1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom make_request_fn function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 48 49 #include <linux/pktcdvd.h> 50 #include <linux/module.h> 51 #include <linux/types.h> 52 #include <linux/kernel.h> 53 #include <linux/compat.h> 54 #include <linux/kthread.h> 55 #include <linux/errno.h> 56 #include <linux/spinlock.h> 57 #include <linux/file.h> 58 #include <linux/proc_fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/miscdevice.h> 61 #include <linux/freezer.h> 62 #include <linux/mutex.h> 63 #include <linux/slab.h> 64 #include <linux/backing-dev.h> 65 #include <scsi/scsi_cmnd.h> 66 #include <scsi/scsi_ioctl.h> 67 #include <scsi/scsi.h> 68 #include <linux/debugfs.h> 69 #include <linux/device.h> 70 71 #include <linux/uaccess.h> 72 73 #define DRIVER_NAME "pktcdvd" 74 75 #define pkt_err(pd, fmt, ...) \ 76 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__) 77 #define pkt_notice(pd, fmt, ...) \ 78 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__) 79 #define pkt_info(pd, fmt, ...) \ 80 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__) 81 82 #define pkt_dbg(level, pd, fmt, ...) \ 83 do { \ 84 if (level == 2 && PACKET_DEBUG >= 2) \ 85 pr_notice("%s: %s():" fmt, \ 86 pd->name, __func__, ##__VA_ARGS__); \ 87 else if (level == 1 && PACKET_DEBUG >= 1) \ 88 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \ 89 } while (0) 90 91 #define MAX_SPEED 0xffff 92 93 static DEFINE_MUTEX(pktcdvd_mutex); 94 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 95 static struct proc_dir_entry *pkt_proc; 96 static int pktdev_major; 97 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 98 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 99 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 100 static mempool_t *psd_pool; 101 102 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */ 103 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */ 104 105 /* forward declaration */ 106 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 107 static int pkt_remove_dev(dev_t pkt_dev); 108 static int pkt_seq_show(struct seq_file *m, void *p); 109 110 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd) 111 { 112 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1); 113 } 114 115 /* 116 * create and register a pktcdvd kernel object. 117 */ 118 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd, 119 const char* name, 120 struct kobject* parent, 121 struct kobj_type* ktype) 122 { 123 struct pktcdvd_kobj *p; 124 int error; 125 126 p = kzalloc(sizeof(*p), GFP_KERNEL); 127 if (!p) 128 return NULL; 129 p->pd = pd; 130 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name); 131 if (error) { 132 kobject_put(&p->kobj); 133 return NULL; 134 } 135 kobject_uevent(&p->kobj, KOBJ_ADD); 136 return p; 137 } 138 /* 139 * remove a pktcdvd kernel object. 140 */ 141 static void pkt_kobj_remove(struct pktcdvd_kobj *p) 142 { 143 if (p) 144 kobject_put(&p->kobj); 145 } 146 /* 147 * default release function for pktcdvd kernel objects. 148 */ 149 static void pkt_kobj_release(struct kobject *kobj) 150 { 151 kfree(to_pktcdvdkobj(kobj)); 152 } 153 154 155 /********************************************************** 156 * 157 * sysfs interface for pktcdvd 158 * by (C) 2006 Thomas Maier <balagi@justmail.de> 159 * 160 **********************************************************/ 161 162 #define DEF_ATTR(_obj,_name,_mode) \ 163 static struct attribute _obj = { .name = _name, .mode = _mode } 164 165 /********************************************************** 166 /sys/class/pktcdvd/pktcdvd[0-7]/ 167 stat/reset 168 stat/packets_started 169 stat/packets_finished 170 stat/kb_written 171 stat/kb_read 172 stat/kb_read_gather 173 write_queue/size 174 write_queue/congestion_off 175 write_queue/congestion_on 176 **********************************************************/ 177 178 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200); 179 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444); 180 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444); 181 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444); 182 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444); 183 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444); 184 185 static struct attribute *kobj_pkt_attrs_stat[] = { 186 &kobj_pkt_attr_st1, 187 &kobj_pkt_attr_st2, 188 &kobj_pkt_attr_st3, 189 &kobj_pkt_attr_st4, 190 &kobj_pkt_attr_st5, 191 &kobj_pkt_attr_st6, 192 NULL 193 }; 194 195 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444); 196 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644); 197 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644); 198 199 static struct attribute *kobj_pkt_attrs_wqueue[] = { 200 &kobj_pkt_attr_wq1, 201 &kobj_pkt_attr_wq2, 202 &kobj_pkt_attr_wq3, 203 NULL 204 }; 205 206 static ssize_t kobj_pkt_show(struct kobject *kobj, 207 struct attribute *attr, char *data) 208 { 209 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 210 int n = 0; 211 int v; 212 if (strcmp(attr->name, "packets_started") == 0) { 213 n = sprintf(data, "%lu\n", pd->stats.pkt_started); 214 215 } else if (strcmp(attr->name, "packets_finished") == 0) { 216 n = sprintf(data, "%lu\n", pd->stats.pkt_ended); 217 218 } else if (strcmp(attr->name, "kb_written") == 0) { 219 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1); 220 221 } else if (strcmp(attr->name, "kb_read") == 0) { 222 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1); 223 224 } else if (strcmp(attr->name, "kb_read_gather") == 0) { 225 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1); 226 227 } else if (strcmp(attr->name, "size") == 0) { 228 spin_lock(&pd->lock); 229 v = pd->bio_queue_size; 230 spin_unlock(&pd->lock); 231 n = sprintf(data, "%d\n", v); 232 233 } else if (strcmp(attr->name, "congestion_off") == 0) { 234 spin_lock(&pd->lock); 235 v = pd->write_congestion_off; 236 spin_unlock(&pd->lock); 237 n = sprintf(data, "%d\n", v); 238 239 } else if (strcmp(attr->name, "congestion_on") == 0) { 240 spin_lock(&pd->lock); 241 v = pd->write_congestion_on; 242 spin_unlock(&pd->lock); 243 n = sprintf(data, "%d\n", v); 244 } 245 return n; 246 } 247 248 static void init_write_congestion_marks(int* lo, int* hi) 249 { 250 if (*hi > 0) { 251 *hi = max(*hi, 500); 252 *hi = min(*hi, 1000000); 253 if (*lo <= 0) 254 *lo = *hi - 100; 255 else { 256 *lo = min(*lo, *hi - 100); 257 *lo = max(*lo, 100); 258 } 259 } else { 260 *hi = -1; 261 *lo = -1; 262 } 263 } 264 265 static ssize_t kobj_pkt_store(struct kobject *kobj, 266 struct attribute *attr, 267 const char *data, size_t len) 268 { 269 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 270 int val; 271 272 if (strcmp(attr->name, "reset") == 0 && len > 0) { 273 pd->stats.pkt_started = 0; 274 pd->stats.pkt_ended = 0; 275 pd->stats.secs_w = 0; 276 pd->stats.secs_rg = 0; 277 pd->stats.secs_r = 0; 278 279 } else if (strcmp(attr->name, "congestion_off") == 0 280 && sscanf(data, "%d", &val) == 1) { 281 spin_lock(&pd->lock); 282 pd->write_congestion_off = val; 283 init_write_congestion_marks(&pd->write_congestion_off, 284 &pd->write_congestion_on); 285 spin_unlock(&pd->lock); 286 287 } else if (strcmp(attr->name, "congestion_on") == 0 288 && sscanf(data, "%d", &val) == 1) { 289 spin_lock(&pd->lock); 290 pd->write_congestion_on = val; 291 init_write_congestion_marks(&pd->write_congestion_off, 292 &pd->write_congestion_on); 293 spin_unlock(&pd->lock); 294 } 295 return len; 296 } 297 298 static const struct sysfs_ops kobj_pkt_ops = { 299 .show = kobj_pkt_show, 300 .store = kobj_pkt_store 301 }; 302 static struct kobj_type kobj_pkt_type_stat = { 303 .release = pkt_kobj_release, 304 .sysfs_ops = &kobj_pkt_ops, 305 .default_attrs = kobj_pkt_attrs_stat 306 }; 307 static struct kobj_type kobj_pkt_type_wqueue = { 308 .release = pkt_kobj_release, 309 .sysfs_ops = &kobj_pkt_ops, 310 .default_attrs = kobj_pkt_attrs_wqueue 311 }; 312 313 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 314 { 315 if (class_pktcdvd) { 316 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL, 317 "%s", pd->name); 318 if (IS_ERR(pd->dev)) 319 pd->dev = NULL; 320 } 321 if (pd->dev) { 322 pd->kobj_stat = pkt_kobj_create(pd, "stat", 323 &pd->dev->kobj, 324 &kobj_pkt_type_stat); 325 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue", 326 &pd->dev->kobj, 327 &kobj_pkt_type_wqueue); 328 } 329 } 330 331 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 332 { 333 pkt_kobj_remove(pd->kobj_stat); 334 pkt_kobj_remove(pd->kobj_wqueue); 335 if (class_pktcdvd) 336 device_unregister(pd->dev); 337 } 338 339 340 /******************************************************************** 341 /sys/class/pktcdvd/ 342 add map block device 343 remove unmap packet dev 344 device_map show mappings 345 *******************************************************************/ 346 347 static void class_pktcdvd_release(struct class *cls) 348 { 349 kfree(cls); 350 } 351 static ssize_t class_pktcdvd_show_map(struct class *c, 352 struct class_attribute *attr, 353 char *data) 354 { 355 int n = 0; 356 int idx; 357 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 358 for (idx = 0; idx < MAX_WRITERS; idx++) { 359 struct pktcdvd_device *pd = pkt_devs[idx]; 360 if (!pd) 361 continue; 362 n += sprintf(data+n, "%s %u:%u %u:%u\n", 363 pd->name, 364 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 365 MAJOR(pd->bdev->bd_dev), 366 MINOR(pd->bdev->bd_dev)); 367 } 368 mutex_unlock(&ctl_mutex); 369 return n; 370 } 371 372 static ssize_t class_pktcdvd_store_add(struct class *c, 373 struct class_attribute *attr, 374 const char *buf, 375 size_t count) 376 { 377 unsigned int major, minor; 378 379 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 380 /* pkt_setup_dev() expects caller to hold reference to self */ 381 if (!try_module_get(THIS_MODULE)) 382 return -ENODEV; 383 384 pkt_setup_dev(MKDEV(major, minor), NULL); 385 386 module_put(THIS_MODULE); 387 388 return count; 389 } 390 391 return -EINVAL; 392 } 393 394 static ssize_t class_pktcdvd_store_remove(struct class *c, 395 struct class_attribute *attr, 396 const char *buf, 397 size_t count) 398 { 399 unsigned int major, minor; 400 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 401 pkt_remove_dev(MKDEV(major, minor)); 402 return count; 403 } 404 return -EINVAL; 405 } 406 407 static struct class_attribute class_pktcdvd_attrs[] = { 408 __ATTR(add, 0200, NULL, class_pktcdvd_store_add), 409 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove), 410 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL), 411 __ATTR_NULL 412 }; 413 414 415 static int pkt_sysfs_init(void) 416 { 417 int ret = 0; 418 419 /* 420 * create control files in sysfs 421 * /sys/class/pktcdvd/... 