) 1283 { 1284 struct packet_data *pkt, *p; 1285 struct bio *bio = NULL; 1286 sector_t zone = 0; /* Suppress gcc warning */ 1287 struct pkt_rb_node *node, *first_node; 1288 struct rb_node *n; 1289 int wakeup; 1290 1291 VPRINTK("handle_queue\n"); 1292 1293 atomic_set(&pd->scan_queue, 0); 1294 1295 if (list_empty(&pd->cdrw.pkt_free_list)) { 1296 VPRINTK("handle_queue: no pkt\n"); 1297 return 0; 1298 } 1299 1300 /* 1301 * Try to find a zone we are not already working on. 1302 */ 1303 spin_lock(&pd->lock); 1304 first_node = pkt_rbtree_find(pd, pd->current_sector); 1305 if (!first_node) { 1306 n = rb_first(&pd->bio_queue); 1307 if (n) 1308 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1309 } 1310 node = first_node; 1311 while (node) { 1312 bio = node->bio; 1313 zone = ZONE(bio->bi_sector, pd); 1314 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1315 if (p->sector == zone) { 1316 bio = NULL; 1317 goto try_next_bio; 1318 } 1319 } 1320 break; 1321 try_next_bio: 1322 node = pkt_rbtree_next(node); 1323 if (!node) { 1324 n = rb_first(&pd->bio_queue); 1325 if (n) 1326 node = rb_entry(n, struct pkt_rb_node, rb_node); 1327 } 1328 if (node == first_node) 1329 node = NULL; 1330 } 1331 spin_unlock(&pd->lock); 1332 if (!bio) { 1333 VPRINTK("handle_queue: no bio\n"); 1334 return 0; 1335 } 1336 1337 pkt = pkt_get_packet_data(pd, zone); 1338 1339 pd->current_sector = zone + pd->settings.size; 1340 pkt->sector = zone; 1341 BUG_ON(pkt->frames != pd->settings.size >> 2); 1342 pkt->write_size = 0; 1343 1344 /* 1345 * Scan work queue for bios in the same zone and link them 1346 * to this packet. 1347 */ 1348 spin_lock(&pd->lock); 1349 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone); 1350 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1351 bio = node->bio; 1352 VPRINTK("pkt_handle_queue: found zone=%llx\n", 1353 (unsigned long long)ZONE(bio->bi_sector, pd)); 1354 if (ZONE(bio->bi_sector, pd) != zone) 1355 break; 1356 pkt_rbtree_erase(pd, node); 1357 spin_lock(&pkt->lock); 1358 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail); 1359 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 1360 spin_unlock(&pkt->lock); 1361 } 1362 /* check write congestion marks, and if bio_queue_size is 1363 below, wake up any waiters */ 1364 wakeup = (pd->write_congestion_on > 0 1365 && pd->bio_queue_size <= pd->write_congestion_off); 1366 spin_unlock(&pd->lock); 1367 if (wakeup) 1368 clear_bdi_congested(&pd->disk->queue->backing_dev_info, WRITE); 1369 1370 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1371 pkt_set_state(pkt, PACKET_WAITING_STATE); 1372 atomic_set(&pkt->run_sm, 1); 1373 1374 spin_lock(&pd->cdrw.active_list_lock); 1375 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1376 spin_unlock(&pd->cdrw.active_list_lock); 1377 1378 return 1; 1379 } 1380 1381 /* 1382 * Assemble a bio to write one packet and queue the bio for processing 1383 * by the underlying block device. 1384 */ 1385 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1386 { 1387 struct bio *bio; 1388 int f; 1389 int frames_write; 1390 struct bio_vec *bvec = pkt->w_bio->bi_io_vec; 1391 1392 for (f = 0; f < pkt->frames; f++) { 1393 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1394 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1395 } 1396 1397 /* 1398 * Fill-in bvec with data from orig_bios. 1399 */ 1400 frames_write = 0; 1401 spin_lock(&pkt->lock); 1402 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1403 int segment = bio->bi_idx; 1404 int src_offs = 0; 1405 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1406 int num_frames = bio->bi_size / CD_FRAMESIZE; 1407 BUG_ON(first_frame < 0); 1408 BUG_ON(first_frame + num_frames > pkt->frames); 1409 for (f = first_frame; f < first_frame + num_frames; f++) { 1410 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment); 1411 1412 while (src_offs >= src_bvl->bv_len) { 1413 src_offs -= src_bvl->bv_len; 1414 segment++; 1415 BUG_ON(segment >= bio->bi_vcnt); 1416 src_bvl = bio_iovec_idx(bio, segment); 1417 } 1418 1419 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) { 1420 bvec[f].bv_page = src_bvl->bv_page; 1421 bvec[f].bv_offset = src_bvl->bv_offset + src_offs; 1422 } else { 1423 pkt_copy_bio_data(bio, segment, src_offs, 1424 bvec[f].bv_page, bvec[f].bv_offset); 1425 } 1426 src_offs += CD_FRAMESIZE; 1427 frames_write++; 1428 } 1429 } 1430 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1431 spin_unlock(&pkt->lock); 1432 1433 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n", 1434 frames_write, (unsigned long long)pkt->sector); 1435 BUG_ON(frames_write != pkt->write_size); 1436 1437 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) { 1438 pkt_make_local_copy(pkt, bvec); 1439 pkt->cache_valid = 1; 1440 } else { 1441 pkt->cache_valid = 0; 1442 } 1443 1444 /* Start the write request */ 1445 bio_init(pkt->w_bio); 1446 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE; 1447 pkt->w_bio->bi_sector = pkt->sector; 1448 pkt->w_bio->bi_bdev = pd->bdev; 1449 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1450 pkt->w_bio->bi_private = pkt; 1451 for (f = 0; f < pkt->frames; f++) 1452 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset)) 1453 BUG(); 1454 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt); 1455 1456 atomic_set(&pkt->io_wait, 1); 1457 pkt->w_bio->bi_rw = WRITE; 1458 pkt_queue_bio(pd, pkt->w_bio); 1459 } 1460 1461 static void pkt_finish_packet(struct packet_data *pkt, int uptodate) 1462 { 1463 struct bio *bio, *next; 1464 1465 if (!uptodate) 1466 pkt->cache_valid = 0; 1467 1468 /* Finish all bios corresponding to this packet */ 1469 bio = pkt->orig_bios; 1470 while (bio) { 1471 next = bio->bi_next; 1472 bio->bi_next = NULL; 1473 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO); 1474 bio = next; 1475 } 1476 pkt->orig_bios = pkt->orig_bios_tail = NULL; 1477 } 1478 1479 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1480 { 1481 int uptodate; 1482 1483 VPRINTK("run_state_machine: pkt %d\n", pkt->id); 1484 1485 for (;;) { 1486 switch (pkt->state) { 1487 case PACKET_WAITING_STATE: 1488 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1489 return; 1490 1491 pkt->sleep_time = 0; 1492 pkt_gather_data(pd, pkt); 1493 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1494 break; 1495 1496 case PACKET_READ_WAIT_STATE: 1497 if (atomic_read(&pkt->io_wait) > 0) 