1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom make_request_fn function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #include <linux/pktcdvd.h> 48 #include <linux/module.h> 49 #include <linux/types.h> 50 #include <linux/kernel.h> 51 #include <linux/kthread.h> 52 #include <linux/errno.h> 53 #include <linux/spinlock.h> 54 #include <linux/file.h> 55 #include <linux/proc_fs.h> 56 #include <linux/seq_file.h> 57 #include <linux/miscdevice.h> 58 #include <linux/freezer.h> 59 #include <linux/mutex.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_ioctl.h> 62 #include <scsi/scsi.h> 63 #include <linux/debugfs.h> 64 #include <linux/device.h> 65 66 #include <asm/uaccess.h> 67 68 #define DRIVER_NAME "pktcdvd" 69 70 #if PACKET_DEBUG 71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 72 #else 73 #define DPRINTK(fmt, args...) 74 #endif 75 76 #if PACKET_DEBUG > 1 77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 78 #else 79 #define VPRINTK(fmt, args...) 80 #endif 81 82 #define MAX_SPEED 0xffff 83 84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1)) 85 86 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 87 static struct proc_dir_entry *pkt_proc; 88 static int pktdev_major; 89 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 90 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 91 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 92 static mempool_t *psd_pool; 93 94 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */ 95 static struct dentry *pkt_debugfs_root = NULL; /* /debug/pktcdvd */ 96 97 /* forward declaration */ 98 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 99 static int pkt_remove_dev(dev_t pkt_dev); 100 static int pkt_seq_show(struct seq_file *m, void *p); 101 102 103 104 /* 105 * create and register a pktcdvd kernel object. 106 */ 107 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd, 108 const char* name, 109 struct kobject* parent, 110 struct kobj_type* ktype) 111 { 112 struct pktcdvd_kobj *p; 113 int error; 114 115 p = kzalloc(sizeof(*p), GFP_KERNEL); 116 if (!p) 117 return NULL; 118 p->pd = pd; 119 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name); 120 if (error) { 121 kobject_put(&p->kobj); 122 return NULL; 123 } 124 kobject_uevent(&p->kobj, KOBJ_ADD); 125 return p; 126 } 127 /* 128 * remove a pktcdvd kernel object. 129 */ 130 static void pkt_kobj_remove(struct pktcdvd_kobj *p) 131 { 132 if (p) 133 kobject_put(&p->kobj); 134 } 135 /* 136 * default release function for pktcdvd kernel objects. 137 */ 138 static void pkt_kobj_release(struct kobject *kobj) 139 { 140 kfree(to_pktcdvdkobj(kobj)); 141 } 142 143 144 /********************************************************** 145 * 146 * sysfs interface for pktcdvd 147 * by (C) 2006 Thomas Maier <balagi@justmail.de> 148 * 149 **********************************************************/ 150 151 #define DEF_ATTR(_obj,_name,_mode) \ 152 static struct attribute _obj = { .name = _name, .mode = _mode } 153 154 /********************************************************** 155 /sys/class/pktcdvd/pktcdvd[0-7]/ 156 stat/reset 157 stat/packets_started 158 stat/packets_finished 159 stat/kb_written 160 stat/kb_read 161 stat/kb_read_gather 162 write_queue/size 163 write_queue/congestion_off 164 write_queue/congestion_on 165 **********************************************************/ 166 167 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200); 168 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444); 169 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444); 170 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444); 171 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444); 172 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444); 173 174 static struct attribute *kobj_pkt_attrs_stat[] = { 175 &kobj_pkt_attr_st1, 176 &kobj_pkt_attr_st2, 177 &kobj_pkt_attr_st3, 178 &kobj_pkt_attr_st4, 179 &kobj_pkt_attr_st5, 180 &kobj_pkt_attr_st6, 181 NULL 182 }; 183 184 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444); 185 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644); 186 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644); 187 188 static struct attribute *kobj_pkt_attrs_wqueue[] = { 189 &kobj_pkt_attr_wq1, 190 &kobj_pkt_attr_wq2, 191 &kobj_pkt_attr_wq3, 192 NULL 193 }; 194 195 static ssize_t kobj_pkt_show(struct kobject *kobj, 196 struct attribute *attr, char *data) 197 { 198 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 199 int n = 0; 200 int v; 201 if (strcmp(attr->name, "packets_started") == 0) { 202 n = sprintf(data, "%lu\n", pd->stats.pkt_started); 203 204 } else if (strcmp(attr->name, "packets_finished") == 0) { 205 n = sprintf(data, "%lu\n", pd->stats.pkt_ended); 206 207 } else if (strcmp(attr->name, "kb_written") == 0) { 208 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1); 209 210 } else if (strcmp(attr->name, "kb_read") == 0) { 211 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1); 212 213 } else if (strcmp(attr->name, "kb_read_gather") == 0) { 214 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1); 215 216 } else if (strcmp(attr->name, "size") == 0) { 217 spin_lock(&pd->lock); 218 v = pd->bio_queue_size; 219 spin_unlock(&pd->lock); 220 n = sprintf(data, "%d\n", v); 221 222 } else if (strcmp(attr->name, "congestion_off") == 0) { 223 spin_lock(&pd->lock); 224 v = pd->write_congestion_off; 225 spin_unlock(&pd->lock); 226 n = sprintf(data, "%d\n", v); 227 228 } else if (strcmp(attr->name, "congestion_on") == 0) { 229 spin_lock(&pd->lock); 230 v = pd->write_congestion_on; 231 spin_unlock(&pd->lock); 232 n = sprintf(data, "%d\n", v); 233 } 234 return n; 235 } 236 237 static void init_write_congestion_marks(int* lo, int* hi) 238 { 239 if (*hi > 0) { 240 *hi = max(*hi, 500); 241 *hi = min(*hi, 1000000); 242 if (*lo <= 0) 243 *lo = *hi - 100; 244 else { 245 *lo = min(*lo, *hi - 100); 246 *lo = max(*lo, 100); 247 } 248 } else { 249 *hi = -1; 250 *lo = -1; 251 } 252 } 253 254 static ssize_t kobj_pkt_store(struct kobject *kobj, 255 struct attribute *attr, 256 const char *data, size_t len) 257 { 258 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 259 int val; 260 261 if (strcmp(attr->name, "reset") == 0 && len > 0) { 262 pd->stats.pkt_started = 0; 263 pd->stats.pkt_ended = 0; 264 pd->stats.secs_w = 0; 265 pd->stats.secs_rg = 0; 266 pd->stats.secs_r = 0; 267 268 } else if (strcmp(attr->name, "congestion_off") == 0 269 && sscanf(data, "%d", &val) == 1) { 270 spin_lock(&pd->lock); 271 pd->write_congestion_off = val; 272 init_write_congestion_marks(&pd->write_congestion_off, 273 &pd->write_congestion_on); 274 spin_unlock(&pd->lock); 275 276 } else if (strcmp(attr->name, "congestion_on") == 0 277 && sscanf(data, "%d", &val) == 1) { 278 spin_lock(&pd->lock); 279 pd->write_congestion_on = val; 280 init_write_congestion_marks(&pd->write_congestion_off, 281 &pd->write_congestion_on); 282 spin_unlock(&pd->lock); 283 } 284 return len; 285 } 286 287 static struct sysfs_ops kobj_pkt_ops = { 288 .show = kobj_pkt_show, 289 .store = kobj_pkt_store 290 }; 291 static struct kobj_type kobj_pkt_type_stat = { 292 .release = pkt_kobj_release, 293 .sysfs_ops = &kobj_pkt_ops, 294 .default_attrs = kobj_pkt_attrs_stat 295 }; 296 static struct kobj_type kobj_pkt_type_wqueue = { 297 .release = pkt_kobj_release, 298 .sysfs_ops = &kobj_pkt_ops, 299 .default_attrs = kobj_pkt_attrs_wqueue 300 }; 301 302 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 303 { 304 if (class_pktcdvd) { 305 pd->dev = device_create(class_pktcdvd, NULL, pd->pkt_dev, "%s", pd->name); 306 if (IS_ERR(pd->dev)) 307 pd->dev = NULL; 308 } 309 if (pd->dev) { 310 pd->kobj_stat = pkt_kobj_create(pd, "stat", 311 &pd->dev->kobj, 312 &kobj_pkt_type_stat); 313 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue", 314 &pd->dev->kobj, 315 &kobj_pkt_type_wqueue); 316 } 317 } 318 319 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 320 { 321 pkt_kobj_remove(pd->kobj_stat); 322 pkt_kobj_remove(pd->kobj_wqueue); 323 if (class_pktcdvd) 324 device_destroy(class_pktcdvd, pd->pkt_dev); 325 } 326 327 328 /******************************************************************** 329 /sys/class/pktcdvd/ 330 add map block device 331 remove unmap packet dev 332 device_map show mappings 333 *******************************************************************/ 334 335 static void class_pktcdvd_release(struct class *cls) 336 { 337 kfree(cls); 338 } 339 static ssize_t class_pktcdvd_show_map(struct class *c, char *data) 340 { 341 int n = 0; 342 int idx; 343 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 344 for (idx = 0; idx < MAX_WRITERS; idx++) { 345 struct pktcdvd_device *pd = pkt_devs[idx]; 346 if (!pd) 347 continue; 348 n += sprintf(data+n, "%s %u:%u %u:%u\n", 349 pd->name, 350 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 351 MAJOR(pd->bdev->bd_dev), 352 MINOR(pd->bdev->bd_dev)); 353 } 354 mutex_unlock(&ctl_mutex); 355 return n; 356 } 357 358 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf, 359 size_t count) 360 { 361 unsigned int major, minor; 362 363 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 364 /* pkt_setup_dev() expects caller to hold reference to self */ 365 if (!try_module_get(THIS_MODULE)) 366 return -ENODEV; 367 368 pkt_setup_dev(MKDEV(major, minor), NULL); 369 370 module_put(THIS_MODULE); 371 372 return count; 373 } 374 375 return -EINVAL; 376 } 377 378 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf, 379 size_t count) 380 { 381 unsigned int major, minor; 382 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 383 pkt_remove_dev(MKDEV(major, minor)); 384 return count; 385 } 386 return -EINVAL; 387 } 388 389 static struct class_attribute class_pktcdvd_attrs[] = { 390 __ATTR(add, 0200, NULL, class_pktcdvd_store_add), 391 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove), 392 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL), 393 __ATTR_NULL 394 }; 395 396 397 static int pkt_sysfs_init(void) 398 { 399 int ret = 0; 400 401 /* 402 * create control files in sysfs 403 * /sys/class/pktcdvd/... 