xref: /openbmc/linux/drivers/block/pktcdvd.c (revision 87c2ce3b)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  *
5  * May be copied or modified under the terms of the GNU General Public
6  * License.  See linux/COPYING for more information.
7  *
8  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
9  * DVD-RAM devices.
10  *
11  * Theory of operation:
12  *
13  * At the lowest level, there is the standard driver for the CD/DVD device,
14  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
15  * but it doesn't know anything about the special restrictions that apply to
16  * packet writing. One restriction is that write requests must be aligned to
17  * packet boundaries on the physical media, and the size of a write request
18  * must be equal to the packet size. Another restriction is that a
19  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
20  * command, if the previous command was a write.
21  *
22  * The purpose of the packet writing driver is to hide these restrictions from
23  * higher layers, such as file systems, and present a block device that can be
24  * randomly read and written using 2kB-sized blocks.
25  *
26  * The lowest layer in the packet writing driver is the packet I/O scheduler.
27  * Its data is defined by the struct packet_iosched and includes two bio
28  * queues with pending read and write requests. These queues are processed
29  * by the pkt_iosched_process_queue() function. The write requests in this
30  * queue are already properly aligned and sized. This layer is responsible for
31  * issuing the flush cache commands and scheduling the I/O in a good order.
32  *
33  * The next layer transforms unaligned write requests to aligned writes. This
34  * transformation requires reading missing pieces of data from the underlying
35  * block device, assembling the pieces to full packets and queuing them to the
36  * packet I/O scheduler.
37  *
38  * At the top layer there is a custom make_request_fn function that forwards
39  * read requests directly to the iosched queue and puts write requests in the
40  * unaligned write queue. A kernel thread performs the necessary read
41  * gathering to convert the unaligned writes to aligned writes and then feeds
42  * them to the packet I/O scheduler.
43  *
44  *************************************************************************/
45 
46 #define VERSION_CODE	"v0.2.0a 2004-07-14 Jens Axboe (axboe@suse.de) and petero2@telia.com"
47 
48 #include <linux/pktcdvd.h>
49 #include <linux/config.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/kthread.h>
54 #include <linux/errno.h>
55 #include <linux/spinlock.h>
56 #include <linux/file.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/miscdevice.h>
60 #include <linux/suspend.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_ioctl.h>
63 
64 #include <asm/uaccess.h>
65 
66 #if PACKET_DEBUG
67 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
68 #else
69 #define DPRINTK(fmt, args...)
70 #endif
71 
72 #if PACKET_DEBUG > 1
73 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74 #else
75 #define VPRINTK(fmt, args...)
76 #endif
77 
78 #define MAX_SPEED 0xffff
79 
80 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
81 
82 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
83 static struct proc_dir_entry *pkt_proc;
84 static int pkt_major;
85 static struct semaphore ctl_mutex;	/* Serialize open/close/setup/teardown */
86 static mempool_t *psd_pool;
87 
88 
89 static void pkt_bio_finished(struct pktcdvd_device *pd)
90 {
91 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
92 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
93 		VPRINTK("pktcdvd: queue empty\n");
94 		atomic_set(&pd->iosched.attention, 1);
95 		wake_up(&pd->wqueue);
96 	}
97 }
98 
99 static void pkt_bio_destructor(struct bio *bio)
100 {
101 	kfree(bio->bi_io_vec);
102 	kfree(bio);
103 }
104 
105 static struct bio *pkt_bio_alloc(int nr_iovecs)
106 {
107 	struct bio_vec *bvl = NULL;
108 	struct bio *bio;
109 
110 	bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
111 	if (!bio)
112 		goto no_bio;
113 	bio_init(bio);
114 
115 	bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
116 	if (!bvl)
117 		goto no_bvl;
118 
119 	bio->bi_max_vecs = nr_iovecs;
120 	bio->bi_io_vec = bvl;
121 	bio->bi_destructor = pkt_bio_destructor;
122 
123 	return bio;
124 
125  no_bvl:
126 	kfree(bio);
127  no_bio:
128 	return NULL;
129 }
130 
131 /*
132  * Allocate a packet_data struct
133  */
134 static struct packet_data *pkt_alloc_packet_data(void)
135 {
136 	int i;
137 	struct packet_data *pkt;
138 
139 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
140 	if (!pkt)
141 		goto no_pkt;
142 
143 	pkt->w_bio = pkt_bio_alloc(PACKET_MAX_SIZE);
144 	if (!pkt->w_bio)
145 		goto no_bio;
146 
147 	for (i = 0; i < PAGES_PER_PACKET; i++) {
148 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
149 		if (!pkt->pages[i])
150 			goto no_page;
151 	}
152 
153 	spin_lock_init(&pkt->lock);
154 
155 	for (i = 0; i < PACKET_MAX_SIZE; i++) {
156 		struct bio *bio = pkt_bio_alloc(1);
157 		if (!bio)
158 			goto no_rd_bio;
159 		pkt->r_bios[i] = bio;
160 	}
161 
162 	return pkt;
163 
164 no_rd_bio:
165 	for (i = 0; i < PACKET_MAX_SIZE; i++) {
166 		struct bio *bio = pkt->r_bios[i];
167 		if (bio)
168 			bio_put(bio);
169 	}
170 
171 no_page:
172 	for (i = 0; i < PAGES_PER_PACKET; i++)
173 		if (pkt->pages[i])
174 			__free_page(pkt->pages[i]);
175 	bio_put(pkt->w_bio);
176 no_bio:
177 	kfree(pkt);
178 no_pkt:
179 	return NULL;
180 }
181 
182 /*
183  * Free a packet_data struct
184  */
185 static void pkt_free_packet_data(struct packet_data *pkt)
186 {
187 	int i;
188 
189 	for (i = 0; i < PACKET_MAX_SIZE; i++) {
190 		struct bio *bio = pkt->r_bios[i];
191 		if (bio)
192 			bio_put(bio);
193 	}
194 	for (i = 0; i < PAGES_PER_PACKET; i++)
195 		__free_page(pkt->pages[i]);
196 	bio_put(pkt->w_bio);
197 	kfree(pkt);
198 }
199 
200 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
201 {
202 	struct packet_data *pkt, *next;
203 
204 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
205 
206 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
207 		pkt_free_packet_data(pkt);
208 	}
209 }
210 
211 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
212 {
213 	struct packet_data *pkt;
214 
215 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
216 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
217 	spin_lock_init(&pd->cdrw.active_list_lock);
218 	while (nr_packets > 0) {
219 		pkt = pkt_alloc_packet_data();
220 		if (!pkt) {
221 			pkt_shrink_pktlist(pd);
222 			return 0;
223 		}
224 		pkt->id = nr_packets;
225 		pkt->pd = pd;
226 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
227 		nr_packets--;
228 	}
229 	return 1;
230 }
231 
232 static void *pkt_rb_alloc(gfp_t gfp_mask, void *data)
233 {
234 	return kmalloc(sizeof(struct pkt_rb_node), gfp_mask);
235 }
236 
237 static void pkt_rb_free(void *ptr, void *data)
238 {
239 	kfree(ptr);
240 }
241 
242 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
243 {
244 	struct rb_node *n = rb_next(&node->rb_node);
245 	if (!n)
246 		return NULL;
247 	return rb_entry(n, struct pkt_rb_node, rb_node);
248 }
249 
250 static inline void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
251 {
252 	rb_erase(&node->rb_node, &pd->bio_queue);
253 	mempool_free(node, pd->rb_pool);
254 	pd->bio_queue_size--;
255 	BUG_ON(pd->bio_queue_size < 0);
256 }
257 
258 /*
259  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
260  */
261 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
262 {
263 	struct rb_node *n = pd->bio_queue.rb_node;
264 	struct rb_node *next;
265 	struct pkt_rb_node *tmp;
266 
267 	if (!n) {
268 		BUG_ON(pd->bio_queue_size > 0);
269 		return NULL;
270 	}
271 
272 	for (;;) {
273 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
274 		if (s <= tmp->bio->bi_sector)
275 			next = n->rb_left;
276 		else
277 			next = n->rb_right;
278 		if (!next)
279 			break;
280 		n = next;
281 	}
282 
283 	if (s > tmp->bio->bi_sector) {
284 		tmp = pkt_rbtree_next(tmp);
285 		if (!tmp)
286 			return NULL;
287 	}
288 	BUG_ON(s > tmp->bio->bi_sector);
289 	return tmp;
290 }
291 
292 /*
293  * Insert a node into the pd->bio_queue rb tree.
294  */
295 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
296 {
297 	struct rb_node **p = &pd->bio_queue.rb_node;
298 	struct rb_node *parent = NULL;
299 	sector_t s = node->bio->bi_sector;
300 	struct pkt_rb_node *tmp;
301 
302 	while (*p) {
303 		parent = *p;
304 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
305 		if (s < tmp->bio->bi_sector)
306 			p = &(*p)->rb_left;
307 		else
308 			p = &(*p)->rb_right;
309 	}
310 	rb_link_node(&node->rb_node, parent, p);
311 	rb_insert_color(&node->rb_node, &pd->bio_queue);
312 	pd->bio_queue_size++;
313 }
314 
315 /*
316  * Add a bio to a single linked list defined by its head and tail pointers.
317  */
318 static inline void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
319 {
320 	bio->bi_next = NULL;
321 	if (*list_tail) {
322 		BUG_ON((*list_head) == NULL);
323 		(*list_tail)->bi_next = bio;
324 		(*list_tail) = bio;
325 	} else {
326 		BUG_ON((*list_head) != NULL);
327 		(*list_head) = bio;
328 		(*list_tail) = bio;
329 	}
330 }
331 
332 /*
333  * Remove and return the first bio from a single linked list defined by its
334  * head and tail pointers.
335  */
336 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
337 {
338 	struct bio *bio;
339 
340 	if (*list_head == NULL)
341 		return NULL;
342 
343 	bio = *list_head;
344 	*list_head = bio->bi_next;
345 	if (*list_head == NULL)
346 		*list_tail = NULL;
347 
348 	bio->bi_next = NULL;
349 	return bio;
350 }
351 
352 /*
353  * Send a packet_command to the underlying block device and
354  * wait for completion.
