xref: /openbmc/linux/drivers/block/pktcdvd.c (revision 64c70b1c)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom make_request_fn function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/freezer.h>
59 #include <linux/mutex.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_ioctl.h>
62 #include <scsi/scsi.h>
63 #include <linux/debugfs.h>
64 #include <linux/device.h>
65 
66 #include <asm/uaccess.h>
67 
68 #define DRIVER_NAME	"pktcdvd"
69 
70 #if PACKET_DEBUG
71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
72 #else
73 #define DPRINTK(fmt, args...)
74 #endif
75 
76 #if PACKET_DEBUG > 1
77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
78 #else
79 #define VPRINTK(fmt, args...)
80 #endif
81 
82 #define MAX_SPEED 0xffff
83 
84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
85 
86 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
87 static struct proc_dir_entry *pkt_proc;
88 static int pktdev_major;
89 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
90 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
91 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
92 static mempool_t *psd_pool;
93 
94 static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
95 static struct dentry	*pkt_debugfs_root = NULL; /* /debug/pktcdvd */
96 
97 /* forward declaration */
98 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
99 static int pkt_remove_dev(dev_t pkt_dev);
100 static int pkt_seq_show(struct seq_file *m, void *p);
101 
102 
103 
104 /*
105  * create and register a pktcdvd kernel object.
106  */
107 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
108 					const char* name,
109 					struct kobject* parent,
110 					struct kobj_type* ktype)
111 {
112 	struct pktcdvd_kobj *p;
113 	p = kzalloc(sizeof(*p), GFP_KERNEL);
114 	if (!p)
115 		return NULL;
116 	kobject_set_name(&p->kobj, "%s", name);
117 	p->kobj.parent = parent;
118 	p->kobj.ktype = ktype;
119 	p->pd = pd;
120 	if (kobject_register(&p->kobj) != 0)
121 		return NULL;
122 	return p;
123 }
124 /*
125  * remove a pktcdvd kernel object.
126  */
127 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
128 {
129 	if (p)
130 		kobject_unregister(&p->kobj);
131 }
132 /*
133  * default release function for pktcdvd kernel objects.
134  */
135 static void pkt_kobj_release(struct kobject *kobj)
136 {
137 	kfree(to_pktcdvdkobj(kobj));
138 }
139 
140 
141 /**********************************************************
142  *
143  * sysfs interface for pktcdvd
144  * by (C) 2006  Thomas Maier <balagi@justmail.de>
145  *
146  **********************************************************/
147 
148 #define DEF_ATTR(_obj,_name,_mode) \
149 	static struct attribute _obj = { \
150 		.name = _name, .owner = THIS_MODULE, .mode = _mode }
151 
152 /**********************************************************
153   /sys/class/pktcdvd/pktcdvd[0-7]/
154                      stat/reset
155                      stat/packets_started
156                      stat/packets_finished
157                      stat/kb_written
158                      stat/kb_read
159                      stat/kb_read_gather
160                      write_queue/size
161                      write_queue/congestion_off
162                      write_queue/congestion_on
163  **********************************************************/
164 
165 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
166 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
167 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
168 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
169 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
170 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
171 
172 static struct attribute *kobj_pkt_attrs_stat[] = {
173 	&kobj_pkt_attr_st1,
174 	&kobj_pkt_attr_st2,
175 	&kobj_pkt_attr_st3,
176 	&kobj_pkt_attr_st4,
177 	&kobj_pkt_attr_st5,
178 	&kobj_pkt_attr_st6,
179 	NULL
180 };
181 
182 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
183 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
