xref: /openbmc/linux/drivers/block/pktcdvd.c (revision 9be08a27)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom make_request_fn function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <linux/backing-dev.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_ioctl.h>
67 #include <scsi/scsi.h>
68 #include <linux/debugfs.h>
69 #include <linux/device.h>
70 #include <linux/nospec.h>
71 #include <linux/uaccess.h>
72 
73 #define DRIVER_NAME	"pktcdvd"
74 
75 #define pkt_err(pd, fmt, ...)						\
76 	pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
77 #define pkt_notice(pd, fmt, ...)					\
78 	pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
79 #define pkt_info(pd, fmt, ...)						\
80 	pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
81 
82 #define pkt_dbg(level, pd, fmt, ...)					\
83 do {									\
84 	if (level == 2 && PACKET_DEBUG >= 2)				\
85 		pr_notice("%s: %s():" fmt,				\
86 			  pd->name, __func__, ##__VA_ARGS__);		\
87 	else if (level == 1 && PACKET_DEBUG >= 1)			\
88 		pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__);		\
89 } while (0)
90 
91 #define MAX_SPEED 0xffff
92 
93 static DEFINE_MUTEX(pktcdvd_mutex);
94 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
95 static struct proc_dir_entry *pkt_proc;
96 static int pktdev_major;
97 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
98 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
99 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
100 static mempool_t psd_pool;
101 static struct bio_set pkt_bio_set;
102 
103 static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
104 static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
105 
106 /* forward declaration */
107 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
108 static int pkt_remove_dev(dev_t pkt_dev);
109 static int pkt_seq_show(struct seq_file *m, void *p);
110 
111 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
112 {
113 	return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
114 }
115 
116 /*
117  * create and register a pktcdvd kernel object.
118  */
119 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
120 					const char* name,
121 					struct kobject* parent,
122 					struct kobj_type* ktype)
123 {
124 	struct pktcdvd_kobj *p;
125 	int error;
126 
127 	p = kzalloc(sizeof(*p), GFP_KERNEL);
128 	if (!p)
129 		return NULL;
130 	p->pd = pd;
131 	error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
132 	if (error) {
133 		kobject_put(&p->kobj);
134 		return NULL;
135 	}
136 	kobject_uevent(&p->kobj, KOBJ_ADD);
137 	return p;
138 }
139 /*
140  * remove a pktcdvd kernel object.
141  */
142 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
143 {
144 	if (p)
145 		kobject_put(&p->kobj);
146 }
147 /*
148  * default release function for pktcdvd kernel objects.
149  */
150 static void pkt_kobj_release(struct kobject *kobj)
151 {
152 	kfree(to_pktcdvdkobj(kobj));
153 }
154 
155 
156 /**********************************************************
157  *
158  * sysfs interface for pktcdvd
159  * by (C) 2006  Thomas Maier <balagi@justmail.de>
160  *
161  **********************************************************/
162 
163 #define DEF_ATTR(_obj,_name,_mode) \
164 	static struct attribute _obj = { .name = _name, .mode = _mode }
165 
166 /**********************************************************
167   /sys/class/pktcdvd/pktcdvd[0-7]/
168                      stat/reset
169                      stat/packets_started
170                      stat/packets_finished
171                      stat/kb_written
172                      stat/kb_read
173                      stat/kb_read_gather
174                      write_queue/size
175                      write_queue/congestion_off
176                      write_queue/congestion_on
177  **********************************************************/
178 
179 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
180 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
181 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
182 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
183 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
184 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
185 
186 static struct attribute *kobj_pkt_attrs_stat[] = {
187 	&kobj_pkt_attr_st1,
188 	&kobj_pkt_attr_st2,
189 	&kobj_pkt_attr_st3,
190 	&kobj_pkt_attr_st4,
191 	&kobj_pkt_attr_st5,
192 	&kobj_pkt_attr_st6,
193 	NULL
194 };
195 
196 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
197 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
198 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
199 
200 static struct attribute *kobj_pkt_attrs_wqueue[] = {
201 	&kobj_pkt_attr_wq1,
202 	&kobj_pkt_attr_wq2,
203 	&kobj_pkt_attr_wq3,
204 	NULL
205 };
206 
207 static ssize_t kobj_pkt_show(struct kobject *kobj,
208 			struct attribute *attr, char *data)
209 {
210 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
211 	int n = 0;
212 	int v;
213 	if (strcmp(attr->name, "packets_started") == 0) {
214 		n = sprintf(data, "%lu\n", pd->stats.pkt_started);
215 
216 	} else if (strcmp(attr->name, "packets_finished") == 0) {
217 		n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
218 
219 	} else if (strcmp(attr->name, "kb_written") == 0) {
220 		n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
221 
222 	} else if (strcmp(attr->name, "kb_read") == 0) {
223 		n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
224 
225 	} else if (strcmp(attr->name, "kb_read_gather") == 0) {
226 		n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
227 
228 	} else if (strcmp(attr->name, "size") == 0) {
229 		spin_lock(&pd->lock);
230 		v = pd->bio_queue_size;
231 		spin_unlock(&pd->lock);
232 		n = sprintf(data, "%d\n", v);
233 
234 	} else if (strcmp(attr->name, "congestion_off") == 0) {
235 		spin_lock(&pd->lock);
236 		v = pd->write_congestion_off;
237 		spin_unlock(&pd->lock);
238 		n = sprintf(data, "%d\n", v);
239 
240 	} else if (strcmp(attr->name, "congestion_on") == 0) {
241 		spin_lock(&pd->lock);
242 		v = pd->write_congestion_on;
243 		spin_unlock(&pd->lock);
244 		n = sprintf(data, "%d\n", v);
245 	}
246 	return n;
247 }
248 
249 static void init_write_congestion_marks(int* lo, int* hi)
250 {
251 	if (*hi > 0) {
252 		*hi = max(*hi, 500);
253 		*hi = min(*hi, 1000000);
254 		if (*lo <= 0)
255 			*lo = *hi - 100;
256 		else {
257 			*lo = min(*lo, *hi - 100);
258 			*lo = max(*lo, 100);
259 		}
260 	} else {
261 		*hi = -1;
262 		*lo = -1;
263 	}
264 }
265 
266 static ssize_t kobj_pkt_store(struct kobject *kobj,
267 			struct attribute *attr,
268 			const char *data, size_t len)
269 {
270 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
271 	int val;
272 
273 	if (strcmp(attr->name, "reset") == 0 && len > 0) {
274 		pd->stats.pkt_started = 0;
275 		pd->stats.pkt_ended = 0;
276 		pd->stats.secs_w = 0;
277 		pd->stats.secs_rg = 0;
278 		pd->stats.secs_r = 0;
279 
280 	} else if (strcmp(attr->name, "congestion_off") == 0
281 		   && sscanf(data, "%d", &val) == 1) {
282 		spin_lock(&pd->lock);
283 		pd->write_congestion_off = val;
284 		init_write_congestion_marks(&pd->write_congestion_off,
285 					&pd->write_congestion_on);
286 		spin_unlock(&pd->lock);
287 
288 	} else if (strcmp(attr->name, "congestion_on") == 0
289 		   && sscanf(data, "%d", &val) == 1) {
290 		spin_lock(&pd->lock);
291 		pd->write_congestion_on = val;
292 		init_write_congestion_marks(&pd->write_congestion_off,
293 					&pd->write_congestion_on);
294 		spin_unlock(&pd->lock);
295 	}
296 	return len;
297 }
298 
299 static const struct sysfs_ops kobj_pkt_ops = {
300 	.show = kobj_pkt_show,
301 	.store = kobj_pkt_store
302 };
303 static struct kobj_type kobj_pkt_type_stat = {
304 	.release = pkt_kobj_release,
305 	.sysfs_ops = &kobj_pkt_ops,
306 	.default_attrs = kobj_pkt_attrs_stat
307 };
308 static struct kobj_type kobj_pkt_type_wqueue = {
309 	.release = pkt_kobj_release,
310 	.sysfs_ops = &kobj_pkt_ops,
311 	.default_attrs = kobj_pkt_attrs_wqueue
312 };
313 
314 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
315 {
316 	if (class_pktcdvd) {
317 		pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
318 					"%s", pd->name);
319 		if (IS_ERR(pd->dev))
320 			pd->dev = NULL;
321 	}
322 	if (pd->dev) {
323 		pd->kobj_stat = pkt_kobj_create(pd, "stat",
324 					&pd->dev->kobj,
325 					&kobj_pkt_type_stat);
326 		pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
327 					&pd->dev->kobj,
328 					&kobj_pkt_type_wqueue);
329 	}
330 }
331 
332 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
333 {
334 	pkt_kobj_remove(pd->kobj_stat);
335 	pkt_kobj_remove(pd->kobj_wqueue);
336 	if (class_pktcdvd)
337 		device_unregister(pd->dev);
338 }
339 
340 
341 /********************************************************************
342   /sys/class/pktcdvd/
343                      add            map block device
344                      remove         unmap packet dev
345                      device_map     show mappings
346  *******************************************************************/
347 
348 static void class_pktcdvd_release(struct class *cls)
349 {
350 	kfree(cls);
351 }
352 
353 static ssize_t device_map_show(struct class *c, struct class_attribute *attr,
354 			       char *data)
355 {
356 	int n = 0;
357 	int idx;
358 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
359 	for (idx = 0; idx < MAX_WRITERS; idx++) {
360 		struct pktcdvd_device *pd = pkt_devs[idx];
361 		if (!pd)
362 			continue;
363 		n += sprintf(data+n, "%s %u:%u %u:%u\n",
364 			pd->name,
365 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
366 			MAJOR(pd->bdev->bd_dev),
367 			MINOR(pd->bdev->bd_dev));
368 	}
369 	mutex_unlock(&ctl_mutex);
370 	return n;
371 }
372 static CLASS_ATTR_RO(device_map);
373 
374 static ssize_t add_store(struct class *c, struct class_attribute *attr,
375 			 const char *buf, size_t count)
376 {
377 	unsigned int major, minor;
378 
379 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
380 		/* pkt_setup_dev() expects caller to hold reference to self */
381 		if (!try_module_get(THIS_MODULE))
382 			return -ENODEV;
383 
384 		pkt_setup_dev(MKDEV(major, minor), NULL);
385 
386 		module_put(THIS_MODULE);
387 
388 		return count;
389 	}
390 
391 	return -EINVAL;
392 }
393 static CLASS_ATTR_WO(add);
394 
395 static ssize_t remove_store(struct class *c, struct class_attribute *attr,
396 			    const char *buf, size_t count)
397 {
398 	unsigned int major, minor;
399 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
400 		pkt_remove_dev(MKDEV(major, minor));
401 		return count;
402 	}
403 	return -EINVAL;
404 }
405 static CLASS_ATTR_WO(remove);
406 
407 static struct attribute *class_pktcdvd_attrs[] = {
408 	&class_attr_add.attr,
409 	&class_attr_remove.attr,
410 	&class_attr_device_map.attr,
411 	NULL,
412 };
413 ATTRIBUTE_GROUPS(class_pktcdvd);
414 
415 static int pkt_sysfs_init(void)
416 {
417 	int ret = 0;
418 
419 	/*
420 	 * create control files in sysfs
421 	 * /sys/class/pktcdvd/...