355  */
356 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
357 {
358 	char sense[SCSI_SENSE_BUFFERSIZE];
359 	request_queue_t *q;
360 	struct request *rq;
361 	DECLARE_COMPLETION(wait);
362 	int err = 0;
363 
364 	q = bdev_get_queue(pd->bdev);
365 
366 	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ,
367 			     __GFP_WAIT);
368 	rq->errors = 0;
369 	rq->rq_disk = pd->bdev->bd_disk;
370 	rq->bio = NULL;
371 	rq->buffer = NULL;
372 	rq->timeout = 60*HZ;
373 	rq->data = cgc->buffer;
374 	rq->data_len = cgc->buflen;
375 	rq->sense = sense;
376 	memset(sense, 0, sizeof(sense));
377 	rq->sense_len = 0;
378 	rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER;
379 	if (cgc->quiet)
380 		rq->flags |= REQ_QUIET;
381 	memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
382 	if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
383 		memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
384 
385 	rq->ref_count++;
386 	rq->flags |= REQ_NOMERGE;
387 	rq->waiting = &wait;
388 	rq->end_io = blk_end_sync_rq;
389 	elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
390 	generic_unplug_device(q);
391 	wait_for_completion(&wait);
392 
393 	if (rq->errors)
394 		err = -EIO;
395 
396 	blk_put_request(rq);
397 	return err;
398 }
399 
400 /*
401  * A generic sense dump / resolve mechanism should be implemented across
402  * all ATAPI + SCSI devices.
403  */
404 static void pkt_dump_sense(struct packet_command *cgc)
405 {
406 	static char *info[9] = { "No sense", "Recovered error", "Not ready",
407 				 "Medium error", "Hardware error", "Illegal request",
408 				 "Unit attention", "Data protect", "Blank check" };
409 	int i;
410 	struct request_sense *sense = cgc->sense;
411 
412 	printk("pktcdvd:");
413 	for (i = 0; i < CDROM_PACKET_SIZE; i++)
414 		printk(" %02x", cgc->cmd[i]);
415 	printk(" - ");
416 
417 	if (sense == NULL) {
418 		printk("no sense\n");
419 		return;
420 	}
421 
422 	printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
423 
424 	if (sense->sense_key > 8) {
425 		printk(" (INVALID)\n");
426 		return;
427 	}
428 
429 	printk(" (%s)\n", info[sense->sense_key]);
430 }
431 
432 /*
433  * flush the drive cache to media
434  */
435 static int pkt_flush_cache(struct pktcdvd_device *pd)
436 {
437 	struct packet_command cgc;
438 
439 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
440 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
441 	cgc.quiet = 1;
442 
443 	/*
444 	 * the IMMED bit -- we default to not setting it, although that
445 	 * would allow a much faster close, this is safer
446 	 */
447 #if 0
448 	cgc.cmd[1] = 1 << 1;
449 #endif
450 	return pkt_generic_packet(pd, &cgc);
451 }
452 
453 /*
454  * speed is given as the normal factor, e.g. 4 for 4x
455  */
456 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
457 {
458 	struct packet_command cgc;
459 	struct request_sense sense;
460 	int ret;
461 
462 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
463 	cgc.sense = &sense;
464 	cgc.cmd[0] = GPCMD_SET_SPEED;
465 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
466 	cgc.cmd[3] = read_speed & 0xff;
467 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
468 	cgc.cmd[5] = write_speed & 0xff;
469 
470 	if ((ret = pkt_generic_packet(pd, &cgc)))
471 		pkt_dump_sense(&cgc);
472 
473 	return ret;
474 }
475 
476 /*
477  * Queue a bio for processing by the low-level CD device. Must be called
478  * from process context.
479  */
480 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
481 {
482 	spin_lock(&pd->iosched.lock);
483 	if (bio_data_dir(bio) == READ) {
484 		pkt_add_list_last(bio, &pd->iosched.read_queue,
485 				  &pd->iosched.read_queue_tail);
486 	} else {
487 		pkt_add_list_last(bio, &pd->iosched.write_queue,
488 				  &pd->iosched.write_queue_tail);
489 	}
490 	spin_unlock(&pd->iosched.lock);
491 
492 	atomic_set(&pd->iosched.attention, 1);
493 	wake_up(&pd->wqueue);
494 }
495 
496 /*
497  * Process the queued read/write requests. This function handles special
498  * requirements for CDRW drives:
499  * - A cache flush command must be inserted before a read request if the
500  *   previous request was a write.
501  * - Switching between reading and writing is slow, so don't do it more often
502  *   than necessary.
503  * - Optimize for throughput at the expense of latency. This means that streaming
504  *   writes will never be interrupted by a read, but if the drive has to seek
505  *   before the next write, switch to reading instead if there are any pending
506  *   read requests.
507  * - Set the read speed according to current usage pattern. When only reading
508  *   from the device, it's best to use the highest possible read speed, but
509  *   when switching often between reading and writing, it's better to have the
510  *   same read and write speeds.
511  */
512 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
513 {
514 
515 	if (atomic_read(&pd->iosched.attention) == 0)
516 		return;
517 	atomic_set(&pd->iosched.attention, 0);
518 
519 	for (;;) {
520 		struct bio *bio;
521 		int reads_queued, writes_queued;
522 
523 		spin_lock(&pd->iosched.lock);
524 		reads_queued = (pd->iosched.read_queue != NULL);
525 		writes_queued = (pd->iosched.write_queue != NULL);
526 		spin_unlock(&pd->iosched.lock);
527 
528 		if (!reads_queued && !writes_queued)
529 			break;
530 
531 		if (pd->iosched.writing) {
532 			int need_write_seek = 1;
533 			spin_lock(&pd->iosched.lock);
534 			bio = pd->iosched.write_queue;
535 			spin_unlock(&pd->iosched.lock);
536 			if (bio && (bio->bi_sector == pd->iosched.last_write))
537 				need_write_seek = 0;
538 			if (need_write_seek && reads_queued) {
539 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
540 					VPRINTK("pktcdvd: write, waiting\n");
541 					break;
542 				}
543 				pkt_flush_cache(pd);
544 				pd->iosched.writing = 0;
545 			}
546 		} else {
547 			if (!reads_queued && writes_queued) {
548 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
549 					VPRINTK("pktcdvd: read, waiting\n");
550 					break;
551 				}
552 				pd->iosched.writing = 1;
553 			}
554 		}
555 
556 		spin_lock(&pd->iosched.lock);
557 		if (pd->iosched.writing) {
558 			bio = pkt_get_list_first(&pd->iosched.write_queue,
559 						 &pd->iosched.write_queue_tail);
560 		} else {
561 			bio = pkt_get_list_first(&pd->iosched.read_queue,
562 						 &pd->iosched.read_queue_tail);
563 		}
564 		spin_unlock(&pd->iosched.lock);
565 
566 		if (!bio)
567 			continue;
568 
569 		if (bio_data_dir(bio) == READ)
570 			pd->iosched.successive_reads += bio->bi_size >> 10;
571 		else {
572 			pd->iosched.successive_reads = 0;
573 			pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
574 		}
575 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
576 			if (pd->read_speed == pd->write_speed) {
577 				pd->read_speed = MAX_SPEED;
578 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
579 			}
580 		} else {
581 			if (pd->read_speed != pd->write_speed) {
582 				pd->read_speed = pd->write_speed;
583 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
584 			}
585 		}
586 
587 		atomic_inc(&pd->cdrw.pending_bios);
588 		generic_make_request(bio);
589 	}
590 }
591 
592 /*
593  * Special care is needed if the underlying block device has a small
594  * max_phys_segments value.
595  */
596 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
597 {
598 	if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
599 		/*
600 		 * The cdrom device can handle one segment/frame
601 		 */
602 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
603 		return 0;
604 	} else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
605 		/*
606 		 * We can handle this case at the expense of some extra memory
607 		 * copies during write operations
608 		 */
609 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
610 		return 0;
611 	} else {
612 		printk("pktcdvd: cdrom max_phys_segments too small\n");
613 		return -EIO;
614 	}
615 }
616 
617 /*
618  * Copy CD_FRAMESIZE bytes from src_bio into a destination page
619  */
620 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
621 {
622 	unsigned int copy_size = CD_FRAMESIZE;
623 
624 	while (copy_size > 0) {
625 		struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
626 		void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
627 			src_bvl->bv_offset + offs;
628 		void *vto = page_address(dst_page) + dst_offs;
629 		int len = min_t(int, copy_size, src_bvl->bv_len - offs);
630 
631 		BUG_ON(len < 0);
632 		memcpy(vto, vfrom, len);
633 		kunmap_atomic(vfrom, KM_USER0);
634 
635 		seg++;
636 		offs = 0;
637 		dst_offs += len;
638 		copy_size -= len;
639 	}
640 }
641 
642 /*
643  * Copy all data for this packet to pkt->pages[], so that
644  * a) The number of required segments for the write bio is minimized, which
645  *    is necessary for some scsi controllers.
646  * b) The data can be used as cache to avoid read requests if we receive a
647  *    new write request for the same zone.
648  */
649 static void pkt_make_local_copy(struct packet_data *pkt, struct page **pages, int *offsets)
650 {
651 	int f, p, offs;
652 
653 	/* Copy all data to pkt->pages[] */
654 	p = 0;
655 	offs = 0;
656 	for (f = 0; f < pkt->frames; f++) {
657 		if (pages[f] != pkt->pages[p]) {
658 			void *vfrom = kmap_atomic(pages[f], KM_USER0) + offsets[f];
659 			void *vto = page_address(pkt->pages[p]) + offs;
660 			memcpy(vto, vfrom, CD_FRAMESIZE);
661 			kunmap_atomic(vfrom, KM_USER0);
662 			pages[f] = pkt->pages[p];
663 			offsets[f] = offs;
664 		} else {
665 			BUG_ON(offsets[f] != offs);
666 		}
667 		offs += CD_FRAMESIZE;
668 		if (offs >= PAGE_SIZE) {
669 			offs = 0;
670 			p++;
671 		}
672 	}
673 }
674 
675 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
676 {
677 	struct packet_data *pkt = bio->bi_private;
678 	struct pktcdvd_device *pd = pkt->pd;
679 	BUG_ON(!pd);
680 
681 	if (bio->bi_size)
682 		return 1;
683 
684 	VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
685 		(unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
686 
687 	if (err)
688 		atomic_inc(&pkt->io_errors);
689 	if (atomic_dec_and_test(&pkt->io_wait)) {
690 		atomic_inc(&pkt->run_sm);
691 		wake_up(&pd->wqueue);
692 	}
693 	pkt_bio_finished(pd);
694 
695 	return 0;
696 }
697 
698 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
699 {
700 	struct packet_data *pkt = bio->bi_private;
701 	struct pktcdvd_device *pd = pkt->pd;
702 	BUG_ON(!pd);
703 
704 	if (bio->bi_size)
705 		return 1;
706 
707 	VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
708 
709 	pd->stats.pkt_ended++;
710 
711 	pkt_bio_finished(pd);
712 	atomic_dec(&pkt->io_wait);
713 	atomic_inc(&pkt->run_sm);
714 	wake_up(&pd->wqueue);
715 	return 0;
716 }
717 
718 /*
719  * Schedule reads for the holes in a packet
720  */
721 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
722 {
723 	int frames_read = 0;
724 	struct bio *bio;
725 	int f;
726 	char written[PACKET_MAX_SIZE];
727 
728 	BUG_ON(!pkt->orig_bios);
729 
730 	atomic_set(&pkt->io_wait, 0);
731 	atomic_set(&pkt->io_errors, 0);
732 
733 	/*
734 	 * Figure out which frames we need to read before we can write.
