xref: /openbmc/linux/drivers/block/pktcdvd.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom make_request_fn function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <linux/backing-dev.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_ioctl.h>
67 #include <scsi/scsi.h>
68 #include <linux/debugfs.h>
69 #include <linux/device.h>
70 
71 #include <linux/uaccess.h>
72 
73 #define DRIVER_NAME	"pktcdvd"
74 
75 #define pkt_err(pd, fmt, ...)						\
76 	pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
77 #define pkt_notice(pd, fmt, ...)					\
78 	pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
79 #define pkt_info(pd, fmt, ...)						\
80 	pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
81 
82 #define pkt_dbg(level, pd, fmt, ...)					\
83 do {									\
84 	if (level == 2 && PACKET_DEBUG >= 2)				\
85 		pr_notice("%s: %s():" fmt,				\
86 			  pd->name, __func__, ##__VA_ARGS__);		\
87 	else if (level == 1 && PACKET_DEBUG >= 1)			\
88 		pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__);		\
89 } while (0)
90 
91 #define MAX_SPEED 0xffff
92 
93 static DEFINE_MUTEX(pktcdvd_mutex);
94 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
95 static struct proc_dir_entry *pkt_proc;
96 static int pktdev_major;
97 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
98 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
99 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
100 static mempool_t psd_pool;
101 static struct bio_set pkt_bio_set;
102 
103 static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
104 static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
105 
106 /* forward declaration */
107 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
108 static int pkt_remove_dev(dev_t pkt_dev);
109 static int pkt_seq_show(struct seq_file *m, void *p);
110 
111 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
112 {
113 	return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
114 }
115 
116 /*
117  * create and register a pktcdvd kernel object.
118  */
119 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
120 					const char* name,
121 					struct kobject* parent,
122 					struct kobj_type* ktype)
123 {
124 	struct pktcdvd_kobj *p;
125 	int error;
126 
127 	p = kzalloc(sizeof(*p), GFP_KERNEL);
128 	if (!p)
129 		return NULL;
130 	p->pd = pd;
131 	error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
132 	if (error) {
133 		kobject_put(&p->kobj);
134 		return NULL;
135 	}
136 	kobject_uevent(&p->kobj, KOBJ_ADD);
137 	return p;
138 }
139 /*
140  * remove a pktcdvd kernel object.
141  */
142 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
143 {
144 	if (p)
145 		kobject_put(&p->kobj);
146 }
147 /*
148  * default release function for pktcdvd kernel objects.
149  */
150 static void pkt_kobj_release(struct kobject *kobj)
151 {
152 	kfree(to_pktcdvdkobj(kobj));
153 }
154 
155 
156 /**********************************************************
157  *
158  * sysfs interface for pktcdvd
159  * by (C) 2006  Thomas Maier <balagi@justmail.de>
160  *
161  **********************************************************/
162 
163 #define DEF_ATTR(_obj,_name,_mode) \
164 	static struct attribute _obj = { .name = _name, .mode = _mode }
165 
166 /**********************************************************
167   /sys/class/pktcdvd/pktcdvd[0-7]/
168                      stat/reset
169                      stat/packets_started
170                      stat/packets_finished
171                      stat/kb_written
172                      stat/kb_read
173                      stat/kb_read_gather
174                      write_queue/size
175                      write_queue/congestion_off
176                      write_queue/congestion_on
177  **********************************************************/
178 
179 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
180 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
181 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
182 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
183 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
184 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
185 
186 static struct attribute *kobj_pkt_attrs_stat[] = {
187 	&kobj_pkt_attr_st1,
188 	&kobj_pkt_attr_st2,
189 	&kobj_pkt_attr_st3,
190 	&kobj_pkt_attr_st4,
191 	&kobj_pkt_attr_st5,
192 	&kobj_pkt_attr_st6,
193 	NULL
194 };
195 
196 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
197 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
198 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
199 
200 static struct attribute *kobj_pkt_attrs_wqueue[] = {
201 	&kobj_pkt_attr_wq1,
202 	&kobj_pkt_attr_wq2,
203 	&kobj_pkt_attr_wq3,
204 	NULL
205 };
206 
207 static ssize_t kobj_pkt_show(struct kobject *kobj,
208 			struct attribute *attr, char *data)
209 {
210 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
211 	int n = 0;
212 	int v;
213 	if (strcmp(attr->name, "packets_started") == 0) {
214 		n = sprintf(data, "%lu\n", pd->stats.pkt_started);
215 
216 	} else if (strcmp(attr->name, "packets_finished") == 0) {
217 		n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
218 
219 	} else if (strcmp(attr->name, "kb_written") == 0) {
220 		n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
221 
222 	} else if (strcmp(attr->name, "kb_read") == 0) {
223 		n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
224 
225 	} else if (strcmp(attr->name, "kb_read_gather") == 0) {
226 		n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
227 
228 	} else if (strcmp(attr->name, "size") == 0) {
229 		spin_lock(&pd->lock);
230 		v = pd->bio_queue_size;
231 		spin_unlock(&pd->lock);
232 		n = sprintf(data, "%d\n", v);
233 
234 	} else if (strcmp(attr->name, "congestion_off") == 0) {
235 		spin_lock(&pd->lock);
236 		v = pd->write_congestion_off;
237 		spin_unlock(&pd->lock);
238 		n = sprintf(data, "%d\n", v);
239 
240 	} else if (strcmp(attr->name, "congestion_on") == 0) {
241 		spin_lock(&pd->lock);
242 		v = pd->write_congestion_on;
243 		spin_unlock(&pd->lock);
244 		n = sprintf(data, "%d\n", v);
245 	}
246 	return n;
247 }
248 
249 static void init_write_congestion_marks(int* lo, int* hi)
250 {
251 	if (*hi > 0) {
252 		*hi = max(*hi, 500);
253 		*hi = min(*hi, 1000000);
254 		if (*lo <= 0)
255 			*lo = *hi - 100;
256 		else {
257 			*lo = min(*lo, *hi - 100);
258 			*lo = max(*lo, 100);
259 		}
260 	} else {
261 		*hi = -1;
262 		*lo = -1;
263 	}
264 }
265 
266 static ssize_t kobj_pkt_store(struct kobject *kobj,
267 			struct attribute *attr,
268 			const char *data, size_t len)
269 {
270 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
271 	int val;
272 
273 	if (strcmp(attr->name, "reset") == 0 && len > 0) {
274 		pd->stats.pkt_started = 0;
275 		pd->stats.pkt_ended = 0;
276 		pd->stats.secs_w = 0;
277 		pd->stats.secs_rg = 0;
278 		pd->stats.secs_r = 0;
279 
280 	} else if (strcmp(attr->name, "congestion_off") == 0
281 		   && sscanf(data, "%d", &val) == 1) {
282 		spin_lock(&pd->lock);
283 		pd->write_congestion_off = val;
284 		init_write_congestion_marks(&pd->write_congestion_off,
285 					&pd->write_congestion_on);
286 		spin_unlock(&pd->lock);
287 
288 	} else if (strcmp(attr->name, "congestion_on") == 0
289 		   && sscanf(data, "%d", &val) == 1) {
290 		spin_lock(&pd->lock);
291 		pd->write_congestion_on = val;
292 		init_write_congestion_marks(&pd->write_congestion_off,
293 					&pd->write_congestion_on);
294 		spin_unlock(&pd->lock);
295 	}
296 	return len;
297 }
298 
299 static const struct sysfs_ops kobj_pkt_ops = {
300 	.show = kobj_pkt_show,
301 	.store = kobj_pkt_store
302 };
303 static struct kobj_type kobj_pkt_type_stat = {
304 	.release = pkt_kobj_release,
305 	.sysfs_ops = &kobj_pkt_ops,
306 	.default_attrs = kobj_pkt_attrs_stat
307 };
308 static struct kobj_type kobj_pkt_type_wqueue = {
309 	.release = pkt_kobj_release,
310 	.sysfs_ops = &kobj_pkt_ops,
311 	.default_attrs = kobj_pkt_attrs_wqueue
312 };
313 
314 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
315 {
316 	if (class_pktcdvd) {
317 		pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
318 					"%s", pd->name);
319 		if (IS_ERR(pd->dev))
320 			pd->dev = NULL;
321 	}
322 	if (pd->dev) {
323 		pd->kobj_stat = pkt_kobj_create(pd, "stat",
324 					&pd->dev->kobj,
325 					&kobj_pkt_type_stat);
326 		pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
327 					&pd->dev->kobj,
328 					&kobj_pkt_type_wqueue);
329 	}
330 }
331 
332 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
333 {
334 	pkt_kobj_remove(pd->kobj_stat);
335 	pkt_kobj_remove(pd->kobj_wqueue);
336 	if (class_pktcdvd)
337 		device_unregister(pd->dev);
338 }
339 
340 
341 /********************************************************************
342   /sys/class/pktcdvd/
343                      add            map block device
344                      remove         unmap packet dev
345                      device_map     show mappings
346  *******************************************************************/
347 
348 static void class_pktcdvd_release(struct class *cls)
349 {
350 	kfree(cls);
351 }
352 
353 static ssize_t device_map_show(struct class *c, struct class_attribute *attr,
354 			       char *data)
355 {
356 	int n = 0;
357 	int idx;
358 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
359 	for (idx = 0; idx < MAX_WRITERS; idx++) {
360 		struct pktcdvd_device *pd = pkt_devs[idx];
361 		if (!pd)
362 			continue;
363 		n += sprintf(data+n, "%s %u:%u %u:%u\n",
364 			pd->name,
365 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
366 			MAJOR(pd->bdev->bd_dev),
367 			MINOR(pd->bdev->bd_dev));
368 	}
369 	mutex_unlock(&ctl_mutex);
370 	return n;
371 }
372 static CLASS_ATTR_RO(device_map);
373 
374 static ssize_t add_store(struct class *c, struct class_attribute *attr,
375 			 const char *buf, size_t count)
376 {
377 	unsigned int major, minor;
378 
379 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
380 		/* pkt_setup_dev() expects caller to hold reference to self */
381 		if (!try_module_get(THIS_MODULE))
382 			return -ENODEV;
383 
384 		pkt_setup_dev(MKDEV(major, minor), NULL);
385 
386 		module_put(THIS_MODULE);
387 
388 		return count;
389 	}
390 
391 	return -EINVAL;
392 }
393 static CLASS_ATTR_WO(add);
394 
395 static ssize_t remove_store(struct class *c, struct class_attribute *attr,
396 			    const char *buf, size_t count)
397 {
398 	unsigned int major, minor;
399 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
400 		pkt_remove_dev(MKDEV(major, minor));
401 		return count;
402 	}
403 	return -EINVAL;
404 }
405 static CLASS_ATTR_WO(remove);
406 
407 static struct attribute *class_pktcdvd_attrs[] = {
408 	&class_attr_add.attr,
409 	&class_attr_remove.attr,
410 	&class_attr_device_map.attr,
411 	NULL,
412 };
413 ATTRIBUTE_GROUPS(class_pktcdvd);
414 
415 static int pkt_sysfs_init(void)
416 {
417 	int ret = 0;
418 
419 	/*
420 	 * create control files in sysfs
421 	 * /sys/class/pktcdvd/...