1498 return; 1499 1500 if (atomic_read(&pkt->io_errors) > 0) { 1501 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1502 } else { 1503 pkt_start_write(pd, pkt); 1504 } 1505 break; 1506 1507 case PACKET_WRITE_WAIT_STATE: 1508 if (atomic_read(&pkt->io_wait) > 0) 1509 return; 1510 1511 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) { 1512 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1513 } else { 1514 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1515 } 1516 break; 1517 1518 case PACKET_RECOVERY_STATE: 1519 if (pkt_start_recovery(pkt)) { 1520 pkt_start_write(pd, pkt); 1521 } else { 1522 VPRINTK("No recovery possible\n"); 1523 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1524 } 1525 break; 1526 1527 case PACKET_FINISHED_STATE: 1528 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags); 1529 pkt_finish_packet(pkt, uptodate); 1530 return; 1531 1532 default: 1533 BUG(); 1534 break; 1535 } 1536 } 1537 } 1538 1539 static void pkt_handle_packets(struct pktcdvd_device *pd) 1540 { 1541 struct packet_data *pkt, *next; 1542 1543 VPRINTK("pkt_handle_packets\n"); 1544 1545 /* 1546 * Run state machine for active packets 1547 */ 1548 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1549 if (atomic_read(&pkt->run_sm) > 0) { 1550 atomic_set(&pkt->run_sm, 0); 1551 pkt_run_state_machine(pd, pkt); 1552 } 1553 } 1554 1555 /* 1556 * Move no longer active packets to the free list 1557 */ 1558 spin_lock(&pd->cdrw.active_list_lock); 1559 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1560 if (pkt->state == PACKET_FINISHED_STATE) { 1561 list_del(&pkt->list); 1562 pkt_put_packet_data(pd, pkt); 1563 pkt_set_state(pkt, PACKET_IDLE_STATE); 1564 atomic_set(&pd->scan_queue, 1); 1565 } 1566 } 1567 spin_unlock(&pd->cdrw.active_list_lock); 1568 } 1569 1570 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1571 { 1572 struct packet_data *pkt; 1573 int i; 1574 1575 for (i = 0; i < PACKET_NUM_STATES; i++) 1576 states[i] = 0; 1577 1578 spin_lock(&pd->cdrw.active_list_lock); 1579 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1580 states[pkt->state]++; 1581 } 1582 spin_unlock(&pd->cdrw.active_list_lock); 1583 } 1584 1585 /* 1586 * kcdrwd is woken up when writes have been queued for one of our 1587 * registered devices 1588 */ 1589 static int kcdrwd(void *foobar) 1590 { 1591 struct pktcdvd_device *pd = foobar; 1592 struct packet_data *pkt; 1593 long min_sleep_time, residue; 1594 1595 set_user_nice(current, -20); 1596 set_freezable(); 1597 1598 for (;;) { 1599 DECLARE_WAITQUEUE(wait, current); 1600 1601 /* 1602 * Wait until there is something to do 1603 */ 1604 add_wait_queue(&pd->wqueue, &wait); 1605 for (;;) { 1606 set_current_state(TASK_INTERRUPTIBLE); 1607 1608 /* Check if we need to run pkt_handle_queue */ 1609 if (atomic_read(&pd->scan_queue) > 0) 1610 goto work_to_do; 1611 1612 /* Check if we need to run the state machine for some packet */ 1613 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1614 if (atomic_read(&pkt->run_sm) > 0) 1615 goto work_to_do; 1616 } 1617 1618 /* Check if we need to process the iosched queues */ 1619 if (atomic_read(&pd->iosched.attention) != 0) 1620 goto work_to_do; 1621 1622 /* Otherwise, go to sleep */ 1623 if (PACKET_DEBUG > 1) { 1624 int states[PACKET_NUM_STATES]; 1625 pkt_count_states(pd, states); 1626 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1627 states[0], states[1], states[2], states[3], 1628 states[4], states[5]); 1629 } 1630 1631 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1632 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1633 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1634 min_sleep_time = pkt->sleep_time; 1635 } 1636 1637 generic_unplug_device(bdev_get_queue(pd->bdev)); 1638 1639 VPRINTK("kcdrwd: sleeping\n"); 1640 residue = schedule_timeout(min_sleep_time); 1641 VPRINTK("kcdrwd: wake up\n"); 1642 1643 /* make swsusp happy with our thread */ 1644 try_to_freeze(); 1645 1646 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1647 if (!pkt->sleep_time) 1648 continue; 1649 pkt->sleep_time -= min_sleep_time - residue; 1650 if (pkt->sleep_time <= 0) { 1651 pkt->sleep_time = 0; 1652 atomic_inc(&pkt->run_sm); 1653 } 1654 } 1655 1656 if (kthread_should_stop()) 1657 break; 1658 } 1659 work_to_do: 1660 set_current_state(TASK_RUNNING); 1661 remove_wait_queue(&pd->wqueue, &wait); 1662 1663 if (kthread_should_stop()) 1664 break; 1665 1666 /* 1667 * if pkt_handle_queue returns true, we can queue 1668 * another request. 1669 */ 1670 while (pkt_handle_queue(pd)) 1671 ; 1672 1673 /* 1674 * Handle packet state machine 1675 */ 1676 pkt_handle_packets(pd); 1677 1678 /* 1679 * Handle iosched queues 1680 */ 1681 pkt_iosched_process_queue(pd); 1682 } 1683 1684 return 0; 1685 } 1686 1687 static void pkt_print_settings(struct pktcdvd_device *pd) 1688 { 1689 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable"); 1690 printk("%u blocks, ", pd->settings.size >> 2); 1691 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2'); 1692 } 1693 1694 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1695 { 1696 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1697 1698 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1699 cgc->cmd[2] = page_code | (page_control << 6); 1700 cgc->cmd[7] = cgc->buflen >> 8; 1701 cgc->cmd[8] = cgc->buflen & 0xff; 1702 cgc->data_direction = CGC_DATA_READ; 1703 return pkt_generic_packet(pd, cgc); 1704 } 1705 1706 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1707 { 1708 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1709 memset(cgc->buffer, 0, 2); 1710 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1711 cgc->cmd[1] = 0x10; /* PF */ 1712 cgc->cmd[7] = cgc->buflen >> 8; 1713 cgc->cmd[8] = cgc->buflen & 0xff; 1714 cgc->data_direction = CGC_DATA_WRITE; 1715 return pkt_generic_packet(pd, cgc); 1716 } 1717 1718 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1719 { 1720 struct packet_command cgc; 1721 int ret; 1722 1723 /* set up command and get the disc info */ 1724 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1725 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1726 cgc.cmd[8] = cgc.buflen = 2; 1727 cgc.quiet = 1; 1728 1729 if ((ret = pkt_generic_packet(pd, &cgc))) 1730 return ret; 1731 1732 /* not all drives have the same disc_info length, so requeue 1733 * packet with the length the drive tells us it