422 */ 423 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL); 424 if (!class_pktcdvd) 425 return -ENOMEM; 426 class_pktcdvd->name = DRIVER_NAME; 427 class_pktcdvd->owner = THIS_MODULE; 428 class_pktcdvd->class_release = class_pktcdvd_release; 429 class_pktcdvd->class_attrs = class_pktcdvd_attrs; 430 ret = class_register(class_pktcdvd); 431 if (ret) { 432 kfree(class_pktcdvd); 433 class_pktcdvd = NULL; 434 pr_err("failed to create class pktcdvd\n"); 435 return ret; 436 } 437 return 0; 438 } 439 440 static void pkt_sysfs_cleanup(void) 441 { 442 if (class_pktcdvd) 443 class_destroy(class_pktcdvd); 444 class_pktcdvd = NULL; 445 } 446 447 /******************************************************************** 448 entries in debugfs 449 450 /sys/kernel/debug/pktcdvd[0-7]/ 451 info 452 453 *******************************************************************/ 454 455 static int pkt_debugfs_seq_show(struct seq_file *m, void *p) 456 { 457 return pkt_seq_show(m, p); 458 } 459 460 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file) 461 { 462 return single_open(file, pkt_debugfs_seq_show, inode->i_private); 463 } 464 465 static const struct file_operations debug_fops = { 466 .open = pkt_debugfs_fops_open, 467 .read = seq_read, 468 .llseek = seq_lseek, 469 .release = single_release, 470 .owner = THIS_MODULE, 471 }; 472 473 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 474 { 475 if (!pkt_debugfs_root) 476 return; 477 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root); 478 if (!pd->dfs_d_root) 479 return; 480 481 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO, 482 pd->dfs_d_root, pd, &debug_fops); 483 } 484 485 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 486 { 487 if (!pkt_debugfs_root) 488 return; 489 debugfs_remove(pd->dfs_f_info); 490 debugfs_remove(pd->dfs_d_root); 491 pd->dfs_f_info = NULL; 492 pd->dfs_d_root = NULL; 493 } 494 495 static void pkt_debugfs_init(void) 496 { 497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 498 } 499 500 static void pkt_debugfs_cleanup(void) 501 { 502 debugfs_remove(pkt_debugfs_root); 503 pkt_debugfs_root = NULL; 504 } 505 506 /* ----------------------------------------------------------*/ 507 508 509 static void pkt_bio_finished(struct pktcdvd_device *pd) 510 { 511 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 512 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 513 pkt_dbg(2, pd, "queue empty\n"); 514 atomic_set(&pd->iosched.attention, 1); 515 wake_up(&pd->wqueue); 516 } 517 } 518 519 /* 520 * Allocate a packet_data struct 521 */ 522 static struct packet_data *pkt_alloc_packet_data(int frames) 523 { 524 int i; 525 struct packet_data *pkt; 526 527 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 528 if (!pkt) 529 goto no_pkt; 530 531 pkt->frames = frames; 532 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames); 533 if (!pkt->w_bio) 534 goto no_bio; 535 536 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 537 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 538 if (!pkt->pages[i]) 539 goto no_page; 540 } 541 542 spin_lock_init(&pkt->lock); 543 bio_list_init(&pkt->orig_bios); 544 545 for (i = 0; i < frames; i++) { 546 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1); 547 if (!bio) 548 goto no_rd_bio; 549 550 pkt->r_bios[i] = bio; 551 } 552 553 return pkt; 554 555 no_rd_bio: 556 for (i = 0; i < frames; i++) { 557 struct bio *bio = pkt->r_bios[i]; 558 if (bio) 559 bio_put(bio); 560 } 561 562 no_page: 563 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 564 if (pkt->pages[i]) 565 __free_page(pkt->pages[i]); 566 bio_put(pkt->w_bio); 567 no_bio: 568 kfree(pkt); 569 no_pkt: 570 return NULL; 571 } 572 573 /* 574 * Free a packet_data struct 575 */ 576 static void pkt_free_packet_data(struct packet_data *pkt) 577 { 578 int i; 579 580 for (i = 0; i < pkt->frames; i++) { 581 struct bio *bio = pkt->r_bios[i]; 582 if (bio) 583 bio_put(bio); 584 } 585 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 586 __free_page(pkt->pages[i]); 587 bio_put(pkt->w_bio); 588 kfree(pkt); 589 } 590 591 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 592 { 593 struct packet_data *pkt, *next; 594 595 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 596 597 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 598 pkt_free_packet_data(pkt); 599 } 600 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 601 } 602 603 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 604 { 605 struct packet_data *pkt; 606 607 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 608 609 while (nr_packets > 0) { 610 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 611 if (!pkt) { 612 pkt_shrink_pktlist(pd); 613 return 0; 614 } 615 pkt->id = nr_packets; 616 pkt->pd = pd; 617 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 618 nr_packets--; 619 } 620 return 1; 621 } 622 623 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 624 { 625 struct rb_node *n = rb_next(&node->rb_node); 626 if (!n) 627 return NULL; 628 return rb_entry(n, struct pkt_rb_node, rb_node); 629 } 630 631 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 632 { 633 rb_erase(&node->rb_node, &pd->bio_queue); 634 mempool_free(node, pd->rb_pool); 635 pd->bio_queue_size--; 636 BUG_ON(pd->bio_queue_size < 0); 637 } 638 639 /* 640 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 641 */ 642 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 643 { 644 struct rb_node *n = pd->bio_queue.rb_node; 645 struct rb_node *next; 646 struct pkt_rb_node *tmp; 647 648 if (!n) { 649 BUG_ON(pd->bio_queue_size > 0); 650 return NULL; 651 } 652 653 for (;;) { 654 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 655 if (s <= tmp->bio->bi_iter.bi_sector) 656 next = n->rb_left; 657 else 658 next = n->rb_right; 659 if (!next) 660 break; 661 n = next; 662 } 663 664 if (s > tmp->bio->bi_iter.bi_sector) { 665 tmp = pkt_rbtree_next(tmp); 666 if (!tmp) 667 return NULL; 668 } 669 BUG_ON(s > tmp->bio->bi_iter.bi_sector); 670 return tmp; 671 } 672 673 /* 674 * Insert a node into the pd->bio_queue rb tree. 675 */ 676 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 677 { 678 struct rb_node **p = &pd->bio_queue.rb_node; 679 struct rb_node *parent = NULL; 680 sector_t s = node->bio->bi_iter.bi_sector; 681 struct pkt_rb_node *tmp; 682 683 while (*p) { 684 parent = *p; 685 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 686 if (s < tmp->bio->bi_iter.bi_sector) 687 p = &(*p)->rb_left; 688 else 689 p = &(*p)->rb_right; 690 } 691 rb_link_node(&node->rb_node, parent, p); 692 rb_insert_color(&node->rb_node, &pd->bio_queue); 693 pd->bio_queue_size++; 694 } 695 696 /* 697 * Send a packet_command to the underlying block device and 698 * wait for completion. 699 */ 700 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 701 { 702 struct request_queue *q = bdev_get_queue(pd->bdev); 703 struct request *rq; 704 int ret = 0; 705 706 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 707 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM); 708 if (IS_ERR(rq)) 709 return PTR_ERR(rq); 710 scsi_req_init(rq); 711 712 if (cgc->buflen) { 713 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, 714 __GFP_RECLAIM); 715 if (ret) 716 goto out; 717 } 718 719 scsi_req(rq)->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 720 memcpy(scsi_req(rq)->cmd, cgc->cmd, CDROM_PACKET_SIZE); 721 722 rq->timeout = 60*HZ; 723 if (cgc->quiet) 724 rq->rq_flags |= RQF_QUIET; 725 726 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0); 727 if (scsi_req(rq)->result) 728 ret = -EIO; 729 out: 730 blk_put_request(rq); 731 return ret; 732 } 733 734 static const char *sense_key_string(__u8 index) 735 { 736 static const char * const info[] = { 737 "No sense", "Recovered error", "Not ready", 738 "Medium error", "Hardware error", "Illegal request", 739 "Unit attention", "Data protect", "Blank check", 740 }; 741 742 return index < ARRAY_SIZE(info) ? info[index] : "INVALID"; 743 } 744 745 /* 746 * A generic sense dump / resolve mechanism should be implemented across 747 * all ATAPI + SCSI devices. 748 */ 749 static void pkt_dump_sense(struct pktcdvd_device *pd, 750 struct packet_command *cgc) 751 { 752 struct request_sense *sense = cgc->sense; 753 754 if (sense) 755 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n", 756 CDROM_PACKET_SIZE, cgc->cmd, 757 sense->sense_key, sense->asc, sense->ascq, 758 sense_key_string(sense->sense_key)); 759 else 760 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd); 761 } 762 763 /* 764 * flush the drive cache to media 765 */ 766 static int pkt_flush_cache(struct pktcdvd_device *pd) 767 { 768 struct packet_command cgc; 769 770 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 771 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 772 cgc.quiet = 1; 773 774 /* 775 * the IMMED bit -- we default to not setting it, although that 776 * would allow a much faster close, this is safer 777 */ 778 #if 0 779 cgc.cmd[1] = 1 << 1; 780 #endif 781 return pkt_generic_packet(pd, &cgc); 782 } 783 784 /* 785 * speed is given as the normal factor, e.g. 4 for 4x 786 */ 787 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd, 788 unsigned write_speed, unsigned read_speed) 789 { 790 struct packet_command cgc; 791 struct request_sense sense; 792 int ret; 793 794 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 795 cgc.sense = &sense; 796 cgc.cmd[0] = GPCMD_SET_SPEED; 797 cgc.cmd[2] = (read_speed >> 8) & 0xff; 798 cgc.cmd[3] = read_speed & 0xff; 799 cgc.cmd[4] = (write_speed >> 8) & 0xff; 800 cgc.cmd[5] = write_speed & 0xff; 801 802 if ((ret = pkt_generic_packet(pd, &cgc))) 803 pkt_dump_sense(pd, &cgc); 804 805 return ret; 806 } 807 808 /* 809 * Queue a bio for processing by the low-level CD device. Must be called 810 * from process context. 