422 	 */
423 	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
424 	if (!class_pktcdvd)
425 		return -ENOMEM;
426 	class_pktcdvd->name = DRIVER_NAME;
427 	class_pktcdvd->owner = THIS_MODULE;
428 	class_pktcdvd->class_release = class_pktcdvd_release;
429 	class_pktcdvd->class_groups = class_pktcdvd_groups;
430 	ret = class_register(class_pktcdvd);
431 	if (ret) {
432 		kfree(class_pktcdvd);
433 		class_pktcdvd = NULL;
434 		pr_err("failed to create class pktcdvd\n");
435 		return ret;
436 	}
437 	return 0;
438 }
439 
440 static void pkt_sysfs_cleanup(void)
441 {
442 	if (class_pktcdvd)
443 		class_destroy(class_pktcdvd);
444 	class_pktcdvd = NULL;
445 }
446 
447 /********************************************************************
448   entries in debugfs
449 
450   /sys/kernel/debug/pktcdvd[0-7]/
451 			info
452 
453  *******************************************************************/
454 
455 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
456 {
457 	return pkt_seq_show(m, p);
458 }
459 
460 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
461 {
462 	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
463 }
464 
465 static const struct file_operations debug_fops = {
466 	.open		= pkt_debugfs_fops_open,
467 	.read		= seq_read,
468 	.llseek		= seq_lseek,
469 	.release	= single_release,
470 	.owner		= THIS_MODULE,
471 };
472 
473 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
474 {
475 	if (!pkt_debugfs_root)
476 		return;
477 	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
478 	if (!pd->dfs_d_root)
479 		return;
480 
481 	pd->dfs_f_info = debugfs_create_file("info", 0444,
482 					     pd->dfs_d_root, pd, &debug_fops);
483 }
484 
485 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
486 {
487 	if (!pkt_debugfs_root)
488 		return;
489 	debugfs_remove(pd->dfs_f_info);
490 	debugfs_remove(pd->dfs_d_root);
491 	pd->dfs_f_info = NULL;
492 	pd->dfs_d_root = NULL;
493 }
494 
495 static void pkt_debugfs_init(void)
496 {
497 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498 }
499 
500 static void pkt_debugfs_cleanup(void)
501 {
502 	debugfs_remove(pkt_debugfs_root);
503 	pkt_debugfs_root = NULL;
504 }
505 
506 /* ----------------------------------------------------------*/
507 
508 
509 static void pkt_bio_finished(struct pktcdvd_device *pd)
510 {
511 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
512 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
513 		pkt_dbg(2, pd, "queue empty\n");
514 		atomic_set(&pd->iosched.attention, 1);
515 		wake_up(&pd->wqueue);
516 	}
517 }
518 
519 /*
520  * Allocate a packet_data struct
521  */
522 static struct packet_data *pkt_alloc_packet_data(int frames)
523 {
524 	int i;
525 	struct packet_data *pkt;
526 
527 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
528 	if (!pkt)
529 		goto no_pkt;
530 
531 	pkt->frames = frames;
532 	pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
533 	if (!pkt->w_bio)
534 		goto no_bio;
535 
536 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
537 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
538 		if (!pkt->pages[i])
539 			goto no_page;
540 	}
541 
542 	spin_lock_init(&pkt->lock);
543 	bio_list_init(&pkt->orig_bios);
544 
545 	for (i = 0; i < frames; i++) {
546 		struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
547 		if (!bio)
548 			goto no_rd_bio;
549 
550 		pkt->r_bios[i] = bio;
551 	}
552 
553 	return pkt;
554 
555 no_rd_bio:
556 	for (i = 0; i < frames; i++) {
557 		struct bio *bio = pkt->r_bios[i];
558 		if (bio)
559 			bio_put(bio);
560 	}
561 
562 no_page:
563 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
564 		if (pkt->pages[i])
565 			__free_page(pkt->pages[i]);
566 	bio_put(pkt->w_bio);
567 no_bio:
568 	kfree(pkt);
569 no_pkt:
570 	return NULL;
571 }
572 
573 /*
574  * Free a packet_data struct
575  */
576 static void pkt_free_packet_data(struct packet_data *pkt)
577 {
578 	int i;
579 
580 	for (i = 0; i < pkt->frames; i++) {
581 		struct bio *bio = pkt->r_bios[i];
582 		if (bio)
583 			bio_put(bio);
584 	}
585 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
586 		__free_page(pkt->pages[i]);
587 	bio_put(pkt->w_bio);
588 	kfree(pkt);
589 }
590 
591 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
592 {
593 	struct packet_data *pkt, *next;
594 
595 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
596 
597 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
598 		pkt_free_packet_data(pkt);
599 	}
600 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
601 }
602 
603 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
604 {
605 	struct packet_data *pkt;
606 
607 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
608 
609 	while (nr_packets > 0) {
610 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
611 		if (!pkt) {
612 			pkt_shrink_pktlist(pd);
613 			return 0;
614 		}
615 		pkt->id = nr_packets;
616 		pkt->pd = pd;
617 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
618 		nr_packets--;
619 	}
620 	return 1;
621 }
622 
623 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
624 {
625 	struct rb_node *n = rb_next(&node->rb_node);
626 	if (!n)
627 		return NULL;
628 	return rb_entry(n, struct pkt_rb_node, rb_node);
629 }
630 
631 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
632 {
633 	rb_erase(&node->rb_node, &pd->bio_queue);
634 	mempool_free(node, &pd->rb_pool);
635 	pd->bio_queue_size--;
636 	BUG_ON(pd->bio_queue_size < 0);
637 }
638 
639 /*
640  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
641  */
642 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
643 {
644 	struct rb_node *n = pd->bio_queue.rb_node;
645 	struct rb_node *next;
646 	struct pkt_rb_node *tmp;
647 
648 	if (!n) {
649 		BUG_ON(pd->bio_queue_size > 0);
650 		return NULL;
651 	}
652 
653 	for (;;) {
654 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
655 		if (s <= tmp->bio->bi_iter.bi_sector)
656 			next = n->rb_left;
657 		else
658 			next = n->rb_right;
659 		if (!next)
660 			break;
661 		n = next;
662 	}
663 
664 	if (s > tmp->bio->bi_iter.bi_sector) {
665 		tmp = pkt_rbtree_next(tmp);
666 		if (!tmp)
667 			return NULL;
668 	}
669 	BUG_ON(s > tmp->bio->bi_iter.bi_sector);
670 	return tmp;
671 }
672 
673 /*
674  * Insert a node into the pd->bio_queue rb tree.
675  */
676 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
677 {
678 	struct rb_node **p = &pd->bio_queue.rb_node;
679 	struct rb_node *parent = NULL;
680 	sector_t s = node->bio->bi_iter.bi_sector;
681 	struct pkt_rb_node *tmp;
682 
683 	while (*p) {
684 		parent = *p;
685 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
686 		if (s < tmp->bio->bi_iter.bi_sector)
687 			p = &(*p)->rb_left;
688 		else
689 			p = &(*p)->rb_right;
690 	}
691 	rb_link_node(&node->rb_node, parent, p);
692 	rb_insert_color(&node->rb_node, &pd->bio_queue);
693 	pd->bio_queue_size++;
694 }
695 
696 /*
697  * Send a packet_command to the underlying block device and
698  * wait for completion.
699  */
700 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
701 {
702 	struct request_queue *q = bdev_get_queue(pd->bdev);
703 	struct request *rq;
704 	int ret = 0;
705 
706 	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
707 			     REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, 0);
708 	if (IS_ERR(rq))
709 		return PTR_ERR(rq);
710 
711 	if (cgc->buflen) {
712 		ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
713 				      GFP_NOIO);
714 		if (ret)
715 			goto out;
716 	}
717 
718 	scsi_req(rq)->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
719 	memcpy(scsi_req(rq)->cmd, cgc->cmd, CDROM_PACKET_SIZE);
720 
721 	rq->timeout = 60*HZ;
722 	if (cgc->quiet)
723 		rq->rq_flags |= RQF_QUIET;
724 
725 	blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
726 	if (scsi_req(rq)->result)
727 		ret = -EIO;
728 out:
729 	blk_put_request(rq);
730 	return ret;
731 }
732 
733 static const char *sense_key_string(__u8 index)
734 {
735 	static const char * const info[] = {
736 		"No sense", "Recovered error", "Not ready",
737 		"Medium error", "Hardware error", "Illegal request",
738 		"Unit attention", "Data protect", "Blank check",
739 	};
740 
741 	return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
742 }
743 
744 /*
745  * A generic sense dump / resolve mechanism should be implemented across
746  * all ATAPI + SCSI devices.
747  */
748 static void pkt_dump_sense(struct pktcdvd_device *pd,
749 			   struct packet_command *cgc)
750 {
751 	struct scsi_sense_hdr *sshdr = cgc->sshdr;
752 
753 	if (sshdr)
754 		pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
755 			CDROM_PACKET_SIZE, cgc->cmd,
756 			sshdr->sense_key, sshdr->asc, sshdr->ascq,
757 			sense_key_string(sshdr->sense_key));
758 	else
759 		pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
760 }
761 
762 /*
763  * flush the drive cache to media
764  */
765 static int pkt_flush_cache(struct pktcdvd_device *pd)
766 {
767 	struct packet_command cgc;
768 
769 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
770 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
771 	cgc.quiet = 1;
772 
773 	/*
774 	 * the IMMED bit -- we default to not setting it, although that
775 	 * would allow a much faster close, this is safer
776 	 */
777 #if 0
778 	cgc.cmd[1] = 1 << 1;
779 #endif
780 	return pkt_generic_packet(pd, &cgc);
781 }
782 
783 /*
784  * speed is given as the normal factor, e.g. 4 for 4x
785  */
786 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
787 				unsigned write_speed, unsigned read_speed)
788 {
789 	struct packet_command cgc;
790 	struct scsi_sense_hdr sshdr;
791 	int ret;
792 
793 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
794 	cgc.sshdr = &sshdr;
795 	cgc.cmd[0] = GPCMD_SET_SPEED;
796 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
797 	cgc.cmd[3] = read_speed & 0xff;
798 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
799 	cgc.cmd[5] = write_speed & 0xff;
800 
801 	ret = pkt_generic_packet(pd, &cgc);
802 	if (ret)
803 		pkt_dump_sense(pd, &cgc);
804 
805 	return ret;
806 }
807 
808 /*
809  * Queue a bio for processing by the low-level CD device. Must be called
810  * from process context.
811  */
812 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
813 {
814 	spin_lock(&pd->iosched.lock);
815 	if (bio_data_dir(bio) == READ)
816 		bio_list_add(&pd->iosched.read_queue, bio);
817 	else
818 		bio_list_add(&pd->iosched.write_queue, bio);
819 	spin_unlock(&pd->iosched.lock);
820 
821 	atomic_set(&pd->iosched.attention, 1);
822 	wake_up(&pd->wqueue);
823 }
824 
825 /*
826  * Process the queued read/write requests. This function handles special
827  * requirements for CDRW drives:
828  * - A cache flush command must be inserted before a read request if the
829  *   previous request was a write.
