xref: /openbmc/linux/drivers/block/pktcdvd.c (revision 8c0b9ee8)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom make_request_fn function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_ioctl.h>
66 #include <scsi/scsi.h>
67 #include <linux/debugfs.h>
68 #include <linux/device.h>
69 
70 #include <asm/uaccess.h>
71 
72 #define DRIVER_NAME	"pktcdvd"
73 
74 #define pkt_err(pd, fmt, ...)						\
75 	pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
76 #define pkt_notice(pd, fmt, ...)					\
77 	pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
78 #define pkt_info(pd, fmt, ...)						\
79 	pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
80 
81 #define pkt_dbg(level, pd, fmt, ...)					\
82 do {									\
83 	if (level == 2 && PACKET_DEBUG >= 2)				\
84 		pr_notice("%s: %s():" fmt,				\
85 			  pd->name, __func__, ##__VA_ARGS__);		\
86 	else if (level == 1 && PACKET_DEBUG >= 1)			\
87 		pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__);		\
88 } while (0)
89 
90 #define MAX_SPEED 0xffff
91 
92 static DEFINE_MUTEX(pktcdvd_mutex);
93 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
94 static struct proc_dir_entry *pkt_proc;
95 static int pktdev_major;
96 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
97 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
98 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
99 static mempool_t *psd_pool;
100 
101 static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
102 static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
103 
104 /* forward declaration */
105 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
106 static int pkt_remove_dev(dev_t pkt_dev);
107 static int pkt_seq_show(struct seq_file *m, void *p);
108 
109 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
110 {
111 	return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
112 }
113 
114 /*
115  * create and register a pktcdvd kernel object.
116  */
117 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
118 					const char* name,
119 					struct kobject* parent,
120 					struct kobj_type* ktype)
121 {
122 	struct pktcdvd_kobj *p;
123 	int error;
124 
125 	p = kzalloc(sizeof(*p), GFP_KERNEL);
126 	if (!p)
127 		return NULL;
128 	p->pd = pd;
129 	error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
130 	if (error) {
131 		kobject_put(&p->kobj);
132 		return NULL;
133 	}
134 	kobject_uevent(&p->kobj, KOBJ_ADD);
135 	return p;
136 }
137 /*
138  * remove a pktcdvd kernel object.
139  */
140 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
141 {
142 	if (p)
143 		kobject_put(&p->kobj);
144 }
145 /*
146  * default release function for pktcdvd kernel objects.
147  */
148 static void pkt_kobj_release(struct kobject *kobj)
149 {
150 	kfree(to_pktcdvdkobj(kobj));
151 }
152 
153 
154 /**********************************************************
155  *
156  * sysfs interface for pktcdvd
157  * by (C) 2006  Thomas Maier <balagi@justmail.de>
158  *
159  **********************************************************/
160 
161 #define DEF_ATTR(_obj,_name,_mode) \
162 	static struct attribute _obj = { .name = _name, .mode = _mode }
163 
164 /**********************************************************
165   /sys/class/pktcdvd/pktcdvd[0-7]/
166                      stat/reset
167                      stat/packets_started
168                      stat/packets_finished
169                      stat/kb_written
170                      stat/kb_read
171                      stat/kb_read_gather
172                      write_queue/size
173                      write_queue/congestion_off
174                      write_queue/congestion_on
175  **********************************************************/
176 
177 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
178 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
179 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
180 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
181 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
182 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
183 
184 static struct attribute *kobj_pkt_attrs_stat[] = {
185 	&kobj_pkt_attr_st1,
186 	&kobj_pkt_attr_st2,
187 	&kobj_pkt_attr_st3,
188 	&kobj_pkt_attr_st4,
189 	&kobj_pkt_attr_st5,
190 	&kobj_pkt_attr_st6,
191 	NULL
192 };
193 
194 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
195 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
196 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
197 
198 static struct attribute *kobj_pkt_attrs_wqueue[] = {
199 	&kobj_pkt_attr_wq1,
200 	&kobj_pkt_attr_wq2,
201 	&kobj_pkt_attr_wq3,
202 	NULL
203 };
204 
205 static ssize_t kobj_pkt_show(struct kobject *kobj,
206 			struct attribute *attr, char *data)
207 {
208 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
209 	int n = 0;
210 	int v;
211 	if (strcmp(attr->name, "packets_started") == 0) {
212 		n = sprintf(data, "%lu\n", pd->stats.pkt_started);
213 
214 	} else if (strcmp(attr->name, "packets_finished") == 0) {
215 		n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
216 
217 	} else if (strcmp(attr->name, "kb_written") == 0) {
218 		n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
219 
220 	} else if (strcmp(attr->name, "kb_read") == 0) {
221 		n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
222 
223 	} else if (strcmp(attr->name, "kb_read_gather") == 0) {
224 		n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
225 
226 	} else if (strcmp(attr->name, "size") == 0) {
227 		spin_lock(&pd->lock);
228 		v = pd->bio_queue_size;
229 		spin_unlock(&pd->lock);
230 		n = sprintf(data, "%d\n", v);
231 
232 	} else if (strcmp(attr->name, "congestion_off") == 0) {
233 		spin_lock(&pd->lock);
234 		v = pd->write_congestion_off;
235 		spin_unlock(&pd->lock);
236 		n = sprintf(data, "%d\n", v);
237 
238 	} else if (strcmp(attr->name, "congestion_on") == 0) {
239 		spin_lock(&pd->lock);
240 		v = pd->write_congestion_on;
241 		spin_unlock(&pd->lock);
242 		n = sprintf(data, "%d\n", v);
243 	}
244 	return n;
245 }
246 
247 static void init_write_congestion_marks(int* lo, int* hi)
248 {
249 	if (*hi > 0) {
250 		*hi = max(*hi, 500);
251 		*hi = min(*hi, 1000000);
252 		if (*lo <= 0)
253 			*lo = *hi - 100;
254 		else {
255 			*lo = min(*lo, *hi - 100);
256 			*lo = max(*lo, 100);
257 		}
258 	} else {
259 		*hi = -1;
260 		*lo = -1;
261 	}
262 }
263 
264 static ssize_t kobj_pkt_store(struct kobject *kobj,
265 			struct attribute *attr,
266 			const char *data, size_t len)
267 {
268 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
269 	int val;
270 
271 	if (strcmp(attr->name, "reset") == 0 && len > 0) {
272 		pd->stats.pkt_started = 0;
273 		pd->stats.pkt_ended = 0;
274 		pd->stats.secs_w = 0;
275 		pd->stats.secs_rg = 0;
276 		pd->stats.secs_r = 0;
277 
278 	} else if (strcmp(attr->name, "congestion_off") == 0
279 		   && sscanf(data, "%d", &val) == 1) {
280 		spin_lock(&pd->lock);
281 		pd->write_congestion_off = val;
282 		init_write_congestion_marks(&pd->write_congestion_off,
283 					&pd->write_congestion_on);
284 		spin_unlock(&pd->lock);
285 
286 	} else if (strcmp(attr->name, "congestion_on") == 0
287 		   && sscanf(data, "%d", &val) == 1) {
288 		spin_lock(&pd->lock);
289 		pd->write_congestion_on = val;
290 		init_write_congestion_marks(&pd->write_congestion_off,
291 					&pd->write_congestion_on);
292 		spin_unlock(&pd->lock);
293 	}
294 	return len;
295 }
296 
297 static const struct sysfs_ops kobj_pkt_ops = {
298 	.show = kobj_pkt_show,
299 	.store = kobj_pkt_store
300 };
301 static struct kobj_type kobj_pkt_type_stat = {
302 	.release = pkt_kobj_release,
303 	.sysfs_ops = &kobj_pkt_ops,
304 	.default_attrs = kobj_pkt_attrs_stat
305 };
306 static struct kobj_type kobj_pkt_type_wqueue = {
307 	.release = pkt_kobj_release,
308 	.sysfs_ops = &kobj_pkt_ops,
309 	.default_attrs = kobj_pkt_attrs_wqueue
310 };
311 
312 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
313 {
314 	if (class_pktcdvd) {
315 		pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
316 					"%s", pd->name);
317 		if (IS_ERR(pd->dev))
318 			pd->dev = NULL;
319 	}
320 	if (pd->dev) {
321 		pd->kobj_stat = pkt_kobj_create(pd, "stat",
322 					&pd->dev->kobj,
323 					&kobj_pkt_type_stat);
324 		pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
325 					&pd->dev->kobj,
326 					&kobj_pkt_type_wqueue);
327 	}
328 }
329 
330 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
331 {
332 	pkt_kobj_remove(pd->kobj_stat);
333 	pkt_kobj_remove(pd->kobj_wqueue);
334 	if (class_pktcdvd)
335 		device_unregister(pd->dev);
336 }
337 
338 
339 /********************************************************************
340   /sys/class/pktcdvd/
341                      add            map block device
342                      remove         unmap packet dev
343                      device_map     show mappings
344  *******************************************************************/
345 
346 static void class_pktcdvd_release(struct class *cls)
347 {
348 	kfree(cls);
349 }
350 static ssize_t class_pktcdvd_show_map(struct class *c,
351 					struct class_attribute *attr,
352 					char *data)
353 {
354 	int n = 0;
355 	int idx;
356 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
357 	for (idx = 0; idx < MAX_WRITERS; idx++) {
358 		struct pktcdvd_device *pd = pkt_devs[idx];
359 		if (!pd)
360 			continue;
361 		n += sprintf(data+n, "%s %u:%u %u:%u\n",
362 			pd->name,
363 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
364 			MAJOR(pd->bdev->bd_dev),
365 			MINOR(pd->bdev->bd_dev));
366 	}
367 	mutex_unlock(&ctl_mutex);
368 	return n;
369 }
370 
371 static ssize_t class_pktcdvd_store_add(struct class *c,
372 					struct class_attribute *attr,
373 					const char *buf,
374 					size_t count)
375 {
376 	unsigned int major, minor;
377 
378 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
379 		/* pkt_setup_dev() expects caller to hold reference to self */
380 		if (!try_module_get(THIS_MODULE))
381 			return -ENODEV;
382 
383 		pkt_setup_dev(MKDEV(major, minor), NULL);
384 
385 		module_put(THIS_MODULE);
386 
387 		return count;
388 	}
389 
390 	return -EINVAL;
391 }
392 
393 static ssize_t class_pktcdvd_store_remove(struct class *c,
394 					  struct class_attribute *attr,
395 					  const char *buf,
396 					size_t count)
397 {
398 	unsigned int major, minor;
399 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
400 		pkt_remove_dev(MKDEV(major, minor));
401 		return count;
402 	}
403 	return -EINVAL;
404 }
405 
406 static struct class_attribute class_pktcdvd_attrs[] = {
407  __ATTR(add,            0200, NULL, class_pktcdvd_store_add),
408  __ATTR(remove,         0200, NULL, class_pktcdvd_store_remove),
409  __ATTR(device_map,     0444, class_pktcdvd_show_map, NULL),
410  __ATTR_NULL
411 };
412 
413 
414 static int pkt_sysfs_init(void)
415 {
416 	int ret = 0;
417 
418 	/*
419 	 * create control files in sysfs
420 	 * /sys/class/pktcdvd/...