422 	 */
423 	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
424 	if (!class_pktcdvd)
425 		return -ENOMEM;
426 	class_pktcdvd->name = DRIVER_NAME;
427 	class_pktcdvd->owner = THIS_MODULE;
428 	class_pktcdvd->class_release = class_pktcdvd_release;
429 	class_pktcdvd->class_groups = class_pktcdvd_groups;
430 	ret = class_register(class_pktcdvd);
431 	if (ret) {
432 		kfree(class_pktcdvd);
433 		class_pktcdvd = NULL;
434 		pr_err("failed to create class pktcdvd\n");
435 		return ret;
436 	}
437 	return 0;
438 }
439 
440 static void pkt_sysfs_cleanup(void)
441 {
442 	if (class_pktcdvd)
443 		class_destroy(class_pktcdvd);
444 	class_pktcdvd = NULL;
445 }
446 
447 /********************************************************************
448   entries in debugfs
449 
450   /sys/kernel/debug/pktcdvd[0-7]/
451 			info
452 
453  *******************************************************************/
454 
455 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
456 {
457 	return pkt_seq_show(m, p);
458 }
459 
460 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
461 {
462 	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
463 }
464 
465 static const struct file_operations debug_fops = {
466 	.open		= pkt_debugfs_fops_open,
467 	.read		= seq_read,
468 	.llseek		= seq_lseek,
469 	.release	= single_release,
470 	.owner		= THIS_MODULE,
471 };
472 
473 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
474 {
475 	if (!pkt_debugfs_root)
476 		return;
477 	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
478 	if (!pd->dfs_d_root)
479 		return;
480 
481 	pd->dfs_f_info = debugfs_create_file("info", 0444,
482 					     pd->dfs_d_root, pd, &debug_fops);
483 }
484 
485 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
486 {
487 	if (!pkt_debugfs_root)
488 		return;
489 	debugfs_remove(pd->dfs_f_info);
490 	debugfs_remove(pd->dfs_d_root);
491 	pd->dfs_f_info = NULL;
492 	pd->dfs_d_root = NULL;
493 }
494 
495 static void pkt_debugfs_init(void)
496 {
497 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498 }
499 
500 static void pkt_debugfs_cleanup(void)
501 {
502 	debugfs_remove(pkt_debugfs_root);
503 	pkt_debugfs_root = NULL;
504 }
505 
506 /* ----------------------------------------------------------*/
507 
508 
509 static void pkt_bio_finished(struct pktcdvd_device *pd)
510 {
511 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
512 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
513 		pkt_dbg(2, pd, "queue empty\n");
514 		atomic_set(&pd->iosched.attention, 1);
515 		wake_up(&pd->wqueue);
516 	}
517 }
518 
519 /*
520  * Allocate a packet_data struct
521  */
522 static struct packet_data *pkt_alloc_packet_data(int frames)
523 {
524 	int i;
525 	struct packet_data *pkt;
526 
527 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
528 	if (!pkt)
529 		goto no_pkt;
530 
531 	pkt->frames = frames;
532 	pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
533 	if (!pkt->w_bio)
534 		goto no_bio;
535 
536 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
537 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
538 		if (!pkt->pages[i])
539 			goto no_page;
540 	}
541 
542 	spin_lock_init(&pkt->lock);
543 	bio_list_init(&pkt->orig_bios);
544 
545 	for (i = 0; i < frames; i++) {
546 		struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
547 		if (!bio)
548 			goto no_rd_bio;
549 
550 		pkt->r_bios[i] = bio;
551 	}
552 
553 	return pkt;
554 
555 no_rd_bio:
556 	for (i = 0; i < frames; i++) {
557 		struct bio *bio = pkt->r_bios[i];
558 		if (bio)
559 			bio_put(bio);
560 	}
561 
562 no_page:
563 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
564 		if (pkt->pages[i])
565 			__free_page(pkt->pages[i]);
566 	bio_put(pkt->w_bio);
567 no_bio:
568 	kfree(pkt);
569 no_pkt:
570 	return NULL;
571 }
572 
573 /*
574  * Free a packet_data struct
575  */
576 static void pkt_free_packet_data(struct packet_data *pkt)
577 {
578 	int i;
579 
580 	for (i = 0; i < pkt->frames; i++) {
581 		struct bio *bio = pkt->r_bios[i];
582 		if (bio)
583 			bio_put(bio);
584 	}
585 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
586 		__free_page(pkt->pages[i]);
587 	bio_put(pkt->w_bio);
588 	kfree(pkt);
589 }
590 
591 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
592 {
593 	struct packet_data *pkt, *next;
594 
595 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
596 
597 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
598 		pkt_free_packet_data(pkt);
599 	}
600 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
601 }
602 
603 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
604 {
605 	struct packet_data *pkt;
606 
607 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
608 
609 	while (nr_packets > 0) {
610 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
611 		if (!pkt) {
612 			pkt_shrink_pktlist(pd);
613 			return 0;
614 		}
615 		pkt->id = nr_packets;
616 		pkt->pd = pd;
617 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
618 		nr_packets--;
619 	}
620 	return 1;
621 }
622 
623 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
624 {
625 	struct rb_node *n = rb_next(&node->rb_node);
626 	if (!n)
627 		return NULL;
628 	return rb_entry(n, struct pkt_rb_node, rb_node);
629 }
630 
631 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
632 {
633 	rb_erase(&node->rb_node, &pd->bio_queue);
634 	mempool_free(node, &pd->rb_pool);
635 	pd->bio_queue_size--;
636 	BUG_ON(pd->bio_queue_size < 0);
637 }
638 
639 /*
640  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
641  */
642 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
643 {
644 	struct rb_node *n = pd->bio_queue.rb_node;
645 	struct rb_node *next;
646 	struct pkt_rb_node *tmp;
647 
648 	if (!n) {
649 		BUG_ON(pd->bio_queue_size > 0);
650 		return NULL;
651 	}
652 
653 	for (;;) {
654 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
655 		if (s <= tmp->bio->bi_iter.bi_sector)
656 			next = n->rb_left;
657 		else
658 			next = n->rb_right;
659 		if (!next)
660 			break;
661 		n = next;
662 	}
663 
664 	if (s > tmp->bio->bi_iter.bi_sector) {
665 		tmp = pkt_rbtree_next(tmp);
666 		if (!tmp)
667 			return NULL;
668 	}
669 	BUG_ON(s > tmp->bio->bi_iter.bi_sector);
670 	return tmp;
671 }
672 
673 /*
674  * Insert a node into the pd->bio_queue rb tree.
675  */
676 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
677 {
678 	struct rb_node **p = &pd->bio_queue.rb_node;
679 	struct rb_node *parent = NULL;
680 	sector_t s = node->bio->bi_iter.bi_sector;
681 	struct pkt_rb_node *tmp;
682 
683 	while (*p) {
684 		parent = *p;
685 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
686 		if (s < tmp->bio->bi_iter.bi_sector)
687 			p = &(*p)->rb_left;
688 		else
689 			p = &(*p)->rb_right;
690 	}
691 	rb_link_node(&node->rb_node, parent, p);
692 	rb_insert_color(&node->rb_node, &pd->bio_queue);
693 	pd->bio_queue_size++;
694 }
695 
696 /*
697  * Send a packet_command to the underlying block device and
698  * wait for completion.
699  */
700 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
701 {
702 	struct request_queue *q = bdev_get_queue(pd->bdev);
703 	struct request *rq;
704 	int ret = 0;
705 
706 	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
707 			     REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, 0);
708 	if (IS_ERR(rq))
709 		return PTR_ERR(rq);
710 
711 	if (cgc->buflen) {
712 		ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
713 				      GFP_NOIO);
714 		if (ret)
715 			goto out;
716 	}
717 
718 	scsi_req(rq)->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
719 	memcpy(scsi_req(rq)->cmd, cgc->cmd, CDROM_PACKET_SIZE);
720 
721 	rq->timeout = 60*HZ;
722 	if (cgc->quiet)
723 		rq->rq_flags |= RQF_QUIET;
724 
725 	blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
726 	if (scsi_req(rq)->result)
727 		ret = -EIO;
728 out:
729 	blk_put_request(rq);
730 	return ret;
731 }
732 
733 static const char *sense_key_string(__u8 index)
734 {
735 	static const char * const info[] = {
736 		"No sense", "Recovered error", "Not ready",
737 		"Medium error", "Hardware error", "Illegal request",
738 		"Unit attention", "Data protect", "Blank check",
739 	};
740 
741 	return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
742 }
743 
744 /*
745  * A generic sense dump / resolve mechanism should be implemented across
746  * all ATAPI + SCSI devices.
747  */
748 static void pkt_dump_sense(struct pktcdvd_device *pd,
749 			   struct packet_command *cgc)
750 {
751 	struct request_sense *sense = cgc->sense;
752 
753 	if (sense)
754 		pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
755 			CDROM_PACKET_SIZE, cgc->cmd,
756 			sense->sense_key, sense->asc, sense->ascq,
757 			sense_key_string(sense->sense_key));
758 	else
759 		pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
760 }
761 
762 /*
763  * flush the drive cache to media
764  */
765 static int pkt_flush_cache(struct pktcdvd_device *pd)
766 {
767 	struct packet_command cgc;
768 
769 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
770 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
771 	cgc.quiet = 1;
772 
773 	/*
774 	 * the IMMED bit -- we default to not setting it, although that
775 	 * would allow a much faster close, this is safer
776 	 */
777 #if 0
778 	cgc.cmd[1] = 1 << 1;
779 #endif
780 	return pkt_generic_packet(pd, &cgc);
781 }
782 
783 /*
784  * speed is given as the normal factor, e.g. 4 for 4x
785  */
786 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
787 				unsigned write_speed, unsigned read_speed)
788 {
789 	struct packet_command cgc;
790 	struct request_sense sense;
791 	int ret;
792 
793 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
794 	cgc.sense = &sense;
795 	cgc.cmd[0] = GPCMD_SET_SPEED;
796 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
797 	cgc.cmd[3] = read_speed & 0xff;
798 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
799 	cgc.cmd[5] = write_speed & 0xff;
800 
801 	if ((ret = pkt_generic_packet(pd, &cgc)))
802 		pkt_dump_sense(pd, &cgc);
803 
804 	return ret;
805 }
806 
807 /*
808  * Queue a bio for processing by the low-level CD device. Must be called
809  * from process context.
810  */
811 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
812 {
813 	spin_lock(&pd->iosched.lock);
814 	if (bio_data_dir(bio) == READ)
815 		bio_list_add(&pd->iosched.read_queue, bio);
816 	else
817 		bio_list_add(&pd->iosched.write_queue, bio);
818 	spin_unlock(&pd->iosched.lock);
819 
820 	atomic_set(&pd->iosched.attention, 1);
821 	wake_up(&pd->wqueue);
822 }
823 
824 /*
825  * Process the queued read/write requests. This function handles special
826  * requirements for CDRW drives:
827  * - A cache flush command must be inserted before a read request if the
828  *   previous request was a write.