830  * - Switching between reading and writing is slow, so don't do it more often
831  *   than necessary.
832  * - Optimize for throughput at the expense of latency. This means that streaming
833  *   writes will never be interrupted by a read, but if the drive has to seek
834  *   before the next write, switch to reading instead if there are any pending
835  *   read requests.
836  * - Set the read speed according to current usage pattern. When only reading
837  *   from the device, it's best to use the highest possible read speed, but
838  *   when switching often between reading and writing, it's better to have the
839  *   same read and write speeds.
840  */
841 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
842 {
843 
844 	if (atomic_read(&pd->iosched.attention) == 0)
845 		return;
846 	atomic_set(&pd->iosched.attention, 0);
847 
848 	for (;;) {
849 		struct bio *bio;
850 		int reads_queued, writes_queued;
851 
852 		spin_lock(&pd->iosched.lock);
853 		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
854 		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
855 		spin_unlock(&pd->iosched.lock);
856 
857 		if (!reads_queued && !writes_queued)
858 			break;
859 
860 		if (pd->iosched.writing) {
861 			int need_write_seek = 1;
862 			spin_lock(&pd->iosched.lock);
863 			bio = bio_list_peek(&pd->iosched.write_queue);
864 			spin_unlock(&pd->iosched.lock);
865 			if (bio && (bio->bi_iter.bi_sector ==
866 				    pd->iosched.last_write))
867 				need_write_seek = 0;
868 			if (need_write_seek && reads_queued) {
869 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
870 					pkt_dbg(2, pd, "write, waiting\n");
871 					break;
872 				}
873 				pkt_flush_cache(pd);
874 				pd->iosched.writing = 0;
875 			}
876 		} else {
877 			if (!reads_queued && writes_queued) {
878 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
879 					pkt_dbg(2, pd, "read, waiting\n");
880 					break;
881 				}
882 				pd->iosched.writing = 1;
883 			}
884 		}
885 
886 		spin_lock(&pd->iosched.lock);
887 		if (pd->iosched.writing)
888 			bio = bio_list_pop(&pd->iosched.write_queue);
889 		else
890 			bio = bio_list_pop(&pd->iosched.read_queue);
891 		spin_unlock(&pd->iosched.lock);
892 
893 		if (!bio)
894 			continue;
895 
896 		if (bio_data_dir(bio) == READ)
897 			pd->iosched.successive_reads +=
898 				bio->bi_iter.bi_size >> 10;
899 		else {
900 			pd->iosched.successive_reads = 0;
901 			pd->iosched.last_write = bio_end_sector(bio);
902 		}
903 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
904 			if (pd->read_speed == pd->write_speed) {
905 				pd->read_speed = MAX_SPEED;
906 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
907 			}
908 		} else {
909 			if (pd->read_speed != pd->write_speed) {
910 				pd->read_speed = pd->write_speed;
911 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
912 			}
913 		}
914 
915 		atomic_inc(&pd->cdrw.pending_bios);
916 		generic_make_request(bio);
917 	}
918 }
919 
920 /*
921  * Special care is needed if the underlying block device has a small
922  * max_phys_segments value.
923  */
924 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
925 {
926 	if ((pd->settings.size << 9) / CD_FRAMESIZE
927 	    <= queue_max_segments(q)) {
928 		/*
929 		 * The cdrom device can handle one segment/frame
930 		 */
931 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
932 		return 0;
933 	} else if ((pd->settings.size << 9) / PAGE_SIZE
934 		   <= queue_max_segments(q)) {
935 		/*
936 		 * We can handle this case at the expense of some extra memory
937 		 * copies during write operations
938 		 */
939 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
940 		return 0;
941 	} else {
942 		pkt_err(pd, "cdrom max_phys_segments too small\n");
943 		return -EIO;
944 	}
945 }
946 
947 static void pkt_end_io_read(struct bio *bio)
948 {
949 	struct packet_data *pkt = bio->bi_private;
950 	struct pktcdvd_device *pd = pkt->pd;
951 	BUG_ON(!pd);
952 
953 	pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
954 		bio, (unsigned long long)pkt->sector,
955 		(unsigned long long)bio->bi_iter.bi_sector, bio->bi_status);
956 
957 	if (bio->bi_status)
958 		atomic_inc(&pkt->io_errors);
959 	if (atomic_dec_and_test(&pkt->io_wait)) {
960 		atomic_inc(&pkt->run_sm);
961 		wake_up(&pd->wqueue);
962 	}
963 	pkt_bio_finished(pd);
964 }
965 
966 static void pkt_end_io_packet_write(struct bio *bio)
967 {
968 	struct packet_data *pkt = bio->bi_private;
969 	struct pktcdvd_device *pd = pkt->pd;
970 	BUG_ON(!pd);
971 
972 	pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_status);
973 
974 	pd->stats.pkt_ended++;
975 
976 	pkt_bio_finished(pd);
977 	atomic_dec(&pkt->io_wait);
978 	atomic_inc(&pkt->run_sm);
979 	wake_up(&pd->wqueue);
980 }
981 
982 /*
983  * Schedule reads for the holes in a packet
984  */
985 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
986 {
987 	int frames_read = 0;
988 	struct bio *bio;
989 	int f;
990 	char written[PACKET_MAX_SIZE];
991 
992 	BUG_ON(bio_list_empty(&pkt->orig_bios));
993 
994 	atomic_set(&pkt->io_wait, 0);
995 	atomic_set(&pkt->io_errors, 0);
996 
997 	/*
998 	 * Figure out which frames we need to read before we can write.
999 	 */
1000 	memset(written, 0, sizeof(written));
1001 	spin_lock(&pkt->lock);
1002 	bio_list_for_each(bio, &pkt->orig_bios) {
1003 		int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1004 			(CD_FRAMESIZE >> 9);
1005 		int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1006 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1007 		BUG_ON(first_frame < 0);
1008 		BUG_ON(first_frame + num_frames > pkt->frames);
1009 		for (f = first_frame; f < first_frame + num_frames; f++)
1010 			written[f] = 1;
1011 	}
1012 	spin_unlock(&pkt->lock);
1013 
1014 	if (pkt->cache_valid) {
1015 		pkt_dbg(2, pd, "zone %llx cached\n",
1016 			(unsigned long long)pkt->sector);
1017 		goto out_account;
1018 	}
1019 
1020 	/*
1021 	 * Schedule reads for missing parts of the packet.
1022 	 */
1023 	for (f = 0; f < pkt->frames; f++) {
1024 		int p, offset;
1025 
1026 		if (written[f])
1027 			continue;
1028 
1029 		bio = pkt->r_bios[f];
1030 		bio_reset(bio);
1031 		bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1032 		bio_set_dev(bio, pd->bdev);
1033 		bio->bi_end_io = pkt_end_io_read;
1034 		bio->bi_private = pkt;
1035 
1036 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1037 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1038 		pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1039 			f, pkt->pages[p], offset);
1040 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1041 			BUG();
1042 
1043 		atomic_inc(&pkt->io_wait);
1044 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
1045 		pkt_queue_bio(pd, bio);
1046 		frames_read++;
1047 	}
1048 
1049 out_account:
1050 	pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1051 		frames_read, (unsigned long long)pkt->sector);
1052 	pd->stats.pkt_started++;
1053 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1054 }
1055 
1056 /*
1057  * Find a packet matching zone, or the least recently used packet if
1058  * there is no match.
1059  */
1060 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1061 {
1062 	struct packet_data *pkt;
1063 
1064 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1065 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1066 			list_del_init(&pkt->list);
1067 			if (pkt->sector != zone)
1068 				pkt->cache_valid = 0;
1069 			return pkt;
1070 		}
1071 	}
1072 	BUG();
1073 	return NULL;
1074 }
1075 
1076 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1077 {
1078 	if (pkt->cache_valid) {
1079 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1080 	} else {
1081 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1082 	}
1083 }
1084 
1085 /*
1086  * recover a failed write, query for relocation if possible
1087  *
1088  * returns 1 if recovery is possible, or 0 if not
1089  *
1090  */
1091 static int pkt_start_recovery(struct packet_data *pkt)
1092 {
1093 	/*
1094 	 * FIXME. We need help from the file system to implement
1095 	 * recovery handling.
1096 	 */
1097 	return 0;
1098 #if 0
1099 	struct request *rq = pkt->rq;
1100 	struct pktcdvd_device *pd = rq->rq_disk->private_data;
1101 	struct block_device *pkt_bdev;
1102 	struct super_block *sb = NULL;
1103 	unsigned long old_block, new_block;
1104 	sector_t new_sector;
1105 
1106 	pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1107 	if (pkt_bdev) {
1108 		sb = get_super(pkt_bdev);
1109 		bdput(pkt_bdev);
1110 	}
1111 
1112 	if (!sb)
1113 		return 0;
1114 
1115 	if (!sb->s_op->relocate_blocks)
1116 		goto out;
1117 
1118 	old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1119 	if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1120 		goto out;
1121 
1122 	new_sector = new_block * (CD_FRAMESIZE >> 9);
1123 	pkt->sector = new_sector;
1124 
1125 	bio_reset(pkt->bio);
1126 	bio_set_dev(pkt->bio, pd->bdev);
1127 	bio_set_op_attrs(pkt->bio, REQ_OP_WRITE, 0);
1128 	pkt->bio->bi_iter.bi_sector = new_sector;
1129 	pkt->bio->bi_iter.bi_size = pkt->frames * CD_FRAMESIZE;
1130 	pkt->bio->bi_vcnt = pkt->frames;
1131 
1132 	pkt->bio->bi_end_io = pkt_end_io_packet_write;
1133 	pkt->bio->bi_private = pkt;
1134 
1135 	drop_super(sb);
1136 	return 1;
1137 
1138 out:
1139 	drop_super(sb);
1140 	return 0;
1141 #endif
1142 }
1143 
1144 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1145 {
1146 #if PACKET_DEBUG > 1
1147 	static const char *state_name[] = {
1148 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1149 	};
1150 	enum packet_data_state old_state = pkt->state;
1151 	pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1152 		pkt->id, (unsigned long long)pkt->sector,
1153 		state_name[old_state], state_name[state]);
1154 #endif
1155 	pkt->state = state;
1156 }
1157 
1158 /*
1159  * Scan the work queue to see if we can start a new packet.
1160  * returns non-zero if any work was done.
1161  */
1162 static int pkt_handle_queue(struct pktcdvd_device *pd)
1163 {
1164 	struct packet_data *pkt, *p;
1165 	struct bio *bio = NULL;
1166 	sector_t zone = 0; /* Suppress gcc warning */
1167 	struct pkt_rb_node *node, *first_node;
1168 	struct rb_node *n;
1169 	int wakeup;
1170 
1171 	atomic_set(&pd->scan_queue, 0);
1172 
1173 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1174 		pkt_dbg(2, pd, "no pkt\n");
1175 		return 0;
1176 	}
1177 
1178 	/*
1179 	 * Try to find a zone we are not already working on.