421 	 */
422 	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
423 	if (!class_pktcdvd)
424 		return -ENOMEM;
425 	class_pktcdvd->name = DRIVER_NAME;
426 	class_pktcdvd->owner = THIS_MODULE;
427 	class_pktcdvd->class_release = class_pktcdvd_release;
428 	class_pktcdvd->class_attrs = class_pktcdvd_attrs;
429 	ret = class_register(class_pktcdvd);
430 	if (ret) {
431 		kfree(class_pktcdvd);
432 		class_pktcdvd = NULL;
433 		pr_err("failed to create class pktcdvd\n");
434 		return ret;
435 	}
436 	return 0;
437 }
438 
439 static void pkt_sysfs_cleanup(void)
440 {
441 	if (class_pktcdvd)
442 		class_destroy(class_pktcdvd);
443 	class_pktcdvd = NULL;
444 }
445 
446 /********************************************************************
447   entries in debugfs
448 
449   /sys/kernel/debug/pktcdvd[0-7]/
450 			info
451 
452  *******************************************************************/
453 
454 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
455 {
456 	return pkt_seq_show(m, p);
457 }
458 
459 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
460 {
461 	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
462 }
463 
464 static const struct file_operations debug_fops = {
465 	.open		= pkt_debugfs_fops_open,
466 	.read		= seq_read,
467 	.llseek		= seq_lseek,
468 	.release	= single_release,
469 	.owner		= THIS_MODULE,
470 };
471 
472 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
473 {
474 	if (!pkt_debugfs_root)
475 		return;
476 	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
477 	if (!pd->dfs_d_root)
478 		return;
479 
480 	pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
481 				pd->dfs_d_root, pd, &debug_fops);
482 }
483 
484 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
485 {
486 	if (!pkt_debugfs_root)
487 		return;
488 	debugfs_remove(pd->dfs_f_info);
489 	debugfs_remove(pd->dfs_d_root);
490 	pd->dfs_f_info = NULL;
491 	pd->dfs_d_root = NULL;
492 }
493 
494 static void pkt_debugfs_init(void)
495 {
496 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
497 }
498 
499 static void pkt_debugfs_cleanup(void)
500 {
501 	debugfs_remove(pkt_debugfs_root);
502 	pkt_debugfs_root = NULL;
503 }
504 
505 /* ----------------------------------------------------------*/
506 
507 
508 static void pkt_bio_finished(struct pktcdvd_device *pd)
509 {
510 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
511 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
512 		pkt_dbg(2, pd, "queue empty\n");
513 		atomic_set(&pd->iosched.attention, 1);
514 		wake_up(&pd->wqueue);
515 	}
516 }
517 
518 /*
519  * Allocate a packet_data struct
520  */
521 static struct packet_data *pkt_alloc_packet_data(int frames)
522 {
523 	int i;
524 	struct packet_data *pkt;
525 
526 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
527 	if (!pkt)
528 		goto no_pkt;
529 
530 	pkt->frames = frames;
531 	pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
532 	if (!pkt->w_bio)
533 		goto no_bio;
534 
535 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
536 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
537 		if (!pkt->pages[i])
538 			goto no_page;
539 	}
540 
541 	spin_lock_init(&pkt->lock);
542 	bio_list_init(&pkt->orig_bios);
543 
544 	for (i = 0; i < frames; i++) {
545 		struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
546 		if (!bio)
547 			goto no_rd_bio;
548 
549 		pkt->r_bios[i] = bio;
550 	}
551 
552 	return pkt;
553 
554 no_rd_bio:
555 	for (i = 0; i < frames; i++) {
556 		struct bio *bio = pkt->r_bios[i];
557 		if (bio)
558 			bio_put(bio);
559 	}
560 
561 no_page:
562 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
563 		if (pkt->pages[i])
564 			__free_page(pkt->pages[i]);
565 	bio_put(pkt->w_bio);
566 no_bio:
567 	kfree(pkt);
568 no_pkt:
569 	return NULL;
570 }
571 
572 /*
573  * Free a packet_data struct
574  */
575 static void pkt_free_packet_data(struct packet_data *pkt)
576 {
577 	int i;
578 
579 	for (i = 0; i < pkt->frames; i++) {
580 		struct bio *bio = pkt->r_bios[i];
581 		if (bio)
582 			bio_put(bio);
583 	}
584 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
585 		__free_page(pkt->pages[i]);
586 	bio_put(pkt->w_bio);
587 	kfree(pkt);
588 }
589 
590 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
591 {
592 	struct packet_data *pkt, *next;
593 
594 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
595 
596 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
597 		pkt_free_packet_data(pkt);
598 	}
599 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
600 }
601 
602 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
603 {
604 	struct packet_data *pkt;
605 
606 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
607 
608 	while (nr_packets > 0) {
609 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
610 		if (!pkt) {
611 			pkt_shrink_pktlist(pd);
612 			return 0;
613 		}
614 		pkt->id = nr_packets;
615 		pkt->pd = pd;
616 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
617 		nr_packets--;
618 	}
619 	return 1;
620 }
621 
622 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
623 {
624 	struct rb_node *n = rb_next(&node->rb_node);
625 	if (!n)
626 		return NULL;
627 	return rb_entry(n, struct pkt_rb_node, rb_node);
628 }
629 
630 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
631 {
632 	rb_erase(&node->rb_node, &pd->bio_queue);
633 	mempool_free(node, pd->rb_pool);
634 	pd->bio_queue_size--;
635 	BUG_ON(pd->bio_queue_size < 0);
636 }
637 
638 /*
639  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
640  */
641 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
642 {
643 	struct rb_node *n = pd->bio_queue.rb_node;
644 	struct rb_node *next;
645 	struct pkt_rb_node *tmp;
646 
647 	if (!n) {
648 		BUG_ON(pd->bio_queue_size > 0);
649 		return NULL;
650 	}
651 
652 	for (;;) {
653 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
654 		if (s <= tmp->bio->bi_iter.bi_sector)
655 			next = n->rb_left;
656 		else
657 			next = n->rb_right;
658 		if (!next)
659 			break;
660 		n = next;
661 	}
662 
663 	if (s > tmp->bio->bi_iter.bi_sector) {
664 		tmp = pkt_rbtree_next(tmp);
665 		if (!tmp)
666 			return NULL;
667 	}
668 	BUG_ON(s > tmp->bio->bi_iter.bi_sector);
669 	return tmp;
670 }
671 
672 /*
673  * Insert a node into the pd->bio_queue rb tree.
674  */
675 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
676 {
677 	struct rb_node **p = &pd->bio_queue.rb_node;
678 	struct rb_node *parent = NULL;
679 	sector_t s = node->bio->bi_iter.bi_sector;
680 	struct pkt_rb_node *tmp;
681 
682 	while (*p) {
683 		parent = *p;
684 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
685 		if (s < tmp->bio->bi_iter.bi_sector)
686 			p = &(*p)->rb_left;
687 		else
688 			p = &(*p)->rb_right;
689 	}
690 	rb_link_node(&node->rb_node, parent, p);
691 	rb_insert_color(&node->rb_node, &pd->bio_queue);
692 	pd->bio_queue_size++;
693 }
694 
695 /*
696  * Send a packet_command to the underlying block device and
697  * wait for completion.
698  */
699 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
700 {
701 	struct request_queue *q = bdev_get_queue(pd->bdev);
702 	struct request *rq;
703 	int ret = 0;
704 
705 	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
706 			     WRITE : READ, __GFP_WAIT);
707 	if (IS_ERR(rq))
708 		return PTR_ERR(rq);
709 	blk_rq_set_block_pc(rq);
710 
711 	if (cgc->buflen) {
712 		ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
713 				      __GFP_WAIT);
714 		if (ret)
715 			goto out;
716 	}
717 
718 	rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
719 	memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
720 
721 	rq->timeout = 60*HZ;
722 	if (cgc->quiet)
723 		rq->cmd_flags |= REQ_QUIET;
724 
725 	blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
726 	if (rq->errors)
727 		ret = -EIO;
728 out:
729 	blk_put_request(rq);
730 	return ret;
731 }
732 
733 static const char *sense_key_string(__u8 index)
734 {
735 	static const char * const info[] = {
736 		"No sense", "Recovered error", "Not ready",
737 		"Medium error", "Hardware error", "Illegal request",
738 		"Unit attention", "Data protect", "Blank check",
739 	};
740 
741 	return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
742 }
743 
744 /*
745  * A generic sense dump / resolve mechanism should be implemented across
746  * all ATAPI + SCSI devices.
747  */
748 static void pkt_dump_sense(struct pktcdvd_device *pd,
749 			   struct packet_command *cgc)
750 {
751 	struct request_sense *sense = cgc->sense;
752 
753 	if (sense)
754 		pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
755 			CDROM_PACKET_SIZE, cgc->cmd,
756 			sense->sense_key, sense->asc, sense->ascq,
757 			sense_key_string(sense->sense_key));
758 	else
759 		pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
760 }
761 
762 /*
763  * flush the drive cache to media
764  */
765 static int pkt_flush_cache(struct pktcdvd_device *pd)
766 {
767 	struct packet_command cgc;
768 
769 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
770 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
771 	cgc.quiet = 1;
772 
773 	/*
774 	 * the IMMED bit -- we default to not setting it, although that
775 	 * would allow a much faster close, this is safer
776 	 */
777 #if 0
778 	cgc.cmd[1] = 1 << 1;
779 #endif
780 	return pkt_generic_packet(pd, &cgc);
781 }
782 
783 /*
784  * speed is given as the normal factor, e.g. 4 for 4x
785  */
786 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
787 				unsigned write_speed, unsigned read_speed)
788 {
789 	struct packet_command cgc;
790 	struct request_sense sense;
791 	int ret;
792 
793 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
794 	cgc.sense = &sense;
795 	cgc.cmd[0] = GPCMD_SET_SPEED;
796 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
797 	cgc.cmd[3] = read_speed & 0xff;
798 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
799 	cgc.cmd[5] = write_speed & 0xff;
800 
801 	if ((ret = pkt_generic_packet(pd, &cgc)))
802 		pkt_dump_sense(pd, &cgc);
803 
804 	return ret;
805 }
806 
807 /*
808  * Queue a bio for processing by the low-level CD device. Must be called
809  * from process context.
810  */
811 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
812 {
813 	spin_lock(&pd->iosched.lock);
814 	if (bio_data_dir(bio) == READ)
815 		bio_list_add(&pd->iosched.read_queue, bio);
816 	else
817 		bio_list_add(&pd->iosched.write_queue, bio);
818 	spin_unlock(&pd->iosched.lock);
819 
820 	atomic_set(&pd->iosched.attention, 1);
821 	wake_up(&pd->wqueue);
822 }
823 
824 /*
825  * Process the queued read/write requests. This function handles special
826  * requirements for CDRW drives:
827  * - A cache flush command must be inserted before a read request if the
828  *   previous request was a write.
829  * - Switching between reading and writing is slow, so don't do it more often
830  *   than necessary.
831  * - Optimize for throughput at the expense of latency. This means that streaming
832  *   writes will never be interrupted by a read, but if the drive has to seek
833  *   before the next write, switch to reading instead if there are any pending
834  *   read requests.
835  * - Set the read speed according to current usage pattern. When only reading
836  *   from the device, it's best to use the highest possible read speed, but
837  *   when switching often between reading and writing, it's better to have the
838  *   same read and write speeds.