829  * - Switching between reading and writing is slow, so don't do it more often
830  *   than necessary.
831  * - Optimize for throughput at the expense of latency. This means that streaming
832  *   writes will never be interrupted by a read, but if the drive has to seek
833  *   before the next write, switch to reading instead if there are any pending
834  *   read requests.
835  * - Set the read speed according to current usage pattern. When only reading
836  *   from the device, it's best to use the highest possible read speed, but
837  *   when switching often between reading and writing, it's better to have the
838  *   same read and write speeds.
839  */
840 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
841 {
842 
843 	if (atomic_read(&pd->iosched.attention) == 0)
844 		return;
845 	atomic_set(&pd->iosched.attention, 0);
846 
847 	for (;;) {
848 		struct bio *bio;
849 		int reads_queued, writes_queued;
850 
851 		spin_lock(&pd->iosched.lock);
852 		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
853 		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
854 		spin_unlock(&pd->iosched.lock);
855 
856 		if (!reads_queued && !writes_queued)
857 			break;
858 
859 		if (pd->iosched.writing) {
860 			int need_write_seek = 1;
861 			spin_lock(&pd->iosched.lock);
862 			bio = bio_list_peek(&pd->iosched.write_queue);
863 			spin_unlock(&pd->iosched.lock);
864 			if (bio && (bio->bi_iter.bi_sector ==
865 				    pd->iosched.last_write))
866 				need_write_seek = 0;
867 			if (need_write_seek && reads_queued) {
868 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
869 					pkt_dbg(2, pd, "write, waiting\n");
870 					break;
871 				}
872 				pkt_flush_cache(pd);
873 				pd->iosched.writing = 0;
874 			}
875 		} else {
876 			if (!reads_queued && writes_queued) {
877 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
878 					pkt_dbg(2, pd, "read, waiting\n");
879 					break;
880 				}
881 				pd->iosched.writing = 1;
882 			}
883 		}
884 
885 		spin_lock(&pd->iosched.lock);
886 		if (pd->iosched.writing)
887 			bio = bio_list_pop(&pd->iosched.write_queue);
888 		else
889 			bio = bio_list_pop(&pd->iosched.read_queue);
890 		spin_unlock(&pd->iosched.lock);
891 
892 		if (!bio)
893 			continue;
894 
895 		if (bio_data_dir(bio) == READ)
896 			pd->iosched.successive_reads +=
897 				bio->bi_iter.bi_size >> 10;
898 		else {
899 			pd->iosched.successive_reads = 0;
900 			pd->iosched.last_write = bio_end_sector(bio);
901 		}
902 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
903 			if (pd->read_speed == pd->write_speed) {
904 				pd->read_speed = MAX_SPEED;
905 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
906 			}
907 		} else {
908 			if (pd->read_speed != pd->write_speed) {
909 				pd->read_speed = pd->write_speed;
910 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
911 			}
912 		}
913 
914 		atomic_inc(&pd->cdrw.pending_bios);
915 		generic_make_request(bio);
916 	}
917 }
918 
919 /*
920  * Special care is needed if the underlying block device has a small
921  * max_phys_segments value.
922  */
923 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
924 {
925 	if ((pd->settings.size << 9) / CD_FRAMESIZE
926 	    <= queue_max_segments(q)) {
927 		/*
928 		 * The cdrom device can handle one segment/frame
929 		 */
930 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
931 		return 0;
932 	} else if ((pd->settings.size << 9) / PAGE_SIZE
933 		   <= queue_max_segments(q)) {
934 		/*
935 		 * We can handle this case at the expense of some extra memory
936 		 * copies during write operations
937 		 */
938 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
939 		return 0;
940 	} else {
941 		pkt_err(pd, "cdrom max_phys_segments too small\n");
942 		return -EIO;
943 	}
944 }
945 
946 static void pkt_end_io_read(struct bio *bio)
947 {
948 	struct packet_data *pkt = bio->bi_private;
949 	struct pktcdvd_device *pd = pkt->pd;
950 	BUG_ON(!pd);
951 
952 	pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
953 		bio, (unsigned long long)pkt->sector,
954 		(unsigned long long)bio->bi_iter.bi_sector, bio->bi_status);
955 
956 	if (bio->bi_status)
957 		atomic_inc(&pkt->io_errors);
958 	if (atomic_dec_and_test(&pkt->io_wait)) {
959 		atomic_inc(&pkt->run_sm);
960 		wake_up(&pd->wqueue);
961 	}
962 	pkt_bio_finished(pd);
963 }
964 
965 static void pkt_end_io_packet_write(struct bio *bio)
966 {
967 	struct packet_data *pkt = bio->bi_private;
968 	struct pktcdvd_device *pd = pkt->pd;
969 	BUG_ON(!pd);
970 
971 	pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_status);
972 
973 	pd->stats.pkt_ended++;
974 
975 	pkt_bio_finished(pd);
976 	atomic_dec(&pkt->io_wait);
977 	atomic_inc(&pkt->run_sm);
978 	wake_up(&pd->wqueue);
979 }
980 
981 /*
982  * Schedule reads for the holes in a packet
983  */
984 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
985 {
986 	int frames_read = 0;
987 	struct bio *bio;
988 	int f;
989 	char written[PACKET_MAX_SIZE];
990 
991 	BUG_ON(bio_list_empty(&pkt->orig_bios));
992 
993 	atomic_set(&pkt->io_wait, 0);
994 	atomic_set(&pkt->io_errors, 0);
995 
996 	/*
997 	 * Figure out which frames we need to read before we can write.
998 	 */
999 	memset(written, 0, sizeof(written));
1000 	spin_lock(&pkt->lock);
1001 	bio_list_for_each(bio, &pkt->orig_bios) {
1002 		int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1003 			(CD_FRAMESIZE >> 9);
1004 		int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1005 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1006 		BUG_ON(first_frame < 0);
1007 		BUG_ON(first_frame + num_frames > pkt->frames);
1008 		for (f = first_frame; f < first_frame + num_frames; f++)
1009 			written[f] = 1;
1010 	}
1011 	spin_unlock(&pkt->lock);
1012 
1013 	if (pkt->cache_valid) {
1014 		pkt_dbg(2, pd, "zone %llx cached\n",
1015 			(unsigned long long)pkt->sector);
1016 		goto out_account;
1017 	}
1018 
1019 	/*
1020 	 * Schedule reads for missing parts of the packet.
1021 	 */
1022 	for (f = 0; f < pkt->frames; f++) {
1023 		int p, offset;
1024 
1025 		if (written[f])
1026 			continue;
1027 
1028 		bio = pkt->r_bios[f];
1029 		bio_reset(bio);
1030 		bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1031 		bio_set_dev(bio, pd->bdev);
1032 		bio->bi_end_io = pkt_end_io_read;
1033 		bio->bi_private = pkt;
1034 
1035 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1036 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1037 		pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1038 			f, pkt->pages[p], offset);
1039 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1040 			BUG();
1041 
1042 		atomic_inc(&pkt->io_wait);
1043 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
1044 		pkt_queue_bio(pd, bio);
1045 		frames_read++;
1046 	}
1047 
1048 out_account:
1049 	pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1050 		frames_read, (unsigned long long)pkt->sector);
1051 	pd->stats.pkt_started++;
1052 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1053 }
1054 
1055 /*
1056  * Find a packet matching zone, or the least recently used packet if
1057  * there is no match.
1058  */
1059 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1060 {
1061 	struct packet_data *pkt;
1062 
1063 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1064 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1065 			list_del_init(&pkt->list);
1066 			if (pkt->sector != zone)
1067 				pkt->cache_valid = 0;
1068 			return pkt;
1069 		}
1070 	}
1071 	BUG();
1072 	return NULL;
1073 }
1074 
1075 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1076 {
1077 	if (pkt->cache_valid) {
1078 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1079 	} else {
1080 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1081 	}
1082 }
1083 
1084 /*
1085  * recover a failed write, query for relocation if possible
1086  *
1087  * returns 1 if recovery is possible, or 0 if not
1088  *
1089  */
1090 static int pkt_start_recovery(struct packet_data *pkt)
1091 {
1092 	/*
1093 	 * FIXME. We need help from the file system to implement
1094 	 * recovery handling.
1095 	 */
1096 	return 0;
1097 #if 0
1098 	struct request *rq = pkt->rq;
1099 	struct pktcdvd_device *pd = rq->rq_disk->private_data;
1100 	struct block_device *pkt_bdev;
1101 	struct super_block *sb = NULL;
1102 	unsigned long old_block, new_block;
1103 	sector_t new_sector;
1104 
1105 	pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1106 	if (pkt_bdev) {
1107 		sb = get_super(pkt_bdev);
1108 		bdput(pkt_bdev);
1109 	}
1110 
1111 	if (!sb)
1112 		return 0;
1113 
1114 	if (!sb->s_op->relocate_blocks)
1115 		goto out;
1116 
1117 	old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1118 	if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1119 		goto out;
1120 
1121 	new_sector = new_block * (CD_FRAMESIZE >> 9);
1122 	pkt->sector = new_sector;
1123 
1124 	bio_reset(pkt->bio);
1125 	bio_set_dev(pkt->bio, pd->bdev);
1126 	bio_set_op_attrs(pkt->bio, REQ_OP_WRITE, 0);
1127 	pkt->bio->bi_iter.bi_sector = new_sector;
1128 	pkt->bio->bi_iter.bi_size = pkt->frames * CD_FRAMESIZE;
1129 	pkt->bio->bi_vcnt = pkt->frames;
1130 
1131 	pkt->bio->bi_end_io = pkt_end_io_packet_write;
1132 	pkt->bio->bi_private = pkt;
1133 
1134 	drop_super(sb);
1135 	return 1;
1136 
1137 out:
1138 	drop_super(sb);
1139 	return 0;
1140 #endif
1141 }
1142 
1143 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1144 {
1145 #if PACKET_DEBUG > 1
1146 	static const char *state_name[] = {
1147 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1148 	};
1149 	enum packet_data_state old_state = pkt->state;
1150 	pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1151 		pkt->id, (unsigned long long)pkt->sector,
1152 		state_name[old_state], state_name[state]);
1153 #endif
1154 	pkt->state = state;
1155 }
1156 
1157 /*
1158  * Scan the work queue to see if we can start a new packet.
1159  * returns non-zero if any work was done.
1160  */
1161 static int pkt_handle_queue(struct pktcdvd_device *pd)
1162 {
1163 	struct packet_data *pkt, *p;
1164 	struct bio *bio = NULL;
1165 	sector_t zone = 0; /* Suppress gcc warning */
1166 	struct pkt_rb_node *node, *first_node;
1167 	struct rb_node *n;
1168 	int wakeup;
1169 
1170 	atomic_set(&pd->scan_queue, 0);
1171 
1172 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1173 		pkt_dbg(2, pd, "no pkt\n");
1174 		return 0;
1175 	}
1176 
1177 	/*
1178 	 * Try to find a zone we are not already working on.