735 	 */
736 	memset(written, 0, sizeof(written));
737 	spin_lock(&pkt->lock);
738 	for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
739 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
740 		int num_frames = bio->bi_size / CD_FRAMESIZE;
741 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
742 		BUG_ON(first_frame < 0);
743 		BUG_ON(first_frame + num_frames > pkt->frames);
744 		for (f = first_frame; f < first_frame + num_frames; f++)
745 			written[f] = 1;
746 	}
747 	spin_unlock(&pkt->lock);
748 
749 	if (pkt->cache_valid) {
750 		VPRINTK("pkt_gather_data: zone %llx cached\n",
751 			(unsigned long long)pkt->sector);
752 		goto out_account;
753 	}
754 
755 	/*
756 	 * Schedule reads for missing parts of the packet.
757 	 */
758 	for (f = 0; f < pkt->frames; f++) {
759 		int p, offset;
760 		if (written[f])
761 			continue;
762 		bio = pkt->r_bios[f];
763 		bio_init(bio);
764 		bio->bi_max_vecs = 1;
765 		bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
766 		bio->bi_bdev = pd->bdev;
767 		bio->bi_end_io = pkt_end_io_read;
768 		bio->bi_private = pkt;
769 
770 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
771 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
772 		VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
773 			f, pkt->pages[p], offset);
774 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
775 			BUG();
776 
777 		atomic_inc(&pkt->io_wait);
778 		bio->bi_rw = READ;
779 		pkt_queue_bio(pd, bio);
780 		frames_read++;
781 	}
782 
783 out_account:
784 	VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
785 		frames_read, (unsigned long long)pkt->sector);
786 	pd->stats.pkt_started++;
787 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
788 }
789 
790 /*
791  * Find a packet matching zone, or the least recently used packet if
792  * there is no match.
793  */
794 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
795 {
796 	struct packet_data *pkt;
797 
798 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
799 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
800 			list_del_init(&pkt->list);
801 			if (pkt->sector != zone)
802 				pkt->cache_valid = 0;
803 			return pkt;
804 		}
805 	}
806 	BUG();
807 	return NULL;
808 }
809 
810 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
811 {
812 	if (pkt->cache_valid) {
813 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
814 	} else {
815 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
816 	}
817 }
818 
819 /*
820  * recover a failed write, query for relocation if possible
821  *
822  * returns 1 if recovery is possible, or 0 if not
823  *
824  */
825 static int pkt_start_recovery(struct packet_data *pkt)
826 {
827 	/*
828 	 * FIXME. We need help from the file system to implement
829 	 * recovery handling.
830 	 */
831 	return 0;
832 #if 0
833 	struct request *rq = pkt->rq;
834 	struct pktcdvd_device *pd = rq->rq_disk->private_data;
835 	struct block_device *pkt_bdev;
836 	struct super_block *sb = NULL;
837 	unsigned long old_block, new_block;
838 	sector_t new_sector;
839 
840 	pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
841 	if (pkt_bdev) {
842 		sb = get_super(pkt_bdev);
843 		bdput(pkt_bdev);
844 	}
845 
846 	if (!sb)
847 		return 0;
848 
849 	if (!sb->s_op || !sb->s_op->relocate_blocks)
850 		goto out;
851 
852 	old_block = pkt->sector / (CD_FRAMESIZE >> 9);
853 	if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
854 		goto out;
855 
856 	new_sector = new_block * (CD_FRAMESIZE >> 9);
857 	pkt->sector = new_sector;
858 
859 	pkt->bio->bi_sector = new_sector;
860 	pkt->bio->bi_next = NULL;
861 	pkt->bio->bi_flags = 1 << BIO_UPTODATE;
862 	pkt->bio->bi_idx = 0;
863 
864 	BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
865 	BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
866 	BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
867 	BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
868 	BUG_ON(pkt->bio->bi_private != pkt);
869 
870 	drop_super(sb);
871 	return 1;
872 
873 out:
874 	drop_super(sb);
875 	return 0;
876 #endif
877 }
878 
879 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
880 {
881 #if PACKET_DEBUG > 1
882 	static const char *state_name[] = {
883 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
884 	};
885 	enum packet_data_state old_state = pkt->state;
886 	VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
887 		state_name[old_state], state_name[state]);
888 #endif
889 	pkt->state = state;
890 }
891 
892 /*
893  * Scan the work queue to see if we can start a new packet.
894  * returns non-zero if any work was done.
895  */
896 static int pkt_handle_queue(struct pktcdvd_device *pd)
897 {
898 	struct packet_data *pkt, *p;
899 	struct bio *bio = NULL;
900 	sector_t zone = 0; /* Suppress gcc warning */
901 	struct pkt_rb_node *node, *first_node;
902 	struct rb_node *n;
903 
904 	VPRINTK("handle_queue\n");
905 
906 	atomic_set(&pd->scan_queue, 0);
907 
908 	if (list_empty(&pd->cdrw.pkt_free_list)) {
909 		VPRINTK("handle_queue: no pkt\n");
910 		return 0;
911 	}
912 
913 	/*
914 	 * Try to find a zone we are not already working on.
915 	 */
916 	spin_lock(&pd->lock);
917 	first_node = pkt_rbtree_find(pd, pd->current_sector);
918 	if (!first_node) {
919 		n = rb_first(&pd->bio_queue);
920 		if (n)
921 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
922 	}
923 	node = first_node;
924 	while (node) {
925 		bio = node->bio;
926 		zone = ZONE(bio->bi_sector, pd);
927 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
928 			if (p->sector == zone) {
929 				bio = NULL;
930 				goto try_next_bio;
931 			}
932 		}
933 		break;
934 try_next_bio:
935 		node = pkt_rbtree_next(node);
936 		if (!node) {
937 			n = rb_first(&pd->bio_queue);
938 			if (n)
939 				node = rb_entry(n, struct pkt_rb_node, rb_node);
940 		}
941 		if (node == first_node)
942 			node = NULL;
943 	}
944 	spin_unlock(&pd->lock);
945 	if (!bio) {
946 		VPRINTK("handle_queue: no bio\n");
947 		return 0;
948 	}
949 
950 	pkt = pkt_get_packet_data(pd, zone);
951 
952 	pd->current_sector = zone + pd->settings.size;
953 	pkt->sector = zone;
954 	pkt->frames = pd->settings.size >> 2;
955 	pkt->write_size = 0;
956 
957 	/*
958 	 * Scan work queue for bios in the same zone and link them
959 	 * to this packet.
960 	 */
961 	spin_lock(&pd->lock);
962 	VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
963 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
964 		bio = node->bio;
965 		VPRINTK("pkt_handle_queue: found zone=%llx\n",
966 			(unsigned long long)ZONE(bio->bi_sector, pd));
967 		if (ZONE(bio->bi_sector, pd) != zone)
968 			break;
969 		pkt_rbtree_erase(pd, node);
970 		spin_lock(&pkt->lock);
971 		pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
972 		pkt->write_size += bio->bi_size / CD_FRAMESIZE;
973 		spin_unlock(&pkt->lock);
974 	}
975 	spin_unlock(&pd->lock);
976 
977 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
978 	pkt_set_state(pkt, PACKET_WAITING_STATE);
979 	atomic_set(&pkt->run_sm, 1);
980 
981 	spin_lock(&pd->cdrw.active_list_lock);
982 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
983 	spin_unlock(&pd->cdrw.active_list_lock);
984 
985 	return 1;
986 }
987 
988 /*
989  * Assemble a bio to write one packet and queue the bio for processing
990  * by the underlying block device.
991  */
992 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
993 {
994 	struct bio *bio;
995 	struct page *pages[PACKET_MAX_SIZE];
996 	int offsets[PACKET_MAX_SIZE];
997 	int f;
998 	int frames_write;
999 
1000 	for (f = 0; f < pkt->frames; f++) {
1001 		pages[f] = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1002 		offsets[f] = (f * CD_FRAMESIZE) % PAGE_SIZE;
1003 	}
1004 
1005 	/*
1006 	 * Fill-in pages[] and offsets[] with data from orig_bios.