184 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
185 
186 static struct attribute *kobj_pkt_attrs_wqueue[] = {
187 	&kobj_pkt_attr_wq1,
188 	&kobj_pkt_attr_wq2,
189 	&kobj_pkt_attr_wq3,
190 	NULL
191 };
192 
193 static ssize_t kobj_pkt_show(struct kobject *kobj,
194 			struct attribute *attr, char *data)
195 {
196 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
197 	int n = 0;
198 	int v;
199 	if (strcmp(attr->name, "packets_started") == 0) {
200 		n = sprintf(data, "%lu\n", pd->stats.pkt_started);
201 
202 	} else if (strcmp(attr->name, "packets_finished") == 0) {
203 		n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
204 
205 	} else if (strcmp(attr->name, "kb_written") == 0) {
206 		n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
207 
208 	} else if (strcmp(attr->name, "kb_read") == 0) {
209 		n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
210 
211 	} else if (strcmp(attr->name, "kb_read_gather") == 0) {
212 		n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
213 
214 	} else if (strcmp(attr->name, "size") == 0) {
215 		spin_lock(&pd->lock);
216 		v = pd->bio_queue_size;
217 		spin_unlock(&pd->lock);
218 		n = sprintf(data, "%d\n", v);
219 
220 	} else if (strcmp(attr->name, "congestion_off") == 0) {
221 		spin_lock(&pd->lock);
222 		v = pd->write_congestion_off;
223 		spin_unlock(&pd->lock);
224 		n = sprintf(data, "%d\n", v);
225 
226 	} else if (strcmp(attr->name, "congestion_on") == 0) {
227 		spin_lock(&pd->lock);
228 		v = pd->write_congestion_on;
229 		spin_unlock(&pd->lock);
230 		n = sprintf(data, "%d\n", v);
231 	}
232 	return n;
233 }
234 
235 static void init_write_congestion_marks(int* lo, int* hi)
236 {
237 	if (*hi > 0) {
238 		*hi = max(*hi, 500);
239 		*hi = min(*hi, 1000000);
240 		if (*lo <= 0)
241 			*lo = *hi - 100;
242 		else {
243 			*lo = min(*lo, *hi - 100);
244 			*lo = max(*lo, 100);
245 		}
246 	} else {
247 		*hi = -1;
248 		*lo = -1;
249 	}
250 }
251 
252 static ssize_t kobj_pkt_store(struct kobject *kobj,
253 			struct attribute *attr,
254 			const char *data, size_t len)
255 {
256 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
257 	int val;
258 
259 	if (strcmp(attr->name, "reset") == 0 && len > 0) {
260 		pd->stats.pkt_started = 0;
261 		pd->stats.pkt_ended = 0;
262 		pd->stats.secs_w = 0;
263 		pd->stats.secs_rg = 0;
264 		pd->stats.secs_r = 0;
265 
266 	} else if (strcmp(attr->name, "congestion_off") == 0
267 		   && sscanf(data, "%d", &val) == 1) {
268 		spin_lock(&pd->lock);
269 		pd->write_congestion_off = val;
270 		init_write_congestion_marks(&pd->write_congestion_off,
271 					&pd->write_congestion_on);
272 		spin_unlock(&pd->lock);
273 
274 	} else if (strcmp(attr->name, "congestion_on") == 0
275 		   && sscanf(data, "%d", &val) == 1) {
276 		spin_lock(&pd->lock);
277 		pd->write_congestion_on = val;
278 		init_write_congestion_marks(&pd->write_congestion_off,
279 					&pd->write_congestion_on);
280 		spin_unlock(&pd->lock);
281 	}
282 	return len;
283 }
284 
285 static struct sysfs_ops kobj_pkt_ops = {
286 	.show = kobj_pkt_show,
287 	.store = kobj_pkt_store
288 };
289 static struct kobj_type kobj_pkt_type_stat = {
290 	.release = pkt_kobj_release,
291 	.sysfs_ops = &kobj_pkt_ops,
292 	.default_attrs = kobj_pkt_attrs_stat
293 };
294 static struct kobj_type kobj_pkt_type_wqueue = {
295 	.release = pkt_kobj_release,
296 	.sysfs_ops = &kobj_pkt_ops,
297 	.default_attrs = kobj_pkt_attrs_wqueue
298 };
299 
300 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
301 {
302 	if (class_pktcdvd) {
303 		pd->clsdev = class_device_create(class_pktcdvd,
304 					NULL, pd->pkt_dev,
305 					NULL, "%s", pd->name);
306 		if (IS_ERR(pd->clsdev))
307 			pd->clsdev = NULL;
308 	}
309 	if (pd->clsdev) {
310 		pd->kobj_stat = pkt_kobj_create(pd, "stat",
311 					&pd->clsdev->kobj,
312 					&kobj_pkt_type_stat);
313 		pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
314 					&pd->clsdev->kobj,
315 					&kobj_pkt_type_wqueue);
316 	}
317 }