1179 	 */
1180 	spin_lock(&pd->lock);
1181 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1182 	if (!first_node) {
1183 		n = rb_first(&pd->bio_queue);
1184 		if (n)
1185 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1186 	}
1187 	node = first_node;
1188 	while (node) {
1189 		bio = node->bio;
1190 		zone = get_zone(bio->bi_iter.bi_sector, pd);
1191 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1192 			if (p->sector == zone) {
1193 				bio = NULL;
1194 				goto try_next_bio;
1195 			}
1196 		}
1197 		break;
1198 try_next_bio:
1199 		node = pkt_rbtree_next(node);
1200 		if (!node) {
1201 			n = rb_first(&pd->bio_queue);
1202 			if (n)
1203 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1204 		}
1205 		if (node == first_node)
1206 			node = NULL;
1207 	}
1208 	spin_unlock(&pd->lock);
1209 	if (!bio) {
1210 		pkt_dbg(2, pd, "no bio\n");
1211 		return 0;
1212 	}
1213 
1214 	pkt = pkt_get_packet_data(pd, zone);
1215 
1216 	pd->current_sector = zone + pd->settings.size;
1217 	pkt->sector = zone;
1218 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1219 	pkt->write_size = 0;
1220 
1221 	/*
1222 	 * Scan work queue for bios in the same zone and link them
1223 	 * to this packet.
1224 	 */
1225 	spin_lock(&pd->lock);
1226 	pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1227 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1228 		bio = node->bio;
1229 		pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1230 			get_zone(bio->bi_iter.bi_sector, pd));
1231 		if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1232 			break;
1233 		pkt_rbtree_erase(pd, node);
1234 		spin_lock(&pkt->lock);
1235 		bio_list_add(&pkt->orig_bios, bio);
1236 		pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1237 		spin_unlock(&pkt->lock);
1238 	}
1239 	/* check write congestion marks, and if bio_queue_size is
1240 	   below, wake up any waiters */
1241 	wakeup = (pd->write_congestion_on > 0
1242 	 		&& pd->bio_queue_size <= pd->write_congestion_off);
1243 	spin_unlock(&pd->lock);
1244 	if (wakeup) {
1245 		clear_bdi_congested(pd->disk->queue->backing_dev_info,
1246 					BLK_RW_ASYNC);
1247 	}
1248 
1249 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1250 	pkt_set_state(pkt, PACKET_WAITING_STATE);
1251 	atomic_set(&pkt->run_sm, 1);
1252 
1253 	spin_lock(&pd->cdrw.active_list_lock);
1254 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1255 	spin_unlock(&pd->cdrw.active_list_lock);
1256 
1257 	return 1;
1258 }
1259 
1260 /*
1261  * Assemble a bio to write one packet and queue the bio for processing
1262  * by the underlying block device.
1263  */
1264 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1265 {
1266 	int f;
1267 
1268 	bio_reset(pkt->w_bio);
1269 	pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1270 	bio_set_dev(pkt->w_bio, pd->bdev);
1271 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1272 	pkt->w_bio->bi_private = pkt;
1273 
1274 	/* XXX: locking? */
1275 	for (f = 0; f < pkt->frames; f++) {
1276 		struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1277 		unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1278 
1279 		if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1280 			BUG();
1281 	}
1282 	pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1283 
1284 	/*
1285 	 * Fill-in bvec with data from orig_bios.
1286 	 */
1287 	spin_lock(&pkt->lock);
1288 	bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1289 
1290 	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1291 	spin_unlock(&pkt->lock);
1292 
1293 	pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1294 		pkt->write_size, (unsigned long long)pkt->sector);
1295 
1296 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1297 		pkt->cache_valid = 1;
1298 	else
1299 		pkt->cache_valid = 0;
1300 
1301 	/* Start the write request */
1302 	atomic_set(&pkt->io_wait, 1);
1303 	bio_set_op_attrs(pkt->w_bio, REQ_OP_WRITE, 0);
1304 	pkt_queue_bio(pd, pkt->w_bio);
1305 }
1306 
1307 static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1308 {
1309 	struct bio *bio;
1310 
1311 	if (status)
1312 		pkt->cache_valid = 0;
1313 
1314 	/* Finish all bios corresponding to this packet */
1315 	while ((bio = bio_list_pop(&pkt->orig_bios))) {
1316 		bio->bi_status = status;
1317 		bio_endio(bio);
1318 	}
1319 }
1320 
1321 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1322 {
1323 	pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1324 
1325 	for (;;) {
1326 		switch (pkt->state) {
1327 		case PACKET_WAITING_STATE:
1328 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1329 				return;
1330 
1331 			pkt->sleep_time = 0;
1332 			pkt_gather_data(pd, pkt);
1333 			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1334 			break;
1335 
1336 		case PACKET_READ_WAIT_STATE:
1337 			if (atomic_read(&pkt->io_wait) > 0)
1338 				return;
1339 
1340 			if (atomic_read(&pkt->io_errors) > 0) {
1341 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1342 			} else {
1343 				pkt_start_write(pd, pkt);
1344 			}
1345 			break;
1346 
1347 		case PACKET_WRITE_WAIT_STATE:
1348 			if (atomic_read(&pkt->io_wait) > 0)
1349 				return;
1350 
1351 			if (!pkt->w_bio->bi_status) {
1352 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1353 			} else {
1354 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1355 			}
1356 			break;
1357 
1358 		case PACKET_RECOVERY_STATE:
1359 			if (pkt_start_recovery(pkt)) {
1360 				pkt_start_write(pd, pkt);
1361 			} else {
1362 				pkt_dbg(2, pd, "No recovery possible\n");
1363 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1364 			}
1365 			break;
1366 
1367 		case PACKET_FINISHED_STATE:
1368 			pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1369 			return;
1370 
1371 		default:
1372 			BUG();
1373 			break;
1374 		}
1375 	}
1376 }
1377 
1378 static void pkt_handle_packets(struct pktcdvd_device *pd)
1379 {
1380 	struct packet_data *pkt, *next;
1381 
1382 	/*
1383 	 * Run state machine for active packets
1384 	 */
1385 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1386 		if (atomic_read(&pkt->run_sm) > 0) {
1387 			atomic_set(&pkt->run_sm, 0);
1388 			pkt_run_state_machine(pd, pkt);
1389 		}
1390 	}
1391 
1392 	/*
1393 	 * Move no longer active packets to the free list
1394 	 */
1395 	spin_lock(&pd->cdrw.active_list_lock);
1396 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1397 		if (pkt->state == PACKET_FINISHED_STATE) {
1398 			list_del(&pkt->list);
1399 			pkt_put_packet_data(pd, pkt);
1400 			pkt_set_state(pkt, PACKET_IDLE_STATE);
1401 			atomic_set(&pd->scan_queue, 1);
1402 		}
1403 	}
1404 	spin_unlock(&pd->cdrw.active_list_lock);
1405 }
1406 
1407 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1408 {
1409 	struct packet_data *pkt;
1410 	int i;
1411 
1412 	for (i = 0; i < PACKET_NUM_STATES; i++)
1413 		states[i] = 0;
1414 
1415 	spin_lock(&pd->cdrw.active_list_lock);
1416 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1417 		states[pkt->state]++;
1418 	}
1419 	spin_unlock(&pd->cdrw.active_list_lock);
1420 }
1421 
1422 /*
1423  * kcdrwd is woken up when writes have been queued for one of our
1424  * registered devices
1425  */
1426 static int kcdrwd(void *foobar)
1427 {
1428 	struct pktcdvd_device *pd = foobar;
1429 	struct packet_data *pkt;
1430 	long min_sleep_time, residue;
1431 
1432 	set_user_nice(current, MIN_NICE);
1433 	set_freezable();
1434 
1435 	for (;;) {
1436 		DECLARE_WAITQUEUE(wait, current);
1437 
1438 		/*
1439 		 * Wait until there is something to do
1440 		 */
1441 		add_wait_queue(&pd->wqueue, &wait);
1442 		for (;;) {
1443 			set_current_state(TASK_INTERRUPTIBLE);
1444 
1445 			/* Check if we need to run pkt_handle_queue */
1446 			if (atomic_read(&pd->scan_queue) > 0)
1447 				goto work_to_do;
1448 
1449 			/* Check if we need to run the state machine for some packet */
1450 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1451 				if (atomic_read(&pkt->run_sm) > 0)
1452 					goto work_to_do;
1453 			}
1454 
1455 			/* Check if we need to process the iosched queues */
1456 			if (atomic_read(&pd->iosched.attention) != 0)
1457 				goto work_to_do;
1458 
1459 			/* Otherwise, go to sleep */
1460 			if (PACKET_DEBUG > 1) {
1461 				int states[PACKET_NUM_STATES];
1462 				pkt_count_states(pd, states);
1463 				pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1464 					states[0], states[1], states[2],
1465 					states[3], states[4], states[5]);
1466 			}
1467 
1468 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1469 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1470 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1471 					min_sleep_time = pkt->sleep_time;
1472 			}
1473 
1474 			pkt_dbg(2, pd, "sleeping\n");
1475 			residue = schedule_timeout(min_sleep_time);
1476 			pkt_dbg(2, pd, "wake up\n");
1477 
1478 			/* make swsusp happy with our thread */
1479 			try_to_freeze();
1480 
1481 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1482 				if (!pkt->sleep_time)
1483 					continue;
1484 				pkt->sleep_time -= min_sleep_time - residue;
1485 				if (pkt->sleep_time <= 0) {
1486 					pkt->sleep_time = 0;
1487 					atomic_inc(&pkt->run_sm);
1488 				}
1489 			}
1490 
1491 			if (kthread_should_stop())
1492 				break;
1493 		}
1494 work_to_do:
1495 		set_current_state(TASK_RUNNING);
1496 		remove_wait_queue(&pd->wqueue, &wait);
1497 
1498 		if (kthread_should_stop())
1499 			break;
1500 
1501 		/*
1502 		 * if pkt_handle_queue returns true, we can queue
1503 		 * another request.