1180 	 */
1181 	spin_lock(&pd->lock);
1182 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1183 	if (!first_node) {
1184 		n = rb_first(&pd->bio_queue);
1185 		if (n)
1186 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1187 	}
1188 	node = first_node;
1189 	while (node) {
1190 		bio = node->bio;
1191 		zone = get_zone(bio->bi_iter.bi_sector, pd);
1192 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1193 			if (p->sector == zone) {
1194 				bio = NULL;
1195 				goto try_next_bio;
1196 			}
1197 		}
1198 		break;
1199 try_next_bio:
1200 		node = pkt_rbtree_next(node);
1201 		if (!node) {
1202 			n = rb_first(&pd->bio_queue);
1203 			if (n)
1204 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1205 		}
1206 		if (node == first_node)
1207 			node = NULL;
1208 	}
1209 	spin_unlock(&pd->lock);
1210 	if (!bio) {
1211 		pkt_dbg(2, pd, "no bio\n");
1212 		return 0;
1213 	}
1214 
1215 	pkt = pkt_get_packet_data(pd, zone);
1216 
1217 	pd->current_sector = zone + pd->settings.size;
1218 	pkt->sector = zone;
1219 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1220 	pkt->write_size = 0;
1221 
1222 	/*
1223 	 * Scan work queue for bios in the same zone and link them
1224 	 * to this packet.
1225 	 */
1226 	spin_lock(&pd->lock);
1227 	pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1228 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1229 		bio = node->bio;
1230 		pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1231 			get_zone(bio->bi_iter.bi_sector, pd));
1232 		if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1233 			break;
1234 		pkt_rbtree_erase(pd, node);
1235 		spin_lock(&pkt->lock);
1236 		bio_list_add(&pkt->orig_bios, bio);
1237 		pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1238 		spin_unlock(&pkt->lock);
1239 	}
1240 	/* check write congestion marks, and if bio_queue_size is
1241 	   below, wake up any waiters */
1242 	wakeup = (pd->write_congestion_on > 0
1243 	 		&& pd->bio_queue_size <= pd->write_congestion_off);
1244 	spin_unlock(&pd->lock);
1245 	if (wakeup) {
1246 		clear_bdi_congested(pd->disk->queue->backing_dev_info,
1247 					BLK_RW_ASYNC);
1248 	}
1249 
1250 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1251 	pkt_set_state(pkt, PACKET_WAITING_STATE);
1252 	atomic_set(&pkt->run_sm, 1);
1253 
1254 	spin_lock(&pd->cdrw.active_list_lock);
1255 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1256 	spin_unlock(&pd->cdrw.active_list_lock);
1257 
1258 	return 1;
1259 }
1260 
1261 /*
1262  * Assemble a bio to write one packet and queue the bio for processing
1263  * by the underlying block device.
1264  */
1265 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1266 {
1267 	int f;
1268 
1269 	bio_reset(pkt->w_bio);
1270 	pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1271 	bio_set_dev(pkt->w_bio, pd->bdev);
1272 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1273 	pkt->w_bio->bi_private = pkt;
1274 
1275 	/* XXX: locking? */
1276 	for (f = 0; f < pkt->frames; f++) {
1277 		struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1278 		unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1279 
1280 		if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1281 			BUG();
1282 	}
1283 	pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1284 
1285 	/*
1286 	 * Fill-in bvec with data from orig_bios.
1287 	 */
1288 	spin_lock(&pkt->lock);
1289 	bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1290 
1291 	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1292 	spin_unlock(&pkt->lock);
1293 
1294 	pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1295 		pkt->write_size, (unsigned long long)pkt->sector);
1296 
1297 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1298 		pkt->cache_valid = 1;
1299 	else
1300 		pkt->cache_valid = 0;
1301 
1302 	/* Start the write request */
1303 	atomic_set(&pkt->io_wait, 1);
1304 	bio_set_op_attrs(pkt->w_bio, REQ_OP_WRITE, 0);
1305 	pkt_queue_bio(pd, pkt->w_bio);
1306 }
1307 
1308 static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1309 {
1310 	struct bio *bio;
1311 
1312 	if (status)
1313 		pkt->cache_valid = 0;
1314 
1315 	/* Finish all bios corresponding to this packet */
1316 	while ((bio = bio_list_pop(&pkt->orig_bios))) {
1317 		bio->bi_status = status;
1318 		bio_endio(bio);
1319 	}
1320 }
1321 
1322 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1323 {
1324 	pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1325 
1326 	for (;;) {
1327 		switch (pkt->state) {
1328 		case PACKET_WAITING_STATE:
1329 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1330 				return;
1331 
1332 			pkt->sleep_time = 0;
1333 			pkt_gather_data(pd, pkt);
1334 			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1335 			break;
1336 
1337 		case PACKET_READ_WAIT_STATE:
1338 			if (atomic_read(&pkt->io_wait) > 0)
1339 				return;
1340 
1341 			if (atomic_read(&pkt->io_errors) > 0) {
1342 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1343 			} else {
1344 				pkt_start_write(pd, pkt);
1345 			}
1346 			break;
1347 
1348 		case PACKET_WRITE_WAIT_STATE:
1349 			if (atomic_read(&pkt->io_wait) > 0)
1350 				return;
1351 
1352 			if (!pkt->w_bio->bi_status) {
1353 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1354 			} else {
1355 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1356 			}
1357 			break;
1358 
1359 		case PACKET_RECOVERY_STATE:
1360 			if (pkt_start_recovery(pkt)) {
1361 				pkt_start_write(pd, pkt);
1362 			} else {
1363 				pkt_dbg(2, pd, "No recovery possible\n");
1364 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1365 			}
1366 			break;
1367 
1368 		case PACKET_FINISHED_STATE:
1369 			pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1370 			return;
1371 
1372 		default:
1373 			BUG();
1374 			break;
1375 		}
1376 	}
1377 }
1378 
1379 static void pkt_handle_packets(struct pktcdvd_device *pd)
1380 {
1381 	struct packet_data *pkt, *next;
1382 
1383 	/*
1384 	 * Run state machine for active packets
1385 	 */
1386 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1387 		if (atomic_read(&pkt->run_sm) > 0) {
1388 			atomic_set(&pkt->run_sm, 0);
1389 			pkt_run_state_machine(pd, pkt);
1390 		}
1391 	}
1392 
1393 	/*
1394 	 * Move no longer active packets to the free list
1395 	 */
1396 	spin_lock(&pd->cdrw.active_list_lock);
1397 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1398 		if (pkt->state == PACKET_FINISHED_STATE) {
1399 			list_del(&pkt->list);
1400 			pkt_put_packet_data(pd, pkt);
1401 			pkt_set_state(pkt, PACKET_IDLE_STATE);
1402 			atomic_set(&pd->scan_queue, 1);
1403 		}
1404 	}
1405 	spin_unlock(&pd->cdrw.active_list_lock);
1406 }
1407 
1408 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1409 {
1410 	struct packet_data *pkt;
1411 	int i;
1412 
1413 	for (i = 0; i < PACKET_NUM_STATES; i++)
1414 		states[i] = 0;
1415 
1416 	spin_lock(&pd->cdrw.active_list_lock);
1417 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1418 		states[pkt->state]++;
1419 	}
1420 	spin_unlock(&pd->cdrw.active_list_lock);
1421 }
1422 
1423 /*
1424  * kcdrwd is woken up when writes have been queued for one of our
1425  * registered devices
1426  */
1427 static int kcdrwd(void *foobar)
1428 {
1429 	struct pktcdvd_device *pd = foobar;
1430 	struct packet_data *pkt;
1431 	long min_sleep_time, residue;
1432 
1433 	set_user_nice(current, MIN_NICE);
1434 	set_freezable();
1435 
1436 	for (;;) {
1437 		DECLARE_WAITQUEUE(wait, current);
1438 
1439 		/*
1440 		 * Wait until there is something to do
1441 		 */
1442 		add_wait_queue(&pd->wqueue, &wait);
1443 		for (;;) {
1444 			set_current_state(TASK_INTERRUPTIBLE);
1445 
1446 			/* Check if we need to run pkt_handle_queue */
1447 			if (atomic_read(&pd->scan_queue) > 0)
1448 				goto work_to_do;
1449 
1450 			/* Check if we need to run the state machine for some packet */
1451 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1452 				if (atomic_read(&pkt->run_sm) > 0)
1453 					goto work_to_do;
1454 			}
1455 
1456 			/* Check if we need to process the iosched queues */
1457 			if (atomic_read(&pd->iosched.attention) != 0)
1458 				goto work_to_do;
1459 
1460 			/* Otherwise, go to sleep */
1461 			if (PACKET_DEBUG > 1) {
1462 				int states[PACKET_NUM_STATES];
1463 				pkt_count_states(pd, states);
1464 				pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1465 					states[0], states[1], states[2],
1466 					states[3], states[4], states[5]);
1467 			}
1468 
1469 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1470 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1471 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1472 					min_sleep_time = pkt->sleep_time;
1473 			}
1474 
1475 			pkt_dbg(2, pd, "sleeping\n");
1476 			residue = schedule_timeout(min_sleep_time);
1477 			pkt_dbg(2, pd, "wake up\n");
1478 
1479 			/* make swsusp happy with our thread */
1480 			try_to_freeze();
1481 
1482 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1483 				if (!pkt->sleep_time)
1484 					continue;
1485 				pkt->sleep_time -= min_sleep_time - residue;
1486 				if (pkt->sleep_time <= 0) {
1487 					pkt->sleep_time = 0;
1488 					atomic_inc(&pkt->run_sm);
1489 				}
1490 			}
1491 
1492 			if (kthread_should_stop())
1493 				break;
1494 		}
1495 work_to_do:
1496 		set_current_state(TASK_RUNNING);
1497 		remove_wait_queue(&pd->wqueue, &wait);
1498 
1499 		if (kthread_should_stop())
1500 			break;
1501 
1502 		/*
1503 		 * if pkt_handle_queue returns true, we can queue
1504 		 * another request.