811 */ 812 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 813 { 814 spin_lock(&pd->iosched.lock); 815 if (bio_data_dir(bio) == READ) 816 bio_list_add(&pd->iosched.read_queue, bio); 817 else 818 bio_list_add(&pd->iosched.write_queue, bio); 819 spin_unlock(&pd->iosched.lock); 820 821 atomic_set(&pd->iosched.attention, 1); 822 wake_up(&pd->wqueue); 823 } 824 825 /* 826 * Process the queued read/write requests. This function handles special 827 * requirements for CDRW drives: 828 * - A cache flush command must be inserted before a read request if the 829 * previous request was a write. 830 * - Switching between reading and writing is slow, so don't do it more often 831 * than necessary. 832 * - Optimize for throughput at the expense of latency. This means that streaming 833 * writes will never be interrupted by a read, but if the drive has to seek 834 * before the next write, switch to reading instead if there are any pending 835 * read requests. 836 * - Set the read speed according to current usage pattern. When only reading 837 * from the device, it's best to use the highest possible read speed, but 838 * when switching often between reading and writing, it's better to have the 839 * same read and write speeds. 840 */ 841 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 842 { 843 844 if (atomic_read(&pd->iosched.attention) == 0) 845 return; 846 atomic_set(&pd->iosched.attention, 0); 847 848 for (;;) { 849 struct bio *bio; 850 int reads_queued, writes_queued; 851 852 spin_lock(&pd->iosched.lock); 853 reads_queued = !bio_list_empty(&pd->iosched.read_queue); 854 writes_queued = !bio_list_empty(&pd->iosched.write_queue); 855 spin_unlock(&pd->iosched.lock); 856 857 if (!reads_queued && !writes_queued) 858 break; 859 860 if (pd->iosched.writing) { 861 int need_write_seek = 1; 862 spin_lock(&pd->iosched.lock); 863 bio = bio_list_peek(&pd->iosched.write_queue); 864 spin_unlock(&pd->iosched.lock); 865 if (bio && (bio->bi_iter.bi_sector == 866 pd->iosched.last_write)) 867 need_write_seek = 0; 868 if (need_write_seek && reads_queued) { 869 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 870 pkt_dbg(2, pd, "write, waiting\n"); 871 break; 872 } 873 pkt_flush_cache(pd); 874 pd->iosched.writing = 0; 875 } 876 } else { 877 if (!reads_queued && writes_queued) { 878 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 879 pkt_dbg(2, pd, "read, waiting\n"); 880 break; 881 } 882 pd->iosched.writing = 1; 883 } 884 } 885 886 spin_lock(&pd->iosched.lock); 887 if (pd->iosched.writing) 888 bio = bio_list_pop(&pd->iosched.write_queue); 889 else 890 bio = bio_list_pop(&pd->iosched.read_queue); 891 spin_unlock(&pd->iosched.lock); 892 893 if (!bio) 894 continue; 895 896 if (bio_data_dir(bio) == READ) 897 pd->iosched.successive_reads += 898 bio->bi_iter.bi_size >> 10; 899 else { 900 pd->iosched.successive_reads = 0; 901 pd->iosched.last_write = bio_end_sector(bio); 902 } 903 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 904 if (pd->read_speed == pd->write_speed) { 905 pd->read_speed = MAX_SPEED; 906 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 907 } 908 } else { 909 if (pd->read_speed != pd->write_speed) { 910 pd->read_speed = pd->write_speed; 911 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 912 } 913 } 914 915 atomic_inc(&pd->cdrw.pending_bios); 916 generic_make_request(bio); 917 } 918 } 919 920 /* 921 * Special care is needed if the underlying block device has a small 922 * max_phys_segments value. 923 */ 924 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q) 925 { 926 if ((pd->settings.size << 9) / CD_FRAMESIZE 927 <= queue_max_segments(q)) { 928 /* 929 * The cdrom device can handle one segment/frame 930 */ 931 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 932 return 0; 933 } else if ((pd->settings.size << 9) / PAGE_SIZE 934 <= queue_max_segments(q)) { 935 /* 936 * We can handle this case at the expense of some extra memory 937 * copies during write operations 938 */ 939 set_bit(PACKET_MERGE_SEGS, &pd->flags); 940 return 0; 941 } else { 942 pkt_err(pd, "cdrom max_phys_segments too small\n"); 943 return -EIO; 944 } 945 } 946 947 static void pkt_end_io_read(struct bio *bio) 948 { 949 struct packet_data *pkt = bio->bi_private; 950 struct pktcdvd_device *pd = pkt->pd; 951 BUG_ON(!pd); 952 953 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n", 954 bio, (unsigned long long)pkt->sector, 955 (unsigned long long)bio->bi_iter.bi_sector, bio->bi_error); 956 957 if (bio->bi_error) 958 atomic_inc(&pkt->io_errors); 959 if (atomic_dec_and_test(&pkt->io_wait)) { 960 atomic_inc(&pkt->run_sm); 961 wake_up(&pd->wqueue); 962 } 963 pkt_bio_finished(pd); 964 } 965 966 static void pkt_end_io_packet_write(struct bio *bio) 967 { 968 struct packet_data *pkt = bio->bi_private; 969 struct pktcdvd_device *pd = pkt->pd; 970 BUG_ON(!pd); 971 972 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_error); 973 974 pd->stats.pkt_ended++; 975 976 pkt_bio_finished(pd); 977 atomic_dec(&pkt->io_wait); 978 atomic_inc(&pkt->run_sm); 979 wake_up(&pd->wqueue); 980 } 981 982 /* 983 * Schedule reads for the holes in a packet 984 */ 985 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 986 { 987 int frames_read = 0; 988 struct bio *bio; 989 int f; 990 char written[PACKET_MAX_SIZE]; 991 992 BUG_ON(bio_list_empty(&pkt->orig_bios)); 993 994 atomic_set(&pkt->io_wait, 0); 995 atomic_set(&pkt->io_errors, 0); 996 997 /* 998 * Figure out which frames we need to read before we can write. 999 */ 1000 memset(written, 0, sizeof(written)); 1001 spin_lock(&pkt->lock); 1002 bio_list_for_each(bio, &pkt->orig_bios) { 1003 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) / 1004 (CD_FRAMESIZE >> 9); 1005 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE; 1006 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 1007 BUG_ON(first_frame < 0); 1008 BUG_ON(first_frame + num_frames > pkt->frames); 1009 for (f = first_frame; f < first_frame + num_frames; f++) 1010 written[f] = 1; 1011 } 1012 spin_unlock(&pkt->lock); 1013 1014 if (pkt->cache_valid) { 1015 pkt_dbg(2, pd, "zone %llx cached\n", 1016 (unsigned long long)pkt->sector); 1017 goto out_account; 1018 } 1019 1020 /* 1021 * Schedule reads for missing parts of the packet. 1022 */ 1023 for (f = 0; f < pkt->frames; f++) { 1024 int p, offset; 1025 1026 if (written[f]) 1027 continue; 1028 1029 bio = pkt->r_bios[f]; 1030 bio_reset(bio); 1031 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1032 bio->bi_bdev = pd->bdev; 1033 bio->bi_end_io = pkt_end_io_read; 1034 bio->bi_private = pkt; 1035 1036 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1037 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1038 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n", 1039 f, pkt->pages[p], offset); 1040 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1041 BUG(); 1042 1043 atomic_inc(&pkt->io_wait); 1044 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1045 pkt_queue_bio(pd, bio); 1046 frames_read++; 1047 } 1048 1049 out_account: 1050 pkt_dbg(2, pd, "need %d frames for zone %llx\n", 1051 frames_read, (unsigned long long)pkt->sector); 1052 pd->stats.pkt_started++; 1053 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1054 } 1055 1056 /* 1057 * Find a packet matching zone, or the least recently used packet if 1058 * there is no match. 1059 */ 1060 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1061 { 1062 struct packet_data *pkt; 1063 1064 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1065 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1066 list_del_init(&pkt->list); 1067 if (pkt->sector != zone) 1068 pkt->cache_valid = 0; 1069 return pkt; 1070 } 1071 } 1072 BUG(); 1073 return NULL; 1074 } 1075 1076 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1077 { 1078 if (pkt->cache_valid) { 1079 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1080 } else { 1081 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1082 } 1083 } 1084 1085 /* 1086 * recover a failed write, query for relocation if possible 1087 * 1088 * returns 1 if recovery is possible, or 0 if not 1089 * 1090 */ 1091 static int pkt_start_recovery(struct packet_data *pkt) 1092 { 1093 /* 1094 * FIXME. We need help from the file system to implement 1095 * recovery handling. 1096 */ 1097 return 0; 1098 #if 0 1099 struct request *rq = pkt->rq; 1100 struct pktcdvd_device *pd = rq->rq_disk->private_data; 1101 struct block_device *pkt_bdev; 1102 struct super_block *sb = NULL; 1103 unsigned long old_block, new_block; 1104 sector_t new_sector; 1105 1106 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 1107 if (pkt_bdev) { 1108 sb = get_super(pkt_bdev); 1109 bdput(pkt_bdev); 1110 } 1111 1112 if (!sb) 1113 return 0; 1114 1115 if (!sb->s_op->relocate_blocks) 1116 goto out; 1117 1118 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 1119 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 1120 goto out; 1121 1122 new_sector = new_block * (CD_FRAMESIZE >> 9); 1123 pkt->sector = new_sector; 1124 1125 bio_reset(pkt->bio); 1126 pkt->bio->bi_bdev = pd->bdev; 1127 bio_set_op_attrs(pkt->bio, REQ_OP_WRITE, 0); 1128 pkt->bio->bi_iter.bi_sector = new_sector; 1129 pkt->bio->bi_iter.bi_size = pkt->frames * CD_FRAMESIZE; 1130 pkt->bio->bi_vcnt = pkt->frames; 1131 1132 pkt->bio->bi_end_io = pkt_end_io_packet_write; 1133 pkt->bio->bi_private = pkt; 1134 1135 drop_super(sb); 1136 return 1; 1137 1138 out: 1139 drop_super(sb); 1140 return 0; 1141 #endif 1142 } 1143 1144 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 1145 { 1146 #if PACKET_DEBUG > 1 1147 static const char *state_name[] = { 1148 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1149 }; 1150 enum packet_data_state old_state = pkt->state; 1151 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n", 1152 pkt->id, (unsigned long long)pkt->sector, 1153 state_name[old_state], state_name[state]); 1154 #endif 1155 pkt->state = state; 1156 } 1157 1158 /* 1159 * Scan the work queue to see if we can start a new packet. 