1504 		 */
1505 		while (pkt_handle_queue(pd))
1506 			;
1507 
1508 		/*
1509 		 * Handle packet state machine
1510 		 */
1511 		pkt_handle_packets(pd);
1512 
1513 		/*
1514 		 * Handle iosched queues
1515 		 */
1516 		pkt_iosched_process_queue(pd);
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 static void pkt_print_settings(struct pktcdvd_device *pd)
1523 {
1524 	pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1525 		 pd->settings.fp ? "Fixed" : "Variable",
1526 		 pd->settings.size >> 2,
1527 		 pd->settings.block_mode == 8 ? '1' : '2');
1528 }
1529 
1530 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1531 {
1532 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1533 
1534 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1535 	cgc->cmd[2] = page_code | (page_control << 6);
1536 	cgc->cmd[7] = cgc->buflen >> 8;
1537 	cgc->cmd[8] = cgc->buflen & 0xff;
1538 	cgc->data_direction = CGC_DATA_READ;
1539 	return pkt_generic_packet(pd, cgc);
1540 }
1541 
1542 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1543 {
1544 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1545 	memset(cgc->buffer, 0, 2);
1546 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1547 	cgc->cmd[1] = 0x10;		/* PF */
1548 	cgc->cmd[7] = cgc->buflen >> 8;
1549 	cgc->cmd[8] = cgc->buflen & 0xff;
1550 	cgc->data_direction = CGC_DATA_WRITE;
1551 	return pkt_generic_packet(pd, cgc);
1552 }
1553 
1554 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1555 {
1556 	struct packet_command cgc;
1557 	int ret;
1558 
1559 	/* set up command and get the disc info */
1560 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1561 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1562 	cgc.cmd[8] = cgc.buflen = 2;
1563 	cgc.quiet = 1;
1564 
1565 	if ((ret = pkt_generic_packet(pd, &cgc)))
1566 		return ret;
1567 
1568 	/* not all drives have the same disc_info length, so requeue
1569 	 * packet with the length the drive tells us it can supply
1570 	 */
1571 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1572 		     sizeof(di->disc_information_length);
1573 
1574 	if (cgc.buflen > sizeof(disc_information))
1575 		cgc.buflen = sizeof(disc_information);
1576 
1577 	cgc.cmd[8] = cgc.buflen;
1578 	return pkt_generic_packet(pd, &cgc);
1579 }
1580 
1581 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1582 {
1583 	struct packet_command cgc;
1584 	int ret;
1585 
1586 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1587 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1588 	cgc.cmd[1] = type & 3;
1589 	cgc.cmd[4] = (track & 0xff00) >> 8;
1590 	cgc.cmd[5] = track & 0xff;
1591 	cgc.cmd[8] = 8;
1592 	cgc.quiet = 1;
1593 
1594 	if ((ret = pkt_generic_packet(pd, &cgc)))
1595 		return ret;
1596 
1597 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1598 		     sizeof(ti->track_information_length);
1599 
1600 	if (cgc.buflen > sizeof(track_information))
1601 		cgc.buflen = sizeof(track_information);
1602 
1603 	cgc.cmd[8] = cgc.buflen;
1604 	return pkt_generic_packet(pd, &cgc);
1605 }
1606 
1607 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1608 						long *last_written)
1609 {
1610 	disc_information di;
1611 	track_information ti;
1612 	__u32 last_track;
1613 	int ret = -1;
1614 
1615 	if ((ret = pkt_get_disc_info(pd, &di)))
1616 		return ret;
1617 
1618 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1619 	if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1620 		return ret;
1621 
1622 	/* if this track is blank, try the previous. */
1623 	if (ti.blank) {
1624 		last_track--;
1625 		if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1626 			return ret;
1627 	}
1628 
1629 	/* if last recorded field is valid, return it. */
1630 	if (ti.lra_v) {
1631 		*last_written = be32_to_cpu(ti.last_rec_address);
1632 	} else {
1633 		/* make it up instead */
1634 		*last_written = be32_to_cpu(ti.track_start) +
1635 				be32_to_cpu(ti.track_size);
1636 		if (ti.free_blocks)
1637 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1638 	}
1639 	return 0;
1640 }
1641 
1642 /*
1643  * write mode select package based on pd->settings
1644  */
1645 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1646 {
1647 	struct packet_command cgc;
1648 	struct request_sense sense;
1649 	write_param_page *wp;
1650 	char buffer[128];
1651 	int ret, size;
1652 
1653 	/* doesn't apply to DVD+RW or DVD-RAM */
1654 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1655 		return 0;
1656 
1657 	memset(buffer, 0, sizeof(buffer));
1658 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1659 	cgc.sense = &sense;
1660 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1661 		pkt_dump_sense(pd, &cgc);
1662 		return ret;
1663 	}
1664 
1665 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1666 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1667 	if (size > sizeof(buffer))
1668 		size = sizeof(buffer);
1669 
1670 	/*
1671 	 * now get it all
1672 	 */
1673 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1674 	cgc.sense = &sense;
1675 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1676 		pkt_dump_sense(pd, &cgc);
1677 		return ret;
1678 	}
1679 
1680 	/*
1681 	 * write page is offset header + block descriptor length
1682 	 */
1683 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1684 
1685 	wp->fp = pd->settings.fp;
1686 	wp->track_mode = pd->settings.track_mode;
1687 	wp->write_type = pd->settings.write_type;
1688 	wp->data_block_type = pd->settings.block_mode;
1689 
1690 	wp->multi_session = 0;
1691 
1692 #ifdef PACKET_USE_LS
1693 	wp->link_size = 7;
1694 	wp->ls_v = 1;
1695 #endif
1696 
1697 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1698 		wp->session_format = 0;
1699 		wp->subhdr2 = 0x20;
1700 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1701 		wp->session_format = 0x20;
1702 		wp->subhdr2 = 8;
1703 #if 0
1704 		wp->mcn[0] = 0x80;
1705 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1706 #endif
1707 	} else {
1708 		/*
1709 		 * paranoia
1710 		 */
1711 		pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1712 		return 1;
1713 	}
1714 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1715 
1716 	cgc.buflen = cgc.cmd[8] = size;
1717 	if ((ret = pkt_mode_select(pd, &cgc))) {
1718 		pkt_dump_sense(pd, &cgc);
1719 		return ret;
1720 	}
1721 
1722 	pkt_print_settings(pd);
1723 	return 0;
1724 }
1725 
1726 /*
1727  * 1 -- we can write to this track, 0 -- we can't
1728  */
1729 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1730 {
1731 	switch (pd->mmc3_profile) {
1732 		case 0x1a: /* DVD+RW */
1733 		case 0x12: /* DVD-RAM */
1734 			/* The track is always writable on DVD+RW/DVD-RAM */
1735 			return 1;
1736 		default:
1737 			break;
1738 	}
1739 
1740 	if (!ti->packet || !ti->fp)
1741 		return 0;
1742 
1743 	/*
1744 	 * "good" settings as per Mt Fuji.
1745 	 */
1746 	if (ti->rt == 0 && ti->blank == 0)
1747 		return 1;
1748 
1749 	if (ti->rt == 0 && ti->blank == 1)
1750 		return 1;
1751 
1752 	if (ti->rt == 1 && ti->blank == 0)
1753 		return 1;
1754 
1755 	pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1756 	return 0;
1757 }
1758 
1759 /*
1760  * 1 -- we can write to this disc, 0 -- we can't
1761  */
1762 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1763 {
1764 	switch (pd->mmc3_profile) {
1765 		case 0x0a: /* CD-RW */
1766 		case 0xffff: /* MMC3 not supported */
1767 			break;
1768 		case 0x1a: /* DVD+RW */
1769 		case 0x13: /* DVD-RW */
1770 		case 0x12: /* DVD-RAM */
1771 			return 1;
1772 		default:
1773 			pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1774 				pd->mmc3_profile);
1775 			return 0;
1776 	}
1777 
1778 	/*
1779 	 * for disc type 0xff we should probably reserve a new track.
1780 	 * but i'm not sure, should we leave this to user apps? probably.
1781 	 */
1782 	if (di->disc_type == 0xff) {
1783 		pkt_notice(pd, "unknown disc - no track?\n");
1784 		return 0;
1785 	}
1786 
1787 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1788 		pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1789 		return 0;
1790 	}
1791 
1792 	if (di->erasable == 0) {
1793 		pkt_notice(pd, "disc not erasable\n");
1794 		return 0;
1795 	}
1796 
1797 	if (di->border_status == PACKET_SESSION_RESERVED) {
1798 		pkt_err(pd, "can't write to last track (reserved)\n");
1799 		return 0;
1800 	}
1801 
1802 	return 1;
1803 }
1804 
1805 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1806 {
1807 	struct packet_command cgc;
1808 	unsigned char buf[12];
1809 	disc_information di;
1810 	track_information ti;
1811 	int ret, track;
1812 
1813 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1814 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1815 	cgc.cmd[8] = 8;
1816 	ret = pkt_generic_packet(pd, &cgc);
1817 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1818 
1819 	memset(&di, 0, sizeof(disc_information));
1820 	memset(&ti, 0, sizeof(track_information));
1821 
1822 	if ((ret = pkt_get_disc_info(pd, &di))) {
1823 		pkt_err(pd, "failed get_disc\n");
1824 		return ret;
1825 	}
1826 
1827 	if (!pkt_writable_disc(pd, &di))
1828 		return -EROFS;
1829 
1830 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1831 
1832 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1833 	if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1834 		pkt_err(pd, "failed get_track\n");
1835 		return ret;
1836 	}
1837 
1838 	if (!pkt_writable_track(pd, &ti)) {
1839 		pkt_err(pd, "can't write to this track\n");
1840 		return -EROFS;
1841 	}
1842 
1843 	/*
1844 	 * we keep packet size in 512 byte units, makes it easier to
1845 	 * deal with request calculations.
1846 	 */
1847 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1848 	if (pd->settings.size == 0) {
1849 		pkt_notice(pd, "detected zero packet size!\n");
1850 		return -ENXIO;
1851 	}
1852 	if (pd->settings.size > PACKET_MAX_SECTORS) {
1853 		pkt_err(pd, "packet size is too big\n");
1854 		return -EROFS;
1855 	}
1856 	pd->settings.fp = ti.fp;
1857 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1858 
1859 	if (ti.nwa_v) {
1860 		pd->nwa = be32_to_cpu(ti.next_writable);
1861 		set_bit(PACKET_NWA_VALID, &pd->flags);
1862 	}
1863 
1864 	/*
1865 	 * in theory we could use lra on -RW media as well and just zero
1866 	 * blocks that haven't been written yet, but in practice that
1867 	 * is just a no-go. we'll use that for -R, naturally.
