1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom make_request_fn function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #include <linux/pktcdvd.h> 48 #include <linux/module.h> 49 #include <linux/types.h> 50 #include <linux/kernel.h> 51 #include <linux/kthread.h> 52 #include <linux/errno.h> 53 #include <linux/spinlock.h> 54 #include <linux/file.h> 55 #include <linux/proc_fs.h> 56 #include <linux/seq_file.h> 57 #include <linux/miscdevice.h> 58 #include <linux/freezer.h> 59 #include <linux/mutex.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_ioctl.h> 62 #include <scsi/scsi.h> 63 #include <linux/debugfs.h> 64 #include <linux/device.h> 65 66 #include <asm/uaccess.h> 67 68 #define DRIVER_NAME "pktcdvd" 69 70 #if PACKET_DEBUG 71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 72 #else 73 #define DPRINTK(fmt, args...) 74 #endif 75 76 #if PACKET_DEBUG > 1 77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 78 #else 79 #define VPRINTK(fmt, args...) 80 #endif 81 82 #define MAX_SPEED 0xffff 83 84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1)) 85 86 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 87 static struct proc_dir_entry *pkt_proc; 88 static int pktdev_major; 89 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 90 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 91 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 92 static mempool_t *psd_pool; 93 94 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */ 95 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */ 96 97 /* forward declaration */ 98 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 99 static int pkt_remove_dev(dev_t pkt_dev); 100 static int pkt_seq_show(struct seq_file *m, void *p); 101 102 103 104 /* 105 * create and register a pktcdvd kernel object. 106 */ 107 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd, 108 const char* name, 109 struct kobject* parent, 110 struct kobj_type* ktype) 111 { 112 struct pktcdvd_kobj *p; 113 int error; 114 115 p = kzalloc(sizeof(*p), GFP_KERNEL); 116 if (!p) 117 return NULL; 118 p->pd = pd; 119 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name); 120 if (error) { 121 kobject_put(&p->kobj); 122 return NULL; 123 } 124 kobject_uevent(&p->kobj, KOBJ_ADD); 125 return p; 126 } 127 /* 128 * remove a pktcdvd kernel object. 129 */ 130 static void pkt_kobj_remove(struct pktcdvd_kobj *p) 131 { 132 if (p) 133 kobject_put(&p->kobj); 134 } 135 /* 136 * default release function for pktcdvd kernel objects. 137 */ 138 static void pkt_kobj_release(struct kobject *kobj) 139 { 140 kfree(to_pktcdvdkobj(kobj)); 141 } 142 143 144 /********************************************************** 145 * 146 * sysfs interface for pktcdvd 147 * by (C) 2006 Thomas Maier <balagi@justmail.de> 148 * 149 **********************************************************/ 150 151 #define DEF_ATTR(_obj,_name,_mode) \ 152 static struct attribute _obj = { .name = _name, .mode = _mode } 153 154 /********************************************************** 155 /sys/class/pktcdvd/pktcdvd[0-7]/ 156 stat/reset 157 stat/packets_started 158 stat/packets_finished 159 stat/kb_written 160 stat/kb_read 161 stat/kb_read_gather 162 write_queue/size 163 write_queue/congestion_off 164 write_queue/congestion_on 165 **********************************************************/ 166 167 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200); 168 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444); 169 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444); 170 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444); 171 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444); 172 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444); 173 174 static struct attribute *kobj_pkt_attrs_stat[] = { 175 &kobj_pkt_attr_st1, 176 &kobj_pkt_attr_st2, 177 &kobj_pkt_attr_st3, 178 &kobj_pkt_attr_st4, 179 &kobj_pkt_attr_st5, 180 &kobj_pkt_attr_st6, 181 NULL 182 }; 183 184 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444); 185 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644); 186 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644); 187 188 static struct attribute *kobj_pkt_attrs_wqueue[] = { 189 &kobj_pkt_attr_wq1, 190 &kobj_pkt_attr_wq2, 191 &kobj_pkt_attr_wq3, 192 NULL 193 }; 194 195 static ssize_t kobj_pkt_show(struct kobject *kobj, 196 struct attribute *attr, char *data) 197 { 198 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 199 int n = 0; 200 int v; 201 if (strcmp(attr->name, "packets_started") == 0) { 202 n = sprintf(data, "%lu\n", pd->stats.pkt_started); 203 204 } else if (strcmp(attr->name, "packets_finished") == 0) { 205 n = sprintf(data, "%lu\n", pd->stats.pkt_ended); 206 207 } else if (strcmp(attr->name, "kb_written") == 0) { 208 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1); 209 210 } else if (strcmp(attr->name, "kb_read") == 0) { 211 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1); 212 213 } else if (strcmp(attr->name, "kb_read_gather") == 0) { 214 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1); 215 216 } else if (strcmp(attr->name, "size") == 0) { 217 spin_lock(&pd->lock); 218 v = pd->bio_queue_size; 219 spin_unlock(&pd->lock); 220 n = sprintf(data, "%d\n", v); 221 222 } else if (strcmp(attr->name, "congestion_off") == 0) { 223 spin_lock(&pd->lock); 224 v = pd->write_congestion_off; 225 spin_unlock(&pd->lock); 226 n = sprintf(data, "%d\n", v); 227 228 } else if (strcmp(attr->name, "congestion_on") == 0) { 229 spin_lock(&pd->lock); 230 v = pd->write_congestion_on; 231 spin_unlock(&pd->lock); 232 n = sprintf(data, "%d\n", v); 233 } 234 return n; 235 } 236 237 static void init_write_congestion_marks(int* lo, int* hi) 238 { 239 if (*hi > 0) { 240 *hi = max(*hi, 500); 241 *hi = min(*hi, 1000000); 242 if (*lo <= 0) 243 *lo = *hi - 100; 244 else { 245 *lo = min(*lo, *hi - 100); 246 *lo = max(*lo, 100); 247 } 248 } else { 249 *hi = -1; 250 *lo = -1; 251 } 252 } 253 254 static ssize_t kobj_pkt_store(struct kobject *kobj, 255 struct attribute *attr, 256 const char *data, size_t len) 257 { 258 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 259 int val; 260 261 if (strcmp(attr->name, "reset") == 0 && len > 0) { 262 pd->stats.pkt_started = 0; 263 pd->stats.pkt_ended = 0; 264 pd->stats.secs_w = 0; 265 pd->stats.secs_rg = 0; 266 pd->stats.secs_r = 0; 267 268 } else if (strcmp(attr->name, "congestion_off") == 0 269 && sscanf(data, "%d", &val) == 1) { 270 spin_lock(&pd->lock); 271 pd->write_congestion_off = val; 272 init_write_congestion_marks(&pd->write_congestion_off, 273 &pd->write_congestion_on); 274 spin_unlock(&pd->lock); 275 276 } else if (strcmp(attr->name, "congestion_on") == 0 277 && sscanf(data, "%d", &val) == 1) { 278 spin_lock(&pd->lock); 279 pd->write_congestion_on = val; 280 init_write_congestion_marks(&pd->write_congestion_off, 281 &pd->write_congestion_on); 282 spin_unlock(&pd->lock); 283 } 284 return len; 285 } 286 287 static struct sysfs_ops kobj_pkt_ops = { 288 .show = kobj_pkt_show, 289 .store = kobj_pkt_store 290 }; 291 static struct kobj_type kobj_pkt_type_stat = { 292 .release = pkt_kobj_release, 293 .sysfs_ops = &kobj_pkt_ops, 294 .default_attrs = kobj_pkt_attrs_stat 295 }; 296 static struct kobj_type kobj_pkt_type_wqueue = { 297 .release = pkt_kobj_release, 298 .sysfs_ops = &kobj_pkt_ops, 299 .default_attrs = kobj_pkt_attrs_wqueue 300 }; 301 302 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 303 { 304 if (class_pktcdvd) { 305 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL, 306 "%s", pd->name); 307 if (IS_ERR(pd->dev)) 308 pd->dev = NULL; 309 } 310 if (pd->dev) { 311 pd->kobj_stat = pkt_kobj_create(pd, "stat", 312 &pd->dev->kobj, 313 &kobj_pkt_type_stat); 314 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue", 315 &pd->dev->kobj, 316 &kobj_pkt_type_wqueue); 317 } 318 } 319 320 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 321 { 322 pkt_kobj_remove(pd->kobj_stat); 323 pkt_kobj_remove(pd->kobj_wqueue); 324 if (class_pktcdvd) 325 device_destroy(class_pktcdvd, pd->pkt_dev); 326 } 327 328 329 /******************************************************************** 330 /sys/class/pktcdvd/ 331 add map block device 332 remove unmap packet dev 333 device_map show mappings 334 *******************************************************************/ 335 336 static void class_pktcdvd_release(struct class *cls) 337 { 338 kfree(cls); 339 } 340 static ssize_t class_pktcdvd_show_map(struct class *c, char *data) 341 { 342 int n = 0; 343 int idx; 344 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 345 for (idx = 0; idx < MAX_WRITERS; idx++) { 346 struct pktcdvd_device *pd = pkt_devs[idx]; 347 if (!pd) 348 continue; 349 n += sprintf(data+n, "%s %u:%u %u:%u\n", 350 pd->name, 351 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 352 MAJOR(pd->bdev->bd_dev), 353 MINOR(pd->bdev->bd_dev)); 354 } 355 mutex_unlock(&ctl_mutex); 356 return n; 357 } 358 359 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf, 360 size_t count) 361 { 362 unsigned int major, minor; 363 364 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 365 /* pkt_setup_dev() expects caller to hold reference to self */ 366 if (!try_module_get(THIS_MODULE)) 367 return -ENODEV; 368 369 pkt_setup_dev(MKDEV(major, minor), NULL); 370 371 module_put(THIS_MODULE); 372 373 return count; 374 } 375 376 return -EINVAL; 377 } 378 379 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf, 380 size_t count) 381 { 382 unsigned int major, minor; 383 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 384 pkt_remove_dev(MKDEV(major, minor)); 385 return count; 386 } 387 return -EINVAL; 388 } 389 390 static struct class_attribute class_pktcdvd_attrs[] = { 391 __ATTR(add, 0200, NULL, class_pktcdvd_store_add), 392 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove), 393 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL), 394 __ATTR_NULL 395 }; 396 397 398 static int pkt_sysfs_init(void) 399 { 400 int ret = 0; 401 402 /* 403 * create control files in sysfs 404 * /sys/class/pktcdvd/... 