1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * 5 * May be copied or modified under the terms of the GNU General Public 6 * License. See linux/COPYING for more information. 7 * 8 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 9 * DVD-RAM devices. 10 * 11 * Theory of operation: 12 * 13 * At the lowest level, there is the standard driver for the CD/DVD device, 14 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 15 * but it doesn't know anything about the special restrictions that apply to 16 * packet writing. One restriction is that write requests must be aligned to 17 * packet boundaries on the physical media, and the size of a write request 18 * must be equal to the packet size. Another restriction is that a 19 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 20 * command, if the previous command was a write. 21 * 22 * The purpose of the packet writing driver is to hide these restrictions from 23 * higher layers, such as file systems, and present a block device that can be 24 * randomly read and written using 2kB-sized blocks. 25 * 26 * The lowest layer in the packet writing driver is the packet I/O scheduler. 27 * Its data is defined by the struct packet_iosched and includes two bio 28 * queues with pending read and write requests. These queues are processed 29 * by the pkt_iosched_process_queue() function. The write requests in this 30 * queue are already properly aligned and sized. This layer is responsible for 31 * issuing the flush cache commands and scheduling the I/O in a good order. 32 * 33 * The next layer transforms unaligned write requests to aligned writes. This 34 * transformation requires reading missing pieces of data from the underlying 35 * block device, assembling the pieces to full packets and queuing them to the 36 * packet I/O scheduler. 37 * 38 * At the top layer there is a custom make_request_fn function that forwards 39 * read requests directly to the iosched queue and puts write requests in the 40 * unaligned write queue. A kernel thread performs the necessary read 41 * gathering to convert the unaligned writes to aligned writes and then feeds 42 * them to the packet I/O scheduler. 43 * 44 *************************************************************************/ 45 46 #define VERSION_CODE "v0.2.0a 2004-07-14 Jens Axboe (axboe@suse.de) and petero2@telia.com" 47 48 #include <linux/pktcdvd.h> 49 #include <linux/config.h> 50 #include <linux/module.h> 51 #include <linux/types.h> 52 #include <linux/kernel.h> 53 #include <linux/kthread.h> 54 #include <linux/errno.h> 55 #include <linux/spinlock.h> 56 #include <linux/file.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/miscdevice.h> 60 #include <linux/suspend.h> 61 #include <scsi/scsi_cmnd.h> 62 #include <scsi/scsi_ioctl.h> 63 64 #include <asm/uaccess.h> 65 66 #if PACKET_DEBUG 67 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 68 #else 69 #define DPRINTK(fmt, args...) 70 #endif 71 72 #if PACKET_DEBUG > 1 73 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 74 #else 75 #define VPRINTK(fmt, args...) 76 #endif 77 78 #define MAX_SPEED 0xffff 79 80 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1)) 81 82 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 83 static struct proc_dir_entry *pkt_proc; 84 static int pkt_major; 85 static struct semaphore ctl_mutex; /* Serialize open/close/setup/teardown */ 86 static mempool_t *psd_pool; 87 88 89 static void pkt_bio_finished(struct pktcdvd_device *pd) 90 { 91 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 92 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 93 VPRINTK("pktcdvd: queue empty\n"); 94 atomic_set(&pd->iosched.attention, 1); 95 wake_up(&pd->wqueue); 96 } 97 } 98 99 static void pkt_bio_destructor(struct bio *bio) 100 { 101 kfree(bio->bi_io_vec); 102 kfree(bio); 103 } 104 105 static struct bio *pkt_bio_alloc(int nr_iovecs) 106 { 107 struct bio_vec *bvl = NULL; 108 struct bio *bio; 109 110 bio = kmalloc(sizeof(struct bio), GFP_KERNEL); 111 if (!bio) 112 goto no_bio; 113 bio_init(bio); 114 115 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL); 116 if (!bvl) 117 goto no_bvl; 118 119 bio->bi_max_vecs = nr_iovecs; 120 bio->bi_io_vec = bvl; 121 bio->bi_destructor = pkt_bio_destructor; 122 123 return bio; 124 125 no_bvl: 126 kfree(bio); 127 no_bio: 128 return NULL; 129 } 130 131 /* 132 * Allocate a packet_data struct 133 */ 134 static struct packet_data *pkt_alloc_packet_data(void) 135 { 136 int i; 137 struct packet_data *pkt; 138 139 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 140 if (!pkt) 141 goto no_pkt; 142 143 pkt->w_bio = pkt_bio_alloc(PACKET_MAX_SIZE); 144 if (!pkt->w_bio) 145 goto no_bio; 146 147 for (i = 0; i < PAGES_PER_PACKET; i++) { 148 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 149 if (!pkt->pages[i]) 150 goto no_page; 151 } 152 153 spin_lock_init(&pkt->lock); 154 155 for (i = 0; i < PACKET_MAX_SIZE; i++) { 156 struct bio *bio = pkt_bio_alloc(1); 157 if (!bio) 158 goto no_rd_bio; 159 pkt->r_bios[i] = bio; 160 } 161 162 return pkt; 163 164 no_rd_bio: 165 for (i = 0; i < PACKET_MAX_SIZE; i++) { 166 struct bio *bio = pkt->r_bios[i]; 167 if (bio) 168 bio_put(bio); 169 } 170 171 no_page: 172 for (i = 0; i < PAGES_PER_PACKET; i++) 173 if (pkt->pages[i]) 174 __free_page(pkt->pages[i]); 175 bio_put(pkt->w_bio); 176 no_bio: 177 kfree(pkt); 178 no_pkt: 179 return NULL; 180 } 181 182 /* 183 * Free a packet_data struct 184 */ 185 static void pkt_free_packet_data(struct packet_data *pkt) 186 { 187 int i; 188 189 for (i = 0; i < PACKET_MAX_SIZE; i++) { 190 struct bio *bio = pkt->r_bios[i]; 191 if (bio) 192 bio_put(bio); 193 } 194 for (i = 0; i < PAGES_PER_PACKET; i++) 195 __free_page(pkt->pages[i]); 196 bio_put(pkt->w_bio); 197 kfree(pkt); 198 } 199 200 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 201 { 202 struct packet_data *pkt, *next; 203 204 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 205 206 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 207 pkt_free_packet_data(pkt); 208 } 209 } 210 211 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 212 { 213 struct packet_data *pkt; 214 215 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 216 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 217 spin_lock_init(&pd->cdrw.active_list_lock); 218 while (nr_packets > 0) { 219 pkt = pkt_alloc_packet_data(); 220 if (!pkt) { 221 pkt_shrink_pktlist(pd); 222 return 0; 223 } 224 pkt->id = nr_packets; 225 pkt->pd = pd; 226 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 227 nr_packets--; 228 } 229 return 1; 230 } 231 232 static void *pkt_rb_alloc(gfp_t gfp_mask, void *data) 233 { 234 return kmalloc(sizeof(struct pkt_rb_node), gfp_mask); 235 } 236 237 static void pkt_rb_free(void *ptr, void *data) 238 { 239 kfree(ptr); 240 } 241 242 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 243 { 244 struct rb_node *n = rb_next(&node->rb_node); 245 if (!n) 246 return NULL; 247 return rb_entry(n, struct pkt_rb_node, rb_node); 248 } 249 250 static inline void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 251 { 252 rb_erase(&node->rb_node, &pd->bio_queue); 253 mempool_free(node, pd->rb_pool); 254 pd->bio_queue_size--; 255 BUG_ON(pd->bio_queue_size < 0); 256 } 257 258 /* 259 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 260 */ 261 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 262 { 263 struct rb_node *n = pd->bio_queue.rb_node; 264 struct rb_node *next; 265 struct pkt_rb_node *tmp; 266 267 if (!n) { 268 BUG_ON(pd->bio_queue_size > 0); 269 return NULL; 270 } 271 272 for (;;) { 273 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 274 if (s <= tmp->bio->bi_sector) 275 next = n->rb_left; 276 else 277 next = n->rb_right; 278 if (!next) 279 break; 280 n = next; 281 } 282 283 if (s > tmp->bio->bi_sector) { 284 tmp = pkt_rbtree_next(tmp); 285 if (!tmp) 286 return NULL; 287 } 288 BUG_ON(s > tmp->bio->bi_sector); 289 return tmp; 290 } 291 292 /* 293 * Insert a node into the pd->bio_queue rb tree. 294 */ 295 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 296 { 297 struct rb_node **p = &pd->bio_queue.rb_node; 298 struct rb_node *parent = NULL; 299 sector_t s = node->bio->bi_sector; 300 struct pkt_rb_node *tmp; 301 302 while (*p) { 303 parent = *p; 304 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 305 if (s < tmp->bio->bi_sector) 306 p = &(*p)->rb_left; 307 else 308 p = &(*p)->rb_right; 309 } 310 rb_link_node(&node->rb_node, parent, p); 311 rb_insert_color(&node->rb_node, &pd->bio_queue); 312 pd->bio_queue_size++; 313 } 314 315 /* 316 * Add a bio to a single linked list defined by its head and tail pointers. 317 */ 318 static inline void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail) 319 { 320 bio->bi_next = NULL; 321 if (*list_tail) { 322 BUG_ON((*list_head) == NULL); 323 (*list_tail)->bi_next = bio; 324 (*list_tail) = bio; 325 } else { 326 BUG_ON((*list_head) != NULL); 327 (*list_head) = bio; 328 (*list_tail) = bio; 329 } 330 } 331 332 /* 333 * Remove and return the first bio from a single linked list defined by its 334 * head and tail pointers. 335 */ 336 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail) 337 { 338 struct bio *bio; 339 340 if (*list_head == NULL) 341 return NULL; 342 343 bio = *list_head; 344 *list_head = bio->bi_next; 345 if (*list_head == NULL) 346 *list_tail = NULL; 347 348 bio->bi_next = NULL; 349 return bio; 350 } 351 352 /* 353 * Send a packet_command to the underlying block device and 354 * wait for completion. 