1868 	 */
1869 	if (ti.lra_v) {
1870 		pd->lra = be32_to_cpu(ti.last_rec_address);
1871 		set_bit(PACKET_LRA_VALID, &pd->flags);
1872 	} else {
1873 		pd->lra = 0xffffffff;
1874 		set_bit(PACKET_LRA_VALID, &pd->flags);
1875 	}
1876 
1877 	/*
1878 	 * fine for now
1879 	 */
1880 	pd->settings.link_loss = 7;
1881 	pd->settings.write_type = 0;	/* packet */
1882 	pd->settings.track_mode = ti.track_mode;
1883 
1884 	/*
1885 	 * mode1 or mode2 disc
1886 	 */
1887 	switch (ti.data_mode) {
1888 		case PACKET_MODE1:
1889 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1890 			break;
1891 		case PACKET_MODE2:
1892 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1893 			break;
1894 		default:
1895 			pkt_err(pd, "unknown data mode\n");
1896 			return -EROFS;
1897 	}
1898 	return 0;
1899 }
1900 
1901 /*
1902  * enable/disable write caching on drive
1903  */
1904 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1905 						int set)
1906 {
1907 	struct packet_command cgc;
1908 	struct request_sense sense;
1909 	unsigned char buf[64];
1910 	int ret;
1911 
1912 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1913 	cgc.sense = &sense;
1914 	cgc.buflen = pd->mode_offset + 12;
1915 
1916 	/*
1917 	 * caching mode page might not be there, so quiet this command
1918 	 */
1919 	cgc.quiet = 1;
1920 
1921 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1922 		return ret;
1923 
1924 	buf[pd->mode_offset + 10] |= (!!set << 2);
1925 
1926 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1927 	ret = pkt_mode_select(pd, &cgc);
1928 	if (ret) {
1929 		pkt_err(pd, "write caching control failed\n");
1930 		pkt_dump_sense(pd, &cgc);
1931 	} else if (!ret && set)
1932 		pkt_notice(pd, "enabled write caching\n");
1933 	return ret;
1934 }
1935 
1936 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1937 {
1938 	struct packet_command cgc;
1939 
1940 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1941 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1942 	cgc.cmd[4] = lockflag ? 1 : 0;
1943 	return pkt_generic_packet(pd, &cgc);
1944 }
1945 
1946 /*
1947  * Returns drive maximum write speed
1948  */
1949 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1950 						unsigned *write_speed)
1951 {
1952 	struct packet_command cgc;
1953 	struct request_sense sense;
1954 	unsigned char buf[256+18];
1955 	unsigned char *cap_buf;
1956 	int ret, offset;
1957 
1958 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1959 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1960 	cgc.sense = &sense;
1961 
1962 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1963 	if (ret) {
1964 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1965 			     sizeof(struct mode_page_header);
1966 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1967 		if (ret) {
1968 			pkt_dump_sense(pd, &cgc);
1969 			return ret;
1970 		}
1971 	}
1972 
1973 	offset = 20;			    /* Obsoleted field, used by older drives */
1974 	if (cap_buf[1] >= 28)
1975 		offset = 28;		    /* Current write speed selected */
1976 	if (cap_buf[1] >= 30) {
1977 		/* If the drive reports at least one "Logical Unit Write
1978 		 * Speed Performance Descriptor Block", use the information
1979 		 * in the first block. (contains the highest speed)
1980 		 */
1981 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1982 		if (num_spdb > 0)
1983 			offset = 34;
1984 	}
1985 
1986 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1987 	return 0;
1988 }
1989 
1990 /* These tables from cdrecord - I don't have orange book */
1991 /* standard speed CD-RW (1-4x) */
1992 static char clv_to_speed[16] = {
1993 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1994 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1995 };
1996 /* high speed CD-RW (-10x) */
1997 static char hs_clv_to_speed[16] = {
1998 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1999 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2000 };
2001 /* ultra high speed CD-RW */
2002 static char us_clv_to_speed[16] = {
2003 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2004 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2005 };
2006 
2007 /*
2008  * reads the maximum media speed from ATIP
2009  */
2010 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2011 						unsigned *speed)
2012 {
2013 	struct packet_command cgc;
2014 	struct request_sense sense;
2015 	unsigned char buf[64];
2016 	unsigned int size, st, sp;
2017 	int ret;
2018 
2019 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2020 	cgc.sense = &sense;
2021 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2022 	cgc.cmd[1] = 2;
2023 	cgc.cmd[2] = 4; /* READ ATIP */
2024 	cgc.cmd[8] = 2;
2025 	ret = pkt_generic_packet(pd, &cgc);
2026 	if (ret) {
2027 		pkt_dump_sense(pd, &cgc);
2028 		return ret;
2029 	}
2030 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2031 	if (size > sizeof(buf))
2032 		size = sizeof(buf);
2033 
2034 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2035 	cgc.sense = &sense;
2036 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2037 	cgc.cmd[1] = 2;
2038 	cgc.cmd[2] = 4;
2039 	cgc.cmd[8] = size;
2040 	ret = pkt_generic_packet(pd, &cgc);
2041 	if (ret) {
2042 		pkt_dump_sense(pd, &cgc);
2043 		return ret;
2044 	}
2045 
2046 	if (!(buf[6] & 0x40)) {
2047 		pkt_notice(pd, "disc type is not CD-RW\n");
2048 		return 1;
2049 	}
2050 	if (!(buf[6] & 0x4)) {
2051 		pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2052 		return 1;
2053 	}
2054 
2055 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2056 
2057 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2058 
2059 	/* Info from cdrecord */
2060 	switch (st) {
2061 		case 0: /* standard speed */
2062 			*speed = clv_to_speed[sp];
2063 			break;
2064 		case 1: /* high speed */
2065 			*speed = hs_clv_to_speed[sp];
2066 			break;
2067 		case 2: /* ultra high speed */
2068 			*speed = us_clv_to_speed[sp];
2069 			break;
2070 		default:
2071 			pkt_notice(pd, "unknown disc sub-type %d\n", st);
2072 			return 1;
2073 	}
2074 	if (*speed) {
2075 		pkt_info(pd, "maximum media speed: %d\n", *speed);
2076 		return 0;
2077 	} else {
2078 		pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2079 		return 1;
2080 	}
2081 }
2082 
2083 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2084 {
2085 	struct packet_command cgc;
2086 	struct request_sense sense;
2087 	int ret;
2088 
2089 	pkt_dbg(2, pd, "Performing OPC\n");
2090 
2091 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2092 	cgc.sense = &sense;
2093 	cgc.timeout = 60*HZ;
2094 	cgc.cmd[0] = GPCMD_SEND_OPC;
2095 	cgc.cmd[1] = 1;
2096 	if ((ret = pkt_generic_packet(pd, &cgc)))
2097 		pkt_dump_sense(pd, &cgc);
2098 	return ret;
2099 }
2100 
2101 static int pkt_open_write(struct pktcdvd_device *pd)
2102 {
2103 	int ret;
2104 	unsigned int write_speed, media_write_speed, read_speed;
2105 
2106 	if ((ret = pkt_probe_settings(pd))) {
2107 		pkt_dbg(2, pd, "failed probe\n");
2108 		return ret;
2109 	}
2110 
2111 	if ((ret = pkt_set_write_settings(pd))) {
2112 		pkt_dbg(1, pd, "failed saving write settings\n");
2113 		return -EIO;
2114 	}
2115 
2116 	pkt_write_caching(pd, USE_WCACHING);
2117 
2118 	if ((ret = pkt_get_max_speed(pd, &write_speed)))
2119 		write_speed = 16 * 177;
2120 	switch (pd->mmc3_profile) {
2121 		case 0x13: /* DVD-RW */
2122 		case 0x1a: /* DVD+RW */
2123 		case 0x12: /* DVD-RAM */
2124 			pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2125 			break;
2126 		default:
2127 			if ((ret = pkt_media_speed(pd, &media_write_speed)))
2128 				media_write_speed = 16;
2129 			write_speed = min(write_speed, media_write_speed * 177);
2130 			pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2131 			break;
2132 	}
2133 	read_speed = write_speed;
2134 
2135 	if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2136 		pkt_dbg(1, pd, "couldn't set write speed\n");
2137 		return -EIO;
2138 	}
2139 	pd->write_speed = write_speed;
2140 	pd->read_speed = read_speed;
2141 
2142 	if ((ret = pkt_perform_opc(pd))) {
2143 		pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2144 	}
2145 
2146 	return 0;
2147 }
2148 
2149 /*
2150  * called at open time.
2151  */
2152 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2153 {
2154 	int ret;
2155 	long lba;
2156 	struct request_queue *q;
2157 
2158 	/*
2159 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2160 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2161 	 * so bdget() can't fail.
2162 	 */
2163 	bdget(pd->bdev->bd_dev);
2164 	if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2165 		goto out;
2166 
2167 	if ((ret = pkt_get_last_written(pd, &lba))) {
2168 		pkt_err(pd, "pkt_get_last_written failed\n");
2169 		goto out_putdev;
2170 	}
2171 
2172 	set_capacity(pd->disk, lba << 2);
2173 	set_capacity(pd->bdev->bd_disk, lba << 2);
2174 	bd_set_size(pd->bdev, (loff_t)lba << 11);
2175 
2176 	q = bdev_get_queue(pd->bdev);
2177 	if (write) {
2178 		if ((ret = pkt_open_write(pd)))
2179 			goto out_putdev;
2180 		/*
2181 		 * Some CDRW drives can not handle writes larger than one packet,
2182 		 * even if the size is a multiple of the packet size.
2183 		 */
2184 		spin_lock_irq(q->queue_lock);
2185 		blk_queue_max_hw_sectors(q, pd->settings.size);
2186 		spin_unlock_irq(q->queue_lock);
2187 		set_bit(PACKET_WRITABLE, &pd->flags);
2188 	} else {
2189 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2190 		clear_bit(PACKET_WRITABLE, &pd->flags);
2191 	}
2192 
2193 	if ((ret = pkt_set_segment_merging(pd, q)))
2194 		goto out_putdev;
2195 
2196 	if (write) {
2197 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2198 			pkt_err(pd, "not enough memory for buffers\n");
2199 			ret = -ENOMEM;
2200 			goto out_putdev;
2201 		}
2202 		pkt_info(pd, "%lukB available on disc\n", lba << 1);
2203 	}
2204 
2205 	return 0;
2206 
2207 out_putdev:
2208 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2209 out:
2210 	return ret;
2211 }
2212 
2213 /*
2214  * called when the device is closed. makes sure that the device flushes
2215  * the internal cache before we close.