405 */ 406 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL); 407 if (!class_pktcdvd) 408 return -ENOMEM; 409 class_pktcdvd->name = DRIVER_NAME; 410 class_pktcdvd->owner = THIS_MODULE; 411 class_pktcdvd->class_release = class_pktcdvd_release; 412 class_pktcdvd->class_attrs = class_pktcdvd_attrs; 413 ret = class_register(class_pktcdvd); 414 if (ret) { 415 kfree(class_pktcdvd); 416 class_pktcdvd = NULL; 417 printk(DRIVER_NAME": failed to create class pktcdvd\n"); 418 return ret; 419 } 420 return 0; 421 } 422 423 static void pkt_sysfs_cleanup(void) 424 { 425 if (class_pktcdvd) 426 class_destroy(class_pktcdvd); 427 class_pktcdvd = NULL; 428 } 429 430 /******************************************************************** 431 entries in debugfs 432 433 /sys/kernel/debug/pktcdvd[0-7]/ 434 info 435 436 *******************************************************************/ 437 438 static int pkt_debugfs_seq_show(struct seq_file *m, void *p) 439 { 440 return pkt_seq_show(m, p); 441 } 442 443 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file) 444 { 445 return single_open(file, pkt_debugfs_seq_show, inode->i_private); 446 } 447 448 static const struct file_operations debug_fops = { 449 .open = pkt_debugfs_fops_open, 450 .read = seq_read, 451 .llseek = seq_lseek, 452 .release = single_release, 453 .owner = THIS_MODULE, 454 }; 455 456 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 457 { 458 if (!pkt_debugfs_root) 459 return; 460 pd->dfs_f_info = NULL; 461 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root); 462 if (IS_ERR(pd->dfs_d_root)) { 463 pd->dfs_d_root = NULL; 464 return; 465 } 466 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO, 467 pd->dfs_d_root, pd, &debug_fops); 468 if (IS_ERR(pd->dfs_f_info)) { 469 pd->dfs_f_info = NULL; 470 return; 471 } 472 } 473 474 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 475 { 476 if (!pkt_debugfs_root) 477 return; 478 if (pd->dfs_f_info) 479 debugfs_remove(pd->dfs_f_info); 480 pd->dfs_f_info = NULL; 481 if (pd->dfs_d_root) 482 debugfs_remove(pd->dfs_d_root); 483 pd->dfs_d_root = NULL; 484 } 485 486 static void pkt_debugfs_init(void) 487 { 488 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 489 if (IS_ERR(pkt_debugfs_root)) { 490 pkt_debugfs_root = NULL; 491 return; 492 } 493 } 494 495 static void pkt_debugfs_cleanup(void) 496 { 497 if (!pkt_debugfs_root) 498 return; 499 debugfs_remove(pkt_debugfs_root); 500 pkt_debugfs_root = NULL; 501 } 502 503 /* ----------------------------------------------------------*/ 504 505 506 static void pkt_bio_finished(struct pktcdvd_device *pd) 507 { 508 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 509 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 510 VPRINTK(DRIVER_NAME": queue empty\n"); 511 atomic_set(&pd->iosched.attention, 1); 512 wake_up(&pd->wqueue); 513 } 514 } 515 516 static void pkt_bio_destructor(struct bio *bio) 517 { 518 kfree(bio->bi_io_vec); 519 kfree(bio); 520 } 521 522 static struct bio *pkt_bio_alloc(int nr_iovecs) 523 { 524 struct bio_vec *bvl = NULL; 525 struct bio *bio; 526 527 bio = kmalloc(sizeof(struct bio), GFP_KERNEL); 528 if (!bio) 529 goto no_bio; 530 bio_init(bio); 531 532 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL); 533 if (!bvl) 534 goto no_bvl; 535 536 bio->bi_max_vecs = nr_iovecs; 537 bio->bi_io_vec = bvl; 538 bio->bi_destructor = pkt_bio_destructor; 539 540 return bio; 541 542 no_bvl: 543 kfree(bio); 544 no_bio: 545 return NULL; 546 } 547 548 /* 549 * Allocate a packet_data struct 550 */ 551 static struct packet_data *pkt_alloc_packet_data(int frames) 552 { 553 int i; 554 struct packet_data *pkt; 555 556 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 557 if (!pkt) 558 goto no_pkt; 559 560 pkt->frames = frames; 561 pkt->w_bio = pkt_bio_alloc(frames); 562 if (!pkt->w_bio) 563 goto no_bio; 564 565 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 566 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 567 if (!pkt->pages[i]) 568 goto no_page; 569 } 570 571 spin_lock_init(&pkt->lock); 572 573 for (i = 0; i < frames; i++) { 574 struct bio *bio = pkt_bio_alloc(1); 575 if (!bio) 576 goto no_rd_bio; 577 pkt->r_bios[i] = bio; 578 } 579 580 return pkt; 581 582 no_rd_bio: 583 for (i = 0; i < frames; i++) { 584 struct bio *bio = pkt->r_bios[i]; 585 if (bio) 586 bio_put(bio); 587 } 588 589 no_page: 590 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 591 if (pkt->pages[i]) 592 __free_page(pkt->pages[i]); 593 bio_put(pkt->w_bio); 594 no_bio: 595 kfree(pkt); 596 no_pkt: 597 return NULL; 598 } 599 600 /* 601 * Free a packet_data struct 602 */ 603 static void pkt_free_packet_data(struct packet_data *pkt) 604 { 605 int i; 606 607 for (i = 0; i < pkt->frames; i++) { 608 struct bio *bio = pkt->r_bios[i]; 609 if (bio) 610 bio_put(bio); 611 } 612 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 613 __free_page(pkt->pages[i]); 614 bio_put(pkt->w_bio); 615 kfree(pkt); 616 } 617 618 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 619 { 620 struct packet_data *pkt, *next; 621 622 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 623 624 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 625 pkt_free_packet_data(pkt); 626 } 627 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 628 } 629 630 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 631 { 632 struct packet_data *pkt; 633 634 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 635 636 while (nr_packets > 0) { 637 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 638 if (!pkt) { 639 pkt_shrink_pktlist(pd); 640 return 0; 641 } 642 pkt->id = nr_packets; 643 pkt->pd = pd; 644 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 645 nr_packets--; 646 } 647 return 1; 648 } 649 650 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 651 { 652 struct rb_node *n = rb_next(&node->rb_node); 653 if (!n) 654 return NULL; 655 return rb_entry(n, struct pkt_rb_node, rb_node); 656 } 657 658 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 659 { 660 rb_erase(&node->rb_node, &pd->bio_queue); 661 mempool_free(node, pd->rb_pool); 662 pd->bio_queue_size--; 663 BUG_ON(pd->bio_queue_size < 0); 664 } 665 666 /* 667 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 668 */ 669 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 670 { 671 struct rb_node *n = pd->bio_queue.rb_node; 672 struct rb_node *next; 673 struct pkt_rb_node *tmp; 674 675 if (!n) { 676 BUG_ON(pd->bio_queue_size > 0); 677 return NULL; 678 } 679 680 for (;;) { 681 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 682 if (s <= tmp->bio->bi_sector) 683 next = n->rb_left; 684 else 685 next = n->rb_right; 686 if (!next) 687 break; 688 n = next; 689 } 690 691 if (s > tmp->bio->bi_sector) { 692 tmp = pkt_rbtree_next(tmp); 693 if (!tmp) 694 return NULL; 695 } 696 BUG_ON(s > tmp->bio->bi_sector); 697 return tmp; 698 } 699 700 /* 701 * Insert a node into the pd->bio_queue rb tree. 702 */ 703 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 704 { 705 struct rb_node **p = &pd->bio_queue.rb_node; 706 struct rb_node *parent = NULL; 707 sector_t s = node->bio->bi_sector; 708 struct pkt_rb_node *tmp; 709 710 while (*p) { 711 parent = *p; 712 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 713 if (s < tmp->bio->bi_sector) 714 p = &(*p)->rb_left; 715 else 716 p = &(*p)->rb_right; 717 } 718 rb_link_node(&node->rb_node, parent, p); 719 rb_insert_color(&node->rb_node, &pd->bio_queue); 720 pd->bio_queue_size++; 721 } 722 723 /* 724 * Add a bio to a single linked list defined by its head and tail pointers. 725 */ 726 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail) 727 { 728 bio->bi_next = NULL; 729 if (*list_tail) { 730 BUG_ON((*list_head) == NULL); 731 (*list_tail)->bi_next = bio; 732 (*list_tail) = bio; 733 } else { 734 BUG_ON((*list_head) != NULL); 735 (*list_head) = bio; 736 (*list_tail) = bio; 737 } 738 } 739 740 /* 741 * Remove and return the first bio from a single linked list defined by its 742 * head and tail pointers. 743 */ 744 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail) 745 { 746 struct bio *bio; 747 748 if (*list_head == NULL) 749 return NULL; 750 751 bio = *list_head; 752 *list_head = bio->bi_next; 753 if (*list_head == NULL) 754 *list_tail = NULL; 755 756 bio->bi_next = NULL; 757 return bio; 758 } 759 760 /* 761 * Send a packet_command to the underlying block device and 762 * wait for completion. 763 */ 764 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 765 { 766 struct request_queue *q = bdev_get_queue(pd->bdev); 767 struct request *rq; 768 int ret = 0; 769 770 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 771 WRITE : READ, __GFP_WAIT); 772 773 if (cgc->buflen) { 774 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT)) 775 goto out; 776 } 777 778 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 779 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE); 780 781 rq->timeout = 60*HZ; 782 rq->cmd_type = REQ_TYPE_BLOCK_PC; 783 rq->cmd_flags |= REQ_HARDBARRIER; 784 if (cgc->quiet) 785 rq->cmd_flags |= REQ_QUIET; 786 787 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0); 788 if (rq->errors) 789 ret = -EIO; 790 out: 791 blk_put_request(rq); 792 return ret; 793 } 794 795 /* 796 * A generic sense dump / resolve mechanism should be implemented across 797 * all ATAPI + SCSI devices. 798 */ 799 static void pkt_dump_sense(struct packet_command *cgc) 800 { 801 static char *info[9] = { "No sense", "Recovered error", "Not ready", 802 "Medium error", "Hardware error", "Illegal request", 803 "Unit attention", "Data protect", "Blank check" }; 804 int i; 805 struct request_sense *sense = cgc->sense; 806 807 printk(DRIVER_NAME":"); 808 for (i = 0; i < CDROM_PACKET_SIZE; i++) 809 printk(" %02x", cgc->cmd[i]); 810 printk(" - "); 811 812 if (sense == NULL) { 813 printk("no sense\n"); 814 return; 815 } 816 817 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq); 818 819 if (sense->sense_key > 8) { 820 printk(" (INVALID)\n"); 821 return; 822 } 823 824 printk(" (%s)\n", info[sense->sense_key]); 825 } 826 827 /* 828 * flush the drive cache to media 829 */ 830 static int pkt_flush_cache(struct pktcdvd_device *pd) 831 { 832 struct packet_command cgc; 833 834 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 835 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 836 cgc.quiet = 1; 837 838 /* 839 * the IMMED bit -- we default to not setting it, although that 840 * would allow a much faster close, this is safer 841 */ 842 #if 0 843 cgc.cmd[1] = 1 << 1; 844 #endif 845 return pkt_generic_packet(pd, &cgc); 846 } 847 848 /* 849 * speed is given as the normal factor, e.g. 4 for 4x 850 */ 851 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd, 852 unsigned write_speed, unsigned read_speed) 853 { 854 struct packet_command cgc; 855 struct request_sense sense; 856 int ret; 857 858 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 859 cgc.sense = &sense; 860 cgc.cmd[0] = GPCMD_SET_SPEED; 861 cgc.cmd[2] = (read_speed >> 8) & 0xff; 862 cgc.cmd[3] = read_speed & 0xff; 863 cgc.cmd[4] = (write_speed >> 8) & 0xff; 864 cgc.cmd[5] = write_speed & 0xff; 865 866 if ((ret = pkt_generic_packet(pd, &cgc))) 867 pkt_dump_sense(&cgc); 868 869 return ret; 870 } 871 872 /* 873 * Queue a bio for processing by the low-level CD device. Must be called 874 * from process context. 