839  */
840 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
841 {
842 
843 	if (atomic_read(&pd->iosched.attention) == 0)
844 		return;
845 	atomic_set(&pd->iosched.attention, 0);
846 
847 	for (;;) {
848 		struct bio *bio;
849 		int reads_queued, writes_queued;
850 
851 		spin_lock(&pd->iosched.lock);
852 		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
853 		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
854 		spin_unlock(&pd->iosched.lock);
855 
856 		if (!reads_queued && !writes_queued)
857 			break;
858 
859 		if (pd->iosched.writing) {
860 			int need_write_seek = 1;
861 			spin_lock(&pd->iosched.lock);
862 			bio = bio_list_peek(&pd->iosched.write_queue);
863 			spin_unlock(&pd->iosched.lock);
864 			if (bio && (bio->bi_iter.bi_sector ==
865 				    pd->iosched.last_write))
866 				need_write_seek = 0;
867 			if (need_write_seek && reads_queued) {
868 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
869 					pkt_dbg(2, pd, "write, waiting\n");
870 					break;
871 				}
872 				pkt_flush_cache(pd);
873 				pd->iosched.writing = 0;
874 			}
875 		} else {
876 			if (!reads_queued && writes_queued) {
877 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
878 					pkt_dbg(2, pd, "read, waiting\n");
879 					break;
880 				}
881 				pd->iosched.writing = 1;
882 			}
883 		}
884 
885 		spin_lock(&pd->iosched.lock);
886 		if (pd->iosched.writing)
887 			bio = bio_list_pop(&pd->iosched.write_queue);
888 		else
889 			bio = bio_list_pop(&pd->iosched.read_queue);
890 		spin_unlock(&pd->iosched.lock);
891 
892 		if (!bio)
893 			continue;
894 
895 		if (bio_data_dir(bio) == READ)
896 			pd->iosched.successive_reads +=
897 				bio->bi_iter.bi_size >> 10;
898 		else {
899 			pd->iosched.successive_reads = 0;
900 			pd->iosched.last_write = bio_end_sector(bio);
901 		}
902 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
903 			if (pd->read_speed == pd->write_speed) {
904 				pd->read_speed = MAX_SPEED;
905 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
906 			}
907 		} else {
908 			if (pd->read_speed != pd->write_speed) {
909 				pd->read_speed = pd->write_speed;
910 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
911 			}
912 		}
913 
914 		atomic_inc(&pd->cdrw.pending_bios);
915 		generic_make_request(bio);
916 	}
917 }
918 
919 /*
920  * Special care is needed if the underlying block device has a small
921  * max_phys_segments value.
922  */
923 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
924 {
925 	if ((pd->settings.size << 9) / CD_FRAMESIZE
926 	    <= queue_max_segments(q)) {
927 		/*
928 		 * The cdrom device can handle one segment/frame
929 		 */
930 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
931 		return 0;
932 	} else if ((pd->settings.size << 9) / PAGE_SIZE
933 		   <= queue_max_segments(q)) {
934 		/*
935 		 * We can handle this case at the expense of some extra memory
936 		 * copies during write operations
937 		 */
938 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
939 		return 0;
940 	} else {
941 		pkt_err(pd, "cdrom max_phys_segments too small\n");
942 		return -EIO;
943 	}
944 }
945 
946 /*
947  * Copy all data for this packet to pkt->pages[], so that
948  * a) The number of required segments for the write bio is minimized, which
949  *    is necessary for some scsi controllers.
950  * b) The data can be used as cache to avoid read requests if we receive a
951  *    new write request for the same zone.
952  */
953 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
954 {
955 	int f, p, offs;
956 
957 	/* Copy all data to pkt->pages[] */
958 	p = 0;
959 	offs = 0;
960 	for (f = 0; f < pkt->frames; f++) {
961 		if (bvec[f].bv_page != pkt->pages[p]) {
962 			void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset;
963 			void *vto = page_address(pkt->pages[p]) + offs;
964 			memcpy(vto, vfrom, CD_FRAMESIZE);
965 			kunmap_atomic(vfrom);
966 			bvec[f].bv_page = pkt->pages[p];
967 			bvec[f].bv_offset = offs;
968 		} else {
969 			BUG_ON(bvec[f].bv_offset != offs);
970 		}
971 		offs += CD_FRAMESIZE;
972 		if (offs >= PAGE_SIZE) {
973 			offs = 0;
974 			p++;
975 		}
976 	}
977 }
978 
979 static void pkt_end_io_read(struct bio *bio, int err)
980 {
981 	struct packet_data *pkt = bio->bi_private;
982 	struct pktcdvd_device *pd = pkt->pd;
983 	BUG_ON(!pd);
984 
985 	pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
986 		bio, (unsigned long long)pkt->sector,
987 		(unsigned long long)bio->bi_iter.bi_sector, err);
988 
989 	if (err)
990 		atomic_inc(&pkt->io_errors);
991 	if (atomic_dec_and_test(&pkt->io_wait)) {
992 		atomic_inc(&pkt->run_sm);
993 		wake_up(&pd->wqueue);
994 	}
995 	pkt_bio_finished(pd);
996 }
997 
998 static void pkt_end_io_packet_write(struct bio *bio, int err)
999 {
1000 	struct packet_data *pkt = bio->bi_private;
1001 	struct pktcdvd_device *pd = pkt->pd;
1002 	BUG_ON(!pd);
1003 
1004 	pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, err);
1005 
1006 	pd->stats.pkt_ended++;
1007 
1008 	pkt_bio_finished(pd);
1009 	atomic_dec(&pkt->io_wait);
1010 	atomic_inc(&pkt->run_sm);
1011 	wake_up(&pd->wqueue);
1012 }
1013 
1014 /*
1015  * Schedule reads for the holes in a packet
1016  */
1017 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1018 {
1019 	int frames_read = 0;
1020 	struct bio *bio;
1021 	int f;
1022 	char written[PACKET_MAX_SIZE];
1023 
1024 	BUG_ON(bio_list_empty(&pkt->orig_bios));
1025 
1026 	atomic_set(&pkt->io_wait, 0);
1027 	atomic_set(&pkt->io_errors, 0);
1028 
1029 	/*
1030 	 * Figure out which frames we need to read before we can write.
1031 	 */
1032 	memset(written, 0, sizeof(written));
1033 	spin_lock(&pkt->lock);
1034 	bio_list_for_each(bio, &pkt->orig_bios) {
1035 		int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1036 			(CD_FRAMESIZE >> 9);
1037 		int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1038 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1039 		BUG_ON(first_frame < 0);
1040 		BUG_ON(first_frame + num_frames > pkt->frames);
1041 		for (f = first_frame; f < first_frame + num_frames; f++)
1042 			written[f] = 1;
1043 	}
1044 	spin_unlock(&pkt->lock);
1045 
1046 	if (pkt->cache_valid) {
1047 		pkt_dbg(2, pd, "zone %llx cached\n",
1048 			(unsigned long long)pkt->sector);
1049 		goto out_account;
1050 	}
1051 
1052 	/*
1053 	 * Schedule reads for missing parts of the packet.
1054 	 */
1055 	for (f = 0; f < pkt->frames; f++) {
1056 		int p, offset;
1057 
1058 		if (written[f])
1059 			continue;
1060 
1061 		bio = pkt->r_bios[f];
1062 		bio_reset(bio);
1063 		bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1064 		bio->bi_bdev = pd->bdev;
1065 		bio->bi_end_io = pkt_end_io_read;
1066 		bio->bi_private = pkt;
1067 
1068 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1069 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1070 		pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1071 			f, pkt->pages[p], offset);
1072 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1073 			BUG();
1074 
1075 		atomic_inc(&pkt->io_wait);
1076 		bio->bi_rw = READ;
1077 		pkt_queue_bio(pd, bio);
1078 		frames_read++;
1079 	}
1080 
1081 out_account:
1082 	pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1083 		frames_read, (unsigned long long)pkt->sector);
1084 	pd->stats.pkt_started++;
1085 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1086 }
1087 
1088 /*
1089  * Find a packet matching zone, or the least recently used packet if
1090  * there is no match.
1091  */
1092 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1093 {
1094 	struct packet_data *pkt;
1095 
1096 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1097 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1098 			list_del_init(&pkt->list);
1099 			if (pkt->sector != zone)
1100 				pkt->cache_valid = 0;
1101 			return pkt;
1102 		}
1103 	}
1104 	BUG();
1105 	return NULL;
1106 }
1107 
1108 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1109 {
1110 	if (pkt->cache_valid) {
1111 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1112 	} else {
1113 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1114 	}
1115 }
1116 
1117 /*
1118  * recover a failed write, query for relocation if possible
1119  *
1120  * returns 1 if recovery is possible, or 0 if not
1121  *
1122  */
1123 static int pkt_start_recovery(struct packet_data *pkt)
1124 {
1125 	/*
1126 	 * FIXME. We need help from the file system to implement
1127 	 * recovery handling.
1128 	 */
1129 	return 0;
1130 #if 0
1131 	struct request *rq = pkt->rq;
1132 	struct pktcdvd_device *pd = rq->rq_disk->private_data;
1133 	struct block_device *pkt_bdev;
1134 	struct super_block *sb = NULL;
1135 	unsigned long old_block, new_block;
1136 	sector_t new_sector;
1137 
1138 	pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1139 	if (pkt_bdev) {
1140 		sb = get_super(pkt_bdev);
1141 		bdput(pkt_bdev);
1142 	}
1143 
1144 	if (!sb)
1145 		return 0;
1146 
1147 	if (!sb->s_op->relocate_blocks)
1148 		goto out;
1149 
1150 	old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1151 	if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1152 		goto out;
1153 
1154 	new_sector = new_block * (CD_FRAMESIZE >> 9);
1155 	pkt->sector = new_sector;
1156 
1157 	bio_reset(pkt->bio);
1158 	pkt->bio->bi_bdev = pd->bdev;
1159 	pkt->bio->bi_rw = REQ_WRITE;
1160 	pkt->bio->bi_iter.bi_sector = new_sector;
1161 	pkt->bio->bi_iter.bi_size = pkt->frames * CD_FRAMESIZE;
1162 	pkt->bio->bi_vcnt = pkt->frames;
1163 
1164 	pkt->bio->bi_end_io = pkt_end_io_packet_write;
1165 	pkt->bio->bi_private = pkt;
1166 
1167 	drop_super(sb);
1168 	return 1;
1169 
1170 out:
1171 	drop_super(sb);
1172 	return 0;
1173 #endif
1174 }
1175 
1176 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1177 {
1178 #if PACKET_DEBUG > 1
1179 	static const char *state_name[] = {
1180 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1181 	};
1182 	enum packet_data_state old_state = pkt->state;
1183 	pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1184 		pkt->id, (unsigned long long)pkt->sector,
1185 		state_name[old_state], state_name[state]);
1186 #endif
1187 	pkt->state = state;
1188 }
1189 
1190 /*
1191  * Scan the work queue to see if we can start a new packet.
1192  * returns non-zero if any work was done.