404 */ 405 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL); 406 if (!class_pktcdvd) 407 return -ENOMEM; 408 class_pktcdvd->name = DRIVER_NAME; 409 class_pktcdvd->owner = THIS_MODULE; 410 class_pktcdvd->class_release = class_pktcdvd_release; 411 class_pktcdvd->class_attrs = class_pktcdvd_attrs; 412 ret = class_register(class_pktcdvd); 413 if (ret) { 414 kfree(class_pktcdvd); 415 class_pktcdvd = NULL; 416 printk(DRIVER_NAME": failed to create class pktcdvd\n"); 417 return ret; 418 } 419 return 0; 420 } 421 422 static void pkt_sysfs_cleanup(void) 423 { 424 if (class_pktcdvd) 425 class_destroy(class_pktcdvd); 426 class_pktcdvd = NULL; 427 } 428 429 /******************************************************************** 430 entries in debugfs 431 432 /debugfs/pktcdvd[0-7]/ 433 info 434 435 *******************************************************************/ 436 437 static int pkt_debugfs_seq_show(struct seq_file *m, void *p) 438 { 439 return pkt_seq_show(m, p); 440 } 441 442 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file) 443 { 444 return single_open(file, pkt_debugfs_seq_show, inode->i_private); 445 } 446 447 static const struct file_operations debug_fops = { 448 .open = pkt_debugfs_fops_open, 449 .read = seq_read, 450 .llseek = seq_lseek, 451 .release = single_release, 452 .owner = THIS_MODULE, 453 }; 454 455 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 456 { 457 if (!pkt_debugfs_root) 458 return; 459 pd->dfs_f_info = NULL; 460 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root); 461 if (IS_ERR(pd->dfs_d_root)) { 462 pd->dfs_d_root = NULL; 463 return; 464 } 465 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO, 466 pd->dfs_d_root, pd, &debug_fops); 467 if (IS_ERR(pd->dfs_f_info)) { 468 pd->dfs_f_info = NULL; 469 return; 470 } 471 } 472 473 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 474 { 475 if (!pkt_debugfs_root) 476 return; 477 if (pd->dfs_f_info) 478 debugfs_remove(pd->dfs_f_info); 479 pd->dfs_f_info = NULL; 480 if (pd->dfs_d_root) 481 debugfs_remove(pd->dfs_d_root); 482 pd->dfs_d_root = NULL; 483 } 484 485 static void pkt_debugfs_init(void) 486 { 487 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 488 if (IS_ERR(pkt_debugfs_root)) { 489 pkt_debugfs_root = NULL; 490 return; 491 } 492 } 493 494 static void pkt_debugfs_cleanup(void) 495 { 496 if (!pkt_debugfs_root) 497 return; 498 debugfs_remove(pkt_debugfs_root); 499 pkt_debugfs_root = NULL; 500 } 501 502 /* ----------------------------------------------------------*/ 503 504 505 static void pkt_bio_finished(struct pktcdvd_device *pd) 506 { 507 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 508 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 509 VPRINTK(DRIVER_NAME": queue empty\n"); 510 atomic_set(&pd->iosched.attention, 1); 511 wake_up(&pd->wqueue); 512 } 513 } 514 515 static void pkt_bio_destructor(struct bio *bio) 516 { 517 kfree(bio->bi_io_vec); 518 kfree(bio); 519 } 520 521 static struct bio *pkt_bio_alloc(int nr_iovecs) 522 { 523 struct bio_vec *bvl = NULL; 524 struct bio *bio; 525 526 bio = kmalloc(sizeof(struct bio), GFP_KERNEL); 527 if (!bio) 528 goto no_bio; 529 bio_init(bio); 530 531 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL); 532 if (!bvl) 533 goto no_bvl; 534 535 bio->bi_max_vecs = nr_iovecs; 536 bio->bi_io_vec = bvl; 537 bio->bi_destructor = pkt_bio_destructor; 538 539 return bio; 540 541 no_bvl: 542 kfree(bio); 543 no_bio: 544 return NULL; 545 } 546 547 /* 548 * Allocate a packet_data struct 549 */ 550 static struct packet_data *pkt_alloc_packet_data(int frames) 551 { 552 int i; 553 struct packet_data *pkt; 554 555 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 556 if (!pkt) 557 goto no_pkt; 558 559 pkt->frames = frames; 560 pkt->w_bio = pkt_bio_alloc(frames); 561 if (!pkt->w_bio) 562 goto no_bio; 563 564 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 565 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 566 if (!pkt->pages[i]) 567 goto no_page; 568 } 569 570 spin_lock_init(&pkt->lock); 571 572 for (i = 0; i < frames; i++) { 573 struct bio *bio = pkt_bio_alloc(1); 574 if (!bio) 575 goto no_rd_bio; 576 pkt->r_bios[i] = bio; 577 } 578 579 return pkt; 580 581 no_rd_bio: 582 for (i = 0; i < frames; i++) { 583 struct bio *bio = pkt->r_bios[i]; 584 if (bio) 585 bio_put(bio); 586 } 587 588 no_page: 589 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 590 if (pkt->pages[i]) 591 __free_page(pkt->pages[i]); 592 bio_put(pkt->w_bio); 593 no_bio: 594 kfree(pkt); 595 no_pkt: 596 return NULL; 597 } 598 599 /* 600 * Free a packet_data struct 601 */ 602 static void pkt_free_packet_data(struct packet_data *pkt) 603 { 604 int i; 605 606 for (i = 0; i < pkt->frames; i++) { 607 struct bio *bio = pkt->r_bios[i]; 608 if (bio) 609 bio_put(bio); 610 } 611 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 612 __free_page(pkt->pages[i]); 613 bio_put(pkt->w_bio); 614 kfree(pkt); 615 } 616 617 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 618 { 619 struct packet_data *pkt, *next; 620 621 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 622 623 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 624 pkt_free_packet_data(pkt); 625 } 626 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 627 } 628 629 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 630 { 631 struct packet_data *pkt; 632 633 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 634 635 while (nr_packets > 0) { 636 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 637 if (!pkt) { 638 pkt_shrink_pktlist(pd); 639 return 0; 640 } 641 pkt->id = nr_packets; 642 pkt->pd = pd; 643 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 644 nr_packets--; 645 } 646 return 1; 647 } 648 649 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 650 { 651 struct rb_node *n = rb_next(&node->rb_node); 652 if (!n) 653 return NULL; 654 return rb_entry(n, struct pkt_rb_node, rb_node); 655 } 656 657 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 658 { 659 rb_erase(&node->rb_node, &pd->bio_queue); 660 mempool_free(node, pd->rb_pool); 661 pd->bio_queue_size--; 662 BUG_ON(pd->bio_queue_size < 0); 663 } 664 665 /* 666 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 667 */ 668 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 669 { 670 struct rb_node *n = pd->bio_queue.rb_node; 671 struct rb_node *next; 672 struct pkt_rb_node *tmp; 673 674 if (!n) { 675 BUG_ON(pd->bio_queue_size > 0); 676 return NULL; 677 } 678 679 for (;;) { 680 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 681 if (s <= tmp->bio->bi_sector) 682 next = n->rb_left; 683 else 684 next = n->rb_right; 685 if (!next) 686 break; 687 n = next; 688 } 689 690 if (s > tmp->bio->bi_sector) { 691 tmp = pkt_rbtree_next(tmp); 692 if (!tmp) 693 return NULL; 694 } 695 BUG_ON(s > tmp->bio->bi_sector); 696 return tmp; 697 } 698 699 /* 700 * Insert a node into the pd->bio_queue rb tree. 701 */ 702 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 703 { 704 struct rb_node **p = &pd->bio_queue.rb_node; 705 struct rb_node *parent = NULL; 706 sector_t s = node->bio->bi_sector; 707 struct pkt_rb_node *tmp; 708 709 while (*p) { 710 parent = *p; 711 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 712 if (s < tmp->bio->bi_sector) 713 p = &(*p)->rb_left; 714 else 715 p = &(*p)->rb_right; 716 } 717 rb_link_node(&node->rb_node, parent, p); 718 rb_insert_color(&node->rb_node, &pd->bio_queue); 719 pd->bio_queue_size++; 720 } 721 722 /* 723 * Add a bio to a single linked list defined by its head and tail pointers. 724 */ 725 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail) 726 { 727 bio->bi_next = NULL; 728 if (*list_tail) { 729 BUG_ON((*list_head) == NULL); 730 (*list_tail)->bi_next = bio; 731 (*list_tail) = bio; 732 } else { 733 BUG_ON((*list_head) != NULL); 734 (*list_head) = bio; 735 (*list_tail) = bio; 736 } 737 } 738 739 /* 740 * Remove and return the first bio from a single linked list defined by its 741 * head and tail pointers. 742 */ 743 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail) 744 { 745 struct bio *bio; 746 747 if (*list_head == NULL) 748 return NULL; 749 750 bio = *list_head; 751 *list_head = bio->bi_next; 752 if (*list_head == NULL) 753 *list_tail = NULL; 754 755 bio->bi_next = NULL; 756 return bio; 757 } 758 759 /* 760 * Send a packet_command to the underlying block device and 761 * wait for completion. 762 */ 763 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 764 { 765 struct request_queue *q = bdev_get_queue(pd->bdev); 766 struct request *rq; 767 int ret = 0; 768 769 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 770 WRITE : READ, __GFP_WAIT); 771 772 if (cgc->buflen) { 773 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT)) 774 goto out; 775 } 776 777 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 778 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE); 779 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE) 780 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE); 781 782 rq->timeout = 60*HZ; 783 rq->cmd_type = REQ_TYPE_BLOCK_PC; 784 rq->cmd_flags |= REQ_HARDBARRIER; 785 if (cgc->quiet) 786 rq->cmd_flags |= REQ_QUIET; 787 788 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0); 789 if (rq->errors) 790 ret = -EIO; 791 out: 792 blk_put_request(rq); 793 return ret; 794 } 795 796 /* 797 * A generic sense dump / resolve mechanism should be implemented across 798 * all ATAPI + SCSI devices. 799 */ 800 static void pkt_dump_sense(struct packet_command *cgc) 801 { 802 static char *info[9] = { "No sense", "Recovered error", "Not ready", 803 "Medium error", "Hardware error", "Illegal request", 804 "Unit attention", "Data protect", "Blank check" }; 805 int i; 806 struct request_sense *sense = cgc->sense; 807 808 printk(DRIVER_NAME":"); 809 for (i = 0; i < CDROM_PACKET_SIZE; i++) 810 printk(" %02x", cgc->cmd[i]); 811 printk(" - "); 812 813 if (sense == NULL) { 814 printk("no sense\n"); 815 return; 816 } 817 818 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq); 819 820 if (sense->sense_key > 8) { 821 printk(" (INVALID)\n"); 822 return; 823 } 824 825 printk(" (%s)\n", info[sense->sense_key]); 826 } 827 828 /* 829 * flush the drive cache to media 830 */ 831 static int pkt_flush_cache(struct pktcdvd_device *pd) 832 { 833 struct packet_command cgc; 834 835 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 836 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 837 cgc.quiet = 1; 838 839 /* 840 * the IMMED bit -- we default to not setting it, although that 841 * would allow a much faster close, this is safer 842 */ 843 #if 0 844 cgc.cmd[1] = 1 << 1; 845 #endif 846 return pkt_generic_packet(pd, &cgc); 847 } 848 849 /* 850 * speed is given as the normal factor, e.g. 4 for 4x 851 */ 852 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd, 853 unsigned write_speed, unsigned read_speed) 854 { 855 struct packet_command cgc; 856 struct request_sense sense; 857 int ret; 858 859 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 860 cgc.sense = &sense; 861 cgc.cmd[0] = GPCMD_SET_SPEED; 862 cgc.cmd[2] = (read_speed >> 8) & 0xff; 863 cgc.cmd[3] = read_speed & 0xff; 864 cgc.cmd[4] = (write_speed >> 8) & 0xff; 865 cgc.cmd[5] = write_speed & 0xff; 866 867 if ((ret = pkt_generic_packet(pd, &cgc))) 868 pkt_dump_sense(&cgc); 869 870 return ret; 871 } 872 873 /* 874 * Queue a bio for processing by the low-level CD device. Must be called 875 * from process context. 