1007 	 */
1008 	frames_write = 0;
1009 	spin_lock(&pkt->lock);
1010 	for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1011 		int segment = bio->bi_idx;
1012 		int src_offs = 0;
1013 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1014 		int num_frames = bio->bi_size / CD_FRAMESIZE;
1015 		BUG_ON(first_frame < 0);
1016 		BUG_ON(first_frame + num_frames > pkt->frames);
1017 		for (f = first_frame; f < first_frame + num_frames; f++) {
1018 			struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1019 
1020 			while (src_offs >= src_bvl->bv_len) {
1021 				src_offs -= src_bvl->bv_len;
1022 				segment++;
1023 				BUG_ON(segment >= bio->bi_vcnt);
1024 				src_bvl = bio_iovec_idx(bio, segment);
1025 			}
1026 
1027 			if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1028 				pages[f] = src_bvl->bv_page;
1029 				offsets[f] = src_bvl->bv_offset + src_offs;
1030 			} else {
1031 				pkt_copy_bio_data(bio, segment, src_offs,
1032 						  pages[f], offsets[f]);
1033 			}
1034 			src_offs += CD_FRAMESIZE;
1035 			frames_write++;
1036 		}
1037 	}
1038 	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1039 	spin_unlock(&pkt->lock);
1040 
1041 	VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1042 		frames_write, (unsigned long long)pkt->sector);
1043 	BUG_ON(frames_write != pkt->write_size);
1044 
1045 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1046 		pkt_make_local_copy(pkt, pages, offsets);
1047 		pkt->cache_valid = 1;
1048 	} else {
1049 		pkt->cache_valid = 0;
1050 	}
1051 
1052 	/* Start the write request */
1053 	bio_init(pkt->w_bio);
1054 	pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1055 	pkt->w_bio->bi_sector = pkt->sector;
1056 	pkt->w_bio->bi_bdev = pd->bdev;
1057 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1058 	pkt->w_bio->bi_private = pkt;
1059 	for (f = 0; f < pkt->frames; f++) {
1060 		if ((f + 1 < pkt->frames) && (pages[f + 1] == pages[f]) &&
1061 		    (offsets[f + 1] = offsets[f] + CD_FRAMESIZE)) {
1062 			if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE * 2, offsets[f]))
1063 				BUG();
1064 			f++;
1065 		} else {
1066 			if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE, offsets[f]))
1067 				BUG();
1068 		}
1069 	}
1070 	VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt);
1071 
1072 	atomic_set(&pkt->io_wait, 1);
1073 	pkt->w_bio->bi_rw = WRITE;
1074 	pkt_queue_bio(pd, pkt->w_bio);
1075 }
1076 
1077 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1078 {
1079 	struct bio *bio, *next;
1080 
1081 	if (!uptodate)
1082 		pkt->cache_valid = 0;
1083 
1084 	/* Finish all bios corresponding to this packet */
1085 	bio = pkt->orig_bios;
1086 	while (bio) {
1087 		next = bio->bi_next;
1088 		bio->bi_next = NULL;
1089 		bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
1090 		bio = next;
1091 	}
1092 	pkt->orig_bios = pkt->orig_bios_tail = NULL;
1093 }
1094 
1095 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1096 {
1097 	int uptodate;
1098 
1099 	VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1100 
1101 	for (;;) {
1102 		switch (pkt->state) {
1103 		case PACKET_WAITING_STATE:
1104 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1105 				return;
1106 
1107 			pkt->sleep_time = 0;
1108 			pkt_gather_data(pd, pkt);
1109 			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1110 			break;
1111 
1112 		case PACKET_READ_WAIT_STATE:
1113 			if (atomic_read(&pkt->io_wait) > 0)
1114 				return;
1115 
1116 			if (atomic_read(&pkt->io_errors) > 0) {
1117 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1118 			} else {
1119 				pkt_start_write(pd, pkt);
1120 			}
1121 			break;
1122 
1123 		case PACKET_WRITE_WAIT_STATE:
1124 			if (atomic_read(&pkt->io_wait) > 0)
1125 				return;
1126 
1127 			if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1128 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1129 			} else {
1130 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1131 			}
1132 			break;
1133 
1134 		case PACKET_RECOVERY_STATE:
1135 			if (pkt_start_recovery(pkt)) {
1136 				pkt_start_write(pd, pkt);
1137 			} else {
1138 				VPRINTK("No recovery possible\n");
1139 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1140 			}
1141 			break;
1142 
1143 		case PACKET_FINISHED_STATE:
1144 			uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1145 			pkt_finish_packet(pkt, uptodate);
1146 			return;
1147 
1148 		default:
1149 			BUG();
1150 			break;
1151 		}
1152 	}
1153 }
1154 
1155 static void pkt_handle_packets(struct pktcdvd_device *pd)
1156 {
1157 	struct packet_data *pkt, *next;
1158 
1159 	VPRINTK("pkt_handle_packets\n");
1160 
1161 	/*
1162 	 * Run state machine for active packets
1163 	 */
1164 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1165 		if (atomic_read(&pkt->run_sm) > 0) {
1166 			atomic_set(&pkt->run_sm, 0);
1167 			pkt_run_state_machine(pd, pkt);
1168 		}
1169 	}
1170 
1171 	/*
1172 	 * Move no longer active packets to the free list
1173 	 */
1174 	spin_lock(&pd->cdrw.active_list_lock);
1175 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1176 		if (pkt->state == PACKET_FINISHED_STATE) {
1177 			list_del(&pkt->list);
1178 			pkt_put_packet_data(pd, pkt);
1179 			pkt_set_state(pkt, PACKET_IDLE_STATE);
1180 			atomic_set(&pd->scan_queue, 1);
1181 		}
1182 	}
1183 	spin_unlock(&pd->cdrw.active_list_lock);
1184 }
1185 
1186 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1187 {
1188 	struct packet_data *pkt;
1189 	int i;
1190 
1191 	for (i = 0; i < PACKET_NUM_STATES; i++)
1192 		states[i] = 0;
1193 
1194 	spin_lock(&pd->cdrw.active_list_lock);
1195 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1196 		states[pkt->state]++;
1197 	}
1198 	spin_unlock(&pd->cdrw.active_list_lock);
1199 }
1200 
1201 /*
1202  * kcdrwd is woken up when writes have been queued for one of our
1203  * registered devices
1204  */
1205 static int kcdrwd(void *foobar)
1206 {
1207 	struct pktcdvd_device *pd = foobar;
1208 	struct packet_data *pkt;
1209 	long min_sleep_time, residue;
1210 
1211 	set_user_nice(current, -20);
1212 
1213 	for (;;) {
1214 		DECLARE_WAITQUEUE(wait, current);
1215 
1216 		/*
1217 		 * Wait until there is something to do
1218 		 */
1219 		add_wait_queue(&pd->wqueue, &wait);
1220 		for (;;) {
1221 			set_current_state(TASK_INTERRUPTIBLE);
1222 
1223 			/* Check if we need to run pkt_handle_queue */
1224 			if (atomic_read(&pd->scan_queue) > 0)
1225 				goto work_to_do;
1226 
1227 			/* Check if we need to run the state machine for some packet */
1228 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1229 				if (atomic_read(&pkt->run_sm) > 0)
1230 					goto work_to_do;
1231 			}
1232 
1233 			/* Check if we need to process the iosched queues */
1234 			if (atomic_read(&pd->iosched.attention) != 0)
1235 				goto work_to_do;
1236 
1237 			/* Otherwise, go to sleep */
1238 			if (PACKET_DEBUG > 1) {
1239 				int states[PACKET_NUM_STATES];
1240 				pkt_count_states(pd, states);
1241 				VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1242 					states[0], states[1], states[2], states[3],
1243 					states[4], states[5]);
1244 			}
1245 
1246 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1247 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1248 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1249 					min_sleep_time = pkt->sleep_time;
1250 			}
1251 
1252 			generic_unplug_device(bdev_get_queue(pd->bdev));
1253 
1254 			VPRINTK("kcdrwd: sleeping\n");
1255 			residue = schedule_timeout(min_sleep_time);
1256 			VPRINTK("kcdrwd: wake up\n");
1257 
1258 			/* make swsusp happy with our thread */
1259 			try_to_freeze();
1260 
1261 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1262 				if (!pkt->sleep_time)
1263 					continue;
1264 				pkt->sleep_time -= min_sleep_time - residue;
1265 				if (pkt->sleep_time <= 0) {
1266 					pkt->sleep_time = 0;
1267 					atomic_inc(&pkt->run_sm);
1268 				}
1269 			}
1270 
1271 			if (signal_pending(current)) {
1272 				flush_signals(current);
1273 			}
1274 			if (kthread_should_stop())
1275 				break;
1276 		}
1277 work_to_do:
1278 		set_current_state(TASK_RUNNING);
1279 		remove_wait_queue(&pd->wqueue, &wait);
1280 
1281 		if (kthread_should_stop())
1282 			break;
1283 
1284 		/*
1285 		 * if pkt_handle_queue returns true, we can queue
1286 		 * another request.