318 
319 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
320 {
321 	pkt_kobj_remove(pd->kobj_stat);
322 	pkt_kobj_remove(pd->kobj_wqueue);
323 	if (class_pktcdvd)
324 		class_device_destroy(class_pktcdvd, pd->pkt_dev);
325 }
326 
327 
328 /********************************************************************
329   /sys/class/pktcdvd/
330                      add            map block device
331                      remove         unmap packet dev
332                      device_map     show mappings
333  *******************************************************************/
334 
335 static void class_pktcdvd_release(struct class *cls)
336 {
337 	kfree(cls);
338 }
339 static ssize_t class_pktcdvd_show_map(struct class *c, char *data)
340 {
341 	int n = 0;
342 	int idx;
343 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
344 	for (idx = 0; idx < MAX_WRITERS; idx++) {
345 		struct pktcdvd_device *pd = pkt_devs[idx];
346 		if (!pd)
347 			continue;
348 		n += sprintf(data+n, "%s %u:%u %u:%u\n",
349 			pd->name,
350 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
351 			MAJOR(pd->bdev->bd_dev),
352 			MINOR(pd->bdev->bd_dev));
353 	}
354 	mutex_unlock(&ctl_mutex);
355 	return n;
356 }
357 
358 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf,
359 					size_t count)
360 {
361 	unsigned int major, minor;
362 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
363 		pkt_setup_dev(MKDEV(major, minor), NULL);
364 		return count;
365 	}
366 	return -EINVAL;
367 }
368 
369 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf,
370 					size_t count)
371 {
372 	unsigned int major, minor;
373 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
374 		pkt_remove_dev(MKDEV(major, minor));
375 		return count;
376 	}
377 	return -EINVAL;
378 }
379 
380 static struct class_attribute class_pktcdvd_attrs[] = {
381  __ATTR(add,            0200, NULL, class_pktcdvd_store_add),
382  __ATTR(remove,         0200, NULL, class_pktcdvd_store_remove),
383  __ATTR(device_map,     0444, class_pktcdvd_show_map, NULL),
384  __ATTR_NULL
385 };
386 
387 
388 static int pkt_sysfs_init(void)
389 {
390 	int ret = 0;
391 
392 	/*
393 	 * create control files in sysfs
394 	 * /sys/class/pktcdvd/...
395 	 */
396 	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
397 	if (!class_pktcdvd)
398 		return -ENOMEM;
399 	class_pktcdvd->name = DRIVER_NAME;
400 	class_pktcdvd->owner = THIS_MODULE;
401 	class_pktcdvd->class_release = class_pktcdvd_release;
402 	class_pktcdvd->class_attrs = class_pktcdvd_attrs;
403 	ret = class_register(class_pktcdvd);
404 	if (ret) {
405 		kfree(class_pktcdvd);
406 		class_pktcdvd = NULL;
407 		printk(DRIVER_NAME": failed to create class pktcdvd\n");
408 		return ret;
409 	}
410 	return 0;
411 }
412 
413 static void pkt_sysfs_cleanup(void)
414 {
415 	if (class_pktcdvd)
416 		class_destroy(class_pktcdvd);
417 	class_pktcdvd = NULL;
418 }
419 
420 /********************************************************************
421   entries in debugfs
422 
423   /debugfs/pktcdvd[0-7]/
424 			info
425 
426  *******************************************************************/
427 
428 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
429 {
430 	return pkt_seq_show(m, p);
431 }
432 
433 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
434 {
435 	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
436 }
437 
438 static const struct file_operations debug_fops = {
439 	.open		= pkt_debugfs_fops_open,
440 	.read		= seq_read,
441 	.llseek		= seq_lseek,
442 	.release	= single_release,
443 	.owner		= THIS_MODULE,
444 };
445 
446 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
447 {
448 	if (!pkt_debugfs_root)
449 		return;
450 	pd->dfs_f_info = NULL;
451 	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
452 	if (IS_ERR(pd->dfs_d_root)) {
453 		pd->dfs_d_root = NULL;
454 		return;
455 	}
456 	pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
457 				pd->dfs_d_root, pd, &debug_fops);
458 	if (IS_ERR(pd->dfs_f_info)) {