876 */ 877 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 878 { 879 spin_lock(&pd->iosched.lock); 880 if (bio_data_dir(bio) == READ) { 881 pkt_add_list_last(bio, &pd->iosched.read_queue, 882 &pd->iosched.read_queue_tail); 883 } else { 884 pkt_add_list_last(bio, &pd->iosched.write_queue, 885 &pd->iosched.write_queue_tail); 886 } 887 spin_unlock(&pd->iosched.lock); 888 889 atomic_set(&pd->iosched.attention, 1); 890 wake_up(&pd->wqueue); 891 } 892 893 /* 894 * Process the queued read/write requests. This function handles special 895 * requirements for CDRW drives: 896 * - A cache flush command must be inserted before a read request if the 897 * previous request was a write. 898 * - Switching between reading and writing is slow, so don't do it more often 899 * than necessary. 900 * - Optimize for throughput at the expense of latency. This means that streaming 901 * writes will never be interrupted by a read, but if the drive has to seek 902 * before the next write, switch to reading instead if there are any pending 903 * read requests. 904 * - Set the read speed according to current usage pattern. When only reading 905 * from the device, it's best to use the highest possible read speed, but 906 * when switching often between reading and writing, it's better to have the 907 * same read and write speeds. 908 */ 909 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 910 { 911 912 if (atomic_read(&pd->iosched.attention) == 0) 913 return; 914 atomic_set(&pd->iosched.attention, 0); 915 916 for (;;) { 917 struct bio *bio; 918 int reads_queued, writes_queued; 919 920 spin_lock(&pd->iosched.lock); 921 reads_queued = (pd->iosched.read_queue != NULL); 922 writes_queued = (pd->iosched.write_queue != NULL); 923 spin_unlock(&pd->iosched.lock); 924 925 if (!reads_queued && !writes_queued) 926 break; 927 928 if (pd->iosched.writing) { 929 int need_write_seek = 1; 930 spin_lock(&pd->iosched.lock); 931 bio = pd->iosched.write_queue; 932 spin_unlock(&pd->iosched.lock); 933 if (bio && (bio->bi_sector == pd->iosched.last_write)) 934 need_write_seek = 0; 935 if (need_write_seek && reads_queued) { 936 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 937 VPRINTK(DRIVER_NAME": write, waiting\n"); 938 break; 939 } 940 pkt_flush_cache(pd); 941 pd->iosched.writing = 0; 942 } 943 } else { 944 if (!reads_queued && writes_queued) { 945 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 946 VPRINTK(DRIVER_NAME": read, waiting\n"); 947 break; 948 } 949 pd->iosched.writing = 1; 950 } 951 } 952 953 spin_lock(&pd->iosched.lock); 954 if (pd->iosched.writing) { 955 bio = pkt_get_list_first(&pd->iosched.write_queue, 956 &pd->iosched.write_queue_tail); 957 } else { 958 bio = pkt_get_list_first(&pd->iosched.read_queue, 959 &pd->iosched.read_queue_tail); 960 } 961 spin_unlock(&pd->iosched.lock); 962 963 if (!bio) 964 continue; 965 966 if (bio_data_dir(bio) == READ) 967 pd->iosched.successive_reads += bio->bi_size >> 10; 968 else { 969 pd->iosched.successive_reads = 0; 970 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio); 971 } 972 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 973 if (pd->read_speed == pd->write_speed) { 974 pd->read_speed = MAX_SPEED; 975 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 976 } 977 } else { 978 if (pd->read_speed != pd->write_speed) { 979 pd->read_speed = pd->write_speed; 980 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 981 } 982 } 983 984 atomic_inc(&pd->cdrw.pending_bios); 985 generic_make_request(bio); 986 } 987 } 988 989 /* 990 * Special care is needed if the underlying block device has a small 991 * max_phys_segments value. 992 */ 993 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q) 994 { 995 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) { 996 /* 997 * The cdrom device can handle one segment/frame 998 */ 999 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 1000 return 0; 1001 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) { 1002 /* 1003 * We can handle this case at the expense of some extra memory 1004 * copies during write operations 1005 */ 1006 set_bit(PACKET_MERGE_SEGS, &pd->flags); 1007 return 0; 1008 } else { 1009 printk(DRIVER_NAME": cdrom max_phys_segments too small\n"); 1010 return -EIO; 1011 } 1012 } 1013 1014 /* 1015 * Copy CD_FRAMESIZE bytes from src_bio into a destination page 1016 */ 1017 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs) 1018 { 1019 unsigned int copy_size = CD_FRAMESIZE; 1020 1021 while (copy_size > 0) { 1022 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg); 1023 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) + 1024 src_bvl->bv_offset + offs; 1025 void *vto = page_address(dst_page) + dst_offs; 1026 int len = min_t(int, copy_size, src_bvl->bv_len - offs); 1027 1028 BUG_ON(len < 0); 1029 memcpy(vto, vfrom, len); 1030 kunmap_atomic(vfrom, KM_USER0); 1031 1032 seg++; 1033 offs = 0; 1034 dst_offs += len; 1035 copy_size -= len; 1036 } 1037 } 1038 1039 /* 1040 * Copy all data for this packet to pkt->pages[], so that 1041 * a) The number of required segments for the write bio is minimized, which 1042 * is necessary for some scsi controllers. 1043 * b) The data can be used as cache to avoid read requests if we receive a 1044 * new write request for the same zone. 1045 */ 1046 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec) 1047 { 1048 int f, p, offs; 1049 1050 /* Copy all data to pkt->pages[] */ 1051 p = 0; 1052 offs = 0; 1053 for (f = 0; f < pkt->frames; f++) { 1054 if (bvec[f].bv_page != pkt->pages[p]) { 1055 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset; 1056 void *vto = page_address(pkt->pages[p]) + offs; 1057 memcpy(vto, vfrom, CD_FRAMESIZE); 1058 kunmap_atomic(vfrom, KM_USER0); 1059 bvec[f].bv_page = pkt->pages[p]; 1060 bvec[f].bv_offset = offs; 1061 } else { 1062 BUG_ON(bvec[f].bv_offset != offs); 1063 } 1064 offs += CD_FRAMESIZE; 1065 if (offs >= PAGE_SIZE) { 1066 offs = 0; 1067 p++; 1068 } 1069 } 1070 } 1071 1072 static void pkt_end_io_read(struct bio *bio, int err) 1073 { 1074 struct packet_data *pkt = bio->bi_private; 1075 struct pktcdvd_device *pd = pkt->pd; 1076 BUG_ON(!pd); 1077 1078 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio, 1079 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err); 1080 1081 if (err) 1082 atomic_inc(&pkt->io_errors); 1083 if (atomic_dec_and_test(&pkt->io_wait)) { 1084 atomic_inc(&pkt->run_sm); 1085 wake_up(&pd->wqueue); 1086 } 1087 pkt_bio_finished(pd); 1088 } 1089 1090 static void pkt_end_io_packet_write(struct bio *bio, int err) 1091 { 1092 struct packet_data *pkt = bio->bi_private; 1093 struct pktcdvd_device *pd = pkt->pd; 1094 BUG_ON(!pd); 1095 1096 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err); 1097 1098 pd->stats.pkt_ended++; 1099 1100 pkt_bio_finished(pd); 1101 atomic_dec(&pkt->io_wait); 1102 atomic_inc(&pkt->run_sm); 1103 wake_up(&pd->wqueue); 1104 } 1105 1106 /* 1107 * Schedule reads for the holes in a packet 1108 */ 1109 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1110 { 1111 int frames_read = 0; 1112 struct bio *bio; 1113 int f; 1114 char written[PACKET_MAX_SIZE]; 1115 1116 BUG_ON(!pkt->orig_bios); 1117 1118 atomic_set(&pkt->io_wait, 0); 1119 atomic_set(&pkt->io_errors, 0); 1120 1121 /* 1122 * Figure out which frames we need to read before we can write. 1123 */ 1124 memset(written, 0, sizeof(written)); 1125 spin_lock(&pkt->lock); 1126 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1127 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1128 int num_frames = bio->bi_size / CD_FRAMESIZE; 1129 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 1130 BUG_ON(first_frame < 0); 1131 BUG_ON(first_frame + num_frames > pkt->frames); 1132 for (f = first_frame; f < first_frame + num_frames; f++) 1133 written[f] = 1; 1134 } 1135 spin_unlock(&pkt->lock); 1136 1137 if (pkt->cache_valid) { 1138 VPRINTK("pkt_gather_data: zone %llx cached\n", 1139 (unsigned long long)pkt->sector); 1140 goto out_account; 1141 } 1142 1143 /* 1144 * Schedule reads for missing parts of the packet. 1145 */ 1146 for (f = 0; f < pkt->frames; f++) { 1147 struct bio_vec *vec; 1148 1149 int p, offset; 1150 if (written[f]) 1151 continue; 1152 bio = pkt->r_bios[f]; 1153 vec = bio->bi_io_vec; 1154 bio_init(bio); 1155 bio->bi_max_vecs = 1; 1156 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1157 bio->bi_bdev = pd->bdev; 1158 bio->bi_end_io = pkt_end_io_read; 1159 bio->bi_private = pkt; 1160 bio->bi_io_vec = vec; 1161 bio->bi_destructor = pkt_bio_destructor; 1162 1163 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1164 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1165 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n", 1166 f, pkt->pages[p], offset); 1167 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1168 BUG(); 1169 1170 atomic_inc(&pkt->io_wait); 1171 bio->bi_rw = READ; 1172 pkt_queue_bio(pd, bio); 1173 frames_read++; 1174 } 1175 1176 out_account: 1177 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n", 1178 frames_read, (unsigned long long)pkt->sector); 1179 pd->stats.pkt_started++; 1180 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1181 } 1182 1183 /* 1184 * Find a packet matching zone, or the least recently used packet if 1185 * there is no match. 1186 */ 1187 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1188 { 1189 struct packet_data *pkt; 1190 1191 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1192 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1193 list_del_init(&pkt->list); 1194 if (pkt->sector != zone) 1195 pkt->cache_valid = 0; 1196 return pkt; 1197 } 1198 } 1199 BUG(); 1200 return NULL; 1201 } 1202 1203 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1204 { 1205 if (pkt->cache_valid) { 1206 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1207 } else { 1208 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1209 } 1210 } 1211 1212 /* 1213 * recover a failed write, query for relocation if possible 1214 * 1215 * returns 1 if recovery is possible, or 0 if not 1216 * 1217 */ 1218 static int pkt_start_recovery(struct packet_data *pkt) 1219 { 1220 /* 1221 * FIXME. We need help from the file system to implement 1222 * recovery handling. 