355 */ 356 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 357 { 358 char sense[SCSI_SENSE_BUFFERSIZE]; 359 request_queue_t *q; 360 struct request *rq; 361 DECLARE_COMPLETION(wait); 362 int err = 0; 363 364 q = bdev_get_queue(pd->bdev); 365 366 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ, 367 __GFP_WAIT); 368 rq->errors = 0; 369 rq->rq_disk = pd->bdev->bd_disk; 370 rq->bio = NULL; 371 rq->buffer = NULL; 372 rq->timeout = 60*HZ; 373 rq->data = cgc->buffer; 374 rq->data_len = cgc->buflen; 375 rq->sense = sense; 376 memset(sense, 0, sizeof(sense)); 377 rq->sense_len = 0; 378 rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER; 379 if (cgc->quiet) 380 rq->flags |= REQ_QUIET; 381 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE); 382 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE) 383 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE); 384 385 rq->ref_count++; 386 rq->flags |= REQ_NOMERGE; 387 rq->waiting = &wait; 388 rq->end_io = blk_end_sync_rq; 389 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1); 390 generic_unplug_device(q); 391 wait_for_completion(&wait); 392 393 if (rq->errors) 394 err = -EIO; 395 396 blk_put_request(rq); 397 return err; 398 } 399 400 /* 401 * A generic sense dump / resolve mechanism should be implemented across 402 * all ATAPI + SCSI devices. 403 */ 404 static void pkt_dump_sense(struct packet_command *cgc) 405 { 406 static char *info[9] = { "No sense", "Recovered error", "Not ready", 407 "Medium error", "Hardware error", "Illegal request", 408 "Unit attention", "Data protect", "Blank check" }; 409 int i; 410 struct request_sense *sense = cgc->sense; 411 412 printk("pktcdvd:"); 413 for (i = 0; i < CDROM_PACKET_SIZE; i++) 414 printk(" %02x", cgc->cmd[i]); 415 printk(" - "); 416 417 if (sense == NULL) { 418 printk("no sense\n"); 419 return; 420 } 421 422 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq); 423 424 if (sense->sense_key > 8) { 425 printk(" (INVALID)\n"); 426 return; 427 } 428 429 printk(" (%s)\n", info[sense->sense_key]); 430 } 431 432 /* 433 * flush the drive cache to media 434 */ 435 static int pkt_flush_cache(struct pktcdvd_device *pd) 436 { 437 struct packet_command cgc; 438 439 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 440 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 441 cgc.quiet = 1; 442 443 /* 444 * the IMMED bit -- we default to not setting it, although that 445 * would allow a much faster close, this is safer 446 */ 447 #if 0 448 cgc.cmd[1] = 1 << 1; 449 #endif 450 return pkt_generic_packet(pd, &cgc); 451 } 452 453 /* 454 * speed is given as the normal factor, e.g. 4 for 4x 455 */ 456 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed) 457 { 458 struct packet_command cgc; 459 struct request_sense sense; 460 int ret; 461 462 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 463 cgc.sense = &sense; 464 cgc.cmd[0] = GPCMD_SET_SPEED; 465 cgc.cmd[2] = (read_speed >> 8) & 0xff; 466 cgc.cmd[3] = read_speed & 0xff; 467 cgc.cmd[4] = (write_speed >> 8) & 0xff; 468 cgc.cmd[5] = write_speed & 0xff; 469 470 if ((ret = pkt_generic_packet(pd, &cgc))) 471 pkt_dump_sense(&cgc); 472 473 return ret; 474 } 475 476 /* 477 * Queue a bio for processing by the low-level CD device. Must be called 478 * from process context. 479 */ 480 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 481 { 482 spin_lock(&pd->iosched.lock); 483 if (bio_data_dir(bio) == READ) { 484 pkt_add_list_last(bio, &pd->iosched.read_queue, 485 &pd->iosched.read_queue_tail); 486 } else { 487 pkt_add_list_last(bio, &pd->iosched.write_queue, 488 &pd->iosched.write_queue_tail); 489 } 490 spin_unlock(&pd->iosched.lock); 491 492 atomic_set(&pd->iosched.attention, 1); 493 wake_up(&pd->wqueue); 494 } 495 496 /* 497 * Process the queued read/write requests. This function handles special 498 * requirements for CDRW drives: 499 * - A cache flush command must be inserted before a read request if the 500 * previous request was a write. 501 * - Switching between reading and writing is slow, so don't do it more often 502 * than necessary. 503 * - Optimize for throughput at the expense of latency. This means that streaming 504 * writes will never be interrupted by a read, but if the drive has to seek 505 * before the next write, switch to reading instead if there are any pending 506 * read requests. 507 * - Set the read speed according to current usage pattern. When only reading 508 * from the device, it's best to use the highest possible read speed, but 509 * when switching often between reading and writing, it's better to have the 510 * same read and write speeds. 511 */ 512 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 513 { 514 515 if (atomic_read(&pd->iosched.attention) == 0) 516 return; 517 atomic_set(&pd->iosched.attention, 0); 518 519 for (;;) { 520 struct bio *bio; 521 int reads_queued, writes_queued; 522 523 spin_lock(&pd->iosched.lock); 524 reads_queued = (pd->iosched.read_queue != NULL); 525 writes_queued = (pd->iosched.write_queue != NULL); 526 spin_unlock(&pd->iosched.lock); 527 528 if (!reads_queued && !writes_queued) 529 break; 530 531 if (pd->iosched.writing) { 532 int need_write_seek = 1; 533 spin_lock(&pd->iosched.lock); 534 bio = pd->iosched.write_queue; 535 spin_unlock(&pd->iosched.lock); 536 if (bio && (bio->bi_sector == pd->iosched.last_write)) 537 need_write_seek = 0; 538 if (need_write_seek && reads_queued) { 539 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 540 VPRINTK("pktcdvd: write, waiting\n"); 541 break; 542 } 543 pkt_flush_cache(pd); 544 pd->iosched.writing = 0; 545 } 546 } else { 547 if (!reads_queued && writes_queued) { 548 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 549 VPRINTK("pktcdvd: read, waiting\n"); 550 break; 551 } 552 pd->iosched.writing = 1; 553 } 554 } 555 556 spin_lock(&pd->iosched.lock); 557 if (pd->iosched.writing) { 558 bio = pkt_get_list_first(&pd->iosched.write_queue, 559 &pd->iosched.write_queue_tail); 560 } else { 561 bio = pkt_get_list_first(&pd->iosched.read_queue, 562 &pd->iosched.read_queue_tail); 563 } 564 spin_unlock(&pd->iosched.lock); 565 566 if (!bio) 567 continue; 568 569 if (bio_data_dir(bio) == READ) 570 pd->iosched.successive_reads += bio->bi_size >> 10; 571 else { 572 pd->iosched.successive_reads = 0; 573 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio); 574 } 575 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 576 if (pd->read_speed == pd->write_speed) { 577 pd->read_speed = MAX_SPEED; 578 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 579 } 580 } else { 581 if (pd->read_speed != pd->write_speed) { 582 pd->read_speed = pd->write_speed; 583 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 584 } 585 } 586 587 atomic_inc(&pd->cdrw.pending_bios); 588 generic_make_request(bio); 589 } 590 } 591 592 /* 593 * Special care is needed if the underlying block device has a small 594 * max_phys_segments value. 595 */ 596 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q) 597 { 598 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) { 599 /* 600 * The cdrom device can handle one segment/frame 601 */ 602 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 603 return 0; 604 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) { 605 /* 606 * We can handle this case at the expense of some extra memory 607 * copies during write operations 608 */ 609 set_bit(PACKET_MERGE_SEGS, &pd->flags); 610 return 0; 611 } else { 612 printk("pktcdvd: cdrom max_phys_segments too small\n"); 613 return -EIO; 614 } 615 } 616 617 /* 618 * Copy CD_FRAMESIZE bytes from src_bio into a destination page 619 */ 620 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs) 621 { 622 unsigned int copy_size = CD_FRAMESIZE; 623 624 while (copy_size > 0) { 625 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg); 626 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) + 627 src_bvl->bv_offset + offs; 628 void *vto = page_address(dst_page) + dst_offs; 629 int len = min_t(int, copy_size, src_bvl->bv_len - offs); 630 631 BUG_ON(len < 0); 632 memcpy(vto, vfrom, len); 633 kunmap_atomic(vfrom, KM_USER0); 634 635 seg++; 636 offs = 0; 637 dst_offs += len; 638 copy_size -= len; 639 } 640 } 641 642 /* 643 * Copy all data for this packet to pkt->pages[], so that 644 * a) The number of required segments for the write bio is minimized, which 645 * is necessary for some scsi controllers. 