1505 		 */
1506 		while (pkt_handle_queue(pd))
1507 			;
1508 
1509 		/*
1510 		 * Handle packet state machine
1511 		 */
1512 		pkt_handle_packets(pd);
1513 
1514 		/*
1515 		 * Handle iosched queues
1516 		 */
1517 		pkt_iosched_process_queue(pd);
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 static void pkt_print_settings(struct pktcdvd_device *pd)
1524 {
1525 	pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1526 		 pd->settings.fp ? "Fixed" : "Variable",
1527 		 pd->settings.size >> 2,
1528 		 pd->settings.block_mode == 8 ? '1' : '2');
1529 }
1530 
1531 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1532 {
1533 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1534 
1535 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1536 	cgc->cmd[2] = page_code | (page_control << 6);
1537 	cgc->cmd[7] = cgc->buflen >> 8;
1538 	cgc->cmd[8] = cgc->buflen & 0xff;
1539 	cgc->data_direction = CGC_DATA_READ;
1540 	return pkt_generic_packet(pd, cgc);
1541 }
1542 
1543 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1544 {
1545 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1546 	memset(cgc->buffer, 0, 2);
1547 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1548 	cgc->cmd[1] = 0x10;		/* PF */
1549 	cgc->cmd[7] = cgc->buflen >> 8;
1550 	cgc->cmd[8] = cgc->buflen & 0xff;
1551 	cgc->data_direction = CGC_DATA_WRITE;
1552 	return pkt_generic_packet(pd, cgc);
1553 }
1554 
1555 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1556 {
1557 	struct packet_command cgc;
1558 	int ret;
1559 
1560 	/* set up command and get the disc info */
1561 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1562 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1563 	cgc.cmd[8] = cgc.buflen = 2;
1564 	cgc.quiet = 1;
1565 
1566 	ret = pkt_generic_packet(pd, &cgc);
1567 	if (ret)
1568 		return ret;
1569 
1570 	/* not all drives have the same disc_info length, so requeue
1571 	 * packet with the length the drive tells us it can supply
1572 	 */
1573 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1574 		     sizeof(di->disc_information_length);
1575 
1576 	if (cgc.buflen > sizeof(disc_information))
1577 		cgc.buflen = sizeof(disc_information);
1578 
1579 	cgc.cmd[8] = cgc.buflen;
1580 	return pkt_generic_packet(pd, &cgc);
1581 }
1582 
1583 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1584 {
1585 	struct packet_command cgc;
1586 	int ret;
1587 
1588 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1589 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1590 	cgc.cmd[1] = type & 3;
1591 	cgc.cmd[4] = (track & 0xff00) >> 8;
1592 	cgc.cmd[5] = track & 0xff;
1593 	cgc.cmd[8] = 8;
1594 	cgc.quiet = 1;
1595 
1596 	ret = pkt_generic_packet(pd, &cgc);
1597 	if (ret)
1598 		return ret;
1599 
1600 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1601 		     sizeof(ti->track_information_length);
1602 
1603 	if (cgc.buflen > sizeof(track_information))
1604 		cgc.buflen = sizeof(track_information);
1605 
1606 	cgc.cmd[8] = cgc.buflen;
1607 	return pkt_generic_packet(pd, &cgc);
1608 }
1609 
1610 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1611 						long *last_written)
1612 {
1613 	disc_information di;
1614 	track_information ti;
1615 	__u32 last_track;
1616 	int ret = -1;
1617 
1618 	ret = pkt_get_disc_info(pd, &di);
1619 	if (ret)
1620 		return ret;
1621 
1622 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1623 	ret = pkt_get_track_info(pd, last_track, 1, &ti);
1624 	if (ret)
1625 		return ret;
1626 
1627 	/* if this track is blank, try the previous. */
1628 	if (ti.blank) {
1629 		last_track--;
1630 		ret = pkt_get_track_info(pd, last_track, 1, &ti);
1631 		if (ret)
1632 			return ret;
1633 	}
1634 
1635 	/* if last recorded field is valid, return it. */
1636 	if (ti.lra_v) {
1637 		*last_written = be32_to_cpu(ti.last_rec_address);
1638 	} else {
1639 		/* make it up instead */
1640 		*last_written = be32_to_cpu(ti.track_start) +
1641 				be32_to_cpu(ti.track_size);
1642 		if (ti.free_blocks)
1643 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1644 	}
1645 	return 0;
1646 }
1647 
1648 /*
1649  * write mode select package based on pd->settings
1650  */
1651 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1652 {
1653 	struct packet_command cgc;
1654 	struct scsi_sense_hdr sshdr;
1655 	write_param_page *wp;
1656 	char buffer[128];
1657 	int ret, size;
1658 
1659 	/* doesn't apply to DVD+RW or DVD-RAM */
1660 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1661 		return 0;
1662 
1663 	memset(buffer, 0, sizeof(buffer));
1664 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1665 	cgc.sshdr = &sshdr;
1666 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1667 	if (ret) {
1668 		pkt_dump_sense(pd, &cgc);
1669 		return ret;
1670 	}
1671 
1672 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1673 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1674 	if (size > sizeof(buffer))
1675 		size = sizeof(buffer);
1676 
1677 	/*
1678 	 * now get it all
1679 	 */
1680 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1681 	cgc.sshdr = &sshdr;
1682 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1683 	if (ret) {
1684 		pkt_dump_sense(pd, &cgc);
1685 		return ret;
1686 	}
1687 
1688 	/*
1689 	 * write page is offset header + block descriptor length
1690 	 */
1691 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1692 
1693 	wp->fp = pd->settings.fp;
1694 	wp->track_mode = pd->settings.track_mode;
1695 	wp->write_type = pd->settings.write_type;
1696 	wp->data_block_type = pd->settings.block_mode;
1697 
1698 	wp->multi_session = 0;
1699 
1700 #ifdef PACKET_USE_LS
1701 	wp->link_size = 7;
1702 	wp->ls_v = 1;
1703 #endif
1704 
1705 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1706 		wp->session_format = 0;
1707 		wp->subhdr2 = 0x20;
1708 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1709 		wp->session_format = 0x20;
1710 		wp->subhdr2 = 8;
1711 #if 0
1712 		wp->mcn[0] = 0x80;
1713 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1714 #endif
1715 	} else {
1716 		/*
1717 		 * paranoia
1718 		 */
1719 		pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1720 		return 1;
1721 	}
1722 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1723 
1724 	cgc.buflen = cgc.cmd[8] = size;
1725 	ret = pkt_mode_select(pd, &cgc);
1726 	if (ret) {
1727 		pkt_dump_sense(pd, &cgc);
1728 		return ret;
1729 	}
1730 
1731 	pkt_print_settings(pd);
1732 	return 0;
1733 }
1734 
1735 /*
1736  * 1 -- we can write to this track, 0 -- we can't
1737  */
1738 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1739 {
1740 	switch (pd->mmc3_profile) {
1741 		case 0x1a: /* DVD+RW */
1742 		case 0x12: /* DVD-RAM */
1743 			/* The track is always writable on DVD+RW/DVD-RAM */
1744 			return 1;
1745 		default:
1746 			break;
1747 	}
1748 
1749 	if (!ti->packet || !ti->fp)
1750 		return 0;
1751 
1752 	/*
1753 	 * "good" settings as per Mt Fuji.
1754 	 */
1755 	if (ti->rt == 0 && ti->blank == 0)
1756 		return 1;
1757 
1758 	if (ti->rt == 0 && ti->blank == 1)
1759 		return 1;
1760 
1761 	if (ti->rt == 1 && ti->blank == 0)
1762 		return 1;
1763 
1764 	pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1765 	return 0;
1766 }
1767 
1768 /*
1769  * 1 -- we can write to this disc, 0 -- we can't
1770  */
1771 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1772 {
1773 	switch (pd->mmc3_profile) {
1774 		case 0x0a: /* CD-RW */
1775 		case 0xffff: /* MMC3 not supported */
1776 			break;
1777 		case 0x1a: /* DVD+RW */
1778 		case 0x13: /* DVD-RW */
1779 		case 0x12: /* DVD-RAM */
1780 			return 1;
1781 		default:
1782 			pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1783 				pd->mmc3_profile);
1784 			return 0;
1785 	}
1786 
1787 	/*
1788 	 * for disc type 0xff we should probably reserve a new track.
1789 	 * but i'm not sure, should we leave this to user apps? probably.
1790 	 */
1791 	if (di->disc_type == 0xff) {
1792 		pkt_notice(pd, "unknown disc - no track?\n");
1793 		return 0;
1794 	}
1795 
1796 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1797 		pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1798 		return 0;
1799 	}
1800 
1801 	if (di->erasable == 0) {
1802 		pkt_notice(pd, "disc not erasable\n");
1803 		return 0;
1804 	}
1805 
1806 	if (di->border_status == PACKET_SESSION_RESERVED) {
1807 		pkt_err(pd, "can't write to last track (reserved)\n");
1808 		return 0;
1809 	}
1810 
1811 	return 1;
1812 }
1813 
1814 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1815 {
1816 	struct packet_command cgc;
1817 	unsigned char buf[12];
1818 	disc_information di;
1819 	track_information ti;
1820 	int ret, track;
1821 
1822 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1823 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1824 	cgc.cmd[8] = 8;
1825 	ret = pkt_generic_packet(pd, &cgc);
1826 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1827 
1828 	memset(&di, 0, sizeof(disc_information));
1829 	memset(&ti, 0, sizeof(track_information));
1830 
1831 	ret = pkt_get_disc_info(pd, &di);
1832 	if (ret) {
1833 		pkt_err(pd, "failed get_disc\n");
1834 		return ret;
1835 	}
1836 
1837 	if (!pkt_writable_disc(pd, &di))
1838 		return -EROFS;
1839 
1840 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1841 
1842 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1843 	ret = pkt_get_track_info(pd, track, 1, &ti);
1844 	if (ret) {
1845 		pkt_err(pd, "failed get_track\n");
1846 		return ret;
1847 	}
1848 
1849 	if (!pkt_writable_track(pd, &ti)) {
1850 		pkt_err(pd, "can't write to this track\n");
1851 		return -EROFS;
1852 	}
1853 
1854 	/*
1855 	 * we keep packet size in 512 byte units, makes it easier to
1856 	 * deal with request calculations.
1857 	 */
1858 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1859 	if (pd->settings.size == 0) {
1860 		pkt_notice(pd, "detected zero packet size!\n");
1861 		return -ENXIO;
1862 	}
1863 	if (pd->settings.size > PACKET_MAX_SECTORS) {
1864 		pkt_err(pd, "packet size is too big\n");
1865 		return -EROFS;
1866 	}
1867 	pd->settings.fp = ti.fp;
1868 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1869 
1870 	if (ti.nwa_v) {
1871 		pd->nwa = be32_to_cpu(ti.next_writable);
1872 		set_bit(PACKET_NWA_VALID, &pd->flags);
1873 	}
1874 
1875 	/*
1876 	 * in theory we could use lra on -RW media as well and just zero
1877 	 * blocks that haven't been written yet, but in practice that
1878 	 * is just a no-go. we'll use that for -R, naturally.