1223 */ 1224 return 0; 1225 #if 0 1226 struct request *rq = pkt->rq; 1227 struct pktcdvd_device *pd = rq->rq_disk->private_data; 1228 struct block_device *pkt_bdev; 1229 struct super_block *sb = NULL; 1230 unsigned long old_block, new_block; 1231 sector_t new_sector; 1232 1233 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 1234 if (pkt_bdev) { 1235 sb = get_super(pkt_bdev); 1236 bdput(pkt_bdev); 1237 } 1238 1239 if (!sb) 1240 return 0; 1241 1242 if (!sb->s_op || !sb->s_op->relocate_blocks) 1243 goto out; 1244 1245 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 1246 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 1247 goto out; 1248 1249 new_sector = new_block * (CD_FRAMESIZE >> 9); 1250 pkt->sector = new_sector; 1251 1252 pkt->bio->bi_sector = new_sector; 1253 pkt->bio->bi_next = NULL; 1254 pkt->bio->bi_flags = 1 << BIO_UPTODATE; 1255 pkt->bio->bi_idx = 0; 1256 1257 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW)); 1258 BUG_ON(pkt->bio->bi_vcnt != pkt->frames); 1259 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE); 1260 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write); 1261 BUG_ON(pkt->bio->bi_private != pkt); 1262 1263 drop_super(sb); 1264 return 1; 1265 1266 out: 1267 drop_super(sb); 1268 return 0; 1269 #endif 1270 } 1271 1272 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 1273 { 1274 #if PACKET_DEBUG > 1 1275 static const char *state_name[] = { 1276 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1277 }; 1278 enum packet_data_state old_state = pkt->state; 1279 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector, 1280 state_name[old_state], state_name[state]); 1281 #endif 1282 pkt->state = state; 1283 } 1284 1285 /* 1286 * Scan the work queue to see if we can start a new packet. 1287 * returns non-zero if any work was done. 1288 */ 1289 static int pkt_handle_queue(struct pktcdvd_device *pd) 1290 { 1291 struct packet_data *pkt, *p; 1292 struct bio *bio = NULL; 1293 sector_t zone = 0; /* Suppress gcc warning */ 1294 struct pkt_rb_node *node, *first_node; 1295 struct rb_node *n; 1296 int wakeup; 1297 1298 VPRINTK("handle_queue\n"); 1299 1300 atomic_set(&pd->scan_queue, 0); 1301 1302 if (list_empty(&pd->cdrw.pkt_free_list)) { 1303 VPRINTK("handle_queue: no pkt\n"); 1304 return 0; 1305 } 1306 1307 /* 1308 * Try to find a zone we are not already working on. 1309 */ 1310 spin_lock(&pd->lock); 1311 first_node = pkt_rbtree_find(pd, pd->current_sector); 1312 if (!first_node) { 1313 n = rb_first(&pd->bio_queue); 1314 if (n) 1315 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1316 } 1317 node = first_node; 1318 while (node) { 1319 bio = node->bio; 1320 zone = ZONE(bio->bi_sector, pd); 1321 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1322 if (p->sector == zone) { 1323 bio = NULL; 1324 goto try_next_bio; 1325 } 1326 } 1327 break; 1328 try_next_bio: 1329 node = pkt_rbtree_next(node); 1330 if (!node) { 1331 n = rb_first(&pd->bio_queue); 1332 if (n) 1333 node = rb_entry(n, struct pkt_rb_node, rb_node); 1334 } 1335 if (node == first_node) 1336 node = NULL; 1337 } 1338 spin_unlock(&pd->lock); 1339 if (!bio) { 1340 VPRINTK("handle_queue: no bio\n"); 1341 return 0; 1342 } 1343 1344 pkt = pkt_get_packet_data(pd, zone); 1345 1346 pd->current_sector = zone + pd->settings.size; 1347 pkt->sector = zone; 1348 BUG_ON(pkt->frames != pd->settings.size >> 2); 1349 pkt->write_size = 0; 1350 1351 /* 1352 * Scan work queue for bios in the same zone and link them 1353 * to this packet. 1354 */ 1355 spin_lock(&pd->lock); 1356 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone); 1357 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1358 bio = node->bio; 1359 VPRINTK("pkt_handle_queue: found zone=%llx\n", 1360 (unsigned long long)ZONE(bio->bi_sector, pd)); 1361 if (ZONE(bio->bi_sector, pd) != zone) 1362 break; 1363 pkt_rbtree_erase(pd, node); 1364 spin_lock(&pkt->lock); 1365 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail); 1366 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 1367 spin_unlock(&pkt->lock); 1368 } 1369 /* check write congestion marks, and if bio_queue_size is 1370 below, wake up any waiters */ 1371 wakeup = (pd->write_congestion_on > 0 1372 && pd->bio_queue_size <= pd->write_congestion_off); 1373 spin_unlock(&pd->lock); 1374 if (wakeup) 1375 clear_bdi_congested(&pd->disk->queue->backing_dev_info, WRITE); 1376 1377 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1378 pkt_set_state(pkt, PACKET_WAITING_STATE); 1379 atomic_set(&pkt->run_sm, 1); 1380 1381 spin_lock(&pd->cdrw.active_list_lock); 1382 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1383 spin_unlock(&pd->cdrw.active_list_lock); 1384 1385 return 1; 1386 } 1387 1388 /* 1389 * Assemble a bio to write one packet and queue the bio for processing 1390 * by the underlying block device. 1391 */ 1392 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1393 { 1394 struct bio *bio; 1395 int f; 1396 int frames_write; 1397 struct bio_vec *bvec = pkt->w_bio->bi_io_vec; 1398 1399 for (f = 0; f < pkt->frames; f++) { 1400 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1401 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1402 } 1403 1404 /* 1405 * Fill-in bvec with data from orig_bios. 1406 */ 1407 frames_write = 0; 1408 spin_lock(&pkt->lock); 1409 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1410 int segment = bio->bi_idx; 1411 int src_offs = 0; 1412 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1413 int num_frames = bio->bi_size / CD_FRAMESIZE; 1414 BUG_ON(first_frame < 0); 1415 BUG_ON(first_frame + num_frames > pkt->frames); 1416 for (f = first_frame; f < first_frame + num_frames; f++) { 1417 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment); 1418 1419 while (src_offs >= src_bvl->bv_len) { 1420 src_offs -= src_bvl->bv_len; 1421 segment++; 1422 BUG_ON(segment >= bio->bi_vcnt); 1423 src_bvl = bio_iovec_idx(bio, segment); 1424 } 1425 1426 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) { 1427 bvec[f].bv_page = src_bvl->bv_page; 1428 bvec[f].bv_offset = src_bvl->bv_offset + src_offs; 1429 } else { 1430 pkt_copy_bio_data(bio, segment, src_offs, 1431 bvec[f].bv_page, bvec[f].bv_offset); 1432 } 1433 src_offs += CD_FRAMESIZE; 1434 frames_write++; 1435 } 1436 } 1437 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1438 spin_unlock(&pkt->lock); 1439 1440 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n", 1441 frames_write, (unsigned long long)pkt->sector); 1442 BUG_ON(frames_write != pkt->write_size); 1443 1444 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) { 1445 pkt_make_local_copy(pkt, bvec); 1446 pkt->cache_valid = 1; 1447 } else { 1448 pkt->cache_valid = 0; 1449 } 1450 1451 /* Start the write request */ 1452 bio_init(pkt->w_bio); 1453 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE; 1454 pkt->w_bio->bi_sector = pkt->sector; 1455 pkt->w_bio->bi_bdev = pd->bdev; 1456 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1457 pkt->w_bio->bi_private = pkt; 1458 pkt->w_bio->bi_io_vec = bvec; 1459 pkt->w_bio->bi_destructor = pkt_bio_destructor; 1460 for (f = 0; f < pkt->frames; f++) 1461 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset)) 1462 BUG(); 1463 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt); 1464 1465 atomic_set(&pkt->io_wait, 1); 1466 pkt->w_bio->bi_rw = WRITE; 1467 pkt_queue_bio(pd, pkt->w_bio); 1468 } 1469 1470 static void pkt_finish_packet(struct packet_data *pkt, int uptodate) 1471 { 1472 struct bio *bio, *next; 1473 1474 if (!uptodate) 1475 pkt->cache_valid = 0; 1476 1477 /* Finish all bios corresponding to this packet */ 1478 bio = pkt->orig_bios; 1479 while (bio) { 1480 next = bio->bi_next; 1481 bio->bi_next = NULL; 1482 bio_endio(bio, uptodate ? 0 : -EIO); 1483 bio = next; 1484 } 1485 pkt->orig_bios = pkt->orig_bios_tail = NULL; 1486 } 1487 1488 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1489 { 1490 int uptodate; 1491 1492 VPRINTK("run_state_machine: pkt %d\n", pkt->id); 1493 1494 for (;;) { 1495 switch (pkt->state) { 1496 case PACKET_WAITING_STATE: 1497 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1498 return; 1499 1500 pkt->sleep_time = 0; 1501 pkt_gather_data(pd, pkt); 1502 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1503 break; 1504 1505 case PACKET_READ_WAIT_STATE: 1506 if (atomic_read(&pkt->io_wait) > 0) 1507 return; 1508 1509 if (atomic_read(&pkt->io_errors) > 0) { 1510 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1511 } else { 1512 pkt_start_write(pd, pkt); 1513 } 1514 break; 1515 1516 case PACKET_WRITE_WAIT_STATE: 1517 if (atomic_read(&pkt->io_wait) > 0) 1518 return; 1519 1520 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) { 1521 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1522 } else { 1523 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1524 } 1525 break; 1526 1527 case PACKET_RECOVERY_STATE: 1528 if (pkt_start_recovery(pkt)) { 1529 pkt_start_write(pd, pkt); 1530 } else { 1531 VPRINTK("No recovery possible\n"); 1532 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1533 } 1534 break; 1535 1536 case PACKET_FINISHED_STATE: 1537 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags); 1538 pkt_finish_packet(pkt, uptodate); 1539 return; 1540 1541 default: 1542 BUG(); 1543 break; 1544 } 1545 } 1546 } 1547 1548 static void pkt_handle_packets(struct pktcdvd_device *pd) 1549 { 1550 struct packet_data *pkt, *next; 1551 1552 VPRINTK("pkt_handle_packets\n"); 1553 1554 /* 1555 * Run state machine for active packets 1556 */ 1557 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1558 if (atomic_read(&pkt->run_sm) > 0) { 1559 atomic_set(&pkt->run_sm, 0); 1560 pkt_run_state_machine(pd, pkt); 1561 } 1562 } 1563 1564 /* 1565 * Move no longer active packets to the free list 1566 */ 1567 spin_lock(&pd->cdrw.active_list_lock); 1568 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1569 if (pkt->state == PACKET_FINISHED_STATE) { 1570 list_del(&pkt->list); 1571 pkt_put_packet_data(pd, pkt); 1572 pkt_set_state(pkt, PACKET_IDLE_STATE); 1573 atomic_set(&pd->scan_queue, 1); 1574 } 1575 } 1576 spin_unlock(&pd->cdrw.active_list_lock); 1577 } 1578 1579 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1580 { 1581 struct packet_data *pkt; 1582 int i; 1583 1584 for (i = 0; i < PACKET_NUM_STATES; i++) 1585 states[i] = 0; 1586 1587 spin_lock(&pd->cdrw.active_list_lock); 1588 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1589 states[pkt->state]++; 1590 } 1591 spin_unlock(&pd->cdrw.active_list_lock); 1592 } 1593 1594 /* 1595 * kcdrwd is woken up when writes have been queued for one of our 1596 * registered devices 1597 */ 1598 static