875 */ 876 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 877 { 878 spin_lock(&pd->iosched.lock); 879 if (bio_data_dir(bio) == READ) { 880 pkt_add_list_last(bio, &pd->iosched.read_queue, 881 &pd->iosched.read_queue_tail); 882 } else { 883 pkt_add_list_last(bio, &pd->iosched.write_queue, 884 &pd->iosched.write_queue_tail); 885 } 886 spin_unlock(&pd->iosched.lock); 887 888 atomic_set(&pd->iosched.attention, 1); 889 wake_up(&pd->wqueue); 890 } 891 892 /* 893 * Process the queued read/write requests. This function handles special 894 * requirements for CDRW drives: 895 * - A cache flush command must be inserted before a read request if the 896 * previous request was a write. 897 * - Switching between reading and writing is slow, so don't do it more often 898 * than necessary. 899 * - Optimize for throughput at the expense of latency. This means that streaming 900 * writes will never be interrupted by a read, but if the drive has to seek 901 * before the next write, switch to reading instead if there are any pending 902 * read requests. 903 * - Set the read speed according to current usage pattern. When only reading 904 * from the device, it's best to use the highest possible read speed, but 905 * when switching often between reading and writing, it's better to have the 906 * same read and write speeds. 907 */ 908 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 909 { 910 911 if (atomic_read(&pd->iosched.attention) == 0) 912 return; 913 atomic_set(&pd->iosched.attention, 0); 914 915 for (;;) { 916 struct bio *bio; 917 int reads_queued, writes_queued; 918 919 spin_lock(&pd->iosched.lock); 920 reads_queued = (pd->iosched.read_queue != NULL); 921 writes_queued = (pd->iosched.write_queue != NULL); 922 spin_unlock(&pd->iosched.lock); 923 924 if (!reads_queued && !writes_queued) 925 break; 926 927 if (pd->iosched.writing) { 928 int need_write_seek = 1; 929 spin_lock(&pd->iosched.lock); 930 bio = pd->iosched.write_queue; 931 spin_unlock(&pd->iosched.lock); 932 if (bio && (bio->bi_sector == pd->iosched.last_write)) 933 need_write_seek = 0; 934 if (need_write_seek && reads_queued) { 935 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 936 VPRINTK(DRIVER_NAME": write, waiting\n"); 937 break; 938 } 939 pkt_flush_cache(pd); 940 pd->iosched.writing = 0; 941 } 942 } else { 943 if (!reads_queued && writes_queued) { 944 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 945 VPRINTK(DRIVER_NAME": read, waiting\n"); 946 break; 947 } 948 pd->iosched.writing = 1; 949 } 950 } 951 952 spin_lock(&pd->iosched.lock); 953 if (pd->iosched.writing) { 954 bio = pkt_get_list_first(&pd->iosched.write_queue, 955 &pd->iosched.write_queue_tail); 956 } else { 957 bio = pkt_get_list_first(&pd->iosched.read_queue, 958 &pd->iosched.read_queue_tail); 959 } 960 spin_unlock(&pd->iosched.lock); 961 962 if (!bio) 963 continue; 964 965 if (bio_data_dir(bio) == READ) 966 pd->iosched.successive_reads += bio->bi_size >> 10; 967 else { 968 pd->iosched.successive_reads = 0; 969 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio); 970 } 971 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 972 if (pd->read_speed == pd->write_speed) { 973 pd->read_speed = MAX_SPEED; 974 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 975 } 976 } else { 977 if (pd->read_speed != pd->write_speed) { 978 pd->read_speed = pd->write_speed; 979 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 980 } 981 } 982 983 atomic_inc(&pd->cdrw.pending_bios); 984 generic_make_request(bio); 985 } 986 } 987 988 /* 989 * Special care is needed if the underlying block device has a small 990 * max_phys_segments value. 991 */ 992 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q) 993 { 994 if ((pd->settings.size << 9) / CD_FRAMESIZE 995 <= queue_max_phys_segments(q)) { 996 /* 997 * The cdrom device can handle one segment/frame 998 */ 999 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 1000 return 0; 1001 } else if ((pd->settings.size << 9) / PAGE_SIZE 1002 <= queue_max_phys_segments(q)) { 1003 /* 1004 * We can handle this case at the expense of some extra memory 1005 * copies during write operations 1006 */ 1007 set_bit(PACKET_MERGE_SEGS, &pd->flags); 1008 return 0; 1009 } else { 1010 printk(DRIVER_NAME": cdrom max_phys_segments too small\n"); 1011 return -EIO; 1012 } 1013 } 1014 1015 /* 1016 * Copy CD_FRAMESIZE bytes from src_bio into a destination page 1017 */ 1018 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs) 1019 { 1020 unsigned int copy_size = CD_FRAMESIZE; 1021 1022 while (copy_size > 0) { 1023 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg); 1024 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) + 1025 src_bvl->bv_offset + offs; 1026 void *vto = page_address(dst_page) + dst_offs; 1027 int len = min_t(int, copy_size, src_bvl->bv_len - offs); 1028 1029 BUG_ON(len < 0); 1030 memcpy(vto, vfrom, len); 1031 kunmap_atomic(vfrom, KM_USER0); 1032 1033 seg++; 1034 offs = 0; 1035 dst_offs += len; 1036 copy_size -= len; 1037 } 1038 } 1039 1040 /* 1041 * Copy all data for this packet to pkt->pages[], so that 1042 * a) The number of required segments for the write bio is minimized, which 1043 * is necessary for some scsi controllers. 1044 * b) The data can be used as cache to avoid read requests if we receive a 1045 * new write request for the same zone. 1046 */ 1047 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec) 1048 { 1049 int f, p, offs; 1050 1051 /* Copy all data to pkt->pages[] */ 1052 p = 0; 1053 offs = 0; 1054 for (f = 0; f < pkt->frames; f++) { 1055 if (bvec[f].bv_page != pkt->pages[p]) { 1056 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset; 1057 void *vto = page_address(pkt->pages[p]) + offs; 1058 memcpy(vto, vfrom, CD_FRAMESIZE); 1059 kunmap_atomic(vfrom, KM_USER0); 1060 bvec[f].bv_page = pkt->pages[p]; 1061 bvec[f].bv_offset = offs; 1062 } else { 1063 BUG_ON(bvec[f].bv_offset != offs); 1064 } 1065 offs += CD_FRAMESIZE; 1066 if (offs >= PAGE_SIZE) { 1067 offs = 0; 1068 p++; 1069 } 1070 } 1071 } 1072 1073 static void pkt_end_io_read(struct bio *bio, int err) 1074 { 1075 struct packet_data *pkt = bio->bi_private; 1076 struct pktcdvd_device *pd = pkt->pd; 1077 BUG_ON(!pd); 1078 1079 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio, 1080 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err); 1081 1082 if (err) 1083 atomic_inc(&pkt->io_errors); 1084 if (atomic_dec_and_test(&pkt->io_wait)) { 1085 atomic_inc(&pkt->run_sm); 1086 wake_up(&pd->wqueue); 1087 } 1088 pkt_bio_finished(pd); 1089 } 1090 1091 static void pkt_end_io_packet_write(struct bio *bio, int err) 1092 { 1093 struct packet_data *pkt = bio->bi_private; 1094 struct pktcdvd_device *pd = pkt->pd; 1095 BUG_ON(!pd); 1096 1097 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err); 1098 1099 pd->stats.pkt_ended++; 1100 1101 pkt_bio_finished(pd); 1102 atomic_dec(&pkt->io_wait); 1103 atomic_inc(&pkt->run_sm); 1104 wake_up(&pd->wqueue); 1105 } 1106 1107 /* 1108 * Schedule reads for the holes in a packet 1109 */ 1110 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1111 { 1112 int frames_read = 0; 1113 struct bio *bio; 1114 int f; 1115 char written[PACKET_MAX_SIZE]; 1116 1117 BUG_ON(!pkt->orig_bios); 1118 1119 atomic_set(&pkt->io_wait, 0); 1120 atomic_set(&pkt->io_errors, 0); 1121 1122 /* 1123 * Figure out which frames we need to read before we can write. 1124 */ 1125 memset(written, 0, sizeof(written)); 1126 spin_lock(&pkt->lock); 1127 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1128 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1129 int num_frames = bio->bi_size / CD_FRAMESIZE; 1130 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 1131 BUG_ON(first_frame < 0); 1132 BUG_ON(first_frame + num_frames > pkt->frames); 1133 for (f = first_frame; f < first_frame + num_frames; f++) 1134 written[f] = 1; 1135 } 1136 spin_unlock(&pkt->lock); 1137 1138 if (pkt->cache_valid) { 1139 VPRINTK("pkt_gather_data: zone %llx cached\n", 1140 (unsigned long long)pkt->sector); 1141 goto out_account; 1142 } 1143 1144 /* 1145 * Schedule reads for missing parts of the packet. 1146 */ 1147 for (f = 0; f < pkt->frames; f++) { 1148 struct bio_vec *vec; 1149 1150 int p, offset; 1151 if (written[f]) 1152 continue; 1153 bio = pkt->r_bios[f]; 1154 vec = bio->bi_io_vec; 1155 bio_init(bio); 1156 bio->bi_max_vecs = 1; 1157 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1158 bio->bi_bdev = pd->bdev; 1159 bio->bi_end_io = pkt_end_io_read; 1160 bio->bi_private = pkt; 1161 bio->bi_io_vec = vec; 1162 bio->bi_destructor = pkt_bio_destructor; 1163 1164 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1165 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1166 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n", 1167 f, pkt->pages[p], offset); 1168 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1169 BUG(); 1170 1171 atomic_inc(&pkt->io_wait); 1172 bio->bi_rw = READ; 1173 pkt_queue_bio(pd, bio); 1174 frames_read++; 1175 } 1176 1177 out_account: 1178 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n", 1179 frames_read, (unsigned long long)pkt->sector); 1180 pd->stats.pkt_started++; 1181 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1182 } 1183 1184 /* 1185 * Find a packet matching zone, or the least recently used packet if 1186 * there is no match. 1187 */ 1188 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1189 { 1190 struct packet_data *pkt; 1191 1192 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1193 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1194 list_del_init(&pkt->list); 1195 if (pkt->sector != zone) 1196 pkt->cache_valid = 0; 1197 return pkt; 1198 } 1199 } 1200 BUG(); 1201 return NULL; 1202 } 1203 1204 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1205 { 1206 if (pkt->cache_valid) { 1207 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1208 } else { 1209 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1210 } 1211 } 1212 1213 /* 1214 * recover a failed write, query for relocation if possible 1215 * 1216 * returns 1 if recovery is possible, or 0 if not 1217 * 1218 */ 1219 static int pkt_start_recovery(struct packet_data *pkt) 1220 { 1221 /* 1222 * FIXME. We need help from the file system to implement 1223 * recovery handling. 