1879 	 */
1880 	if (ti.lra_v) {
1881 		pd->lra = be32_to_cpu(ti.last_rec_address);
1882 		set_bit(PACKET_LRA_VALID, &pd->flags);
1883 	} else {
1884 		pd->lra = 0xffffffff;
1885 		set_bit(PACKET_LRA_VALID, &pd->flags);
1886 	}
1887 
1888 	/*
1889 	 * fine for now
1890 	 */
1891 	pd->settings.link_loss = 7;
1892 	pd->settings.write_type = 0;	/* packet */
1893 	pd->settings.track_mode = ti.track_mode;
1894 
1895 	/*
1896 	 * mode1 or mode2 disc
1897 	 */
1898 	switch (ti.data_mode) {
1899 		case PACKET_MODE1:
1900 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1901 			break;
1902 		case PACKET_MODE2:
1903 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1904 			break;
1905 		default:
1906 			pkt_err(pd, "unknown data mode\n");
1907 			return -EROFS;
1908 	}
1909 	return 0;
1910 }
1911 
1912 /*
1913  * enable/disable write caching on drive
1914  */
1915 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1916 						int set)
1917 {
1918 	struct packet_command cgc;
1919 	struct scsi_sense_hdr sshdr;
1920 	unsigned char buf[64];
1921 	int ret;
1922 
1923 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1924 	cgc.sshdr = &sshdr;
1925 	cgc.buflen = pd->mode_offset + 12;
1926 
1927 	/*
1928 	 * caching mode page might not be there, so quiet this command
1929 	 */
1930 	cgc.quiet = 1;
1931 
1932 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1933 	if (ret)
1934 		return ret;
1935 
1936 	buf[pd->mode_offset + 10] |= (!!set << 2);
1937 
1938 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1939 	ret = pkt_mode_select(pd, &cgc);
1940 	if (ret) {
1941 		pkt_err(pd, "write caching control failed\n");
1942 		pkt_dump_sense(pd, &cgc);
1943 	} else if (!ret && set)
1944 		pkt_notice(pd, "enabled write caching\n");
1945 	return ret;
1946 }
1947 
1948 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1949 {
1950 	struct packet_command cgc;
1951 
1952 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1953 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1954 	cgc.cmd[4] = lockflag ? 1 : 0;
1955 	return pkt_generic_packet(pd, &cgc);
1956 }
1957 
1958 /*
1959  * Returns drive maximum write speed
1960  */
1961 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1962 						unsigned *write_speed)
1963 {
1964 	struct packet_command cgc;
1965 	struct scsi_sense_hdr sshdr;
1966 	unsigned char buf[256+18];
1967 	unsigned char *cap_buf;
1968 	int ret, offset;
1969 
1970 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1971 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1972 	cgc.sshdr = &sshdr;
1973 
1974 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1975 	if (ret) {
1976 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1977 			     sizeof(struct mode_page_header);
1978 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1979 		if (ret) {
1980 			pkt_dump_sense(pd, &cgc);
1981 			return ret;
1982 		}
1983 	}
1984 
1985 	offset = 20;			    /* Obsoleted field, used by older drives */
1986 	if (cap_buf[1] >= 28)
1987 		offset = 28;		    /* Current write speed selected */
1988 	if (cap_buf[1] >= 30) {
1989 		/* If the drive reports at least one "Logical Unit Write
1990 		 * Speed Performance Descriptor Block", use the information
1991 		 * in the first block. (contains the highest speed)
1992 		 */
1993 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1994 		if (num_spdb > 0)
1995 			offset = 34;
1996 	}
1997 
1998 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1999 	return 0;
2000 }
2001 
2002 /* These tables from cdrecord - I don't have orange book */
2003 /* standard speed CD-RW (1-4x) */
2004 static char clv_to_speed[16] = {
2005 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2006 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2007 };
2008 /* high speed CD-RW (-10x) */
2009 static char hs_clv_to_speed[16] = {
2010 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2011 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2012 };
2013 /* ultra high speed CD-RW */
2014 static char us_clv_to_speed[16] = {
2015 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2016 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2017 };
2018 
2019 /*
2020  * reads the maximum media speed from ATIP
2021  */
2022 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2023 						unsigned *speed)
2024 {
2025 	struct packet_command cgc;
2026 	struct scsi_sense_hdr sshdr;
2027 	unsigned char buf[64];
2028 	unsigned int size, st, sp;
2029 	int ret;
2030 
2031 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2032 	cgc.sshdr = &sshdr;
2033 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2034 	cgc.cmd[1] = 2;
2035 	cgc.cmd[2] = 4; /* READ ATIP */
2036 	cgc.cmd[8] = 2;
2037 	ret = pkt_generic_packet(pd, &cgc);
2038 	if (ret) {
2039 		pkt_dump_sense(pd, &cgc);
2040 		return ret;
2041 	}
2042 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2043 	if (size > sizeof(buf))
2044 		size = sizeof(buf);
2045 
2046 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2047 	cgc.sshdr = &sshdr;
2048 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2049 	cgc.cmd[1] = 2;
2050 	cgc.cmd[2] = 4;
2051 	cgc.cmd[8] = size;
2052 	ret = pkt_generic_packet(pd, &cgc);
2053 	if (ret) {
2054 		pkt_dump_sense(pd, &cgc);
2055 		return ret;
2056 	}
2057 
2058 	if (!(buf[6] & 0x40)) {
2059 		pkt_notice(pd, "disc type is not CD-RW\n");
2060 		return 1;
2061 	}
2062 	if (!(buf[6] & 0x4)) {
2063 		pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2064 		return 1;
2065 	}
2066 
2067 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2068 
2069 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2070 
2071 	/* Info from cdrecord */
2072 	switch (st) {
2073 		case 0: /* standard speed */
2074 			*speed = clv_to_speed[sp];
2075 			break;
2076 		case 1: /* high speed */
2077 			*speed = hs_clv_to_speed[sp];
2078 			break;
2079 		case 2: /* ultra high speed */
2080 			*speed = us_clv_to_speed[sp];
2081 			break;
2082 		default:
2083 			pkt_notice(pd, "unknown disc sub-type %d\n", st);
2084 			return 1;
2085 	}
2086 	if (*speed) {
2087 		pkt_info(pd, "maximum media speed: %d\n", *speed);
2088 		return 0;
2089 	} else {
2090 		pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2091 		return 1;
2092 	}
2093 }
2094 
2095 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2096 {
2097 	struct packet_command cgc;
2098 	struct scsi_sense_hdr sshdr;
2099 	int ret;
2100 
2101 	pkt_dbg(2, pd, "Performing OPC\n");
2102 
2103 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2104 	cgc.sshdr = &sshdr;
2105 	cgc.timeout = 60*HZ;
2106 	cgc.cmd[0] = GPCMD_SEND_OPC;
2107 	cgc.cmd[1] = 1;
2108 	ret = pkt_generic_packet(pd, &cgc);
2109 	if (ret)
2110 		pkt_dump_sense(pd, &cgc);
2111 	return ret;
2112 }
2113 
2114 static int pkt_open_write(struct pktcdvd_device *pd)
2115 {
2116 	int ret;
2117 	unsigned int write_speed, media_write_speed, read_speed;
2118 
2119 	ret = pkt_probe_settings(pd);
2120 	if (ret) {
2121 		pkt_dbg(2, pd, "failed probe\n");
2122 		return ret;
2123 	}
2124 
2125 	ret = pkt_set_write_settings(pd);
2126 	if (ret) {
2127 		pkt_dbg(1, pd, "failed saving write settings\n");
2128 		return -EIO;
2129 	}
2130 
2131 	pkt_write_caching(pd, USE_WCACHING);
2132 
2133 	ret = pkt_get_max_speed(pd, &write_speed);
2134 	if (ret)
2135 		write_speed = 16 * 177;
2136 	switch (pd->mmc3_profile) {
2137 		case 0x13: /* DVD-RW */
2138 		case 0x1a: /* DVD+RW */
2139 		case 0x12: /* DVD-RAM */
2140 			pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2141 			break;
2142 		default:
2143 			ret = pkt_media_speed(pd, &media_write_speed);
2144 			if (ret)
2145 				media_write_speed = 16;
2146 			write_speed = min(write_speed, media_write_speed * 177);
2147 			pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2148 			break;
2149 	}
2150 	read_speed = write_speed;
2151 
2152 	ret = pkt_set_speed(pd, write_speed, read_speed);
2153 	if (ret) {
2154 		pkt_dbg(1, pd, "couldn't set write speed\n");
2155 		return -EIO;
2156 	}
2157 	pd->write_speed = write_speed;
2158 	pd->read_speed = read_speed;
2159 
2160 	ret = pkt_perform_opc(pd);
2161 	if (ret) {
2162 		pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2163 	}
2164 
2165 	return 0;
2166 }
2167 
2168 /*
2169  * called at open time.
2170  */
2171 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2172 {
2173 	int ret;
2174 	long lba;
2175 	struct request_queue *q;
2176 
2177 	/*
2178 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2179 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2180 	 * so bdget() can't fail.
2181 	 */
2182 	bdget(pd->bdev->bd_dev);
2183 	ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd);
2184 	if (ret)
2185 		goto out;
2186 
2187 	ret = pkt_get_last_written(pd, &lba);
2188 	if (ret) {
2189 		pkt_err(pd, "pkt_get_last_written failed\n");
2190 		goto out_putdev;
2191 	}
2192 
2193 	set_capacity(pd->disk, lba << 2);
2194 	set_capacity(pd->bdev->bd_disk, lba << 2);
2195 	bd_set_size(pd->bdev, (loff_t)lba << 11);
2196 
2197 	q = bdev_get_queue(pd->bdev);
2198 	if (write) {
2199 		ret = pkt_open_write(pd);
2200 		if (ret)
2201 			goto out_putdev;
2202 		/*
2203 		 * Some CDRW drives can not handle writes larger than one packet,
2204 		 * even if the size is a multiple of the packet size.
2205 		 */
2206 		spin_lock_irq(q->queue_lock);
2207 		blk_queue_max_hw_sectors(q, pd->settings.size);
2208 		spin_unlock_irq(q->queue_lock);
2209 		set_bit(PACKET_WRITABLE, &pd->flags);
2210 	} else {
2211 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2212 		clear_bit(PACKET_WRITABLE, &pd->flags);
2213 	}
2214 
2215 	ret = pkt_set_segment_merging(pd, q);
2216 	if (ret)
2217 		goto out_putdev;
2218 
2219 	if (write) {
2220 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2221 			pkt_err(pd, "not enough memory for buffers\n");
2222 			ret = -ENOMEM;
2223 			goto out_putdev;
2224 		}
2225 		pkt_info(pd, "%lukB available on disc\n", lba << 1);
2226 	}
2227 
2228 	return 0;
2229 
2230 out_putdev:
2231 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2232 out:
2233 	return ret;
2234 }
2235 
2236 /*
2237  * called when the device is closed. makes sure that the device flushes
2238  * the internal cache before we close.