int kcdrwd(void *foobar) 1599 { 1600 struct pktcdvd_device *pd = foobar; 1601 struct packet_data *pkt; 1602 long min_sleep_time, residue; 1603 1604 set_user_nice(current, -20); 1605 set_freezable(); 1606 1607 for (;;) { 1608 DECLARE_WAITQUEUE(wait, current); 1609 1610 /* 1611 * Wait until there is something to do 1612 */ 1613 add_wait_queue(&pd->wqueue, &wait); 1614 for (;;) { 1615 set_current_state(TASK_INTERRUPTIBLE); 1616 1617 /* Check if we need to run pkt_handle_queue */ 1618 if (atomic_read(&pd->scan_queue) > 0) 1619 goto work_to_do; 1620 1621 /* Check if we need to run the state machine for some packet */ 1622 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1623 if (atomic_read(&pkt->run_sm) > 0) 1624 goto work_to_do; 1625 } 1626 1627 /* Check if we need to process the iosched queues */ 1628 if (atomic_read(&pd->iosched.attention) != 0) 1629 goto work_to_do; 1630 1631 /* Otherwise, go to sleep */ 1632 if (PACKET_DEBUG > 1) { 1633 int states[PACKET_NUM_STATES]; 1634 pkt_count_states(pd, states); 1635 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1636 states[0], states[1], states[2], states[3], 1637 states[4], states[5]); 1638 } 1639 1640 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1641 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1642 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1643 min_sleep_time = pkt->sleep_time; 1644 } 1645 1646 generic_unplug_device(bdev_get_queue(pd->bdev)); 1647 1648 VPRINTK("kcdrwd: sleeping\n"); 1649 residue = schedule_timeout(min_sleep_time); 1650 VPRINTK("kcdrwd: wake up\n"); 1651 1652 /* make swsusp happy with our thread */ 1653 try_to_freeze(); 1654 1655 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1656 if (!pkt->sleep_time) 1657 continue; 1658 pkt->sleep_time -= min_sleep_time - residue; 1659 if (pkt->sleep_time <= 0) { 1660 pkt->sleep_time = 0; 1661 atomic_inc(&pkt->run_sm); 1662 } 1663 } 1664 1665 if (kthread_should_stop()) 1666 break; 1667 } 1668 work_to_do: 1669 set_current_state(TASK_RUNNING); 1670 remove_wait_queue(&pd->wqueue, &wait); 1671 1672 if (kthread_should_stop()) 1673 break; 1674 1675 /* 1676 * if pkt_handle_queue returns true, we can queue 1677 * another request. 1678 */ 1679 while (pkt_handle_queue(pd)) 1680 ; 1681 1682 /* 1683 * Handle packet state machine 1684 */ 1685 pkt_handle_packets(pd); 1686 1687 /* 1688 * Handle iosched queues 1689 */ 1690 pkt_iosched_process_queue(pd); 1691 } 1692 1693 return 0; 1694 } 1695 1696 static void pkt_print_settings(struct pktcdvd_device *pd) 1697 { 1698 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable"); 1699 printk("%u blocks, ", pd->settings.size >> 2); 1700 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2'); 1701 } 1702 1703 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1704 { 1705 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1706 1707 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1708 cgc->cmd[2] = page_code | (page_control << 6); 1709 cgc->cmd[7] = cgc->buflen >> 8; 1710 cgc->cmd[8] = cgc->buflen & 0xff; 1711 cgc->data_direction = CGC_DATA_READ; 1712 return pkt_generic_packet(pd, cgc); 1713 } 1714 1715 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1716 { 1717 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1718 memset(cgc->buffer, 0, 2); 1719 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1720 cgc->cmd[1] = 0x10; /* PF */ 1721 cgc->cmd[7] = cgc->buflen >> 8; 1722 cgc->cmd[8] = cgc->buflen & 0xff; 1723 cgc->data_direction = CGC_DATA_WRITE; 1724 return pkt_generic_packet(pd, cgc); 1725 } 1726 1727 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1728 { 1729 struct packet_command cgc; 1730 int ret; 1731 1732 /* set up command and get the disc info */ 1733 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1734 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1735 cgc.cmd[8] = cgc.buflen = 2; 1736 cgc.quiet = 1; 1737 1738 if ((ret = pkt_generic_packet(pd, &cgc))) 1739 return ret; 1740 1741 /* not all drives have the same disc_info length, so requeue 1742 * packet with the length the drive tells us it can supply 1743 */ 1744 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1745 sizeof(di->disc_information_length); 1746 1747 if (cgc.buflen > sizeof(disc_information)) 1748 cgc.buflen = sizeof(disc_information); 1749 1750 cgc.cmd[8] = cgc.buflen; 1751 return pkt_generic_packet(pd, &cgc); 1752 } 1753 1754 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1755 { 1756 struct packet_command cgc; 1757 int ret; 1758 1759 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1760 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1761 cgc.cmd[1] = type & 3; 1762 cgc.cmd[4] = (track & 0xff00) >> 8; 1763 cgc.cmd[5] = track & 0xff; 1764 cgc.cmd[8] = 8; 1765 cgc.quiet = 1; 1766 1767 if ((ret = pkt_generic_packet(pd, &cgc))) 1768 return ret; 1769 1770 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1771 sizeof(ti->track_information_length); 1772 1773 if (cgc.buflen > sizeof(track_information)) 1774 cgc.buflen = sizeof(track_information); 1775 1776 cgc.cmd[8] = cgc.buflen; 1777 return pkt_generic_packet(pd, &cgc); 1778 } 1779 1780 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd, 1781 long *last_written) 1782 { 1783 disc_information di; 1784 track_information ti; 1785 __u32 last_track; 1786 int ret = -1; 1787 1788 if ((ret = pkt_get_disc_info(pd, &di))) 1789 return ret; 1790 1791 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1792 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1793 return ret; 1794 1795 /* if this track is blank, try the previous. */ 1796 if (ti.blank) { 1797 last_track--; 1798 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1799 return ret; 1800 } 1801 1802 /* if last recorded field is valid, return it. */ 1803 if (ti.lra_v) { 1804 *last_written = be32_to_cpu(ti.last_rec_address); 1805 } else { 1806 /* make it up instead */ 1807 *last_written = be32_to_cpu(ti.track_start) + 1808 be32_to_cpu(ti.track_size); 1809 if (ti.free_blocks) 1810 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1811 } 1812 return 0; 1813 } 1814 1815 /* 1816 * write mode select package based on pd->settings 1817 */ 1818 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd) 1819 { 1820 struct packet_command cgc; 1821 struct request_sense sense; 1822 write_param_page *wp; 1823 char buffer[128]; 1824 int ret, size; 1825 1826 /* doesn't apply to DVD+RW or DVD-RAM */ 1827 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1828 return 0; 1829 1830 memset(buffer, 0, sizeof(buffer)); 1831 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1832 cgc.sense = &sense; 1833 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1834 pkt_dump_sense(&cgc); 1835 return ret; 1836 } 1837 1838 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1839 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1840 if (size > sizeof(buffer)) 1841 size = sizeof(buffer); 1842 1843 /* 1844 * now get it all 1845 */ 1846 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1847 cgc.sense = &sense; 1848 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1849 pkt_dump_sense(&cgc); 1850 return ret; 1851 } 1852 1853 /* 1854 * write page is offset header + block descriptor length 1855 */ 1856 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1857 1858 wp->fp = pd->settings.fp; 1859 wp->track_mode = pd->settings.track_mode; 1860 wp->write_type = pd->settings.write_type; 1861 wp->data_block_type = pd->settings.block_mode; 1862 1863 wp->multi_session = 0; 1864 1865 #ifdef PACKET_USE_LS 1866 wp->link_size = 7; 1867 wp->ls_v = 1; 1868 #endif 1869 1870 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1871 wp->session_format = 0; 1872 wp->subhdr2 = 0x20; 1873 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1874 wp->session_format = 0x20; 1875 wp->subhdr2 = 8; 1876 #if 0 1877 wp->mcn[0] = 0x80; 1878 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1879 #endif 1880 } else { 1881 /* 1882 * paranoia 1883 */ 1884 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type); 1885 return 1; 1886 } 1887 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1888 1889 cgc.buflen = cgc.cmd[8] = size; 1890 if ((ret = pkt_mode_select(pd, &cgc))) { 1891 pkt_dump_sense(&cgc); 1892 return ret; 1893 } 1894 1895 pkt_print_settings(pd); 1896 return 0; 1897 } 1898 1899 /* 1900 * 1 -- we can write to this track, 0 -- we can't 1901 */ 1902 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1903 { 1904 switch (pd->mmc3_profile) { 1905 case 0x1a: /* DVD+RW */ 1906 case 0x12: /* DVD-RAM */ 1907 /* The track is always writable on DVD+RW/DVD-RAM */ 1908 return 1; 1909 default: 1910 break; 1911 } 1912 1913 if (!ti->packet || !ti->fp) 1914 return 0; 1915 1916 /* 1917 * "good" settings as per Mt Fuji. 1918 */ 1919 if (ti->rt == 0 && ti->blank == 0) 1920 return 1; 1921 1922 if (ti->rt == 0 && ti->blank == 1) 1923 return 1; 1924 1925 if (ti->rt == 1 && ti->blank == 0) 1926 return 1; 1927 1928 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1929 return 0; 1930 } 1931 1932 /* 1933 * 1 -- we can write to this disc, 0 -- we can't 1934 */ 1935 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1936 { 1937 switch (pd->mmc3_profile) { 1938 case 0x0a: /* CD-RW */ 1939 case 0xffff: /* MMC3 not supported */ 1940 break; 1941 case 0x1a: /* DVD+RW */ 1942 case 0x13: /* DVD-RW */ 1943 case 0x12: /* DVD-RAM */ 1944 return 1; 1945 default: 1946 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile); 1947 return 0; 1948 } 1949 1950 /* 1951 * for disc type 0xff we should probably reserve a new track. 1952 * but i'm not sure, should we leave this to user apps? probably. 1953 */ 1954 if (di->disc_type == 0xff) { 1955 printk(DRIVER_NAME": Unknown disc. No track?\n"); 1956 return 0; 1957 } 1958 1959 if (di->disc_type != 0x20 && di->disc_type != 0) { 1960 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type); 1961 return 0; 1962 } 1963 1964 if (di->erasable == 0) { 1965 printk(DRIVER_NAME": Disc not erasable\n"); 1966 return 0; 1967 } 1968 1969 if (di->border_status == PACKET_SESSION_RESERVED) { 1970 printk(DRIVER_NAME": Can't write to last track (reserved)\n"); 1971 return 0; 1972 } 1973 1974 return 1; 1975 } 1976 1977 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd) 1978 { 1979 struct packet_command cgc; 1980 unsigned char buf[12]; 1981 disc_information di; 1982 track_information ti; 1983 int ret, track; 1984 1985 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1986 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1987 cgc.cmd[8] = 8; 1988 ret = pkt_generic_packet(pd, &cgc); 1989 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1990 1991 memset(&di, 0, sizeof(disc_information)); 1992 memset(&ti, 0, sizeof(track_information)); 1993 1994 if ((ret = pkt_get_disc_info(pd, &di))) { 1995 printk("failed get_disc\n"); 1996 return ret; 1997 } 1998 1999 if (!pkt_writable_disc(pd, &di)) 2000 return -EROFS; 2001 2002 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 2003 2004 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 2005 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 2006 printk(DRIVER_NAME": failed get_track\n"); 2007 return ret; 2008 } 2009 2010 if (!pkt_writable_track(pd, &ti)) { 2011 printk(DRIVER_NAME": can't write to this track\n"); 2012 return -EROFS; 2013 } 2014 2015 /* 2016 * we keep packet size in 512 byte units, makes it easier to 2017 * deal with request calculations. 