can supply 1734 */ 1735 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1736 sizeof(di->disc_information_length); 1737 1738 if (cgc.buflen > sizeof(disc_information)) 1739 cgc.buflen = sizeof(disc_information); 1740 1741 cgc.cmd[8] = cgc.buflen; 1742 return pkt_generic_packet(pd, &cgc); 1743 } 1744 1745 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1746 { 1747 struct packet_command cgc; 1748 int ret; 1749 1750 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1751 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1752 cgc.cmd[1] = type & 3; 1753 cgc.cmd[4] = (track & 0xff00) >> 8; 1754 cgc.cmd[5] = track & 0xff; 1755 cgc.cmd[8] = 8; 1756 cgc.quiet = 1; 1757 1758 if ((ret = pkt_generic_packet(pd, &cgc))) 1759 return ret; 1760 1761 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1762 sizeof(ti->track_information_length); 1763 1764 if (cgc.buflen > sizeof(track_information)) 1765 cgc.buflen = sizeof(track_information); 1766 1767 cgc.cmd[8] = cgc.buflen; 1768 return pkt_generic_packet(pd, &cgc); 1769 } 1770 1771 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written) 1772 { 1773 disc_information di; 1774 track_information ti; 1775 __u32 last_track; 1776 int ret = -1; 1777 1778 if ((ret = pkt_get_disc_info(pd, &di))) 1779 return ret; 1780 1781 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1782 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1783 return ret; 1784 1785 /* if this track is blank, try the previous. */ 1786 if (ti.blank) { 1787 last_track--; 1788 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1789 return ret; 1790 } 1791 1792 /* if last recorded field is valid, return it. */ 1793 if (ti.lra_v) { 1794 *last_written = be32_to_cpu(ti.last_rec_address); 1795 } else { 1796 /* make it up instead */ 1797 *last_written = be32_to_cpu(ti.track_start) + 1798 be32_to_cpu(ti.track_size); 1799 if (ti.free_blocks) 1800 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1801 } 1802 return 0; 1803 } 1804 1805 /* 1806 * write mode select package based on pd->settings 1807 */ 1808 static int pkt_set_write_settings(struct pktcdvd_device *pd) 1809 { 1810 struct packet_command cgc; 1811 struct request_sense sense; 1812 write_param_page *wp; 1813 char buffer[128]; 1814 int ret, size; 1815 1816 /* doesn't apply to DVD+RW or DVD-RAM */ 1817 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1818 return 0; 1819 1820 memset(buffer, 0, sizeof(buffer)); 1821 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1822 cgc.sense = &sense; 1823 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1824 pkt_dump_sense(&cgc); 1825 return ret; 1826 } 1827 1828 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1829 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1830 if (size > sizeof(buffer)) 1831 size = sizeof(buffer); 1832 1833 /* 1834 * now get it all 1835 */ 1836 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1837 cgc.sense = &sense; 1838 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1839 pkt_dump_sense(&cgc); 1840 return ret; 1841 } 1842 1843 /* 1844 * write page is offset header + block descriptor length 1845 */ 1846 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1847 1848 wp->fp = pd->settings.fp; 1849 wp->track_mode = pd->settings.track_mode; 1850 wp->write_type = pd->settings.write_type; 1851 wp->data_block_type = pd->settings.block_mode; 1852 1853 wp->multi_session = 0; 1854 1855 #ifdef PACKET_USE_LS 1856 wp->link_size = 7; 1857 wp->ls_v = 1; 1858 #endif 1859 1860 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1861 wp->session_format = 0; 1862 wp->subhdr2 = 0x20; 1863 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1864 wp->session_format = 0x20; 1865 wp->subhdr2 = 8; 1866 #if 0 1867 wp->mcn[0] = 0x80; 1868 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1869 #endif 1870 } else { 1871 /* 1872 * paranoia 1873 */ 1874 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type); 1875 return 1; 1876 } 1877 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1878 1879 cgc.buflen = cgc.cmd[8] = size; 1880 if ((ret = pkt_mode_select(pd, &cgc))) { 1881 pkt_dump_sense(&cgc); 1882 return ret; 1883 } 1884 1885 pkt_print_settings(pd); 1886 return 0; 1887 } 1888 1889 /* 1890 * 1 -- we can write to this track, 0 -- we can't 1891 */ 1892 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1893 { 1894 switch (pd->mmc3_profile) { 1895 case 0x1a: /* DVD+RW */ 1896 case 0x12: /* DVD-RAM */ 1897 /* The track is always writable on DVD+RW/DVD-RAM */ 1898 return 1; 1899 default: 1900 break; 1901 } 1902 1903 if (!ti->packet || !ti->fp) 1904 return 0; 1905 1906 /* 1907 * "good" settings as per Mt Fuji. 1908 */ 1909 if (ti->rt == 0 && ti->blank == 0) 1910 return 1; 1911 1912 if (ti->rt == 0 && ti->blank == 1) 1913 return 1; 1914 1915 if (ti->rt == 1 && ti->blank == 0) 1916 return 1; 1917 1918 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1919 return 0; 1920 } 1921 1922 /* 1923 * 1 -- we can write to this disc, 0 -- we can't 1924 */ 1925 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1926 { 1927 switch (pd->mmc3_profile) { 1928 case 0x0a: /* CD-RW */ 1929 case 0xffff: /* MMC3 not supported */ 1930 break; 1931 case 0x1a: /* DVD+RW */ 1932 case 0x13: /* DVD-RW */ 1933 case 0x12: /* DVD-RAM */ 1934 return 1; 1935 default: 1936 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile); 1937 return 0; 1938 } 1939 1940 /* 1941 * for disc type 0xff we should probably reserve a new track. 1942 * but i'm not sure, should we leave this to user apps? probably. 1943 */ 1944 if (di->disc_type == 0xff) { 1945 printk(DRIVER_NAME": Unknown disc. No track?