2216  */
2217 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2218 {
2219 	if (flush && pkt_flush_cache(pd))
2220 		pkt_dbg(1, pd, "not flushing cache\n");
2221 
2222 	pkt_lock_door(pd, 0);
2223 
2224 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2225 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2226 
2227 	pkt_shrink_pktlist(pd);
2228 }
2229 
2230 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2231 {
2232 	if (dev_minor >= MAX_WRITERS)
2233 		return NULL;
2234 	return pkt_devs[dev_minor];
2235 }
2236 
2237 static int pkt_open(struct block_device *bdev, fmode_t mode)
2238 {
2239 	struct pktcdvd_device *pd = NULL;
2240 	int ret;
2241 
2242 	mutex_lock(&pktcdvd_mutex);
2243 	mutex_lock(&ctl_mutex);
2244 	pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2245 	if (!pd) {
2246 		ret = -ENODEV;
2247 		goto out;
2248 	}
2249 	BUG_ON(pd->refcnt < 0);
2250 
2251 	pd->refcnt++;
2252 	if (pd->refcnt > 1) {
2253 		if ((mode & FMODE_WRITE) &&
2254 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2255 			ret = -EBUSY;
2256 			goto out_dec;
2257 		}
2258 	} else {
2259 		ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2260 		if (ret)
2261 			goto out_dec;
2262 		/*
2263 		 * needed here as well, since ext2 (among others) may change
2264 		 * the blocksize at mount time
2265 		 */
2266 		set_blocksize(bdev, CD_FRAMESIZE);
2267 	}
2268 
2269 	mutex_unlock(&ctl_mutex);
2270 	mutex_unlock(&pktcdvd_mutex);
2271 	return 0;
2272 
2273 out_dec:
2274 	pd->refcnt--;
2275 out:
2276 	mutex_unlock(&ctl_mutex);
2277 	mutex_unlock(&pktcdvd_mutex);
2278 	return ret;
2279 }
2280 
2281 static void pkt_close(struct gendisk *disk, fmode_t mode)
2282 {
2283 	struct pktcdvd_device *pd = disk->private_data;
2284 
2285 	mutex_lock(&pktcdvd_mutex);
2286 	mutex_lock(&ctl_mutex);
2287 	pd->refcnt--;
2288 	BUG_ON(pd->refcnt < 0);
2289 	if (pd->refcnt == 0) {
2290 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2291 		pkt_release_dev(pd, flush);
2292 	}
2293 	mutex_unlock(&ctl_mutex);
2294 	mutex_unlock(&pktcdvd_mutex);
2295 }
2296 
2297 
2298 static void pkt_end_io_read_cloned(struct bio *bio)
2299 {
2300 	struct packet_stacked_data *psd = bio->bi_private;
2301 	struct pktcdvd_device *pd = psd->pd;
2302 
2303 	psd->bio->bi_status = bio->bi_status;
2304 	bio_put(bio);
2305 	bio_endio(psd->bio);
2306 	mempool_free(psd, &psd_pool);
2307 	pkt_bio_finished(pd);
2308 }
2309 
2310 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2311 {
2312 	struct bio *cloned_bio = bio_clone_fast(bio, GFP_NOIO, &pkt_bio_set);
2313 	struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2314 
2315 	psd->pd = pd;
2316 	psd->bio = bio;
2317 	bio_set_dev(cloned_bio, pd->bdev);
2318 	cloned_bio->bi_private = psd;
2319 	cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2320 	pd->stats.secs_r += bio_sectors(bio);
2321 	pkt_queue_bio(pd, cloned_bio);
2322 }
2323 
2324 static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2325 {
2326 	struct pktcdvd_device *pd = q->queuedata;
2327 	sector_t zone;
2328 	struct packet_data *pkt;
2329 	int was_empty, blocked_bio;
2330 	struct pkt_rb_node *node;
2331 
2332 	zone = get_zone(bio->bi_iter.bi_sector, pd);
2333 
2334 	/*
2335 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2336 	 * just append this bio to that packet.
2337 	 */
2338 	spin_lock(&pd->cdrw.active_list_lock);
2339 	blocked_bio = 0;
2340 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2341 		if (pkt->sector == zone) {
2342 			spin_lock(&pkt->lock);
2343 			if ((pkt->state == PACKET_WAITING_STATE) ||
2344 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2345 				bio_list_add(&pkt->orig_bios, bio);
2346 				pkt->write_size +=
2347 					bio->bi_iter.bi_size / CD_FRAMESIZE;
2348 				if ((pkt->write_size >= pkt->frames) &&
2349 				    (pkt->state == PACKET_WAITING_STATE)) {
2350 					atomic_inc(&pkt->run_sm);
2351 					wake_up(&pd->wqueue);
2352 				}
2353 				spin_unlock(&pkt->lock);
2354 				spin_unlock(&pd->cdrw.active_list_lock);
2355 				return;
2356 			} else {
2357 				blocked_bio = 1;
2358 			}
2359 			spin_unlock(&pkt->lock);
2360 		}
2361 	}
2362 	spin_unlock(&pd->cdrw.active_list_lock);
2363 
2364  	/*
2365 	 * Test if there is enough room left in the bio work queue
2366 	 * (queue size >= congestion on mark).
2367 	 * If not, wait till the work queue size is below the congestion off mark.
2368 	 */
2369 	spin_lock(&pd->lock);
2370 	if (pd->write_congestion_on > 0
2371 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2372 		set_bdi_congested(q->backing_dev_info, BLK_RW_ASYNC);
2373 		do {
2374 			spin_unlock(&pd->lock);
2375 			congestion_wait(BLK_RW_ASYNC, HZ);
2376 			spin_lock(&pd->lock);
2377 		} while(pd->bio_queue_size > pd->write_congestion_off);
2378 	}
2379 	spin_unlock(&pd->lock);
2380 
2381 	/*
2382 	 * No matching packet found. Store the bio in the work queue.
2383 	 */
2384 	node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2385 	node->bio = bio;
2386 	spin_lock(&pd->lock);
2387 	BUG_ON(pd->bio_queue_size < 0);
2388 	was_empty = (pd->bio_queue_size == 0);
2389 	pkt_rbtree_insert(pd, node);
2390 	spin_unlock(&pd->lock);
2391 
2392 	/*
2393 	 * Wake up the worker thread.
2394 	 */
2395 	atomic_set(&pd->scan_queue, 1);
2396 	if (was_empty) {
2397 		/* This wake_up is required for correct operation */
2398 		wake_up(&pd->wqueue);
2399 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2400 		/*
2401 		 * This wake up is not required for correct operation,
2402 		 * but improves performance in some cases.
2403 		 */
2404 		wake_up(&pd->wqueue);
2405 	}
2406 }
2407 
2408 static blk_qc_t pkt_make_request(struct request_queue *q, struct bio *bio)
2409 {
2410 	struct pktcdvd_device *pd;
2411 	char b[BDEVNAME_SIZE];
2412 	struct bio *split;
2413 
2414 	blk_queue_split(q, &bio);
2415 
2416 	pd = q->queuedata;
2417 	if (!pd) {
2418 		pr_err("%s incorrect request queue\n", bio_devname(bio, b));
2419 		goto end_io;
2420 	}
2421 
2422 	pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2423 		(unsigned long long)bio->bi_iter.bi_sector,
2424 		(unsigned long long)bio_end_sector(bio));
2425 
2426 	/*
2427 	 * Clone READ bios so we can have our own bi_end_io callback.
2428 	 */
2429 	if (bio_data_dir(bio) == READ) {
2430 		pkt_make_request_read(pd, bio);
2431 		return BLK_QC_T_NONE;
2432 	}
2433 
2434 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2435 		pkt_notice(pd, "WRITE for ro device (%llu)\n",
2436 			   (unsigned long long)bio->bi_iter.bi_sector);
2437 		goto end_io;
2438 	}
2439 
2440 	if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2441 		pkt_err(pd, "wrong bio size\n");
2442 		goto end_io;
2443 	}
2444 
2445 	do {
2446 		sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2447 		sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2448 
2449 		if (last_zone != zone) {
2450 			BUG_ON(last_zone != zone + pd->settings.size);
2451 
2452 			split = bio_split(bio, last_zone -
2453 					  bio->bi_iter.bi_sector,
2454 					  GFP_NOIO, &pkt_bio_set);
2455 			bio_chain(split, bio);
2456 		} else {
2457 			split = bio;
2458 		}
2459 
2460 		pkt_make_request_write(q, split);
2461 	} while (split != bio);
2462 
2463 	return BLK_QC_T_NONE;
2464 end_io:
2465 	bio_io_error(bio);
2466 	return BLK_QC_T_NONE;
2467 }
2468 
2469 static void pkt_init_queue(struct pktcdvd_device *pd)
2470 {
2471 	struct request_queue *q = pd->disk->queue;
2472 
2473 	blk_queue_make_request(q, pkt_make_request);
2474 	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2475 	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2476 	q->queuedata = pd;
2477 }
2478 
2479 static int pkt_seq_show(struct seq_file *m, void *p)
2480 {
2481 	struct pktcdvd_device *pd = m->private;
2482 	char *msg;
2483 	char bdev_buf[BDEVNAME_SIZE];
2484 	int states[PACKET_NUM_STATES];
2485 
2486 	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2487 		   bdevname(pd->bdev, bdev_buf));
2488 
2489 	seq_printf(m, "\nSettings:\n");
2490 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2491 
2492 	if (pd->settings.write_type == 0)
2493 		msg = "Packet";
2494 	else
2495 		msg = "Unknown";
2496 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2497 
2498 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2499 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2500 
2501 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2502 
2503 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2504 		msg = "Mode 1";
2505 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2506 		msg = "Mode 2";
2507 	else
2508 		msg = "Unknown";
2509 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2510 
2511 	seq_printf(m, "\nStatistics:\n");
2512 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2513 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2514 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2515 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2516 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2517 
2518 	seq_printf(m, "\nMisc:\n");
2519 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2520 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2521 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2522 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2523 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2524 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2525 
2526 	seq_printf(m, "\nQueue state:\n");
2527 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2528 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2529 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2530 
2531 	pkt_count_states(pd, states);
2532 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2533 		   states[0], states[1], states[2], states[3], states[4], states[5]);
2534 
2535 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2536 			pd->write_congestion_off,
2537 			pd->write_congestion_on);
2538 	return 0;
2539 }
2540 
2541 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2542 {
2543 	int i;
2544 	int ret = 0;
2545 	char b[BDEVNAME_SIZE];
2546 	struct block_device *bdev;
2547 
2548 	if (pd->pkt_dev == dev) {
2549 		pkt_err(pd, "recursive setup not allowed\n");
2550 		return -EBUSY;
2551 	}
2552 	for (i = 0; i < MAX_WRITERS; i++) {
2553 		struct pktcdvd_device *pd2 = pkt_devs[i];
2554 		if (!pd2)
2555 			continue;
2556 		if (pd2->bdev->bd_dev == dev) {
2557 			pkt_err(pd, "%s already setup\n",
2558 				bdevname(pd2->bdev, b));
2559 			return -EBUSY;
2560 		}
2561 		if (pd2->pkt_dev == dev) {
2562 			pkt_err(pd, "can't chain pktcdvd devices\n");
2563 			return -EBUSY;
2564 		}
2565 	}
2566 
2567 	bdev = bdget(dev);
2568 	if (!bdev)
2569 		return -ENOMEM;
2570 	ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2571 	if (ret)
2572 		return ret;
2573 	if (!blk_queue_scsi_passthrough(bdev_get_queue(bdev))) {
2574 		WARN_ONCE(true, "Attempt to register a non-SCSI queue\n");
2575 		blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2576 		return -EINVAL;
2577 	}
2578 
2579 	/* This is safe, since we have a reference from open(). */
2580 	__module_get(THIS_MODULE);
2581 
2582 	pd->bdev = bdev;
2583 	set_blocksize(bdev, CD_FRAMESIZE);
2584 
2585 	pkt_init_queue(pd);
2586 
2587 	atomic_set(&pd->cdrw.pending_bios, 0);
2588 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2589 	if (IS_ERR(pd->cdrw.thread)) {
2590 		pkt_err(pd, "can't start kernel thread\n");
2591 		ret = -ENOMEM;
2592 		goto out_mem;
2593 	}
2594 
2595 	proc_create_single_data(pd->name, 0, pkt_proc, pkt_seq_show, pd);
2596 	pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2597 	return 0;
2598 
2599 out_mem:
2600 	blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2601 	/* This is safe: open() is still holding a reference. */
2602 	module_put(THIS_MODULE);
2603 	return ret;
2604 }
2605 
2606 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2607 {
2608 	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2609 	int ret;
2610 
2611 	pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2612 		cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2613 
2614 	mutex_lock(&pktcdvd_mutex);
2615 	switch (cmd) {
2616 	case CDROMEJECT:
2617 		/*
2618 		 * The door gets locked when the device is opened, so we
2619 		 * have to unlock it or else the eject command fails.