646 * b) The data can be used as cache to avoid read requests if we receive a 647 * new write request for the same zone. 648 */ 649 static void pkt_make_local_copy(struct packet_data *pkt, struct page **pages, int *offsets) 650 { 651 int f, p, offs; 652 653 /* Copy all data to pkt->pages[] */ 654 p = 0; 655 offs = 0; 656 for (f = 0; f < pkt->frames; f++) { 657 if (pages[f] != pkt->pages[p]) { 658 void *vfrom = kmap_atomic(pages[f], KM_USER0) + offsets[f]; 659 void *vto = page_address(pkt->pages[p]) + offs; 660 memcpy(vto, vfrom, CD_FRAMESIZE); 661 kunmap_atomic(vfrom, KM_USER0); 662 pages[f] = pkt->pages[p]; 663 offsets[f] = offs; 664 } else { 665 BUG_ON(offsets[f] != offs); 666 } 667 offs += CD_FRAMESIZE; 668 if (offs >= PAGE_SIZE) { 669 offs = 0; 670 p++; 671 } 672 } 673 } 674 675 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err) 676 { 677 struct packet_data *pkt = bio->bi_private; 678 struct pktcdvd_device *pd = pkt->pd; 679 BUG_ON(!pd); 680 681 if (bio->bi_size) 682 return 1; 683 684 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio, 685 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err); 686 687 if (err) 688 atomic_inc(&pkt->io_errors); 689 if (atomic_dec_and_test(&pkt->io_wait)) { 690 atomic_inc(&pkt->run_sm); 691 wake_up(&pd->wqueue); 692 } 693 pkt_bio_finished(pd); 694 695 return 0; 696 } 697 698 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err) 699 { 700 struct packet_data *pkt = bio->bi_private; 701 struct pktcdvd_device *pd = pkt->pd; 702 BUG_ON(!pd); 703 704 if (bio->bi_size) 705 return 1; 706 707 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err); 708 709 pd->stats.pkt_ended++; 710 711 pkt_bio_finished(pd); 712 atomic_dec(&pkt->io_wait); 713 atomic_inc(&pkt->run_sm); 714 wake_up(&pd->wqueue); 715 return 0; 716 } 717 718 /* 719 * Schedule reads for the holes in a packet 720 */ 721 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 722 { 723 int frames_read = 0; 724 struct bio *bio; 725 int f; 726 char written[PACKET_MAX_SIZE]; 727 728 BUG_ON(!pkt->orig_bios); 729 730 atomic_set(&pkt->io_wait, 0); 731 atomic_set(&pkt->io_errors, 0); 732 733 /* 734 * Figure out which frames we need to read before we can write. 735 */ 736 memset(written, 0, sizeof(written)); 737 spin_lock(&pkt->lock); 738 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 739 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 740 int num_frames = bio->bi_size / CD_FRAMESIZE; 741 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 742 BUG_ON(first_frame < 0); 743 BUG_ON(first_frame + num_frames > pkt->frames); 744 for (f = first_frame; f < first_frame + num_frames; f++) 745 written[f] = 1; 746 } 747 spin_unlock(&pkt->lock); 748 749 if (pkt->cache_valid) { 750 VPRINTK("pkt_gather_data: zone %llx cached\n", 751 (unsigned long long)pkt->sector); 752 goto out_account; 753 } 754 755 /* 756 * Schedule reads for missing parts of the packet. 757 */ 758 for (f = 0; f < pkt->frames; f++) { 759 int p, offset; 760 if (written[f]) 761 continue; 762 bio = pkt->r_bios[f]; 763 bio_init(bio); 764 bio->bi_max_vecs = 1; 765 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 766 bio->bi_bdev = pd->bdev; 767 bio->bi_end_io = pkt_end_io_read; 768 bio->bi_private = pkt; 769 770 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 771 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 772 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n", 773 f, pkt->pages[p], offset); 774 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 775 BUG(); 776 777 atomic_inc(&pkt->io_wait); 778 bio->bi_rw = READ; 779 pkt_queue_bio(pd, bio); 780 frames_read++; 781 } 782 783 out_account: 784 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n", 785 frames_read, (unsigned long long)pkt->sector); 786 pd->stats.pkt_started++; 787 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 788 } 789 790 /* 791 * Find a packet matching zone, or the least recently used packet if 792 * there is no match. 793 */ 794 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 795 { 796 struct packet_data *pkt; 797 798 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 799 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 800 list_del_init(&pkt->list); 801 if (pkt->sector != zone) 802 pkt->cache_valid = 0; 803 return pkt; 804 } 805 } 806 BUG(); 807 return NULL; 808 } 809 810 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 811 { 812 if (pkt->cache_valid) { 813 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 814 } else { 815 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 816 } 817 } 818 819 /* 820 * recover a failed write, query for relocation if possible 821 * 822 * returns 1 if recovery is possible, or 0 if not 823 * 824 */ 825 static int pkt_start_recovery(struct packet_data *pkt) 826 { 827 /* 828 * FIXME. We need help from the file system to implement 829 * recovery handling. 830 */ 831 return 0; 832 #if 0 833 struct request *rq = pkt->rq; 834 struct pktcdvd_device *pd = rq->rq_disk->private_data; 835 struct block_device *pkt_bdev; 836 struct super_block *sb = NULL; 837 unsigned long old_block, new_block; 838 sector_t new_sector; 839 840 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 841 if (pkt_bdev) { 842 sb = get_super(pkt_bdev); 843 bdput(pkt_bdev); 844 } 845 846 if (!sb) 847 return 0; 848 849 if (!sb->s_op || !sb->s_op->relocate_blocks) 850 goto out; 851 852 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 853 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 854 goto out; 855 856 new_sector = new_block * (CD_FRAMESIZE >> 9); 857 pkt->sector = new_sector; 858 859 pkt->bio->bi_sector = new_sector; 860 pkt->bio->bi_next = NULL; 861 pkt->bio->bi_flags = 1 << BIO_UPTODATE; 862 pkt->bio->bi_idx = 0; 863 864 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW)); 865 BUG_ON(pkt->bio->bi_vcnt != pkt->frames); 866 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE); 867 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write); 868 BUG_ON(pkt->bio->bi_private != pkt); 869 870 drop_super(sb); 871 return 1; 872 873 out: 874 drop_super(sb); 875 return 0; 876 #endif 877 } 878 879 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 880 { 881 #if PACKET_DEBUG > 1 882 static const char *state_name[] = { 883 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 884 }; 885 enum packet_data_state old_state = pkt->state; 886 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector, 887 state_name[old_state], state_name[state]); 888 #endif 889 pkt->state = state; 890 } 891 892 /* 893 * Scan the work queue to see if we can start a new packet. 894 * returns non-zero if any work was done. 895 */ 896 static int pkt_handle_queue(struct pktcdvd_device *pd) 897 { 898 struct packet_data *pkt, *p; 899 struct bio *bio = NULL; 900 sector_t zone = 0; /* Suppress gcc warning */ 901 struct pkt_rb_node *node, *first_node; 902 struct rb_node *n; 903 904 VPRINTK("handle_queue\n"); 905 906 atomic_set(&pd->scan_queue, 0); 907 908 if (list_empty(&pd->cdrw.pkt_free_list)) { 909 VPRINTK("handle_queue: no pkt\n"); 910 return 0; 911 } 912 913 /* 914 * Try to find a zone we are not already working on. 915 */ 916 spin_lock(&pd->lock); 917 first_node = pkt_rbtree_find(pd, pd->current_sector); 918 if (!first_node) { 919 n = rb_first(&pd->bio_queue); 920 if (n) 921 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 922 } 923 node = first_node; 924 while (node) { 925 bio = node->bio; 926 zone = ZONE(bio->bi_sector, pd); 927 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 928 if (p->sector == zone) { 929 bio = NULL; 930 goto try_next_bio; 931 } 932 } 933 break; 934 try_next_bio: 935 node = pkt_rbtree_next(node); 936 if (!node) { 937 n = rb_first(&pd->bio_queue); 938 if (n) 939 node = rb_entry(n, struct pkt_rb_node, rb_node); 940 } 941 if (node == first_node) 942 node = NULL; 943 } 944 spin_unlock(&pd->lock); 945 if (!bio) { 946 VPRINTK("handle_queue: no bio\n"); 947 return 0; 948 } 949 950 pkt = pkt_get_packet_data(pd, zone); 951 952 pd->current_sector = zone + pd->settings.size; 953 pkt->sector = zone; 954 pkt->frames = pd->settings.size >> 2; 955 pkt->write_size = 0; 956 957 /* 958 * Scan work queue for bios in the same zone and link them 959 * to this packet. 960 */ 961 spin_lock(&pd->lock); 962 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone); 963 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 964 bio = node->bio; 965 VPRINTK("pkt_handle_queue: found zone=%llx\n", 966 (unsigned long long)ZONE(bio->bi_sector, pd)); 967 if (ZONE(bio->bi_sector, pd) != zone) 968 break; 969 pkt_rbtree_erase(pd, node); 970 spin_lock(&pkt->lock); 971 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail); 972 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 973 spin_unlock(&pkt->lock); 974 } 975 spin_unlock(&pd->lock); 976 977 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 978 pkt_set_state(pkt, PACKET_WAITING_STATE); 979 atomic_set(&pkt->run_sm, 1); 980 981 spin_lock(&pd->cdrw.active_list_lock); 982 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 983 spin_unlock(&pd->cdrw.active_list_lock); 984 985 return 1; 986 } 987 988 /* 989 * Assemble a bio to write one packet and queue the bio for processing 990 * by the underlying block device. 