2239  */
2240 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2241 {
2242 	if (flush && pkt_flush_cache(pd))
2243 		pkt_dbg(1, pd, "not flushing cache\n");
2244 
2245 	pkt_lock_door(pd, 0);
2246 
2247 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2248 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2249 
2250 	pkt_shrink_pktlist(pd);
2251 }
2252 
2253 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2254 {
2255 	if (dev_minor >= MAX_WRITERS)
2256 		return NULL;
2257 
2258 	dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2259 	return pkt_devs[dev_minor];
2260 }
2261 
2262 static int pkt_open(struct block_device *bdev, fmode_t mode)
2263 {
2264 	struct pktcdvd_device *pd = NULL;
2265 	int ret;
2266 
2267 	mutex_lock(&pktcdvd_mutex);
2268 	mutex_lock(&ctl_mutex);
2269 	pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2270 	if (!pd) {
2271 		ret = -ENODEV;
2272 		goto out;
2273 	}
2274 	BUG_ON(pd->refcnt < 0);
2275 
2276 	pd->refcnt++;
2277 	if (pd->refcnt > 1) {
2278 		if ((mode & FMODE_WRITE) &&
2279 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2280 			ret = -EBUSY;
2281 			goto out_dec;
2282 		}
2283 	} else {
2284 		ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2285 		if (ret)
2286 			goto out_dec;
2287 		/*
2288 		 * needed here as well, since ext2 (among others) may change
2289 		 * the blocksize at mount time
2290 		 */
2291 		set_blocksize(bdev, CD_FRAMESIZE);
2292 	}
2293 
2294 	mutex_unlock(&ctl_mutex);
2295 	mutex_unlock(&pktcdvd_mutex);
2296 	return 0;
2297 
2298 out_dec:
2299 	pd->refcnt--;
2300 out:
2301 	mutex_unlock(&ctl_mutex);
2302 	mutex_unlock(&pktcdvd_mutex);
2303 	return ret;
2304 }
2305 
2306 static void pkt_close(struct gendisk *disk, fmode_t mode)
2307 {
2308 	struct pktcdvd_device *pd = disk->private_data;
2309 
2310 	mutex_lock(&pktcdvd_mutex);
2311 	mutex_lock(&ctl_mutex);
2312 	pd->refcnt--;
2313 	BUG_ON(pd->refcnt < 0);
2314 	if (pd->refcnt == 0) {
2315 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2316 		pkt_release_dev(pd, flush);
2317 	}
2318 	mutex_unlock(&ctl_mutex);
2319 	mutex_unlock(&pktcdvd_mutex);
2320 }
2321 
2322 
2323 static void pkt_end_io_read_cloned(struct bio *bio)
2324 {
2325 	struct packet_stacked_data *psd = bio->bi_private;
2326 	struct pktcdvd_device *pd = psd->pd;
2327 
2328 	psd->bio->bi_status = bio->bi_status;
2329 	bio_put(bio);
2330 	bio_endio(psd->bio);
2331 	mempool_free(psd, &psd_pool);
2332 	pkt_bio_finished(pd);
2333 }
2334 
2335 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2336 {
2337 	struct bio *cloned_bio = bio_clone_fast(bio, GFP_NOIO, &pkt_bio_set);
2338 	struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2339 
2340 	psd->pd = pd;
2341 	psd->bio = bio;
2342 	bio_set_dev(cloned_bio, pd->bdev);
2343 	cloned_bio->bi_private = psd;
2344 	cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2345 	pd->stats.secs_r += bio_sectors(bio);
2346 	pkt_queue_bio(pd, cloned_bio);
2347 }
2348 
2349 static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2350 {
2351 	struct pktcdvd_device *pd = q->queuedata;
2352 	sector_t zone;
2353 	struct packet_data *pkt;
2354 	int was_empty, blocked_bio;
2355 	struct pkt_rb_node *node;
2356 
2357 	zone = get_zone(bio->bi_iter.bi_sector, pd);
2358 
2359 	/*
2360 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2361 	 * just append this bio to that packet.
2362 	 */
2363 	spin_lock(&pd->cdrw.active_list_lock);
2364 	blocked_bio = 0;
2365 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2366 		if (pkt->sector == zone) {
2367 			spin_lock(&pkt->lock);
2368 			if ((pkt->state == PACKET_WAITING_STATE) ||
2369 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2370 				bio_list_add(&pkt->orig_bios, bio);
2371 				pkt->write_size +=
2372 					bio->bi_iter.bi_size / CD_FRAMESIZE;
2373 				if ((pkt->write_size >= pkt->frames) &&
2374 				    (pkt->state == PACKET_WAITING_STATE)) {
2375 					atomic_inc(&pkt->run_sm);
2376 					wake_up(&pd->wqueue);
2377 				}
2378 				spin_unlock(&pkt->lock);
2379 				spin_unlock(&pd->cdrw.active_list_lock);
2380 				return;
2381 			} else {
2382 				blocked_bio = 1;
2383 			}
2384 			spin_unlock(&pkt->lock);
2385 		}
2386 	}
2387 	spin_unlock(&pd->cdrw.active_list_lock);
2388 
2389  	/*
2390 	 * Test if there is enough room left in the bio work queue
2391 	 * (queue size >= congestion on mark).
2392 	 * If not, wait till the work queue size is below the congestion off mark.
2393 	 */
2394 	spin_lock(&pd->lock);
2395 	if (pd->write_congestion_on > 0
2396 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2397 		set_bdi_congested(q->backing_dev_info, BLK_RW_ASYNC);
2398 		do {
2399 			spin_unlock(&pd->lock);
2400 			congestion_wait(BLK_RW_ASYNC, HZ);
2401 			spin_lock(&pd->lock);
2402 		} while(pd->bio_queue_size > pd->write_congestion_off);
2403 	}
2404 	spin_unlock(&pd->lock);
2405 
2406 	/*
2407 	 * No matching packet found. Store the bio in the work queue.
2408 	 */
2409 	node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2410 	node->bio = bio;
2411 	spin_lock(&pd->lock);
2412 	BUG_ON(pd->bio_queue_size < 0);
2413 	was_empty = (pd->bio_queue_size == 0);
2414 	pkt_rbtree_insert(pd, node);
2415 	spin_unlock(&pd->lock);
2416 
2417 	/*
2418 	 * Wake up the worker thread.
2419 	 */
2420 	atomic_set(&pd->scan_queue, 1);
2421 	if (was_empty) {
2422 		/* This wake_up is required for correct operation */
2423 		wake_up(&pd->wqueue);
2424 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2425 		/*
2426 		 * This wake up is not required for correct operation,
2427 		 * but improves performance in some cases.
2428 		 */
2429 		wake_up(&pd->wqueue);
2430 	}
2431 }
2432 
2433 static blk_qc_t pkt_make_request(struct request_queue *q, struct bio *bio)
2434 {
2435 	struct pktcdvd_device *pd;
2436 	char b[BDEVNAME_SIZE];
2437 	struct bio *split;
2438 
2439 	blk_queue_split(q, &bio);
2440 
2441 	pd = q->queuedata;
2442 	if (!pd) {
2443 		pr_err("%s incorrect request queue\n", bio_devname(bio, b));
2444 		goto end_io;
2445 	}
2446 
2447 	pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2448 		(unsigned long long)bio->bi_iter.bi_sector,
2449 		(unsigned long long)bio_end_sector(bio));
2450 
2451 	/*
2452 	 * Clone READ bios so we can have our own bi_end_io callback.
2453 	 */
2454 	if (bio_data_dir(bio) == READ) {
2455 		pkt_make_request_read(pd, bio);
2456 		return BLK_QC_T_NONE;
2457 	}
2458 
2459 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2460 		pkt_notice(pd, "WRITE for ro device (%llu)\n",
2461 			   (unsigned long long)bio->bi_iter.bi_sector);
2462 		goto end_io;
2463 	}
2464 
2465 	if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2466 		pkt_err(pd, "wrong bio size\n");
2467 		goto end_io;
2468 	}
2469 
2470 	do {
2471 		sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2472 		sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2473 
2474 		if (last_zone != zone) {
2475 			BUG_ON(last_zone != zone + pd->settings.size);
2476 
2477 			split = bio_split(bio, last_zone -
2478 					  bio->bi_iter.bi_sector,
2479 					  GFP_NOIO, &pkt_bio_set);
2480 			bio_chain(split, bio);
2481 		} else {
2482 			split = bio;
2483 		}
2484 
2485 		pkt_make_request_write(q, split);
2486 	} while (split != bio);
2487 
2488 	return BLK_QC_T_NONE;
2489 end_io:
2490 	bio_io_error(bio);
2491 	return BLK_QC_T_NONE;
2492 }
2493 
2494 static void pkt_init_queue(struct pktcdvd_device *pd)
2495 {
2496 	struct request_queue *q = pd->disk->queue;
2497 
2498 	blk_queue_make_request(q, pkt_make_request);
2499 	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2500 	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2501 	q->queuedata = pd;
2502 }
2503 
2504 static int pkt_seq_show(struct seq_file *m, void *p)
2505 {
2506 	struct pktcdvd_device *pd = m->private;
2507 	char *msg;
2508 	char bdev_buf[BDEVNAME_SIZE];
2509 	int states[PACKET_NUM_STATES];
2510 
2511 	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2512 		   bdevname(pd->bdev, bdev_buf));
2513 
2514 	seq_printf(m, "\nSettings:\n");
2515 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2516 
2517 	if (pd->settings.write_type == 0)
2518 		msg = "Packet";
2519 	else
2520 		msg = "Unknown";
2521 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2522 
2523 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2524 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2525 
2526 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2527 
2528 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2529 		msg = "Mode 1";
2530 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2531 		msg = "Mode 2";
2532 	else
2533 		msg = "Unknown";
2534 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2535 
2536 	seq_printf(m, "\nStatistics:\n");
2537 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2538 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2539 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2540 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2541 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2542 
2543 	seq_printf(m, "\nMisc:\n");
2544 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2545 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2546 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2547 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2548 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2549 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2550 
2551 	seq_printf(m, "\nQueue state:\n");
2552 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2553 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2554 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2555 
2556 	pkt_count_states(pd, states);
2557 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2558 		   states[0], states[1], states[2], states[3], states[4], states[5]);
2559 
2560 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2561 			pd->write_congestion_off,
2562 			pd->write_congestion_on);
2563 	return 0;
2564 }
2565 
2566 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2567 {
2568 	int i;
2569 	int ret = 0;
2570 	char b[BDEVNAME_SIZE];
2571 	struct block_device *bdev;
2572 
2573 	if (pd->pkt_dev == dev) {
2574 		pkt_err(pd, "recursive setup not allowed\n");
2575 		return -EBUSY;
2576 	}
2577 	for (i = 0; i < MAX_WRITERS; i++) {
2578 		struct pktcdvd_device *pd2 = pkt_devs[i];
2579 		if (!pd2)
2580 			continue;
2581 		if (pd2->bdev->bd_dev == dev) {
2582 			pkt_err(pd, "%s already setup\n",
2583 				bdevname(pd2->bdev, b));
2584 			return -EBUSY;
2585 		}
2586 		if (pd2->pkt_dev == dev) {
2587 			pkt_err(pd, "can't chain pktcdvd devices\n");
2588 			return -EBUSY;
2589 		}
2590 	}
2591 
2592 	bdev = bdget(dev);
2593 	if (!bdev)
2594 		return -ENOMEM;
2595 	ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2596 	if (ret)
2597 		return ret;
2598 	if (!blk_queue_scsi_passthrough(bdev_get_queue(bdev))) {
2599 		WARN_ONCE(true, "Attempt to register a non-SCSI queue\n");
2600 		blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2601 		return -EINVAL;
2602 	}
2603 
2604 	/* This is safe, since we have a reference from open(). */
2605 	__module_get(THIS_MODULE);
2606 
2607 	pd->bdev = bdev;
2608 	set_blocksize(bdev, CD_FRAMESIZE);
2609 
2610 	pkt_init_queue(pd);
2611 
2612 	atomic_set(&pd->cdrw.pending_bios, 0);
2613 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2614 	if (IS_ERR(pd->cdrw.thread)) {
2615 		pkt_err(pd, "can't start kernel thread\n");
2616 		ret = -ENOMEM;
2617 		goto out_mem;
2618 	}
2619 
2620 	proc_create_single_data(pd->name, 0, pkt_proc, pkt_seq_show, pd);
2621 	pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2622 	return 0;
2623 
2624 out_mem:
2625 	blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2626 	/* This is safe: open() is still holding a reference. */
2627 	module_put(THIS_MODULE);
2628 	return ret;
2629 }
2630 
2631 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2632 {
2633 	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2634 	int ret;
2635 
2636 	pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2637 		cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2638 
2639 	mutex_lock(&pktcdvd_mutex);
2640 	switch (cmd) {
2641 	case CDROMEJECT:
2642 		/*
2643 		 * The door gets locked when the device is opened, so we
2644 		 * have to unlock it or else the eject command fails.