1160 * returns non-zero if any work was done. 1161 */ 1162 static int pkt_handle_queue(struct pktcdvd_device *pd) 1163 { 1164 struct packet_data *pkt, *p; 1165 struct bio *bio = NULL; 1166 sector_t zone = 0; /* Suppress gcc warning */ 1167 struct pkt_rb_node *node, *first_node; 1168 struct rb_node *n; 1169 int wakeup; 1170 1171 atomic_set(&pd->scan_queue, 0); 1172 1173 if (list_empty(&pd->cdrw.pkt_free_list)) { 1174 pkt_dbg(2, pd, "no pkt\n"); 1175 return 0; 1176 } 1177 1178 /* 1179 * Try to find a zone we are not already working on. 1180 */ 1181 spin_lock(&pd->lock); 1182 first_node = pkt_rbtree_find(pd, pd->current_sector); 1183 if (!first_node) { 1184 n = rb_first(&pd->bio_queue); 1185 if (n) 1186 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1187 } 1188 node = first_node; 1189 while (node) { 1190 bio = node->bio; 1191 zone = get_zone(bio->bi_iter.bi_sector, pd); 1192 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1193 if (p->sector == zone) { 1194 bio = NULL; 1195 goto try_next_bio; 1196 } 1197 } 1198 break; 1199 try_next_bio: 1200 node = pkt_rbtree_next(node); 1201 if (!node) { 1202 n = rb_first(&pd->bio_queue); 1203 if (n) 1204 node = rb_entry(n, struct pkt_rb_node, rb_node); 1205 } 1206 if (node == first_node) 1207 node = NULL; 1208 } 1209 spin_unlock(&pd->lock); 1210 if (!bio) { 1211 pkt_dbg(2, pd, "no bio\n"); 1212 return 0; 1213 } 1214 1215 pkt = pkt_get_packet_data(pd, zone); 1216 1217 pd->current_sector = zone + pd->settings.size; 1218 pkt->sector = zone; 1219 BUG_ON(pkt->frames != pd->settings.size >> 2); 1220 pkt->write_size = 0; 1221 1222 /* 1223 * Scan work queue for bios in the same zone and link them 1224 * to this packet. 1225 */ 1226 spin_lock(&pd->lock); 1227 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone); 1228 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1229 bio = node->bio; 1230 pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long) 1231 get_zone(bio->bi_iter.bi_sector, pd)); 1232 if (get_zone(bio->bi_iter.bi_sector, pd) != zone) 1233 break; 1234 pkt_rbtree_erase(pd, node); 1235 spin_lock(&pkt->lock); 1236 bio_list_add(&pkt->orig_bios, bio); 1237 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE; 1238 spin_unlock(&pkt->lock); 1239 } 1240 /* check write congestion marks, and if bio_queue_size is 1241 below, wake up any waiters */ 1242 wakeup = (pd->write_congestion_on > 0 1243 && pd->bio_queue_size <= pd->write_congestion_off); 1244 spin_unlock(&pd->lock); 1245 if (wakeup) { 1246 clear_bdi_congested(pd->disk->queue->backing_dev_info, 1247 BLK_RW_ASYNC); 1248 } 1249 1250 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1251 pkt_set_state(pkt, PACKET_WAITING_STATE); 1252 atomic_set(&pkt->run_sm, 1); 1253 1254 spin_lock(&pd->cdrw.active_list_lock); 1255 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1256 spin_unlock(&pd->cdrw.active_list_lock); 1257 1258 return 1; 1259 } 1260 1261 /* 1262 * Assemble a bio to write one packet and queue the bio for processing 1263 * by the underlying block device. 1264 */ 1265 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1266 { 1267 int f; 1268 1269 bio_reset(pkt->w_bio); 1270 pkt->w_bio->bi_iter.bi_sector = pkt->sector; 1271 pkt->w_bio->bi_bdev = pd->bdev; 1272 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1273 pkt->w_bio->bi_private = pkt; 1274 1275 /* XXX: locking? */ 1276 for (f = 0; f < pkt->frames; f++) { 1277 struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1278 unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1279 1280 if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset)) 1281 BUG(); 1282 } 1283 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt); 1284 1285 /* 1286 * Fill-in bvec with data from orig_bios. 1287 */ 1288 spin_lock(&pkt->lock); 1289 bio_copy_data(pkt->w_bio, pkt->orig_bios.head); 1290 1291 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1292 spin_unlock(&pkt->lock); 1293 1294 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n", 1295 pkt->write_size, (unsigned long long)pkt->sector); 1296 1297 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) 1298 pkt->cache_valid = 1; 1299 else 1300 pkt->cache_valid = 0; 1301 1302 /* Start the write request */ 1303 atomic_set(&pkt->io_wait, 1); 1304 bio_set_op_attrs(pkt->w_bio, REQ_OP_WRITE, 0); 1305 pkt_queue_bio(pd, pkt->w_bio); 1306 } 1307 1308 static void pkt_finish_packet(struct packet_data *pkt, int error) 1309 { 1310 struct bio *bio; 1311 1312 if (error) 1313 pkt->cache_valid = 0; 1314 1315 /* Finish all bios corresponding to this packet */ 1316 while ((bio = bio_list_pop(&pkt->orig_bios))) { 1317 bio->bi_error = error; 1318 bio_endio(bio); 1319 } 1320 } 1321 1322 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1323 { 1324 pkt_dbg(2, pd, "pkt %d\n", pkt->id); 1325 1326 for (;;) { 1327 switch (pkt->state) { 1328 case PACKET_WAITING_STATE: 1329 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1330 return; 1331 1332 pkt->sleep_time = 0; 1333 pkt_gather_data(pd, pkt); 1334 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1335 break; 1336 1337 case PACKET_READ_WAIT_STATE: 1338 if (atomic_read(&pkt->io_wait) > 0) 1339 return; 1340 1341 if (atomic_read(&pkt->io_errors) > 0) { 1342 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1343 } else { 1344 pkt_start_write(pd, pkt); 1345 } 1346 break; 1347 1348 case PACKET_WRITE_WAIT_STATE: 1349 if (atomic_read(&pkt->io_wait) > 0) 1350 return; 1351 1352 if (!pkt->w_bio->bi_error) { 1353 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1354 } else { 1355 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1356 } 1357 break; 1358 1359 case PACKET_RECOVERY_STATE: 1360 if (pkt_start_recovery(pkt)) { 1361 pkt_start_write(pd, pkt); 1362 } else { 1363 pkt_dbg(2, pd, "No recovery possible\n"); 1364 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1365 } 1366 break; 1367 1368 case PACKET_FINISHED_STATE: 1369 pkt_finish_packet(pkt, pkt->w_bio->bi_error); 1370 return; 1371 1372 default: 1373 BUG(); 1374 break; 1375 } 1376 } 1377 } 1378 1379 static void pkt_handle_packets(struct pktcdvd_device *pd) 1380 { 1381 struct packet_data *pkt, *next; 1382 1383 /* 1384 * Run state machine for active packets 1385 */ 1386 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1387 if (atomic_read(&pkt->run_sm) > 0) { 1388 atomic_set(&pkt->run_sm, 0); 1389 pkt_run_state_machine(pd, pkt); 1390 } 1391 } 1392 1393 /* 1394 * Move no longer active packets to the free list 1395 */ 1396 spin_lock(&pd->cdrw.active_list_lock); 1397 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1398 if (pkt->state == PACKET_FINISHED_STATE) { 1399 list_del(&pkt->list); 1400 pkt_put_packet_data(pd, pkt); 1401 pkt_set_state(pkt, PACKET_IDLE_STATE); 1402 atomic_set(&pd->scan_queue, 1); 1403 } 1404 } 1405 spin_unlock(&pd->cdrw.active_list_lock); 1406 } 1407 1408 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1409 { 1410 struct packet_data *pkt; 1411 int i; 1412 1413 for (i = 0; i < PACKET_NUM_STATES; i++) 1414 states[i] = 0; 1415 1416 spin_lock(&pd->cdrw.active_list_lock); 1417 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1418 states[pkt->state]++; 1419 } 1420 spin_unlock(&pd->cdrw.active_list_lock); 1421 } 1422 1423 /* 1424 * kcdrwd is woken up when writes have been queued for one of our 1425 * registered devices 1426 */ 1427 static int kcdrwd(void *foobar) 1428 { 1429 struct pktcdvd_device *pd = foobar; 1430 struct packet_data *pkt; 1431 long min_sleep_time, residue; 1432 1433 set_user_nice(current, MIN_NICE); 1434 set_freezable(); 1435 1436 for (;;) { 1437 DECLARE_WAITQUEUE(wait, current); 1438 1439 /* 1440 * Wait until there is something to do 1441 */ 1442 add_wait_queue(&pd->wqueue, &wait); 1443 for (;;) { 1444 set_current_state(TASK_INTERRUPTIBLE); 1445 1446 /* Check if we need to run pkt_handle_queue */ 1447 if (atomic_read(&pd->scan_queue) > 0) 1448 goto work_to_do; 1449 1450 /* Check if we need to run the state machine for some packet */ 1451 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1452 if (atomic_read(&pkt->run_sm) > 0) 1453 goto work_to_do; 1454 } 1455 1456 /* Check if we need to process the iosched queues */ 1457 if (atomic_read(&pd->iosched.attention) != 0) 1458 goto work_to_do; 1459 1460 /* Otherwise, go to sleep */ 1461 if (PACKET_DEBUG > 1) { 1462 int states[PACKET_NUM_STATES]; 1463 pkt_count_states(pd, states); 1464 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1465 states[0], states[1], states[2], 1466 states[3], states[4], states[5]); 1467 } 1468 1469 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1470 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1471 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1472 min_sleep_time = pkt->sleep_time; 1473 } 1474 1475 pkt_dbg(2, pd, "sleeping\n"); 1476 residue = schedule_timeout(min_sleep_time); 1477 pkt_dbg(2, pd, "wake up\n"); 1478 1479 /* make swsusp happy with our thread */ 1480 try_to_freeze(); 1481 1482 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1483 if (!pkt->sleep_time) 1484 continue; 1485 pkt->sleep_time -= min_sleep_time - residue; 1486 if (pkt->sleep_time <= 0) { 1487 pkt->sleep_time = 0; 1488 atomic_inc(&pkt->run_sm); 1489 } 1490 } 1491 1492 if (kthread_should_stop()) 1493 break; 1494 } 1495 work_to_do: 1496 set_current_state(TASK_RUNNING); 1497 remove_wait_queue(&pd->wqueue, &wait); 1498 1499 if (kthread_should_stop()) 1500 break; 1501 1502 /* 1503 * if pkt_handle_queue returns true, we can queue 1504 * another request. 