\n"); 1946 return 0; 1947 } 1948 1949 if (di->disc_type != 0x20 && di->disc_type != 0) { 1950 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type); 1951 return 0; 1952 } 1953 1954 if (di->erasable == 0) { 1955 printk(DRIVER_NAME": Disc not erasable\n"); 1956 return 0; 1957 } 1958 1959 if (di->border_status == PACKET_SESSION_RESERVED) { 1960 printk(DRIVER_NAME": Can't write to last track (reserved)\n"); 1961 return 0; 1962 } 1963 1964 return 1; 1965 } 1966 1967 static int pkt_probe_settings(struct pktcdvd_device *pd) 1968 { 1969 struct packet_command cgc; 1970 unsigned char buf[12]; 1971 disc_information di; 1972 track_information ti; 1973 int ret, track; 1974 1975 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1976 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1977 cgc.cmd[8] = 8; 1978 ret = pkt_generic_packet(pd, &cgc); 1979 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1980 1981 memset(&di, 0, sizeof(disc_information)); 1982 memset(&ti, 0, sizeof(track_information)); 1983 1984 if ((ret = pkt_get_disc_info(pd, &di))) { 1985 printk("failed get_disc\n"); 1986 return ret; 1987 } 1988 1989 if (!pkt_writable_disc(pd, &di)) 1990 return -EROFS; 1991 1992 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 1993 1994 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 1995 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 1996 printk(DRIVER_NAME": failed get_track\n"); 1997 return ret; 1998 } 1999 2000 if (!pkt_writable_track(pd, &ti)) { 2001 printk(DRIVER_NAME": can't write to this track\n"); 2002 return -EROFS; 2003 } 2004 2005 /* 2006 * we keep packet size in 512 byte units, makes it easier to 2007 * deal with request calculations. 2008 */ 2009 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 2010 if (pd->settings.size == 0) { 2011 printk(DRIVER_NAME": detected zero packet size!\n"); 2012 return -ENXIO; 2013 } 2014 if (pd->settings.size > PACKET_MAX_SECTORS) { 2015 printk(DRIVER_NAME": packet size is too big\n"); 2016 return -EROFS; 2017 } 2018 pd->settings.fp = ti.fp; 2019 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 2020 2021 if (ti.nwa_v) { 2022 pd->nwa = be32_to_cpu(ti.next_writable); 2023 set_bit(PACKET_NWA_VALID, &pd->flags); 2024 } 2025 2026 /* 2027 * in theory we could use lra on -RW media as well and just zero 2028 * blocks that haven't been written yet, but in practice that 2029 * is just a no-go. we'll use that for -R, naturally. 2030 */ 2031 if (ti.lra_v) { 2032 pd->lra = be32_to_cpu(ti.last_rec_address); 2033 set_bit(PACKET_LRA_VALID, &pd->flags); 2034 } else { 2035 pd->lra = 0xffffffff; 2036 set_bit(PACKET_LRA_VALID, &pd->flags); 2037 } 2038 2039 /* 2040 * fine for now 2041 */ 2042 pd->settings.link_loss = 7; 2043 pd->settings.write_type = 0; /* packet */ 2044 pd->settings.track_mode = ti.track_mode; 2045 2046 /* 2047 * mode1 or mode2 disc 2048 */ 2049 switch (ti.data_mode) { 2050 case PACKET_MODE1: 2051 pd->settings.block_mode = PACKET_BLOCK_MODE1; 2052 break; 2053 case PACKET_MODE2: 2054 pd->settings.block_mode = PACKET_BLOCK_MODE2; 2055 break; 2056 default: 2057 printk(DRIVER_NAME": unknown data mode\n"); 2058 return -EROFS; 2059 } 2060 return 0; 2061 } 2062 2063 /* 2064 * enable/disable write caching on drive 2065 */ 2066 static int pkt_write_caching(struct pktcdvd_device *pd, int set) 2067 { 2068 struct packet_command cgc; 2069 struct request_sense sense; 2070 unsigned char buf[64]; 2071 int ret; 2072 2073 memset(buf, 0, sizeof(buf)); 2074 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 2075 cgc.sense = &sense; 2076 cgc.buflen = pd->mode_offset + 12; 2077 2078 /* 2079 * caching mode page might not be there, so quiet this command 2080 */ 2081 cgc.quiet = 1; 2082 2083 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 2084 return ret; 2085 2086 buf[pd->mode_offset + 10] |= (!!set << 2); 2087 2088 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 2089 ret = pkt_mode_select(pd, &cgc); 2090 if (ret) { 2091 printk(DRIVER_NAME": write caching control failed\n"); 2092 pkt_dump_sense(&cgc); 2093 } else if (!ret && set) 2094 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name); 2095 return ret; 2096 } 2097 2098 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 2099 { 2100 struct packet_command cgc; 2101 2102 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2103 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 2104 cgc.cmd[4] = lockflag ? 1 : 0; 2105 return pkt_generic_packet(pd, &cgc); 2106 } 2107 2108 /* 2109 * Returns drive maximum write speed 2110 */ 2111 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed) 2112 { 2113 struct packet_command cgc; 2114 struct request_sense sense; 2115 unsigned char buf[256+18]; 2116 unsigned char *cap_buf; 2117 int ret, offset; 2118 2119 memset(buf, 0, sizeof(buf)); 2120 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 2121 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 2122 cgc.sense = &sense; 2123 2124 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2125 if (ret) { 2126 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 2127 sizeof(struct mode_page_header); 2128 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2129 if (ret) { 2130 pkt_dump_sense(&cgc); 2131 return ret; 2132 } 2133 } 2134 2135 offset = 20; /* Obsoleted field, used by older drives */ 2136 if (cap_buf[1] >= 28) 2137 offset = 28; /* Current write speed selected */ 2138 if (cap_buf[1] >= 30) { 2139 /* If the drive reports at least one "Logical Unit Write 2140 * Speed Performance Descriptor Block", use the information 2141 * in the first block. (contains the highest speed) 2142 */ 2143 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 2144 if (num_spdb > 0) 2145 offset = 34; 2146 } 2147 2148 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 2149 return 0; 2150 } 2151 2152 /* These tables from cdrecord - I don't have orange book */ 2153 /* standard speed CD-RW (1-4x) */ 2154 static char clv_to_speed[16] = { 2155 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2156 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2157 }; 2158 /* high speed CD-RW (-10x) */ 2159 static char hs_clv_to_speed[16] = { 2160 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2161 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2162 }; 2163 /* ultra high speed CD-RW */ 2164 static char us_clv_to_speed[16] = { 2165 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2166 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 2167 }; 2168 2169 /* 2170 * reads the maximum media speed from ATIP 2171 */ 2172 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed) 2173 { 2174 struct packet_command cgc; 2175 struct request_sense sense; 2176 unsigned char buf[64]; 2177 unsigned int size, st, sp; 2178 int ret; 2179 2180 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 2181 cgc.sense = &sense; 2182 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2183 cgc.cmd[1] = 2; 2184 cgc.cmd[2] = 4; /* READ ATIP */ 2185 cgc.cmd[8] = 2; 2186 ret = pkt_generic_packet(pd, &cgc); 2187 if (ret) { 2188 pkt_dump_sense(&cgc); 2189 return ret; 2190 } 2191 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 2192 