1224 */ 1225 return 0; 1226 #if 0 1227 struct request *rq = pkt->rq; 1228 struct pktcdvd_device *pd = rq->rq_disk->private_data; 1229 struct block_device *pkt_bdev; 1230 struct super_block *sb = NULL; 1231 unsigned long old_block, new_block; 1232 sector_t new_sector; 1233 1234 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 1235 if (pkt_bdev) { 1236 sb = get_super(pkt_bdev); 1237 bdput(pkt_bdev); 1238 } 1239 1240 if (!sb) 1241 return 0; 1242 1243 if (!sb->s_op || !sb->s_op->relocate_blocks) 1244 goto out; 1245 1246 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 1247 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 1248 goto out; 1249 1250 new_sector = new_block * (CD_FRAMESIZE >> 9); 1251 pkt->sector = new_sector; 1252 1253 pkt->bio->bi_sector = new_sector; 1254 pkt->bio->bi_next = NULL; 1255 pkt->bio->bi_flags = 1 << BIO_UPTODATE; 1256 pkt->bio->bi_idx = 0; 1257 1258 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW)); 1259 BUG_ON(pkt->bio->bi_vcnt != pkt->frames); 1260 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE); 1261 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write); 1262 BUG_ON(pkt->bio->bi_private != pkt); 1263 1264 drop_super(sb); 1265 return 1; 1266 1267 out: 1268 drop_super(sb); 1269 return 0; 1270 #endif 1271 } 1272 1273 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 1274 { 1275 #if PACKET_DEBUG > 1 1276 static const char *state_name[] = { 1277 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1278 }; 1279 enum packet_data_state old_state = pkt->state; 1280 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector, 1281 state_name[old_state], state_name[state]); 1282 #endif 1283 pkt->state = state; 1284 } 1285 1286 /* 1287 * Scan the work queue to see if we can start a new packet. 1288 * returns non-zero if any work was done. 1289 */ 1290 static int pkt_handle_queue(struct pktcdvd_device *pd) 1291 { 1292 struct packet_data *pkt, *p; 1293 struct bio *bio = NULL; 1294 sector_t zone = 0; /* Suppress gcc warning */ 1295 struct pkt_rb_node *node, *first_node; 1296 struct rb_node *n; 1297 int wakeup; 1298 1299 VPRINTK("handle_queue\n"); 1300 1301 atomic_set(&pd->scan_queue, 0); 1302 1303 if (list_empty(&pd->cdrw.pkt_free_list)) { 1304 VPRINTK("handle_queue: no pkt\n"); 1305 return 0; 1306 } 1307 1308 /* 1309 * Try to find a zone we are not already working on. 1310 */ 1311 spin_lock(&pd->lock); 1312 first_node = pkt_rbtree_find(pd, pd->current_sector); 1313 if (!first_node) { 1314 n = rb_first(&pd->bio_queue); 1315 if (n) 1316 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1317 } 1318 node = first_node; 1319 while (node) { 1320 bio = node->bio; 1321 zone = ZONE(bio->bi_sector, pd); 1322 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1323 if (p->sector == zone) { 1324 bio = NULL; 1325 goto try_next_bio; 1326 } 1327 } 1328 break; 1329 try_next_bio: 1330 node = pkt_rbtree_next(node); 1331 if (!node) { 1332 n = rb_first(&pd->bio_queue); 1333 if (n) 1334 node = rb_entry(n, struct pkt_rb_node, rb_node); 1335 } 1336 if (node == first_node) 1337 node = NULL; 1338 } 1339 spin_unlock(&pd->lock); 1340 if (!bio) { 1341 VPRINTK("handle_queue: no bio\n"); 1342 return 0; 1343 } 1344 1345 pkt = pkt_get_packet_data(pd, zone); 1346 1347 pd->current_sector = zone + pd->settings.size; 1348 pkt->sector = zone; 1349 BUG_ON(pkt->frames != pd->settings.size >> 2); 1350 pkt->write_size = 0; 1351 1352 /* 1353 * Scan work queue for bios in the same zone and link them 1354 * to this packet. 1355 */ 1356 spin_lock(&pd->lock); 1357 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone); 1358 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1359 bio = node->bio; 1360 VPRINTK("pkt_handle_queue: found zone=%llx\n", 1361 (unsigned long long)ZONE(bio->bi_sector, pd)); 1362 if (ZONE(bio->bi_sector, pd) != zone) 1363 break; 1364 pkt_rbtree_erase(pd, node); 1365 spin_lock(&pkt->lock); 1366 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail); 1367 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 1368 spin_unlock(&pkt->lock); 1369 } 1370 /* check write congestion marks, and if bio_queue_size is 1371 below, wake up any waiters */ 1372 wakeup = (pd->write_congestion_on > 0 1373 && pd->bio_queue_size <= pd->write_congestion_off); 1374 spin_unlock(&pd->lock); 1375 if (wakeup) { 1376 clear_bdi_congested(&pd->disk->queue->backing_dev_info, 1377 BLK_RW_ASYNC); 1378 } 1379 1380 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1381 pkt_set_state(pkt, PACKET_WAITING_STATE); 1382 atomic_set(&pkt->run_sm, 1); 1383 1384 spin_lock(&pd->cdrw.active_list_lock); 1385 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1386 spin_unlock(&pd->cdrw.active_list_lock); 1387 1388 return 1; 1389 } 1390 1391 /* 1392 * Assemble a bio to write one packet and queue the bio for processing 1393 * by the underlying block device. 1394 */ 1395 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1396 { 1397 struct bio *bio; 1398 int f; 1399 int frames_write; 1400 struct bio_vec *bvec = pkt->w_bio->bi_io_vec; 1401 1402 for (f = 0; f < pkt->frames; f++) { 1403 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1404 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1405 } 1406 1407 /* 1408 * Fill-in bvec with data from orig_bios. 1409 */ 1410 frames_write = 0; 1411 spin_lock(&pkt->lock); 1412 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1413 int segment = bio->bi_idx; 1414 int src_offs = 0; 1415 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1416 int num_frames = bio->bi_size / CD_FRAMESIZE; 1417 BUG_ON(first_frame < 0); 1418 BUG_ON(first_frame + num_frames > pkt->frames); 1419 for (f = first_frame; f < first_frame + num_frames; f++) { 1420 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment); 1421 1422 while (src_offs >= src_bvl->bv_len) { 1423 src_offs -= src_bvl->bv_len; 1424 segment++; 1425 BUG_ON(segment >= bio->bi_vcnt); 1426 src_bvl = bio_iovec_idx(bio, segment); 1427 } 1428 1429 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) { 1430 bvec[f].bv_page = src_bvl->bv_page; 1431 bvec[f].bv_offset = src_bvl->bv_offset + src_offs; 1432 } else { 1433 pkt_copy_bio_data(bio, segment, src_offs, 1434 bvec[f].bv_page, bvec[f].bv_offset); 1435 } 1436 src_offs += CD_FRAMESIZE; 1437 frames_write++; 1438 } 1439 } 1440 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1441 spin_unlock(&pkt->lock); 1442 1443 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n", 1444 frames_write, (unsigned long long)pkt->sector); 1445 BUG_ON(frames_write != pkt->write_size); 1446 1447 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) { 1448 pkt_make_local_copy(pkt, bvec); 1449 pkt->cache_valid = 1; 1450 } else { 1451 pkt->cache_valid = 0; 1452 } 1453 1454 /* Start the write request */ 1455 bio_init(pkt->w_bio); 1456 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE; 1457 pkt->w_bio->bi_sector = pkt->sector; 1458 pkt->w_bio->bi_bdev = pd->bdev; 1459 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1460 pkt->w_bio->bi_private = pkt; 1461 pkt->w_bio->bi_io_vec = bvec; 1462 pkt->w_bio->bi_destructor = pkt_bio_destructor; 1463 for (f = 0; f < pkt->frames; f++) 1464 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset)) 1465 BUG(); 1466 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt); 1467 1468 atomic_set(&pkt->io_wait, 1); 1469 pkt->w_bio->bi_rw = WRITE; 1470 pkt_queue_bio(pd, pkt->w_bio); 1471 } 1472 1473 static void pkt_finish_packet(struct packet_data *pkt, int uptodate) 1474 { 1475 struct bio *bio, *next; 1476 1477 if (!uptodate) 1478 pkt->cache_valid = 0; 1479 1480 /* Finish all bios corresponding to this packet */ 1481 bio = pkt->orig_bios; 1482 while (bio) { 1483 next = bio->bi_next; 1484 bio->bi_next = NULL; 1485 bio_endio(bio, uptodate ? 0 : -EIO); 1486 bio = next; 1487 } 1488 pkt->orig_bios = pkt->orig_bios_tail = NULL; 1489 } 1490 1491 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1492 { 1493 int uptodate; 1494 1495 VPRINTK("run_state_machine: pkt %d\n", pkt->id); 1496 1497 for (;;) { 1498 switch (pkt->state) { 1499 case PACKET_WAITING_STATE: 1500 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1501 return; 1502 1503 pkt->sleep_time = 0; 1504 pkt_gather_data(pd, pkt); 1505 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1506 break; 1507 1508 case PACKET_READ_WAIT_STATE: 1509 if (atomic_read(&pkt->io_wait) > 0) 1510 return; 1511 1512 if (atomic_read(&pkt->io_errors) > 0) { 1513 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1514 } else { 1515 pkt_start_write(pd, pkt); 1516 } 1517 break; 1518 1519 case PACKET_WRITE_WAIT_STATE: 1520 if (atomic_read(&pkt->io_wait) > 0) 1521 return; 1522 1523 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) { 1524 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1525 } else { 1526 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1527 } 1528 break; 1529 1530 case PACKET_RECOVERY_STATE: 1531 if (pkt_start_recovery(pkt)) { 1532 pkt_start_write(pd, pkt); 1533 } else { 1534 VPRINTK("No recovery possible\n"); 1535 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1536 } 1537 break; 1538 1539 case PACKET_FINISHED_STATE: 1540 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags); 1541 pkt_finish_packet(pkt, uptodate); 1542 return; 1543 1544 default: 1545 BUG(); 1546 break; 1547 } 1548 } 1549 } 1550 1551 static void pkt_handle_packets(struct pktcdvd_device *pd) 1552 { 1553 struct packet_data *pkt, *next; 1554 1555 VPRINTK("pkt_handle_packets\n"); 1556 1557 /* 1558 * Run state machine for active packets 1559 */ 1560 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1561 if (atomic_read(&pkt->run_sm) > 0) { 1562 atomic_set(&pkt->run_sm, 0); 1563 pkt_run_state_machine(pd, pkt); 1564 } 1565 } 1566 1567 /* 1568 * Move no longer active packets to the free list 1569 */ 1570 spin_lock(&pd->cdrw.active_list_lock); 1571 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1572 if (pkt->state == PACKET_FINISHED_STATE) { 1573 list_del(&pkt->list); 1574 pkt_put_packet_data(pd, pkt); 1575 pkt_set_state(pkt, PACKET_IDLE_STATE); 1576 atomic_set(&pd->scan_queue, 1); 1577 } 1578 } 1579 spin_unlock(&pd->cdrw.active_list_lock); 1580 } 1581 1582 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1583 { 1584 struct packet_data *pkt; 1585 int i; 1586 1587 for (i = 0; i < PACKET_NUM_STATES; i++) 1588 states[i] = 0; 1589 1590 spin_lock(&pd->cdrw.active_list_lock); 1591 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1592 states[pkt->state]++; 1593 } 1594 spin_unlock(&pd->cdrw.active_list_lock); 1595 } 1596 1597 /* 1598 * kcdrwd is woken up when writes have been queued for one of our 1599 * registered devices 1600 */ 1601 static int kcdrwd(void *foobar) 1602 { 1603 struct pktcdvd_device *pd = foobar; 1604 struct