991 */ 992 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 993 { 994 struct bio *bio; 995 struct page *pages[PACKET_MAX_SIZE]; 996 int offsets[PACKET_MAX_SIZE]; 997 int f; 998 int frames_write; 999 1000 for (f = 0; f < pkt->frames; f++) { 1001 pages[f] = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1002 offsets[f] = (f * CD_FRAMESIZE) % PAGE_SIZE; 1003 } 1004 1005 /* 1006 * Fill-in pages[] and offsets[] with data from orig_bios. 1007 */ 1008 frames_write = 0; 1009 spin_lock(&pkt->lock); 1010 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1011 int segment = bio->bi_idx; 1012 int src_offs = 0; 1013 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1014 int num_frames = bio->bi_size / CD_FRAMESIZE; 1015 BUG_ON(first_frame < 0); 1016 BUG_ON(first_frame + num_frames > pkt->frames); 1017 for (f = first_frame; f < first_frame + num_frames; f++) { 1018 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment); 1019 1020 while (src_offs >= src_bvl->bv_len) { 1021 src_offs -= src_bvl->bv_len; 1022 segment++; 1023 BUG_ON(segment >= bio->bi_vcnt); 1024 src_bvl = bio_iovec_idx(bio, segment); 1025 } 1026 1027 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) { 1028 pages[f] = src_bvl->bv_page; 1029 offsets[f] = src_bvl->bv_offset + src_offs; 1030 } else { 1031 pkt_copy_bio_data(bio, segment, src_offs, 1032 pages[f], offsets[f]); 1033 } 1034 src_offs += CD_FRAMESIZE; 1035 frames_write++; 1036 } 1037 } 1038 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1039 spin_unlock(&pkt->lock); 1040 1041 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n", 1042 frames_write, (unsigned long long)pkt->sector); 1043 BUG_ON(frames_write != pkt->write_size); 1044 1045 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) { 1046 pkt_make_local_copy(pkt, pages, offsets); 1047 pkt->cache_valid = 1; 1048 } else { 1049 pkt->cache_valid = 0; 1050 } 1051 1052 /* Start the write request */ 1053 bio_init(pkt->w_bio); 1054 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE; 1055 pkt->w_bio->bi_sector = pkt->sector; 1056 pkt->w_bio->bi_bdev = pd->bdev; 1057 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1058 pkt->w_bio->bi_private = pkt; 1059 for (f = 0; f < pkt->frames; f++) { 1060 if ((f + 1 < pkt->frames) && (pages[f + 1] == pages[f]) && 1061 (offsets[f + 1] = offsets[f] + CD_FRAMESIZE)) { 1062 if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE * 2, offsets[f])) 1063 BUG(); 1064 f++; 1065 } else { 1066 if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE, offsets[f])) 1067 BUG(); 1068 } 1069 } 1070 VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt); 1071 1072 atomic_set(&pkt->io_wait, 1); 1073 pkt->w_bio->bi_rw = WRITE; 1074 pkt_queue_bio(pd, pkt->w_bio); 1075 } 1076 1077 static void pkt_finish_packet(struct packet_data *pkt, int uptodate) 1078 { 1079 struct bio *bio, *next; 1080 1081 if (!uptodate) 1082 pkt->cache_valid = 0; 1083 1084 /* Finish all bios corresponding to this packet */ 1085 bio = pkt->orig_bios; 1086 while (bio) { 1087 next = bio->bi_next; 1088 bio->bi_next = NULL; 1089 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO); 1090 bio = next; 1091 } 1092 pkt->orig_bios = pkt->orig_bios_tail = NULL; 1093 } 1094 1095 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1096 { 1097 int uptodate; 1098 1099 VPRINTK("run_state_machine: pkt %d\n", pkt->id); 1100 1101 for (;;) { 1102 switch (pkt->state) { 1103 case PACKET_WAITING_STATE: 1104 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1105 return; 1106 1107 pkt->sleep_time = 0; 1108 pkt_gather_data(pd, pkt); 1109 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1110 break; 1111 1112 case PACKET_READ_WAIT_STATE: 1113 if (atomic_read(&pkt->io_wait) > 0) 1114 return; 1115 1116 if (atomic_read(&pkt->io_errors) > 0) { 1117 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1118 } else { 1119 pkt_start_write(pd, pkt); 1120 } 1121 break; 1122 1123 case PACKET_WRITE_WAIT_STATE: 1124 if (atomic_read(&pkt->io_wait) > 0) 1125 return; 1126 1127 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) { 1128 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1129 } else { 1130 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1131 } 1132 break; 1133 1134 case PACKET_RECOVERY_STATE: 1135 if (pkt_start_recovery(pkt)) { 1136 pkt_start_write(pd, pkt); 1137 } else { 1138 VPRINTK("No recovery possible\n"); 1139 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1140 } 1141 break; 1142 1143 case PACKET_FINISHED_STATE: 1144 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags); 1145 pkt_finish_packet(pkt, uptodate); 1146 return; 1147 1148 default: 1149 BUG(); 1150 break; 1151 } 1152 } 1153 } 1154 1155 static void pkt_handle_packets(struct pktcdvd_device *pd) 1156 { 1157 struct packet_data *pkt, *next; 1158 1159 VPRINTK("pkt_handle_packets\n"); 1160 1161 /* 1162 * Run state machine for active packets 1163 */ 1164 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1165 if (atomic_read(&pkt->run_sm) > 0) { 1166 atomic_set(&pkt->run_sm, 0); 1167 pkt_run_state_machine(pd, pkt); 1168 } 1169 } 1170 1171 /* 1172 * Move no longer active packets to the free list 1173 */ 1174 spin_lock(&pd->cdrw.active_list_lock); 1175 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1176 if (pkt->state == PACKET_FINISHED_STATE) { 1177 list_del(&pkt->list); 1178 pkt_put_packet_data(pd, pkt); 1179 pkt_set_state(pkt, PACKET_IDLE_STATE); 1180 atomic_set(&pd->scan_queue, 1); 1181 } 1182 } 1183 spin_unlock(&pd->cdrw.active_list_lock); 1184 } 1185 1186 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1187 { 1188 struct packet_data *pkt; 1189 int i; 1190 1191 for (i = 0; i < PACKET_NUM_STATES; i++) 1192 states[i] = 0; 1193 1194 spin_lock(&pd->cdrw.active_list_lock); 1195 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1196 states[pkt->state]++; 1197 } 1198 spin_unlock(&pd->cdrw.active_list_lock); 1199 } 1200 1201 /* 1202 * kcdrwd is woken up when writes have been queued for one of our 1203 * registered devices 1204 */ 1205 static int kcdrwd(void *foobar) 1206 { 1207 struct pktcdvd_device *pd = foobar; 1208 struct packet_data *pkt; 1209 long min_sleep_time, residue; 1210 1211 set_user_nice(current, -20); 1212 1213 for (;;) { 1214 DECLARE_WAITQUEUE(wait, current); 1215 1216 /* 1217 * Wait until there is something to do 1218 */ 1219 add_wait_queue(&pd->wqueue, &wait); 1220 for (;;) { 1221 set_current_state(TASK_INTERRUPTIBLE); 1222 1223 /* Check if we need to run pkt_handle_queue */ 1224 if (atomic_read(&pd->scan_queue) > 0) 1225 goto work_to_do; 1226 1227 /* Check if we need to run the state machine for some packet */ 1228 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1229 if (atomic_read(&pkt->run_sm) > 0) 1230 goto work_to_do; 1231 } 1232 1233 /* Check if we need to process the iosched queues */ 1234 if (atomic_read(&pd->iosched.attention) != 0) 1235 goto work_to_do; 1236 1237 /* Otherwise, go to sleep */ 1238 if (PACKET_DEBUG > 1) { 1239 int states[PACKET_NUM_STATES]; 1240 pkt_count_states(pd, states); 1241 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1242 states[0], states[1], states[2], states[3], 1243 states[4], states[5]); 1244 } 1245 1246 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1247 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1248 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1249 min_sleep_time = pkt->sleep_time; 1250 } 1251 1252 generic_unplug_device(bdev_get_queue(pd->bdev)); 1253 1254 VPRINTK("kcdrwd: sleeping\n"); 1255 residue = schedule_timeout(min_sleep_time); 1256 VPRINTK("kcdrwd: wake up\n"); 1257 1258 /* make swsusp happy with our thread */ 1259 try_to_freeze(); 1260 1261 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1262 if (!pkt->sleep_time) 1263 continue; 1264 pkt->sleep_time -= min_sleep_time - residue; 1265 if (pkt->sleep_time <= 0) { 1266 pkt->sleep_time = 0; 1267 atomic_inc(&pkt->run_sm); 1268 } 1269 } 1270 1271 if (signal_pending(current)) { 1272 flush_signals(current); 1273 } 1274 if (kthread_should_stop()) 1275 break; 1276 } 1277 work_to_do: 1278 set_current_state(TASK_RUNNING); 1279 remove_wait_queue(&pd->wqueue, &wait); 1280 1281 if (kthread_should_stop()) 1282 break; 1283 1284 /* 1285 * if pkt_handle_queue returns true, we can queue 1286 * another request. 1287 */ 1288 while (pkt_handle_queue(pd)) 1289 ; 1290 1291 /* 1292 * Handle packet state machine 1293 */ 1294 pkt_handle_packets(pd); 1295 1296 /* 1297 * Handle iosched queues 1298 */ 1299 pkt_iosched_process_queue(pd); 1300 } 1301 1302 return 0; 1303 } 1304 1305 static void pkt_print_settings(struct pktcdvd_device *pd) 1306 { 1307 printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable"); 1308 printk("%u blocks, ", pd->settings.size >> 2); 1309 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2'); 1310 } 1311 1312 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1313 { 1314 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1315 1316 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1317 cgc->cmd[2] = page_code | (page_control << 6); 1318 cgc->cmd[7] = cgc->buflen >> 8; 1319 cgc->cmd[8] = cgc->buflen & 0xff; 1320 cgc->data_direction = CGC_DATA_READ; 1321 return pkt_generic_packet(pd, cgc); 1322 } 1323 1324 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1325 { 1326 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1327 memset(cgc->buffer, 0, 2); 1328 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1329 cgc->cmd[1] = 0x10; /* PF */ 1330 cgc->cmd[7] = cgc->buflen >> 8; 1331 cgc->cmd[8] = cgc->buflen & 0xff; 1332 cgc->data_direction = CGC_DATA_WRITE; 1333 return pkt_generic_packet(pd, cgc); 1334 } 1335 1336 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1337 { 1338 struct packet_command cgc; 1339 int ret; 1340 1341 /* set up command and get the disc info */ 1342 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1343 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1344 cgc.cmd[8] = cgc.buflen = 2; 1345 cgc.quiet = 1; 1346 1347 if ((ret = pkt_generic_packet(pd, &cgc))) 1348 return ret; 1349 1350 /* not all