459 		pd->dfs_f_info = NULL;
460 		return;
461 	}
462 }
463 
464 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
465 {
466 	if (!pkt_debugfs_root)
467 		return;
468 	if (pd->dfs_f_info)
469 		debugfs_remove(pd->dfs_f_info);
470 	pd->dfs_f_info = NULL;
471 	if (pd->dfs_d_root)
472 		debugfs_remove(pd->dfs_d_root);
473 	pd->dfs_d_root = NULL;
474 }
475 
476 static void pkt_debugfs_init(void)
477 {
478 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
479 	if (IS_ERR(pkt_debugfs_root)) {
480 		pkt_debugfs_root = NULL;
481 		return;
482 	}
483 }
484 
485 static void pkt_debugfs_cleanup(void)
486 {
487 	if (!pkt_debugfs_root)
488 		return;
489 	debugfs_remove(pkt_debugfs_root);
490 	pkt_debugfs_root = NULL;
491 }
492 
493 /* ----------------------------------------------------------*/
494 
495 
496 static void pkt_bio_finished(struct pktcdvd_device *pd)
497 {
498 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
499 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
500 		VPRINTK(DRIVER_NAME": queue empty\n");
501 		atomic_set(&pd->iosched.attention, 1);
502 		wake_up(&pd->wqueue);
503 	}
504 }
505 
506 static void pkt_bio_destructor(struct bio *bio)
507 {
508 	kfree(bio->bi_io_vec);
509 	kfree(bio);
510 }
511 
512 static struct bio *pkt_bio_alloc(int nr_iovecs)
513 {
514 	struct bio_vec *bvl = NULL;
515 	struct bio *bio;
516 
517 	bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
518 	if (!bio)
519 		goto no_bio;
520 	bio_init(bio);
521 
522 	bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
523 	if (!bvl)
524 		goto no_bvl;
525 
526 	bio->bi_max_vecs = nr_iovecs;
527 	bio->bi_io_vec = bvl;
528 	bio->bi_destructor = pkt_bio_destructor;
529 
530 	return bio;
531 
532  no_bvl:
533 	kfree(bio);
534  no_bio:
535 	return NULL;
536 }
537 
538 /*
539  * Allocate a packet_data struct
540  */
541 static struct packet_data *pkt_alloc_packet_data(int frames)
542 {
543 	int i;
544 	struct packet_data *pkt;
545 
546 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
547 	if (!pkt)
548 		goto no_pkt;
549 
550 	pkt->frames = frames;
551 	pkt->w_bio = pkt_bio_alloc(frames);
552 	if (!pkt->w_bio)
553 		goto no_bio;
554 
555 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
556 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
557 		if (!pkt->pages[i])
558 			goto no_page;
559 	}
560 
561 	spin_lock_init(&pkt->lock);
562 
563 	for (i = 0; i < frames; i++) {
564 		struct bio *bio = pkt_bio_alloc(1);
565 		if (!bio)
566 			goto no_rd_bio;
567 		pkt->r_bios[i] = bio;
568 	}
569 
570 	return pkt;
571 
572 no_rd_bio:
573 	for (i = 0; i < frames; i++) {
574 		struct bio *bio = pkt->r_bios[i];
575 		if (bio)
576 			bio_put(bio);
577 	}
578 
579 no_page:
580 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
581 		if (pkt->pages[i])
582 			__free_page(pkt->pages[i]);
583 	bio_put(pkt->w_bio);
584 no_bio:
585 	kfree(pkt);
586 no_pkt:
587 	return NULL;
588 }
589 
590 /*
591  * Free a packet_data struct
592  */
593 static void pkt_free_packet_data(struct packet_data *pkt)
594 {
595 	int i;
596 
597 	for (i = 0; i < pkt->frames; i++) {
598 		struct bio *bio = pkt->r_bios[i];
599 		if (bio)
600 			bio_put(bio);
601 	}
602 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
603 		__free_page(pkt->pages[i]);
604 	bio_put(pkt->w_bio);
605 	kfree(pkt);
606 }
607 
608 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
609 {
610 	struct packet_data *pkt, *next;
611 
612 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
613 
614 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
615 		pkt_free_packet_data(pkt);
616 	}
617 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
618 }
619 
620 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
621 {
622 	struct packet_data *pkt;
623 
624 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
625 
626 	while (nr_packets > 0) {
627 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
628 		if (!pkt) {
629 			pkt_shrink_pktlist(pd);
630 			return 0;
631 		}
632 		pkt->id = nr_packets;