1287 		 */
1288 		while (pkt_handle_queue(pd))
1289 			;
1290 
1291 		/*
1292 		 * Handle packet state machine
1293 		 */
1294 		pkt_handle_packets(pd);
1295 
1296 		/*
1297 		 * Handle iosched queues
1298 		 */
1299 		pkt_iosched_process_queue(pd);
1300 	}
1301 
1302 	return 0;
1303 }
1304 
1305 static void pkt_print_settings(struct pktcdvd_device *pd)
1306 {
1307 	printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1308 	printk("%u blocks, ", pd->settings.size >> 2);
1309 	printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1310 }
1311 
1312 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1313 {
1314 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1315 
1316 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1317 	cgc->cmd[2] = page_code | (page_control << 6);
1318 	cgc->cmd[7] = cgc->buflen >> 8;
1319 	cgc->cmd[8] = cgc->buflen & 0xff;
1320 	cgc->data_direction = CGC_DATA_READ;
1321 	return pkt_generic_packet(pd, cgc);
1322 }
1323 
1324 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1325 {
1326 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1327 	memset(cgc->buffer, 0, 2);
1328 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1329 	cgc->cmd[1] = 0x10;		/* PF */
1330 	cgc->cmd[7] = cgc->buflen >> 8;
1331 	cgc->cmd[8] = cgc->buflen & 0xff;
1332 	cgc->data_direction = CGC_DATA_WRITE;
1333 	return pkt_generic_packet(pd, cgc);
1334 }
1335 
1336 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1337 {
1338 	struct packet_command cgc;
1339 	int ret;
1340 
1341 	/* set up command and get the disc info */
1342 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1343 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1344 	cgc.cmd[8] = cgc.buflen = 2;
1345 	cgc.quiet = 1;
1346 
1347 	if ((ret = pkt_generic_packet(pd, &cgc)))
1348 		return ret;
1349 
1350 	/* not all drives have the same disc_info length, so requeue
1351 	 * packet with the length the drive tells us it can supply
1352 	 */
1353 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1354 		     sizeof(di->disc_information_length);
1355 
1356 	if (cgc.buflen > sizeof(disc_information))
1357 		cgc.buflen = sizeof(disc_information);
1358 
1359 	cgc.cmd[8] = cgc.buflen;
1360 	return pkt_generic_packet(pd, &cgc);
1361 }
1362 
1363 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1364 {
1365 	struct packet_command cgc;
1366 	int ret;
1367 
1368 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1369 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1370 	cgc.cmd[1] = type & 3;
1371 	cgc.cmd[4] = (track & 0xff00) >> 8;
1372 	cgc.cmd[5] = track & 0xff;
1373 	cgc.cmd[8] = 8;
1374 	cgc.quiet = 1;
1375 
1376 	if ((ret = pkt_generic_packet(pd, &cgc)))
1377 		return ret;
1378 
1379 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1380 		     sizeof(ti->track_information_length);
1381 
1382 	if (cgc.buflen > sizeof(track_information))
1383 		cgc.buflen = sizeof(track_information);
1384 
1385 	cgc.cmd[8] = cgc.buflen;
1386 	return pkt_generic_packet(pd, &cgc);
1387 }
1388 
1389 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1390 {
1391 	disc_information di;
1392 	track_information ti;
1393 	__u32 last_track;
1394 	int ret = -1;
1395 
1396 	if ((ret = pkt_get_disc_info(pd, &di)))
1397 		return ret;
1398 
1399 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1400 	if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1401 		return ret;
1402 
1403 	/* if this track is blank, try the previous. */
1404 	if (ti.blank) {
1405 		last_track--;
1406 		if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1407 			return ret;
1408 	}
1409 
1410 	/* if last recorded field is valid, return it. */
1411 	if (ti.lra_v) {
1412 		*last_written = be32_to_cpu(ti.last_rec_address);
1413 	} else {
1414 		/* make it up instead */
1415 		*last_written = be32_to_cpu(ti.track_start) +
1416 				be32_to_cpu(ti.track_size);
1417 		if (ti.free_blocks)
1418 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1419 	}
1420 	return 0;
1421 }
1422 
1423 /*
1424  * write mode select package based on pd->settings
1425  */
1426 static int pkt_set_write_settings(struct pktcdvd_device *pd)
1427 {
1428 	struct packet_command cgc;
1429 	struct request_sense sense;
1430 	write_param_page *wp;
1431 	char buffer[128];
1432 	int ret, size;
1433 
1434 	/* doesn't apply to DVD+RW or DVD-RAM */
1435 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1436 		return 0;
1437 
1438 	memset(buffer, 0, sizeof(buffer));
1439 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1440 	cgc.sense = &sense;
1441 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1442 		pkt_dump_sense(&cgc);
1443 		return ret;
1444 	}
1445 
1446 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1447 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1448 	if (size > sizeof(buffer))
1449 		size = sizeof(buffer);
1450 
1451 	/*
1452 	 * now get it all
1453 	 */
1454 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1455 	cgc.sense = &sense;
1456 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1457 		pkt_dump_sense(&cgc);
1458 		return ret;
1459 	}
1460 
1461 	/*
1462 	 * write page is offset header + block descriptor length
1463 	 */
1464 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1465 
1466 	wp->fp = pd->settings.fp;
1467 	wp->track_mode = pd->settings.track_mode;
1468 	wp->write_type = pd->settings.write_type;
1469 	wp->data_block_type = pd->settings.block_mode;
1470 
1471 	wp->multi_session = 0;
1472 
1473 #ifdef PACKET_USE_LS
1474 	wp->link_size = 7;
1475 	wp->ls_v = 1;
1476 #endif
1477 
1478 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1479 		wp->session_format = 0;
1480 		wp->subhdr2 = 0x20;
1481 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1482 		wp->session_format = 0x20;
1483 		wp->subhdr2 = 8;
1484 #if 0
1485 		wp->mcn[0] = 0x80;
1486 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1487 #endif
1488 	} else {
1489 		/*
1490 		 * paranoia
1491 		 */
1492 		printk("pktcdvd: write mode wrong %d\n", wp->data_block_type);
1493 		return 1;
1494 	}
1495 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1496 
1497 	cgc.buflen = cgc.cmd[8] = size;
1498 	if ((ret = pkt_mode_select(pd, &cgc))) {
1499 		pkt_dump_sense(&cgc);
1500 		return ret;
1501 	}
1502 
1503 	pkt_print_settings(pd);
1504 	return 0;
1505 }
1506 
1507 /*
1508  * 0 -- we can write to this track, 1 -- we can't
1509  */
1510 static int pkt_good_track(track_information *ti)
1511 {
1512 	/*
1513 	 * only good for CD-RW at the moment, not DVD-RW
1514 	 */
1515 
1516 	/*
1517 	 * FIXME: only for FP
1518 	 */
1519 	if (ti->fp == 0)
1520 		return 0;
1521 
1522 	/*
1523 	 * "good" settings as per Mt Fuji.
1524 	 */
1525 	if (ti->rt == 0 && ti->blank == 0 && ti->packet == 1)
1526 		return 0;
1527 
1528 	if (ti->rt == 0 && ti->blank == 1 && ti->packet == 1)
1529 		return 0;
1530 
1531 	if (ti->rt == 1 && ti->blank == 0 && ti->packet == 1)
1532 		return 0;
1533 
1534 	printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1535 	return 1;
1536 }
1537 
1538 /*
1539  * 0 -- we can write to this disc, 1 -- we can't
1540  */
1541 static int pkt_good_disc(struct pktcdvd_device *pd, disc_information *di)
1542 {
1543 	switch (pd->mmc3_profile) {
1544 		case 0x0a: /* CD-RW */
1545 		case 0xffff: /* MMC3 not supported */
1546 			break;
1547 		case 0x1a: /* DVD+RW */
1548 		case 0x13: /* DVD-RW */
1549 		case 0x12: /* DVD-RAM */
1550 			return 0;
1551 		default:
1552 			printk("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile);
1553 			return 1;
1554 	}
1555 
1556 	/*
1557 	 * for disc type 0xff we should probably reserve a new track.
1558 	 * but i'm not sure, should we leave this to user apps? probably.
1559 	 */
1560 	if (di->disc_type == 0xff) {
1561 		printk("pktcdvd: Unknown disc. No track?\n");
1562 		return 1;
1563 	}
1564 
1565 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1566 		printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type);
1567 		return 1;
1568 	}
1569 
1570 	if (di->erasable == 0) {
1571 		printk("pktcdvd: Disc not erasable\n");
1572 		return 1;
1573 	}
1574 
1575 	if (di->border_status == PACKET_SESSION_RESERVED) {
1576 		printk("pktcdvd: Can't write to last track (reserved)\n");
1577 		return 1;
1578 	}
1579 
1580 	return 0;
1581 }
1582 
1583 static int pkt_probe_settings(struct pktcdvd_device *pd)
1584 {
1585 	struct packet_command cgc;
1586 	unsigned char buf[12];
1587 	disc_information di;
1588 	track_information ti;
1589 	int ret, track;
1590 
1591 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1592 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1593 	cgc.cmd[8] = 8;
1594 	ret = pkt_generic_packet(pd, &cgc);
1595 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1596 
1597 	memset(&di, 0, sizeof(disc_information));
1598 	memset(&ti, 0, sizeof(track_information));
1599 
1600 	if ((ret = pkt_get_disc_info(pd, &di))) {
1601 		printk("failed get_disc\n");
1602 		return ret;
1603 	}
1604 
1605 	if (pkt_good_disc(pd, &di))
1606 		return -ENXIO;
1607 
1608 	switch (pd->mmc3_profile) {
1609 		case 0x1a: /* DVD+RW */
1610 			printk("pktcdvd: inserted media is DVD+RW\n");
1611 			break;
1612 		case 0x13: /* DVD-RW */
1613 			printk("pktcdvd: inserted media is DVD-RW\n");
1614 			break;
1615 		case 0x12: /* DVD-RAM */
1616 			printk("pktcdvd: inserted media is DVD-RAM\n");
1617 			break;
1618 		default:
1619 			printk("pktcdvd: inserted media is CD-R%s\n", di.erasable ? "W" : "");
1620 			break;
1621 	}
1622 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1623 
1624 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1625 	if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1626 		printk("pktcdvd: failed get_track\n");
1627 		return ret;
1628 	}
1629 
1630 	if (pkt_good_track(&ti)) {
1631 		printk("pktcdvd: can't write to this track\n");
1632 		return -ENXIO;
1633 	}
1634 
1635 	/*
1636 	 * we keep packet size in 512 byte units, makes it easier to
1637 	 * deal with request calculations.
1638 	 */
1639 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1640 	if (pd->settings.size == 0) {
1641 		printk("pktcdvd: detected zero packet size!\n");
1642 		pd->settings.size = 128;
1643 	}
1644 	if (pd->settings.size > PACKET_MAX_SECTORS) {
1645 		printk("pktcdvd: packet size is too big\n");
1646 		return -ENXIO;
1647 	}
1648 	pd->settings.fp = ti.fp;
1649 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1650 
1651 	if (ti.nwa_v) {
1652 		pd->nwa = be32_to_cpu(ti.next_writable);
1653 		set_bit(PACKET_NWA_VALID, &pd->flags);
1654 	}
1655 
1656 	/*
1657 	 * in theory we could use lra on -RW media as well and just zero
1658 	 * blocks that haven't been written yet, but in practice that
1659 	 * is just a no-go. we'll use that for -R, naturally.