if (size > sizeof(buf)) 2193 size = sizeof(buf); 2194 2195 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2196 cgc.sense = &sense; 2197 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2198 cgc.cmd[1] = 2; 2199 cgc.cmd[2] = 4; 2200 cgc.cmd[8] = size; 2201 ret = pkt_generic_packet(pd, &cgc); 2202 if (ret) { 2203 pkt_dump_sense(&cgc); 2204 return ret; 2205 } 2206 2207 if (!buf[6] & 0x40) { 2208 printk(DRIVER_NAME": Disc type is not CD-RW\n"); 2209 return 1; 2210 } 2211 if (!buf[6] & 0x4) { 2212 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n"); 2213 return 1; 2214 } 2215 2216 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2217 2218 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2219 2220 /* Info from cdrecord */ 2221 switch (st) { 2222 case 0: /* standard speed */ 2223 *speed = clv_to_speed[sp]; 2224 break; 2225 case 1: /* high speed */ 2226 *speed = hs_clv_to_speed[sp]; 2227 break; 2228 case 2: /* ultra high speed */ 2229 *speed = us_clv_to_speed[sp]; 2230 break; 2231 default: 2232 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st); 2233 return 1; 2234 } 2235 if (*speed) { 2236 printk(DRIVER_NAME": Max. media speed: %d\n",*speed); 2237 return 0; 2238 } else { 2239 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st); 2240 return 1; 2241 } 2242 } 2243 2244 static int pkt_perform_opc(struct pktcdvd_device *pd) 2245 { 2246 struct packet_command cgc; 2247 struct request_sense sense; 2248 int ret; 2249 2250 VPRINTK(DRIVER_NAME": Performing OPC\n"); 2251 2252 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2253 cgc.sense = &sense; 2254 cgc.timeout = 60*HZ; 2255 cgc.cmd[0] = GPCMD_SEND_OPC; 2256 cgc.cmd[1] = 1; 2257 if ((ret = pkt_generic_packet(pd, &cgc))) 2258 pkt_dump_sense(&cgc); 2259 return ret; 2260 } 2261 2262 static int pkt_open_write(struct pktcdvd_device *pd) 2263 { 2264 int ret; 2265 unsigned int write_speed, media_write_speed, read_speed; 2266 2267 if ((ret = pkt_probe_settings(pd))) { 2268 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name); 2269 return ret; 2270 } 2271 2272 if ((ret = pkt_set_write_settings(pd))) { 2273 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name); 2274 return -EIO; 2275 } 2276 2277 pkt_write_caching(pd, USE_WCACHING); 2278 2279 if ((ret = pkt_get_max_speed(pd, &write_speed))) 2280 write_speed = 16 * 177; 2281 switch (pd->mmc3_profile) { 2282 case 0x13: /* DVD-RW */ 2283 case 0x1a: /* DVD+RW */ 2284 case 0x12: /* DVD-RAM */ 2285 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed); 2286 break; 2287 default: 2288 if ((ret = pkt_media_speed(pd, &media_write_speed))) 2289 media_write_speed = 16; 2290 write_speed = min(write_speed, media_write_speed * 177); 2291 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176); 2292 break; 2293 } 2294 read_speed = write_speed; 2295 2296 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 2297 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name); 2298 return -EIO; 2299 } 2300 pd->write_speed = write_speed; 2301 pd->read_speed = read_speed; 2302 2303 if ((ret = pkt_perform_opc(pd))) { 2304 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name); 2305 } 2306 2307 return 0; 2308 } 2309 2310 /* 2311 * called at open time. 2312 */ 2313 static int pkt_open_dev(struct pktcdvd_device *pd, int write) 2314 { 2315 int ret; 2316 long lba; 2317 struct request_queue *q; 2318 2319 /* 2320 * We need to re-open the cdrom device without O_NONBLOCK to be able 2321 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2322 * so bdget() can't fail. 2323 */ 2324 bdget(pd->bdev->bd_dev); 2325 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY))) 2326 goto out; 2327 2328 if ((ret = bd_claim(pd->bdev, pd))) 2329 goto out_putdev; 2330 2331 if ((ret = pkt_get_last_written(pd, &lba))) { 2332 printk(DRIVER_NAME": pkt_get_last_written failed\n"); 2333 goto out_unclaim; 2334 } 2335 2336 set_capacity(pd->disk, lba << 2); 2337 set_capacity(pd->bdev->bd_disk, lba << 2); 2338 bd_set_size(pd->bdev, (loff_t)lba << 11); 2339 2340 q = bdev_get_queue(pd->bdev); 2341 if (write) { 2342 if ((ret = pkt_open_write(pd))) 2343 goto out_unclaim; 2344 /* 2345 * Some CDRW drives can not handle writes larger than one packet, 2346 * even if the size is a multiple of the packet size. 2347 */ 2348 spin_lock_irq(q->queue_lock); 2349 blk_queue_max_sectors(q, pd->settings.size); 2350 spin_unlock_irq(q->queue_lock); 2351 set_bit(PACKET_WRITABLE, &pd->flags); 2352 } else { 2353 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2354 clear_bit(PACKET_WRITABLE, &pd->flags); 2355 } 2356 2357 if ((ret = pkt_set_segment_merging(pd, q))) 2358 goto out_unclaim; 2359 2360 if (write) { 2361 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2362 printk(DRIVER_NAME": not enough memory for buffers\n"); 2363 ret = -ENOMEM; 2364 goto out_unclaim; 2365 } 2366 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1); 2367 } 2368 2369 return 0; 2370 2371 out_unclaim: 2372 bd_release(pd->bdev); 2373 out_putdev: 2374 blkdev_put(pd->bdev); 2375 out: 2376 return ret; 2377 } 2378 2379 /* 2380 * called when the device is closed. makes sure that the device flushes 2381 * the internal cache before we close. 2382 */ 2383 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2384 { 2385 if (flush && pkt_flush_cache(pd)) 2386 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name); 2387 2388 pkt_lock_door(pd, 0); 2389 2390 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2391 bd_release(pd->bdev); 2392 blkdev_put(pd->bdev); 2393 2394 pkt_shrink_pktlist(pd); 2395 } 2396 2397 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor) 2398 { 2399 if (dev_minor >= MAX_WRITERS) 2400 return NULL; 2401 return pkt_devs[dev_minor]; 2402 } 2403 2404 static int pkt_open(struct inode *inode, struct file *file) 2405 { 2406 struct pktcdvd_device *pd = NULL; 2407 int ret; 2408 2409 VPRINTK(DRIVER_NAME": entering open\n"); 2410 2411 mutex_lock(&ctl_mutex); 2412 pd = pkt_find_dev_from_minor(iminor(inode)); 2413 if (!pd) { 2414 ret = -ENODEV; 2415 goto out; 2416 } 2417 BUG_ON(pd->refcnt < 0); 2418 2419 pd->refcnt++; 2420 if (pd->refcnt > 1) { 2421 if ((file->f_mode & FMODE_WRITE) && 2422 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2423 ret = -EBUSY; 2424 goto out_dec; 2425 } 2426 } else { 2427 ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE); 2428 if (ret) 2429 goto out_dec; 2430 /* 