633 		pkt->pd = pd;
634 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
635 		nr_packets--;
636 	}
637 	return 1;
638 }
639 
640 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
641 {
642 	struct rb_node *n = rb_next(&node->rb_node);
643 	if (!n)
644 		return NULL;
645 	return rb_entry(n, struct pkt_rb_node, rb_node);
646 }
647 
648 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
649 {
650 	rb_erase(&node->rb_node, &pd->bio_queue);
651 	mempool_free(node, pd->rb_pool);
652 	pd->bio_queue_size--;
653 	BUG_ON(pd->bio_queue_size < 0);
654 }
655 
656 /*
657  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
658  */
659 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
660 {
661 	struct rb_node *n = pd->bio_queue.rb_node;
662 	struct rb_node *next;
663 	struct pkt_rb_node *tmp;
664 
665 	if (!n) {
666 		BUG_ON(pd->bio_queue_size > 0);
667 		return NULL;
668 	}
669 
670 	for (;;) {
671 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
672 		if (s <= tmp->bio->bi_sector)
673 			next = n->rb_left;
674 		else
675 			next = n->rb_right;
676 		if (!next)
677 			break;
678 		n = next;
679 	}
680 
681 	if (s > tmp->bio->bi_sector) {
682 		tmp = pkt_rbtree_next(tmp);
683 		if (!tmp)
684 			return NULL;
685 	}
686 	BUG_ON(s > tmp->bio->bi_sector);
687 	return tmp;
688 }
689 
690 /*
691  * Insert a node into the pd->bio_queue rb tree.
692  */
693 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
694 {
695 	struct rb_node **p = &pd->bio_queue.rb_node;
696 	struct rb_node *parent = NULL;
697 	sector_t s = node->bio->bi_sector;
698 	struct pkt_rb_node *tmp;
699 
700 	while (*p) {
701 		parent = *p;
702 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
703 		if (s < tmp->bio->bi_sector)
704 			p = &(*p)->rb_left;
705 		else
706 			p = &(*p)->rb_right;
707 	}
708 	rb_link_node(&node->rb_node, parent, p);
709 	rb_insert_color(&node->rb_node, &pd->bio_queue);
710 	pd->bio_queue_size++;
711 }
712 
713 /*
714  * Add a bio to a single linked list defined by its head and tail pointers.
715  */
716 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
717 {
718 	bio->bi_next = NULL;
719 	if (*list_tail) {
720 		BUG_ON((*list_head) == NULL);
721 		(*list_tail)->bi_next = bio;
722 		(*list_tail) = bio;
723 	} else {
724 		BUG_ON((*list_head) != NULL);
725 		(*list_head) = bio;
726 		(*list_tail) = bio;
727 	}
728 }
729 
730 /*
731  * Remove and return the first bio from a single linked list defined by its
732  * head and tail pointers.
733  */
734 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
735 {
736 	struct bio *bio;
737 
738 	if (*list_head == NULL)
739 		return NULL;
740 
741 	bio = *list_head;
742 	*list_head = bio->bi_next;
743 	if (*list_head == NULL)
744 		*list_tail = NULL;
745 
746 	bio->bi_next = NULL;
747 	return bio;
748 }
749 
750 /*
751  * Send a packet_command to the underlying block device and
752  * wait for completion.
753  */
754 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
755 {
756 	request_queue_t *q = bdev_get_queue(pd->bdev);
757 	struct request *rq;
758 	int ret = 0;
759 
760 	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
761 			     WRITE : READ, __GFP_WAIT);
762 
763 	if (cgc->buflen) {
764 		if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
765 			goto out;
766 	}
767 
768 	rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
769 	memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
770 	if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
771 		memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
772 
773 	rq->timeout = 60*HZ;
774 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
775 	rq->cmd_flags |= REQ_HARDBARRIER;
776 	if (cgc->quiet)
777 		rq->cmd_flags |= REQ_QUIET;
778 
779 	blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
780 	if (rq->errors)
781 		ret = -EIO;
782 out:
783 	blk_put_request(rq);
784 	return ret;
785 }
786 
787 /*
788  * A generic sense dump / resolve mechanism should be implemented across
789  * all ATAPI + SCSI devices.