packet_data *pkt; 1605 long min_sleep_time, residue; 1606 1607 set_user_nice(current, -20); 1608 set_freezable(); 1609 1610 for (;;) { 1611 DECLARE_WAITQUEUE(wait, current); 1612 1613 /* 1614 * Wait until there is something to do 1615 */ 1616 add_wait_queue(&pd->wqueue, &wait); 1617 for (;;) { 1618 set_current_state(TASK_INTERRUPTIBLE); 1619 1620 /* Check if we need to run pkt_handle_queue */ 1621 if (atomic_read(&pd->scan_queue) > 0) 1622 goto work_to_do; 1623 1624 /* Check if we need to run the state machine for some packet */ 1625 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1626 if (atomic_read(&pkt->run_sm) > 0) 1627 goto work_to_do; 1628 } 1629 1630 /* Check if we need to process the iosched queues */ 1631 if (atomic_read(&pd->iosched.attention) != 0) 1632 goto work_to_do; 1633 1634 /* Otherwise, go to sleep */ 1635 if (PACKET_DEBUG > 1) { 1636 int states[PACKET_NUM_STATES]; 1637 pkt_count_states(pd, states); 1638 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1639 states[0], states[1], states[2], states[3], 1640 states[4], states[5]); 1641 } 1642 1643 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1644 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1645 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1646 min_sleep_time = pkt->sleep_time; 1647 } 1648 1649 generic_unplug_device(bdev_get_queue(pd->bdev)); 1650 1651 VPRINTK("kcdrwd: sleeping\n"); 1652 residue = schedule_timeout(min_sleep_time); 1653 VPRINTK("kcdrwd: wake up\n"); 1654 1655 /* make swsusp happy with our thread */ 1656 try_to_freeze(); 1657 1658 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1659 if (!pkt->sleep_time) 1660 continue; 1661 pkt->sleep_time -= min_sleep_time - residue; 1662 if (pkt->sleep_time <= 0) { 1663 pkt->sleep_time = 0; 1664 atomic_inc(&pkt->run_sm); 1665 } 1666 } 1667 1668 if (kthread_should_stop()) 1669 break; 1670 } 1671 work_to_do: 1672 set_current_state(TASK_RUNNING); 1673 remove_wait_queue(&pd->wqueue, &wait); 1674 1675 if (kthread_should_stop()) 1676 break; 1677 1678 /* 1679 * if pkt_handle_queue returns true, we can queue 1680 * another request. 1681 */ 1682 while (pkt_handle_queue(pd)) 1683 ; 1684 1685 /* 1686 * Handle packet state machine 1687 */ 1688 pkt_handle_packets(pd); 1689 1690 /* 1691 * Handle iosched queues 1692 */ 1693 pkt_iosched_process_queue(pd); 1694 } 1695 1696 return 0; 1697 } 1698 1699 static void pkt_print_settings(struct pktcdvd_device *pd) 1700 { 1701 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable"); 1702 printk("%u blocks, ", pd->settings.size >> 2); 1703 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2'); 1704 } 1705 1706 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1707 { 1708 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1709 1710 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1711 cgc->cmd[2] = page_code | (page_control << 6); 1712 cgc->cmd[7] = cgc->buflen >> 8; 1713 cgc->cmd[8] = cgc->buflen & 0xff; 1714 cgc->data_direction = CGC_DATA_READ; 1715 return pkt_generic_packet(pd, cgc); 1716 } 1717 1718 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1719 { 1720 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1721 memset(cgc->buffer, 0, 2); 1722 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1723 cgc->cmd[1] = 0x10; /* PF */ 1724 cgc->cmd[7] = cgc->buflen >> 8; 1725 cgc->cmd[8] = cgc->buflen & 0xff; 1726 cgc->data_direction = CGC_DATA_WRITE; 1727 return pkt_generic_packet(pd, cgc); 1728 } 1729 1730 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1731 { 1732 struct packet_command cgc; 1733 int ret; 1734 1735 /* set up command and get the disc info */ 1736 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1737 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1738 cgc.cmd[8] = cgc.buflen = 2; 1739 cgc.quiet = 1; 1740 1741 if ((ret = pkt_generic_packet(pd, &cgc))) 1742 return ret; 1743 1744 /* not all drives have the same disc_info length, so requeue 1745 * packet with the length the drive tells us it can supply 1746 */ 1747 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1748 sizeof(di->disc_information_length); 1749 1750 if (cgc.buflen > sizeof(disc_information)) 1751 cgc.buflen = sizeof(disc_information); 1752 1753 cgc.cmd[8] = cgc.buflen; 1754 return pkt_generic_packet(pd, &cgc); 1755 } 1756 1757 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1758 { 1759 struct packet_command cgc; 1760 int ret; 1761 1762 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1763 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1764 cgc.cmd[1] = type & 3; 1765 cgc.cmd[4] = (track & 0xff00) >> 8; 1766 cgc.cmd[5] = track & 0xff; 1767 cgc.cmd[8] = 8; 1768 cgc.quiet = 1; 1769 1770 if ((ret = pkt_generic_packet(pd, &cgc))) 1771 return ret; 1772 1773 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1774 sizeof(ti->track_information_length); 1775 1776 if (cgc.buflen > sizeof(track_information)) 1777 cgc.buflen = sizeof(track_information); 1778 1779 cgc.cmd[8] = cgc.buflen; 1780 return pkt_generic_packet(pd, &cgc); 1781 } 1782 1783 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd, 1784 long *last_written) 1785 { 1786 disc_information di; 1787 track_information ti; 1788 __u32 last_track; 1789 int ret = -1; 1790 1791 if ((ret = pkt_get_disc_info(pd, &di))) 1792 return ret; 1793 1794 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1795 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1796 return ret; 1797 1798 /* if this track is blank, try the previous. */ 1799 if (ti.blank) { 1800 last_track--; 1801 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1802 return ret; 1803 } 1804 1805 /* if last recorded field is valid, return it. */ 1806 if (ti.lra_v) { 1807 *last_written = be32_to_cpu(ti.last_rec_address); 1808 } else { 1809 /* make it up instead */ 1810 *last_written = be32_to_cpu(ti.track_start) + 1811 be32_to_cpu(ti.track_size); 1812 if (ti.free_blocks) 1813 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1814 } 1815 return 0; 1816 } 1817 1818 /* 1819 * write mode select package based on pd->settings 1820 */ 1821 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd) 1822 { 1823 struct packet_command cgc; 1824 struct request_sense sense; 1825 write_param_page *wp; 1826 char buffer[128]; 1827 int ret, size; 1828 1829 /* doesn't apply to DVD+RW or DVD-RAM */ 1830 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1831 return 0; 1832 1833 memset(buffer, 0, sizeof(buffer)); 1834 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1835 cgc.sense = &sense; 1836 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1837 pkt_dump_sense(&cgc); 1838 return ret; 1839 } 1840 1841 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1842 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1843 if (size > sizeof(buffer)) 1844 size = sizeof(buffer); 1845 1846 /* 1847 * now get it all 1848 */ 1849 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1850 cgc.sense = &sense; 1851 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1852 pkt_dump_sense(&cgc); 1853 return ret; 1854 } 1855 1856 /* 1857 * write page is offset header + block descriptor length 1858 */ 1859 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1860 1861 wp->fp = pd->settings.fp; 1862 wp->track_mode = pd->settings.track_mode; 1863 wp->write_type = pd->settings.write_type; 1864 wp->data_block_type = pd->settings.block_mode; 1865 1866 wp->multi_session = 0; 1867 1868 #ifdef PACKET_USE_LS 1869 wp->link_size = 7; 1870 wp->ls_v = 1; 1871 #endif 1872 1873 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1874 wp->session_format = 0; 1875 wp->subhdr2 = 0x20; 1876 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1877 wp->session_format = 0x20; 1878 wp->subhdr2 = 8; 1879 #if 0 1880 wp->mcn[0] = 0x80; 1881 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1882 #endif 1883 } else { 1884 /* 1885 * paranoia 1886 */ 1887 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type); 1888 return 1; 1889 } 1890 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1891 1892 cgc.buflen = cgc.cmd[8] = size; 1893 if ((ret = pkt_mode_select(pd, &cgc))) { 1894 pkt_dump_sense(&cgc); 1895 return ret; 1896 } 1897 1898 pkt_print_settings(pd); 1899 return 0; 1900 } 1901 1902 /* 1903 * 1 -- we can write to this track, 0 -- we can't 1904 */ 1905 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1906 { 1907 switch (pd->mmc3_profile) { 1908 case 0x1a: /* DVD+RW */ 1909 case 0x12: /* DVD-RAM */ 1910 /* The track is always writable on DVD+RW/DVD-RAM */ 1911 return 1; 1912 default: 1913 break; 1914 } 1915 1916 if (!ti->packet || !ti->fp) 1917 return 0; 1918 1919 /* 1920 * "good" settings as per Mt Fuji. 1921 */ 1922 if (ti->rt == 0 && ti->blank == 0) 1923 return 1; 1924 1925 if (ti->rt == 0 && ti->blank == 1) 1926 return 1; 1927 1928 if (ti->rt == 1 && ti->blank == 0) 1929 return 1; 1930 1931 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1932 return 0; 1933 } 1934 1935 /* 1936 * 1 -- we can write to this disc, 0 -- we can't 1937 */ 1938 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1939 { 1940 switch (pd->mmc3_profile) { 1941 case 0x0a: /* CD-RW */ 1942 case 0xffff: /* MMC3 not supported */ 1943 break; 1944 case 0x1a: /* DVD+RW */ 1945 case 0x13: /* DVD-RW */ 1946 case 0x12: /* DVD-RAM */ 1947 return 1; 1948 default: 1949 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile); 1950 return 0; 1951 } 1952 1953 /* 1954 * for disc type 0xff we should probably reserve a new track. 1955 * but i'm not sure, should we leave this to user apps? probably. 1956 */ 1957 if (di->disc_type == 0xff) { 1958 printk(DRIVER_NAME": Unknown disc. No track?\n"); 1959 return 0; 1960 } 1961 1962 if (di->disc_type != 0x20 && di->disc_type != 0) { 1963 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type); 1964 return 0; 1965 } 1966 1967 if (di->erasable == 0) { 1968 printk(DRIVER_NAME": Disc not erasable\n"); 1969 return 0; 1970 } 1971 1972 if (di->border_status == PACKET_SESSION_RESERVED) { 1973 printk(DRIVER_NAME": Can't write to last track (reserved)\n"); 1974 return 0; 1975 } 1976 1977 return 1; 1978 } 1979 1980 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd) 1981 { 1982 struct packet_command cgc; 1983 unsigned char buf[12]; 1984 disc_information di; 1985 track_information ti; 1986 int ret, track; 1987 1988 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1989 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1990 cgc.cmd[8] = 8; 1991 ret = pkt_generic_packet(pd, &cgc); 1992 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1993 1994 memset(&di, 0, sizeof(disc_information)); 1995 memset(&ti, 0, sizeof(track_information)); 1996 1997 if ((ret = pkt_get_disc_info(pd, &di))) { 1998 printk("failed get_disc\n"); 1999 return ret; 2000 } 2001 2002 if (!pkt_writable_disc(pd, &di)) 2003 return -EROFS; 2004 2005 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 2006 2007 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 2008 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 2009 printk(DRIVER_NAME": failed get_track\n"); 2010 return ret; 2011 } 2012 2013 if (!pkt_writable_track(pd, &ti)) { 2014 printk(DRIVER_NAME": can't write to this track\n"); 2015 return -EROFS; 2016 } 2017 2018 /* 2019 * we keep packet size in 512 byte units, makes it easier to 2020 * deal with request calculations. 