2431 * needed here as well, since ext2 (among others) may change 2432 * the blocksize at mount time 2433 */ 2434 set_blocksize(inode->i_bdev, CD_FRAMESIZE); 2435 } 2436 2437 mutex_unlock(&ctl_mutex); 2438 return 0; 2439 2440 out_dec: 2441 pd->refcnt--; 2442 out: 2443 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret); 2444 mutex_unlock(&ctl_mutex); 2445 return ret; 2446 } 2447 2448 static int pkt_close(struct inode *inode, struct file *file) 2449 { 2450 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; 2451 int ret = 0; 2452 2453 mutex_lock(&ctl_mutex); 2454 pd->refcnt--; 2455 BUG_ON(pd->refcnt < 0); 2456 if (pd->refcnt == 0) { 2457 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2458 pkt_release_dev(pd, flush); 2459 } 2460 mutex_unlock(&ctl_mutex); 2461 return ret; 2462 } 2463 2464 2465 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err) 2466 { 2467 struct packet_stacked_data *psd = bio->bi_private; 2468 struct pktcdvd_device *pd = psd->pd; 2469 2470 if (bio->bi_size) 2471 return 1; 2472 2473 bio_put(bio); 2474 bio_endio(psd->bio, psd->bio->bi_size, err); 2475 mempool_free(psd, psd_pool); 2476 pkt_bio_finished(pd); 2477 return 0; 2478 } 2479 2480 static int pkt_make_request(struct request_queue *q, struct bio *bio) 2481 { 2482 struct pktcdvd_device *pd; 2483 char b[BDEVNAME_SIZE]; 2484 sector_t zone; 2485 struct packet_data *pkt; 2486 int was_empty, blocked_bio; 2487 struct pkt_rb_node *node; 2488 2489 pd = q->queuedata; 2490 if (!pd) { 2491 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b)); 2492 goto end_io; 2493 } 2494 2495 /* 2496 * Clone READ bios so we can have our own bi_end_io callback. 2497 */ 2498 if (bio_data_dir(bio) == READ) { 2499 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); 2500 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2501 2502 psd->pd = pd; 2503 psd->bio = bio; 2504 cloned_bio->bi_bdev = pd->bdev; 2505 cloned_bio->bi_private = psd; 2506 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2507 pd->stats.secs_r += bio->bi_size >> 9; 2508 pkt_queue_bio(pd, cloned_bio); 2509 return 0; 2510 } 2511 2512 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2513 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n", 2514 pd->name, (unsigned long long)bio->bi_sector); 2515 goto end_io; 2516 } 2517 2518 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) { 2519 printk(DRIVER_NAME": wrong bio size\n"); 2520 goto end_io; 2521 } 2522 2523 blk_queue_bounce(q, &bio); 2524 2525 zone = ZONE(bio->bi_sector, pd); 2526 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n", 2527 (unsigned long long)bio->bi_sector, 2528 (unsigned long long)(bio->bi_sector + bio_sectors(bio))); 2529 2530 /* Check if we have to split the bio */ 2531 { 2532 struct bio_pair *bp; 2533 sector_t last_zone; 2534 int first_sectors; 2535 2536 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd); 2537 if (last_zone != zone) { 2538 BUG_ON(last_zone != zone + pd->settings.size); 2539 first_sectors = last_zone - bio->bi_sector; 2540 bp = bio_split(bio, bio_split_pool, first_sectors); 2541 BUG_ON(!bp); 2542 pkt_make_request(q, &bp->bio1); 2543 pkt_make_request(q, &bp->bio2); 2544 bio_pair_release(bp); 2545 return 0; 2546 } 2547 } 2548 2549 /* 2550 * If we find a matching packet in state WAITING or READ_WAIT, we can 2551 * just append this bio to that packet. 2552 */ 2553 spin_lock(&pd->cdrw.active_list_lock); 2554 blocked_bio = 0; 2555 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2556 if (pkt->sector == zone) { 2557 spin_lock(&pkt->lock); 2558 if ((pkt->state == PACKET_WAITING_STATE) || 2559 (pkt->state == PACKET_READ_WAIT_STATE)) { 2560 pkt_add_list_last(bio, &pkt->orig_bios, 2561 &pkt->orig_bios_tail); 2562 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 2563 if ((pkt->write_size >= pkt->frames) && 2564 (pkt->state == PACKET_WAITING_STATE)) { 2565 atomic_inc(&pkt->run_sm); 2566 wake_up(&pd->wqueue); 2567 } 2568 spin_unlock(&pkt->lock); 2569 spin_unlock(&pd->cdrw.active_list_lock); 2570 return 0; 2571 } else { 2572 blocked_bio = 1; 2573 } 2574 spin_unlock(&pkt->lock); 2575 } 2576 } 2577 spin_unlock(&pd->cdrw.active_list_lock); 2578 2579 /* 2580 * Test if there is enough room left in the bio work queue 2581 * (queue size >= congestion on mark). 2582 * If not, wait till the work queue size is below the congestion off mark. 2583 */ 2584 spin_lock(&pd->lock); 2585 if (pd->write_congestion_on > 0 2586 && pd->bio_queue_size >= pd->write_congestion_on) { 2587 set_bdi_congested(&q->backing_dev_info, WRITE); 2588 do { 2589 spin_unlock(&pd->lock); 2590 congestion_wait(WRITE, HZ); 2591 spin_lock(&pd->lock); 2592 } while(pd->bio_queue_size > pd->write_congestion_off); 2593 } 2594 spin_unlock(&pd->lock); 2595 2596 /* 2597 * No matching packet found. Store the bio in the work queue. 2598 */ 2599 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2600 node->bio = bio; 2601 spin_lock(&pd->lock); 2602 BUG_ON(pd->bio_queue_size < 0); 2603 was_empty = (pd->bio_queue_size == 0); 2604 pkt_rbtree_insert(pd, node); 2605 spin_unlock(&pd->lock); 2606 2607 /* 2608 * Wake up the worker thread. 2609 */ 2610 atomic_set(&pd->scan_queue, 1); 2611 if (was_empty) { 2612 /* This wake_up is required for correct operation */ 2613 wake_up(&pd->wqueue); 2614 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2615 /* 2616 * This wake up is not required for correct operation, 2617 * but improves performance in some cases. 