xref: /openbmc/linux/drivers/block/pktcdvd.c (revision c21b37f6)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom make_request_fn function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/freezer.h>
59 #include <linux/mutex.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_ioctl.h>
62 #include <scsi/scsi.h>
63 #include <linux/debugfs.h>
64 #include <linux/device.h>
65 
66 #include <asm/uaccess.h>
67 
68 #define DRIVER_NAME	"pktcdvd"
69 
70 #if PACKET_DEBUG
71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
72 #else
73 #define DPRINTK(fmt, args...)
74 #endif
75 
76 #if PACKET_DEBUG > 1
77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
78 #else
79 #define VPRINTK(fmt, args...)
80 #endif
81 
82 #define MAX_SPEED 0xffff
83 
84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
85 
86 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
87 static struct proc_dir_entry *pkt_proc;
88 static int pktdev_major;
89 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
90 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
91 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
92 static mempool_t *psd_pool;
93 
94 static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
95 static struct dentry	*pkt_debugfs_root = NULL; /* /debug/pktcdvd */
96 
97 /* forward declaration */
98 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
99 static int pkt_remove_dev(dev_t pkt_dev);
100 static int pkt_seq_show(struct seq_file *m, void *p);
101 
102 
103 
104 /*
105  * create and register a pktcdvd kernel object.
106  */
107 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
108 					const char* name,
109 					struct kobject* parent,
110 					struct kobj_type* ktype)
111 {
112 	struct pktcdvd_kobj *p;
113 	p = kzalloc(sizeof(*p), GFP_KERNEL);
114 	if (!p)
115 		return NULL;
116 	kobject_set_name(&p->kobj, "%s", name);
117 	p->kobj.parent = parent;
118 	p->kobj.ktype = ktype;
119 	p->pd = pd;
120 	if (kobject_register(&p->kobj) != 0)
121 		return NULL;
122 	return p;
123 }
124 /*
125  * remove a pktcdvd kernel object.
126  */
127 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
128 {
129 	if (p)
130 		kobject_unregister(&p->kobj);
131 }
132 /*
133  * default release function for pktcdvd kernel objects.
134  */
135 static void pkt_kobj_release(struct kobject *kobj)
136 {
137 	kfree(to_pktcdvdkobj(kobj));
138 }
139 
140 
141 /**********************************************************
142  *
143  * sysfs interface for pktcdvd
144  * by (C) 2006  Thomas Maier <balagi@justmail.de>
145  *
146  **********************************************************/
147 
148 #define DEF_ATTR(_obj,_name,_mode) \
149 	static struct attribute _obj = { .name = _name, .mode = _mode }
150 
151 /**********************************************************
152   /sys/class/pktcdvd/pktcdvd[0-7]/
153                      stat/reset
154                      stat/packets_started
155                      stat/packets_finished
156                      stat/kb_written
157                      stat/kb_read
158                      stat/kb_read_gather
159                      write_queue/size
160                      write_queue/congestion_off
161                      write_queue/congestion_on
162  **********************************************************/
163 
164 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
165 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
166 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
167 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
168 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
169 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
170 
171 static struct attribute *kobj_pkt_attrs_stat[] = {
172 	&kobj_pkt_attr_st1,
173 	&kobj_pkt_attr_st2,
174 	&kobj_pkt_attr_st3,
175 	&kobj_pkt_attr_st4,
176 	&kobj_pkt_attr_st5,
177 	&kobj_pkt_attr_st6,
178 	NULL
179 };
180 
181 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
182 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
183 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
184 
185 static struct attribute *kobj_pkt_attrs_wqueue[] = {
186 	&kobj_pkt_attr_wq1,
187 	&kobj_pkt_attr_wq2,
188 	&kobj_pkt_attr_wq3,
189 	NULL
190 };
191 
192 static ssize_t kobj_pkt_show(struct kobject *kobj,
193 			struct attribute *attr, char *data)
194 {
195 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
196 	int n = 0;
197 	int v;
198 	if (strcmp(attr->name, "packets_started") == 0) {
199 		n = sprintf(data, "%lu\n", pd->stats.pkt_started);
200 
201 	} else if (strcmp(attr->name, "packets_finished") == 0) {
202 		n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
203 
204 	} else if (strcmp(attr->name, "kb_written") == 0) {
205 		n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
206 
207 	} else if (strcmp(attr->name, "kb_read") == 0) {
208 		n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
209 
210 	} else if (strcmp(attr->name, "kb_read_gather") == 0) {
211 		n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
212 
213 	} else if (strcmp(attr->name, "size") == 0) {
214 		spin_lock(&pd->lock);
215 		v = pd->bio_queue_size;
216 		spin_unlock(&pd->lock);
217 		n = sprintf(data, "%d\n", v);
218 
219 	} else if (strcmp(attr->name, "congestion_off") == 0) {
220 		spin_lock(&pd->lock);
221 		v = pd->write_congestion_off;
222 		spin_unlock(&pd->lock);
223 		n = sprintf(data, "%d\n", v);
224 
225 	} else if (strcmp(attr->name, "congestion_on") == 0) {
226 		spin_lock(&pd->lock);
227 		v = pd->write_congestion_on;
228 		spin_unlock(&pd->lock);
229 		n = sprintf(data, "%d\n", v);
230 	}
231 	return n;
232 }
233 
234 static void init_write_congestion_marks(int* lo, int* hi)
235 {
236 	if (*hi > 0) {
237 		*hi = max(*hi, 500);
238 		*hi = min(*hi, 1000000);
239 		if (*lo <= 0)
240 			*lo = *hi - 100;
241 		else {
242 			*lo = min(*lo, *hi - 100);
243 			*lo = max(*lo, 100);
244 		}
245 	} else {
246 		*hi = -1;
247 		*lo = -1;
248 	}
249 }
250 
251 static ssize_t kobj_pkt_store(struct kobject *kobj,
252 			struct attribute *attr,
253 			const char *data, size_t len)
254 {
255 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
256 	int val;
257 
258 	if (strcmp(attr->name, "reset") == 0 && len > 0) {
259 		pd->stats.pkt_started = 0;
260 		pd->stats.pkt_ended = 0;
261 		pd->stats.secs_w = 0;
262 		pd->stats.secs_rg = 0;
263 		pd->stats.secs_r = 0;
264 
265 	} else if (strcmp(attr->name, "congestion_off") == 0
266 		   && sscanf(data, "%d", &val) == 1) {
267 		spin_lock(&pd->lock);
268 		pd->write_congestion_off = val;
269 		init_write_congestion_marks(&pd->write_congestion_off,
270 					&pd->write_congestion_on);
271 		spin_unlock(&pd->lock);
272 
273 	} else if (strcmp(attr->name, "congestion_on") == 0
274 		   && sscanf(data, "%d", &val) == 1) {
275 		spin_lock(&pd->lock);
276 		pd->write_congestion_on = val;
277 		init_write_congestion_marks(&pd->write_congestion_off,
278 					&pd->write_congestion_on);
279 		spin_unlock(&pd->lock);
280 	}
281 	return len;
282 }
283 
284 static struct sysfs_ops kobj_pkt_ops = {
285 	.show = kobj_pkt_show,
286 	.store = kobj_pkt_store
287 };
288 static struct kobj_type kobj_pkt_type_stat = {
289 	.release = pkt_kobj_release,
290 	.sysfs_ops = &kobj_pkt_ops,
291 	.default_attrs = kobj_pkt_attrs_stat
292 };
293 static struct kobj_type kobj_pkt_type_wqueue = {
294 	.release = pkt_kobj_release,
295 	.sysfs_ops = &kobj_pkt_ops,
296 	.default_attrs = kobj_pkt_attrs_wqueue
297 };
298 
299 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
300 {
301 	if (class_pktcdvd) {
302 		pd->clsdev = class_device_create(class_pktcdvd,
303 					NULL, pd->pkt_dev,
304 					NULL, "%s", pd->name);
305 		if (IS_ERR(pd->clsdev))
306 			pd->clsdev = NULL;
307 	}
308 	if (pd->clsdev) {
309 		pd->kobj_stat = pkt_kobj_create(pd, "stat",
310 					&pd->clsdev->kobj,
311 					&kobj_pkt_type_stat);
312 		pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
313 					&pd->clsdev->kobj,
314 					&kobj_pkt_type_wqueue);
315 	}
316 }
317 
318 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
319 {
320 	pkt_kobj_remove(pd->kobj_stat);
321 	pkt_kobj_remove(pd->kobj_wqueue);
322 	if (class_pktcdvd)
323 		class_device_destroy(class_pktcdvd, pd->pkt_dev);
324 }
325 
326 
327 /********************************************************************
328   /sys/class/pktcdvd/
329                      add            map block device
330                      remove         unmap packet dev
331                      device_map     show mappings
332  *******************************************************************/
333 
334 static void class_pktcdvd_release(struct class *cls)
335 {
336 	kfree(cls);
337 }
338 static ssize_t class_pktcdvd_show_map(struct class *c, char *data)
339 {
340 	int n = 0;
341 	int idx;
342 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
343 	for (idx = 0; idx < MAX_WRITERS; idx++) {
344 		struct pktcdvd_device *pd = pkt_devs[idx];
345 		if (!pd)
346 			continue;
347 		n += sprintf(data+n, "%s %u:%u %u:%u\n",
348 			pd->name,
349 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
350 			MAJOR(pd->bdev->bd_dev),
351 			MINOR(pd->bdev->bd_dev));
352 	}
353 	mutex_unlock(&ctl_mutex);
354 	return n;
355 }
356 
357 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf,
358 					size_t count)
359 {
360 	unsigned int major, minor;
361 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
362 		pkt_setup_dev(MKDEV(major, minor), NULL);
363 		return count;
364 	}
365 	return -EINVAL;
366 }
367 
368 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf,
369 					size_t count)
370 {
371 	unsigned int major, minor;
372 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
373 		pkt_remove_dev(MKDEV(major, minor));
374 		return count;
375 	}
376 	return -EINVAL;
377 }
378 
379 static struct class_attribute class_pktcdvd_attrs[] = {
380  __ATTR(add,            0200, NULL, class_pktcdvd_store_add),
381  __ATTR(remove,         0200, NULL, class_pktcdvd_store_remove),
382  __ATTR(device_map,     0444, class_pktcdvd_show_map, NULL),
383  __ATTR_NULL
384 };
385 
386 
387 static int pkt_sysfs_init(void)
388 {
389 	int ret = 0;
390 
391 	/*
392 	 * create control files in sysfs
393 	 * /sys/class/pktcdvd/...