2645 		 */
2646 		if (pd->refcnt == 1)
2647 			pkt_lock_door(pd, 0);
2648 		/* fallthru */
2649 	/*
2650 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2651 	 */
2652 	case CDROMMULTISESSION:
2653 	case CDROMREADTOCENTRY:
2654 	case CDROM_LAST_WRITTEN:
2655 	case CDROM_SEND_PACKET:
2656 	case SCSI_IOCTL_SEND_COMMAND:
2657 		ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2658 		break;
2659 
2660 	default:
2661 		pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2662 		ret = -ENOTTY;
2663 	}
2664 	mutex_unlock(&pktcdvd_mutex);
2665 
2666 	return ret;
2667 }
2668 
2669 static unsigned int pkt_check_events(struct gendisk *disk,
2670 				     unsigned int clearing)
2671 {
2672 	struct pktcdvd_device *pd = disk->private_data;
2673 	struct gendisk *attached_disk;
2674 
2675 	if (!pd)
2676 		return 0;
2677 	if (!pd->bdev)
2678 		return 0;
2679 	attached_disk = pd->bdev->bd_disk;
2680 	if (!attached_disk || !attached_disk->fops->check_events)
2681 		return 0;
2682 	return attached_disk->fops->check_events(attached_disk, clearing);
2683 }
2684 
2685 static const struct block_device_operations pktcdvd_ops = {
2686 	.owner =		THIS_MODULE,
2687 	.open =			pkt_open,
2688 	.release =		pkt_close,
2689 	.ioctl =		pkt_ioctl,
2690 	.check_events =		pkt_check_events,
2691 };
2692 
2693 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2694 {
2695 	return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2696 }
2697 
2698 /*
2699  * Set up mapping from pktcdvd device to CD-ROM device.
2700  */
2701 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2702 {
2703 	int idx;
2704 	int ret = -ENOMEM;
2705 	struct pktcdvd_device *pd;
2706 	struct gendisk *disk;
2707 
2708 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2709 
2710 	for (idx = 0; idx < MAX_WRITERS; idx++)
2711 		if (!pkt_devs[idx])
2712 			break;
2713 	if (idx == MAX_WRITERS) {
2714 		pr_err("max %d writers supported\n", MAX_WRITERS);
2715 		ret = -EBUSY;
2716 		goto out_mutex;
2717 	}
2718 
2719 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2720 	if (!pd)
2721 		goto out_mutex;
2722 
2723 	ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2724 					sizeof(struct pkt_rb_node));
2725 	if (ret)
2726 		goto out_mem;
2727 
2728 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2729 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2730 	spin_lock_init(&pd->cdrw.active_list_lock);
2731 
2732 	spin_lock_init(&pd->lock);
2733 	spin_lock_init(&pd->iosched.lock);
2734 	bio_list_init(&pd->iosched.read_queue);
2735 	bio_list_init(&pd->iosched.write_queue);
2736 	sprintf(pd->name, DRIVER_NAME"%d", idx);
2737 	init_waitqueue_head(&pd->wqueue);
2738 	pd->bio_queue = RB_ROOT;
2739 
2740 	pd->write_congestion_on  = write_congestion_on;
2741 	pd->write_congestion_off = write_congestion_off;
2742 
2743 	ret = -ENOMEM;
2744 	disk = alloc_disk(1);
2745 	if (!disk)
2746 		goto out_mem;
2747 	pd->disk = disk;
2748 	disk->major = pktdev_major;
2749 	disk->first_minor = idx;
2750 	disk->fops = &pktcdvd_ops;
2751 	disk->flags = GENHD_FL_REMOVABLE;
2752 	strcpy(disk->disk_name, pd->name);
2753 	disk->devnode = pktcdvd_devnode;
2754 	disk->private_data = pd;
2755 	disk->queue = blk_alloc_queue(GFP_KERNEL);
2756 	if (!disk->queue)
2757 		goto out_mem2;
2758 
2759 	pd->pkt_dev = MKDEV(pktdev_major, idx);
2760 	ret = pkt_new_dev(pd, dev);
2761 	if (ret)
2762 		goto out_mem2;
2763 
2764 	/* inherit events of the host device */
2765 	disk->events = pd->bdev->bd_disk->events;
2766 	disk->async_events = pd->bdev->bd_disk->async_events;
2767 
2768 	add_disk(disk);
2769 
2770 	pkt_sysfs_dev_new(pd);
2771 	pkt_debugfs_dev_new(pd);
2772 
2773 	pkt_devs[idx] = pd;
2774 	if (pkt_dev)
2775 		*pkt_dev = pd->pkt_dev;
2776 
2777 	mutex_unlock(&ctl_mutex);
2778 	return 0;
2779 
2780 out_mem2:
2781 	put_disk(disk);
2782 out_mem:
2783 	mempool_exit(&pd->rb_pool);
2784 	kfree(pd);
2785 out_mutex:
2786 	mutex_unlock(&ctl_mutex);
2787 	pr_err("setup of pktcdvd device failed\n");
2788 	return ret;
2789 }
2790 
2791 /*
2792  * Tear down mapping from pktcdvd device to CD-ROM device.
2793  */
2794 static int pkt_remove_dev(dev_t pkt_dev)
2795 {
2796 	struct pktcdvd_device *pd;
2797 	int idx;
2798 	int ret = 0;
2799 
2800 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2801 
2802 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2803 		pd = pkt_devs[idx];
2804 		if (pd && (pd->pkt_dev == pkt_dev))
2805 			break;
2806 	}
2807 	if (idx == MAX_WRITERS) {
2808 		pr_debug("dev not setup\n");
2809 		ret = -ENXIO;
2810 		goto out;
2811 	}
2812 
2813 	if (pd->refcnt > 0) {
2814 		ret = -EBUSY;
2815 		goto out;
2816 	}
2817 	if (!IS_ERR(pd->cdrw.thread))
2818 		kthread_stop(pd->cdrw.thread);
2819 
2820 	pkt_devs[idx] = NULL;
2821 
2822 	pkt_debugfs_dev_remove(pd);
2823 	pkt_sysfs_dev_remove(pd);
2824 
2825 	blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2826 
2827 	remove_proc_entry(pd->name, pkt_proc);
2828 	pkt_dbg(1, pd, "writer unmapped\n");
2829 
2830 	del_gendisk(pd->disk);
2831 	blk_cleanup_queue(pd->disk->queue);
2832 	put_disk(pd->disk);
2833 
2834 	mempool_exit(&pd->rb_pool);
2835 	kfree(pd);
2836 
2837 	/* This is safe: open() is still holding a reference. */
2838 	module_put(THIS_MODULE);
2839 
2840 out:
2841 	mutex_unlock(&ctl_mutex);
2842 	return ret;
2843 }
2844 
2845 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2846 {
2847 	struct pktcdvd_device *pd;
2848 
2849 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2850 
2851 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2852 	if (pd) {
2853 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2854 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2855 	} else {
2856 		ctrl_cmd->dev = 0;
2857 		ctrl_cmd->pkt_dev = 0;
2858 	}
2859 	ctrl_cmd->num_devices = MAX_WRITERS;
2860 
2861 	mutex_unlock(&ctl_mutex);
2862 }
2863 
2864 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2865 {
2866 	void __user *argp = (void __user *)arg;
2867 	struct pkt_ctrl_command ctrl_cmd;
2868 	int ret = 0;
2869 	dev_t pkt_dev = 0;
2870 
2871 	if (cmd != PACKET_CTRL_CMD)
2872 		return -ENOTTY;
2873 
2874 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2875 		return -EFAULT;
2876 
2877 	switch (ctrl_cmd.command) {
2878 	case PKT_CTRL_CMD_SETUP:
2879 		if (!capable(CAP_SYS_ADMIN))
2880 			return -EPERM;
2881 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2882 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2883 		break;
2884 	case PKT_CTRL_CMD_TEARDOWN:
2885 		if (!capable(CAP_SYS_ADMIN))
2886 			return -EPERM;
2887 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2888 		break;
2889 	case PKT_CTRL_CMD_STATUS:
2890 		pkt_get_status(&ctrl_cmd);
2891 		break;
2892 	default:
2893 		return -ENOTTY;
2894 	}
2895 
2896 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2897 		return -EFAULT;
2898 	return ret;
2899 }
2900 
2901 #ifdef CONFIG_COMPAT
2902 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2903 {
2904 	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2905 }
2906 #endif
2907 
2908 static const struct file_operations pkt_ctl_fops = {
2909 	.open		= nonseekable_open,
2910 	.unlocked_ioctl	= pkt_ctl_ioctl,
2911 #ifdef CONFIG_COMPAT
2912 	.compat_ioctl	= pkt_ctl_compat_ioctl,
2913 #endif
2914 	.owner		= THIS_MODULE,
2915 	.llseek		= no_llseek,
2916 };
2917 
2918 static struct miscdevice pkt_misc = {
2919 	.minor 		= MISC_DYNAMIC_MINOR,
2920 	.name  		= DRIVER_NAME,
2921 	.nodename	= "pktcdvd/control",
2922 	.fops  		= &pkt_ctl_fops
2923 };
2924 
2925 static int __init pkt_init(void)
2926 {
2927 	int ret;
2928 
2929 	mutex_init(&ctl_mutex);
2930 
2931 	ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2932 				    sizeof(struct packet_stacked_data));
2933 	if (ret)
2934 		return ret;
2935 	ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2936 	if (ret) {
2937 		mempool_exit(&psd_pool);
2938 		return ret;
2939 	}
2940 
2941 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2942 	if (ret < 0) {
2943 		pr_err("unable to register block device\n");
2944 		goto out2;
2945 	}
2946 	if (!pktdev_major)
2947 		pktdev_major = ret;
2948 
2949 	ret = pkt_sysfs_init();
2950 	if (ret)
2951 		goto out;
2952 
2953 	pkt_debugfs_init();
2954 
2955 	ret = misc_register(&pkt_misc);
2956 	if (ret) {
2957 		pr_err("unable to register misc device\n");
2958 		goto out_misc;
2959 	}
2960 
2961 	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2962 
2963 	return 0;
2964 
2965 out_misc:
2966 	pkt_debugfs_cleanup();
2967 	pkt_sysfs_cleanup();
2968 out:
2969 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2970 out2:
2971 	mempool_exit(&psd_pool);
2972 	bioset_exit(&pkt_bio_set);
2973 	return ret;
2974 }
2975 
2976 static void __exit pkt_exit(void)
2977 {
2978 	remove_proc_entry("driver/"DRIVER_NAME, NULL);
2979 	misc_deregister(&pkt_misc);
2980 
2981 	pkt_debugfs_cleanup();
2982 	pkt_sysfs_cleanup();
2983 
2984 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2985 	mempool_exit(&psd_pool);
2986 	bioset_exit(&pkt_bio_set);
2987 }
2988 
2989 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2990 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2991 MODULE_LICENSE("GPL");
2992 
2993 module_init(pkt_init);
2994 module_exit(pkt_exit);
2995