1193  */
1194 static int pkt_handle_queue(struct pktcdvd_device *pd)
1195 {
1196 	struct packet_data *pkt, *p;
1197 	struct bio *bio = NULL;
1198 	sector_t zone = 0; /* Suppress gcc warning */
1199 	struct pkt_rb_node *node, *first_node;
1200 	struct rb_node *n;
1201 	int wakeup;
1202 
1203 	atomic_set(&pd->scan_queue, 0);
1204 
1205 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1206 		pkt_dbg(2, pd, "no pkt\n");
1207 		return 0;
1208 	}
1209 
1210 	/*
1211 	 * Try to find a zone we are not already working on.
1212 	 */
1213 	spin_lock(&pd->lock);
1214 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1215 	if (!first_node) {
1216 		n = rb_first(&pd->bio_queue);
1217 		if (n)
1218 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1219 	}
1220 	node = first_node;
1221 	while (node) {
1222 		bio = node->bio;
1223 		zone = get_zone(bio->bi_iter.bi_sector, pd);
1224 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1225 			if (p->sector == zone) {
1226 				bio = NULL;
1227 				goto try_next_bio;
1228 			}
1229 		}
1230 		break;
1231 try_next_bio:
1232 		node = pkt_rbtree_next(node);
1233 		if (!node) {
1234 			n = rb_first(&pd->bio_queue);
1235 			if (n)
1236 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1237 		}
1238 		if (node == first_node)
1239 			node = NULL;
1240 	}
1241 	spin_unlock(&pd->lock);
1242 	if (!bio) {
1243 		pkt_dbg(2, pd, "no bio\n");
1244 		return 0;
1245 	}
1246 
1247 	pkt = pkt_get_packet_data(pd, zone);
1248 
1249 	pd->current_sector = zone + pd->settings.size;
1250 	pkt->sector = zone;
1251 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1252 	pkt->write_size = 0;
1253 
1254 	/*
1255 	 * Scan work queue for bios in the same zone and link them
1256 	 * to this packet.
1257 	 */
1258 	spin_lock(&pd->lock);
1259 	pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1260 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1261 		bio = node->bio;
1262 		pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1263 			get_zone(bio->bi_iter.bi_sector, pd));
1264 		if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1265 			break;
1266 		pkt_rbtree_erase(pd, node);
1267 		spin_lock(&pkt->lock);
1268 		bio_list_add(&pkt->orig_bios, bio);
1269 		pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1270 		spin_unlock(&pkt->lock);
1271 	}
1272 	/* check write congestion marks, and if bio_queue_size is
1273 	   below, wake up any waiters */
1274 	wakeup = (pd->write_congestion_on > 0
1275 	 		&& pd->bio_queue_size <= pd->write_congestion_off);
1276 	spin_unlock(&pd->lock);
1277 	if (wakeup) {
1278 		clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1279 					BLK_RW_ASYNC);
1280 	}
1281 
1282 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1283 	pkt_set_state(pkt, PACKET_WAITING_STATE);
1284 	atomic_set(&pkt->run_sm, 1);
1285 
1286 	spin_lock(&pd->cdrw.active_list_lock);
1287 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1288 	spin_unlock(&pd->cdrw.active_list_lock);
1289 
1290 	return 1;
1291 }
1292 
1293 /*
1294  * Assemble a bio to write one packet and queue the bio for processing
1295  * by the underlying block device.
1296  */
1297 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1298 {
1299 	int f;
1300 	struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1301 
1302 	bio_reset(pkt->w_bio);
1303 	pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1304 	pkt->w_bio->bi_bdev = pd->bdev;
1305 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1306 	pkt->w_bio->bi_private = pkt;
1307 
1308 	/* XXX: locking? */
1309 	for (f = 0; f < pkt->frames; f++) {
1310 		bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1311 		bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1312 		if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1313 			BUG();
1314 	}
1315 	pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1316 
1317 	/*
1318 	 * Fill-in bvec with data from orig_bios.
1319 	 */
1320 	spin_lock(&pkt->lock);
1321 	bio_copy_data(pkt->w_bio, pkt->orig_bios.head);
1322 
1323 	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1324 	spin_unlock(&pkt->lock);
1325 
1326 	pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1327 		pkt->write_size, (unsigned long long)pkt->sector);
1328 
1329 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1330 		pkt_make_local_copy(pkt, bvec);
1331 		pkt->cache_valid = 1;
1332 	} else {
1333 		pkt->cache_valid = 0;
1334 	}
1335 
1336 	/* Start the write request */
1337 	atomic_set(&pkt->io_wait, 1);
1338 	pkt->w_bio->bi_rw = WRITE;
1339 	pkt_queue_bio(pd, pkt->w_bio);
1340 }
1341 
1342 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1343 {
1344 	struct bio *bio;
1345 
1346 	if (!uptodate)
1347 		pkt->cache_valid = 0;
1348 
1349 	/* Finish all bios corresponding to this packet */
1350 	while ((bio = bio_list_pop(&pkt->orig_bios)))
1351 		bio_endio(bio, uptodate ? 0 : -EIO);
1352 }
1353 
1354 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1355 {
1356 	int uptodate;
1357 
1358 	pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1359 
1360 	for (;;) {
1361 		switch (pkt->state) {
1362 		case PACKET_WAITING_STATE:
1363 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1364 				return;
1365 
1366 			pkt->sleep_time = 0;
1367 			pkt_gather_data(pd, pkt);
1368 			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1369 			break;
1370 
1371 		case PACKET_READ_WAIT_STATE:
1372 			if (atomic_read(&pkt->io_wait) > 0)
1373 				return;
1374 
1375 			if (atomic_read(&pkt->io_errors) > 0) {
1376 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1377 			} else {
1378 				pkt_start_write(pd, pkt);
1379 			}
1380 			break;
1381 
1382 		case PACKET_WRITE_WAIT_STATE:
1383 			if (atomic_read(&pkt->io_wait) > 0)
1384 				return;
1385 
1386 			if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1387 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1388 			} else {
1389 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1390 			}
1391 			break;
1392 
1393 		case PACKET_RECOVERY_STATE:
1394 			if (pkt_start_recovery(pkt)) {
1395 				pkt_start_write(pd, pkt);
1396 			} else {
1397 				pkt_dbg(2, pd, "No recovery possible\n");
1398 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1399 			}
1400 			break;
1401 
1402 		case PACKET_FINISHED_STATE:
1403 			uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1404 			pkt_finish_packet(pkt, uptodate);
1405 			return;
1406 
1407 		default:
1408 			BUG();
1409 			break;
1410 		}
1411 	}
1412 }
1413 
1414 static void pkt_handle_packets(struct pktcdvd_device *pd)
1415 {
1416 	struct packet_data *pkt, *next;
1417 
1418 	/*
1419 	 * Run state machine for active packets
1420 	 */
1421 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1422 		if (atomic_read(&pkt->run_sm) > 0) {
1423 			atomic_set(&pkt->run_sm, 0);
1424 			pkt_run_state_machine(pd, pkt);
1425 		}
1426 	}
1427 
1428 	/*
1429 	 * Move no longer active packets to the free list
1430 	 */
1431 	spin_lock(&pd->cdrw.active_list_lock);
1432 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1433 		if (pkt->state == PACKET_FINISHED_STATE) {
1434 			list_del(&pkt->list);
1435 			pkt_put_packet_data(pd, pkt);
1436 			pkt_set_state(pkt, PACKET_IDLE_STATE);
1437 			atomic_set(&pd->scan_queue, 1);
1438 		}
1439 	}
1440 	spin_unlock(&pd->cdrw.active_list_lock);
1441 }
1442 
1443 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1444 {
1445 	struct packet_data *pkt;
1446 	int i;
1447 
1448 	for (i = 0; i < PACKET_NUM_STATES; i++)
1449 		states[i] = 0;
1450 
1451 	spin_lock(&pd->cdrw.active_list_lock);
1452 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1453 		states[pkt->state]++;
1454 	}
1455 	spin_unlock(&pd->cdrw.active_list_lock);
1456 }
1457 
1458 /*
1459  * kcdrwd is woken up when writes have been queued for one of our
1460  * registered devices
1461  */
1462 static int kcdrwd(void *foobar)
1463 {
1464 	struct pktcdvd_device *pd = foobar;
1465 	struct packet_data *pkt;
1466 	long min_sleep_time, residue;
1467 
1468 	set_user_nice(current, MIN_NICE);
1469 	set_freezable();
1470 
1471 	for (;;) {
1472 		DECLARE_WAITQUEUE(wait, current);
1473 
1474 		/*
1475 		 * Wait until there is something to do
1476 		 */
1477 		add_wait_queue(&pd->wqueue, &wait);
1478 		for (;;) {
1479 			set_current_state(TASK_INTERRUPTIBLE);
1480 
1481 			/* Check if we need to run pkt_handle_queue */
1482 			if (atomic_read(&pd->scan_queue) > 0)
1483 				goto work_to_do;
1484 
1485 			/* Check if we need to run the state machine for some packet */
1486 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1487 				if (atomic_read(&pkt->run_sm) > 0)
1488 					goto work_to_do;
1489 			}
1490 
1491 			/* Check if we need to process the iosched queues */
1492 			if (atomic_read(&pd->iosched.attention) != 0)
1493 				goto work_to_do;
1494 
1495 			/* Otherwise, go to sleep */
1496 			if (PACKET_DEBUG > 1) {
1497 				int states[PACKET_NUM_STATES];
1498 				pkt_count_states(pd, states);
1499 				pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1500 					states[0], states[1], states[2],
1501 					states[3], states[4], states[5]);
1502 			}
1503 
1504 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1505 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1506 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1507 					min_sleep_time = pkt->sleep_time;
1508 			}
1509 
1510 			pkt_dbg(2, pd, "sleeping\n");
1511 			residue = schedule_timeout(min_sleep_time);
1512 			pkt_dbg(2, pd, "wake up\n");
1513 
1514 			/* make swsusp happy with our thread */
1515 			try_to_freeze();
1516 
1517 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1518 				if (!pkt->sleep_time)
1519 					continue;
1520 				pkt->sleep_time -= min_sleep_time - residue;
1521 				if (pkt->sleep_time <= 0) {
1522 					pkt->sleep_time = 0;
1523 					atomic_inc(&pkt->run_sm);
1524 				}
1525 			}
1526 
1527 			if (kthread_should_stop())
1528 				break;
1529 		}
1530 work_to_do:
1531 		set_current_state(TASK_RUNNING);
1532 		remove_wait_queue(&pd->wqueue, &wait);
1533 
1534 		if (kthread_should_stop())
1535 			break;
1536 
1537 		/*
1538 		 * if pkt_handle_queue returns true, we can queue
1539 		 * another request.