394 	 */
395 	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
396 	if (!class_pktcdvd)
397 		return -ENOMEM;
398 	class_pktcdvd->name = DRIVER_NAME;
399 	class_pktcdvd->owner = THIS_MODULE;
400 	class_pktcdvd->class_release = class_pktcdvd_release;
401 	class_pktcdvd->class_attrs = class_pktcdvd_attrs;
402 	ret = class_register(class_pktcdvd);
403 	if (ret) {
404 		kfree(class_pktcdvd);
405 		class_pktcdvd = NULL;
406 		printk(DRIVER_NAME": failed to create class pktcdvd\n");
407 		return ret;
408 	}
409 	return 0;
410 }
411 
412 static void pkt_sysfs_cleanup(void)
413 {
414 	if (class_pktcdvd)
415 		class_destroy(class_pktcdvd);
416 	class_pktcdvd = NULL;
417 }
418 
419 /********************************************************************
420   entries in debugfs
421 
422   /debugfs/pktcdvd[0-7]/
423 			info
424 
425  *******************************************************************/
426 
427 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
428 {
429 	return pkt_seq_show(m, p);
430 }
431 
432 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
433 {
434 	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
435 }
436 
437 static const struct file_operations debug_fops = {
438 	.open		= pkt_debugfs_fops_open,
439 	.read		= seq_read,
440 	.llseek		= seq_lseek,
441 	.release	= single_release,
442 	.owner		= THIS_MODULE,
443 };
444 
445 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
446 {
447 	if (!pkt_debugfs_root)
448 		return;
449 	pd->dfs_f_info = NULL;
450 	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
451 	if (IS_ERR(pd->dfs_d_root)) {
452 		pd->dfs_d_root = NULL;
453 		return;
454 	}
455 	pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
456 				pd->dfs_d_root, pd, &debug_fops);
457 	if (IS_ERR(pd->dfs_f_info)) {
458 		pd->dfs_f_info = NULL;
459 		return;
460 	}
461 }
462 
463 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
464 {
465 	if (!pkt_debugfs_root)
466 		return;
467 	if (pd->dfs_f_info)
468 		debugfs_remove(pd->dfs_f_info);
469 	pd->dfs_f_info = NULL;
470 	if (pd->dfs_d_root)
471 		debugfs_remove(pd->dfs_d_root);
472 	pd->dfs_d_root = NULL;
473 }
474 
475 static void pkt_debugfs_init(void)
476 {
477 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
478 	if (IS_ERR(pkt_debugfs_root)) {
479 		pkt_debugfs_root = NULL;
480 		return;
481 	}
482 }
483 
484 static void pkt_debugfs_cleanup(void)
485 {
486 	if (!pkt_debugfs_root)
487 		return;
488 	debugfs_remove(pkt_debugfs_root);
489 	pkt_debugfs_root = NULL;
490 }
491 
492 /* ----------------------------------------------------------*/
493 
494 
495 static void pkt_bio_finished(struct pktcdvd_device *pd)
496 {
497 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
498 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
499 		VPRINTK(DRIVER_NAME": queue empty\n");
500 		atomic_set(&pd->iosched.attention, 1);
501 		wake_up(&pd->wqueue);
502 	}
503 }
504 
505 static void pkt_bio_destructor(struct bio *bio)
506 {
507 	kfree(bio->bi_io_vec);
508 	kfree(bio);
509 }
510 
511 static struct bio *pkt_bio_alloc(int nr_iovecs)
512 {
513 	struct bio_vec *bvl = NULL;
514 	struct bio *bio;
515 
516 	bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
517 	if (!bio)
518 		goto no_bio;
519 	bio_init(bio);
520 
521 	bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
522 	if (!bvl)
523 		goto no_bvl;
524 
525 	bio->bi_max_vecs = nr_iovecs;
526 	bio->bi_io_vec = bvl;
527 	bio->bi_destructor = pkt_bio_destructor;
528 
529 	return bio;
530 
531  no_bvl:
532 	kfree(bio);
533  no_bio:
534 	return NULL;
535 }
536 
537 /*
538  * Allocate a packet_data struct
539  */
540 static struct packet_data *pkt_alloc_packet_data(int frames)
541 {
542 	int i;
543 	struct packet_data *pkt;
544 
545 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
546 	if (!pkt)
547 		goto no_pkt;
548 
549 	pkt->frames = frames;
550 	pkt->w_bio = pkt_bio_alloc(frames);
551 	if (!pkt->w_bio)
552 		goto no_bio;
553 
554 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
555 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
556 		if (!pkt->pages[i])
557 			goto no_page;
558 	}
559 
560 	spin_lock_init(&pkt->lock);
561 
562 	for (i = 0; i < frames; i++) {
563 		struct bio *bio = pkt_bio_alloc(1);
564 		if (!bio)
565 			goto no_rd_bio;
566 		pkt->r_bios[i] = bio;
567 	}
568 
569 	return pkt;
570 
571 no_rd_bio:
572 	for (i = 0; i < frames; i++) {
573 		struct bio *bio = pkt->r_bios[i];
574 		if (bio)
575 			bio_put(bio);
576 	}
577 
578 no_page:
579 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
580 		if (pkt->pages[i])
581 			__free_page(pkt->pages[i]);
582 	bio_put(pkt->w_bio);
583 no_bio:
584 	kfree(pkt);
585 no_pkt:
586 	return NULL;
587 }
588 
589 /*
590  * Free a packet_data struct
591  */
592 static void pkt_free_packet_data(struct packet_data *pkt)
593 {
594 	int i;
595 
596 	for (i = 0; i < pkt->frames; i++) {
597 		struct bio *bio = pkt->r_bios[i];
598 		if (bio)
599 			bio_put(bio);
600 	}
601 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
602 		__free_page(pkt->pages[i]);
603 	bio_put(pkt->w_bio);
604 	kfree(pkt);
605 }
606 
607 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
608 {
609 	struct packet_data *pkt, *next;
610 
611 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
612 
613 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
614 		pkt_free_packet_data(pkt);
615 	}
616 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
617 }
618 
619 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
620 {
621 	struct packet_data *pkt;
622 
623 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
624 
625 	while (nr_packets > 0) {
626 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
627 		if (!pkt) {
628 			pkt_shrink_pktlist(pd);
629 			return 0;
630 		}
631 		pkt->id = nr_packets;
632 		pkt->pd = pd;
633 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
634 		nr_packets--;
635 	}
636 	return 1;
637 }
638 
639 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
640 {
641 	struct rb_node *n = rb_next(&node->rb_node);
642 	if (!n)
643 		return NULL;
644 	return rb_entry(n, struct pkt_rb_node, rb_node);
645 }
646 
647 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
648 {
649 	rb_erase(&node->rb_node, &pd->bio_queue);
650 	mempool_free(node, pd->rb_pool);
651 	pd->bio_queue_size--;
652 	BUG_ON(pd->bio_queue_size < 0);
653 }
654 
655 /*
656  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
657  */
658 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
659 {
660 	struct rb_node *n = pd->bio_queue.rb_node;
661 	struct rb_node *next;
662 	struct pkt_rb_node *tmp;
663 
664 	if (!n) {
665 		BUG_ON(pd->bio_queue_size > 0);
666 		return NULL;
667 	}
668 
669 	for (;;) {
670 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
671 		if (s <= tmp->bio->bi_sector)
672 			next = n->rb_left;
673 		else
674 			next = n->rb_right;
675 		if (!next)
676 			break;
677 		n = next;
678 	}
679 
680 	if (s > tmp->bio->bi_sector) {
681 		tmp = pkt_rbtree_next(tmp);
682 		if (!tmp)
683 			return NULL;
684 	}
685 	BUG_ON(s > tmp->bio->bi_sector);
686 	return tmp;
687 }
688 
689 /*
690  * Insert a node into the pd->bio_queue rb tree.
691  */
692 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
693 {
694 	struct rb_node **p = &pd->bio_queue.rb_node;
695 	struct rb_node *parent = NULL;
696 	sector_t s = node->bio->bi_sector;
697 	struct pkt_rb_node *tmp;
698 
699 	while (*p) {
700 		parent = *p;
701 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
702 		if (s < tmp->bio->bi_sector)
703 			p = &(*p)->rb_left;
704 		else
705 			p = &(*p)->rb_right;
706 	}
707 	rb_link_node(&node->rb_node, parent, p);
708 	rb_insert_color(&node->rb_node, &pd->bio_queue);
709 	pd->bio_queue_size++;
710 }
711 
712 /*
713  * Add a bio to a single linked list defined by its head and tail pointers.
714  */
715 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
716 {
717 	bio->bi_next = NULL;
718 	if (*list_tail) {
719 		BUG_ON((*list_head) == NULL);
720 		(*list_tail)->bi_next = bio;
721 		(*list_tail) = bio;
722 	} else {
723 		BUG_ON((*list_head) != NULL);
724 		(*list_head) = bio;
725 		(*list_tail) = bio;
726 	}
727 }
728 
729 /*
730  * Remove and return the first bio from a single linked list defined by its
731  * head and tail pointers.
732  */
733 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
734 {
735 	struct bio *bio;
736 
737 	if (*list_head == NULL)
738 		return NULL;
739 
740 	bio = *list_head;
741 	*list_head = bio->bi_next;
742 	if (*list_head == NULL)
743 		*list_tail = NULL;
744 
745 	bio->bi_next = NULL;
746 	return bio;
747 }
748 
749 /*
750  * Send a packet_command to the underlying block device and
751  * wait for completion.
752  */
753 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
754 {
755 	struct request_queue *q = bdev_get_queue(pd->bdev);
756 	struct request *rq;
757 	int ret = 0;
758 
759 	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
760 			     WRITE : READ, __GFP_WAIT);
761 
762 	if (cgc->buflen) {
763 		if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
764 			goto out;
765 	}
766 
767 	rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
768 	memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
769 	if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
770 		memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
771 
772 	rq->timeout = 60*HZ;
773 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
774 	rq->cmd_flags |= REQ_HARDBARRIER;
775 	if (cgc->quiet)
776 		rq->cmd_flags |= REQ_QUIET;
777 
778 	blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
779 	if (rq->errors)
780 		ret = -EIO;
781 out:
782 	blk_put_request(rq);
783 	return ret;
784 }
785 
786 /*
787  * A generic sense dump / resolve mechanism should be implemented across
788  * all ATAPI + SCSI devices.
789  */
790 static void pkt_dump_sense(struct packet_command *cgc)
791 {
792 	static char *info[9] = { "No sense", "Recovered error", "Not ready",
793 				 "Medium error", "Hardware error", "Illegal request",
794 				 "Unit attention", "Data protect", "Blank check" };
795 	int i;
796 	struct request_sense *sense = cgc->sense;
797 
798 	printk(DRIVER_NAME":");
799 	for (i = 0; i < CDROM_PACKET_SIZE; i++)
800 		printk(" %02x", cgc->cmd[i]);
801 	printk(" - ");
802 
803 	if (sense == NULL) {
804 		printk("no sense\n");
805 		return;
806 	}
807 
808 	printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
809 
810 	if (sense->sense_key > 8) {
811 		printk(" (INVALID)\n");
812 		return;
813 	}
814 
815 	printk(" (%s)\n", info[sense->sense_key]);
816 }
817 
818 /*
819  * flush the drive cache to media
820  */
821 static int pkt_flush_cache(struct pktcdvd_device *pd)
822 {
823 	struct packet_command cgc;
824 
825 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
826 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
827 	cgc.quiet = 1;
828 
829 	/*
830 	 * the IMMED bit -- we default to not setting it, although that
831 	 * would allow a much faster close, this is safer
832 	 */
833 #if 0
834 	cgc.cmd[1] = 1 << 1;
835 #endif
836 	return pkt_generic_packet(pd, &cgc);
837 }
838 
839 /*
840  * speed is given as the normal factor, e.g. 4 for 4x
841  */
842 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
843 {
844 	struct packet_command cgc;
845 	struct request_sense sense;
846 	int ret;
847 
848 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
849 	cgc.sense = &sense;
850 	cgc.cmd[0] = GPCMD_SET_SPEED;
851 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
852 	cgc.cmd[3] = read_speed & 0xff;
853 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
854 	cgc.cmd[5] = write_speed & 0xff;
855 
856 	if ((ret = pkt_generic_packet(pd, &cgc)))
857 		pkt_dump_sense(&cgc);
858 
859 	return ret;
860 }
861 
862 /*
863  * Queue a bio for processing by the low-level CD device. Must be called
864  * from process context.