drives have the same disc_info length, so requeue 1351 * packet with the length the drive tells us it can supply 1352 */ 1353 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1354 sizeof(di->disc_information_length); 1355 1356 if (cgc.buflen > sizeof(disc_information)) 1357 cgc.buflen = sizeof(disc_information); 1358 1359 cgc.cmd[8] = cgc.buflen; 1360 return pkt_generic_packet(pd, &cgc); 1361 } 1362 1363 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1364 { 1365 struct packet_command cgc; 1366 int ret; 1367 1368 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1369 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1370 cgc.cmd[1] = type & 3; 1371 cgc.cmd[4] = (track & 0xff00) >> 8; 1372 cgc.cmd[5] = track & 0xff; 1373 cgc.cmd[8] = 8; 1374 cgc.quiet = 1; 1375 1376 if ((ret = pkt_generic_packet(pd, &cgc))) 1377 return ret; 1378 1379 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1380 sizeof(ti->track_information_length); 1381 1382 if (cgc.buflen > sizeof(track_information)) 1383 cgc.buflen = sizeof(track_information); 1384 1385 cgc.cmd[8] = cgc.buflen; 1386 return pkt_generic_packet(pd, &cgc); 1387 } 1388 1389 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written) 1390 { 1391 disc_information di; 1392 track_information ti; 1393 __u32 last_track; 1394 int ret = -1; 1395 1396 if ((ret = pkt_get_disc_info(pd, &di))) 1397 return ret; 1398 1399 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1400 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1401 return ret; 1402 1403 /* if this track is blank, try the previous. */ 1404 if (ti.blank) { 1405 last_track--; 1406 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1407 return ret; 1408 } 1409 1410 /* if last recorded field is valid, return it. */ 1411 if (ti.lra_v) { 1412 *last_written = be32_to_cpu(ti.last_rec_address); 1413 } else { 1414 /* make it up instead */ 1415 *last_written = be32_to_cpu(ti.track_start) + 1416 be32_to_cpu(ti.track_size); 1417 if (ti.free_blocks) 1418 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1419 } 1420 return 0; 1421 } 1422 1423 /* 1424 * write mode select package based on pd->settings 1425 */ 1426 static int pkt_set_write_settings(struct pktcdvd_device *pd) 1427 { 1428 struct packet_command cgc; 1429 struct request_sense sense; 1430 write_param_page *wp; 1431 char buffer[128]; 1432 int ret, size; 1433 1434 /* doesn't apply to DVD+RW or DVD-RAM */ 1435 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1436 return 0; 1437 1438 memset(buffer, 0, sizeof(buffer)); 1439 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1440 cgc.sense = &sense; 1441 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1442 pkt_dump_sense(&cgc); 1443 return ret; 1444 } 1445 1446 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1447 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1448 if (size > sizeof(buffer)) 1449 size = sizeof(buffer); 1450 1451 /* 1452 * now get it all 1453 */ 1454 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1455 cgc.sense = &sense; 1456 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1457 pkt_dump_sense(&cgc); 1458 return ret; 1459 } 1460 1461 /* 1462 * write page is offset header + block descriptor length 1463 */ 1464 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1465 1466 wp->fp = pd->settings.fp; 1467 wp->track_mode = pd->settings.track_mode; 1468 wp->write_type = pd->settings.write_type; 1469 wp->data_block_type = pd->settings.block_mode; 1470 1471 wp->multi_session = 0; 1472 1473 #ifdef PACKET_USE_LS 1474 wp->link_size = 7; 1475 wp->ls_v = 1; 1476 #endif 1477 1478 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1479 wp->session_format = 0; 1480 wp->subhdr2 = 0x20; 1481 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1482 wp->session_format = 0x20; 1483 wp->subhdr2 = 8; 1484 #if 0 1485 wp->mcn[0] = 0x80; 1486 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1487 #endif 1488 } else { 1489 /* 1490 * paranoia 1491 */ 1492 printk("pktcdvd: write mode wrong %d\n", wp->data_block_type); 1493 return 1; 1494 } 1495 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1496 1497 cgc.buflen = cgc.cmd[8] = size; 1498 if ((ret = pkt_mode_select(pd, &cgc))) { 1499 pkt_dump_sense(&cgc); 1500 return ret; 1501 } 1502 1503 pkt_print_settings(pd); 1504 return 0; 1505 } 1506 1507 /* 1508 * 0 -- we can write to this track, 1 -- we can't 1509 */ 1510 static int pkt_good_track(track_information *ti) 1511 { 1512 /* 1513 * only good for CD-RW at the moment, not DVD-RW 1514 */ 1515 1516 /* 1517 * FIXME: only for FP 1518 */ 1519 if (ti->fp == 0) 1520 return 0; 1521 1522 /* 1523 * "good" settings as per Mt Fuji. 1524 */ 1525 if (ti->rt == 0 && ti->blank == 0 && ti->packet == 1) 1526 return 0; 1527 1528 if (ti->rt == 0 && ti->blank == 1 && ti->packet == 1) 1529 return 0; 1530 1531 if (ti->rt == 1 && ti->blank == 0 && ti->packet == 1) 1532 return 0; 1533 1534 printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1535 return 1; 1536 } 1537 1538 /* 1539 * 0 -- we can write to this disc, 1 -- we can't 1540 */ 1541 static int pkt_good_disc(struct pktcdvd_device *pd, disc_information *di) 1542 { 1543 switch (pd->mmc3_profile) { 1544 case 0x0a: /* CD-RW */ 1545 case 0xffff: /* MMC3 not supported */ 1546 break; 1547 case 0x1a: /* DVD+RW */ 1548 case 0x13: /* DVD-RW */ 1549 case 0x12: /* DVD-RAM */ 1550 return 0; 1551 default: 1552 printk("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile); 1553 return 1; 1554 } 1555 1556 /* 1557 * for disc type 0xff we should probably reserve a new track. 1558 * but i'm not sure, should we leave this to user apps? probably. 1559 */ 1560 if (di->disc_type == 0xff) { 1561 printk("pktcdvd: Unknown disc. No track?\n"); 1562 return 1; 1563 } 1564 1565 if (di->disc_type != 0x20 && di->disc_type != 0) { 1566 printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type); 1567 return 1; 1568 } 1569 1570 if (di->erasable == 0) { 1571 printk("pktcdvd: Disc not erasable\n"); 1572 return 1; 1573 } 1574 1575 if (di->border_status == PACKET_SESSION_RESERVED) { 1576 printk("pktcdvd: Can't write to last track (reserved)\n"); 1577 return 1; 1578 } 1579 1580 return 0; 1581 } 1582 1583 static int pkt_probe_settings(struct pktcdvd_device *pd) 1584 { 1585 struct packet_command cgc; 1586 unsigned char buf[12]; 1587 disc_information di; 1588 track_information ti; 1589 int ret, track; 1590 1591 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1592 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1593 cgc.cmd[8] = 8; 1594 ret = pkt_generic_packet(pd, &cgc); 1595 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1596 1597 memset(&di, 0, sizeof(disc_information)); 1598 memset(&ti, 0, sizeof(track_information)); 1599 1600 if ((ret = pkt_get_disc_info(pd, &di))) { 1601 printk("failed get_disc\n"); 1602 return ret; 1603 } 1604 1605 if (pkt_good_disc(pd, &di)) 1606 return -ENXIO; 1607 1608 switch (pd->mmc3_profile) { 1609 case 0x1a: /* DVD+RW */ 1610 printk("pktcdvd: inserted media is DVD+RW\n"); 1611 break; 1612 case 0x13: /* DVD-RW */ 1613 printk("pktcdvd: inserted media is DVD-RW\n"); 1614 break; 1615 case 0x12: /* DVD-RAM */ 1616 printk("pktcdvd: inserted media is DVD-RAM\n"); 1617 break; 1618 default: 1619 printk("pktcdvd: inserted media is CD-R%s\n", di.erasable ? "W" : ""); 1620 break; 1621 } 1622 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 1623 1624 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 1625 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 1626 printk("pktcdvd: failed get_track\n"); 1627 return ret; 1628 } 1629 1630 if (pkt_good_track(&ti)) { 1631 printk("pktcdvd: can't write to this track\n"); 1632 return -ENXIO; 1633 } 1634 1635 /* 1636 * we keep packet size in 512 byte units, makes it easier to 1637 * deal with request calculations. 1638 */ 1639 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 1640 if (pd->settings.size == 0) { 1641 printk("pktcdvd: detected zero packet size!\n"); 1642 pd->settings.size = 128; 1643 } 1644 if (pd->settings.size > PACKET_MAX_SECTORS) { 1645 printk("pktcdvd: packet size is too big\n"); 1646 return -ENXIO; 1647 } 1648 pd->settings.fp = ti.fp; 1649 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 1650 1651 if (ti.nwa_v) { 1652 pd->nwa = be32_to_cpu(ti.next_writable); 1653 set_bit(PACKET_NWA_VALID, &pd->flags); 1654 } 1655 1656 /* 1657 * in theory we could use lra on -RW media as well and just zero 1658 * blocks that haven't been written yet, but in practice that 1659 * is just a no-go. we'll use that for -R, naturally. 