2021 */ 2022 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 2023 if (pd->settings.size == 0) { 2024 printk(DRIVER_NAME": detected zero packet size!\n"); 2025 return -ENXIO; 2026 } 2027 if (pd->settings.size > PACKET_MAX_SECTORS) { 2028 printk(DRIVER_NAME": packet size is too big\n"); 2029 return -EROFS; 2030 } 2031 pd->settings.fp = ti.fp; 2032 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 2033 2034 if (ti.nwa_v) { 2035 pd->nwa = be32_to_cpu(ti.next_writable); 2036 set_bit(PACKET_NWA_VALID, &pd->flags); 2037 } 2038 2039 /* 2040 * in theory we could use lra on -RW media as well and just zero 2041 * blocks that haven't been written yet, but in practice that 2042 * is just a no-go. we'll use that for -R, naturally. 2043 */ 2044 if (ti.lra_v) { 2045 pd->lra = be32_to_cpu(ti.last_rec_address); 2046 set_bit(PACKET_LRA_VALID, &pd->flags); 2047 } else { 2048 pd->lra = 0xffffffff; 2049 set_bit(PACKET_LRA_VALID, &pd->flags); 2050 } 2051 2052 /* 2053 * fine for now 2054 */ 2055 pd->settings.link_loss = 7; 2056 pd->settings.write_type = 0; /* packet */ 2057 pd->settings.track_mode = ti.track_mode; 2058 2059 /* 2060 * mode1 or mode2 disc 2061 */ 2062 switch (ti.data_mode) { 2063 case PACKET_MODE1: 2064 pd->settings.block_mode = PACKET_BLOCK_MODE1; 2065 break; 2066 case PACKET_MODE2: 2067 pd->settings.block_mode = PACKET_BLOCK_MODE2; 2068 break; 2069 default: 2070 printk(DRIVER_NAME": unknown data mode\n"); 2071 return -EROFS; 2072 } 2073 return 0; 2074 } 2075 2076 /* 2077 * enable/disable write caching on drive 2078 */ 2079 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd, 2080 int set) 2081 { 2082 struct packet_command cgc; 2083 struct request_sense sense; 2084 unsigned char buf[64]; 2085 int ret; 2086 2087 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 2088 cgc.sense = &sense; 2089 cgc.buflen = pd->mode_offset + 12; 2090 2091 /* 2092 * caching mode page might not be there, so quiet this command 2093 */ 2094 cgc.quiet = 1; 2095 2096 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 2097 return ret; 2098 2099 buf[pd->mode_offset + 10] |= (!!set << 2); 2100 2101 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 2102 ret = pkt_mode_select(pd, &cgc); 2103 if (ret) { 2104 printk(DRIVER_NAME": write caching control failed\n"); 2105 pkt_dump_sense(&cgc); 2106 } else if (!ret && set) 2107 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name); 2108 return ret; 2109 } 2110 2111 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 2112 { 2113 struct packet_command cgc; 2114 2115 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2116 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 2117 cgc.cmd[4] = lockflag ? 1 : 0; 2118 return pkt_generic_packet(pd, &cgc); 2119 } 2120 2121 /* 2122 * Returns drive maximum write speed 2123 */ 2124 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd, 2125 unsigned *write_speed) 2126 { 2127 struct packet_command cgc; 2128 struct request_sense sense; 2129 unsigned char buf[256+18]; 2130 unsigned char *cap_buf; 2131 int ret, offset; 2132 2133 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 2134 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 2135 cgc.sense = &sense; 2136 2137 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2138 if (ret) { 2139 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 2140 sizeof(struct mode_page_header); 2141 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2142 if (ret) { 2143 pkt_dump_sense(&cgc); 2144 return ret; 2145 } 2146 } 2147 2148 offset = 20; /* Obsoleted field, used by older drives */ 2149 if (cap_buf[1] >= 28) 2150 offset = 28; /* Current write speed selected */ 2151 if (cap_buf[1] >= 30) { 2152 /* If the drive reports at least one "Logical Unit Write 2153 * Speed Performance Descriptor Block", use the information 2154 * in the first block. (contains the highest speed) 2155 */ 2156 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 2157 if (num_spdb > 0) 2158 offset = 34; 2159 } 2160 2161 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 2162 return 0; 2163 } 2164 2165 /* These tables from cdrecord - I don't have orange book */ 2166 /* standard speed CD-RW (1-4x) */ 2167 static char clv_to_speed[16] = { 2168 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2169 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2170 }; 2171 /* high speed CD-RW (-10x) */ 2172 static char hs_clv_to_speed[16] = { 2173 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2174 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2175 }; 2176 /* ultra high speed CD-RW */ 2177 static char us_clv_to_speed[16] = { 2178 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2179 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 2180 }; 2181 2182 /* 2183 * reads the maximum media speed from ATIP 2184 */ 2185 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd, 2186 unsigned *speed) 2187 { 2188 struct packet_command cgc; 2189 struct request_sense sense; 2190 unsigned char buf[64]; 2191 unsigned int size, st, sp; 2192 int ret; 2193 2194 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 2195 cgc.sense = &sense; 2196 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2197 cgc.cmd[1] = 2; 2198 cgc.cmd[2] = 4; /* READ ATIP */ 2199 cgc.cmd[8] = 2; 2200 ret = pkt_generic_packet(pd, &cgc); 2201 if (ret) { 2202 pkt_dump_sense(&cgc); 2203 return ret; 2204 } 2205 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 2206 if (size > sizeof(buf)) 2207 size = sizeof(buf); 2208 2209 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2210 cgc.sense = &sense; 2211 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2212 cgc.cmd[1] = 2; 2213 cgc.cmd[2] = 4; 2214 cgc.cmd[8] = size; 2215 ret = pkt_generic_packet(pd, &cgc); 2216 if (ret) { 2217 pkt_dump_sense(&cgc); 2218 return ret; 2219 } 2220 2221 if (!(buf[6] & 0x40)) { 2222 printk(DRIVER_NAME": Disc type is not CD-RW\n"); 2223 return 1; 2224 } 2225 if (!(buf[6] & 0x4)) { 2226 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n"); 2227 return 1; 2228 } 2229 2230 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2231 2232 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2233 2234 /* Info from cdrecord */ 2235 switch (st) { 2236 case 0: /* standard speed */ 2237 *speed = clv_to_speed[sp]; 2238 break; 2239 case 1: /* high speed */ 2240 *speed = hs_clv_to_speed[sp]; 2241 break; 2242 case 2: /* ultra high speed */ 2243 *speed = us_clv_to_speed[sp]; 2244 break; 2245 default: 2246 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st); 2247 return 1; 2248 } 2249 if (*speed) { 2250 printk(DRIVER_NAME": Max. media speed: %d\n",*speed); 2251 return 0; 2252 } else { 2253 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st); 2254 return 1; 2255 } 2256 } 2257 2258 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd) 2259 { 2260 struct packet_command cgc; 2261 struct request_sense sense; 2262 int ret; 2263 2264 VPRINTK(DRIVER_NAME": Performing OPC\n"); 2265 2266 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2267 cgc.sense = &sense; 2268 cgc.timeout = 60*HZ; 2269 cgc.cmd[0] = GPCMD_SEND_OPC; 2270 cgc.cmd[1] = 1; 2271 if ((ret = pkt_generic_packet(pd, &cgc))) 2272 pkt_dump_sense(&cgc); 2273 return ret; 2274 } 2275 2276 static int pkt_open_write(struct pktcdvd_device *pd) 2277 { 2278 int ret; 2279 unsigned int write_speed, media_write_speed, read_speed; 2280 2281 if ((ret = pkt_probe_settings(pd))) { 2282 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name); 2283 return ret; 2284 } 2285 2286 if ((ret = pkt_set_write_settings(pd))) { 2287 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name); 2288 return -EIO; 2289 } 2290 2291 pkt_write_caching(pd, USE_WCACHING); 2292 2293 if ((ret = pkt_get_max_speed(pd, &write_speed))) 2294 write_speed = 16 * 177; 2295 switch (pd->mmc3_profile) { 2296 case 0x13: /* DVD-RW */ 2297 case 0x1a: /* DVD+RW */ 2298 case 0x12: /* DVD-RAM */ 2299 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed); 2300 break; 2301 default: 2302 if ((ret = pkt_media_speed(pd, &media_write_speed))) 2303 media_write_speed = 16; 2304 write_speed = min(write_speed, media_write_speed * 177); 2305 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176); 2306 break; 2307 } 2308 read_speed = write_speed; 2309 2310 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 2311 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name); 2312 return -EIO; 2313 } 2314 pd->write_speed = write_speed; 2315 pd->read_speed = read_speed; 2316 2317 if ((ret = pkt_perform_opc(pd))) { 2318 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name); 2319 } 2320 2321 return 0; 2322 } 2323 2324 /* 2325 * called at open time. 2326 */ 2327 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write) 2328 { 2329 int ret; 2330 long lba; 2331 struct request_queue *q; 2332 2333 /* 2334 * We need to re-open the cdrom device without O_NONBLOCK to be able 2335 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2336 * so bdget() can't fail. 2337 */ 2338 bdget(pd->bdev->bd_dev); 2339 if ((ret = blkdev_get(pd->bdev, FMODE_READ))) 2340 goto out; 2341 2342 if ((ret = bd_claim(pd->bdev, pd))) 2343 goto out_putdev; 2344 2345 if ((ret = pkt_get_last_written(pd, &lba))) { 2346 printk(DRIVER_NAME": pkt_get_last_written failed\n"); 2347 goto out_unclaim; 2348 } 2349 2350 set_capacity(pd->disk, lba << 2); 2351 set_capacity(pd->bdev->bd_disk, lba << 2); 2352 bd_set_size(pd->bdev, (loff_t)lba << 11); 2353 2354 q = bdev_get_queue(pd->bdev); 2355 if (write) { 2356 if ((ret = pkt_open_write(pd))) 2357 goto out_unclaim; 2358 /* 2359 * Some CDRW drives can not handle writes larger than one packet, 2360 * even if the size is a multiple of the packet size. 2361 */ 2362 spin_lock_irq(q->queue_lock); 2363 blk_queue_max_sectors(q, pd->settings.size); 2364 spin_unlock_irq(q->queue_lock); 2365 set_bit(PACKET_WRITABLE, &pd->flags); 2366 } else { 2367 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2368 clear_bit(PACKET_WRITABLE, &pd->flags); 2369 } 2370 2371 if ((ret = pkt_set_segment_merging(pd, q))) 2372 goto out_unclaim; 2373 2374 if (write) { 2375 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2376 printk(DRIVER_NAME": not enough memory for buffers\n"); 2377 ret = -ENOMEM; 2378 goto out_unclaim; 2379 } 2380 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1); 2381 } 2382 2383 return 0; 2384 2385 out_unclaim: 2386 bd_release(pd->bdev); 2387 out_putdev: 2388 blkdev_put(pd->bdev, FMODE_READ); 2389 out: 2390 return ret; 2391 } 2392 2393 /* 2394 * called when the device is closed. makes sure that the device flushes 2395 * the internal cache before we close. 