2620 		 */
2621 		if (pd->refcnt == 1)
2622 			pkt_lock_door(pd, 0);
2623 		/* fallthru */
2624 	/*
2625 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2626 	 */
2627 	case CDROMMULTISESSION:
2628 	case CDROMREADTOCENTRY:
2629 	case CDROM_LAST_WRITTEN:
2630 	case CDROM_SEND_PACKET:
2631 	case SCSI_IOCTL_SEND_COMMAND:
2632 		ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2633 		break;
2634 
2635 	default:
2636 		pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2637 		ret = -ENOTTY;
2638 	}
2639 	mutex_unlock(&pktcdvd_mutex);
2640 
2641 	return ret;
2642 }
2643 
2644 static unsigned int pkt_check_events(struct gendisk *disk,
2645 				     unsigned int clearing)
2646 {
2647 	struct pktcdvd_device *pd = disk->private_data;
2648 	struct gendisk *attached_disk;
2649 
2650 	if (!pd)
2651 		return 0;
2652 	if (!pd->bdev)
2653 		return 0;
2654 	attached_disk = pd->bdev->bd_disk;
2655 	if (!attached_disk || !attached_disk->fops->check_events)
2656 		return 0;
2657 	return attached_disk->fops->check_events(attached_disk, clearing);
2658 }
2659 
2660 static const struct block_device_operations pktcdvd_ops = {
2661 	.owner =		THIS_MODULE,
2662 	.open =			pkt_open,
2663 	.release =		pkt_close,
2664 	.ioctl =		pkt_ioctl,
2665 	.check_events =		pkt_check_events,
2666 };
2667 
2668 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2669 {
2670 	return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2671 }
2672 
2673 /*
2674  * Set up mapping from pktcdvd device to CD-ROM device.
2675  */
2676 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2677 {
2678 	int idx;
2679 	int ret = -ENOMEM;
2680 	struct pktcdvd_device *pd;
2681 	struct gendisk *disk;
2682 
2683 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2684 
2685 	for (idx = 0; idx < MAX_WRITERS; idx++)
2686 		if (!pkt_devs[idx])
2687 			break;
2688 	if (idx == MAX_WRITERS) {
2689 		pr_err("max %d writers supported\n", MAX_WRITERS);
2690 		ret = -EBUSY;
2691 		goto out_mutex;
2692 	}
2693 
2694 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2695 	if (!pd)
2696 		goto out_mutex;
2697 
2698 	ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2699 					sizeof(struct pkt_rb_node));
2700 	if (ret)
2701 		goto out_mem;
2702 
2703 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2704 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2705 	spin_lock_init(&pd->cdrw.active_list_lock);
2706 
2707 	spin_lock_init(&pd->lock);
2708 	spin_lock_init(&pd->iosched.lock);
2709 	bio_list_init(&pd->iosched.read_queue);
2710 	bio_list_init(&pd->iosched.write_queue);
2711 	sprintf(pd->name, DRIVER_NAME"%d", idx);
2712 	init_waitqueue_head(&pd->wqueue);
2713 	pd->bio_queue = RB_ROOT;
2714 
2715 	pd->write_congestion_on  = write_congestion_on;
2716 	pd->write_congestion_off = write_congestion_off;
2717 
2718 	disk = alloc_disk(1);
2719 	if (!disk)
2720 		goto out_mem;
2721 	pd->disk = disk;
2722 	disk->major = pktdev_major;
2723 	disk->first_minor = idx;
2724 	disk->fops = &pktcdvd_ops;
2725 	disk->flags = GENHD_FL_REMOVABLE;
2726 	strcpy(disk->disk_name, pd->name);
2727 	disk->devnode = pktcdvd_devnode;
2728 	disk->private_data = pd;
2729 	disk->queue = blk_alloc_queue(GFP_KERNEL);
2730 	if (!disk->queue)
2731 		goto out_mem2;
2732 
2733 	pd->pkt_dev = MKDEV(pktdev_major, idx);
2734 	ret = pkt_new_dev(pd, dev);
2735 	if (ret)
2736 		goto out_mem2;
2737 
2738 	/* inherit events of the host device */
2739 	disk->events = pd->bdev->bd_disk->events;
2740 	disk->async_events = pd->bdev->bd_disk->async_events;
2741 
2742 	add_disk(disk);
2743 
2744 	pkt_sysfs_dev_new(pd);
2745 	pkt_debugfs_dev_new(pd);
2746 
2747 	pkt_devs[idx] = pd;
2748 	if (pkt_dev)
2749 		*pkt_dev = pd->pkt_dev;
2750 
2751 	mutex_unlock(&ctl_mutex);
2752 	return 0;
2753 
2754 out_mem2:
2755 	put_disk(disk);
2756 out_mem:
2757 	mempool_exit(&pd->rb_pool);
2758 	kfree(pd);
2759 out_mutex:
2760 	mutex_unlock(&ctl_mutex);
2761 	pr_err("setup of pktcdvd device failed\n");
2762 	return ret;
2763 }
2764 
2765 /*
2766  * Tear down mapping from pktcdvd device to CD-ROM device.
2767  */
2768 static int pkt_remove_dev(dev_t pkt_dev)
2769 {
2770 	struct pktcdvd_device *pd;
2771 	int idx;
2772 	int ret = 0;
2773 
2774 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2775 
2776 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2777 		pd = pkt_devs[idx];
2778 		if (pd && (pd->pkt_dev == pkt_dev))
2779 			break;
2780 	}
2781 	if (idx == MAX_WRITERS) {
2782 		pr_debug("dev not setup\n");
2783 		ret = -ENXIO;
2784 		goto out;
2785 	}
2786 
2787 	if (pd->refcnt > 0) {
2788 		ret = -EBUSY;
2789 		goto out;
2790 	}
2791 	if (!IS_ERR(pd->cdrw.thread))
2792 		kthread_stop(pd->cdrw.thread);
2793 
2794 	pkt_devs[idx] = NULL;
2795 
2796 	pkt_debugfs_dev_remove(pd);
2797 	pkt_sysfs_dev_remove(pd);
2798 
2799 	blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2800 
2801 	remove_proc_entry(pd->name, pkt_proc);
2802 	pkt_dbg(1, pd, "writer unmapped\n");
2803 
2804 	del_gendisk(pd->disk);
2805 	blk_cleanup_queue(pd->disk->queue);
2806 	put_disk(pd->disk);
2807 
2808 	mempool_exit(&pd->rb_pool);
2809 	kfree(pd);
2810 
2811 	/* This is safe: open() is still holding a reference. */
2812 	module_put(THIS_MODULE);
2813 
2814 out:
2815 	mutex_unlock(&ctl_mutex);
2816 	return ret;
2817 }
2818 
2819 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2820 {
2821 	struct pktcdvd_device *pd;
2822 
2823 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2824 
2825 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2826 	if (pd) {
2827 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2828 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2829 	} else {
2830 		ctrl_cmd->dev = 0;
2831 		ctrl_cmd->pkt_dev = 0;
2832 	}
2833 	ctrl_cmd->num_devices = MAX_WRITERS;
2834 
2835 	mutex_unlock(&ctl_mutex);
2836 }
2837 
2838 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2839 {
2840 	void __user *argp = (void __user *)arg;
2841 	struct pkt_ctrl_command ctrl_cmd;
2842 	int ret = 0;
2843 	dev_t pkt_dev = 0;
2844 
2845 	if (cmd != PACKET_CTRL_CMD)
2846 		return -ENOTTY;
2847 
2848 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2849 		return -EFAULT;
2850 
2851 	switch (ctrl_cmd.command) {
2852 	case PKT_CTRL_CMD_SETUP:
2853 		if (!capable(CAP_SYS_ADMIN))
2854 			return -EPERM;
2855 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2856 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2857 		break;
2858 	case PKT_CTRL_CMD_TEARDOWN:
2859 		if (!capable(CAP_SYS_ADMIN))
2860 			return -EPERM;
2861 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2862 		break;
2863 	case PKT_CTRL_CMD_STATUS:
2864 		pkt_get_status(&ctrl_cmd);
2865 		break;
2866 	default:
2867 		return -ENOTTY;
2868 	}
2869 
2870 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2871 		return -EFAULT;
2872 	return ret;
2873 }
2874 
2875 #ifdef CONFIG_COMPAT
2876 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2877 {
2878 	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2879 }
2880 #endif
2881 
2882 static const struct file_operations pkt_ctl_fops = {
2883 	.open		= nonseekable_open,
2884 	.unlocked_ioctl	= pkt_ctl_ioctl,
2885 #ifdef CONFIG_COMPAT
2886 	.compat_ioctl	= pkt_ctl_compat_ioctl,
2887 #endif
2888 	.owner		= THIS_MODULE,
2889 	.llseek		= no_llseek,
2890 };
2891 
2892 static struct miscdevice pkt_misc = {
2893 	.minor 		= MISC_DYNAMIC_MINOR,
2894 	.name  		= DRIVER_NAME,
2895 	.nodename	= "pktcdvd/control",
2896 	.fops  		= &pkt_ctl_fops
2897 };
2898 
2899 static int __init pkt_init(void)
2900 {
2901 	int ret;
2902 
2903 	mutex_init(&ctl_mutex);
2904 
2905 	ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2906 				    sizeof(struct packet_stacked_data));
2907 	if (ret)
2908 		return ret;
2909 	ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2910 	if (ret) {
2911 		mempool_exit(&psd_pool);
2912 		return ret;
2913 	}
2914 
2915 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2916 	if (ret < 0) {
2917 		pr_err("unable to register block device\n");
2918 		goto out2;
2919 	}
2920 	if (!pktdev_major)
2921 		pktdev_major = ret;
2922 
2923 	ret = pkt_sysfs_init();
2924 	if (ret)
2925 		goto out;
2926 
2927 	pkt_debugfs_init();
2928 
2929 	ret = misc_register(&pkt_misc);
2930 	if (ret) {
2931 		pr_err("unable to register misc device\n");
2932 		goto out_misc;
2933 	}
2934 
2935 	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2936 
2937 	return 0;
2938 
2939 out_misc:
2940 	pkt_debugfs_cleanup();
2941 	pkt_sysfs_cleanup();
2942 out:
2943 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2944 out2:
2945 	mempool_exit(&psd_pool);
2946 	bioset_exit(&pkt_bio_set);
2947 	return ret;
2948 }
2949 
2950 static void __exit pkt_exit(void)
2951 {
2952 	remove_proc_entry("driver/"DRIVER_NAME, NULL);
2953 	misc_deregister(&pkt_misc);
2954 
2955 	pkt_debugfs_cleanup();
2956 	pkt_sysfs_cleanup();
2957 
2958 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2959 	mempool_exit(&psd_pool);
2960 	bioset_exit(&pkt_bio_set);
2961 }
2962 
2963 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2964 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2965 MODULE_LICENSE("GPL");
2966 
2967 module_init(pkt_init);
2968 module_exit(pkt_exit);
2969