790  */
791 static void pkt_dump_sense(struct packet_command *cgc)
792 {
793 	static char *info[9] = { "No sense", "Recovered error", "Not ready",
794 				 "Medium error", "Hardware error", "Illegal request",
795 				 "Unit attention", "Data protect", "Blank check" };
796 	int i;
797 	struct request_sense *sense = cgc->sense;
798 
799 	printk(DRIVER_NAME":");
800 	for (i = 0; i < CDROM_PACKET_SIZE; i++)
801 		printk(" %02x", cgc->cmd[i]);
802 	printk(" - ");
803 
804 	if (sense == NULL) {
805 		printk("no sense\n");
806 		return;
807 	}
808 
809 	printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
810 
811 	if (sense->sense_key > 8) {
812 		printk(" (INVALID)\n");
813 		return;
814 	}
815 
816 	printk(" (%s)\n", info[sense->sense_key]);
817 }
818 
819 /*
820  * flush the drive cache to media
821  */
822 static int pkt_flush_cache(struct pktcdvd_device *pd)
823 {
824 	struct packet_command cgc;
825 
826 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
827 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
828 	cgc.quiet = 1;
829 
830 	/*
831 	 * the IMMED bit -- we default to not setting it, although that
832 	 * would allow a much faster close, this is safer
833 	 */
834 #if 0
835 	cgc.cmd[1] = 1 << 1;
836 #endif
837 	return pkt_generic_packet(pd, &cgc);
838 }
839 
840 /*
841  * speed is given as the normal factor, e.g. 4 for 4x
842  */
843 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
844 {
845 	struct packet_command cgc;
846 	struct request_sense sense;
847 	int ret;
848 
849 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
850 	cgc.sense = &sense;
851 	cgc.cmd[0] = GPCMD_SET_SPEED;
852 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
853 	cgc.cmd[3] = read_speed & 0xff;
854 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
855 	cgc.cmd[5] = write_speed & 0xff;
856 
857 	if ((ret = pkt_generic_packet(pd, &cgc)))
858 		pkt_dump_sense(&cgc);
859 
860 	return ret;
861 }
862 
863 /*
864  * Queue a bio for processing by the low-level CD device. Must be called
865  * from process context.
866  */
867 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
868 {
869 	spin_lock(&pd->iosched.lock);
870 	if (bio_data_dir(bio) == READ) {
871 		pkt_add_list_last(bio, &pd->iosched.read_queue,
872 				  &pd->iosched.read_queue_tail);
873 	} else {
874 		pkt_add_list_last(bio, &pd->iosched.write_queue,
875 				  &pd->iosched.write_queue_tail);
876 	}
877 	spin_unlock(&pd->iosched.lock);
878 
879 	atomic_set(&pd->iosched.attention, 1);
880 	wake_up(&pd->wqueue);
881 }
882 
883 /*
884  * Process the queued read/write requests. This function handles special
885  * requirements for CDRW drives:
886  * - A cache flush command must be inserted before a read request if the
887  *   previous request was a write.
888  * - Switching between reading and writing is slow, so don't do it more often
889  *   than necessary.
890  * - Optimize for throughput at the expense of latency. This means that streaming
891  *   writes will never be interrupted by a read, but if the drive has to seek
892  *   before the next write, switch to reading instead if there are any pending
893  *   read requests.
894  * - Set the read speed according to current usage pattern. When only reading
895  *   from the device, it's best to use the highest possible read speed, but
896  *   when switching often between reading and writing, it's better to have the
897  *   same read and write speeds.