1505 */ 1506 while (pkt_handle_queue(pd)) 1507 ; 1508 1509 /* 1510 * Handle packet state machine 1511 */ 1512 pkt_handle_packets(pd); 1513 1514 /* 1515 * Handle iosched queues 1516 */ 1517 pkt_iosched_process_queue(pd); 1518 } 1519 1520 return 0; 1521 } 1522 1523 static void pkt_print_settings(struct pktcdvd_device *pd) 1524 { 1525 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n", 1526 pd->settings.fp ? "Fixed" : "Variable", 1527 pd->settings.size >> 2, 1528 pd->settings.block_mode == 8 ? '1' : '2'); 1529 } 1530 1531 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1532 { 1533 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1534 1535 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1536 cgc->cmd[2] = page_code | (page_control << 6); 1537 cgc->cmd[7] = cgc->buflen >> 8; 1538 cgc->cmd[8] = cgc->buflen & 0xff; 1539 cgc->data_direction = CGC_DATA_READ; 1540 return pkt_generic_packet(pd, cgc); 1541 } 1542 1543 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1544 { 1545 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1546 memset(cgc->buffer, 0, 2); 1547 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1548 cgc->cmd[1] = 0x10; /* PF */ 1549 cgc->cmd[7] = cgc->buflen >> 8; 1550 cgc->cmd[8] = cgc->buflen & 0xff; 1551 cgc->data_direction = CGC_DATA_WRITE; 1552 return pkt_generic_packet(pd, cgc); 1553 } 1554 1555 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1556 { 1557 struct packet_command cgc; 1558 int ret; 1559 1560 /* set up command and get the disc info */ 1561 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1562 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1563 cgc.cmd[8] = cgc.buflen = 2; 1564 cgc.quiet = 1; 1565 1566 if ((ret = pkt_generic_packet(pd, &cgc))) 1567 return ret; 1568 1569 /* not all drives have the same disc_info length, so requeue 1570 * packet with the length the drive tells us it can supply 1571 */ 1572 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1573 sizeof(di->disc_information_length); 1574 1575 if (cgc.buflen > sizeof(disc_information)) 1576 cgc.buflen = sizeof(disc_information); 1577 1578 cgc.cmd[8] = cgc.buflen; 1579 return pkt_generic_packet(pd, &cgc); 1580 } 1581 1582 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1583 { 1584 struct packet_command cgc; 1585 int ret; 1586 1587 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1588 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1589 cgc.cmd[1] = type & 3; 1590 cgc.cmd[4] = (track & 0xff00) >> 8; 1591 cgc.cmd[5] = track & 0xff; 1592 cgc.cmd[8] = 8; 1593 cgc.quiet = 1; 1594 1595 if ((ret = pkt_generic_packet(pd, &cgc))) 1596 return ret; 1597 1598 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1599 sizeof(ti->track_information_length); 1600 1601 if (cgc.buflen > sizeof(track_information)) 1602 cgc.buflen = sizeof(track_information); 1603 1604 cgc.cmd[8] = cgc.buflen; 1605 return pkt_generic_packet(pd, &cgc); 1606 } 1607 1608 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd, 1609 long *last_written) 1610 { 1611 disc_information di; 1612 track_information ti; 1613 __u32 last_track; 1614 int ret = -1; 1615 1616 if ((ret = pkt_get_disc_info(pd, &di))) 1617 return ret; 1618 1619 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1620 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1621 return ret; 1622 1623 /* if this track is blank, try the previous. */ 1624 if (ti.blank) { 1625 last_track--; 1626 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1627 return ret; 1628 } 1629 1630 /* if last recorded field is valid, return it. */ 1631 if (ti.lra_v) { 1632 *last_written = be32_to_cpu(ti.last_rec_address); 1633 } else { 1634 /* make it up instead */ 1635 *last_written = be32_to_cpu(ti.track_start) + 1636 be32_to_cpu(ti.track_size); 1637 if (ti.free_blocks) 1638 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1639 } 1640 return 0; 1641 } 1642 1643 /* 1644 * write mode select package based on pd->settings 1645 */ 1646 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd) 1647 { 1648 struct packet_command cgc; 1649 struct request_sense sense; 1650 write_param_page *wp; 1651 char buffer[128]; 1652 int ret, size; 1653 1654 /* doesn't apply to DVD+RW or DVD-RAM */ 1655 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1656 return 0; 1657 1658 memset(buffer, 0, sizeof(buffer)); 1659 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1660 cgc.sense = &sense; 1661 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1662 pkt_dump_sense(pd, &cgc); 1663 return ret; 1664 } 1665 1666 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1667 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1668 if (size > sizeof(buffer)) 1669 size = sizeof(buffer); 1670 1671 /* 1672 * now get it all 1673 */ 1674 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1675 cgc.sense = &sense; 1676 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1677 pkt_dump_sense(pd, &cgc); 1678 return ret; 1679 } 1680 1681 /* 1682 * write page is offset header + block descriptor length 1683 */ 1684 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1685 1686 wp->fp = pd->settings.fp; 1687 wp->track_mode = pd->settings.track_mode; 1688 wp->write_type = pd->settings.write_type; 1689 wp->data_block_type = pd->settings.block_mode; 1690 1691 wp->multi_session = 0; 1692 1693 #ifdef PACKET_USE_LS 1694 wp->link_size = 7; 1695 wp->ls_v = 1; 1696 #endif 1697 1698 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1699 wp->session_format = 0; 1700 wp->subhdr2 = 0x20; 1701 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1702 wp->session_format = 0x20; 1703 wp->subhdr2 = 8; 1704 #if 0 1705 wp->mcn[0] = 0x80; 1706 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1707 #endif 1708 } else { 1709 /* 1710 * paranoia 1711 */ 1712 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type); 1713 return 1; 1714 } 1715 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1716 1717 cgc.buflen = cgc.cmd[8] = size; 1718 if ((ret = pkt_mode_select(pd, &cgc))) { 1719 pkt_dump_sense(pd, &cgc); 1720 return ret; 1721 } 1722 1723 pkt_print_settings(pd); 1724 return 0; 1725 } 1726 1727 /* 1728 * 1 -- we can write to this track, 0 -- we can't 1729 */ 1730 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1731 { 1732 switch (pd->mmc3_profile) { 1733 case 0x1a: /* DVD+RW */ 1734 case 0x12: /* DVD-RAM */ 1735 /* The track is always writable on DVD+RW/DVD-RAM */ 1736 return 1; 1737 default: 1738 break; 1739 } 1740 1741 if (!ti->packet || !ti->fp) 1742 return 0; 1743 1744 /* 1745 * "good" settings as per Mt Fuji. 1746 */ 1747 if (ti->rt == 0 && ti->blank == 0) 1748 return 1; 1749 1750 if (ti->rt == 0 && ti->blank == 1) 1751 return 1; 1752 1753 if (ti->rt == 1 && ti->blank == 0) 1754 return 1; 1755 1756 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1757 return 0; 1758 } 1759 1760 /* 1761 * 1 -- we can write to this disc, 0 -- we can't 1762 */ 1763 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1764 { 1765 switch (pd->mmc3_profile) { 1766 case 0x0a: /* CD-RW */ 1767 case 0xffff: /* MMC3 not supported */ 1768 break; 1769 case 0x1a: /* DVD+RW */ 1770 case 0x13: /* DVD-RW */ 1771 case 0x12: /* DVD-RAM */ 1772 return 1; 1773 default: 1774 pkt_dbg(2, pd, "Wrong disc profile (%x)\n", 1775 pd->mmc3_profile); 1776 return 0; 1777 } 1778 1779 /* 1780 * for disc type 0xff we should probably reserve a new track. 1781 * but i'm not sure, should we leave this to user apps? probably. 1782 */ 1783 if (di->disc_type == 0xff) { 1784 pkt_notice(pd, "unknown disc - no track?\n"); 1785 return 0; 1786 } 1787 1788 if (di->disc_type != 0x20 && di->disc_type != 0) { 1789 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type); 1790 return 0; 1791 } 1792 1793 if (di->erasable == 0) { 1794 pkt_notice(pd, "disc not erasable\n"); 1795 return 0; 1796 } 1797 1798 if (di->border_status == PACKET_SESSION_RESERVED) { 1799 pkt_err(pd, "can't write to last track (reserved)\n"); 1800 return 0; 1801 } 1802 1803 return 1; 1804 } 1805 1806 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd) 1807 { 1808 struct packet_command cgc; 1809 unsigned char buf[12]; 1810 disc_information di; 1811 track_information ti; 1812 int ret, track; 1813 1814 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1815 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1816 cgc.cmd[8] = 8; 1817 ret = pkt_generic_packet(pd, &cgc); 1818 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1819 1820 memset(&di, 0, sizeof(disc_information)); 1821 memset(&ti, 0, sizeof(track_information)); 1822 1823 if ((ret = pkt_get_disc_info(pd, &di))) { 1824 pkt_err(pd, "failed get_disc\n"); 1825 return ret; 1826 } 1827 1828 if (!pkt_writable_disc(pd, &di)) 1829 return -EROFS; 1830 1831 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 1832 1833 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 1834 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 1835 pkt_err(pd, "failed get_track\n"); 1836 return ret; 1837 } 1838 1839 if (!pkt_writable_track(pd, &ti)) { 1840 pkt_err(pd, "can't write to this track\n"); 1841 return -EROFS; 1842 } 1843 1844 /* 1845 * we keep packet size in 512 byte units, makes it easier to 1846 * deal with request calculations. 1847 */ 1848 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 1849 if (pd->settings.size == 0) { 1850 pkt_notice(pd, "detected zero packet size!\n"); 1851 return -ENXIO; 1852 } 1853 if (pd->settings.size > PACKET_MAX_SECTORS) { 1854 pkt_err(pd, "packet size is too big\n"); 1855 return -EROFS; 1856 } 1857 pd->settings.fp = ti.fp; 1858 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 1859 1860 if (ti.nwa_v) { 1861 pd->nwa = be32_to_cpu(ti.next_writable); 1862 set_bit(PACKET_NWA_VALID, &pd->flags); 1863 } 1864 1865 /* 1866 * in theory we could use lra on -RW media as well and just zero 1867 * blocks that haven't been written yet, but in practice that 1868 * is just a no-go. we'll use that for -R, naturally. 