865  */
866 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
867 {
868 	spin_lock(&pd->iosched.lock);
869 	if (bio_data_dir(bio) == READ) {
870 		pkt_add_list_last(bio, &pd->iosched.read_queue,
871 				  &pd->iosched.read_queue_tail);
872 	} else {
873 		pkt_add_list_last(bio, &pd->iosched.write_queue,
874 				  &pd->iosched.write_queue_tail);
875 	}
876 	spin_unlock(&pd->iosched.lock);
877 
878 	atomic_set(&pd->iosched.attention, 1);
879 	wake_up(&pd->wqueue);
880 }
881 
882 /*
883  * Process the queued read/write requests. This function handles special
884  * requirements for CDRW drives:
885  * - A cache flush command must be inserted before a read request if the
886  *   previous request was a write.
887  * - Switching between reading and writing is slow, so don't do it more often
888  *   than necessary.
889  * - Optimize for throughput at the expense of latency. This means that streaming
890  *   writes will never be interrupted by a read, but if the drive has to seek
891  *   before the next write, switch to reading instead if there are any pending
892  *   read requests.
893  * - Set the read speed according to current usage pattern. When only reading
894  *   from the device, it's best to use the highest possible read speed, but
895  *   when switching often between reading and writing, it's better to have the
896  *   same read and write speeds.
897  */
898 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
899 {
900 
901 	if (atomic_read(&pd->iosched.attention) == 0)
902 		return;
903 	atomic_set(&pd->iosched.attention, 0);
904 
905 	for (;;) {
906 		struct bio *bio;
907 		int reads_queued, writes_queued;
908 
909 		spin_lock(&pd->iosched.lock);
910 		reads_queued = (pd->iosched.read_queue != NULL);
911 		writes_queued = (pd->iosched.write_queue != NULL);
912 		spin_unlock(&pd->iosched.lock);
913 
914 		if (!reads_queued && !writes_queued)
915 			break;
916 
917 		if (pd->iosched.writing) {
918 			int need_write_seek = 1;
919 			spin_lock(&pd->iosched.lock);
920 			bio = pd->iosched.write_queue;
921 			spin_unlock(&pd->iosched.lock);
922 			if (bio && (bio->bi_sector == pd->iosched.last_write))
923 				need_write_seek = 0;
924 			if (need_write_seek && reads_queued) {
925 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
926 					VPRINTK(DRIVER_NAME": write, waiting\n");
927 					break;
928 				}
929 				pkt_flush_cache(pd);
930 				pd->iosched.writing = 0;
931 			}
932 		} else {
933 			if (!reads_queued && writes_queued) {
934 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
935 					VPRINTK(DRIVER_NAME": read, waiting\n");
936 					break;
937 				}
938 				pd->iosched.writing = 1;
939 			}
940 		}
941 
942 		spin_lock(&pd->iosched.lock);
943 		if (pd->iosched.writing) {
944 			bio = pkt_get_list_first(&pd->iosched.write_queue,
945 						 &pd->iosched.write_queue_tail);
946 		} else {
947 			bio = pkt_get_list_first(&pd->iosched.read_queue,
948 						 &pd->iosched.read_queue_tail);
949 		}
950 		spin_unlock(&pd->iosched.lock);
951 
952 		if (!bio)
953 			continue;
954 
955 		if (bio_data_dir(bio) == READ)
956 			pd->iosched.successive_reads += bio->bi_size >> 10;
957 		else {
958 			pd->iosched.successive_reads = 0;
959 			pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
960 		}
961 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
962 			if (pd->read_speed == pd->write_speed) {
963 				pd->read_speed = MAX_SPEED;
964 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
965 			}
966 		} else {
967 			if (pd->read_speed != pd->write_speed) {
968 				pd->read_speed = pd->write_speed;
969 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
970 			}
971 		}
972 
973 		atomic_inc(&pd->cdrw.pending_bios);
974 		generic_make_request(bio);
975 	}
976 }
977 
978 /*
979  * Special care is needed if the underlying block device has a small
980  * max_phys_segments value.
981  */
982 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
983 {
984 	if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
985 		/*
986 		 * The cdrom device can handle one segment/frame
987 		 */
988 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
989 		return 0;
990 	} else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
991 		/*
992 		 * We can handle this case at the expense of some extra memory
993 		 * copies during write operations
994 		 */
995 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
996 		return 0;
997 	} else {
998 		printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
999 		return -EIO;
1000 	}
1001 }
1002 
1003 /*
1004  * Copy CD_FRAMESIZE bytes from src_bio into a destination page
1005  */
1006 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
1007 {
1008 	unsigned int copy_size = CD_FRAMESIZE;
1009 
1010 	while (copy_size > 0) {
1011 		struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
1012 		void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
1013 			src_bvl->bv_offset + offs;
1014 		void *vto = page_address(dst_page) + dst_offs;
1015 		int len = min_t(int, copy_size, src_bvl->bv_len - offs);
1016 
1017 		BUG_ON(len < 0);
1018 		memcpy(vto, vfrom, len);
1019 		kunmap_atomic(vfrom, KM_USER0);
1020 
1021 		seg++;
1022 		offs = 0;
1023 		dst_offs += len;
1024 		copy_size -= len;
1025 	}
1026 }
1027 
1028 /*
1029  * Copy all data for this packet to pkt->pages[], so that
1030  * a) The number of required segments for the write bio is minimized, which
1031  *    is necessary for some scsi controllers.
1032  * b) The data can be used as cache to avoid read requests if we receive a
1033  *    new write request for the same zone.
1034  */
1035 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1036 {
1037 	int f, p, offs;
1038 
1039 	/* Copy all data to pkt->pages[] */
1040 	p = 0;
1041 	offs = 0;
1042 	for (f = 0; f < pkt->frames; f++) {
1043 		if (bvec[f].bv_page != pkt->pages[p]) {
1044 			void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1045 			void *vto = page_address(pkt->pages[p]) + offs;
1046 			memcpy(vto, vfrom, CD_FRAMESIZE);
1047 			kunmap_atomic(vfrom, KM_USER0);
1048 			bvec[f].bv_page = pkt->pages[p];
1049 			bvec[f].bv_offset = offs;
1050 		} else {
1051 			BUG_ON(bvec[f].bv_offset != offs);
1052 		}
1053 		offs += CD_FRAMESIZE;
1054 		if (offs >= PAGE_SIZE) {
1055 			offs = 0;
1056 			p++;
1057 		}
1058 	}
1059 }
1060 
1061 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
1062 {
1063 	struct packet_data *pkt = bio->bi_private;
1064 	struct pktcdvd_device *pd = pkt->pd;
1065 	BUG_ON(!pd);
1066 
1067 	if (bio->bi_size)
1068 		return 1;
1069 
1070 	VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1071 		(unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1072 
1073 	if (err)
1074 		atomic_inc(&pkt->io_errors);
1075 	if (atomic_dec_and_test(&pkt->io_wait)) {
1076 		atomic_inc(&pkt->run_sm);
1077 		wake_up(&pd->wqueue);
1078 	}
1079 	pkt_bio_finished(pd);
1080 
1081 	return 0;
1082 }
1083 
1084 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
1085 {
1086 	struct packet_data *pkt = bio->bi_private;
1087 	struct pktcdvd_device *pd = pkt->pd;
1088 	BUG_ON(!pd);
1089 
1090 	if (bio->bi_size)
1091 		return 1;
1092 
1093 	VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1094 
1095 	pd->stats.pkt_ended++;
1096 
1097 	pkt_bio_finished(pd);
1098 	atomic_dec(&pkt->io_wait);
1099 	atomic_inc(&pkt->run_sm);
1100 	wake_up(&pd->wqueue);
1101 	return 0;
1102 }
1103 
1104 /*
1105  * Schedule reads for the holes in a packet
1106  */
1107 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1108 {
1109 	int frames_read = 0;
1110 	struct bio *bio;
1111 	int f;
1112 	char written[PACKET_MAX_SIZE];
1113 
1114 	BUG_ON(!pkt->orig_bios);
1115 
1116 	atomic_set(&pkt->io_wait, 0);
1117 	atomic_set(&pkt->io_errors, 0);
1118 
1119 	/*
1120 	 * Figure out which frames we need to read before we can write.
1121 	 */
1122 	memset(written, 0, sizeof(written));
1123 	spin_lock(&pkt->lock);
1124 	for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1125 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1126 		int num_frames = bio->bi_size / CD_FRAMESIZE;
1127 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1128 		BUG_ON(first_frame < 0);
1129 		BUG_ON(first_frame + num_frames > pkt->frames);
1130 		for (f = first_frame; f < first_frame + num_frames; f++)
1131 			written[f] = 1;
1132 	}
1133 	spin_unlock(&pkt->lock);
1134 
1135 	if (pkt->cache_valid) {
1136 		VPRINTK("pkt_gather_data: zone %llx cached\n",
1137 			(unsigned long long)pkt->sector);
1138 		goto out_account;
1139 	}
1140 
1141 	/*
1142 	 * Schedule reads for missing parts of the packet.
1143 	 */
1144 	for (f = 0; f < pkt->frames; f++) {
1145 		int p, offset;
1146 		if (written[f])
1147 			continue;
1148 		bio = pkt->r_bios[f];
1149 		bio_init(bio);
1150 		bio->bi_max_vecs = 1;
1151 		bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1152 		bio->bi_bdev = pd->bdev;
1153 		bio->bi_end_io = pkt_end_io_read;
1154 		bio->bi_private = pkt;
1155 
1156 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1157 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1158 		VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1159 			f, pkt->pages[p], offset);
1160 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1161 			BUG();
1162 
1163 		atomic_inc(&pkt->io_wait);
1164 		bio->bi_rw = READ;
1165 		pkt_queue_bio(pd, bio);
1166 		frames_read++;
1167 	}
1168 
1169 out_account:
1170 	VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1171 		frames_read, (unsigned long long)pkt->sector);
1172 	pd->stats.pkt_started++;
1173 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1174 }
1175 
1176 /*
1177  * Find a packet matching zone, or the least recently used packet if
1178  * there is no match.
1179  */
1180 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1181 {
1182 	struct packet_data *pkt;
1183 
1184 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1185 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1186 			list_del_init(&pkt->list);
1187 			if (pkt->sector != zone)
1188 				pkt->cache_valid = 0;
1189 			return pkt;
1190 		}
1191 	}
1192 	BUG();
1193 	return NULL;
1194 }
1195 
1196 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1197 {
1198 	if (pkt->cache_valid) {
1199 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1200 	} else {
1201 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1202 	}
1203 }
1204 
1205 /*
1206  * recover a failed write, query for relocation if possible
1207  *
1208  * returns 1 if recovery is possible, or 0 if not
1209  *
1210  */
1211 static int pkt_start_recovery(struct packet_data *pkt)
1212 {
1213 	/*
1214 	 * FIXME. We need help from the file system to implement
1215 	 * recovery handling.