2618 */ 2619 wake_up(&pd->wqueue); 2620 } 2621 return 0; 2622 end_io: 2623 bio_io_error(bio, bio->bi_size); 2624 return 0; 2625 } 2626 2627 2628 2629 static int pkt_merge_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *bvec) 2630 { 2631 struct pktcdvd_device *pd = q->queuedata; 2632 sector_t zone = ZONE(bio->bi_sector, pd); 2633 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size; 2634 int remaining = (pd->settings.size << 9) - used; 2635 int remaining2; 2636 2637 /* 2638 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet 2639 * boundary, pkt_make_request() will split the bio. 2640 */ 2641 remaining2 = PAGE_SIZE - bio->bi_size; 2642 remaining = max(remaining, remaining2); 2643 2644 BUG_ON(remaining < 0); 2645 return remaining; 2646 } 2647 2648 static void pkt_init_queue(struct pktcdvd_device *pd) 2649 { 2650 struct request_queue *q = pd->disk->queue; 2651 2652 blk_queue_make_request(q, pkt_make_request); 2653 blk_queue_hardsect_size(q, CD_FRAMESIZE); 2654 blk_queue_max_sectors(q, PACKET_MAX_SECTORS); 2655 blk_queue_merge_bvec(q, pkt_merge_bvec); 2656 q->queuedata = pd; 2657 } 2658 2659 static int pkt_seq_show(struct seq_file *m, void *p) 2660 { 2661 struct pktcdvd_device *pd = m->private; 2662 char *msg; 2663 char bdev_buf[BDEVNAME_SIZE]; 2664 int states[PACKET_NUM_STATES]; 2665 2666 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2667 bdevname(pd->bdev, bdev_buf)); 2668 2669 seq_printf(m, "\nSettings:\n"); 2670 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2671 2672 if (pd->settings.write_type == 0) 2673 msg = "Packet"; 2674 else 2675 msg = "Unknown"; 2676 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2677 2678 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2679 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2680 2681 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2682 2683 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2684 msg = "Mode 1"; 2685 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2686 msg = "Mode 2"; 2687 else 2688 msg = "Unknown"; 2689 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2690 2691 seq_printf(m, "\nStatistics:\n"); 2692 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2693 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2694 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2695 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2696 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2697 2698 seq_printf(m, "\nMisc:\n"); 2699 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2700 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2701 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2702 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2703 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2704 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2705 2706 seq_printf(m, "\nQueue state:\n"); 2707 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2708 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2709 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2710 2711 pkt_count_states(pd, states); 2712 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2713 states[0], states[1], states[2], states[3], states[4], states[5]); 2714 2715 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 2716 pd->write_congestion_off, 2717 pd->write_congestion_on); 2718 return 0; 2719 } 2720 2721 static int pkt_seq_open(struct inode *inode, struct file *file) 2722 { 2723 return single_open(file, pkt_seq_show, PDE(inode)->data); 2724 } 2725 2726 static const struct file_operations pkt_proc_fops = { 2727 .open = pkt_seq_open, 2728 .read = seq_read, 2729 .llseek = seq_lseek, 2730 .release = single_release 2731 }; 2732 2733 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2734 { 2735 int i; 2736 int ret = 0; 2737 char b[BDEVNAME_SIZE]; 2738 struct proc_dir_entry *proc; 2739 struct block_device *bdev; 2740 2741 if (pd->pkt_dev == dev) { 2742 printk(DRIVER_NAME": Recursive setup not allowed\n"); 2743 return -EBUSY; 2744 } 2745 for (i = 0; i < MAX_WRITERS; i++) { 2746 struct pktcdvd_device *pd2 = pkt_devs[i]; 2747 if (!pd2) 2748 continue; 2749 if (pd2->bdev->bd_dev == dev) { 2750 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b)); 2751 return -EBUSY; 2752 } 2753 if (pd2->pkt_dev == dev) { 2754 printk(DRIVER_NAME": Can't chain pktcdvd devices\n"); 2755 return -EBUSY; 2756 } 2757 } 2758 2759 bdev = bdget(dev); 2760 if (!bdev) 2761 return -ENOMEM; 2762 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK); 2763 if (ret) 2764 return ret; 2765 2766 /* This is safe, since we have a reference from open(). */ 2767 __module_get(THIS_MODULE); 2768 2769 pd->bdev = bdev; 2770 set_blocksize(bdev, CD_FRAMESIZE); 2771 2772 pkt_init_queue(pd); 2773 2774 atomic_set(&pd->cdrw.pending_bios, 0); 2775 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2776 if (IS_ERR(pd->cdrw.thread)) { 2777 printk(DRIVER_NAME": can't start kernel thread\n"); 2778 ret = -ENOMEM; 2779 goto out_mem; 2780 } 2781 2782 proc = create_proc_entry(pd->name, 0, pkt_proc); 2783 if (proc) { 2784 proc->data = pd; 2785 proc->proc_fops = &pkt_proc_fops; 2786 } 2787 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b)); 2788 return 0; 2789 2790 out_mem: 2791 blkdev_put(bdev); 2792 /* This is safe: open() is still holding a reference. */ 2793 module_put(THIS_MODULE); 2794 return ret; 2795 } 2796 2797 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 2798 { 2799 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; 2800 2801 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode)); 2802 2803 switch (cmd) { 2804 /* 2805 * forward selected CDROM ioctls to CD-ROM, for UDF 2806 */ 2807 case CDROMMULTISESSION: 2808 case CDROMREADTOCENTRY: 2809 case CDROM_LAST_WRITTEN: 2810 case CDROM_SEND_PACKET: 2811 case SCSI_IOCTL_SEND_COMMAND: 2812 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); 2813 2814 case CDROMEJECT: 2815 /* 2816 * The door gets locked when the device is opened, so we 2817 * have to unlock it or else the eject command fails. 2818 */ 2819 if (pd->refcnt == 1) 2820 pkt_lock_door(pd, 0); 2821 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); 2822 2823 default: 2824 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd); 2825 return -ENOTTY; 2826 } 2827 2828 return 0; 2829 } 2830 2831 static int pkt_media_changed(struct gendisk *disk) 2832 { 2833 struct pktcdvd_device *pd = disk->private_data; 2834 struct gendisk *attached_disk; 2835 2836 if (!pd) 2837 return 0; 2838 if (!pd->bdev) 2839 return 0; 2840 attached_disk = pd->bdev->bd_disk; 2841 if (!attached_disk) 2842 return 0; 2843 return attached_disk->fops->media_changed(attached_disk); 2844 } 2845 2846 static struct block_device_operations pktcdvd_ops = { 2847 .owner = THIS_MODULE, 2848 .open = pkt_open, 2849 .release = pkt_close, 2850 .ioctl = pkt_ioctl, 2851 .media_changed = pkt_media_changed, 2852 }; 2853 2854 /* 2855 * Set up mapping from pktcdvd device to CD-ROM device. 