1869 */ 1870 if (ti.lra_v) { 1871 pd->lra = be32_to_cpu(ti.last_rec_address); 1872 set_bit(PACKET_LRA_VALID, &pd->flags); 1873 } else { 1874 pd->lra = 0xffffffff; 1875 set_bit(PACKET_LRA_VALID, &pd->flags); 1876 } 1877 1878 /* 1879 * fine for now 1880 */ 1881 pd->settings.link_loss = 7; 1882 pd->settings.write_type = 0; /* packet */ 1883 pd->settings.track_mode = ti.track_mode; 1884 1885 /* 1886 * mode1 or mode2 disc 1887 */ 1888 switch (ti.data_mode) { 1889 case PACKET_MODE1: 1890 pd->settings.block_mode = PACKET_BLOCK_MODE1; 1891 break; 1892 case PACKET_MODE2: 1893 pd->settings.block_mode = PACKET_BLOCK_MODE2; 1894 break; 1895 default: 1896 pkt_err(pd, "unknown data mode\n"); 1897 return -EROFS; 1898 } 1899 return 0; 1900 } 1901 1902 /* 1903 * enable/disable write caching on drive 1904 */ 1905 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd, 1906 int set) 1907 { 1908 struct packet_command cgc; 1909 struct request_sense sense; 1910 unsigned char buf[64]; 1911 int ret; 1912 1913 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1914 cgc.sense = &sense; 1915 cgc.buflen = pd->mode_offset + 12; 1916 1917 /* 1918 * caching mode page might not be there, so quiet this command 1919 */ 1920 cgc.quiet = 1; 1921 1922 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 1923 return ret; 1924 1925 buf[pd->mode_offset + 10] |= (!!set << 2); 1926 1927 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 1928 ret = pkt_mode_select(pd, &cgc); 1929 if (ret) { 1930 pkt_err(pd, "write caching control failed\n"); 1931 pkt_dump_sense(pd, &cgc); 1932 } else if (!ret && set) 1933 pkt_notice(pd, "enabled write caching\n"); 1934 return ret; 1935 } 1936 1937 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 1938 { 1939 struct packet_command cgc; 1940 1941 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 1942 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 1943 cgc.cmd[4] = lockflag ? 1 : 0; 1944 return pkt_generic_packet(pd, &cgc); 1945 } 1946 1947 /* 1948 * Returns drive maximum write speed 1949 */ 1950 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd, 1951 unsigned *write_speed) 1952 { 1953 struct packet_command cgc; 1954 struct request_sense sense; 1955 unsigned char buf[256+18]; 1956 unsigned char *cap_buf; 1957 int ret, offset; 1958 1959 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 1960 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 1961 cgc.sense = &sense; 1962 1963 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1964 if (ret) { 1965 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 1966 sizeof(struct mode_page_header); 1967 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1968 if (ret) { 1969 pkt_dump_sense(pd, &cgc); 1970 return ret; 1971 } 1972 } 1973 1974 offset = 20; /* Obsoleted field, used by older drives */ 1975 if (cap_buf[1] >= 28) 1976 offset = 28; /* Current write speed selected */ 1977 if (cap_buf[1] >= 30) { 1978 /* If the drive reports at least one "Logical Unit Write 1979 * Speed Performance Descriptor Block", use the information 1980 * in the first block. (contains the highest speed) 1981 */ 1982 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 1983 if (num_spdb > 0) 1984 offset = 34; 1985 } 1986 1987 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 1988 return 0; 1989 } 1990 1991 /* These tables from cdrecord - I don't have orange book */ 1992 /* standard speed CD-RW (1-4x) */ 1993 static char clv_to_speed[16] = { 1994 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1995 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1996 }; 1997 /* high speed CD-RW (-10x) */ 1998 static char hs_clv_to_speed[16] = { 1999 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2000 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2001 }; 2002 /* ultra high speed CD-RW */ 2003 static char us_clv_to_speed[16] = { 2004 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2005 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 2006 }; 2007 2008 /* 2009 * reads the maximum media speed from ATIP 2010 */ 2011 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd, 2012 unsigned *speed) 2013 { 2014 struct packet_command cgc; 2015 struct request_sense sense; 2016 unsigned char buf[64]; 2017 unsigned int size, st, sp; 2018 int ret; 2019 2020 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 2021 cgc.sense = &sense; 2022 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2023 cgc.cmd[1] = 2; 2024 cgc.cmd[2] = 4; /* READ ATIP */ 2025 cgc.cmd[8] = 2; 2026 ret = pkt_generic_packet(pd, &cgc); 2027 if (ret) { 2028 pkt_dump_sense(pd, &cgc); 2029 return ret; 2030 } 2031 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 2032 if (size > sizeof(buf)) 2033 size = sizeof(buf); 2034 2035 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2036 cgc.sense = &sense; 2037 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2038 cgc.cmd[1] = 2; 2039 cgc.cmd[2] = 4; 2040 cgc.cmd[8] = size; 2041 ret = pkt_generic_packet(pd, &cgc); 2042 if (ret) { 2043 pkt_dump_sense(pd, &cgc); 2044 return ret; 2045 } 2046 2047 if (!(buf[6] & 0x40)) { 2048 pkt_notice(pd, "disc type is not CD-RW\n"); 2049 return 1; 2050 } 2051 if (!(buf[6] & 0x4)) { 2052 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n"); 2053 return 1; 2054 } 2055 2056 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2057 2058 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2059 2060 /* Info from cdrecord */ 2061 switch (st) { 2062 case 0: /* standard speed */ 2063 *speed = clv_to_speed[sp]; 2064 break; 2065 case 1: /* high speed */ 2066 *speed = hs_clv_to_speed[sp]; 2067 break; 2068 case 2: /* ultra high speed */ 2069 *speed = us_clv_to_speed[sp]; 2070 break; 2071 default: 2072 pkt_notice(pd, "unknown disc sub-type %d\n", st); 2073 return 1; 2074 } 2075 if (*speed) { 2076 pkt_info(pd, "maximum media speed: %d\n", *speed); 2077 return 0; 2078 } else { 2079 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st); 2080 return 1; 2081 } 2082 } 2083 2084 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd) 2085 { 2086 struct packet_command cgc; 2087 struct request_sense sense; 2088 int ret; 2089 2090 pkt_dbg(2, pd, "Performing OPC\n"); 2091 2092 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2093 cgc.sense = &sense; 2094 cgc.timeout = 60*HZ; 2095 cgc.cmd[0] = GPCMD_SEND_OPC; 2096 cgc.cmd[1] = 1; 2097 if ((ret = pkt_generic_packet(pd, &cgc))) 2098 pkt_dump_sense(pd, &cgc); 2099 return ret; 2100 } 2101 2102 static int pkt_open_write(struct pktcdvd_device *pd) 2103 { 2104 int ret; 2105 unsigned int write_speed, media_write_speed, read_speed; 2106 2107 if ((ret = pkt_probe_settings(pd))) { 2108 pkt_dbg(2, pd, "failed probe\n"); 2109 return ret; 2110 } 2111 2112 if ((ret = pkt_set_write_settings(pd))) { 2113 pkt_dbg(1, pd, "failed saving write settings\n"); 2114 return -EIO; 2115 } 2116 2117 pkt_write_caching(pd, USE_WCACHING); 2118 2119 if ((ret = pkt_get_max_speed(pd, &write_speed))) 2120 write_speed = 16 * 177; 2121 switch (pd->mmc3_profile) { 2122 case 0x13: /* DVD-RW */ 2123 case 0x1a: /* DVD+RW */ 2124 case 0x12: /* DVD-RAM */ 2125 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed); 2126 break; 2127 default: 2128 if ((ret = pkt_media_speed(pd, &media_write_speed))) 2129 media_write_speed = 16; 2130 write_speed = min(write_speed, media_write_speed * 177); 2131 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176); 2132 break; 2133 } 2134 read_speed = write_speed; 2135 2136 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 2137 pkt_dbg(1, pd, "couldn't set write speed\n"); 2138 return -EIO; 2139 } 2140 pd->write_speed = write_speed; 2141 pd->read_speed = read_speed; 2142 2143 if ((ret = pkt_perform_opc(pd))) { 2144 pkt_dbg(1, pd, "Optimum Power Calibration failed\n"); 2145 } 2146 2147 return 0; 2148 } 2149 2150 /* 2151 * called at open time. 2152 */ 2153 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write) 2154 { 2155 int ret; 2156 long lba; 2157 struct request_queue *q; 2158 2159 /* 2160 * We need to re-open the cdrom device without O_NONBLOCK to be able 2161 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2162 * so bdget() can't fail. 2163 */ 2164 bdget(pd->bdev->bd_dev); 2165 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd))) 2166 goto out; 2167 2168 if ((ret = pkt_get_last_written(pd, &lba))) { 2169 pkt_err(pd, "pkt_get_last_written failed\n"); 2170 goto out_putdev; 2171 } 2172 2173 set_capacity(pd->disk, lba << 2); 2174 set_capacity(pd->bdev->bd_disk, lba << 2); 2175 bd_set_size(pd->bdev, (loff_t)lba << 11); 2176 2177 q = bdev_get_queue(pd->bdev); 2178 if (write) { 2179 if ((ret = pkt_open_write(pd))) 2180 goto out_putdev; 2181 /* 2182 * Some CDRW drives can not handle writes larger than one packet, 2183 * even if the size is a multiple of the packet size. 2184 */ 2185 spin_lock_irq(q->queue_lock); 2186 blk_queue_max_hw_sectors(q, pd->settings.size); 2187 spin_unlock_irq(q->queue_lock); 2188 set_bit(PACKET_WRITABLE, &pd->flags); 2189 } else { 2190 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2191 clear_bit(PACKET_WRITABLE, &pd->flags); 2192 } 2193 2194 if ((ret = pkt_set_segment_merging(pd, q))) 2195 goto out_putdev; 2196 2197 if (write) { 2198 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2199 pkt_err(pd, "not enough memory for buffers\n"); 2200 ret = -ENOMEM; 2201 goto out_putdev; 2202 } 2203 pkt_info(pd, "%lukB available on disc\n", lba << 1); 2204 } 2205 2206 return 0; 2207 2208 out_putdev: 2209 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL); 2210 out: 2211 return ret; 2212 } 2213 2214 /* 2215 * called when the device is closed. makes sure that the device flushes 2216 * the internal cache before we close. 