1216 	 */
1217 	return 0;
1218 #if 0
1219 	struct request *rq = pkt->rq;
1220 	struct pktcdvd_device *pd = rq->rq_disk->private_data;
1221 	struct block_device *pkt_bdev;
1222 	struct super_block *sb = NULL;
1223 	unsigned long old_block, new_block;
1224 	sector_t new_sector;
1225 
1226 	pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1227 	if (pkt_bdev) {
1228 		sb = get_super(pkt_bdev);
1229 		bdput(pkt_bdev);
1230 	}
1231 
1232 	if (!sb)
1233 		return 0;
1234 
1235 	if (!sb->s_op || !sb->s_op->relocate_blocks)
1236 		goto out;
1237 
1238 	old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1239 	if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1240 		goto out;
1241 
1242 	new_sector = new_block * (CD_FRAMESIZE >> 9);
1243 	pkt->sector = new_sector;
1244 
1245 	pkt->bio->bi_sector = new_sector;
1246 	pkt->bio->bi_next = NULL;
1247 	pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1248 	pkt->bio->bi_idx = 0;
1249 
1250 	BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
1251 	BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1252 	BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1253 	BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1254 	BUG_ON(pkt->bio->bi_private != pkt);
1255 
1256 	drop_super(sb);
1257 	return 1;
1258 
1259 out:
1260 	drop_super(sb);
1261 	return 0;
1262 #endif
1263 }
1264 
1265 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1266 {
1267 #if PACKET_DEBUG > 1
1268 	static const char *state_name[] = {
1269 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1270 	};
1271 	enum packet_data_state old_state = pkt->state;
1272 	VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1273 		state_name[old_state], state_name[state]);
1274 #endif
1275 	pkt->state = state;
1276 }
1277 
1278 /*
1279  * Scan the work queue to see if we can start a new packet.
1280  * returns non-zero if any work was done.
1281  */
1282 static int pkt_handle_queue(struct pktcdvd_device *pd)
1283 {
1284 	struct packet_data *pkt, *p;
1285 	struct bio *bio = NULL;
1286 	sector_t zone = 0; /* Suppress gcc warning */
1287 	struct pkt_rb_node *node, *first_node;
1288 	struct rb_node *n;
1289 	int wakeup;
1290 
1291 	VPRINTK("handle_queue\n");
1292 
1293 	atomic_set(&pd->scan_queue, 0);
1294 
1295 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1296 		VPRINTK("handle_queue: no pkt\n");
1297 		return 0;
1298 	}
1299 
1300 	/*
1301 	 * Try to find a zone we are not already working on.
1302 	 */
1303 	spin_lock(&pd->lock);
1304 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1305 	if (!first_node) {
1306 		n = rb_first(&pd->bio_queue);
1307 		if (n)
1308 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1309 	}
1310 	node = first_node;
1311 	while (node) {
1312 		bio = node->bio;
1313 		zone = ZONE(bio->bi_sector, pd);
1314 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1315 			if (p->sector == zone) {
1316 				bio = NULL;
1317 				goto try_next_bio;
1318 			}
1319 		}
1320 		break;
1321 try_next_bio:
1322 		node = pkt_rbtree_next(node);
1323 		if (!node) {
1324 			n = rb_first(&pd->bio_queue);
1325 			if (n)
1326 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1327 		}
1328 		if (node == first_node)
1329 			node = NULL;
1330 	}
1331 	spin_unlock(&pd->lock);
1332 	if (!bio) {
1333 		VPRINTK("handle_queue: no bio\n");
1334 		return 0;
1335 	}
1336 
1337 	pkt = pkt_get_packet_data(pd, zone);
1338 
1339 	pd->current_sector = zone + pd->settings.size;
1340 	pkt->sector = zone;
1341 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1342 	pkt->write_size = 0;
1343 
1344 	/*
1345 	 * Scan work queue for bios in the same zone and link them
1346 	 * to this packet.
1347 	 */
1348 	spin_lock(&pd->lock);
1349 	VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1350 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1351 		bio = node->bio;
1352 		VPRINTK("pkt_handle_queue: found zone=%llx\n",
1353 			(unsigned long long)ZONE(bio->bi_sector, pd));
1354 		if (ZONE(bio->bi_sector, pd) != zone)
1355 			break;
1356 		pkt_rbtree_erase(pd, node);
1357 		spin_lock(&pkt->lock);
1358 		pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
1359 		pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1360 		spin_unlock(&pkt->lock);
1361 	}
1362 	/* check write congestion marks, and if bio_queue_size is
1363 	   below, wake up any waiters */
1364 	wakeup = (pd->write_congestion_on > 0
1365 	 		&& pd->bio_queue_size <= pd->write_congestion_off);
1366 	spin_unlock(&pd->lock);
1367 	if (wakeup)
1368 		clear_bdi_congested(&pd->disk->queue->backing_dev_info, WRITE);
1369 
1370 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1371 	pkt_set_state(pkt, PACKET_WAITING_STATE);
1372 	atomic_set(&pkt->run_sm, 1);
1373 
1374 	spin_lock(&pd->cdrw.active_list_lock);
1375 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1376 	spin_unlock(&pd->cdrw.active_list_lock);
1377 
1378 	return 1;
1379 }
1380 
1381 /*
1382  * Assemble a bio to write one packet and queue the bio for processing
1383  * by the underlying block device.
1384  */
1385 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1386 {
1387 	struct bio *bio;
1388 	int f;
1389 	int frames_write;
1390 	struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1391 
1392 	for (f = 0; f < pkt->frames; f++) {
1393 		bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1394 		bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1395 	}
1396 
1397 	/*
1398 	 * Fill-in bvec with data from orig_bios.
1399 	 */
1400 	frames_write = 0;
1401 	spin_lock(&pkt->lock);
1402 	for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1403 		int segment = bio->bi_idx;
1404 		int src_offs = 0;
1405 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1406 		int num_frames = bio->bi_size / CD_FRAMESIZE;
1407 		BUG_ON(first_frame < 0);
1408 		BUG_ON(first_frame + num_frames > pkt->frames);
1409 		for (f = first_frame; f < first_frame + num_frames; f++) {
1410 			struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1411 
1412 			while (src_offs >= src_bvl->bv_len) {
1413 				src_offs -= src_bvl->bv_len;
1414 				segment++;
1415 				BUG_ON(segment >= bio->bi_vcnt);
1416 				src_bvl = bio_iovec_idx(bio, segment);
1417 			}
1418 
1419 			if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1420 				bvec[f].bv_page = src_bvl->bv_page;
1421 				bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1422 			} else {
1423 				pkt_copy_bio_data(bio, segment, src_offs,
1424 						  bvec[f].bv_page, bvec[f].bv_offset);
1425 			}
1426 			src_offs += CD_FRAMESIZE;
1427 			frames_write++;
1428 		}
1429 	}
1430 	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1431 	spin_unlock(&pkt->lock);
1432 
1433 	VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1434 		frames_write, (unsigned long long)pkt->sector);
1435 	BUG_ON(frames_write != pkt->write_size);
1436 
1437 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1438 		pkt_make_local_copy(pkt, bvec);
1439 		pkt->cache_valid = 1;
1440 	} else {
1441 		pkt->cache_valid = 0;
1442 	}
1443 
1444 	/* Start the write request */
1445 	bio_init(pkt->w_bio);
1446 	pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1447 	pkt->w_bio->bi_sector = pkt->sector;
1448 	pkt->w_bio->bi_bdev = pd->bdev;
1449 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1450 	pkt->w_bio->bi_private = pkt;
1451 	for (f = 0; f < pkt->frames; f++)
1452 		if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1453 			BUG();
1454 	VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1455 
1456 	atomic_set(&pkt->io_wait, 1);
1457 	pkt->w_bio->bi_rw = WRITE;
1458 	pkt_queue_bio(pd, pkt->w_bio);
1459 }
1460 
1461 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1462 {
1463 	struct bio *bio, *next;
1464 
1465 	if (!uptodate)
1466 		pkt->cache_valid = 0;
1467 
1468 	/* Finish all bios corresponding to this packet */
1469 	bio = pkt->orig_bios;
1470 	while (bio) {
1471 		next = bio->bi_next;
1472 		bio->bi_next = NULL;
1473 		bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
1474 		bio = next;
1475 	}
1476 	pkt->orig_bios = pkt->orig_bios_tail = NULL;
1477 }
1478 
1479 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1480 {
1481 	int uptodate;
1482 
1483 	VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1484 
1485 	for (;;) {
1486 		switch (pkt->state) {
1487 		case PACKET_WAITING_STATE:
1488 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1489 				return;
1490 
1491 			pkt->sleep_time = 0;
1492 			pkt_gather_data(pd, pkt);
1493 			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1494 			break;
1495 
1496 		case PACKET_READ_WAIT_STATE:
1497 			if (atomic_read(&pkt->io_wait) > 0)
1498 				return;
1499 
1500 			if (atomic_read(&pkt->io_errors) > 0) {
1501 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1502 			} else {
1503 				pkt_start_write(pd, pkt);
1504 			}
1505 			break;
1506 
1507 		case PACKET_WRITE_WAIT_STATE:
1508 			if (atomic_read(&pkt->io_wait) > 0)
1509 				return;
1510 
1511 			if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1512 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1513 			} else {
1514 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1515 			}
1516 			break;
1517 
1518 		case PACKET_RECOVERY_STATE:
1519 			if (pkt_start_recovery(pkt)) {
1520 				pkt_start_write(pd, pkt);
1521 			} else {
1522 				VPRINTK("No recovery possible\n");
1523 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1524 			}
1525 			break;
1526 
1527 		case PACKET_FINISHED_STATE:
1528 			uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1529 			pkt_finish_packet(pkt, uptodate);
1530 			return;
1531 
1532 		default:
1533 			BUG();
1534 			break;
1535 		}
1536 	}
1537 }
1538 
1539 static void pkt_handle_packets(struct pktcdvd_device *pd)
1540 {
1541 	struct packet_data *pkt, *next;
1542 
1543 	VPRINTK("pkt_handle_packets\n");
1544 
1545 	/*
1546 	 * Run state machine for active packets
1547 	 */
1548 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1549 		if (atomic_read(&pkt->run_sm) > 0) {
1550 			atomic_set(&pkt->run_sm, 0);
1551 			pkt_run_state_machine(pd, pkt);
1552 		}
1553 	}
1554 
1555 	/*
1556 	 * Move no longer active packets to the free list
1557 	 */
1558 	spin_lock(&pd->cdrw.active_list_lock);
1559 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1560 		if (pkt->state == PACKET_FINISHED_STATE) {
1561 			list_del(&pkt->list);
1562 			pkt_put_packet_data(pd, pkt);
1563 			pkt_set_state(pkt, PACKET_IDLE_STATE);
1564 			atomic_set(&pd->scan_queue, 1);
1565 		}
1566 	}
1567 	spin_unlock(&pd->cdrw.active_list_lock);
1568 }
1569 
1570 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1571 {
1572 	struct packet_data *pkt;
1573 	int i;
1574 
1575 	for (i = 0; i < PACKET_NUM_STATES; i++)
1576 		states[i] = 0;
1577 
1578 	spin_lock(&pd->cdrw.active_list_lock);
1579 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1580 		states[pkt->state]++;
1581 	}
1582 	spin_unlock(&pd->cdrw.active_list_lock);
1583 }
1584 
1585 /*
1586  * kcdrwd is woken up when writes have been queued for one of our
1587  * registered devices
1588  */
1589 static int kcdrwd(void *foobar)
1590 {
1591 	struct pktcdvd_device *pd = foobar;
1592 	struct packet_data *pkt;
1593 	long min_sleep_time, residue;
1594 
1595 	set_user_nice(current, -20);
1596 	set_freezable();
1597 
1598 	for (;;) {
1599 		DECLARE_WAITQUEUE(wait, current);
1600 
1601 		/*
1602 		 * Wait until there is something to do
1603 		 */
1604 		add_wait_queue(&pd->wqueue, &wait);
1605 		for (;;) {
1606 			set_current_state(TASK_INTERRUPTIBLE);
1607 
1608 			/* Check if we need to run pkt_handle_queue */
1609 			if (atomic_read(&pd->scan_queue) > 0)
1610 				goto work_to_do;
1611 
1612 			/* Check if we need to run the state machine for some packet */
1613 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1614 				if (atomic_read(&pkt->run_sm) > 0)
1615 					goto work_to_do;
1616 			}
1617 
1618 			/* Check if we need to process the iosched queues */
1619 			if (atomic_read(&pd->iosched.attention) != 0)
1620 				goto work_to_do;
1621 
1622 			/* Otherwise, go to sleep */
1623 			if (PACKET_DEBUG > 1) {
1624 				int states[PACKET_NUM_STATES];
1625 				pkt_count_states(pd, states);
1626 				VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1627 					states[0], states[1], states[2], states[3],
1628 					states[4], states[5]);
1629 			}
1630 
1631 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1632 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1633 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1634 					min_sleep_time = pkt->sleep_time;
1635 			}
1636 
1637 			generic_unplug_device(bdev_get_queue(pd->bdev));
1638 
1639 			VPRINTK("kcdrwd: sleeping\n");
1640 			residue = schedule_timeout(min_sleep_time);
1641 			VPRINTK("kcdrwd: wake up\n");
1642 
1643 			/* make swsusp happy with our thread */
1644 			try_to_freeze();
1645 
1646 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1647 				if (!pkt->sleep_time)
1648 					continue;
1649 				pkt->sleep_time -= min_sleep_time - residue;
1650 				if (pkt->sleep_time <= 0) {
1651 					pkt->sleep_time = 0;
1652 					atomic_inc(&pkt->run_sm);
1653 				}
1654 			}
1655 
1656 			if (kthread_should_stop())
1657 				break;
1658 		}
1659 work_to_do:
1660 		set_current_state(TASK_RUNNING);
1661 		remove_wait_queue(&pd->wqueue, &wait);
1662 
1663 		if (kthread_should_stop())
1664 			break;
1665 
1666 		/*
1667 		 * if pkt_handle_queue returns true, we can queue
1668 		 * another request.