2856 */ 2857 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2858 { 2859 int idx; 2860 int ret = -ENOMEM; 2861 struct pktcdvd_device *pd; 2862 struct gendisk *disk; 2863 2864 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2865 2866 for (idx = 0; idx < MAX_WRITERS; idx++) 2867 if (!pkt_devs[idx]) 2868 break; 2869 if (idx == MAX_WRITERS) { 2870 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS); 2871 ret = -EBUSY; 2872 goto out_mutex; 2873 } 2874 2875 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2876 if (!pd) 2877 goto out_mutex; 2878 2879 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE, 2880 sizeof(struct pkt_rb_node)); 2881 if (!pd->rb_pool) 2882 goto out_mem; 2883 2884 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2885 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2886 spin_lock_init(&pd->cdrw.active_list_lock); 2887 2888 spin_lock_init(&pd->lock); 2889 spin_lock_init(&pd->iosched.lock); 2890 sprintf(pd->name, DRIVER_NAME"%d", idx); 2891 init_waitqueue_head(&pd->wqueue); 2892 pd->bio_queue = RB_ROOT; 2893 2894 pd->write_congestion_on = write_congestion_on; 2895 pd->write_congestion_off = write_congestion_off; 2896 2897 disk = alloc_disk(1); 2898 if (!disk) 2899 goto out_mem; 2900 pd->disk = disk; 2901 disk->major = pktdev_major; 2902 disk->first_minor = idx; 2903 disk->fops = &pktcdvd_ops; 2904 disk->flags = GENHD_FL_REMOVABLE; 2905 strcpy(disk->disk_name, pd->name); 2906 disk->private_data = pd; 2907 disk->queue = blk_alloc_queue(GFP_KERNEL); 2908 if (!disk->queue) 2909 goto out_mem2; 2910 2911 pd->pkt_dev = MKDEV(disk->major, disk->first_minor); 2912 ret = pkt_new_dev(pd, dev); 2913 if (ret) 2914 goto out_new_dev; 2915 2916 add_disk(disk); 2917 2918 pkt_sysfs_dev_new(pd); 2919 pkt_debugfs_dev_new(pd); 2920 2921 pkt_devs[idx] = pd; 2922 if (pkt_dev) 2923 *pkt_dev = pd->pkt_dev; 2924 2925 mutex_unlock(&ctl_mutex); 2926 return 0; 2927 2928 out_new_dev: 2929 blk_cleanup_queue(disk->queue); 2930 out_mem2: 2931 put_disk(disk); 2932 out_mem: 2933 if (pd->rb_pool) 2934 mempool_destroy(pd->rb_pool); 2935 kfree(pd); 2936 out_mutex: 2937 mutex_unlock(&ctl_mutex); 2938 printk(DRIVER_NAME": setup of pktcdvd device failed\n"); 2939 return ret; 2940 } 2941 2942 /* 2943 * Tear down mapping from pktcdvd device to CD-ROM device. 2944 */ 2945 static int pkt_remove_dev(dev_t pkt_dev) 2946 { 2947 struct pktcdvd_device *pd; 2948 int idx; 2949 int ret = 0; 2950 2951 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2952 2953 for (idx = 0; idx < MAX_WRITERS; idx++) { 2954 pd = pkt_devs[idx]; 2955 if (pd && (pd->pkt_dev == pkt_dev)) 2956 break; 2957 } 2958 if (idx == MAX_WRITERS) { 2959 DPRINTK(DRIVER_NAME": dev not setup\n"); 2960 ret = -ENXIO; 2961 goto out; 2962 } 2963 2964 if (pd->refcnt > 0) { 2965 ret = -EBUSY; 2966 goto out; 2967 } 2968 if (!IS_ERR(pd->cdrw.thread)) 2969 kthread_stop(pd->cdrw.thread); 2970 2971 pkt_devs[idx] = NULL; 2972 2973 pkt_debugfs_dev_remove(pd); 2974 pkt_sysfs_dev_remove(pd); 2975 2976 blkdev_put(pd->bdev); 2977 2978 remove_proc_entry(pd->name, pkt_proc); 2979 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name); 2980 2981 del_gendisk(pd->disk); 2982 blk_cleanup_queue(pd->disk->queue); 2983 put_disk(pd->disk); 2984 2985 mempool_destroy(pd->rb_pool); 2986 kfree(pd); 2987 2988 /* This is safe: open() is still holding a reference. */ 2989 module_put(THIS_MODULE); 2990 2991 out: 2992 mutex_unlock(&ctl_mutex); 2993 return ret; 2994 } 2995 2996 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 2997 { 2998 struct pktcdvd_device *pd; 2999 3000 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 3001 3002 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 3003 if (pd) { 3004 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 3005 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 3006 } else { 3007 ctrl_cmd->dev = 0; 3008 ctrl_cmd->pkt_dev = 0; 3009 } 3010 ctrl_cmd->num_devices = MAX_WRITERS; 3011 3012 mutex_unlock(&ctl_mutex); 3013 } 3014 3015 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 3016 { 3017 void __user *argp = (void __user *)arg; 3018 struct pkt_ctrl_command ctrl_cmd; 3019 int ret = 0; 3020 dev_t pkt_dev = 0; 3021 3022 if (cmd != PACKET_CTRL_CMD) 3023 return -ENOTTY; 3024 3025 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 3026 return -EFAULT; 3027 3028 switch (ctrl_cmd.command) { 3029 case PKT_CTRL_CMD_SETUP: 3030 if (!capable(CAP_SYS_ADMIN)) 3031 return -EPERM; 3032 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 3033 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 3034 break; 3035 case PKT_CTRL_CMD_TEARDOWN: 3036 if (!capable(CAP_SYS_ADMIN)) 3037 return -EPERM; 3038 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 3039 break; 3040 case PKT_CTRL_CMD_STATUS: 3041 pkt_get_status(&ctrl_cmd); 3042 break; 3043 default: 3044 return -ENOTTY; 3045 } 3046 3047 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 3048 return -EFAULT; 3049 return ret; 3050 } 3051 3052 3053 static const struct file_operations pkt_ctl_fops = { 3054 .ioctl = pkt_ctl_ioctl, 3055 .owner = THIS_MODULE, 3056 }; 3057 3058 static struct miscdevice pkt_misc = { 3059 .minor = MISC_DYNAMIC_MINOR, 3060 .name = DRIVER_NAME, 3061 .fops = &pkt_ctl_fops 3062 }; 3063 3064 static int __init pkt_init(void) 3065 { 3066 int ret; 3067 3068 mutex_init(&ctl_mutex); 3069 3070 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE, 3071 sizeof(struct packet_stacked_data)); 3072 if (!psd_pool) 3073 return -ENOMEM; 3074 3075 ret = register_blkdev(pktdev_major, DRIVER_NAME); 3076 if (ret < 0) { 3077 printk(DRIVER_NAME": Unable to register block device\n"); 3078 goto out2; 3079 } 3080 if (!pktdev_major) 3081 pktdev_major = ret; 3082 3083 ret = pkt_sysfs_init(); 3084 if (ret) 3085 goto out; 3086 3087 pkt_debugfs_init(); 3088 3089 ret = misc_register(&pkt_misc); 3090 if (ret) { 3091 printk(DRIVER_NAME": Unable to register misc device\n"); 3092 goto out_misc; 3093 } 3094 3095 pkt_proc = proc_mkdir(DRIVER_NAME, proc_root_driver); 3096 3097 return 0; 3098 3099 out_misc: 3100 pkt_debugfs_cleanup(); 3101 pkt_sysfs_cleanup(); 3102 out: 3103 unregister_blkdev(pktdev_major, DRIVER_NAME); 3104 out2: 3105 mempool_destroy(psd_pool); 3106 return ret; 3107 } 3108 3109 static void __exit pkt_exit(void) 3110 { 3111 remove_proc_entry(DRIVER_NAME, proc_root_driver); 3112 misc_deregister(&pkt_misc); 3113 3114 pkt_debugfs_cleanup(); 3115 pkt_sysfs_cleanup(); 3116 3117 unregister_blkdev(pktdev_major, DRIVER_NAME); 3118 mempool_destroy(psd_pool); 3119 } 3120 3121 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 3122 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 3123 MODULE_LICENSE("GPL"); 3124 3125 module_init(pkt_init); 3126 module_exit(pkt_exit); 3127