1540 		 */
1541 		while (pkt_handle_queue(pd))
1542 			;
1543 
1544 		/*
1545 		 * Handle packet state machine
1546 		 */
1547 		pkt_handle_packets(pd);
1548 
1549 		/*
1550 		 * Handle iosched queues
1551 		 */
1552 		pkt_iosched_process_queue(pd);
1553 	}
1554 
1555 	return 0;
1556 }
1557 
1558 static void pkt_print_settings(struct pktcdvd_device *pd)
1559 {
1560 	pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1561 		 pd->settings.fp ? "Fixed" : "Variable",
1562 		 pd->settings.size >> 2,
1563 		 pd->settings.block_mode == 8 ? '1' : '2');
1564 }
1565 
1566 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1567 {
1568 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1569 
1570 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1571 	cgc->cmd[2] = page_code | (page_control << 6);
1572 	cgc->cmd[7] = cgc->buflen >> 8;
1573 	cgc->cmd[8] = cgc->buflen & 0xff;
1574 	cgc->data_direction = CGC_DATA_READ;
1575 	return pkt_generic_packet(pd, cgc);
1576 }
1577 
1578 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1579 {
1580 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1581 	memset(cgc->buffer, 0, 2);
1582 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1583 	cgc->cmd[1] = 0x10;		/* PF */
1584 	cgc->cmd[7] = cgc->buflen >> 8;
1585 	cgc->cmd[8] = cgc->buflen & 0xff;
1586 	cgc->data_direction = CGC_DATA_WRITE;
1587 	return pkt_generic_packet(pd, cgc);
1588 }
1589 
1590 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1591 {
1592 	struct packet_command cgc;
1593 	int ret;
1594 
1595 	/* set up command and get the disc info */
1596 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1597 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1598 	cgc.cmd[8] = cgc.buflen = 2;
1599 	cgc.quiet = 1;
1600 
1601 	if ((ret = pkt_generic_packet(pd, &cgc)))
1602 		return ret;
1603 
1604 	/* not all drives have the same disc_info length, so requeue
1605 	 * packet with the length the drive tells us it can supply
1606 	 */
1607 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1608 		     sizeof(di->disc_information_length);
1609 
1610 	if (cgc.buflen > sizeof(disc_information))
1611 		cgc.buflen = sizeof(disc_information);
1612 
1613 	cgc.cmd[8] = cgc.buflen;
1614 	return pkt_generic_packet(pd, &cgc);
1615 }
1616 
1617 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1618 {
1619 	struct packet_command cgc;
1620 	int ret;
1621 
1622 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1623 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1624 	cgc.cmd[1] = type & 3;
1625 	cgc.cmd[4] = (track & 0xff00) >> 8;
1626 	cgc.cmd[5] = track & 0xff;
1627 	cgc.cmd[8] = 8;
1628 	cgc.quiet = 1;
1629 
1630 	if ((ret = pkt_generic_packet(pd, &cgc)))
1631 		return ret;
1632 
1633 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1634 		     sizeof(ti->track_information_length);
1635 
1636 	if (cgc.buflen > sizeof(track_information))
1637 		cgc.buflen = sizeof(track_information);
1638 
1639 	cgc.cmd[8] = cgc.buflen;
1640 	return pkt_generic_packet(pd, &cgc);
1641 }
1642 
1643 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1644 						long *last_written)
1645 {
1646 	disc_information di;
1647 	track_information ti;
1648 	__u32 last_track;
1649 	int ret = -1;
1650 
1651 	if ((ret = pkt_get_disc_info(pd, &di)))
1652 		return ret;
1653 
1654 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1655 	if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1656 		return ret;
1657 
1658 	/* if this track is blank, try the previous. */
1659 	if (ti.blank) {
1660 		last_track--;
1661 		if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1662 			return ret;
1663 	}
1664 
1665 	/* if last recorded field is valid, return it. */
1666 	if (ti.lra_v) {
1667 		*last_written = be32_to_cpu(ti.last_rec_address);
1668 	} else {
1669 		/* make it up instead */
1670 		*last_written = be32_to_cpu(ti.track_start) +
1671 				be32_to_cpu(ti.track_size);
1672 		if (ti.free_blocks)
1673 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1674 	}
1675 	return 0;
1676 }
1677 
1678 /*
1679  * write mode select package based on pd->settings
1680  */
1681 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1682 {
1683 	struct packet_command cgc;
1684 	struct request_sense sense;
1685 	write_param_page *wp;
1686 	char buffer[128];
1687 	int ret, size;
1688 
1689 	/* doesn't apply to DVD+RW or DVD-RAM */
1690 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1691 		return 0;
1692 
1693 	memset(buffer, 0, sizeof(buffer));
1694 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1695 	cgc.sense = &sense;
1696 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1697 		pkt_dump_sense(pd, &cgc);
1698 		return ret;
1699 	}
1700 
1701 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1702 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1703 	if (size > sizeof(buffer))
1704 		size = sizeof(buffer);
1705 
1706 	/*
1707 	 * now get it all
1708 	 */
1709 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1710 	cgc.sense = &sense;
1711 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1712 		pkt_dump_sense(pd, &cgc);
1713 		return ret;
1714 	}
1715 
1716 	/*
1717 	 * write page is offset header + block descriptor length
1718 	 */
1719 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1720 
1721 	wp->fp = pd->settings.fp;
1722 	wp->track_mode = pd->settings.track_mode;
1723 	wp->write_type = pd->settings.write_type;
1724 	wp->data_block_type = pd->settings.block_mode;
1725 
1726 	wp->multi_session = 0;
1727 
1728 #ifdef PACKET_USE_LS
1729 	wp->link_size = 7;
1730 	wp->ls_v = 1;
1731 #endif
1732 
1733 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1734 		wp->session_format = 0;
1735 		wp->subhdr2 = 0x20;
1736 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1737 		wp->session_format = 0x20;
1738 		wp->subhdr2 = 8;
1739 #if 0
1740 		wp->mcn[0] = 0x80;
1741 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1742 #endif
1743 	} else {
1744 		/*
1745 		 * paranoia
1746 		 */
1747 		pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1748 		return 1;
1749 	}
1750 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1751 
1752 	cgc.buflen = cgc.cmd[8] = size;
1753 	if ((ret = pkt_mode_select(pd, &cgc))) {
1754 		pkt_dump_sense(pd, &cgc);
1755 		return ret;
1756 	}
1757 
1758 	pkt_print_settings(pd);
1759 	return 0;
1760 }
1761 
1762 /*
1763  * 1 -- we can write to this track, 0 -- we can't
1764  */
1765 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1766 {
1767 	switch (pd->mmc3_profile) {
1768 		case 0x1a: /* DVD+RW */
1769 		case 0x12: /* DVD-RAM */
1770 			/* The track is always writable on DVD+RW/DVD-RAM */
1771 			return 1;
1772 		default:
1773 			break;
1774 	}
1775 
1776 	if (!ti->packet || !ti->fp)
1777 		return 0;
1778 
1779 	/*
1780 	 * "good" settings as per Mt Fuji.
1781 	 */
1782 	if (ti->rt == 0 && ti->blank == 0)
1783 		return 1;
1784 
1785 	if (ti->rt == 0 && ti->blank == 1)
1786 		return 1;
1787 
1788 	if (ti->rt == 1 && ti->blank == 0)
1789 		return 1;
1790 
1791 	pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1792 	return 0;
1793 }
1794 
1795 /*
1796  * 1 -- we can write to this disc, 0 -- we can't
1797  */
1798 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1799 {
1800 	switch (pd->mmc3_profile) {
1801 		case 0x0a: /* CD-RW */
1802 		case 0xffff: /* MMC3 not supported */
1803 			break;
1804 		case 0x1a: /* DVD+RW */
1805 		case 0x13: /* DVD-RW */
1806 		case 0x12: /* DVD-RAM */
1807 			return 1;
1808 		default:
1809 			pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1810 				pd->mmc3_profile);
1811 			return 0;
1812 	}
1813 
1814 	/*
1815 	 * for disc type 0xff we should probably reserve a new track.
1816 	 * but i'm not sure, should we leave this to user apps? probably.
1817 	 */
1818 	if (di->disc_type == 0xff) {
1819 		pkt_notice(pd, "unknown disc - no track?\n");
1820 		return 0;
1821 	}
1822 
1823 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1824 		pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1825 		return 0;
1826 	}
1827 
1828 	if (di->erasable == 0) {
1829 		pkt_notice(pd, "disc not erasable\n");
1830 		return 0;
1831 	}
1832 
1833 	if (di->border_status == PACKET_SESSION_RESERVED) {
1834 		pkt_err(pd, "can't write to last track (reserved)\n");
1835 		return 0;
1836 	}
1837 
1838 	return 1;
1839 }
1840 
1841 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1842 {
1843 	struct packet_command cgc;
1844 	unsigned char buf[12];
1845 	disc_information di;
1846 	track_information ti;
1847 	int ret, track;
1848 
1849 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1850 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1851 	cgc.cmd[8] = 8;
1852 	ret = pkt_generic_packet(pd, &cgc);
1853 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1854 
1855 	memset(&di, 0, sizeof(disc_information));
1856 	memset(&ti, 0, sizeof(track_information));
1857 
1858 	if ((ret = pkt_get_disc_info(pd, &di))) {
1859 		pkt_err(pd, "failed get_disc\n");
1860 		return ret;
1861 	}
1862 
1863 	if (!pkt_writable_disc(pd, &di))
1864 		return -EROFS;
1865 
1866 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1867 
1868 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1869 	if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1870 		pkt_err(pd, "failed get_track\n");
1871 		return ret;
1872 	}
1873 
1874 	if (!pkt_writable_track(pd, &ti)) {
1875 		pkt_err(pd, "can't write to this track\n");
1876 		return -EROFS;
1877 	}
1878 
1879 	/*
1880 	 * we keep packet size in 512 byte units, makes it easier to
1881 	 * deal with request calculations.
1882 	 */
1883 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1884 	if (pd->settings.size == 0) {
1885 		pkt_notice(pd, "detected zero packet size!\n");
1886 		return -ENXIO;
1887 	}
1888 	if (pd->settings.size > PACKET_MAX_SECTORS) {
1889 		pkt_err(pd, "packet size is too big\n");
1890 		return -EROFS;
1891 	}
1892 	pd->settings.fp = ti.fp;
1893 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1894 
1895 	if (ti.nwa_v) {
1896 		pd->nwa = be32_to_cpu(ti.next_writable);
1897 		set_bit(PACKET_NWA_VALID, &pd->flags);
1898 	}
1899 
1900 	/*
1901 	 * in theory we could use lra on -RW media as well and just zero
1902 	 * blocks that haven't been written yet, but in practice that
1903 	 * is just a no-go. we'll use that for -R, naturally.