1660 */ 1661 if (ti.lra_v) { 1662 pd->lra = be32_to_cpu(ti.last_rec_address); 1663 set_bit(PACKET_LRA_VALID, &pd->flags); 1664 } else { 1665 pd->lra = 0xffffffff; 1666 set_bit(PACKET_LRA_VALID, &pd->flags); 1667 } 1668 1669 /* 1670 * fine for now 1671 */ 1672 pd->settings.link_loss = 7; 1673 pd->settings.write_type = 0; /* packet */ 1674 pd->settings.track_mode = ti.track_mode; 1675 1676 /* 1677 * mode1 or mode2 disc 1678 */ 1679 switch (ti.data_mode) { 1680 case PACKET_MODE1: 1681 pd->settings.block_mode = PACKET_BLOCK_MODE1; 1682 break; 1683 case PACKET_MODE2: 1684 pd->settings.block_mode = PACKET_BLOCK_MODE2; 1685 break; 1686 default: 1687 printk("pktcdvd: unknown data mode\n"); 1688 return 1; 1689 } 1690 return 0; 1691 } 1692 1693 /* 1694 * enable/disable write caching on drive 1695 */ 1696 static int pkt_write_caching(struct pktcdvd_device *pd, int set) 1697 { 1698 struct packet_command cgc; 1699 struct request_sense sense; 1700 unsigned char buf[64]; 1701 int ret; 1702 1703 memset(buf, 0, sizeof(buf)); 1704 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1705 cgc.sense = &sense; 1706 cgc.buflen = pd->mode_offset + 12; 1707 1708 /* 1709 * caching mode page might not be there, so quiet this command 1710 */ 1711 cgc.quiet = 1; 1712 1713 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 1714 return ret; 1715 1716 buf[pd->mode_offset + 10] |= (!!set << 2); 1717 1718 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 1719 ret = pkt_mode_select(pd, &cgc); 1720 if (ret) { 1721 printk("pktcdvd: write caching control failed\n"); 1722 pkt_dump_sense(&cgc); 1723 } else if (!ret && set) 1724 printk("pktcdvd: enabled write caching on %s\n", pd->name); 1725 return ret; 1726 } 1727 1728 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 1729 { 1730 struct packet_command cgc; 1731 1732 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 1733 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 1734 cgc.cmd[4] = lockflag ? 1 : 0; 1735 return pkt_generic_packet(pd, &cgc); 1736 } 1737 1738 /* 1739 * Returns drive maximum write speed 1740 */ 1741 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed) 1742 { 1743 struct packet_command cgc; 1744 struct request_sense sense; 1745 unsigned char buf[256+18]; 1746 unsigned char *cap_buf; 1747 int ret, offset; 1748 1749 memset(buf, 0, sizeof(buf)); 1750 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 1751 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 1752 cgc.sense = &sense; 1753 1754 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1755 if (ret) { 1756 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 1757 sizeof(struct mode_page_header); 1758 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1759 if (ret) { 1760 pkt_dump_sense(&cgc); 1761 return ret; 1762 } 1763 } 1764 1765 offset = 20; /* Obsoleted field, used by older drives */ 1766 if (cap_buf[1] >= 28) 1767 offset = 28; /* Current write speed selected */ 1768 if (cap_buf[1] >= 30) { 1769 /* If the drive reports at least one "Logical Unit Write 1770 * Speed Performance Descriptor Block", use the information 1771 * in the first block. (contains the highest speed) 1772 */ 1773 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 1774 if (num_spdb > 0) 1775 offset = 34; 1776 } 1777 1778 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 1779 return 0; 1780 } 1781 1782 /* These tables from cdrecord - I don't have orange book */ 1783 /* standard speed CD-RW (1-4x) */ 1784 static char clv_to_speed[16] = { 1785 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1786 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1787 }; 1788 /* high speed CD-RW (-10x) */ 1789 static char hs_clv_to_speed[16] = { 1790 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1791 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1792 }; 1793 /* ultra high speed CD-RW */ 1794 static char us_clv_to_speed[16] = { 1795 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1796 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 1797 }; 1798 1799 /* 1800 * reads the maximum media speed from ATIP 1801 */ 1802 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed) 1803 { 1804 struct packet_command cgc; 1805 struct request_sense sense; 1806 unsigned char buf[64]; 1807 unsigned int size, st, sp; 1808 int ret; 1809 1810 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 1811 cgc.sense = &sense; 1812 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 1813 cgc.cmd[1] = 2; 1814 cgc.cmd[2] = 4; /* READ ATIP */ 1815 cgc.cmd[8] = 2; 1816 ret = pkt_generic_packet(pd, &cgc); 1817 if (ret) { 1818 pkt_dump_sense(&cgc); 1819 return ret; 1820 } 1821 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 1822 if (size > sizeof(buf)) 1823 size = sizeof(buf); 1824 1825 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 1826 cgc.sense = &sense; 1827 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 1828 cgc.cmd[1] = 2; 1829 cgc.cmd[2] = 4; 1830 cgc.cmd[8] = size; 1831 ret = pkt_generic_packet(pd, &cgc); 1832 if (ret) { 1833 pkt_dump_sense(&cgc); 1834 return ret; 1835 } 1836 1837 if (!buf[6] & 0x40) { 1838 printk("pktcdvd: Disc type is not CD-RW\n"); 1839 return 1; 1840 } 1841 if (!buf[6] & 0x4) { 1842 printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n"); 1843 return 1; 1844 } 1845 1846 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 1847 1848 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 1849 1850 /* Info from cdrecord */ 1851 switch (st) { 1852 case 0: /* standard speed */ 1853 *speed = clv_to_speed[sp]; 1854 break; 1855 case 1: /* high speed */ 1856 *speed = hs_clv_to_speed[sp]; 1857 break; 1858 case 2: /* ultra high speed */ 1859 *speed = us_clv_to_speed[sp]; 1860 break; 1861 default: 1862 printk("pktcdvd: Unknown disc sub-type %d\n",st); 1863 return 1; 1864 } 1865 if (*speed) { 1866 printk("pktcdvd: Max. media speed: %d\n",*speed); 1867 return 0; 1868 } else { 1869 printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st); 1870 return 1; 1871 } 1872 } 1873 1874 static int pkt_perform_opc(struct pktcdvd_device *pd) 1875 { 1876 struct packet_command cgc; 1877 struct request_sense sense; 1878 int ret; 1879 1880 VPRINTK("pktcdvd: Performing OPC\n"); 1881 1882 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 1883 cgc.sense = &sense; 1884 cgc.timeout = 60*HZ; 1885 cgc.cmd[0] = GPCMD_SEND_OPC; 1886 cgc.cmd[1] = 1; 1887 if ((ret = pkt_generic_packet(pd, &cgc))) 1888 pkt_dump_sense(&cgc); 1889 return ret; 1890 } 1891 1892 static int pkt_open_write(struct pktcdvd_device *pd) 1893 { 1894 int ret; 1895 unsigned int write_speed, media_write_speed, read_speed; 1896 1897 if ((ret = pkt_probe_settings(pd))) { 1898 DPRINTK("pktcdvd: %s failed probe\n", pd->name); 1899 return -EIO; 1900 } 1901 1902 if ((ret = pkt_set_write_settings(pd))) { 1903 DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name); 1904 return -EIO; 1905 } 1906 1907 pkt_write_caching(pd, USE_WCACHING); 1908 1909 if ((ret = pkt_get_max_speed(pd, &write_speed))) 1910 write_speed = 16 * 177; 1911 switch (pd->mmc3_profile) { 1912 case 0x13: /* DVD-RW */ 1913 case 0x1a: /* DVD+RW */ 1914 case 0x12: /* DVD-RAM */ 1915 DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed); 1916 break; 1917 default: 1918 if ((ret = pkt_media_speed(pd, &media_write_speed))) 1919 media_write_speed = 16; 1920 write_speed = min(write_speed, media_write_speed * 177); 1921 DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176); 1922 break; 1923 } 1924 read_speed = write_speed; 1925 1926 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 1927 DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name); 1928 return -EIO; 1929 } 1930 pd->write_speed = write_speed; 1931 pd->read_speed = read_speed; 1932 1933 if ((ret = pkt_perform_opc(pd))) { 1934 DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name); 1935 } 1936 1937 return 0; 1938 } 1939 1940 /* 1941 * called at open time. 1942 */ 1943 static int pkt_open_dev(struct pktcdvd_device *pd, int write) 1944 { 1945 int ret; 1946 long lba; 1947 request_queue_t *q; 1948 1949 /* 1950 * We need to re-open the cdrom device without O_NONBLOCK to be able 1951 * to read/write from/to it. It is already opened in O_NONBLOCK mode 1952 * so bdget() can't fail. 1953 */ 1954 bdget(pd->bdev->bd_dev); 1955 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY))) 1956 goto out; 1957 1958 if ((ret = bd_claim(pd->bdev, pd))) 1959 goto out_putdev; 1960 1961 if ((ret = pkt_get_last_written(pd, &lba))) { 1962 printk("pktcdvd: pkt_get_last_written failed\n"); 1963 goto out_unclaim; 1964 } 1965 1966 set_capacity(pd->disk, lba << 2); 1967 set_capacity(pd->bdev->bd_disk, lba << 2); 1968 bd_set_size(pd->bdev, (loff_t)lba << 11); 1969 1970 q = bdev_get_queue(pd->bdev); 1971 if (write) { 1972 if ((ret = pkt_open_write(pd))) 1973 goto out_unclaim; 1974 /* 1975 * Some CDRW drives can not handle writes larger than one packet, 1976 * even if the size is a multiple of the packet size. 1977 */ 1978 spin_lock_irq(q->queue_lock); 1979 blk_queue_max_sectors(q, pd->settings.size); 1980 spin_unlock_irq(q->queue_lock); 1981 set_bit(PACKET_WRITABLE, &pd->flags); 1982 } else { 1983 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 1984 clear_bit(PACKET_WRITABLE, &pd->flags); 1985 } 1986 1987 if ((ret = pkt_set_segment_merging(pd, q))) 1988 goto out_unclaim; 1989 1990 if (write) 1991 printk("pktcdvd: %lukB available on disc\n", lba << 1); 1992 1993 return 0; 1994 1995 out_unclaim: 1996 bd_release(pd->bdev); 1997 out_putdev: 1998 blkdev_put(pd->bdev); 1999 out: 2000 return ret; 2001 } 2002 2003 /* 2004 * called when the device is closed. makes sure that the device flushes 2005 * the internal cache before we close. 