2018 */ 2019 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 2020 if (pd->settings.size == 0) { 2021 printk(DRIVER_NAME": detected zero packet size!\n"); 2022 return -ENXIO; 2023 } 2024 if (pd->settings.size > PACKET_MAX_SECTORS) { 2025 printk(DRIVER_NAME": packet size is too big\n"); 2026 return -EROFS; 2027 } 2028 pd->settings.fp = ti.fp; 2029 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 2030 2031 if (ti.nwa_v) { 2032 pd->nwa = be32_to_cpu(ti.next_writable); 2033 set_bit(PACKET_NWA_VALID, &pd->flags); 2034 } 2035 2036 /* 2037 * in theory we could use lra on -RW media as well and just zero 2038 * blocks that haven't been written yet, but in practice that 2039 * is just a no-go. we'll use that for -R, naturally. 2040 */ 2041 if (ti.lra_v) { 2042 pd->lra = be32_to_cpu(ti.last_rec_address); 2043 set_bit(PACKET_LRA_VALID, &pd->flags); 2044 } else { 2045 pd->lra = 0xffffffff; 2046 set_bit(PACKET_LRA_VALID, &pd->flags); 2047 } 2048 2049 /* 2050 * fine for now 2051 */ 2052 pd->settings.link_loss = 7; 2053 pd->settings.write_type = 0; /* packet */ 2054 pd->settings.track_mode = ti.track_mode; 2055 2056 /* 2057 * mode1 or mode2 disc 2058 */ 2059 switch (ti.data_mode) { 2060 case PACKET_MODE1: 2061 pd->settings.block_mode = PACKET_BLOCK_MODE1; 2062 break; 2063 case PACKET_MODE2: 2064 pd->settings.block_mode = PACKET_BLOCK_MODE2; 2065 break; 2066 default: 2067 printk(DRIVER_NAME": unknown data mode\n"); 2068 return -EROFS; 2069 } 2070 return 0; 2071 } 2072 2073 /* 2074 * enable/disable write caching on drive 2075 */ 2076 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd, 2077 int set) 2078 { 2079 struct packet_command cgc; 2080 struct request_sense sense; 2081 unsigned char buf[64]; 2082 int ret; 2083 2084 memset(buf, 0, sizeof(buf)); 2085 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 2086 cgc.sense = &sense; 2087 cgc.buflen = pd->mode_offset + 12; 2088 2089 /* 2090 * caching mode page might not be there, so quiet this command 2091 */ 2092 cgc.quiet = 1; 2093 2094 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 2095 return ret; 2096 2097 buf[pd->mode_offset + 10] |= (!!set << 2); 2098 2099 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 2100 ret = pkt_mode_select(pd, &cgc); 2101 if (ret) { 2102 printk(DRIVER_NAME": write caching control failed\n"); 2103 pkt_dump_sense(&cgc); 2104 } else if (!ret && set) 2105 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name); 2106 return ret; 2107 } 2108 2109 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 2110 { 2111 struct packet_command cgc; 2112 2113 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2114 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 2115 cgc.cmd[4] = lockflag ? 1 : 0; 2116 return pkt_generic_packet(pd, &cgc); 2117 } 2118 2119 /* 2120 * Returns drive maximum write speed 2121 */ 2122 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd, 2123 unsigned *write_speed) 2124 { 2125 struct packet_command cgc; 2126 struct request_sense sense; 2127 unsigned char buf[256+18]; 2128 unsigned char *cap_buf; 2129 int ret, offset; 2130 2131 memset(buf, 0, sizeof(buf)); 2132 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 2133 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 2134 cgc.sense = &sense; 2135 2136 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2137 if (ret) { 2138 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 2139 sizeof(struct mode_page_header); 2140 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2141 if (ret) { 2142 pkt_dump_sense(&cgc); 2143 return ret; 2144 } 2145 } 2146 2147 offset = 20; /* Obsoleted field, used by older drives */ 2148 if (cap_buf[1] >= 28) 2149 offset = 28; /* Current write speed selected */ 2150 if (cap_buf[1] >= 30) { 2151 /* If the drive reports at least one "Logical Unit Write 2152 * Speed Performance Descriptor Block", use the information 2153 * in the first block. (contains the highest speed) 2154 */ 2155 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 2156 if (num_spdb > 0) 2157 offset = 34; 2158 } 2159 2160 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 2161 return 0; 2162 } 2163 2164 /* These tables from cdrecord - I don't have orange book */ 2165 /* standard speed CD-RW (1-4x) */ 2166 static char clv_to_speed[16] = { 2167 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2168 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2169 }; 2170 /* high speed CD-RW (-10x) */ 2171 static char hs_clv_to_speed[16] = { 2172 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2173 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2174 }; 2175 /* ultra high speed CD-RW */ 2176 static char us_clv_to_speed[16] = { 2177 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2178 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 2179 }; 2180 2181 /* 2182 * reads the maximum media speed from ATIP 2183 */ 2184 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd, 2185 unsigned *speed) 2186 { 2187 struct packet_command cgc; 2188 struct request_sense sense; 2189 unsigned char buf[64]; 2190 unsigned int size, st, sp; 2191 int ret; 2192 2193 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 2194 cgc.sense = &sense; 2195 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2196 cgc.cmd[1] = 2; 2197 cgc.cmd[2] = 4; /* READ ATIP */ 2198 cgc.cmd[8] = 2; 2199 ret = pkt_generic_packet(pd, &cgc); 2200 if (ret) { 2201 pkt_dump_sense(&cgc); 2202 return ret; 2203 } 2204 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 2205 if (size > sizeof(buf)) 2206 size = sizeof(buf); 2207 2208 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2209 cgc.sense = &sense; 2210 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2211 cgc.cmd[1] = 2; 2212 cgc.cmd[2] = 4; 2213 cgc.cmd[8] = size; 2214 ret = pkt_generic_packet(pd, &cgc); 2215 if (ret) { 2216 pkt_dump_sense(&cgc); 2217 return ret; 2218 } 2219 2220 if (!(buf[6] & 0x40)) { 2221 printk(DRIVER_NAME": Disc type is not CD-RW\n"); 2222 return 1; 2223 } 2224 if (!(buf[6] & 0x4)) { 2225 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n"); 2226 return 1; 2227 } 2228 2229 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2230 2231 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2232 2233 /* Info from cdrecord */ 2234 switch (st) { 2235 case 0: /* standard speed */ 2236 *speed = clv_to_speed[sp]; 2237 break; 2238 case 1: /* high speed */ 2239 *speed = hs_clv_to_speed[sp]; 2240 break; 2241 case 2: /* ultra high speed */ 2242 *speed = us_clv_to_speed[sp]; 2243 break; 2244 default: 2245 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st); 2246 return 1; 2247 } 2248 if (*speed) { 2249 printk(DRIVER_NAME": Max. media speed: %d\n",*speed); 2250 return 0; 2251 } else { 2252 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st); 2253 return 1; 2254 } 2255 } 2256 2257 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd) 2258 { 2259 struct packet_command cgc; 2260 struct request_sense sense; 2261 int ret; 2262 2263 VPRINTK(DRIVER_NAME": Performing OPC\n"); 2264 2265 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2266 cgc.sense = &sense; 2267 cgc.timeout = 60*HZ; 2268 cgc.cmd[0] = GPCMD_SEND_OPC; 2269 cgc.cmd[1] = 1; 2270 if ((ret = pkt_generic_packet(pd, &cgc))) 2271 pkt_dump_sense(&cgc); 2272 return ret; 2273 } 2274 2275 static int pkt_open_write(struct pktcdvd_device *pd) 2276 { 2277 int ret; 2278 unsigned int write_speed, media_write_speed, read_speed; 2279 2280 if ((ret = pkt_probe_settings(pd))) { 2281 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name); 2282 return ret; 2283 } 2284 2285 if ((ret = pkt_set_write_settings(pd))) { 2286 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name); 2287 return -EIO; 2288 } 2289 2290 pkt_write_caching(pd, USE_WCACHING); 2291 2292 if ((ret = pkt_get_max_speed(pd, &write_speed))) 2293 write_speed = 16 * 177; 2294 switch (pd->mmc3_profile) { 2295 case 0x13: /* DVD-RW */ 2296 case 0x1a: /* DVD+RW */ 2297 case 0x12: /* DVD-RAM */ 2298 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed); 2299 break; 2300 default: 2301 if ((ret = pkt_media_speed(pd, &media_write_speed))) 2302 media_write_speed = 16; 2303 write_speed = min(write_speed, media_write_speed * 177); 2304 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176); 2305 break; 2306 } 2307 read_speed = write_speed; 2308 2309 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 2310 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name); 2311 return -EIO; 2312 } 2313 pd->write_speed = write_speed; 2314 pd->read_speed = read_speed; 2315 2316 if ((ret = pkt_perform_opc(pd))) { 2317 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name); 2318 } 2319 2320 return 0; 2321 } 2322 2323 /* 2324 * called at open time. 2325 */ 2326 static int pkt_open_dev(struct pktcdvd_device *pd, int write) 2327 { 2328 int ret; 2329 long lba; 2330 struct request_queue *q; 2331 2332 /* 2333 * We need to re-open the cdrom device without O_NONBLOCK to be able 2334 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2335 * so bdget() can't fail. 2336 */ 2337 bdget(pd->bdev->bd_dev); 2338 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY))) 2339 goto out; 2340 2341 if ((ret = bd_claim(pd->bdev, pd))) 2342 goto out_putdev; 2343 2344 if ((ret = pkt_get_last_written(pd, &lba))) { 2345 printk(DRIVER_NAME": pkt_get_last_written failed\n"); 2346 goto out_unclaim; 2347 } 2348 2349 set_capacity(pd->disk, lba << 2); 2350 set_capacity(pd->bdev->bd_disk, lba << 2); 2351 bd_set_size(pd->bdev, (loff_t)lba << 11); 2352 2353 q = bdev_get_queue(pd->bdev); 2354 if (write) { 2355 if ((ret = pkt_open_write(pd))) 2356 goto out_unclaim; 2357 /* 2358 * Some CDRW drives can not handle writes larger than one packet, 2359 * even if the size is a multiple of the packet size. 2360 */ 2361 spin_lock_irq(q->queue_lock); 2362 blk_queue_max_sectors(q, pd->settings.size); 2363 spin_unlock_irq(q->queue_lock); 2364 set_bit(PACKET_WRITABLE, &pd->flags); 2365 } else { 2366 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2367 clear_bit(PACKET_WRITABLE, &pd->flags); 2368 } 2369 2370 if ((ret = pkt_set_segment_merging(pd, q))) 2371 goto out_unclaim; 2372 2373 if (write) { 2374 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2375 printk(DRIVER_NAME": not enough memory for buffers\n"); 2376 ret = -ENOMEM; 2377 goto out_unclaim; 2378 } 2379 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1); 2380 } 2381 2382 return 0; 2383 2384 out_unclaim: 2385 bd_release(pd->bdev); 2386 out_putdev: 2387 blkdev_put(pd->bdev); 2388 out: 2389 return ret; 2390 } 2391 2392 /* 2393 * called when the device is closed. makes sure that the device flushes 2394 * the internal cache before we close. 