2396 */ 2397 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2398 { 2399 if (flush && pkt_flush_cache(pd)) 2400 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name); 2401 2402 pkt_lock_door(pd, 0); 2403 2404 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2405 bd_release(pd->bdev); 2406 blkdev_put(pd->bdev, FMODE_READ); 2407 2408 pkt_shrink_pktlist(pd); 2409 } 2410 2411 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor) 2412 { 2413 if (dev_minor >= MAX_WRITERS) 2414 return NULL; 2415 return pkt_devs[dev_minor]; 2416 } 2417 2418 static int pkt_open(struct block_device *bdev, fmode_t mode) 2419 { 2420 struct pktcdvd_device *pd = NULL; 2421 int ret; 2422 2423 VPRINTK(DRIVER_NAME": entering open\n"); 2424 2425 mutex_lock(&ctl_mutex); 2426 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev)); 2427 if (!pd) { 2428 ret = -ENODEV; 2429 goto out; 2430 } 2431 BUG_ON(pd->refcnt < 0); 2432 2433 pd->refcnt++; 2434 if (pd->refcnt > 1) { 2435 if ((mode & FMODE_WRITE) && 2436 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2437 ret = -EBUSY; 2438 goto out_dec; 2439 } 2440 } else { 2441 ret = pkt_open_dev(pd, mode & FMODE_WRITE); 2442 if (ret) 2443 goto out_dec; 2444 /* 2445 * needed here as well, since ext2 (among others) may change 2446 * the blocksize at mount time 2447 */ 2448 set_blocksize(bdev, CD_FRAMESIZE); 2449 } 2450 2451 mutex_unlock(&ctl_mutex); 2452 return 0; 2453 2454 out_dec: 2455 pd->refcnt--; 2456 out: 2457 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret); 2458 mutex_unlock(&ctl_mutex); 2459 return ret; 2460 } 2461 2462 static int pkt_close(struct gendisk *disk, fmode_t mode) 2463 { 2464 struct pktcdvd_device *pd = disk->private_data; 2465 int ret = 0; 2466 2467 mutex_lock(&ctl_mutex); 2468 pd->refcnt--; 2469 BUG_ON(pd->refcnt < 0); 2470 if (pd->refcnt == 0) { 2471 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2472 pkt_release_dev(pd, flush); 2473 } 2474 mutex_unlock(&ctl_mutex); 2475 return ret; 2476 } 2477 2478 2479 static void pkt_end_io_read_cloned(struct bio *bio, int err) 2480 { 2481 struct packet_stacked_data *psd = bio->bi_private; 2482 struct pktcdvd_device *pd = psd->pd; 2483 2484 bio_put(bio); 2485 bio_endio(psd->bio, err); 2486 mempool_free(psd, psd_pool); 2487 pkt_bio_finished(pd); 2488 } 2489 2490 static int pkt_make_request(struct request_queue *q, struct bio *bio) 2491 { 2492 struct pktcdvd_device *pd; 2493 char b[BDEVNAME_SIZE]; 2494 sector_t zone; 2495 struct packet_data *pkt; 2496 int was_empty, blocked_bio; 2497 struct pkt_rb_node *node; 2498 2499 pd = q->queuedata; 2500 if (!pd) { 2501 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b)); 2502 goto end_io; 2503 } 2504 2505 /* 2506 * Clone READ bios so we can have our own bi_end_io callback. 2507 */ 2508 if (bio_data_dir(bio) == READ) { 2509 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); 2510 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2511 2512 psd->pd = pd; 2513 psd->bio = bio; 2514 cloned_bio->bi_bdev = pd->bdev; 2515 cloned_bio->bi_private = psd; 2516 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2517 pd->stats.secs_r += bio->bi_size >> 9; 2518 pkt_queue_bio(pd, cloned_bio); 2519 return 0; 2520 } 2521 2522 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2523 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n", 2524 pd->name, (unsigned long long)bio->bi_sector); 2525 goto end_io; 2526 } 2527 2528 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) { 2529 printk(DRIVER_NAME": wrong bio size\n"); 2530 goto end_io; 2531 } 2532 2533 blk_queue_bounce(q, &bio); 2534 2535 zone = ZONE(bio->bi_sector, pd); 2536 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n", 2537 (unsigned long long)bio->bi_sector, 2538 (unsigned long long)(bio->bi_sector + bio_sectors(bio))); 2539 2540 /* Check if we have to split the bio */ 2541 { 2542 struct bio_pair *bp; 2543 sector_t last_zone; 2544 int first_sectors; 2545 2546 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd); 2547 if (last_zone != zone) { 2548 BUG_ON(last_zone != zone + pd->settings.size); 2549 first_sectors = last_zone - bio->bi_sector; 2550 bp = bio_split(bio, first_sectors); 2551 BUG_ON(!bp); 2552 pkt_make_request(q, &bp->bio1); 2553 pkt_make_request(q, &bp->bio2); 2554 bio_pair_release(bp); 2555 return 0; 2556 } 2557 } 2558 2559 /* 2560 * If we find a matching packet in state WAITING or READ_WAIT, we can 2561 * just append this bio to that packet. 2562 */ 2563 spin_lock(&pd->cdrw.active_list_lock); 2564 blocked_bio = 0; 2565 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2566 if (pkt->sector == zone) { 2567 spin_lock(&pkt->lock); 2568 if ((pkt->state == PACKET_WAITING_STATE) || 2569 (pkt->state == PACKET_READ_WAIT_STATE)) { 2570 pkt_add_list_last(bio, &pkt->orig_bios, 2571 &pkt->orig_bios_tail); 2572 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 2573 if ((pkt->write_size >= pkt->frames) && 2574 (pkt->state == PACKET_WAITING_STATE)) { 2575 atomic_inc(&pkt->run_sm); 2576 wake_up(&pd->wqueue); 2577 } 2578 spin_unlock(&pkt->lock); 2579 spin_unlock(&pd->cdrw.active_list_lock); 2580 return 0; 2581 } else { 2582 blocked_bio = 1; 2583 } 2584 spin_unlock(&pkt->lock); 2585 } 2586 } 2587 spin_unlock(&pd->cdrw.active_list_lock); 2588 2589 /* 2590 * Test if there is enough room left in the bio work queue 2591 * (queue size >= congestion on mark). 2592 * If not, wait till the work queue size is below the congestion off mark. 2593 */ 2594 spin_lock(&pd->lock); 2595 if (pd->write_congestion_on > 0 2596 && pd->bio_queue_size >= pd->write_congestion_on) { 2597 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC); 2598 do { 2599 spin_unlock(&pd->lock); 2600 congestion_wait(BLK_RW_ASYNC, HZ); 2601 spin_lock(&pd->lock); 2602 } while(pd->bio_queue_size > pd->write_congestion_off); 2603 } 2604 spin_unlock(&pd->lock); 2605 2606 /* 2607 * No matching packet found. Store the bio in the work queue. 2608 */ 2609 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2610 node->bio = bio; 2611 spin_lock(&pd->lock); 2612 BUG_ON(pd->bio_queue_size < 0); 2613 was_empty = (pd->bio_queue_size == 0); 2614 pkt_rbtree_insert(pd, node); 2615 spin_unlock(&pd->lock); 2616 2617 /* 2618 * Wake up the worker thread. 2619 */ 2620 atomic_set(&pd->scan_queue, 1); 2621 if (was_empty) { 2622 /* This wake_up is required for correct operation */ 2623 wake_up(&pd->wqueue); 2624 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2625 /* 2626 * This wake up is not required for correct operation, 2627 * but improves performance in some cases. 2628 */ 2629 wake_up(&pd->wqueue); 2630 } 2631 return 0; 2632 end_io: 2633 bio_io_error(bio); 2634 return 0; 2635 } 2636 2637 2638 2639 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 2640 struct bio_vec *bvec) 2641 { 2642 struct pktcdvd_device *pd = q->queuedata; 2643 sector_t zone = ZONE(bmd->bi_sector, pd); 2644 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size; 2645 int remaining = (pd->settings.size << 9) - used; 2646 int remaining2; 2647 2648 /* 2649 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet 2650 * boundary, pkt_make_request() will split the bio. 2651 */ 2652 remaining2 = PAGE_SIZE - bmd->bi_size; 2653 remaining = max(remaining, remaining2); 2654 2655 BUG_ON(remaining < 0); 2656 return remaining; 2657 } 2658 2659 static void pkt_init_queue(struct pktcdvd_device *pd) 2660 { 2661 struct request_queue *q = pd->disk->queue; 2662 2663 blk_queue_make_request(q, pkt_make_request); 2664 blk_queue_logical_block_size(q, CD_FRAMESIZE); 2665 blk_queue_max_sectors(q, PACKET_MAX_SECTORS); 2666 blk_queue_merge_bvec(q, pkt_merge_bvec); 2667 q->queuedata = pd; 2668 } 2669 2670 static int pkt_seq_show(struct seq_file *m, void *p) 2671 { 2672 struct pktcdvd_device *pd = m->private; 2673 char *msg; 2674 char bdev_buf[BDEVNAME_SIZE]; 2675 int states[PACKET_NUM_STATES]; 2676 2677 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2678 bdevname(pd->bdev, bdev_buf)); 2679 2680 seq_printf(m, "\nSettings:\n"); 2681 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2682 2683 if (pd->settings.write_type == 0) 2684 msg = "Packet"; 2685 else 2686 msg = "Unknown"; 2687 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2688 2689 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2690 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2691 2692 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2693 2694 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2695 msg = "Mode 1"; 2696 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2697 msg = "Mode 2"; 2698 else 2699 msg = "Unknown"; 2700 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2701 2702 seq_printf(m, "\nStatistics:\n"); 2703 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2704 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2705 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2706 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2707 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2708 2709 seq_printf(m, "\nMisc:\n"); 2710 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2711 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2712 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2713 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2714 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2715 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2716 2717 seq_printf(m, "\nQueue state:\n"); 2718 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2719 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2720 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2721 2722 pkt_count_states(pd, states); 2723 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2724 states[0], states[1], states[2], states[3], states[4], states[5]); 2725 2726 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 2727 pd->write_congestion_off, 