1904 	 */
1905 	if (ti.lra_v) {
1906 		pd->lra = be32_to_cpu(ti.last_rec_address);
1907 		set_bit(PACKET_LRA_VALID, &pd->flags);
1908 	} else {
1909 		pd->lra = 0xffffffff;
1910 		set_bit(PACKET_LRA_VALID, &pd->flags);
1911 	}
1912 
1913 	/*
1914 	 * fine for now
1915 	 */
1916 	pd->settings.link_loss = 7;
1917 	pd->settings.write_type = 0;	/* packet */
1918 	pd->settings.track_mode = ti.track_mode;
1919 
1920 	/*
1921 	 * mode1 or mode2 disc
1922 	 */
1923 	switch (ti.data_mode) {
1924 		case PACKET_MODE1:
1925 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1926 			break;
1927 		case PACKET_MODE2:
1928 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1929 			break;
1930 		default:
1931 			pkt_err(pd, "unknown data mode\n");
1932 			return -EROFS;
1933 	}
1934 	return 0;
1935 }
1936 
1937 /*
1938  * enable/disable write caching on drive
1939  */
1940 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1941 						int set)
1942 {
1943 	struct packet_command cgc;
1944 	struct request_sense sense;
1945 	unsigned char buf[64];
1946 	int ret;
1947 
1948 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1949 	cgc.sense = &sense;
1950 	cgc.buflen = pd->mode_offset + 12;
1951 
1952 	/*
1953 	 * caching mode page might not be there, so quiet this command
1954 	 */
1955 	cgc.quiet = 1;
1956 
1957 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1958 		return ret;
1959 
1960 	buf[pd->mode_offset + 10] |= (!!set << 2);
1961 
1962 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1963 	ret = pkt_mode_select(pd, &cgc);
1964 	if (ret) {
1965 		pkt_err(pd, "write caching control failed\n");
1966 		pkt_dump_sense(pd, &cgc);
1967 	} else if (!ret && set)
1968 		pkt_notice(pd, "enabled write caching\n");
1969 	return ret;
1970 }
1971 
1972 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1973 {
1974 	struct packet_command cgc;
1975 
1976 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1977 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1978 	cgc.cmd[4] = lockflag ? 1 : 0;
1979 	return pkt_generic_packet(pd, &cgc);
1980 }
1981 
1982 /*
1983  * Returns drive maximum write speed
1984  */
1985 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1986 						unsigned *write_speed)
1987 {
1988 	struct packet_command cgc;
1989 	struct request_sense sense;
1990 	unsigned char buf[256+18];
1991 	unsigned char *cap_buf;
1992 	int ret, offset;
1993 
1994 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1995 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1996 	cgc.sense = &sense;
1997 
1998 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1999 	if (ret) {
2000 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2001 			     sizeof(struct mode_page_header);
2002 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2003 		if (ret) {
2004 			pkt_dump_sense(pd, &cgc);
2005 			return ret;
2006 		}
2007 	}
2008 
2009 	offset = 20;			    /* Obsoleted field, used by older drives */
2010 	if (cap_buf[1] >= 28)
2011 		offset = 28;		    /* Current write speed selected */
2012 	if (cap_buf[1] >= 30) {
2013 		/* If the drive reports at least one "Logical Unit Write
2014 		 * Speed Performance Descriptor Block", use the information
2015 		 * in the first block. (contains the highest speed)
2016 		 */
2017 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2018 		if (num_spdb > 0)
2019 			offset = 34;
2020 	}
2021 
2022 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2023 	return 0;
2024 }
2025 
2026 /* These tables from cdrecord - I don't have orange book */
2027 /* standard speed CD-RW (1-4x) */
2028 static char clv_to_speed[16] = {
2029 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2030 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2031 };
2032 /* high speed CD-RW (-10x) */
2033 static char hs_clv_to_speed[16] = {
2034 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2035 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2036 };
2037 /* ultra high speed CD-RW */
2038 static char us_clv_to_speed[16] = {
2039 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2040 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2041 };
2042 
2043 /*
2044  * reads the maximum media speed from ATIP
2045  */
2046 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2047 						unsigned *speed)
2048 {
2049 	struct packet_command cgc;
2050 	struct request_sense sense;
2051 	unsigned char buf[64];
2052 	unsigned int size, st, sp;
2053 	int ret;
2054 
2055 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2056 	cgc.sense = &sense;
2057 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2058 	cgc.cmd[1] = 2;
2059 	cgc.cmd[2] = 4; /* READ ATIP */
2060 	cgc.cmd[8] = 2;
2061 	ret = pkt_generic_packet(pd, &cgc);
2062 	if (ret) {
2063 		pkt_dump_sense(pd, &cgc);
2064 		return ret;
2065 	}
2066 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2067 	if (size > sizeof(buf))
2068 		size = sizeof(buf);
2069 
2070 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2071 	cgc.sense = &sense;
2072 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2073 	cgc.cmd[1] = 2;
2074 	cgc.cmd[2] = 4;
2075 	cgc.cmd[8] = size;
2076 	ret = pkt_generic_packet(pd, &cgc);
2077 	if (ret) {
2078 		pkt_dump_sense(pd, &cgc);
2079 		return ret;
2080 	}
2081 
2082 	if (!(buf[6] & 0x40)) {
2083 		pkt_notice(pd, "disc type is not CD-RW\n");
2084 		return 1;
2085 	}
2086 	if (!(buf[6] & 0x4)) {
2087 		pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2088 		return 1;
2089 	}
2090 
2091 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2092 
2093 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2094 
2095 	/* Info from cdrecord */
2096 	switch (st) {
2097 		case 0: /* standard speed */
2098 			*speed = clv_to_speed[sp];
2099 			break;
2100 		case 1: /* high speed */
2101 			*speed = hs_clv_to_speed[sp];
2102 			break;
2103 		case 2: /* ultra high speed */
2104 			*speed = us_clv_to_speed[sp];
2105 			break;
2106 		default:
2107 			pkt_notice(pd, "unknown disc sub-type %d\n", st);
2108 			return 1;
2109 	}
2110 	if (*speed) {
2111 		pkt_info(pd, "maximum media speed: %d\n", *speed);
2112 		return 0;
2113 	} else {
2114 		pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2115 		return 1;
2116 	}
2117 }
2118 
2119 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2120 {
2121 	struct packet_command cgc;
2122 	struct request_sense sense;
2123 	int ret;
2124 
2125 	pkt_dbg(2, pd, "Performing OPC\n");
2126 
2127 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2128 	cgc.sense = &sense;
2129 	cgc.timeout = 60*HZ;
2130 	cgc.cmd[0] = GPCMD_SEND_OPC;
2131 	cgc.cmd[1] = 1;
2132 	if ((ret = pkt_generic_packet(pd, &cgc)))
2133 		pkt_dump_sense(pd, &cgc);
2134 	return ret;
2135 }
2136 
2137 static int pkt_open_write(struct pktcdvd_device *pd)
2138 {
2139 	int ret;
2140 	unsigned int write_speed, media_write_speed, read_speed;
2141 
2142 	if ((ret = pkt_probe_settings(pd))) {
2143 		pkt_dbg(2, pd, "failed probe\n");
2144 		return ret;
2145 	}
2146 
2147 	if ((ret = pkt_set_write_settings(pd))) {
2148 		pkt_dbg(1, pd, "failed saving write settings\n");
2149 		return -EIO;
2150 	}
2151 
2152 	pkt_write_caching(pd, USE_WCACHING);
2153 
2154 	if ((ret = pkt_get_max_speed(pd, &write_speed)))
2155 		write_speed = 16 * 177;
2156 	switch (pd->mmc3_profile) {
2157 		case 0x13: /* DVD-RW */
2158 		case 0x1a: /* DVD+RW */
2159 		case 0x12: /* DVD-RAM */
2160 			pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2161 			break;
2162 		default:
2163 			if ((ret = pkt_media_speed(pd, &media_write_speed)))
2164 				media_write_speed = 16;
2165 			write_speed = min(write_speed, media_write_speed * 177);
2166 			pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2167 			break;
2168 	}
2169 	read_speed = write_speed;
2170 
2171 	if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2172 		pkt_dbg(1, pd, "couldn't set write speed\n");
2173 		return -EIO;
2174 	}
2175 	pd->write_speed = write_speed;
2176 	pd->read_speed = read_speed;
2177 
2178 	if ((ret = pkt_perform_opc(pd))) {
2179 		pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2180 	}
2181 
2182 	return 0;
2183 }
2184 
2185 /*
2186  * called at open time.
2187  */
2188 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2189 {
2190 	int ret;
2191 	long lba;
2192 	struct request_queue *q;
2193 
2194 	/*
2195 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2196 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2197 	 * so bdget() can't fail.
2198 	 */
2199 	bdget(pd->bdev->bd_dev);
2200 	if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2201 		goto out;
2202 
2203 	if ((ret = pkt_get_last_written(pd, &lba))) {
2204 		pkt_err(pd, "pkt_get_last_written failed\n");
2205 		goto out_putdev;
2206 	}
2207 
2208 	set_capacity(pd->disk, lba << 2);
2209 	set_capacity(pd->bdev->bd_disk, lba << 2);
2210 	bd_set_size(pd->bdev, (loff_t)lba << 11);
2211 
2212 	q = bdev_get_queue(pd->bdev);
2213 	if (write) {
2214 		if ((ret = pkt_open_write(pd)))
2215 			goto out_putdev;
2216 		/*
2217 		 * Some CDRW drives can not handle writes larger than one packet,
2218 		 * even if the size is a multiple of the packet size.
2219 		 */
2220 		spin_lock_irq(q->queue_lock);
2221 		blk_queue_max_hw_sectors(q, pd->settings.size);
2222 		spin_unlock_irq(q->queue_lock);
2223 		set_bit(PACKET_WRITABLE, &pd->flags);
2224 	} else {
2225 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2226 		clear_bit(PACKET_WRITABLE, &pd->flags);
2227 	}
2228 
2229 	if ((ret = pkt_set_segment_merging(pd, q)))
2230 		goto out_putdev;
2231 
2232 	if (write) {
2233 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2234 			pkt_err(pd, "not enough memory for buffers\n");
2235 			ret = -ENOMEM;
2236 			goto out_putdev;
2237 		}
2238 		pkt_info(pd, "%lukB available on disc\n", lba << 1);
2239 	}
2240 
2241 	return 0;
2242 
2243 out_putdev:
2244 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2245 out:
2246 	return ret;
2247 }
2248 
2249 /*
2250  * called when the device is closed. makes sure that the device flushes
2251  * the internal cache before we close.
2252  */
2253 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2254 {
2255 	if (flush && pkt_flush_cache(pd))
2256 		pkt_dbg(1, pd, "not flushing cache\n");
2257 
2258 	pkt_lock_door(pd, 0);
2259 
2260 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2261 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2262 
2263 	pkt_shrink_pktlist(pd);
2264 }
2265 
2266 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2267 {
2268 	if (dev_minor >= MAX_WRITERS)
2269 		return NULL;
2270 	return pkt_devs[dev_minor];
2271 }
2272 
2273 static int pkt_open(struct block_device *bdev, fmode_t mode)
2274 {
2275 	struct pktcdvd_device *pd = NULL;
2276 	int ret;
2277 
2278 	mutex_lock(&pktcdvd_mutex);
2279 	mutex_lock(&ctl_mutex);
2280 	pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2281 	if (!pd) {
2282 		ret = -ENODEV;
2283 		goto out;
2284 	}
2285 	BUG_ON(pd->refcnt < 0);
2286 
2287 	pd->refcnt++;
2288 	if (pd->refcnt > 1) {
2289 		if ((mode & FMODE_WRITE) &&
2290 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2291 			ret = -EBUSY;
2292 			goto out_dec;
2293 		}
2294 	} else {
2295 		ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2296 		if (ret)
2297 			goto out_dec;
2298 		/*
2299 		 * needed here as well, since ext2 (among others) may change
2300 		 * the blocksize at mount time
2301 		 */
2302 		set_blocksize(bdev, CD_FRAMESIZE);
2303 	}
2304 
2305 	mutex_unlock(&ctl_mutex);
2306 	mutex_unlock(&pktcdvd_mutex);
2307 	return 0;
2308 
2309 out_dec:
2310 	pd->refcnt--;
2311 out:
2312 	mutex_unlock(&ctl_mutex);
2313 	mutex_unlock(&pktcdvd_mutex);
2314 	return ret;
2315 }
2316 
2317 static void pkt_close(struct gendisk *disk, fmode_t mode)
2318 {
2319 	struct pktcdvd_device *pd = disk->private_data;
2320 
2321 	mutex_lock(&pktcdvd_mutex);
2322 	mutex_lock(&ctl_mutex);
2323 	pd->refcnt--;
2324 	BUG_ON(pd->refcnt < 0);
2325 	if (pd->refcnt == 0) {
2326 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2327 		pkt_release_dev(pd, flush);
2328 	}
2329 	mutex_unlock(&ctl_mutex);
2330 	mutex_unlock(&pktcdvd_mutex);
2331 }
2332 
2333 
2334 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2335 {
2336 	struct packet_stacked_data *psd = bio->bi_private;
2337 	struct pktcdvd_device *pd = psd->pd;
2338 
2339 	bio_put(bio);
2340 	bio_endio(psd->bio, err);
2341 	mempool_free(psd, psd_pool);
2342 	pkt_bio_finished(pd);
2343 }
2344 
2345 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2346 {
2347 	struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2348 	struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2349 
2350 	psd->pd = pd;
2351 	psd->bio = bio;
2352 	cloned_bio->bi_bdev = pd->bdev;
2353 	cloned_bio->bi_private = psd;
2354 	cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2355 	pd->stats.secs_r += bio_sectors(bio);
2356 	pkt_queue_bio(pd, cloned_bio);
2357 }
2358 
2359 static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2360 {
2361 	struct pktcdvd_device *pd = q->queuedata;
2362 	sector_t zone;
2363 	struct packet_data *pkt;
2364 	int was_empty, blocked_bio;
2365 	struct pkt_rb_node *node;
2366 
2367 	zone = get_zone(bio->bi_iter.bi_sector, pd);
2368 
2369 	/*
2370 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2371 	 * just append this bio to that packet.