2395 */ 2396 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2397 { 2398 if (flush && pkt_flush_cache(pd)) 2399 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name); 2400 2401 pkt_lock_door(pd, 0); 2402 2403 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2404 bd_release(pd->bdev); 2405 blkdev_put(pd->bdev); 2406 2407 pkt_shrink_pktlist(pd); 2408 } 2409 2410 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor) 2411 { 2412 if (dev_minor >= MAX_WRITERS) 2413 return NULL; 2414 return pkt_devs[dev_minor]; 2415 } 2416 2417 static int pkt_open(struct inode *inode, struct file *file) 2418 { 2419 struct pktcdvd_device *pd = NULL; 2420 int ret; 2421 2422 VPRINTK(DRIVER_NAME": entering open\n"); 2423 2424 mutex_lock(&ctl_mutex); 2425 pd = pkt_find_dev_from_minor(iminor(inode)); 2426 if (!pd) { 2427 ret = -ENODEV; 2428 goto out; 2429 } 2430 BUG_ON(pd->refcnt < 0); 2431 2432 pd->refcnt++; 2433 if (pd->refcnt > 1) { 2434 if ((file->f_mode & FMODE_WRITE) && 2435 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2436 ret = -EBUSY; 2437 goto out_dec; 2438 } 2439 } else { 2440 ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE); 2441 if (ret) 2442 goto out_dec; 2443 /* 2444 * needed here as well, since ext2 (among others) may change 2445 * the blocksize at mount time 2446 */ 2447 set_blocksize(inode->i_bdev, CD_FRAMESIZE); 2448 } 2449 2450 mutex_unlock(&ctl_mutex); 2451 return 0; 2452 2453 out_dec: 2454 pd->refcnt--; 2455 out: 2456 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret); 2457 mutex_unlock(&ctl_mutex); 2458 return ret; 2459 } 2460 2461 static int pkt_close(struct inode *inode, struct file *file) 2462 { 2463 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; 2464 int ret = 0; 2465 2466 mutex_lock(&ctl_mutex); 2467 pd->refcnt--; 2468 BUG_ON(pd->refcnt < 0); 2469 if (pd->refcnt == 0) { 2470 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2471 pkt_release_dev(pd, flush); 2472 } 2473 mutex_unlock(&ctl_mutex); 2474 return ret; 2475 } 2476 2477 2478 static void pkt_end_io_read_cloned(struct bio *bio, int err) 2479 { 2480 struct packet_stacked_data *psd = bio->bi_private; 2481 struct pktcdvd_device *pd = psd->pd; 2482 2483 bio_put(bio); 2484 bio_endio(psd->bio, err); 2485 mempool_free(psd, psd_pool); 2486 pkt_bio_finished(pd); 2487 } 2488 2489 static int pkt_make_request(struct request_queue *q, struct bio *bio) 2490 { 2491 struct pktcdvd_device *pd; 2492 char b[BDEVNAME_SIZE]; 2493 sector_t zone; 2494 struct packet_data *pkt; 2495 int was_empty, blocked_bio; 2496 struct pkt_rb_node *node; 2497 2498 pd = q->queuedata; 2499 if (!pd) { 2500 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b)); 2501 goto end_io; 2502 } 2503 2504 /* 2505 * Clone READ bios so we can have our own bi_end_io callback. 2506 */ 2507 if (bio_data_dir(bio) == READ) { 2508 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); 2509 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2510 2511 psd->pd = pd; 2512 psd->bio = bio; 2513 cloned_bio->bi_bdev = pd->bdev; 2514 cloned_bio->bi_private = psd; 2515 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2516 pd->stats.secs_r += bio->bi_size >> 9; 2517 pkt_queue_bio(pd, cloned_bio); 2518 return 0; 2519 } 2520 2521 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2522 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n", 2523 pd->name, (unsigned long long)bio->bi_sector); 2524 goto end_io; 2525 } 2526 2527 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) { 2528 printk(DRIVER_NAME": wrong bio size\n"); 2529 goto end_io; 2530 } 2531 2532 blk_queue_bounce(q, &bio); 2533 2534 zone = ZONE(bio->bi_sector, pd); 2535 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n", 2536 (unsigned long long)bio->bi_sector, 2537 (unsigned long long)(bio->bi_sector + bio_sectors(bio))); 2538 2539 /* Check if we have to split the bio */ 2540 { 2541 struct bio_pair *bp; 2542 sector_t last_zone; 2543 int first_sectors; 2544 2545 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd); 2546 if (last_zone != zone) { 2547 BUG_ON(last_zone != zone + pd->settings.size); 2548 first_sectors = last_zone - bio->bi_sector; 2549 bp = bio_split(bio, bio_split_pool, first_sectors); 2550 BUG_ON(!bp); 2551 pkt_make_request(q, &bp->bio1); 2552 pkt_make_request(q, &bp->bio2); 2553 bio_pair_release(bp); 2554 return 0; 2555 } 2556 } 2557 2558 /* 2559 * If we find a matching packet in state WAITING or READ_WAIT, we can 2560 * just append this bio to that packet. 2561 */ 2562 spin_lock(&pd->cdrw.active_list_lock); 2563 blocked_bio = 0; 2564 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2565 if (pkt->sector == zone) { 2566 spin_lock(&pkt->lock); 2567 if ((pkt->state == PACKET_WAITING_STATE) || 2568 (pkt->state == PACKET_READ_WAIT_STATE)) { 2569 pkt_add_list_last(bio, &pkt->orig_bios, 2570 &pkt->orig_bios_tail); 2571 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 2572 if ((pkt->write_size >= pkt->frames) && 2573 (pkt->state == PACKET_WAITING_STATE)) { 2574 atomic_inc(&pkt->run_sm); 2575 wake_up(&pd->wqueue); 2576 } 2577 spin_unlock(&pkt->lock); 2578 spin_unlock(&pd->cdrw.active_list_lock); 2579 return 0; 2580 } else { 2581 blocked_bio = 1; 2582 } 2583 spin_unlock(&pkt->lock); 2584 } 2585 } 2586 spin_unlock(&pd->cdrw.active_list_lock); 2587 2588 /* 2589 * Test if there is enough room left in the bio work queue 2590 * (queue size >= congestion on mark). 2591 * If not, wait till the work queue size is below the congestion off mark. 2592 */ 2593 spin_lock(&pd->lock); 2594 if (pd->write_congestion_on > 0 2595 && pd->bio_queue_size >= pd->write_congestion_on) { 2596 set_bdi_congested(&q->backing_dev_info, WRITE); 2597 do { 2598 spin_unlock(&pd->lock); 2599 congestion_wait(WRITE, HZ); 2600 spin_lock(&pd->lock); 2601 } while(pd->bio_queue_size > pd->write_congestion_off); 2602 } 2603 spin_unlock(&pd->lock); 2604 2605 /* 2606 * No matching packet found. Store the bio in the work queue. 2607 */ 2608 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2609 node->bio = bio; 2610 spin_lock(&pd->lock); 2611 BUG_ON(pd->bio_queue_size < 0); 2612 was_empty = (pd->bio_queue_size == 0); 2613 pkt_rbtree_insert(pd, node); 2614 spin_unlock(&pd->lock); 2615 2616 /* 2617 * Wake up the worker thread. 2618 */ 2619 atomic_set(&pd->scan_queue, 1); 2620 if (was_empty) { 2621 /* This wake_up is required for correct operation */ 2622 wake_up(&pd->wqueue); 2623 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2624 /* 2625 * This wake up is not required for correct operation, 2626 * but improves performance in some cases. 2627 */ 2628 wake_up(&pd->wqueue); 2629 } 2630 return 0; 2631 end_io: 2632 bio_io_error(bio); 2633 return 0; 2634 } 2635 2636 2637 2638 static int pkt_merge_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *bvec) 2639 { 2640 struct pktcdvd_device *pd = q->queuedata; 2641 sector_t zone = ZONE(bio->bi_sector, pd); 2642 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size; 2643 int remaining = (pd->settings.size << 9) - used; 2644 int remaining2; 2645 2646 /* 2647 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet 2648 * boundary, pkt_make_request() will split the bio. 2649 */ 2650 remaining2 = PAGE_SIZE - bio->bi_size; 2651 remaining = max(remaining, remaining2); 2652 2653 BUG_ON(remaining < 0); 2654 return remaining; 2655 } 2656 2657 static void pkt_init_queue(struct pktcdvd_device *pd) 2658 { 2659 struct request_queue *q = pd->disk->queue; 2660 2661 blk_queue_make_request(q, pkt_make_request); 2662 blk_queue_hardsect_size(q, CD_FRAMESIZE); 2663 blk_queue_max_sectors(q, PACKET_MAX_SECTORS); 2664 blk_queue_merge_bvec(q, pkt_merge_bvec); 2665 q->queuedata = pd; 2666 } 2667 2668 static int pkt_seq_show(struct seq_file *m, void *p) 2669 { 2670 struct pktcdvd_device *pd = m->private; 2671 char *msg; 2672 char bdev_buf[BDEVNAME_SIZE]; 2673 int states[PACKET_NUM_STATES]; 2674 2675 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2676 bdevname(pd->bdev, bdev_buf)); 2677 2678 seq_printf(m, "\nSettings:\n"); 2679 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2680 2681 if (pd->settings.write_type == 0) 2682 msg = "Packet"; 2683 else 2684 msg = "Unknown"; 2685 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2686 2687 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2688 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2689 2690 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2691 2692 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2693 msg = "Mode 1"; 2694 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2695 msg = "Mode 2"; 2696 else 2697 msg = "Unknown"; 2698 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2699 2700 seq_printf(m, "\nStatistics:\n"); 2701 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2702 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2703 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2704 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2705 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2706 2707 seq_printf(m, "\nMisc:\n"); 2708 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2709 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2710 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2711 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2712 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2713 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2714 2715 seq_printf(m, "\nQueue state:\n"); 2716 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2717 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2718 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2719 2720 pkt_count_states(pd, states); 2721 