1660 	 */
1661 	if (ti.lra_v) {
1662 		pd->lra = be32_to_cpu(ti.last_rec_address);
1663 		set_bit(PACKET_LRA_VALID, &pd->flags);
1664 	} else {
1665 		pd->lra = 0xffffffff;
1666 		set_bit(PACKET_LRA_VALID, &pd->flags);
1667 	}
1668 
1669 	/*
1670 	 * fine for now
1671 	 */
1672 	pd->settings.link_loss = 7;
1673 	pd->settings.write_type = 0;	/* packet */
1674 	pd->settings.track_mode = ti.track_mode;
1675 
1676 	/*
1677 	 * mode1 or mode2 disc
1678 	 */
1679 	switch (ti.data_mode) {
1680 		case PACKET_MODE1:
1681 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1682 			break;
1683 		case PACKET_MODE2:
1684 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1685 			break;
1686 		default:
1687 			printk("pktcdvd: unknown data mode\n");
1688 			return 1;
1689 	}
1690 	return 0;
1691 }
1692 
1693 /*
1694  * enable/disable write caching on drive
1695  */
1696 static int pkt_write_caching(struct pktcdvd_device *pd, int set)
1697 {
1698 	struct packet_command cgc;
1699 	struct request_sense sense;
1700 	unsigned char buf[64];
1701 	int ret;
1702 
1703 	memset(buf, 0, sizeof(buf));
1704 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1705 	cgc.sense = &sense;
1706 	cgc.buflen = pd->mode_offset + 12;
1707 
1708 	/*
1709 	 * caching mode page might not be there, so quiet this command
1710 	 */
1711 	cgc.quiet = 1;
1712 
1713 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1714 		return ret;
1715 
1716 	buf[pd->mode_offset + 10] |= (!!set << 2);
1717 
1718 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1719 	ret = pkt_mode_select(pd, &cgc);
1720 	if (ret) {
1721 		printk("pktcdvd: write caching control failed\n");
1722 		pkt_dump_sense(&cgc);
1723 	} else if (!ret && set)
1724 		printk("pktcdvd: enabled write caching on %s\n", pd->name);
1725 	return ret;
1726 }
1727 
1728 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1729 {
1730 	struct packet_command cgc;
1731 
1732 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1733 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1734 	cgc.cmd[4] = lockflag ? 1 : 0;
1735 	return pkt_generic_packet(pd, &cgc);
1736 }
1737 
1738 /*
1739  * Returns drive maximum write speed
1740  */
1741 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
1742 {
1743 	struct packet_command cgc;
1744 	struct request_sense sense;
1745 	unsigned char buf[256+18];
1746 	unsigned char *cap_buf;
1747 	int ret, offset;
1748 
1749 	memset(buf, 0, sizeof(buf));
1750 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1751 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1752 	cgc.sense = &sense;
1753 
1754 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1755 	if (ret) {
1756 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1757 			     sizeof(struct mode_page_header);
1758 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1759 		if (ret) {
1760 			pkt_dump_sense(&cgc);
1761 			return ret;
1762 		}
1763 	}
1764 
1765 	offset = 20;			    /* Obsoleted field, used by older drives */
1766 	if (cap_buf[1] >= 28)
1767 		offset = 28;		    /* Current write speed selected */
1768 	if (cap_buf[1] >= 30) {
1769 		/* If the drive reports at least one "Logical Unit Write
1770 		 * Speed Performance Descriptor Block", use the information
1771 		 * in the first block. (contains the highest speed)
1772 		 */
1773 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1774 		if (num_spdb > 0)
1775 			offset = 34;
1776 	}
1777 
1778 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1779 	return 0;
1780 }
1781 
1782 /* These tables from cdrecord - I don't have orange book */
1783 /* standard speed CD-RW (1-4x) */
1784 static char clv_to_speed[16] = {
1785 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1786 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1787 };
1788 /* high speed CD-RW (-10x) */
1789 static char hs_clv_to_speed[16] = {
1790 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1791 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1792 };
1793 /* ultra high speed CD-RW */
1794 static char us_clv_to_speed[16] = {
1795 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1796 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1797 };
1798 
1799 /*
1800  * reads the maximum media speed from ATIP
1801  */
1802 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
1803 {
1804 	struct packet_command cgc;
1805 	struct request_sense sense;
1806 	unsigned char buf[64];
1807 	unsigned int size, st, sp;
1808 	int ret;
1809 
1810 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
1811 	cgc.sense = &sense;
1812 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1813 	cgc.cmd[1] = 2;
1814 	cgc.cmd[2] = 4; /* READ ATIP */
1815 	cgc.cmd[8] = 2;
1816 	ret = pkt_generic_packet(pd, &cgc);
1817 	if (ret) {
1818 		pkt_dump_sense(&cgc);
1819 		return ret;
1820 	}
1821 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
1822 	if (size > sizeof(buf))
1823 		size = sizeof(buf);
1824 
1825 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
1826 	cgc.sense = &sense;
1827 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1828 	cgc.cmd[1] = 2;
1829 	cgc.cmd[2] = 4;
1830 	cgc.cmd[8] = size;
1831 	ret = pkt_generic_packet(pd, &cgc);
1832 	if (ret) {
1833 		pkt_dump_sense(&cgc);
1834 		return ret;
1835 	}
1836 
1837 	if (!buf[6] & 0x40) {
1838 		printk("pktcdvd: Disc type is not CD-RW\n");
1839 		return 1;
1840 	}
1841 	if (!buf[6] & 0x4) {
1842 		printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n");
1843 		return 1;
1844 	}
1845 
1846 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
1847 
1848 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
1849 
1850 	/* Info from cdrecord */
1851 	switch (st) {
1852 		case 0: /* standard speed */
1853 			*speed = clv_to_speed[sp];
1854 			break;
1855 		case 1: /* high speed */
1856 			*speed = hs_clv_to_speed[sp];
1857 			break;
1858 		case 2: /* ultra high speed */
1859 			*speed = us_clv_to_speed[sp];
1860 			break;
1861 		default:
1862 			printk("pktcdvd: Unknown disc sub-type %d\n",st);
1863 			return 1;
1864 	}
1865 	if (*speed) {
1866 		printk("pktcdvd: Max. media speed: %d\n",*speed);
1867 		return 0;
1868 	} else {
1869 		printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st);
1870 		return 1;
1871 	}
1872 }
1873 
1874 static int pkt_perform_opc(struct pktcdvd_device *pd)
1875 {
1876 	struct packet_command cgc;
1877 	struct request_sense sense;
1878 	int ret;
1879 
1880 	VPRINTK("pktcdvd: Performing OPC\n");
1881 
1882 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1883 	cgc.sense = &sense;
1884 	cgc.timeout = 60*HZ;
1885 	cgc.cmd[0] = GPCMD_SEND_OPC;
1886 	cgc.cmd[1] = 1;
1887 	if ((ret = pkt_generic_packet(pd, &cgc)))
1888 		pkt_dump_sense(&cgc);
1889 	return ret;
1890 }
1891 
1892 static int pkt_open_write(struct pktcdvd_device *pd)
1893 {
1894 	int ret;
1895 	unsigned int write_speed, media_write_speed, read_speed;
1896 
1897 	if ((ret = pkt_probe_settings(pd))) {
1898 		DPRINTK("pktcdvd: %s failed probe\n", pd->name);
1899 		return -EIO;
1900 	}
1901 
1902 	if ((ret = pkt_set_write_settings(pd))) {
1903 		DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name);
1904 		return -EIO;
1905 	}
1906 
1907 	pkt_write_caching(pd, USE_WCACHING);
1908 
1909 	if ((ret = pkt_get_max_speed(pd, &write_speed)))
1910 		write_speed = 16 * 177;
1911 	switch (pd->mmc3_profile) {
1912 		case 0x13: /* DVD-RW */
1913 		case 0x1a: /* DVD+RW */
1914 		case 0x12: /* DVD-RAM */
1915 			DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed);
1916 			break;
1917 		default:
1918 			if ((ret = pkt_media_speed(pd, &media_write_speed)))
1919 				media_write_speed = 16;
1920 			write_speed = min(write_speed, media_write_speed * 177);
1921 			DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176);
1922 			break;
1923 	}
1924 	read_speed = write_speed;
1925 
1926 	if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
1927 		DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name);
1928 		return -EIO;
1929 	}
1930 	pd->write_speed = write_speed;
1931 	pd->read_speed = read_speed;
1932 
1933 	if ((ret = pkt_perform_opc(pd))) {
1934 		DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name);
1935 	}
1936 
1937 	return 0;
1938 }
1939 
1940 /*
1941  * called at open time.
1942  */
1943 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
1944 {
1945 	int ret;
1946 	long lba;
1947 	request_queue_t *q;
1948 
1949 	/*
1950 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
1951 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
1952 	 * so bdget() can't fail.
1953 	 */
1954 	bdget(pd->bdev->bd_dev);
1955 	if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
1956 		goto out;
1957 
1958 	if ((ret = bd_claim(pd->bdev, pd)))
1959 		goto out_putdev;
1960 
1961 	if ((ret = pkt_get_last_written(pd, &lba))) {
1962 		printk("pktcdvd: pkt_get_last_written failed\n");
1963 		goto out_unclaim;
1964 	}
1965 
1966 	set_capacity(pd->disk, lba << 2);
1967 	set_capacity(pd->bdev->bd_disk, lba << 2);
1968 	bd_set_size(pd->bdev, (loff_t)lba << 11);
1969 
1970 	q = bdev_get_queue(pd->bdev);
1971 	if (write) {
1972 		if ((ret = pkt_open_write(pd)))
1973 			goto out_unclaim;
1974 		/*
1975 		 * Some CDRW drives can not handle writes larger than one packet,
1976 		 * even if the size is a multiple of the packet size.
1977 		 */
1978 		spin_lock_irq(q->queue_lock);
1979 		blk_queue_max_sectors(q, pd->settings.size);
1980 		spin_unlock_irq(q->queue_lock);
1981 		set_bit(PACKET_WRITABLE, &pd->flags);
1982 	} else {
1983 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
1984 		clear_bit(PACKET_WRITABLE, &pd->flags);
1985 	}
1986 
1987 	if ((ret = pkt_set_segment_merging(pd, q)))
1988 		goto out_unclaim;
1989 
1990 	if (write)
1991 		printk("pktcdvd: %lukB available on disc\n", lba << 1);
1992 
1993 	return 0;
1994 
1995 out_unclaim:
1996 	bd_release(pd->bdev);
1997 out_putdev:
1998 	blkdev_put(pd->bdev);
1999 out:
2000 	return ret;
2001 }
2002 
2003 /*
2004  * called when the device is closed. makes sure that the device flushes
2005  * the internal cache before we close.