1669 		 */
1670 		while (pkt_handle_queue(pd))
1671 			;
1672 
1673 		/*
1674 		 * Handle packet state machine
1675 		 */
1676 		pkt_handle_packets(pd);
1677 
1678 		/*
1679 		 * Handle iosched queues
1680 		 */
1681 		pkt_iosched_process_queue(pd);
1682 	}
1683 
1684 	return 0;
1685 }
1686 
1687 static void pkt_print_settings(struct pktcdvd_device *pd)
1688 {
1689 	printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1690 	printk("%u blocks, ", pd->settings.size >> 2);
1691 	printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1692 }
1693 
1694 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1695 {
1696 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1697 
1698 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1699 	cgc->cmd[2] = page_code | (page_control << 6);
1700 	cgc->cmd[7] = cgc->buflen >> 8;
1701 	cgc->cmd[8] = cgc->buflen & 0xff;
1702 	cgc->data_direction = CGC_DATA_READ;
1703 	return pkt_generic_packet(pd, cgc);
1704 }
1705 
1706 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1707 {
1708 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1709 	memset(cgc->buffer, 0, 2);
1710 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1711 	cgc->cmd[1] = 0x10;		/* PF */
1712 	cgc->cmd[7] = cgc->buflen >> 8;
1713 	cgc->cmd[8] = cgc->buflen & 0xff;
1714 	cgc->data_direction = CGC_DATA_WRITE;
1715 	return pkt_generic_packet(pd, cgc);
1716 }
1717 
1718 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1719 {
1720 	struct packet_command cgc;
1721 	int ret;
1722 
1723 	/* set up command and get the disc info */
1724 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1725 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1726 	cgc.cmd[8] = cgc.buflen = 2;
1727 	cgc.quiet = 1;
1728 
1729 	if ((ret = pkt_generic_packet(pd, &cgc)))
1730 		return ret;
1731 
1732 	/* not all drives have the same disc_info length, so requeue
1733 	 * packet with the length the drive tells us it can supply
1734 	 */
1735 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1736 		     sizeof(di->disc_information_length);
1737 
1738 	if (cgc.buflen > sizeof(disc_information))
1739 		cgc.buflen = sizeof(disc_information);
1740 
1741 	cgc.cmd[8] = cgc.buflen;
1742 	return pkt_generic_packet(pd, &cgc);
1743 }
1744 
1745 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1746 {
1747 	struct packet_command cgc;
1748 	int ret;
1749 
1750 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1751 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1752 	cgc.cmd[1] = type & 3;
1753 	cgc.cmd[4] = (track & 0xff00) >> 8;
1754 	cgc.cmd[5] = track & 0xff;
1755 	cgc.cmd[8] = 8;
1756 	cgc.quiet = 1;
1757 
1758 	if ((ret = pkt_generic_packet(pd, &cgc)))
1759 		return ret;
1760 
1761 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1762 		     sizeof(ti->track_information_length);
1763 
1764 	if (cgc.buflen > sizeof(track_information))
1765 		cgc.buflen = sizeof(track_information);
1766 
1767 	cgc.cmd[8] = cgc.buflen;
1768 	return pkt_generic_packet(pd, &cgc);
1769 }
1770 
1771 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1772 {
1773 	disc_information di;
1774 	track_information ti;
1775 	__u32 last_track;
1776 	int ret = -1;
1777 
1778 	if ((ret = pkt_get_disc_info(pd, &di)))
1779 		return ret;
1780 
1781 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1782 	if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1783 		return ret;
1784 
1785 	/* if this track is blank, try the previous. */
1786 	if (ti.blank) {
1787 		last_track--;
1788 		if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1789 			return ret;
1790 	}
1791 
1792 	/* if last recorded field is valid, return it. */
1793 	if (ti.lra_v) {
1794 		*last_written = be32_to_cpu(ti.last_rec_address);
1795 	} else {
1796 		/* make it up instead */
1797 		*last_written = be32_to_cpu(ti.track_start) +
1798 				be32_to_cpu(ti.track_size);
1799 		if (ti.free_blocks)
1800 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1801 	}
1802 	return 0;
1803 }
1804 
1805 /*
1806  * write mode select package based on pd->settings
1807  */
1808 static int pkt_set_write_settings(struct pktcdvd_device *pd)
1809 {
1810 	struct packet_command cgc;
1811 	struct request_sense sense;
1812 	write_param_page *wp;
1813 	char buffer[128];
1814 	int ret, size;
1815 
1816 	/* doesn't apply to DVD+RW or DVD-RAM */
1817 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1818 		return 0;
1819 
1820 	memset(buffer, 0, sizeof(buffer));
1821 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1822 	cgc.sense = &sense;
1823 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1824 		pkt_dump_sense(&cgc);
1825 		return ret;
1826 	}
1827 
1828 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1829 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1830 	if (size > sizeof(buffer))
1831 		size = sizeof(buffer);
1832 
1833 	/*
1834 	 * now get it all
1835 	 */
1836 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1837 	cgc.sense = &sense;
1838 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1839 		pkt_dump_sense(&cgc);
1840 		return ret;
1841 	}
1842 
1843 	/*
1844 	 * write page is offset header + block descriptor length
1845 	 */
1846 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1847 
1848 	wp->fp = pd->settings.fp;
1849 	wp->track_mode = pd->settings.track_mode;
1850 	wp->write_type = pd->settings.write_type;
1851 	wp->data_block_type = pd->settings.block_mode;
1852 
1853 	wp->multi_session = 0;
1854 
1855 #ifdef PACKET_USE_LS
1856 	wp->link_size = 7;
1857 	wp->ls_v = 1;
1858 #endif
1859 
1860 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1861 		wp->session_format = 0;
1862 		wp->subhdr2 = 0x20;
1863 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1864 		wp->session_format = 0x20;
1865 		wp->subhdr2 = 8;
1866 #if 0
1867 		wp->mcn[0] = 0x80;
1868 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1869 #endif
1870 	} else {
1871 		/*
1872 		 * paranoia
1873 		 */
1874 		printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1875 		return 1;
1876 	}
1877 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1878 
1879 	cgc.buflen = cgc.cmd[8] = size;
1880 	if ((ret = pkt_mode_select(pd, &cgc))) {
1881 		pkt_dump_sense(&cgc);
1882 		return ret;
1883 	}
1884 
1885 	pkt_print_settings(pd);
1886 	return 0;
1887 }
1888 
1889 /*
1890  * 1 -- we can write to this track, 0 -- we can't
1891  */
1892 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1893 {
1894 	switch (pd->mmc3_profile) {
1895 		case 0x1a: /* DVD+RW */
1896 		case 0x12: /* DVD-RAM */
1897 			/* The track is always writable on DVD+RW/DVD-RAM */
1898 			return 1;
1899 		default:
1900 			break;
1901 	}
1902 
1903 	if (!ti->packet || !ti->fp)
1904 		return 0;
1905 
1906 	/*
1907 	 * "good" settings as per Mt Fuji.
1908 	 */
1909 	if (ti->rt == 0 && ti->blank == 0)
1910 		return 1;
1911 
1912 	if (ti->rt == 0 && ti->blank == 1)
1913 		return 1;
1914 
1915 	if (ti->rt == 1 && ti->blank == 0)
1916 		return 1;
1917 
1918 	printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1919 	return 0;
1920 }
1921 
1922 /*
1923  * 1 -- we can write to this disc, 0 -- we can't
1924  */
1925 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1926 {
1927 	switch (pd->mmc3_profile) {
1928 		case 0x0a: /* CD-RW */
1929 		case 0xffff: /* MMC3 not supported */
1930 			break;
1931 		case 0x1a: /* DVD+RW */
1932 		case 0x13: /* DVD-RW */
1933 		case 0x12: /* DVD-RAM */
1934 			return 1;
1935 		default:
1936 			VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1937 			return 0;
1938 	}
1939 
1940 	/*
1941 	 * for disc type 0xff we should probably reserve a new track.
1942 	 * but i'm not sure, should we leave this to user apps? probably.
1943 	 */
1944 	if (di->disc_type == 0xff) {
1945 		printk(DRIVER_NAME": Unknown disc. No track?\n");
1946 		return 0;
1947 	}
1948 
1949 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1950 		printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1951 		return 0;
1952 	}
1953 
1954 	if (di->erasable == 0) {
1955 		printk(DRIVER_NAME": Disc not erasable\n");
1956 		return 0;
1957 	}
1958 
1959 	if (di->border_status == PACKET_SESSION_RESERVED) {
1960 		printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1961 		return 0;
1962 	}
1963 
1964 	return 1;
1965 }
1966 
1967 static int pkt_probe_settings(struct pktcdvd_device *pd)
1968 {
1969 	struct packet_command cgc;
1970 	unsigned char buf[12];
1971 	disc_information di;
1972 	track_information ti;
1973 	int ret, track;
1974 
1975 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1976 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1977 	cgc.cmd[8] = 8;
1978 	ret = pkt_generic_packet(pd, &cgc);
1979 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1980 
1981 	memset(&di, 0, sizeof(disc_information));
1982 	memset(&ti, 0, sizeof(track_information));
1983 
1984 	if ((ret = pkt_get_disc_info(pd, &di))) {
1985 		printk("failed get_disc\n");
1986 		return ret;
1987 	}
1988 
1989 	if (!pkt_writable_disc(pd, &di))
1990 		return -EROFS;
1991 
1992 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1993 
1994 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1995 	if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1996 		printk(DRIVER_NAME": failed get_track\n");
1997 		return ret;
1998 	}
1999 
2000 	if (!pkt_writable_track(pd, &ti)) {
2001 		printk(DRIVER_NAME": can't write to this track\n");
2002 		return -EROFS;
2003 	}
2004 
2005 	/*
2006 	 * we keep packet size in 512 byte units, makes it easier to
2007 	 * deal with request calculations.