2217 */ 2218 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2219 { 2220 if (flush && pkt_flush_cache(pd)) 2221 pkt_dbg(1, pd, "not flushing cache\n"); 2222 2223 pkt_lock_door(pd, 0); 2224 2225 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2226 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL); 2227 2228 pkt_shrink_pktlist(pd); 2229 } 2230 2231 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor) 2232 { 2233 if (dev_minor >= MAX_WRITERS) 2234 return NULL; 2235 return pkt_devs[dev_minor]; 2236 } 2237 2238 static int pkt_open(struct block_device *bdev, fmode_t mode) 2239 { 2240 struct pktcdvd_device *pd = NULL; 2241 int ret; 2242 2243 mutex_lock(&pktcdvd_mutex); 2244 mutex_lock(&ctl_mutex); 2245 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev)); 2246 if (!pd) { 2247 ret = -ENODEV; 2248 goto out; 2249 } 2250 BUG_ON(pd->refcnt < 0); 2251 2252 pd->refcnt++; 2253 if (pd->refcnt > 1) { 2254 if ((mode & FMODE_WRITE) && 2255 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2256 ret = -EBUSY; 2257 goto out_dec; 2258 } 2259 } else { 2260 ret = pkt_open_dev(pd, mode & FMODE_WRITE); 2261 if (ret) 2262 goto out_dec; 2263 /* 2264 * needed here as well, since ext2 (among others) may change 2265 * the blocksize at mount time 2266 */ 2267 set_blocksize(bdev, CD_FRAMESIZE); 2268 } 2269 2270 mutex_unlock(&ctl_mutex); 2271 mutex_unlock(&pktcdvd_mutex); 2272 return 0; 2273 2274 out_dec: 2275 pd->refcnt--; 2276 out: 2277 mutex_unlock(&ctl_mutex); 2278 mutex_unlock(&pktcdvd_mutex); 2279 return ret; 2280 } 2281 2282 static void pkt_close(struct gendisk *disk, fmode_t mode) 2283 { 2284 struct pktcdvd_device *pd = disk->private_data; 2285 2286 mutex_lock(&pktcdvd_mutex); 2287 mutex_lock(&ctl_mutex); 2288 pd->refcnt--; 2289 BUG_ON(pd->refcnt < 0); 2290 if (pd->refcnt == 0) { 2291 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2292 pkt_release_dev(pd, flush); 2293 } 2294 mutex_unlock(&ctl_mutex); 2295 mutex_unlock(&pktcdvd_mutex); 2296 } 2297 2298 2299 static void pkt_end_io_read_cloned(struct bio *bio) 2300 { 2301 struct packet_stacked_data *psd = bio->bi_private; 2302 struct pktcdvd_device *pd = psd->pd; 2303 2304 psd->bio->bi_error = bio->bi_error; 2305 bio_put(bio); 2306 bio_endio(psd->bio); 2307 mempool_free(psd, psd_pool); 2308 pkt_bio_finished(pd); 2309 } 2310 2311 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio) 2312 { 2313 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); 2314 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2315 2316 psd->pd = pd; 2317 psd->bio = bio; 2318 cloned_bio->bi_bdev = pd->bdev; 2319 cloned_bio->bi_private = psd; 2320 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2321 pd->stats.secs_r += bio_sectors(bio); 2322 pkt_queue_bio(pd, cloned_bio); 2323 } 2324 2325 static void pkt_make_request_write(struct request_queue *q, struct bio *bio) 2326 { 2327 struct pktcdvd_device *pd = q->queuedata; 2328 sector_t zone; 2329 struct packet_data *pkt; 2330 int was_empty, blocked_bio; 2331 struct pkt_rb_node *node; 2332 2333 zone = get_zone(bio->bi_iter.bi_sector, pd); 2334 2335 /* 2336 * If we find a matching packet in state WAITING or READ_WAIT, we can 2337 * just append this bio to that packet. 2338 */ 2339 spin_lock(&pd->cdrw.active_list_lock); 2340 blocked_bio = 0; 2341 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2342 if (pkt->sector == zone) { 2343 spin_lock(&pkt->lock); 2344 if ((pkt->state == PACKET_WAITING_STATE) || 2345 (pkt->state == PACKET_READ_WAIT_STATE)) { 2346 bio_list_add(&pkt->orig_bios, bio); 2347 pkt->write_size += 2348 bio->bi_iter.bi_size / CD_FRAMESIZE; 2349 if ((pkt->write_size >= pkt->frames) && 2350 (pkt->state == PACKET_WAITING_STATE)) { 2351 atomic_inc(&pkt->run_sm); 2352 wake_up(&pd->wqueue); 2353 } 2354 spin_unlock(&pkt->lock); 2355 spin_unlock(&pd->cdrw.active_list_lock); 2356 return; 2357 } else { 2358 blocked_bio = 1; 2359 } 2360 spin_unlock(&pkt->lock); 2361 } 2362 } 2363 spin_unlock(&pd->cdrw.active_list_lock); 2364 2365 /* 2366 * Test if there is enough room left in the bio work queue 2367 * (queue size >= congestion on mark). 2368 * If not, wait till the work queue size is below the congestion off mark. 2369 */ 2370 spin_lock(&pd->lock); 2371 if (pd->write_congestion_on > 0 2372 && pd->bio_queue_size >= pd->write_congestion_on) { 2373 set_bdi_congested(q->backing_dev_info, BLK_RW_ASYNC); 2374 do { 2375 spin_unlock(&pd->lock); 2376 congestion_wait(BLK_RW_ASYNC, HZ); 2377 spin_lock(&pd->lock); 2378 } while(pd->bio_queue_size > pd->write_congestion_off); 2379 } 2380 spin_unlock(&pd->lock); 2381 2382 /* 2383 * No matching packet found. Store the bio in the work queue. 2384 */ 2385 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2386 node->bio = bio; 2387 spin_lock(&pd->lock); 2388 BUG_ON(pd->bio_queue_size < 0); 2389 was_empty = (pd->bio_queue_size == 0); 2390 pkt_rbtree_insert(pd, node); 2391 spin_unlock(&pd->lock); 2392 2393 /* 2394 * Wake up the worker thread. 2395 */ 2396 atomic_set(&pd->scan_queue, 1); 2397 if (was_empty) { 2398 /* This wake_up is required for correct operation */ 2399 wake_up(&pd->wqueue); 2400 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2401 /* 2402 * This wake up is not required for correct operation, 2403 * but improves performance in some cases. 2404 */ 2405 wake_up(&pd->wqueue); 2406 } 2407 } 2408 2409 static blk_qc_t pkt_make_request(struct request_queue *q, struct bio *bio) 2410 { 2411 struct pktcdvd_device *pd; 2412 char b[BDEVNAME_SIZE]; 2413 struct bio *split; 2414 2415 blk_queue_bounce(q, &bio); 2416 2417 blk_queue_split(q, &bio, q->bio_split); 2418 2419 pd = q->queuedata; 2420 if (!pd) { 2421 pr_err("%s incorrect request queue\n", 2422 bdevname(bio->bi_bdev, b)); 2423 goto end_io; 2424 } 2425 2426 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n", 2427 (unsigned long long)bio->bi_iter.bi_sector, 2428 (unsigned long long)bio_end_sector(bio)); 2429 2430 /* 2431 * Clone READ bios so we can have our own bi_end_io callback. 2432 */ 2433 if (bio_data_dir(bio) == READ) { 2434 pkt_make_request_read(pd, bio); 2435 return BLK_QC_T_NONE; 2436 } 2437 2438 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2439 pkt_notice(pd, "WRITE for ro device (%llu)\n", 2440 (unsigned long long)bio->bi_iter.bi_sector); 2441 goto end_io; 2442 } 2443 2444 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) { 2445 pkt_err(pd, "wrong bio size\n"); 2446 goto end_io; 2447 } 2448 2449 do { 2450 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd); 2451 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd); 2452 2453 if (last_zone != zone) { 2454 BUG_ON(last_zone != zone + pd->settings.size); 2455 2456 split = bio_split(bio, last_zone - 2457 bio->bi_iter.bi_sector, 2458 GFP_NOIO, fs_bio_set); 2459 bio_chain(split, bio); 2460 } else { 2461 split = bio; 2462 } 2463 2464 pkt_make_request_write(q, split); 2465 } while (split != bio); 2466 2467 return BLK_QC_T_NONE; 2468 end_io: 2469 bio_io_error(bio); 2470 return BLK_QC_T_NONE; 2471 } 2472 2473 static void pkt_init_queue(struct pktcdvd_device *pd) 2474 { 2475 struct request_queue *q = pd->disk->queue; 2476 2477 blk_queue_make_request(q, pkt_make_request); 2478 blk_queue_logical_block_size(q, CD_FRAMESIZE); 2479 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS); 2480 q->queuedata = pd; 2481 } 2482 2483 static int pkt_seq_show(struct seq_file *m, void *p) 2484 { 2485 struct pktcdvd_device *pd = m->private; 2486 char *msg; 2487 char bdev_buf[BDEVNAME_SIZE]; 2488 int states[PACKET_NUM_STATES]; 2489 2490 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2491 bdevname(pd->bdev, bdev_buf)); 2492 2493 seq_printf(m, "\nSettings:\n"); 2494 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2495 2496 if (pd->settings.write_type == 0) 2497 msg = "Packet"; 2498 else 2499 msg = "Unknown"; 2500 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2501 2502 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2503 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2504 2505 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2506 2507 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2508 msg = "Mode 1"; 2509 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2510 msg = "Mode 2"; 2511 else 2512 msg = "Unknown"; 2513 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2514 2515 seq_printf(m, "\nStatistics:\n"); 2516 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2517 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2518 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2519 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2520 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2521 2522 seq_printf(m, "\nMisc:\n"); 2523 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2524 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2525 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2526 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2527 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2528 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2529 2530 seq_printf(m, "\nQueue state:\n"); 2531 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2532 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2533 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2534 2535 pkt_count_states(pd, states); 2536 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2537 states[0], states[1], states[2], states[3], states[4], states[5]); 2538 2539 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 2540 pd->write_congestion_off, 2541 pd->write_congestion_on); 2542 return 0; 2543 } 2544 2545 static int pkt_seq_open(struct inode *inode, struct file *file) 2546 { 2547 return single_open(file, pkt_seq_show, PDE_DATA(inode)); 2548 } 2549 2550 static const struct file_operations pkt_proc_fops = { 2551 .open = pkt_seq_open, 2552 .read = seq_read, 2553 .llseek = seq_lseek, 2554 .release = single_release 2555 }; 2556 2557 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2558 { 2559 int i; 2560 int ret = 0; 2561 char b[BDEVNAME_SIZE]; 2562 struct block_device *bdev; 2563 2564 if (pd->pkt_dev == dev) { 2565 pkt_err(pd, "recursive setup not allowed\n"); 2566 return -EBUSY; 2567 } 2568 for (i = 0; i < MAX_WRITERS; i++) { 2569 struct pktcdvd_device *pd2 = pkt_devs[i]; 2570 if (!pd2) 2571 continue; 2572 if (pd2->bdev->bd_dev == dev) { 2573 pkt_err(pd, "%s already setup\n", 2574 bdevname(pd2->bdev, b)); 2575 return -EBUSY; 2576 } 2577 if (pd2->pkt_dev == dev) { 2578 pkt_err(pd, "can't chain pktcdvd devices\n"); 2579 return -EBUSY; 2580 } 2581 } 2582 2583 bdev = bdget(dev); 2584 if (!bdev) 2585 return -ENOMEM; 2586 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL); 2587 if (ret) 2588 return ret; 2589 2590 /* This is safe, since we have a reference from open(). */ 2591 __module_get(THIS_MODULE); 2592 2593 pd->bdev = bdev; 2594 set_blocksize(bdev, CD_FRAMESIZE); 2595 2596 pkt_init_queue(pd); 2597 2598 atomic_set(&pd->cdrw.pending_bios, 0); 2599 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2600 if (IS_ERR(pd->cdrw.thread)) { 2601 pkt_err(pd, "can't start kernel thread\n"); 2602 ret = -ENOMEM; 2603 goto out_mem; 2604 } 2605 2606 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd); 2607 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b)); 2608 return 0; 2609 2610 out_mem: 2611 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY); 2612 /* This is safe: open() is still holding a reference. */ 2613 module_put(THIS_MODULE); 2614 return ret; 2615 } 2616 2617 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) 2618 { 2619 struct pktcdvd_device *pd = bdev->bd_disk->private_data; 2620 int ret; 2621 2622 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n", 2623 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2624 2625 mutex_lock(&pktcdvd_mutex); 2626 switch (cmd) { 2627 case CDROMEJECT: 2628 /* 2629 * The door gets locked when the device is opened, so we 2630 * have to unlock it or else the eject command fails. 