2372 	 */
2373 	spin_lock(&pd->cdrw.active_list_lock);
2374 	blocked_bio = 0;
2375 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2376 		if (pkt->sector == zone) {
2377 			spin_lock(&pkt->lock);
2378 			if ((pkt->state == PACKET_WAITING_STATE) ||
2379 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2380 				bio_list_add(&pkt->orig_bios, bio);
2381 				pkt->write_size +=
2382 					bio->bi_iter.bi_size / CD_FRAMESIZE;
2383 				if ((pkt->write_size >= pkt->frames) &&
2384 				    (pkt->state == PACKET_WAITING_STATE)) {
2385 					atomic_inc(&pkt->run_sm);
2386 					wake_up(&pd->wqueue);
2387 				}
2388 				spin_unlock(&pkt->lock);
2389 				spin_unlock(&pd->cdrw.active_list_lock);
2390 				return;
2391 			} else {
2392 				blocked_bio = 1;
2393 			}
2394 			spin_unlock(&pkt->lock);
2395 		}
2396 	}
2397 	spin_unlock(&pd->cdrw.active_list_lock);
2398 
2399  	/*
2400 	 * Test if there is enough room left in the bio work queue
2401 	 * (queue size >= congestion on mark).
2402 	 * If not, wait till the work queue size is below the congestion off mark.
2403 	 */
2404 	spin_lock(&pd->lock);
2405 	if (pd->write_congestion_on > 0
2406 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2407 		set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2408 		do {
2409 			spin_unlock(&pd->lock);
2410 			congestion_wait(BLK_RW_ASYNC, HZ);
2411 			spin_lock(&pd->lock);
2412 		} while(pd->bio_queue_size > pd->write_congestion_off);
2413 	}
2414 	spin_unlock(&pd->lock);
2415 
2416 	/*
2417 	 * No matching packet found. Store the bio in the work queue.
2418 	 */
2419 	node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2420 	node->bio = bio;
2421 	spin_lock(&pd->lock);
2422 	BUG_ON(pd->bio_queue_size < 0);
2423 	was_empty = (pd->bio_queue_size == 0);
2424 	pkt_rbtree_insert(pd, node);
2425 	spin_unlock(&pd->lock);
2426 
2427 	/*
2428 	 * Wake up the worker thread.
2429 	 */
2430 	atomic_set(&pd->scan_queue, 1);
2431 	if (was_empty) {
2432 		/* This wake_up is required for correct operation */
2433 		wake_up(&pd->wqueue);
2434 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2435 		/*
2436 		 * This wake up is not required for correct operation,
2437 		 * but improves performance in some cases.
2438 		 */
2439 		wake_up(&pd->wqueue);
2440 	}
2441 }
2442 
2443 static void pkt_make_request(struct request_queue *q, struct bio *bio)
2444 {
2445 	struct pktcdvd_device *pd;
2446 	char b[BDEVNAME_SIZE];
2447 	struct bio *split;
2448 
2449 	pd = q->queuedata;
2450 	if (!pd) {
2451 		pr_err("%s incorrect request queue\n",
2452 		       bdevname(bio->bi_bdev, b));
2453 		goto end_io;
2454 	}
2455 
2456 	pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2457 		(unsigned long long)bio->bi_iter.bi_sector,
2458 		(unsigned long long)bio_end_sector(bio));
2459 
2460 	/*
2461 	 * Clone READ bios so we can have our own bi_end_io callback.
2462 	 */
2463 	if (bio_data_dir(bio) == READ) {
2464 		pkt_make_request_read(pd, bio);
2465 		return;
2466 	}
2467 
2468 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2469 		pkt_notice(pd, "WRITE for ro device (%llu)\n",
2470 			   (unsigned long long)bio->bi_iter.bi_sector);
2471 		goto end_io;
2472 	}
2473 
2474 	if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2475 		pkt_err(pd, "wrong bio size\n");
2476 		goto end_io;
2477 	}
2478 
2479 	blk_queue_bounce(q, &bio);
2480 
2481 	do {
2482 		sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2483 		sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2484 
2485 		if (last_zone != zone) {
2486 			BUG_ON(last_zone != zone + pd->settings.size);
2487 
2488 			split = bio_split(bio, last_zone -
2489 					  bio->bi_iter.bi_sector,
2490 					  GFP_NOIO, fs_bio_set);
2491 			bio_chain(split, bio);
2492 		} else {
2493 			split = bio;
2494 		}
2495 
2496 		pkt_make_request_write(q, split);
2497 	} while (split != bio);
2498 
2499 	return;
2500 end_io:
2501 	bio_io_error(bio);
2502 }
2503 
2504 
2505 
2506 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2507 			  struct bio_vec *bvec)
2508 {
2509 	struct pktcdvd_device *pd = q->queuedata;
2510 	sector_t zone = get_zone(bmd->bi_sector, pd);
2511 	int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2512 	int remaining = (pd->settings.size << 9) - used;
2513 	int remaining2;
2514 
2515 	/*
2516 	 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2517 	 * boundary, pkt_make_request() will split the bio.
2518 	 */
2519 	remaining2 = PAGE_SIZE - bmd->bi_size;
2520 	remaining = max(remaining, remaining2);
2521 
2522 	BUG_ON(remaining < 0);
2523 	return remaining;
2524 }
2525 
2526 static void pkt_init_queue(struct pktcdvd_device *pd)
2527 {
2528 	struct request_queue *q = pd->disk->queue;
2529 
2530 	blk_queue_make_request(q, pkt_make_request);
2531 	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2532 	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2533 	blk_queue_merge_bvec(q, pkt_merge_bvec);
2534 	q->queuedata = pd;
2535 }
2536 
2537 static int pkt_seq_show(struct seq_file *m, void *p)
2538 {
2539 	struct pktcdvd_device *pd = m->private;
2540 	char *msg;
2541 	char bdev_buf[BDEVNAME_SIZE];
2542 	int states[PACKET_NUM_STATES];
2543 
2544 	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2545 		   bdevname(pd->bdev, bdev_buf));
2546 
2547 	seq_printf(m, "\nSettings:\n");
2548 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2549 
2550 	if (pd->settings.write_type == 0)
2551 		msg = "Packet";
2552 	else
2553 		msg = "Unknown";
2554 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2555 
2556 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2557 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2558 
2559 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2560 
2561 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2562 		msg = "Mode 1";
2563 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2564 		msg = "Mode 2";
2565 	else
2566 		msg = "Unknown";
2567 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2568 
2569 	seq_printf(m, "\nStatistics:\n");
2570 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2571 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2572 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2573 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2574 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2575 
2576 	seq_printf(m, "\nMisc:\n");
2577 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2578 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2579 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2580 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2581 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2582 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2583 
2584 	seq_printf(m, "\nQueue state:\n");
2585 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2586 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2587 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2588 
2589 	pkt_count_states(pd, states);
2590 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2591 		   states[0], states[1], states[2], states[3], states[4], states[5]);
2592 
2593 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2594 			pd->write_congestion_off,
2595 			pd->write_congestion_on);
2596 	return 0;
2597 }
2598 
2599 static int pkt_seq_open(struct inode *inode, struct file *file)
2600 {
2601 	return single_open(file, pkt_seq_show, PDE_DATA(inode));
2602 }
2603 
2604 static const struct file_operations pkt_proc_fops = {
2605 	.open	= pkt_seq_open,
2606 	.read	= seq_read,
2607 	.llseek	= seq_lseek,
2608 	.release = single_release
2609 };
2610 
2611 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2612 {
2613 	int i;
2614 	int ret = 0;
2615 	char b[BDEVNAME_SIZE];
2616 	struct block_device *bdev;
2617 
2618 	if (pd->pkt_dev == dev) {
2619 		pkt_err(pd, "recursive setup not allowed\n");
2620 		return -EBUSY;
2621 	}
2622 	for (i = 0; i < MAX_WRITERS; i++) {
2623 		struct pktcdvd_device *pd2 = pkt_devs[i];
2624 		if (!pd2)
2625 			continue;
2626 		if (pd2->bdev->bd_dev == dev) {
2627 			pkt_err(pd, "%s already setup\n",
2628 				bdevname(pd2->bdev, b));
2629 			return -EBUSY;
2630 		}
2631 		if (pd2->pkt_dev == dev) {
2632 			pkt_err(pd, "can't chain pktcdvd devices\n");
2633 			return -EBUSY;
2634 		}
2635 	}
2636 
2637 	bdev = bdget(dev);
2638 	if (!bdev)
2639 		return -ENOMEM;
2640 	ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2641 	if (ret)
2642 		return ret;
2643 
2644 	/* This is safe, since we have a reference from open(). */
2645 	__module_get(THIS_MODULE);
2646 
2647 	pd->bdev = bdev;
2648 	set_blocksize(bdev, CD_FRAMESIZE);
2649 
2650 	pkt_init_queue(pd);
2651 
2652 	atomic_set(&pd->cdrw.pending_bios, 0);
2653 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2654 	if (IS_ERR(pd->cdrw.thread)) {
2655 		pkt_err(pd, "can't start kernel thread\n");
2656 		ret = -ENOMEM;
2657 		goto out_mem;
2658 	}
2659 
2660 	proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2661 	pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2662 	return 0;
2663 
2664 out_mem:
2665 	blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2666 	/* This is safe: open() is still holding a reference. */
2667 	module_put(THIS_MODULE);
2668 	return ret;
2669 }
2670 
2671 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2672 {
2673 	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2674 	int ret;
2675 
2676 	pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2677 		cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2678 
2679 	mutex_lock(&pktcdvd_mutex);
2680 	switch (cmd) {
2681 	case CDROMEJECT:
2682 		/*
2683 		 * The door gets locked when the device is opened, so we
2684 		 * have to unlock it or else the eject command fails.