2008 	 */
2009 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
2010 	if (pd->settings.size == 0) {
2011 		printk(DRIVER_NAME": detected zero packet size!\n");
2012 		return -ENXIO;
2013 	}
2014 	if (pd->settings.size > PACKET_MAX_SECTORS) {
2015 		printk(DRIVER_NAME": packet size is too big\n");
2016 		return -EROFS;
2017 	}
2018 	pd->settings.fp = ti.fp;
2019 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
2020 
2021 	if (ti.nwa_v) {
2022 		pd->nwa = be32_to_cpu(ti.next_writable);
2023 		set_bit(PACKET_NWA_VALID, &pd->flags);
2024 	}
2025 
2026 	/*
2027 	 * in theory we could use lra on -RW media as well and just zero
2028 	 * blocks that haven't been written yet, but in practice that
2029 	 * is just a no-go. we'll use that for -R, naturally.
2030 	 */
2031 	if (ti.lra_v) {
2032 		pd->lra = be32_to_cpu(ti.last_rec_address);
2033 		set_bit(PACKET_LRA_VALID, &pd->flags);
2034 	} else {
2035 		pd->lra = 0xffffffff;
2036 		set_bit(PACKET_LRA_VALID, &pd->flags);
2037 	}
2038 
2039 	/*
2040 	 * fine for now
2041 	 */
2042 	pd->settings.link_loss = 7;
2043 	pd->settings.write_type = 0;	/* packet */
2044 	pd->settings.track_mode = ti.track_mode;
2045 
2046 	/*
2047 	 * mode1 or mode2 disc
2048 	 */
2049 	switch (ti.data_mode) {
2050 		case PACKET_MODE1:
2051 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
2052 			break;
2053 		case PACKET_MODE2:
2054 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
2055 			break;
2056 		default:
2057 			printk(DRIVER_NAME": unknown data mode\n");
2058 			return -EROFS;
2059 	}
2060 	return 0;
2061 }
2062 
2063 /*
2064  * enable/disable write caching on drive
2065  */
2066 static int pkt_write_caching(struct pktcdvd_device *pd, int set)
2067 {
2068 	struct packet_command cgc;
2069 	struct request_sense sense;
2070 	unsigned char buf[64];
2071 	int ret;
2072 
2073 	memset(buf, 0, sizeof(buf));
2074 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2075 	cgc.sense = &sense;
2076 	cgc.buflen = pd->mode_offset + 12;
2077 
2078 	/*
2079 	 * caching mode page might not be there, so quiet this command
2080 	 */
2081 	cgc.quiet = 1;
2082 
2083 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2084 		return ret;
2085 
2086 	buf[pd->mode_offset + 10] |= (!!set << 2);
2087 
2088 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2089 	ret = pkt_mode_select(pd, &cgc);
2090 	if (ret) {
2091 		printk(DRIVER_NAME": write caching control failed\n");
2092 		pkt_dump_sense(&cgc);
2093 	} else if (!ret && set)
2094 		printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2095 	return ret;
2096 }
2097 
2098 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2099 {
2100 	struct packet_command cgc;
2101 
2102 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2103 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2104 	cgc.cmd[4] = lockflag ? 1 : 0;
2105 	return pkt_generic_packet(pd, &cgc);
2106 }
2107 
2108 /*
2109  * Returns drive maximum write speed
2110  */
2111 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
2112 {
2113 	struct packet_command cgc;
2114 	struct request_sense sense;
2115 	unsigned char buf[256+18];
2116 	unsigned char *cap_buf;
2117 	int ret, offset;
2118 
2119 	memset(buf, 0, sizeof(buf));
2120 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2121 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2122 	cgc.sense = &sense;
2123 
2124 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2125 	if (ret) {
2126 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2127 			     sizeof(struct mode_page_header);
2128 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2129 		if (ret) {
2130 			pkt_dump_sense(&cgc);
2131 			return ret;
2132 		}
2133 	}
2134 
2135 	offset = 20;			    /* Obsoleted field, used by older drives */
2136 	if (cap_buf[1] >= 28)
2137 		offset = 28;		    /* Current write speed selected */
2138 	if (cap_buf[1] >= 30) {
2139 		/* If the drive reports at least one "Logical Unit Write
2140 		 * Speed Performance Descriptor Block", use the information
2141 		 * in the first block. (contains the highest speed)
2142 		 */
2143 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2144 		if (num_spdb > 0)
2145 			offset = 34;
2146 	}
2147 
2148 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2149 	return 0;
2150 }
2151 
2152 /* These tables from cdrecord - I don't have orange book */
2153 /* standard speed CD-RW (1-4x) */
2154 static char clv_to_speed[16] = {
2155 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2156 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2157 };
2158 /* high speed CD-RW (-10x) */
2159 static char hs_clv_to_speed[16] = {
2160 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2161 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2162 };
2163 /* ultra high speed CD-RW */
2164 static char us_clv_to_speed[16] = {
2165 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2166 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2167 };
2168 
2169 /*
2170  * reads the maximum media speed from ATIP
2171  */
2172 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
2173 {
2174 	struct packet_command cgc;
2175 	struct request_sense sense;
2176 	unsigned char buf[64];
2177 	unsigned int size, st, sp;
2178 	int ret;
2179 
2180 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2181 	cgc.sense = &sense;
2182 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2183 	cgc.cmd[1] = 2;
2184 	cgc.cmd[2] = 4; /* READ ATIP */
2185 	cgc.cmd[8] = 2;
2186 	ret = pkt_generic_packet(pd, &cgc);
2187 	if (ret) {
2188 		pkt_dump_sense(&cgc);
2189 		return ret;
2190 	}
2191 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2192 	if (size > sizeof(buf))
2193 		size = sizeof(buf);
2194 
2195 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2196 	cgc.sense = &sense;
2197 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2198 	cgc.cmd[1] = 2;
2199 	cgc.cmd[2] = 4;
2200 	cgc.cmd[8] = size;
2201 	ret = pkt_generic_packet(pd, &cgc);
2202 	if (ret) {
2203 		pkt_dump_sense(&cgc);
2204 		return ret;
2205 	}
2206 
2207 	if (!buf[6] & 0x40) {
2208 		printk(DRIVER_NAME": Disc type is not CD-RW\n");
2209 		return 1;
2210 	}
2211 	if (!buf[6] & 0x4) {
2212 		printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2213 		return 1;
2214 	}
2215 
2216 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2217 
2218 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2219 
2220 	/* Info from cdrecord */
2221 	switch (st) {
2222 		case 0: /* standard speed */
2223 			*speed = clv_to_speed[sp];
2224 			break;
2225 		case 1: /* high speed */
2226 			*speed = hs_clv_to_speed[sp];
2227 			break;
2228 		case 2: /* ultra high speed */
2229 			*speed = us_clv_to_speed[sp];
2230 			break;
2231 		default:
2232 			printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2233 			return 1;
2234 	}
2235 	if (*speed) {
2236 		printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2237 		return 0;
2238 	} else {
2239 		printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2240 		return 1;
2241 	}
2242 }
2243 
2244 static int pkt_perform_opc(struct pktcdvd_device *pd)
2245 {
2246 	struct packet_command cgc;
2247 	struct request_sense sense;
2248 	int ret;
2249 
2250 	VPRINTK(DRIVER_NAME": Performing OPC\n");
2251 
2252 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2253 	cgc.sense = &sense;
2254 	cgc.timeout = 60*HZ;
2255 	cgc.cmd[0] = GPCMD_SEND_OPC;
2256 	cgc.cmd[1] = 1;
2257 	if ((ret = pkt_generic_packet(pd, &cgc)))
2258 		pkt_dump_sense(&cgc);
2259 	return ret;
2260 }
2261 
2262 static int pkt_open_write(struct pktcdvd_device *pd)
2263 {
2264 	int ret;
2265 	unsigned int write_speed, media_write_speed, read_speed;
2266 
2267 	if ((ret = pkt_probe_settings(pd))) {
2268 		VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2269 		return ret;
2270 	}
2271 
2272 	if ((ret = pkt_set_write_settings(pd))) {
2273 		DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2274 		return -EIO;
2275 	}
2276 
2277 	pkt_write_caching(pd, USE_WCACHING);
2278 
2279 	if ((ret = pkt_get_max_speed(pd, &write_speed)))
2280 		write_speed = 16 * 177;
2281 	switch (pd->mmc3_profile) {
2282 		case 0x13: /* DVD-RW */
2283 		case 0x1a: /* DVD+RW */
2284 		case 0x12: /* DVD-RAM */
2285 			DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2286 			break;
2287 		default:
2288 			if ((ret = pkt_media_speed(pd, &media_write_speed)))
2289 				media_write_speed = 16;
2290 			write_speed = min(write_speed, media_write_speed * 177);
2291 			DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2292 			break;
2293 	}
2294 	read_speed = write_speed;
2295 
2296 	if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2297 		DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2298 		return -EIO;
2299 	}
2300 	pd->write_speed = write_speed;
2301 	pd->read_speed = read_speed;
2302 
2303 	if ((ret = pkt_perform_opc(pd))) {
2304 		DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2305 	}
2306 
2307 	return 0;
2308 }
2309 
2310 /*
2311  * called at open time.
2312  */
2313 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
2314 {
2315 	int ret;
2316 	long lba;
2317 	struct request_queue *q;
2318 
2319 	/*
2320 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2321 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2322 	 * so bdget() can't fail.
2323 	 */
2324 	bdget(pd->bdev->bd_dev);
2325 	if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
2326 		goto out;
2327 
2328 	if ((ret = bd_claim(pd->bdev, pd)))
2329 		goto out_putdev;
2330 
2331 	if ((ret = pkt_get_last_written(pd, &lba))) {
2332 		printk(DRIVER_NAME": pkt_get_last_written failed\n");
2333 		goto out_unclaim;
2334 	}
2335 
2336 	set_capacity(pd->disk, lba << 2);
2337 	set_capacity(pd->bdev->bd_disk, lba << 2);
2338 	bd_set_size(pd->bdev, (loff_t)lba << 11);
2339 
2340 	q = bdev_get_queue(pd->bdev);
2341 	if (write) {
2342 		if ((ret = pkt_open_write(pd)))
2343 			goto out_unclaim;
2344 		/*
2345 		 * Some CDRW drives can not handle writes larger than one packet,
2346 		 * even if the size is a multiple of the packet size.
2347 		 */
2348 		spin_lock_irq(q->queue_lock);
2349 		blk_queue_max_sectors(q, pd->settings.size);
2350 		spin_unlock_irq(q->queue_lock);
2351 		set_bit(PACKET_WRITABLE, &pd->flags);
2352 	} else {
2353 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2354 		clear_bit(PACKET_WRITABLE, &pd->flags);
2355 	}
2356 
2357 	if ((ret = pkt_set_segment_merging(pd, q)))
2358 		goto out_unclaim;
2359 
2360 	if (write) {
2361 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2362 			printk(DRIVER_NAME": not enough memory for buffers\n");
2363 			ret = -ENOMEM;
2364 			goto out_unclaim;
2365 		}
2366 		printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2367 	}
2368 
2369 	return 0;
2370 
2371 out_unclaim:
2372 	bd_release(pd->bdev);
2373 out_putdev:
2374 	blkdev_put(pd->bdev);
2375 out:
2376 	return ret;
2377 }
2378 
2379 /*
2380  * called when the device is closed. makes sure that the device flushes
2381  * the internal cache before we close.