2006 */ 2007 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2008 { 2009 if (flush && pkt_flush_cache(pd)) 2010 DPRINTK("pktcdvd: %s not flushing cache\n", pd->name); 2011 2012 pkt_lock_door(pd, 0); 2013 2014 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2015 bd_release(pd->bdev); 2016 blkdev_put(pd->bdev); 2017 } 2018 2019 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor) 2020 { 2021 if (dev_minor >= MAX_WRITERS) 2022 return NULL; 2023 return pkt_devs[dev_minor]; 2024 } 2025 2026 static int pkt_open(struct inode *inode, struct file *file) 2027 { 2028 struct pktcdvd_device *pd = NULL; 2029 int ret; 2030 2031 VPRINTK("pktcdvd: entering open\n"); 2032 2033 down(&ctl_mutex); 2034 pd = pkt_find_dev_from_minor(iminor(inode)); 2035 if (!pd) { 2036 ret = -ENODEV; 2037 goto out; 2038 } 2039 BUG_ON(pd->refcnt < 0); 2040 2041 pd->refcnt++; 2042 if (pd->refcnt > 1) { 2043 if ((file->f_mode & FMODE_WRITE) && 2044 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2045 ret = -EBUSY; 2046 goto out_dec; 2047 } 2048 } else { 2049 if (pkt_open_dev(pd, file->f_mode & FMODE_WRITE)) { 2050 ret = -EIO; 2051 goto out_dec; 2052 } 2053 /* 2054 * needed here as well, since ext2 (among others) may change 2055 * the blocksize at mount time 2056 */ 2057 set_blocksize(inode->i_bdev, CD_FRAMESIZE); 2058 } 2059 2060 up(&ctl_mutex); 2061 return 0; 2062 2063 out_dec: 2064 pd->refcnt--; 2065 out: 2066 VPRINTK("pktcdvd: failed open (%d)\n", ret); 2067 up(&ctl_mutex); 2068 return ret; 2069 } 2070 2071 static int pkt_close(struct inode *inode, struct file *file) 2072 { 2073 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; 2074 int ret = 0; 2075 2076 down(&ctl_mutex); 2077 pd->refcnt--; 2078 BUG_ON(pd->refcnt < 0); 2079 if (pd->refcnt == 0) { 2080 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2081 pkt_release_dev(pd, flush); 2082 } 2083 up(&ctl_mutex); 2084 return ret; 2085 } 2086 2087 2088 static void *psd_pool_alloc(gfp_t gfp_mask, void *data) 2089 { 2090 return kmalloc(sizeof(struct packet_stacked_data), gfp_mask); 2091 } 2092 2093 static void psd_pool_free(void *ptr, void *data) 2094 { 2095 kfree(ptr); 2096 } 2097 2098 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err) 2099 { 2100 struct packet_stacked_data *psd = bio->bi_private; 2101 struct pktcdvd_device *pd = psd->pd; 2102 2103 if (bio->bi_size) 2104 return 1; 2105 2106 bio_put(bio); 2107 bio_endio(psd->bio, psd->bio->bi_size, err); 2108 mempool_free(psd, psd_pool); 2109 pkt_bio_finished(pd); 2110 return 0; 2111 } 2112 2113 static int pkt_make_request(request_queue_t *q, struct bio *bio) 2114 { 2115 struct pktcdvd_device *pd; 2116 char b[BDEVNAME_SIZE]; 2117 sector_t zone; 2118 struct packet_data *pkt; 2119 int was_empty, blocked_bio; 2120 struct pkt_rb_node *node; 2121 2122 pd = q->queuedata; 2123 if (!pd) { 2124 printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b)); 2125 goto end_io; 2126 } 2127 2128 /* 2129 * Clone READ bios so we can have our own bi_end_io callback. 2130 */ 2131 if (bio_data_dir(bio) == READ) { 2132 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); 2133 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2134 2135 psd->pd = pd; 2136 psd->bio = bio; 2137 cloned_bio->bi_bdev = pd->bdev; 2138 cloned_bio->bi_private = psd; 2139 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2140 pd->stats.secs_r += bio->bi_size >> 9; 2141 pkt_queue_bio(pd, cloned_bio); 2142 return 0; 2143 } 2144 2145 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2146 printk("pktcdvd: WRITE for ro device %s (%llu)\n", 2147 pd->name, (unsigned long long)bio->bi_sector); 2148 goto end_io; 2149 } 2150 2151 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) { 2152 printk("pktcdvd: wrong bio size\n"); 2153 goto end_io; 2154 } 2155 2156 blk_queue_bounce(q, &bio); 2157 2158 zone = ZONE(bio->bi_sector, pd); 2159 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n", 2160 (unsigned long long)bio->bi_sector, 2161 (unsigned long long)(bio->bi_sector + bio_sectors(bio))); 2162 2163 /* Check if we have to split the bio */ 2164 { 2165 struct bio_pair *bp; 2166 sector_t last_zone; 2167 int first_sectors; 2168 2169 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd); 2170 if (last_zone != zone) { 2171 BUG_ON(last_zone != zone + pd->settings.size); 2172 first_sectors = last_zone - bio->bi_sector; 2173 bp = bio_split(bio, bio_split_pool, first_sectors); 2174 BUG_ON(!bp); 2175 pkt_make_request(q, &bp->bio1); 2176 pkt_make_request(q, &bp->bio2); 2177 bio_pair_release(bp); 2178 return 0; 2179 } 2180 } 2181 2182 /* 2183 * If we find a matching packet in state WAITING or READ_WAIT, we can 2184 * just append this bio to that packet. 2185 */ 2186 spin_lock(&pd->cdrw.active_list_lock); 2187 blocked_bio = 0; 2188 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2189 if (pkt->sector == zone) { 2190 spin_lock(&pkt->lock); 2191 if ((pkt->state == PACKET_WAITING_STATE) || 2192 (pkt->state == PACKET_READ_WAIT_STATE)) { 2193 pkt_add_list_last(bio, &pkt->orig_bios, 2194 &pkt->orig_bios_tail); 2195 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 2196 if ((pkt->write_size >= pkt->frames) && 2197 (pkt->state == PACKET_WAITING_STATE)) { 2198 atomic_inc(&pkt->run_sm); 2199 wake_up(&pd->wqueue); 2200 } 2201 spin_unlock(&pkt->lock); 2202 spin_unlock(&pd->cdrw.active_list_lock); 2203 return 0; 2204 } else { 2205 blocked_bio = 1; 2206 } 2207 spin_unlock(&pkt->lock); 2208 } 2209 } 2210 spin_unlock(&pd->cdrw.active_list_lock); 2211 2212 /* 2213 * No matching packet found. Store the bio in the work queue. 2214 */ 2215 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2216 node->bio = bio; 2217 spin_lock(&pd->lock); 2218 BUG_ON(pd->bio_queue_size < 0); 2219 was_empty = (pd->bio_queue_size == 0); 2220 pkt_rbtree_insert(pd, node); 2221 spin_unlock(&pd->lock); 2222 2223 /* 2224 * Wake up the worker thread. 2225 */ 2226 atomic_set(&pd->scan_queue, 1); 2227 if (was_empty) { 2228 /* This wake_up is required for correct operation */ 2229 wake_up(&pd->wqueue); 2230 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2231 /* 2232 * This wake up is not required for correct operation, 2233 * but improves performance in some cases. 2234 */ 2235 wake_up(&pd->wqueue); 2236 } 2237 return 0; 2238 end_io: 2239 bio_io_error(bio, bio->bi_size); 2240 return 0; 2241 } 2242 2243 2244 2245 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec) 2246 { 2247 struct pktcdvd_device *pd = q->queuedata; 2248 sector_t zone = ZONE(bio->bi_sector, pd); 2249 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size; 2250 int remaining = (pd->settings.size << 9) - used; 2251 int remaining2; 2252 2253 /* 2254 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet 2255 * boundary, pkt_make_request() will split the bio. 2256 */ 2257 remaining2 = PAGE_SIZE - bio->bi_size; 2258 remaining = max(remaining, remaining2); 2259 2260 BUG_ON(remaining < 0); 2261 return remaining; 2262 } 2263 2264 static void pkt_init_queue(struct pktcdvd_device *pd) 2265 { 2266 request_queue_t *q = pd->disk->queue; 2267 2268 blk_queue_make_request(q, pkt_make_request); 2269 blk_queue_hardsect_size(q, CD_FRAMESIZE); 2270 blk_queue_max_sectors(q, PACKET_MAX_SECTORS); 2271 blk_queue_merge_bvec(q, pkt_merge_bvec); 2272 q->queuedata = pd; 2273 } 2274 2275 static int pkt_seq_show(struct seq_file *m, void *p) 2276 { 2277 struct pktcdvd_device *pd = m->private; 2278 char *msg; 2279 char bdev_buf[BDEVNAME_SIZE]; 2280 int states[PACKET_NUM_STATES]; 2281 2282 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2283 bdevname(pd->bdev, bdev_buf)); 2284 2285 seq_printf(m, "\nSettings:\n"); 2286 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2287 2288 if (pd->settings.write_type == 0) 2289 msg = "Packet"; 2290 else 2291 msg = "Unknown"; 2292 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2293 2294 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2295 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2296 2297 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2298 2299 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2300 msg = "Mode 1"; 2301 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2302 msg = "Mode 2"; 2303 else 2304 msg = "Unknown"; 2305 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2306 2307 seq_printf(m, "\nStatistics:\n"); 2308 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2309 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2310 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2311 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2312 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2313 2314 seq_printf(m, "\nMisc:\n"); 2315 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2316 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2317 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2318 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2319 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2320 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2321 2322 seq_printf(m, "\nQueue state:\n"); 2323 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2324 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2325 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2326 2327 pkt_count_states(pd, states); 2328 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2329 states[0], states[1], states[2], states[3], states[4], states[5]); 2330 2331 return 0; 2332 } 2333 2334 static int pkt_seq_open(struct inode *inode, struct file *file) 2335 { 2336 return single_open(file, pkt_seq_show, PDE(inode)->data); 2337 } 2338 2339 static struct file_operations pkt_proc_fops = { 2340 .open = pkt_seq_open, 