2685 		 */
2686 		if (pd->refcnt == 1)
2687 			pkt_lock_door(pd, 0);
2688 		/* fallthru */
2689 	/*
2690 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2691 	 */
2692 	case CDROMMULTISESSION:
2693 	case CDROMREADTOCENTRY:
2694 	case CDROM_LAST_WRITTEN:
2695 	case CDROM_SEND_PACKET:
2696 	case SCSI_IOCTL_SEND_COMMAND:
2697 		ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2698 		break;
2699 
2700 	default:
2701 		pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2702 		ret = -ENOTTY;
2703 	}
2704 	mutex_unlock(&pktcdvd_mutex);
2705 
2706 	return ret;
2707 }
2708 
2709 static unsigned int pkt_check_events(struct gendisk *disk,
2710 				     unsigned int clearing)
2711 {
2712 	struct pktcdvd_device *pd = disk->private_data;
2713 	struct gendisk *attached_disk;
2714 
2715 	if (!pd)
2716 		return 0;
2717 	if (!pd->bdev)
2718 		return 0;
2719 	attached_disk = pd->bdev->bd_disk;
2720 	if (!attached_disk || !attached_disk->fops->check_events)
2721 		return 0;
2722 	return attached_disk->fops->check_events(attached_disk, clearing);
2723 }
2724 
2725 static const struct block_device_operations pktcdvd_ops = {
2726 	.owner =		THIS_MODULE,
2727 	.open =			pkt_open,
2728 	.release =		pkt_close,
2729 	.ioctl =		pkt_ioctl,
2730 	.check_events =		pkt_check_events,
2731 };
2732 
2733 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2734 {
2735 	return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2736 }
2737 
2738 /*
2739  * Set up mapping from pktcdvd device to CD-ROM device.
2740  */
2741 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2742 {
2743 	int idx;
2744 	int ret = -ENOMEM;
2745 	struct pktcdvd_device *pd;
2746 	struct gendisk *disk;
2747 
2748 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2749 
2750 	for (idx = 0; idx < MAX_WRITERS; idx++)
2751 		if (!pkt_devs[idx])
2752 			break;
2753 	if (idx == MAX_WRITERS) {
2754 		pr_err("max %d writers supported\n", MAX_WRITERS);
2755 		ret = -EBUSY;
2756 		goto out_mutex;
2757 	}
2758 
2759 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2760 	if (!pd)
2761 		goto out_mutex;
2762 
2763 	pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2764 						  sizeof(struct pkt_rb_node));
2765 	if (!pd->rb_pool)
2766 		goto out_mem;
2767 
2768 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2769 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2770 	spin_lock_init(&pd->cdrw.active_list_lock);
2771 
2772 	spin_lock_init(&pd->lock);
2773 	spin_lock_init(&pd->iosched.lock);
2774 	bio_list_init(&pd->iosched.read_queue);
2775 	bio_list_init(&pd->iosched.write_queue);
2776 	sprintf(pd->name, DRIVER_NAME"%d", idx);
2777 	init_waitqueue_head(&pd->wqueue);
2778 	pd->bio_queue = RB_ROOT;
2779 
2780 	pd->write_congestion_on  = write_congestion_on;
2781 	pd->write_congestion_off = write_congestion_off;
2782 
2783 	disk = alloc_disk(1);
2784 	if (!disk)
2785 		goto out_mem;
2786 	pd->disk = disk;
2787 	disk->major = pktdev_major;
2788 	disk->first_minor = idx;
2789 	disk->fops = &pktcdvd_ops;
2790 	disk->flags = GENHD_FL_REMOVABLE;
2791 	strcpy(disk->disk_name, pd->name);
2792 	disk->devnode = pktcdvd_devnode;
2793 	disk->private_data = pd;
2794 	disk->queue = blk_alloc_queue(GFP_KERNEL);
2795 	if (!disk->queue)
2796 		goto out_mem2;
2797 
2798 	pd->pkt_dev = MKDEV(pktdev_major, idx);
2799 	ret = pkt_new_dev(pd, dev);
2800 	if (ret)
2801 		goto out_new_dev;
2802 
2803 	/* inherit events of the host device */
2804 	disk->events = pd->bdev->bd_disk->events;
2805 	disk->async_events = pd->bdev->bd_disk->async_events;
2806 
2807 	add_disk(disk);
2808 
2809 	pkt_sysfs_dev_new(pd);
2810 	pkt_debugfs_dev_new(pd);
2811 
2812 	pkt_devs[idx] = pd;
2813 	if (pkt_dev)
2814 		*pkt_dev = pd->pkt_dev;
2815 
2816 	mutex_unlock(&ctl_mutex);
2817 	return 0;
2818 
2819 out_new_dev:
2820 	blk_cleanup_queue(disk->queue);
2821 out_mem2:
2822 	put_disk(disk);
2823 out_mem:
2824 	if (pd->rb_pool)
2825 		mempool_destroy(pd->rb_pool);
2826 	kfree(pd);
2827 out_mutex:
2828 	mutex_unlock(&ctl_mutex);
2829 	pr_err("setup of pktcdvd device failed\n");
2830 	return ret;
2831 }
2832 
2833 /*
2834  * Tear down mapping from pktcdvd device to CD-ROM device.
2835  */
2836 static int pkt_remove_dev(dev_t pkt_dev)
2837 {
2838 	struct pktcdvd_device *pd;
2839 	int idx;
2840 	int ret = 0;
2841 
2842 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2843 
2844 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2845 		pd = pkt_devs[idx];
2846 		if (pd && (pd->pkt_dev == pkt_dev))
2847 			break;
2848 	}
2849 	if (idx == MAX_WRITERS) {
2850 		pr_debug("dev not setup\n");
2851 		ret = -ENXIO;
2852 		goto out;
2853 	}
2854 
2855 	if (pd->refcnt > 0) {
2856 		ret = -EBUSY;
2857 		goto out;
2858 	}
2859 	if (!IS_ERR(pd->cdrw.thread))
2860 		kthread_stop(pd->cdrw.thread);
2861 
2862 	pkt_devs[idx] = NULL;
2863 
2864 	pkt_debugfs_dev_remove(pd);
2865 	pkt_sysfs_dev_remove(pd);
2866 
2867 	blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2868 
2869 	remove_proc_entry(pd->name, pkt_proc);
2870 	pkt_dbg(1, pd, "writer unmapped\n");
2871 
2872 	del_gendisk(pd->disk);
2873 	blk_cleanup_queue(pd->disk->queue);
2874 	put_disk(pd->disk);
2875 
2876 	mempool_destroy(pd->rb_pool);
2877 	kfree(pd);
2878 
2879 	/* This is safe: open() is still holding a reference. */
2880 	module_put(THIS_MODULE);
2881 
2882 out:
2883 	mutex_unlock(&ctl_mutex);
2884 	return ret;
2885 }
2886 
2887 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2888 {
2889 	struct pktcdvd_device *pd;
2890 
2891 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2892 
2893 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2894 	if (pd) {
2895 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2896 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2897 	} else {
2898 		ctrl_cmd->dev = 0;
2899 		ctrl_cmd->pkt_dev = 0;
2900 	}
2901 	ctrl_cmd->num_devices = MAX_WRITERS;
2902 
2903 	mutex_unlock(&ctl_mutex);
2904 }
2905 
2906 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2907 {
2908 	void __user *argp = (void __user *)arg;
2909 	struct pkt_ctrl_command ctrl_cmd;
2910 	int ret = 0;
2911 	dev_t pkt_dev = 0;
2912 
2913 	if (cmd != PACKET_CTRL_CMD)
2914 		return -ENOTTY;
2915 
2916 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2917 		return -EFAULT;
2918 
2919 	switch (ctrl_cmd.command) {
2920 	case PKT_CTRL_CMD_SETUP:
2921 		if (!capable(CAP_SYS_ADMIN))
2922 			return -EPERM;
2923 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2924 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2925 		break;
2926 	case PKT_CTRL_CMD_TEARDOWN:
2927 		if (!capable(CAP_SYS_ADMIN))
2928 			return -EPERM;
2929 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2930 		break;
2931 	case PKT_CTRL_CMD_STATUS:
2932 		pkt_get_status(&ctrl_cmd);
2933 		break;
2934 	default:
2935 		return -ENOTTY;
2936 	}
2937 
2938 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2939 		return -EFAULT;
2940 	return ret;
2941 }
2942 
2943 #ifdef CONFIG_COMPAT
2944 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2945 {
2946 	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2947 }
2948 #endif
2949 
2950 static const struct file_operations pkt_ctl_fops = {
2951 	.open		= nonseekable_open,
2952 	.unlocked_ioctl	= pkt_ctl_ioctl,
2953 #ifdef CONFIG_COMPAT
2954 	.compat_ioctl	= pkt_ctl_compat_ioctl,
2955 #endif
2956 	.owner		= THIS_MODULE,
2957 	.llseek		= no_llseek,
2958 };
2959 
2960 static struct miscdevice pkt_misc = {
2961 	.minor 		= MISC_DYNAMIC_MINOR,
2962 	.name  		= DRIVER_NAME,
2963 	.nodename	= "pktcdvd/control",
2964 	.fops  		= &pkt_ctl_fops
2965 };
2966 
2967 static int __init pkt_init(void)
2968 {
2969 	int ret;
2970 
2971 	mutex_init(&ctl_mutex);
2972 
2973 	psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2974 					sizeof(struct packet_stacked_data));
2975 	if (!psd_pool)
2976 		return -ENOMEM;
2977 
2978 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2979 	if (ret < 0) {
2980 		pr_err("unable to register block device\n");
2981 		goto out2;
2982 	}
2983 	if (!pktdev_major)
2984 		pktdev_major = ret;
2985 
2986 	ret = pkt_sysfs_init();
2987 	if (ret)
2988 		goto out;
2989 
2990 	pkt_debugfs_init();
2991 
2992 	ret = misc_register(&pkt_misc);
2993 	if (ret) {
2994 		pr_err("unable to register misc device\n");
2995 		goto out_misc;
2996 	}
2997 
2998 	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2999 
3000 	return 0;
3001 
3002 out_misc:
3003 	pkt_debugfs_cleanup();
3004 	pkt_sysfs_cleanup();
3005 out:
3006 	unregister_blkdev(pktdev_major, DRIVER_NAME);
3007 out2:
3008 	mempool_destroy(psd_pool);
3009 	return ret;
3010 }
3011 
3012 static void __exit pkt_exit(void)
3013 {
3014 	remove_proc_entry("driver/"DRIVER_NAME, NULL);
3015 	misc_deregister(&pkt_misc);
3016 
3017 	pkt_debugfs_cleanup();
3018 	pkt_sysfs_cleanup();
3019 
3020 	unregister_blkdev(pktdev_major, DRIVER_NAME);
3021 	mempool_destroy(psd_pool);
3022 }
3023 
3024 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3025 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3026 MODULE_LICENSE("GPL");
3027 
3028 module_init(pkt_init);
3029 module_exit(pkt_exit);
3030