2382  */
2383 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2384 {
2385 	if (flush && pkt_flush_cache(pd))
2386 		DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2387 
2388 	pkt_lock_door(pd, 0);
2389 
2390 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2391 	bd_release(pd->bdev);
2392 	blkdev_put(pd->bdev);
2393 
2394 	pkt_shrink_pktlist(pd);
2395 }
2396 
2397 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2398 {
2399 	if (dev_minor >= MAX_WRITERS)
2400 		return NULL;
2401 	return pkt_devs[dev_minor];
2402 }
2403 
2404 static int pkt_open(struct inode *inode, struct file *file)
2405 {
2406 	struct pktcdvd_device *pd = NULL;
2407 	int ret;
2408 
2409 	VPRINTK(DRIVER_NAME": entering open\n");
2410 
2411 	mutex_lock(&ctl_mutex);
2412 	pd = pkt_find_dev_from_minor(iminor(inode));
2413 	if (!pd) {
2414 		ret = -ENODEV;
2415 		goto out;
2416 	}
2417 	BUG_ON(pd->refcnt < 0);
2418 
2419 	pd->refcnt++;
2420 	if (pd->refcnt > 1) {
2421 		if ((file->f_mode & FMODE_WRITE) &&
2422 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2423 			ret = -EBUSY;
2424 			goto out_dec;
2425 		}
2426 	} else {
2427 		ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE);
2428 		if (ret)
2429 			goto out_dec;
2430 		/*
2431 		 * needed here as well, since ext2 (among others) may change
2432 		 * the blocksize at mount time
2433 		 */
2434 		set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2435 	}
2436 
2437 	mutex_unlock(&ctl_mutex);
2438 	return 0;
2439 
2440 out_dec:
2441 	pd->refcnt--;
2442 out:
2443 	VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2444 	mutex_unlock(&ctl_mutex);
2445 	return ret;
2446 }
2447 
2448 static int pkt_close(struct inode *inode, struct file *file)
2449 {
2450 	struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2451 	int ret = 0;
2452 
2453 	mutex_lock(&ctl_mutex);
2454 	pd->refcnt--;
2455 	BUG_ON(pd->refcnt < 0);
2456 	if (pd->refcnt == 0) {
2457 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2458 		pkt_release_dev(pd, flush);
2459 	}
2460 	mutex_unlock(&ctl_mutex);
2461 	return ret;
2462 }
2463 
2464 
2465 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
2466 {
2467 	struct packet_stacked_data *psd = bio->bi_private;
2468 	struct pktcdvd_device *pd = psd->pd;
2469 
2470 	if (bio->bi_size)
2471 		return 1;
2472 
2473 	bio_put(bio);
2474 	bio_endio(psd->bio, psd->bio->bi_size, err);
2475 	mempool_free(psd, psd_pool);
2476 	pkt_bio_finished(pd);
2477 	return 0;
2478 }
2479 
2480 static int pkt_make_request(struct request_queue *q, struct bio *bio)
2481 {
2482 	struct pktcdvd_device *pd;
2483 	char b[BDEVNAME_SIZE];
2484 	sector_t zone;
2485 	struct packet_data *pkt;
2486 	int was_empty, blocked_bio;
2487 	struct pkt_rb_node *node;
2488 
2489 	pd = q->queuedata;
2490 	if (!pd) {
2491 		printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2492 		goto end_io;
2493 	}
2494 
2495 	/*
2496 	 * Clone READ bios so we can have our own bi_end_io callback.
2497 	 */
2498 	if (bio_data_dir(bio) == READ) {
2499 		struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2500 		struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2501 
2502 		psd->pd = pd;
2503 		psd->bio = bio;
2504 		cloned_bio->bi_bdev = pd->bdev;
2505 		cloned_bio->bi_private = psd;
2506 		cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2507 		pd->stats.secs_r += bio->bi_size >> 9;
2508 		pkt_queue_bio(pd, cloned_bio);
2509 		return 0;
2510 	}
2511 
2512 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2513 		printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2514 			pd->name, (unsigned long long)bio->bi_sector);
2515 		goto end_io;
2516 	}
2517 
2518 	if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2519 		printk(DRIVER_NAME": wrong bio size\n");
2520 		goto end_io;
2521 	}
2522 
2523 	blk_queue_bounce(q, &bio);
2524 
2525 	zone = ZONE(bio->bi_sector, pd);
2526 	VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2527 		(unsigned long long)bio->bi_sector,
2528 		(unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2529 
2530 	/* Check if we have to split the bio */
2531 	{
2532 		struct bio_pair *bp;
2533 		sector_t last_zone;
2534 		int first_sectors;
2535 
2536 		last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2537 		if (last_zone != zone) {
2538 			BUG_ON(last_zone != zone + pd->settings.size);
2539 			first_sectors = last_zone - bio->bi_sector;
2540 			bp = bio_split(bio, bio_split_pool, first_sectors);
2541 			BUG_ON(!bp);
2542 			pkt_make_request(q, &bp->bio1);
2543 			pkt_make_request(q, &bp->bio2);
2544 			bio_pair_release(bp);
2545 			return 0;
2546 		}
2547 	}
2548 
2549 	/*
2550 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2551 	 * just append this bio to that packet.
2552 	 */
2553 	spin_lock(&pd->cdrw.active_list_lock);
2554 	blocked_bio = 0;
2555 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2556 		if (pkt->sector == zone) {
2557 			spin_lock(&pkt->lock);
2558 			if ((pkt->state == PACKET_WAITING_STATE) ||
2559 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2560 				pkt_add_list_last(bio, &pkt->orig_bios,
2561 						  &pkt->orig_bios_tail);
2562 				pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2563 				if ((pkt->write_size >= pkt->frames) &&
2564 				    (pkt->state == PACKET_WAITING_STATE)) {
2565 					atomic_inc(&pkt->run_sm);
2566 					wake_up(&pd->wqueue);
2567 				}
2568 				spin_unlock(&pkt->lock);
2569 				spin_unlock(&pd->cdrw.active_list_lock);
2570 				return 0;
2571 			} else {
2572 				blocked_bio = 1;
2573 			}
2574 			spin_unlock(&pkt->lock);
2575 		}
2576 	}
2577 	spin_unlock(&pd->cdrw.active_list_lock);
2578 
2579  	/*
2580 	 * Test if there is enough room left in the bio work queue
2581 	 * (queue size >= congestion on mark).
2582 	 * If not, wait till the work queue size is below the congestion off mark.
2583 	 */
2584 	spin_lock(&pd->lock);
2585 	if (pd->write_congestion_on > 0
2586 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2587 		set_bdi_congested(&q->backing_dev_info, WRITE);
2588 		do {
2589 			spin_unlock(&pd->lock);
2590 			congestion_wait(WRITE, HZ);
2591 			spin_lock(&pd->lock);
2592 		} while(pd->bio_queue_size > pd->write_congestion_off);
2593 	}
2594 	spin_unlock(&pd->lock);
2595 
2596 	/*
2597 	 * No matching packet found. Store the bio in the work queue.
2598 	 */
2599 	node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2600 	node->bio = bio;
2601 	spin_lock(&pd->lock);
2602 	BUG_ON(pd->bio_queue_size < 0);
2603 	was_empty = (pd->bio_queue_size == 0);
2604 	pkt_rbtree_insert(pd, node);
2605 	spin_unlock(&pd->lock);
2606 
2607 	/*
2608 	 * Wake up the worker thread.
2609 	 */
2610 	atomic_set(&pd->scan_queue, 1);
2611 	if (was_empty) {
2612 		/* This wake_up is required for correct operation */
2613 		wake_up(&pd->wqueue);
2614 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2615 		/*
2616 		 * This wake up is not required for correct operation,
2617 		 * but improves performance in some cases.
2618 		 */
2619 		wake_up(&pd->wqueue);
2620 	}
2621 	return 0;
2622 end_io:
2623 	bio_io_error(bio, bio->bi_size);
2624 	return 0;
2625 }
2626 
2627 
2628 
2629 static int pkt_merge_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *bvec)
2630 {
2631 	struct pktcdvd_device *pd = q->queuedata;
2632 	sector_t zone = ZONE(bio->bi_sector, pd);
2633 	int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2634 	int remaining = (pd->settings.size << 9) - used;
2635 	int remaining2;
2636 
2637 	/*
2638 	 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2639 	 * boundary, pkt_make_request() will split the bio.
2640 	 */
2641 	remaining2 = PAGE_SIZE - bio->bi_size;
2642 	remaining = max(remaining, remaining2);
2643 
2644 	BUG_ON(remaining < 0);
2645 	return remaining;
2646 }
2647 
2648 static void pkt_init_queue(struct pktcdvd_device *pd)
2649 {
2650 	struct request_queue *q = pd->disk->queue;
2651 
2652 	blk_queue_make_request(q, pkt_make_request);
2653 	blk_queue_hardsect_size(q, CD_FRAMESIZE);
2654 	blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2655 	blk_queue_merge_bvec(q, pkt_merge_bvec);
2656 	q->queuedata = pd;
2657 }
2658 
2659 static int pkt_seq_show(struct seq_file *m, void *p)
2660 {
2661 	struct pktcdvd_device *pd = m->private;
2662 	char *msg;
2663 	char bdev_buf[BDEVNAME_SIZE];
2664 	int states[PACKET_NUM_STATES];
2665 
2666 	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2667 		   bdevname(pd->bdev, bdev_buf));
2668 
2669 	seq_printf(m, "\nSettings:\n");
2670 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2671 
2672 	if (pd->settings.write_type == 0)
2673 		msg = "Packet";
2674 	else
2675 		msg = "Unknown";
2676 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2677 
2678 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2679 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2680 
2681 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2682 
2683 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2684 		msg = "Mode 1";
2685 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2686 		msg = "Mode 2";
2687 	else
2688 		msg = "Unknown";
2689 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2690 
2691 	seq_printf(m, "\nStatistics:\n");
2692 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2693 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2694 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2695 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2696 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2697 
2698 	seq_printf(m, "\nMisc:\n");
2699 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2700 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2701 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2702 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2703 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2704 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2705 
2706 	seq_printf(m, "\nQueue state:\n");
2707 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2708 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2709 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2710 
2711 	pkt_count_states(pd, states);
2712 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2713 		   states[0], states[1], states[2], states[3], states[4], states[5]);
2714 
2715 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2716 			pd->write_congestion_off,
2717 			pd->write_congestion_on);
2718 	return 0;
2719 }
2720 
2721 static int pkt_seq_open(struct inode *inode, struct file *file)
2722 {
2723 	return single_open(file, pkt_seq_show, PDE(inode)->data);
2724 }
2725 
2726 static const struct file_operations pkt_proc_fops = {
2727 	.open	= pkt_seq_open,
2728 	.read	= seq_read,
2729 	.llseek	= seq_lseek,
2730 	.release = single_release
2731 };
2732 
2733 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2734 {
2735 	int i;
2736 	int ret = 0;
2737 	char b[BDEVNAME_SIZE];
2738 	struct proc_dir_entry *proc;
2739 	struct block_device *bdev;
2740 
2741 	if (pd->pkt_dev == dev) {
2742 		printk(DRIVER_NAME": Recursive setup not allowed\n");
2743 		return -EBUSY;
2744 	}
2745 	for (i = 0; i < MAX_WRITERS; i++) {
2746 		struct pktcdvd_device *pd2 = pkt_devs[i];
2747 		if (!pd2)
2748 			continue;
2749 		if (pd2->bdev->bd_dev == dev) {
2750 			printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2751 			return -EBUSY;
2752 		}
2753 		if (pd2->pkt_dev == dev) {
2754 			printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2755 			return -EBUSY;
2756 		}
2757 	}
2758 
2759 	bdev = bdget(dev);
2760 	if (!bdev)
2761 		return -ENOMEM;
2762 	ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2763 	if (ret)
2764 		return ret;
2765 
2766 	/* This is safe, since we have a reference from open(). */
2767 	__module_get(THIS_MODULE);
2768 
2769 	pd->bdev = bdev;
2770 	set_blocksize(bdev, CD_FRAMESIZE);
2771 
2772 	pkt_init_queue(pd);
2773 
2774 	atomic_set(&pd->cdrw.pending_bios, 0);
2775 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2776 	if (IS_ERR(pd->cdrw.thread)) {
2777 		printk(DRIVER_NAME": can't start kernel thread\n");
2778 		ret = -ENOMEM;
2779 		goto out_mem;
2780 	}
2781 
2782 	proc = create_proc_entry(pd->name, 0, pkt_proc);
2783 	if (proc) {
2784 		proc->data = pd;
2785 		proc->proc_fops = &pkt_proc_fops;
2786 	}
2787 	DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2788 	return 0;
2789 
2790 out_mem:
2791 	blkdev_put(bdev);
2792 	/* This is safe: open() is still holding a reference. */
2793 	module_put(THIS_MODULE);
2794 	return ret;
2795 }
2796 
2797 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2798 {
2799 	struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2800 
2801 	VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2802 
2803 	switch (cmd) {
2804 	/*
2805 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2806 	 */
2807 	case CDROMMULTISESSION:
2808 	case CDROMREADTOCENTRY:
2809 	case CDROM_LAST_WRITTEN:
2810 	case CDROM_SEND_PACKET:
2811 	case SCSI_IOCTL_SEND_COMMAND:
2812 		return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2813 
2814 	case CDROMEJECT:
2815 		/*
2816 		 * The door gets locked when the device is opened, so we
2817 		 * have to unlock it or else the eject command fails.