2631 */ 2632 if (pd->refcnt == 1) 2633 pkt_lock_door(pd, 0); 2634 /* fallthru */ 2635 /* 2636 * forward selected CDROM ioctls to CD-ROM, for UDF 2637 */ 2638 case CDROMMULTISESSION: 2639 case CDROMREADTOCENTRY: 2640 case CDROM_LAST_WRITTEN: 2641 case CDROM_SEND_PACKET: 2642 case SCSI_IOCTL_SEND_COMMAND: 2643 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg); 2644 break; 2645 2646 default: 2647 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd); 2648 ret = -ENOTTY; 2649 } 2650 mutex_unlock(&pktcdvd_mutex); 2651 2652 return ret; 2653 } 2654 2655 static unsigned int pkt_check_events(struct gendisk *disk, 2656 unsigned int clearing) 2657 { 2658 struct pktcdvd_device *pd = disk->private_data; 2659 struct gendisk *attached_disk; 2660 2661 if (!pd) 2662 return 0; 2663 if (!pd->bdev) 2664 return 0; 2665 attached_disk = pd->bdev->bd_disk; 2666 if (!attached_disk || !attached_disk->fops->check_events) 2667 return 0; 2668 return attached_disk->fops->check_events(attached_disk, clearing); 2669 } 2670 2671 static const struct block_device_operations pktcdvd_ops = { 2672 .owner = THIS_MODULE, 2673 .open = pkt_open, 2674 .release = pkt_close, 2675 .ioctl = pkt_ioctl, 2676 .check_events = pkt_check_events, 2677 }; 2678 2679 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode) 2680 { 2681 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name); 2682 } 2683 2684 /* 2685 * Set up mapping from pktcdvd device to CD-ROM device. 2686 */ 2687 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2688 { 2689 int idx; 2690 int ret = -ENOMEM; 2691 struct pktcdvd_device *pd; 2692 struct gendisk *disk; 2693 2694 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2695 2696 for (idx = 0; idx < MAX_WRITERS; idx++) 2697 if (!pkt_devs[idx]) 2698 break; 2699 if (idx == MAX_WRITERS) { 2700 pr_err("max %d writers supported\n", MAX_WRITERS); 2701 ret = -EBUSY; 2702 goto out_mutex; 2703 } 2704 2705 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2706 if (!pd) 2707 goto out_mutex; 2708 2709 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE, 2710 sizeof(struct pkt_rb_node)); 2711 if (!pd->rb_pool) 2712 goto out_mem; 2713 2714 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2715 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2716 spin_lock_init(&pd->cdrw.active_list_lock); 2717 2718 spin_lock_init(&pd->lock); 2719 spin_lock_init(&pd->iosched.lock); 2720 bio_list_init(&pd->iosched.read_queue); 2721 bio_list_init(&pd->iosched.write_queue); 2722 sprintf(pd->name, DRIVER_NAME"%d", idx); 2723 init_waitqueue_head(&pd->wqueue); 2724 pd->bio_queue = RB_ROOT; 2725 2726 pd->write_congestion_on = write_congestion_on; 2727 pd->write_congestion_off = write_congestion_off; 2728 2729 disk = alloc_disk(1); 2730 if (!disk) 2731 goto out_mem; 2732 pd->disk = disk; 2733 disk->major = pktdev_major; 2734 disk->first_minor = idx; 2735 disk->fops = &pktcdvd_ops; 2736 disk->flags = GENHD_FL_REMOVABLE; 2737 strcpy(disk->disk_name, pd->name); 2738 disk->devnode = pktcdvd_devnode; 2739 disk->private_data = pd; 2740 disk->queue = blk_alloc_queue(GFP_KERNEL); 2741 if (!disk->queue) 2742 goto out_mem2; 2743 2744 pd->pkt_dev = MKDEV(pktdev_major, idx); 2745 ret = pkt_new_dev(pd, dev); 2746 if (ret) 2747 goto out_new_dev; 2748 2749 /* inherit events of the host device */ 2750 disk->events = pd->bdev->bd_disk->events; 2751 disk->async_events = pd->bdev->bd_disk->async_events; 2752 2753 add_disk(disk); 2754 2755 pkt_sysfs_dev_new(pd); 2756 pkt_debugfs_dev_new(pd); 2757 2758 pkt_devs[idx] = pd; 2759 if (pkt_dev) 2760 *pkt_dev = pd->pkt_dev; 2761 2762 mutex_unlock(&ctl_mutex); 2763 return 0; 2764 2765 out_new_dev: 2766 blk_cleanup_queue(disk->queue); 2767 out_mem2: 2768 put_disk(disk); 2769 out_mem: 2770 mempool_destroy(pd->rb_pool); 2771 kfree(pd); 2772 out_mutex: 2773 mutex_unlock(&ctl_mutex); 2774 pr_err("setup of pktcdvd device failed\n"); 2775 return ret; 2776 } 2777 2778 /* 2779 * Tear down mapping from pktcdvd device to CD-ROM device. 2780 */ 2781 static int pkt_remove_dev(dev_t pkt_dev) 2782 { 2783 struct pktcdvd_device *pd; 2784 int idx; 2785 int ret = 0; 2786 2787 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2788 2789 for (idx = 0; idx < MAX_WRITERS; idx++) { 2790 pd = pkt_devs[idx]; 2791 if (pd && (pd->pkt_dev == pkt_dev)) 2792 break; 2793 } 2794 if (idx == MAX_WRITERS) { 2795 pr_debug("dev not setup\n"); 2796 ret = -ENXIO; 2797 goto out; 2798 } 2799 2800 if (pd->refcnt > 0) { 2801 ret = -EBUSY; 2802 goto out; 2803 } 2804 if (!IS_ERR(pd->cdrw.thread)) 2805 kthread_stop(pd->cdrw.thread); 2806 2807 pkt_devs[idx] = NULL; 2808 2809 pkt_debugfs_dev_remove(pd); 2810 pkt_sysfs_dev_remove(pd); 2811 2812 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY); 2813 2814 remove_proc_entry(pd->name, pkt_proc); 2815 pkt_dbg(1, pd, "writer unmapped\n"); 2816 2817 del_gendisk(pd->disk); 2818 blk_cleanup_queue(pd->disk->queue); 2819 put_disk(pd->disk); 2820 2821 mempool_destroy(pd->rb_pool); 2822 kfree(pd); 2823 2824 /* This is safe: open() is still holding a reference. */ 2825 module_put(THIS_MODULE); 2826 2827 out: 2828 mutex_unlock(&ctl_mutex); 2829 return ret; 2830 } 2831 2832 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 2833 { 2834 struct pktcdvd_device *pd; 2835 2836 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2837 2838 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 2839 if (pd) { 2840 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 2841 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2842 } else { 2843 ctrl_cmd->dev = 0; 2844 ctrl_cmd->pkt_dev = 0; 2845 } 2846 ctrl_cmd->num_devices = MAX_WRITERS; 2847 2848 mutex_unlock(&ctl_mutex); 2849 } 2850 2851 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2852 { 2853 void __user *argp = (void __user *)arg; 2854 struct pkt_ctrl_command ctrl_cmd; 2855 int ret = 0; 2856 dev_t pkt_dev = 0; 2857 2858 if (cmd != PACKET_CTRL_CMD) 2859 return -ENOTTY; 2860 2861 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 2862 return -EFAULT; 2863 2864 switch (ctrl_cmd.command) { 2865 case PKT_CTRL_CMD_SETUP: 2866 if (!capable(CAP_SYS_ADMIN)) 2867 return -EPERM; 2868 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 2869 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 2870 break; 2871 case PKT_CTRL_CMD_TEARDOWN: 2872 if (!capable(CAP_SYS_ADMIN)) 2873 return -EPERM; 2874 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 2875 break; 2876 case PKT_CTRL_CMD_STATUS: 2877 pkt_get_status(&ctrl_cmd); 2878 break; 2879 default: 2880 return -ENOTTY; 2881 } 2882 2883 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 2884 return -EFAULT; 2885 return ret; 2886 } 2887 2888 #ifdef CONFIG_COMPAT 2889 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2890 { 2891 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); 2892 } 2893 #endif 2894 2895 static const struct file_operations pkt_ctl_fops = { 2896 .open = nonseekable_open, 2897 .unlocked_ioctl = pkt_ctl_ioctl, 2898 #ifdef CONFIG_COMPAT 2899 .compat_ioctl = pkt_ctl_compat_ioctl, 2900 #endif 2901 .owner = THIS_MODULE, 2902 .llseek = no_llseek, 2903 }; 2904 2905 static struct miscdevice pkt_misc = { 2906 .minor = MISC_DYNAMIC_MINOR, 2907 .name = DRIVER_NAME, 2908 .nodename = "pktcdvd/control", 2909 .fops = &pkt_ctl_fops 2910 }; 2911 2912 static int __init pkt_init(void) 2913 { 2914 int ret; 2915 2916 mutex_init(&ctl_mutex); 2917 2918 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE, 2919 sizeof(struct packet_stacked_data)); 2920 if (!psd_pool) 2921 return -ENOMEM; 2922 2923 ret = register_blkdev(pktdev_major, DRIVER_NAME); 2924 if (ret < 0) { 2925 pr_err("unable to register block device\n"); 2926 goto out2; 2927 } 2928 if (!pktdev_major) 2929 pktdev_major = ret; 2930 2931 ret = pkt_sysfs_init(); 2932 if (ret) 2933 goto out; 2934 2935 pkt_debugfs_init(); 2936 2937 ret = misc_register(&pkt_misc); 2938 if (ret) { 2939 pr_err("unable to register misc device\n"); 2940 goto out_misc; 2941 } 2942 2943 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL); 2944 2945 return 0; 2946 2947 out_misc: 2948 pkt_debugfs_cleanup(); 2949 pkt_sysfs_cleanup(); 2950 out: 2951 unregister_blkdev(pktdev_major, DRIVER_NAME); 2952 out2: 2953 mempool_destroy(psd_pool); 2954 return ret; 2955 } 2956 2957 static void __exit pkt_exit(void) 2958 { 2959 remove_proc_entry("driver/"DRIVER_NAME, NULL); 2960 misc_deregister(&pkt_misc); 2961 2962 pkt_debugfs_cleanup(); 2963 pkt_sysfs_cleanup(); 2964 2965 unregister_blkdev(pktdev_major, DRIVER_NAME); 2966 mempool_destroy(psd_pool); 2967 } 2968 2969 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 2970 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 2971 MODULE_LICENSE("GPL"); 2972 2973 module_init(pkt_init); 2974 module_exit(pkt_exit); 2975