2341 .read = seq_read, 2342 .llseek = seq_lseek, 2343 .release = single_release 2344 }; 2345 2346 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2347 { 2348 int i; 2349 int ret = 0; 2350 char b[BDEVNAME_SIZE]; 2351 struct proc_dir_entry *proc; 2352 struct block_device *bdev; 2353 2354 if (pd->pkt_dev == dev) { 2355 printk("pktcdvd: Recursive setup not allowed\n"); 2356 return -EBUSY; 2357 } 2358 for (i = 0; i < MAX_WRITERS; i++) { 2359 struct pktcdvd_device *pd2 = pkt_devs[i]; 2360 if (!pd2) 2361 continue; 2362 if (pd2->bdev->bd_dev == dev) { 2363 printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b)); 2364 return -EBUSY; 2365 } 2366 if (pd2->pkt_dev == dev) { 2367 printk("pktcdvd: Can't chain pktcdvd devices\n"); 2368 return -EBUSY; 2369 } 2370 } 2371 2372 bdev = bdget(dev); 2373 if (!bdev) 2374 return -ENOMEM; 2375 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK); 2376 if (ret) 2377 return ret; 2378 2379 /* This is safe, since we have a reference from open(). */ 2380 __module_get(THIS_MODULE); 2381 2382 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2383 printk("pktcdvd: not enough memory for buffers\n"); 2384 ret = -ENOMEM; 2385 goto out_mem; 2386 } 2387 2388 pd->bdev = bdev; 2389 set_blocksize(bdev, CD_FRAMESIZE); 2390 2391 pkt_init_queue(pd); 2392 2393 atomic_set(&pd->cdrw.pending_bios, 0); 2394 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2395 if (IS_ERR(pd->cdrw.thread)) { 2396 printk("pktcdvd: can't start kernel thread\n"); 2397 ret = -ENOMEM; 2398 goto out_thread; 2399 } 2400 2401 proc = create_proc_entry(pd->name, 0, pkt_proc); 2402 if (proc) { 2403 proc->data = pd; 2404 proc->proc_fops = &pkt_proc_fops; 2405 } 2406 DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b)); 2407 return 0; 2408 2409 out_thread: 2410 pkt_shrink_pktlist(pd); 2411 out_mem: 2412 blkdev_put(bdev); 2413 /* This is safe: open() is still holding a reference. */ 2414 module_put(THIS_MODULE); 2415 return ret; 2416 } 2417 2418 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 2419 { 2420 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; 2421 2422 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode)); 2423 2424 switch (cmd) { 2425 /* 2426 * forward selected CDROM ioctls to CD-ROM, for UDF 2427 */ 2428 case CDROMMULTISESSION: 2429 case CDROMREADTOCENTRY: 2430 case CDROM_LAST_WRITTEN: 2431 case CDROM_SEND_PACKET: 2432 case SCSI_IOCTL_SEND_COMMAND: 2433 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); 2434 2435 case CDROMEJECT: 2436 /* 2437 * The door gets locked when the device is opened, so we 2438 * have to unlock it or else the eject command fails. 2439 */ 2440 pkt_lock_door(pd, 0); 2441 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); 2442 2443 default: 2444 printk("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd); 2445 return -ENOTTY; 2446 } 2447 2448 return 0; 2449 } 2450 2451 static int pkt_media_changed(struct gendisk *disk) 2452 { 2453 struct pktcdvd_device *pd = disk->private_data; 2454 struct gendisk *attached_disk; 2455 2456 if (!pd) 2457 return 0; 2458 if (!pd->bdev) 2459 return 0; 2460 attached_disk = pd->bdev->bd_disk; 2461 if (!attached_disk) 2462 return 0; 2463 return attached_disk->fops->media_changed(attached_disk); 2464 } 2465 2466 static struct block_device_operations pktcdvd_ops = { 2467 .owner = THIS_MODULE, 2468 .open = pkt_open, 2469 .release = pkt_close, 2470 .ioctl = pkt_ioctl, 2471 .media_changed = pkt_media_changed, 2472 }; 2473 2474 /* 2475 * Set up mapping from pktcdvd device to CD-ROM device. 2476 */ 2477 static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd) 2478 { 2479 int idx; 2480 int ret = -ENOMEM; 2481 struct pktcdvd_device *pd; 2482 struct gendisk *disk; 2483 dev_t dev = new_decode_dev(ctrl_cmd->dev); 2484 2485 for (idx = 0; idx < MAX_WRITERS; idx++) 2486 if (!pkt_devs[idx]) 2487 break; 2488 if (idx == MAX_WRITERS) { 2489 printk("pktcdvd: max %d writers supported\n", MAX_WRITERS); 2490 return -EBUSY; 2491 } 2492 2493 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2494 if (!pd) 2495 return ret; 2496 2497 pd->rb_pool = mempool_create(PKT_RB_POOL_SIZE, pkt_rb_alloc, pkt_rb_free, NULL); 2498 if (!pd->rb_pool) 2499 goto out_mem; 2500 2501 disk = alloc_disk(1); 2502 if (!disk) 2503 goto out_mem; 2504 pd->disk = disk; 2505 2506 spin_lock_init(&pd->lock); 2507 spin_lock_init(&pd->iosched.lock); 2508 sprintf(pd->name, "pktcdvd%d", idx); 2509 init_waitqueue_head(&pd->wqueue); 2510 pd->bio_queue = RB_ROOT; 2511 2512 disk->major = pkt_major; 2513 disk->first_minor = idx; 2514 disk->fops = &pktcdvd_ops; 2515 disk->flags = GENHD_FL_REMOVABLE; 2516 sprintf(disk->disk_name, "pktcdvd%d", idx); 2517 disk->private_data = pd; 2518 disk->queue = blk_alloc_queue(GFP_KERNEL); 2519 if (!disk->queue) 2520 goto out_mem2; 2521 2522 pd->pkt_dev = MKDEV(disk->major, disk->first_minor); 2523 ret = pkt_new_dev(pd, dev); 2524 if (ret) 2525 goto out_new_dev; 2526 2527 add_disk(disk); 2528 pkt_devs[idx] = pd; 2529 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2530 return 0; 2531 2532 out_new_dev: 2533 blk_put_queue(disk->queue); 2534 out_mem2: 2535 put_disk(disk); 2536 out_mem: 2537 if (pd->rb_pool) 2538 mempool_destroy(pd->rb_pool); 2539 kfree(pd); 2540 return ret; 2541 } 2542 2543 /* 2544 * Tear down mapping from pktcdvd device to CD-ROM device. 2545 */ 2546 static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd) 2547 { 2548 struct pktcdvd_device *pd; 2549 int idx; 2550 dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev); 2551 2552 for (idx = 0; idx < MAX_WRITERS; idx++) { 2553 pd = pkt_devs[idx]; 2554 if (pd && (pd->pkt_dev == pkt_dev)) 2555 break; 2556 } 2557 if (idx == MAX_WRITERS) { 2558 DPRINTK("pktcdvd: dev not setup\n"); 2559 return -ENXIO; 2560 } 2561 2562 if (pd->refcnt > 0) 2563 return -EBUSY; 2564 2565 if (!IS_ERR(pd->cdrw.thread)) 2566 kthread_stop(pd->cdrw.thread); 2567 2568 blkdev_put(pd->bdev); 2569 2570 pkt_shrink_pktlist(pd); 2571 2572 remove_proc_entry(pd->name, pkt_proc); 2573 DPRINTK("pktcdvd: writer %s unmapped\n", pd->name); 2574 2575 del_gendisk(pd->disk); 2576 blk_put_queue(pd->disk->queue); 2577 put_disk(pd->disk); 2578 2579 pkt_devs[idx] = NULL; 2580 mempool_destroy(pd->rb_pool); 2581 kfree(pd); 2582 2583 /* This is safe: open() is still holding a reference. */ 2584 module_put(THIS_MODULE); 2585 return 0; 2586 } 2587 2588 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 2589 { 2590 struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 2591 if (pd) { 2592 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 2593 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2594 } else { 2595 ctrl_cmd->dev = 0; 2596 ctrl_cmd->pkt_dev = 0; 2597 } 2598 ctrl_cmd->num_devices = MAX_WRITERS; 2599 } 2600 2601 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 2602 { 2603 void __user *argp = (void __user *)arg; 2604 struct pkt_ctrl_command ctrl_cmd; 2605 int ret = 0; 2606 2607 if (cmd != PACKET_CTRL_CMD) 2608 return -ENOTTY; 2609 2610 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 2611 return -EFAULT; 2612 2613 switch (ctrl_cmd.command) { 2614 case PKT_CTRL_CMD_SETUP: 2615 if (!capable(CAP_SYS_ADMIN)) 2616 return -EPERM; 2617 down(&ctl_mutex); 2618 ret = pkt_setup_dev(&ctrl_cmd); 2619 up(&ctl_mutex); 2620 break; 2621 case PKT_CTRL_CMD_TEARDOWN: 2622 if (!capable(CAP_SYS_ADMIN)) 2623 return -EPERM; 2624 down(&ctl_mutex); 2625 ret = pkt_remove_dev(&ctrl_cmd); 2626 up(&ctl_mutex); 2627 break; 2628 case PKT_CTRL_CMD_STATUS: 2629 down(&ctl_mutex); 2630 pkt_get_status(&ctrl_cmd); 2631 up(&ctl_mutex); 2632 break; 2633 default: 2634 return -ENOTTY; 2635 } 2636 2637 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 2638 return -EFAULT; 2639 return ret; 2640 } 2641 2642 2643 static struct file_operations pkt_ctl_fops = { 2644 .ioctl = pkt_ctl_ioctl, 2645 .owner = THIS_MODULE, 2646 }; 2647 2648 static struct miscdevice pkt_misc = { 2649 .minor = MISC_DYNAMIC_MINOR, 2650 .name = "pktcdvd", 2651 .devfs_name = "pktcdvd/control", 2652 .fops = &pkt_ctl_fops 2653 }; 2654 2655 static int __init pkt_init(void) 2656 { 2657 int ret; 2658 2659 psd_pool = mempool_create(PSD_POOL_SIZE, psd_pool_alloc, psd_pool_free, NULL); 2660 if (!psd_pool) 2661 return -ENOMEM; 2662 2663 ret = register_blkdev(pkt_major, "pktcdvd"); 2664 if (ret < 0) { 2665 printk("pktcdvd: Unable to register block device\n"); 2666 goto out2; 2667 } 2668 if (!pkt_major) 2669 pkt_major = ret; 2670 2671 ret = misc_register(&pkt_misc); 2672 if (ret) { 2673 printk("pktcdvd: Unable to register misc device\n"); 2674 goto out; 2675 } 2676 2677 init_MUTEX(&ctl_mutex); 2678 2679 pkt_proc = proc_mkdir("pktcdvd", proc_root_driver); 2680 2681 DPRINTK("pktcdvd: %s\n", VERSION_CODE); 2682 return 0; 2683 2684 out: 2685 unregister_blkdev(pkt_major, "pktcdvd"); 2686 out2: 2687 mempool_destroy(psd_pool); 2688 return ret; 2689 } 2690 2691 static void __exit pkt_exit(void) 2692 { 2693 remove_proc_entry("pktcdvd", proc_root_driver); 2694 misc_deregister(&pkt_misc); 2695 unregister_blkdev(pkt_major, "pktcdvd"); 2696 mempool_destroy(psd_pool); 2697 } 2698 2699 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 2700 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 2701 MODULE_LICENSE("GPL"); 2702 2703 module_init(pkt_init); 2704 module_exit(pkt_exit); 2705