2818 		 */
2819 		if (pd->refcnt == 1)
2820 			pkt_lock_door(pd, 0);
2821 		return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2822 
2823 	default:
2824 		VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2825 		return -ENOTTY;
2826 	}
2827 
2828 	return 0;
2829 }
2830 
2831 static int pkt_media_changed(struct gendisk *disk)
2832 {
2833 	struct pktcdvd_device *pd = disk->private_data;
2834 	struct gendisk *attached_disk;
2835 
2836 	if (!pd)
2837 		return 0;
2838 	if (!pd->bdev)
2839 		return 0;
2840 	attached_disk = pd->bdev->bd_disk;
2841 	if (!attached_disk)
2842 		return 0;
2843 	return attached_disk->fops->media_changed(attached_disk);
2844 }
2845 
2846 static struct block_device_operations pktcdvd_ops = {
2847 	.owner =		THIS_MODULE,
2848 	.open =			pkt_open,
2849 	.release =		pkt_close,
2850 	.ioctl =		pkt_ioctl,
2851 	.media_changed =	pkt_media_changed,
2852 };
2853 
2854 /*
2855  * Set up mapping from pktcdvd device to CD-ROM device.
2856  */
2857 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2858 {
2859 	int idx;
2860 	int ret = -ENOMEM;
2861 	struct pktcdvd_device *pd;
2862 	struct gendisk *disk;
2863 
2864 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2865 
2866 	for (idx = 0; idx < MAX_WRITERS; idx++)
2867 		if (!pkt_devs[idx])
2868 			break;
2869 	if (idx == MAX_WRITERS) {
2870 		printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2871 		ret = -EBUSY;
2872 		goto out_mutex;
2873 	}
2874 
2875 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2876 	if (!pd)
2877 		goto out_mutex;
2878 
2879 	pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2880 						  sizeof(struct pkt_rb_node));
2881 	if (!pd->rb_pool)
2882 		goto out_mem;
2883 
2884 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2885 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2886 	spin_lock_init(&pd->cdrw.active_list_lock);
2887 
2888 	spin_lock_init(&pd->lock);
2889 	spin_lock_init(&pd->iosched.lock);
2890 	sprintf(pd->name, DRIVER_NAME"%d", idx);
2891 	init_waitqueue_head(&pd->wqueue);
2892 	pd->bio_queue = RB_ROOT;
2893 
2894 	pd->write_congestion_on  = write_congestion_on;
2895 	pd->write_congestion_off = write_congestion_off;
2896 
2897 	disk = alloc_disk(1);
2898 	if (!disk)
2899 		goto out_mem;
2900 	pd->disk = disk;
2901 	disk->major = pktdev_major;
2902 	disk->first_minor = idx;
2903 	disk->fops = &pktcdvd_ops;
2904 	disk->flags = GENHD_FL_REMOVABLE;
2905 	strcpy(disk->disk_name, pd->name);
2906 	disk->private_data = pd;
2907 	disk->queue = blk_alloc_queue(GFP_KERNEL);
2908 	if (!disk->queue)
2909 		goto out_mem2;
2910 
2911 	pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2912 	ret = pkt_new_dev(pd, dev);
2913 	if (ret)
2914 		goto out_new_dev;
2915 
2916 	add_disk(disk);
2917 
2918 	pkt_sysfs_dev_new(pd);
2919 	pkt_debugfs_dev_new(pd);
2920 
2921 	pkt_devs[idx] = pd;
2922 	if (pkt_dev)
2923 		*pkt_dev = pd->pkt_dev;
2924 
2925 	mutex_unlock(&ctl_mutex);
2926 	return 0;
2927 
2928 out_new_dev:
2929 	blk_cleanup_queue(disk->queue);
2930 out_mem2:
2931 	put_disk(disk);
2932 out_mem:
2933 	if (pd->rb_pool)
2934 		mempool_destroy(pd->rb_pool);
2935 	kfree(pd);
2936 out_mutex:
2937 	mutex_unlock(&ctl_mutex);
2938 	printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2939 	return ret;
2940 }
2941 
2942 /*
2943  * Tear down mapping from pktcdvd device to CD-ROM device.
2944  */
2945 static int pkt_remove_dev(dev_t pkt_dev)
2946 {
2947 	struct pktcdvd_device *pd;
2948 	int idx;
2949 	int ret = 0;
2950 
2951 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2952 
2953 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2954 		pd = pkt_devs[idx];
2955 		if (pd && (pd->pkt_dev == pkt_dev))
2956 			break;
2957 	}
2958 	if (idx == MAX_WRITERS) {
2959 		DPRINTK(DRIVER_NAME": dev not setup\n");
2960 		ret = -ENXIO;
2961 		goto out;
2962 	}
2963 
2964 	if (pd->refcnt > 0) {
2965 		ret = -EBUSY;
2966 		goto out;
2967 	}
2968 	if (!IS_ERR(pd->cdrw.thread))
2969 		kthread_stop(pd->cdrw.thread);
2970 
2971 	pkt_devs[idx] = NULL;
2972 
2973 	pkt_debugfs_dev_remove(pd);
2974 	pkt_sysfs_dev_remove(pd);
2975 
2976 	blkdev_put(pd->bdev);
2977 
2978 	remove_proc_entry(pd->name, pkt_proc);
2979 	DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2980 
2981 	del_gendisk(pd->disk);
2982 	blk_cleanup_queue(pd->disk->queue);
2983 	put_disk(pd->disk);
2984 
2985 	mempool_destroy(pd->rb_pool);
2986 	kfree(pd);
2987 
2988 	/* This is safe: open() is still holding a reference. */
2989 	module_put(THIS_MODULE);
2990 
2991 out:
2992 	mutex_unlock(&ctl_mutex);
2993 	return ret;
2994 }
2995 
2996 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2997 {
2998 	struct pktcdvd_device *pd;
2999 
3000 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3001 
3002 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
3003 	if (pd) {
3004 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
3005 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
3006 	} else {
3007 		ctrl_cmd->dev = 0;
3008 		ctrl_cmd->pkt_dev = 0;
3009 	}
3010 	ctrl_cmd->num_devices = MAX_WRITERS;
3011 
3012 	mutex_unlock(&ctl_mutex);
3013 }
3014 
3015 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
3016 {
3017 	void __user *argp = (void __user *)arg;
3018 	struct pkt_ctrl_command ctrl_cmd;
3019 	int ret = 0;
3020 	dev_t pkt_dev = 0;
3021 
3022 	if (cmd != PACKET_CTRL_CMD)
3023 		return -ENOTTY;
3024 
3025 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3026 		return -EFAULT;
3027 
3028 	switch (ctrl_cmd.command) {
3029 	case PKT_CTRL_CMD_SETUP:
3030 		if (!capable(CAP_SYS_ADMIN))
3031 			return -EPERM;
3032 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3033 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3034 		break;
3035 	case PKT_CTRL_CMD_TEARDOWN:
3036 		if (!capable(CAP_SYS_ADMIN))
3037 			return -EPERM;
3038 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3039 		break;
3040 	case PKT_CTRL_CMD_STATUS:
3041 		pkt_get_status(&ctrl_cmd);
3042 		break;
3043 	default:
3044 		return -ENOTTY;
3045 	}
3046 
3047 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3048 		return -EFAULT;
3049 	return ret;
3050 }
3051 
3052 
3053 static const struct file_operations pkt_ctl_fops = {
3054 	.ioctl	 = pkt_ctl_ioctl,
3055 	.owner	 = THIS_MODULE,
3056 };
3057 
3058 static struct miscdevice pkt_misc = {
3059 	.minor 		= MISC_DYNAMIC_MINOR,
3060 	.name  		= DRIVER_NAME,
3061 	.fops  		= &pkt_ctl_fops
3062 };
3063 
3064 static int __init pkt_init(void)
3065 {
3066 	int ret;
3067 
3068 	mutex_init(&ctl_mutex);
3069 
3070 	psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3071 					sizeof(struct packet_stacked_data));
3072 	if (!psd_pool)
3073 		return -ENOMEM;
3074 
3075 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
3076 	if (ret < 0) {
3077 		printk(DRIVER_NAME": Unable to register block device\n");
3078 		goto out2;
3079 	}
3080 	if (!pktdev_major)
3081 		pktdev_major = ret;
3082 
3083 	ret = pkt_sysfs_init();
3084 	if (ret)
3085 		goto out;
3086 
3087 	pkt_debugfs_init();
3088 
3089 	ret = misc_register(&pkt_misc);
3090 	if (ret) {
3091 		printk(DRIVER_NAME": Unable to register misc device\n");
3092 		goto out_misc;
3093 	}
3094 
3095 	pkt_proc = proc_mkdir(DRIVER_NAME, proc_root_driver);
3096 
3097 	return 0;
3098 
3099 out_misc:
3100 	pkt_debugfs_cleanup();
3101 	pkt_sysfs_cleanup();
3102 out:
3103 	unregister_blkdev(pktdev_major, DRIVER_NAME);
3104 out2:
3105 	mempool_destroy(psd_pool);
3106 	return ret;
3107 }
3108 
3109 static void __exit pkt_exit(void)
3110 {
3111 	remove_proc_entry(DRIVER_NAME, proc_root_driver);
3112 	misc_deregister(&pkt_misc);
3113 
3114 	pkt_debugfs_cleanup();
3115 	pkt_sysfs_cleanup();
3116 
3117 	unregister_blkdev(pktdev_major, DRIVER_NAME);
3118 	mempool_destroy(psd_pool);
3119 }
3120 
3121 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3122 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3123 MODULE_LICENSE("GPL");
3124 
3125 module_init(pkt_init);
3126 module_exit(pkt_exit);
3127