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2722 states[0], states[1], states[2], states[3], states[4], states[5]); 2723 2724 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 2725 pd->write_congestion_off, 2726 pd->write_congestion_on); 2727 return 0; 2728 } 2729 2730 static int pkt_seq_open(struct inode *inode, struct file *file) 2731 { 2732 return single_open(file, pkt_seq_show, PDE(inode)->data); 2733 } 2734 2735 static const struct file_operations pkt_proc_fops = { 2736 .open = pkt_seq_open, 2737 .read = seq_read, 2738 .llseek = seq_lseek, 2739 .release = single_release 2740 }; 2741 2742 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2743 { 2744 int i; 2745 int ret = 0; 2746 char b[BDEVNAME_SIZE]; 2747 struct proc_dir_entry *proc; 2748 struct block_device *bdev; 2749 2750 if (pd->pkt_dev == dev) { 2751 printk(DRIVER_NAME": Recursive setup not allowed\n"); 2752 return -EBUSY; 2753 } 2754 for (i = 0; i < MAX_WRITERS; i++) { 2755 struct pktcdvd_device *pd2 = pkt_devs[i]; 2756 if (!pd2) 2757 continue; 2758 if (pd2->bdev->bd_dev == dev) { 2759 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b)); 2760 return -EBUSY; 2761 } 2762 if (pd2->pkt_dev == dev) { 2763 printk(DRIVER_NAME": Can't chain pktcdvd devices\n"); 2764 return -EBUSY; 2765 } 2766 } 2767 2768 bdev = bdget(dev); 2769 if (!bdev) 2770 return -ENOMEM; 2771 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK); 2772 if (ret) 2773 return ret; 2774 2775 /* This is safe, since we have a reference from open(). */ 2776 __module_get(THIS_MODULE); 2777 2778 pd->bdev = bdev; 2779 set_blocksize(bdev, CD_FRAMESIZE); 2780 2781 pkt_init_queue(pd); 2782 2783 atomic_set(&pd->cdrw.pending_bios, 0); 2784 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2785 if (IS_ERR(pd->cdrw.thread)) { 2786 printk(DRIVER_NAME": can't start kernel thread\n"); 2787 ret = -ENOMEM; 2788 goto out_mem; 2789 } 2790 2791 proc = create_proc_entry(pd->name, 0, pkt_proc); 2792 if (proc) { 2793 proc->data = pd; 2794 proc->proc_fops = &pkt_proc_fops; 2795 } 2796 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b)); 2797 return 0; 2798 2799 out_mem: 2800 blkdev_put(bdev); 2801 /* This is safe: open() is still holding a reference. */ 2802 module_put(THIS_MODULE); 2803 return ret; 2804 } 2805 2806 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 2807 { 2808 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; 2809 2810 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode)); 2811 2812 switch (cmd) { 2813 /* 2814 * forward selected CDROM ioctls to CD-ROM, for UDF 2815 */ 2816 case CDROMMULTISESSION: 2817 case CDROMREADTOCENTRY: 2818 case CDROM_LAST_WRITTEN: 2819 case CDROM_SEND_PACKET: 2820 case SCSI_IOCTL_SEND_COMMAND: 2821 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); 2822 2823 case CDROMEJECT: 2824 /* 2825 * The door gets locked when the device is opened, so we 2826 * have to unlock it or else the eject command fails. 2827 */ 2828 if (pd->refcnt == 1) 2829 pkt_lock_door(pd, 0); 2830 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); 2831 2832 default: 2833 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd); 2834 return -ENOTTY; 2835 } 2836 2837 return 0; 2838 } 2839 2840 static int pkt_media_changed(struct gendisk *disk) 2841 { 2842 struct pktcdvd_device *pd = disk->private_data; 2843 struct gendisk *attached_disk; 2844 2845 if (!pd) 2846 return 0; 2847 if (!pd->bdev) 2848 return 0; 2849 attached_disk = pd->bdev->bd_disk; 2850 if (!attached_disk) 2851 return 0; 2852 return attached_disk->fops->media_changed(attached_disk); 2853 } 2854 2855 static struct block_device_operations pktcdvd_ops = { 2856 .owner = THIS_MODULE, 2857 .open = pkt_open, 2858 .release = pkt_close, 2859 .ioctl = pkt_ioctl, 2860 .media_changed = pkt_media_changed, 2861 }; 2862 2863 /* 2864 * Set up mapping from pktcdvd device to CD-ROM device. 2865 */ 2866 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2867 { 2868 int idx; 2869 int ret = -ENOMEM; 2870 struct pktcdvd_device *pd; 2871 struct gendisk *disk; 2872 2873 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2874 2875 for (idx = 0; idx < MAX_WRITERS; idx++) 2876 if (!pkt_devs[idx]) 2877 break; 2878 if (idx == MAX_WRITERS) { 2879 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS); 2880 ret = -EBUSY; 2881 goto out_mutex; 2882 } 2883 2884 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2885 if (!pd) 2886 goto out_mutex; 2887 2888 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE, 2889 sizeof(struct pkt_rb_node)); 2890 if (!pd->rb_pool) 2891 goto out_mem; 2892 2893 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2894 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2895 spin_lock_init(&pd->cdrw.active_list_lock); 2896 2897 spin_lock_init(&pd->lock); 2898 spin_lock_init(&pd->iosched.lock); 2899 sprintf(pd->name, DRIVER_NAME"%d", idx); 2900 init_waitqueue_head(&pd->wqueue); 2901 pd->bio_queue = RB_ROOT; 2902 2903 pd->write_congestion_on = write_congestion_on; 2904 pd->write_congestion_off = write_congestion_off; 2905 2906 disk = alloc_disk(1); 2907 if (!disk) 2908 goto out_mem; 2909 pd->disk = disk; 2910 disk->major = pktdev_major; 2911 disk->first_minor = idx; 2912 disk->fops = &pktcdvd_ops; 2913 disk->flags = GENHD_FL_REMOVABLE; 2914 strcpy(disk->disk_name, pd->name); 2915 disk->private_data = pd; 2916 disk->queue = blk_alloc_queue(GFP_KERNEL); 2917 if (!disk->queue) 2918 goto out_mem2; 2919 2920 pd->pkt_dev = MKDEV(disk->major, disk->first_minor); 2921 ret = pkt_new_dev(pd, dev); 2922 if (ret) 2923 goto out_new_dev; 2924 2925 add_disk(disk); 2926 2927 pkt_sysfs_dev_new(pd); 2928 pkt_debugfs_dev_new(pd); 2929 2930 pkt_devs[idx] = pd; 2931 if (pkt_dev) 2932 *pkt_dev = pd->pkt_dev; 2933 2934 mutex_unlock(&ctl_mutex); 2935 return 0; 2936 2937 out_new_dev: 2938 blk_cleanup_queue(disk->queue); 2939 out_mem2: 2940 put_disk(disk); 2941 out_mem: 2942 if (pd->rb_pool) 2943 mempool_destroy(pd->rb_pool); 2944 kfree(pd); 2945 out_mutex: 2946 mutex_unlock(&ctl_mutex); 2947 printk(DRIVER_NAME": setup of pktcdvd device failed\n"); 2948 return ret; 2949 } 2950 2951 /* 2952 * Tear down mapping from pktcdvd device to CD-ROM device. 2953 */ 2954 static int pkt_remove_dev(dev_t pkt_dev) 2955 { 2956 struct pktcdvd_device *pd; 2957 int idx; 2958 int ret = 0; 2959 2960 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2961 2962 for (idx = 0; idx < MAX_WRITERS; idx++) { 2963 pd = pkt_devs[idx]; 2964 if (pd && (pd->pkt_dev == pkt_dev)) 2965 break; 2966 } 2967 if (idx == MAX_WRITERS) { 2968 DPRINTK(DRIVER_NAME": dev not setup\n"); 2969 ret = -ENXIO; 2970 goto out; 2971 } 2972 2973 if (pd->refcnt > 0) { 2974 ret = -EBUSY; 2975 goto out; 2976 } 2977 if (!IS_ERR(pd->cdrw.thread)) 2978 kthread_stop(pd->cdrw.thread); 2979 2980 pkt_devs[idx] = NULL; 2981 2982 pkt_debugfs_dev_remove(pd); 2983 pkt_sysfs_dev_remove(pd); 2984 2985 blkdev_put(pd->bdev); 2986 2987 remove_proc_entry(pd->name, pkt_proc); 2988 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name); 2989 2990 del_gendisk(pd->disk); 2991 blk_cleanup_queue(pd->disk->queue); 2992 put_disk(pd->disk); 2993 2994 mempool_destroy(pd->rb_pool); 2995 kfree(pd); 2996 2997 /* This is safe: open() is still holding a reference. */ 2998 module_put(THIS_MODULE); 2999 3000 out: 3001 mutex_unlock(&ctl_mutex); 3002 return ret; 3003 } 3004 3005 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 3006 { 3007 struct pktcdvd_device *pd; 3008 3009 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 3010 3011 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 3012 if (pd) { 3013 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 3014 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 3015 } else { 3016 ctrl_cmd->dev = 0; 3017 ctrl_cmd->pkt_dev = 0; 3018 } 3019 ctrl_cmd->num_devices = MAX_WRITERS; 3020 3021 mutex_unlock(&ctl_mutex); 3022 } 3023 3024 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 3025 { 3026 void __user *argp = (void __user *)arg; 3027 struct pkt_ctrl_command ctrl_cmd; 3028 int ret = 0; 3029 dev_t pkt_dev = 0; 3030 3031 if (cmd != PACKET_CTRL_CMD) 3032 return -ENOTTY; 3033 3034 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 3035 return -EFAULT; 3036 3037 switch (ctrl_cmd.command) { 3038 case PKT_CTRL_CMD_SETUP: 3039 if (!capable(CAP_SYS_ADMIN)) 3040 return -EPERM; 3041 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 3042 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 3043 break; 3044 case PKT_CTRL_CMD_TEARDOWN: 3045 if (!capable(CAP_SYS_ADMIN)) 3046 return -EPERM; 3047 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 3048 break; 3049 case PKT_CTRL_CMD_STATUS: 3050 pkt_get_status(&ctrl_cmd); 3051 break; 3052 default: 3053 return -ENOTTY; 3054 } 3055 3056 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 3057 return -EFAULT; 3058 return ret; 3059 } 3060 3061 3062 static const struct file_operations pkt_ctl_fops = { 3063 .ioctl = pkt_ctl_ioctl, 3064 .owner = THIS_MODULE, 3065 }; 3066 3067 static struct miscdevice pkt_misc = { 3068 .minor = MISC_DYNAMIC_MINOR, 3069 .name = DRIVER_NAME, 3070 .fops = &pkt_ctl_fops 3071 }; 3072 3073 static int __init pkt_init(void) 3074 { 3075 int ret; 3076 3077 mutex_init(&ctl_mutex); 3078 3079 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE, 3080 sizeof(struct packet_stacked_data)); 3081 if (!psd_pool) 3082 return -ENOMEM; 3083 3084 ret = register_blkdev(pktdev_major, DRIVER_NAME); 3085 if (ret < 0) { 3086 printk(DRIVER_NAME": Unable to register block device\n"); 3087 goto out2; 3088 } 3089 if (!pktdev_major) 3090 pktdev_major = ret; 3091 3092 ret = pkt_sysfs_init(); 3093 if (ret) 3094 goto out; 3095 3096 pkt_debugfs_init(); 3097 3098 ret = misc_register(&pkt_misc); 3099 if (ret) { 3100 printk(DRIVER_NAME": Unable to register misc device\n"); 3101 goto out_misc; 3102 } 3103 3104 pkt_proc = proc_mkdir(DRIVER_NAME, proc_root_driver); 3105 3106 return 0; 3107 3108 out_misc: 3109 pkt_debugfs_cleanup(); 3110 pkt_sysfs_cleanup(); 3111 out: 3112 unregister_blkdev(pktdev_major, DRIVER_NAME); 3113 out2: 3114 mempool_destroy(psd_pool); 3115 return ret; 3116 } 3117 3118 static void __exit pkt_exit(void) 3119 { 3120 remove_proc_entry(DRIVER_NAME, proc_root_driver); 3121 misc_deregister(&pkt_misc); 3122 3123 pkt_debugfs_cleanup(); 3124 pkt_sysfs_cleanup(); 3125 3126 unregister_blkdev(pktdev_major, DRIVER_NAME); 3127 mempool_destroy(psd_pool); 3128 } 3129 3130 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 3131 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 3132 MODULE_LICENSE("GPL"); 3133 3134 module_init(pkt_init); 3135 module_exit(pkt_exit); 3136