2728 pd->write_congestion_on); 2729 return 0; 2730 } 2731 2732 static int pkt_seq_open(struct inode *inode, struct file *file) 2733 { 2734 return single_open(file, pkt_seq_show, PDE(inode)->data); 2735 } 2736 2737 static const struct file_operations pkt_proc_fops = { 2738 .open = pkt_seq_open, 2739 .read = seq_read, 2740 .llseek = seq_lseek, 2741 .release = single_release 2742 }; 2743 2744 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2745 { 2746 int i; 2747 int ret = 0; 2748 char b[BDEVNAME_SIZE]; 2749 struct block_device *bdev; 2750 2751 if (pd->pkt_dev == dev) { 2752 printk(DRIVER_NAME": Recursive setup not allowed\n"); 2753 return -EBUSY; 2754 } 2755 for (i = 0; i < MAX_WRITERS; i++) { 2756 struct pktcdvd_device *pd2 = pkt_devs[i]; 2757 if (!pd2) 2758 continue; 2759 if (pd2->bdev->bd_dev == dev) { 2760 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b)); 2761 return -EBUSY; 2762 } 2763 if (pd2->pkt_dev == dev) { 2764 printk(DRIVER_NAME": Can't chain pktcdvd devices\n"); 2765 return -EBUSY; 2766 } 2767 } 2768 2769 bdev = bdget(dev); 2770 if (!bdev) 2771 return -ENOMEM; 2772 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY); 2773 if (ret) 2774 return ret; 2775 2776 /* This is safe, since we have a reference from open(). */ 2777 __module_get(THIS_MODULE); 2778 2779 pd->bdev = bdev; 2780 set_blocksize(bdev, CD_FRAMESIZE); 2781 2782 pkt_init_queue(pd); 2783 2784 atomic_set(&pd->cdrw.pending_bios, 0); 2785 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2786 if (IS_ERR(pd->cdrw.thread)) { 2787 printk(DRIVER_NAME": can't start kernel thread\n"); 2788 ret = -ENOMEM; 2789 goto out_mem; 2790 } 2791 2792 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd); 2793 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b)); 2794 return 0; 2795 2796 out_mem: 2797 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY); 2798 /* This is safe: open() is still holding a reference. */ 2799 module_put(THIS_MODULE); 2800 return ret; 2801 } 2802 2803 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) 2804 { 2805 struct pktcdvd_device *pd = bdev->bd_disk->private_data; 2806 2807 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, 2808 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2809 2810 switch (cmd) { 2811 case CDROMEJECT: 2812 /* 2813 * The door gets locked when the device is opened, so we 2814 * have to unlock it or else the eject command fails. 2815 */ 2816 if (pd->refcnt == 1) 2817 pkt_lock_door(pd, 0); 2818 /* fallthru */ 2819 /* 2820 * forward selected CDROM ioctls to CD-ROM, for UDF 2821 */ 2822 case CDROMMULTISESSION: 2823 case CDROMREADTOCENTRY: 2824 case CDROM_LAST_WRITTEN: 2825 case CDROM_SEND_PACKET: 2826 case SCSI_IOCTL_SEND_COMMAND: 2827 return __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg); 2828 2829 default: 2830 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd); 2831 return -ENOTTY; 2832 } 2833 2834 return 0; 2835 } 2836 2837 static int pkt_media_changed(struct gendisk *disk) 2838 { 2839 struct pktcdvd_device *pd = disk->private_data; 2840 struct gendisk *attached_disk; 2841 2842 if (!pd) 2843 return 0; 2844 if (!pd->bdev) 2845 return 0; 2846 attached_disk = pd->bdev->bd_disk; 2847 if (!attached_disk) 2848 return 0; 2849 return attached_disk->fops->media_changed(attached_disk); 2850 } 2851 2852 static const struct block_device_operations pktcdvd_ops = { 2853 .owner = THIS_MODULE, 2854 .open = pkt_open, 2855 .release = pkt_close, 2856 .locked_ioctl = pkt_ioctl, 2857 .media_changed = pkt_media_changed, 2858 }; 2859 2860 static char *pktcdvd_devnode(struct gendisk *gd, mode_t *mode) 2861 { 2862 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name); 2863 } 2864 2865 /* 2866 * Set up mapping from pktcdvd device to CD-ROM device. 2867 */ 2868 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2869 { 2870 int idx; 2871 int ret = -ENOMEM; 2872 struct pktcdvd_device *pd; 2873 struct gendisk *disk; 2874 2875 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2876 2877 for (idx = 0; idx < MAX_WRITERS; idx++) 2878 if (!pkt_devs[idx]) 2879 break; 2880 if (idx == MAX_WRITERS) { 2881 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS); 2882 ret = -EBUSY; 2883 goto out_mutex; 2884 } 2885 2886 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2887 if (!pd) 2888 goto out_mutex; 2889 2890 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE, 2891 sizeof(struct pkt_rb_node)); 2892 if (!pd->rb_pool) 2893 goto out_mem; 2894 2895 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2896 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2897 spin_lock_init(&pd->cdrw.active_list_lock); 2898 2899 spin_lock_init(&pd->lock); 2900 spin_lock_init(&pd->iosched.lock); 2901 sprintf(pd->name, DRIVER_NAME"%d", idx); 2902 init_waitqueue_head(&pd->wqueue); 2903 pd->bio_queue = RB_ROOT; 2904 2905 pd->write_congestion_on = write_congestion_on; 2906 pd->write_congestion_off = write_congestion_off; 2907 2908 disk = alloc_disk(1); 2909 if (!disk) 2910 goto out_mem; 2911 pd->disk = disk; 2912 disk->major = pktdev_major; 2913 disk->first_minor = idx; 2914 disk->fops = &pktcdvd_ops; 2915 disk->flags = GENHD_FL_REMOVABLE; 2916 strcpy(disk->disk_name, pd->name); 2917 disk->devnode = pktcdvd_devnode; 2918 disk->private_data = pd; 2919 disk->queue = blk_alloc_queue(GFP_KERNEL); 2920 if (!disk->queue) 2921 goto out_mem2; 2922 2923 pd->pkt_dev = MKDEV(pktdev_major, idx); 2924 ret = pkt_new_dev(pd, dev); 2925 if (ret) 2926 goto out_new_dev; 2927 2928 add_disk(disk); 2929 2930 pkt_sysfs_dev_new(pd); 2931 pkt_debugfs_dev_new(pd); 2932 2933 pkt_devs[idx] = pd; 2934 if (pkt_dev) 2935 *pkt_dev = pd->pkt_dev; 2936 2937 mutex_unlock(&ctl_mutex); 2938 return 0; 2939 2940 out_new_dev: 2941 blk_cleanup_queue(disk->queue); 2942 out_mem2: 2943 put_disk(disk); 2944 out_mem: 2945 if (pd->rb_pool) 2946 mempool_destroy(pd->rb_pool); 2947 kfree(pd); 2948 out_mutex: 2949 mutex_unlock(&ctl_mutex); 2950 printk(DRIVER_NAME": setup of pktcdvd device failed\n"); 2951 return ret; 2952 } 2953 2954 /* 2955 * Tear down mapping from pktcdvd device to CD-ROM device. 2956 */ 2957 static int pkt_remove_dev(dev_t pkt_dev) 2958 { 2959 struct pktcdvd_device *pd; 2960 int idx; 2961 int ret = 0; 2962 2963 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2964 2965 for (idx = 0; idx < MAX_WRITERS; idx++) { 2966 pd = pkt_devs[idx]; 2967 if (pd && (pd->pkt_dev == pkt_dev)) 2968 break; 2969 } 2970 if (idx == MAX_WRITERS) { 2971 DPRINTK(DRIVER_NAME": dev not setup\n"); 2972 ret = -ENXIO; 2973 goto out; 2974 } 2975 2976 if (pd->refcnt > 0) { 2977 ret = -EBUSY; 2978 goto out; 2979 } 2980 if (!IS_ERR(pd->cdrw.thread)) 2981 kthread_stop(pd->cdrw.thread); 2982 2983 pkt_devs[idx] = NULL; 2984 2985 pkt_debugfs_dev_remove(pd); 2986 pkt_sysfs_dev_remove(pd); 2987 2988 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY); 2989 2990 remove_proc_entry(pd->name, pkt_proc); 2991 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name); 2992 2993 del_gendisk(pd->disk); 2994 blk_cleanup_queue(pd->disk->queue); 2995 put_disk(pd->disk); 2996 2997 mempool_destroy(pd->rb_pool); 2998 kfree(pd); 2999 3000 /* This is safe: open() is still holding a reference. */ 3001 module_put(THIS_MODULE); 3002 3003 out: 3004 mutex_unlock(&ctl_mutex); 3005 return ret; 3006 } 3007 3008 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 3009 { 3010 struct pktcdvd_device *pd; 3011 3012 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 3013 3014 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 3015 if (pd) { 3016 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 3017 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 3018 } else { 3019 ctrl_cmd->dev = 0; 3020 ctrl_cmd->pkt_dev = 0; 3021 } 3022 ctrl_cmd->num_devices = MAX_WRITERS; 3023 3024 mutex_unlock(&ctl_mutex); 3025 } 3026 3027 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 3028 { 3029 void __user *argp = (void __user *)arg; 3030 struct pkt_ctrl_command ctrl_cmd; 3031 int ret = 0; 3032 dev_t pkt_dev = 0; 3033 3034 if (cmd != PACKET_CTRL_CMD) 3035 return -ENOTTY; 3036 3037 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 3038 return -EFAULT; 3039 3040 switch (ctrl_cmd.command) { 3041 case PKT_CTRL_CMD_SETUP: 3042 if (!capable(CAP_SYS_ADMIN)) 3043 return -EPERM; 3044 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 3045 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 3046 break; 3047 case PKT_CTRL_CMD_TEARDOWN: 3048 if (!capable(CAP_SYS_ADMIN)) 3049 return -EPERM; 3050 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 3051 break; 3052 case PKT_CTRL_CMD_STATUS: 3053 pkt_get_status(&ctrl_cmd); 3054 break; 3055 default: 3056 return -ENOTTY; 3057 } 3058 3059 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 3060 return -EFAULT; 3061 return ret; 3062 } 3063 3064 3065 static const struct file_operations pkt_ctl_fops = { 3066 .ioctl = pkt_ctl_ioctl, 3067 .owner = THIS_MODULE, 3068 }; 3069 3070 static struct miscdevice pkt_misc = { 3071 .minor = MISC_DYNAMIC_MINOR, 3072 .name = DRIVER_NAME, 3073 .nodename = "pktcdvd/control", 3074 .fops = &pkt_ctl_fops 3075 }; 3076 3077 static int __init pkt_init(void) 3078 { 3079 int ret; 3080 3081 mutex_init(&ctl_mutex); 3082 3083 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE, 3084 sizeof(struct packet_stacked_data)); 3085 if (!psd_pool) 3086 return -ENOMEM; 3087 3088 ret = register_blkdev(pktdev_major, DRIVER_NAME); 3089 if (ret < 0) { 3090 printk(DRIVER_NAME": Unable to register block device\n"); 3091 goto out2; 3092 } 3093 if (!pktdev_major) 3094 pktdev_major = ret; 3095 3096 ret = pkt_sysfs_init(); 3097 if (ret) 3098 goto out; 3099 3100 pkt_debugfs_init(); 3101 3102 ret = misc_register(&pkt_misc); 3103 if (ret) { 3104 printk(DRIVER_NAME": Unable to register misc device\n"); 3105 goto out_misc; 3106 } 3107 3108 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL); 3109 3110 return 0; 3111 3112 out_misc: 3113 pkt_debugfs_cleanup(); 3114 pkt_sysfs_cleanup(); 3115 out: 3116 unregister_blkdev(pktdev_major, DRIVER_NAME); 3117 out2: 3118 mempool_destroy(psd_pool); 3119 return ret; 3120 } 3121 3122 static void __exit pkt_exit(void) 3123 { 3124 remove_proc_entry("driver/"DRIVER_NAME, NULL); 3125 misc_deregister(&pkt_misc); 3126 3127 pkt_debugfs_cleanup(); 3128 pkt_sysfs_cleanup(); 3129 3130 unregister_blkdev(pktdev_major, DRIVER_NAME); 3131 mempool_destroy(psd_pool); 3132 } 3133 3134 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 3135 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 3136 MODULE_LICENSE("GPL"); 3137 3138 module_init(pkt_init); 3139 module_exit(pkt_exit); 3140