2006  */
2007 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2008 {
2009 	if (flush && pkt_flush_cache(pd))
2010 		DPRINTK("pktcdvd: %s not flushing cache\n", pd->name);
2011 
2012 	pkt_lock_door(pd, 0);
2013 
2014 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2015 	bd_release(pd->bdev);
2016 	blkdev_put(pd->bdev);
2017 }
2018 
2019 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2020 {
2021 	if (dev_minor >= MAX_WRITERS)
2022 		return NULL;
2023 	return pkt_devs[dev_minor];
2024 }
2025 
2026 static int pkt_open(struct inode *inode, struct file *file)
2027 {
2028 	struct pktcdvd_device *pd = NULL;
2029 	int ret;
2030 
2031 	VPRINTK("pktcdvd: entering open\n");
2032 
2033 	down(&ctl_mutex);
2034 	pd = pkt_find_dev_from_minor(iminor(inode));
2035 	if (!pd) {
2036 		ret = -ENODEV;
2037 		goto out;
2038 	}
2039 	BUG_ON(pd->refcnt < 0);
2040 
2041 	pd->refcnt++;
2042 	if (pd->refcnt > 1) {
2043 		if ((file->f_mode & FMODE_WRITE) &&
2044 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2045 			ret = -EBUSY;
2046 			goto out_dec;
2047 		}
2048 	} else {
2049 		if (pkt_open_dev(pd, file->f_mode & FMODE_WRITE)) {
2050 			ret = -EIO;
2051 			goto out_dec;
2052 		}
2053 		/*
2054 		 * needed here as well, since ext2 (among others) may change
2055 		 * the blocksize at mount time
2056 		 */
2057 		set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2058 	}
2059 
2060 	up(&ctl_mutex);
2061 	return 0;
2062 
2063 out_dec:
2064 	pd->refcnt--;
2065 out:
2066 	VPRINTK("pktcdvd: failed open (%d)\n", ret);
2067 	up(&ctl_mutex);
2068 	return ret;
2069 }
2070 
2071 static int pkt_close(struct inode *inode, struct file *file)
2072 {
2073 	struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2074 	int ret = 0;
2075 
2076 	down(&ctl_mutex);
2077 	pd->refcnt--;
2078 	BUG_ON(pd->refcnt < 0);
2079 	if (pd->refcnt == 0) {
2080 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2081 		pkt_release_dev(pd, flush);
2082 	}
2083 	up(&ctl_mutex);
2084 	return ret;
2085 }
2086 
2087 
2088 static void *psd_pool_alloc(gfp_t gfp_mask, void *data)
2089 {
2090 	return kmalloc(sizeof(struct packet_stacked_data), gfp_mask);
2091 }
2092 
2093 static void psd_pool_free(void *ptr, void *data)
2094 {
2095 	kfree(ptr);
2096 }
2097 
2098 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
2099 {
2100 	struct packet_stacked_data *psd = bio->bi_private;
2101 	struct pktcdvd_device *pd = psd->pd;
2102 
2103 	if (bio->bi_size)
2104 		return 1;
2105 
2106 	bio_put(bio);
2107 	bio_endio(psd->bio, psd->bio->bi_size, err);
2108 	mempool_free(psd, psd_pool);
2109 	pkt_bio_finished(pd);
2110 	return 0;
2111 }
2112 
2113 static int pkt_make_request(request_queue_t *q, struct bio *bio)
2114 {
2115 	struct pktcdvd_device *pd;
2116 	char b[BDEVNAME_SIZE];
2117 	sector_t zone;
2118 	struct packet_data *pkt;
2119 	int was_empty, blocked_bio;
2120 	struct pkt_rb_node *node;
2121 
2122 	pd = q->queuedata;
2123 	if (!pd) {
2124 		printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2125 		goto end_io;
2126 	}
2127 
2128 	/*
2129 	 * Clone READ bios so we can have our own bi_end_io callback.
2130 	 */
2131 	if (bio_data_dir(bio) == READ) {
2132 		struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2133 		struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2134 
2135 		psd->pd = pd;
2136 		psd->bio = bio;
2137 		cloned_bio->bi_bdev = pd->bdev;
2138 		cloned_bio->bi_private = psd;
2139 		cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2140 		pd->stats.secs_r += bio->bi_size >> 9;
2141 		pkt_queue_bio(pd, cloned_bio);
2142 		return 0;
2143 	}
2144 
2145 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2146 		printk("pktcdvd: WRITE for ro device %s (%llu)\n",
2147 			pd->name, (unsigned long long)bio->bi_sector);
2148 		goto end_io;
2149 	}
2150 
2151 	if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2152 		printk("pktcdvd: wrong bio size\n");
2153 		goto end_io;
2154 	}
2155 
2156 	blk_queue_bounce(q, &bio);
2157 
2158 	zone = ZONE(bio->bi_sector, pd);
2159 	VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2160 		(unsigned long long)bio->bi_sector,
2161 		(unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2162 
2163 	/* Check if we have to split the bio */
2164 	{
2165 		struct bio_pair *bp;
2166 		sector_t last_zone;
2167 		int first_sectors;
2168 
2169 		last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2170 		if (last_zone != zone) {
2171 			BUG_ON(last_zone != zone + pd->settings.size);
2172 			first_sectors = last_zone - bio->bi_sector;
2173 			bp = bio_split(bio, bio_split_pool, first_sectors);
2174 			BUG_ON(!bp);
2175 			pkt_make_request(q, &bp->bio1);
2176 			pkt_make_request(q, &bp->bio2);
2177 			bio_pair_release(bp);
2178 			return 0;
2179 		}
2180 	}
2181 
2182 	/*
2183 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2184 	 * just append this bio to that packet.
2185 	 */
2186 	spin_lock(&pd->cdrw.active_list_lock);
2187 	blocked_bio = 0;
2188 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2189 		if (pkt->sector == zone) {
2190 			spin_lock(&pkt->lock);
2191 			if ((pkt->state == PACKET_WAITING_STATE) ||
2192 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2193 				pkt_add_list_last(bio, &pkt->orig_bios,
2194 						  &pkt->orig_bios_tail);
2195 				pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2196 				if ((pkt->write_size >= pkt->frames) &&
2197 				    (pkt->state == PACKET_WAITING_STATE)) {
2198 					atomic_inc(&pkt->run_sm);
2199 					wake_up(&pd->wqueue);
2200 				}
2201 				spin_unlock(&pkt->lock);
2202 				spin_unlock(&pd->cdrw.active_list_lock);
2203 				return 0;
2204 			} else {
2205 				blocked_bio = 1;
2206 			}
2207 			spin_unlock(&pkt->lock);
2208 		}
2209 	}
2210 	spin_unlock(&pd->cdrw.active_list_lock);
2211 
2212 	/*
2213 	 * No matching packet found. Store the bio in the work queue.
2214 	 */
2215 	node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2216 	node->bio = bio;
2217 	spin_lock(&pd->lock);
2218 	BUG_ON(pd->bio_queue_size < 0);
2219 	was_empty = (pd->bio_queue_size == 0);
2220 	pkt_rbtree_insert(pd, node);
2221 	spin_unlock(&pd->lock);
2222 
2223 	/*
2224 	 * Wake up the worker thread.
2225 	 */
2226 	atomic_set(&pd->scan_queue, 1);
2227 	if (was_empty) {
2228 		/* This wake_up is required for correct operation */
2229 		wake_up(&pd->wqueue);
2230 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2231 		/*
2232 		 * This wake up is not required for correct operation,
2233 		 * but improves performance in some cases.
2234 		 */
2235 		wake_up(&pd->wqueue);
2236 	}
2237 	return 0;
2238 end_io:
2239 	bio_io_error(bio, bio->bi_size);
2240 	return 0;
2241 }
2242 
2243 
2244 
2245 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
2246 {
2247 	struct pktcdvd_device *pd = q->queuedata;
2248 	sector_t zone = ZONE(bio->bi_sector, pd);
2249 	int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2250 	int remaining = (pd->settings.size << 9) - used;
2251 	int remaining2;
2252 
2253 	/*
2254 	 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2255 	 * boundary, pkt_make_request() will split the bio.
2256 	 */
2257 	remaining2 = PAGE_SIZE - bio->bi_size;
2258 	remaining = max(remaining, remaining2);
2259 
2260 	BUG_ON(remaining < 0);
2261 	return remaining;
2262 }
2263 
2264 static void pkt_init_queue(struct pktcdvd_device *pd)
2265 {
2266 	request_queue_t *q = pd->disk->queue;
2267 
2268 	blk_queue_make_request(q, pkt_make_request);
2269 	blk_queue_hardsect_size(q, CD_FRAMESIZE);
2270 	blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2271 	blk_queue_merge_bvec(q, pkt_merge_bvec);
2272 	q->queuedata = pd;
2273 }
2274 
2275 static int pkt_seq_show(struct seq_file *m, void *p)
2276 {
2277 	struct pktcdvd_device *pd = m->private;
2278 	char *msg;
2279 	char bdev_buf[BDEVNAME_SIZE];
2280 	int states[PACKET_NUM_STATES];
2281 
2282 	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2283 		   bdevname(pd->bdev, bdev_buf));
2284 
2285 	seq_printf(m, "\nSettings:\n");
2286 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2287 
2288 	if (pd->settings.write_type == 0)
2289 		msg = "Packet";
2290 	else
2291 		msg = "Unknown";
2292 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2293 
2294 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2295 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2296 
2297 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2298 
2299 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2300 		msg = "Mode 1";
2301 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2302 		msg = "Mode 2";
2303 	else
2304 		msg = "Unknown";
2305 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2306 
2307 	seq_printf(m, "\nStatistics:\n");
2308 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2309 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2310 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2311 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2312 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2313 
2314 	seq_printf(m, "\nMisc:\n");
2315 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2316 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2317 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2318 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2319 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2320 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2321 
2322 	seq_printf(m, "\nQueue state:\n");
2323 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2324 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2325 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2326 
2327 	pkt_count_states(pd, states);
2328 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2329 		   states[0], states[1], states[2], states[3], states[4], states[5]);
2330 
2331 	return 0;
2332 }
2333 
2334 static int pkt_seq_open(struct inode *inode, struct file *file)
2335 {
2336 	return single_open(file, pkt_seq_show, PDE(inode)->data);
2337 }
2338 
2339 static struct file_operations pkt_proc_fops = {
2340 	.open	= pkt_seq_open,
2341 	.read	= seq_read,
2342 	.llseek	= seq_lseek,
2343 	.release = single_release
2344 };
2345 
2346 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2347 {
2348 	int i;
2349 	int ret = 0;
2350 	char b[BDEVNAME_SIZE];
2351 	struct proc_dir_entry *proc;
2352 	struct block_device *bdev;
2353 
2354 	if (pd->pkt_dev == dev) {
2355 		printk("pktcdvd: Recursive setup not allowed\n");
2356 		return -EBUSY;
2357 	}
2358 	for (i = 0; i < MAX_WRITERS; i++) {
2359 		struct pktcdvd_device *pd2 = pkt_devs[i];
2360 		if (!pd2)
2361 			continue;
2362 		if (pd2->bdev->bd_dev == dev) {
2363 			printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b));
2364 			return -EBUSY;
2365 		}
2366 		if (pd2->pkt_dev == dev) {
2367 			printk("pktcdvd: Can't chain pktcdvd devices\n");
2368 			return -EBUSY;
2369 		}
2370 	}
2371 
2372 	bdev = bdget(dev);
2373 	if (!bdev)
2374 		return -ENOMEM;
2375 	ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2376 	if (ret)
2377 		return ret;
2378 
2379 	/* This is safe, since we have a reference from open(). */
2380 	__module_get(THIS_MODULE);
2381 
2382 	if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2383 		printk("pktcdvd: not enough memory for buffers\n");
2384 		ret = -ENOMEM;
2385 		goto out_mem;
2386 	}
2387 
2388 	pd->bdev = bdev;
2389 	set_blocksize(bdev, CD_FRAMESIZE);
2390 
2391 	pkt_init_queue(pd);
2392 
2393 	atomic_set(&pd->cdrw.pending_bios, 0);
2394 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2395 	if (IS_ERR(pd->cdrw.thread)) {
2396 		printk("pktcdvd: can't start kernel thread\n");
2397 		ret = -ENOMEM;
2398 		goto out_thread;
2399 	}
2400 
2401 	proc = create_proc_entry(pd->name, 0, pkt_proc);
2402 	if (proc) {
2403 		proc->data = pd;
2404 		proc->proc_fops = &pkt_proc_fops;
2405 	}
2406 	DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2407 	return 0;
2408 
2409 out_thread:
2410 	pkt_shrink_pktlist(pd);
2411 out_mem:
2412 	blkdev_put(bdev);
2413 	/* This is safe: open() is still holding a reference. */
2414 	module_put(THIS_MODULE);
2415 	return ret;
2416 }
2417 
2418 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2419 {
2420 	struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2421 
2422 	VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2423 
2424 	switch (cmd) {
2425 	/*
2426 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2427 	 */
2428 	case CDROMMULTISESSION:
2429 	case CDROMREADTOCENTRY:
2430 	case CDROM_LAST_WRITTEN:
2431 	case CDROM_SEND_PACKET:
2432 	case SCSI_IOCTL_SEND_COMMAND:
2433 		return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2434 
2435 	case CDROMEJECT:
2436 		/*
2437 		 * The door gets locked when the device is opened, so we
2438 		 * have to unlock it or else the eject command fails.
2439 		 */
2440 		pkt_lock_door(pd, 0);
2441 		return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2442 
2443 	default:
2444 		printk("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd);
2445 		return -ENOTTY;
2446 	}
2447 
2448 	return 0;
2449 }
2450 
2451 static int pkt_media_changed(struct gendisk *disk)
2452 {
2453 	struct pktcdvd_device *pd = disk->private_data;
2454 	struct gendisk *attached_disk;
2455 
2456 	if (!pd)
2457 		return 0;
2458 	if (!pd->bdev)
2459 		return 0;
2460 	attached_disk = pd->bdev->bd_disk;
2461 	if (!attached_disk)
2462 		return 0;
2463 	return attached_disk->fops->media_changed(attached_disk);
2464 }
2465 
2466 static struct block_device_operations pktcdvd_ops = {
2467 	.owner =		THIS_MODULE,
2468 	.open =			pkt_open,
2469 	.release =		pkt_close,
2470 	.ioctl =		pkt_ioctl,
2471 	.media_changed =	pkt_media_changed,
2472 };
2473 
2474 /*
2475  * Set up mapping from pktcdvd device to CD-ROM device.
2476  */
2477 static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd)
2478 {
2479 	int idx;
2480 	int ret = -ENOMEM;
2481 	struct pktcdvd_device *pd;
2482 	struct gendisk *disk;
2483 	dev_t dev = new_decode_dev(ctrl_cmd->dev);
2484 
2485 	for (idx = 0; idx < MAX_WRITERS; idx++)
2486 		if (!pkt_devs[idx])
2487 			break;
2488 	if (idx == MAX_WRITERS) {
2489 		printk("pktcdvd: max %d writers supported\n", MAX_WRITERS);
2490 		return -EBUSY;
2491 	}
2492 
2493 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2494 	if (!pd)
2495 		return ret;
2496 
2497 	pd->rb_pool = mempool_create(PKT_RB_POOL_SIZE, pkt_rb_alloc, pkt_rb_free, NULL);
2498 	if (!pd->rb_pool)
2499 		goto out_mem;
2500 
2501 	disk = alloc_disk(1);
2502 	if (!disk)
2503 		goto out_mem;
2504 	pd->disk = disk;
2505 
2506 	spin_lock_init(&pd->lock);
2507 	spin_lock_init(&pd->iosched.lock);
2508 	sprintf(pd->name, "pktcdvd%d", idx);
2509 	init_waitqueue_head(&pd->wqueue);
2510 	pd->bio_queue = RB_ROOT;
2511 
2512 	disk->major = pkt_major;
2513 	disk->first_minor = idx;
2514 	disk->fops = &pktcdvd_ops;
2515 	disk->flags = GENHD_FL_REMOVABLE;
2516 	sprintf(disk->disk_name, "pktcdvd%d", idx);
2517 	disk->private_data = pd;
2518 	disk->queue = blk_alloc_queue(GFP_KERNEL);
2519 	if (!disk->queue)
2520 		goto out_mem2;
2521 
2522 	pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2523 	ret = pkt_new_dev(pd, dev);
2524 	if (ret)
2525 		goto out_new_dev;
2526 
2527 	add_disk(disk);
2528 	pkt_devs[idx] = pd;
2529 	ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2530 	return 0;
2531 
2532 out_new_dev:
2533 	blk_put_queue(disk->queue);
2534 out_mem2:
2535 	put_disk(disk);
2536 out_mem:
2537 	if (pd->rb_pool)
2538 		mempool_destroy(pd->rb_pool);
2539 	kfree(pd);
2540 	return ret;
2541 }
2542 
2543 /*
2544  * Tear down mapping from pktcdvd device to CD-ROM device.
2545  */
2546 static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd)
2547 {
2548 	struct pktcdvd_device *pd;
2549 	int idx;
2550 	dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev);
2551 
2552 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2553 		pd = pkt_devs[idx];
2554 		if (pd && (pd->pkt_dev == pkt_dev))
2555 			break;
2556 	}
2557 	if (idx == MAX_WRITERS) {
2558 		DPRINTK("pktcdvd: dev not setup\n");
2559 		return -ENXIO;
2560 	}
2561 
2562 	if (pd->refcnt > 0)
2563 		return -EBUSY;
2564 
2565 	if (!IS_ERR(pd->cdrw.thread))
2566 		kthread_stop(pd->cdrw.thread);
2567 
2568 	blkdev_put(pd->bdev);
2569 
2570 	pkt_shrink_pktlist(pd);
2571 
2572 	remove_proc_entry(pd->name, pkt_proc);
2573 	DPRINTK("pktcdvd: writer %s unmapped\n", pd->name);
2574 
2575 	del_gendisk(pd->disk);
2576 	blk_put_queue(pd->disk->queue);
2577 	put_disk(pd->disk);
2578 
2579 	pkt_devs[idx] = NULL;
2580 	mempool_destroy(pd->rb_pool);
2581 	kfree(pd);
2582 
2583 	/* This is safe: open() is still holding a reference. */
2584 	module_put(THIS_MODULE);
2585 	return 0;
2586 }
2587 
2588 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2589 {
2590 	struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2591 	if (pd) {
2592 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2593 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2594 	} else {
2595 		ctrl_cmd->dev = 0;
2596 		ctrl_cmd->pkt_dev = 0;
2597 	}
2598 	ctrl_cmd->num_devices = MAX_WRITERS;
2599 }
2600 
2601 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2602 {
2603 	void __user *argp = (void __user *)arg;
2604 	struct pkt_ctrl_command ctrl_cmd;
2605 	int ret = 0;
2606 
2607 	if (cmd != PACKET_CTRL_CMD)
2608 		return -ENOTTY;
2609 
2610 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2611 		return -EFAULT;
2612 
2613 	switch (ctrl_cmd.command) {
2614 	case PKT_CTRL_CMD_SETUP:
2615 		if (!capable(CAP_SYS_ADMIN))
2616 			return -EPERM;
2617 		down(&ctl_mutex);
2618 		ret = pkt_setup_dev(&ctrl_cmd);
2619 		up(&ctl_mutex);
2620 		break;
2621 	case PKT_CTRL_CMD_TEARDOWN:
2622 		if (!capable(CAP_SYS_ADMIN))
2623 			return -EPERM;
2624 		down(&ctl_mutex);
2625 		ret = pkt_remove_dev(&ctrl_cmd);
2626 		up(&ctl_mutex);
2627 		break;
2628 	case PKT_CTRL_CMD_STATUS:
2629 		down(&ctl_mutex);
2630 		pkt_get_status(&ctrl_cmd);
2631 		up(&ctl_mutex);
2632 		break;
2633 	default:
2634 		return -ENOTTY;
2635 	}
2636 
2637 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2638 		return -EFAULT;
2639 	return ret;
2640 }
2641 
2642 
2643 static struct file_operations pkt_ctl_fops = {
2644 	.ioctl	 = pkt_ctl_ioctl,
2645 	.owner	 = THIS_MODULE,
2646 };
2647 
2648 static struct miscdevice pkt_misc = {
2649 	.minor 		= MISC_DYNAMIC_MINOR,
2650 	.name  		= "pktcdvd",
2651 	.devfs_name 	= "pktcdvd/control",
2652 	.fops  		= &pkt_ctl_fops
2653 };
2654 
2655 static int __init pkt_init(void)
2656 {
2657 	int ret;
2658 
2659 	psd_pool = mempool_create(PSD_POOL_SIZE, psd_pool_alloc, psd_pool_free, NULL);
2660 	if (!psd_pool)
2661 		return -ENOMEM;
2662 
2663 	ret = register_blkdev(pkt_major, "pktcdvd");
2664 	if (ret < 0) {
2665 		printk("pktcdvd: Unable to register block device\n");
2666 		goto out2;
2667 	}
2668 	if (!pkt_major)
2669 		pkt_major = ret;
2670 
2671 	ret = misc_register(&pkt_misc);
2672 	if (ret) {
2673 		printk("pktcdvd: Unable to register misc device\n");
2674 		goto out;
2675 	}
2676 
2677 	init_MUTEX(&ctl_mutex);
2678 
2679 	pkt_proc = proc_mkdir("pktcdvd", proc_root_driver);
2680 
2681 	DPRINTK("pktcdvd: %s\n", VERSION_CODE);
2682 	return 0;
2683 
2684 out:
2685 	unregister_blkdev(pkt_major, "pktcdvd");
2686 out2:
2687 	mempool_destroy(psd_pool);
2688 	return ret;
2689 }
2690 
2691 static void __exit pkt_exit(void)
2692 {
2693 	remove_proc_entry("pktcdvd", proc_root_driver);
2694 	misc_deregister(&pkt_misc);
2695 	unregister_blkdev(pkt_major, "pktcdvd");
2696 	mempool_destroy(psd_pool);
2697 }
2698 
2699 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2700 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2701 MODULE_LICENSE("GPL");
2702 
2703 module_init(pkt_init);
2704 module_exit(pkt_exit);
2705