898  */
899 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
900 {
901 
902 	if (atomic_read(&pd->iosched.attention) == 0)
903 		return;
904 	atomic_set(&pd->iosched.attention, 0);
905 
906 	for (;;) {
907 		struct bio *bio;
908 		int reads_queued, writes_queued;
909 
910 		spin_lock(&pd->iosched.lock);
911 		reads_queued = (pd->iosched.read_queue != NULL);
912 		writes_queued = (pd->iosched.write_queue != NULL);
913 		spin_unlock(&pd->iosched.lock);
914 
915 		if (!reads_queued && !writes_queued)
916 			break;
917 
918 		if (pd->iosched.writing) {
919 			int need_write_seek = 1;
920 			spin_lock(&pd->iosched.lock);
921 			bio = pd->iosched.write_queue;
922 			spin_unlock(&pd->iosched.lock);
923 			if (bio && (bio->bi_sector == pd->iosched.last_write))
924 				need_write_seek = 0;
925 			if (need_write_seek && reads_queued) {
926 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
927 					VPRINTK(DRIVER_NAME": write, waiting\n");
928 					break;
929 				}
930 				pkt_flush_cache(pd);
931 				pd->iosched.writing = 0;
932 			}
933 		} else {
934 			if (!reads_queued && writes_queued) {
935 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
936 					VPRINTK(DRIVER_NAME": read, waiting\n");
937 					break;
938 				}
939 				pd->iosched.writing = 1;
940 			}
941 		}
942 
943 		spin_lock(&pd->iosched.lock);
944 		if (pd->iosched.writing) {
945 			bio = pkt_get_list_first(&pd->iosched.write_queue,
946 						 &pd->iosched.write_queue_tail);
947 		} else {
948 			bio = pkt_get_list_first(&pd->iosched.read_queue,
949 						 &pd->iosched.read_queue_tail);
950 		}
951 		spin_unlock(&pd->iosched.lock);
952 
953 		if (!bio)
954 			continue;
955 
956 		if (bio_data_dir(bio) == READ)
957 			pd->iosched.successive_reads += bio->bi_size >> 10;
958 		else {
959 			pd->iosched.successive_reads = 0;
960 			pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
961 		}
962 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
963 			if (pd->read_speed == pd->write_speed) {
964 				pd->read_speed = MAX_SPEED;
965 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
966 			}
967 		} else {
968 			if (pd->read_speed != pd->write_speed) {
969 				pd->read_speed = pd->write_speed;
970 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
971 			}
972 		}
973 
974 		atomic_inc(&pd->cdrw.pending_bios);
975 		generic_make_request(bio);
976 	}
977 }
978 
979 /*
980  * Special care is needed if the underlying block device has a small
981  * max_phys_segments value.
982  */
983 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
984 {
985 	if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
986 		/*
987 		 * The cdrom device can handle one segment/frame
988 		 */
989 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
990 		return 0;
991 	} else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
992 		/*
993 		 * We can handle this case at the expense of some extra memory
994 		 * copies during write operations
995 		 */
996 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
997 		return 0;
998 	} else {
999 		printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
1000 		return -EIO;
1001 	}
1002 }
1003 
1004 /*
1005  * Copy CD_FRAMESIZE bytes from src_bio into a destination page
1006  */
1007 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
1008 {
1009 	unsigned int copy_size = CD_FRAMESIZE;
1010 
1011 	while (copy_size > 0) {
1012 		struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
1013 		void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
1014 			src_bvl->bv_offset + offs;
1015 		void *vto = page_address(dst_page) + dst_offs;
1016 		int len = min_t(int, copy_size, src_bvl->bv_len - offs);
1017 
1018 		BUG_ON(len < 0);
1019 		memcpy(vto, vfrom, len);
1020 		kunmap_atomic(vfrom, KM_USER0);
1021 
1022 		seg++;
1023 		offs = 0;
1024 		dst_offs += len;
1025 		copy_size -= len;
1026 	}
1027 }
1028 
1029 /*
1030  * Copy all data for this packet to pkt->pages[], so that
1031  * a) The number of required segments for the write bio is minimized, which
1032  *    is necessary for some scsi controllers.
1033  * b) The data can be used as cache to avoid read requests if we receive a
1034  *    new write request for the same zone.
1035  */
1036 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1037 {
1038 	int f, p, offs;
1039 
1040 	/* Copy all data to pkt->pages[] */
1041 	p = 0;
1042 	offs = 0;
1043 	for (f = 0; f < pkt->frames; f++) {
1044 		if (bvec[f].bv_page != pkt->pages[p]) {
1045 			void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1046 			void *vto = page_address(pkt->pages[p]) + offs;
1047 			memcpy(vto, vfrom, CD_FRAMESIZE);
1048 			kunmap_atomic(vfrom, KM_USER0);
1049 			bvec[f].bv_page = pkt->pages[p];
1050 			bvec[f].bv_offset = offs;
1051 		} else {
1052 			BUG_ON(bvec[f].bv_offset != offs);
1053 		}
1054 		offs += CD_FRAMESIZE;
1055 		if (offs >= PAGE_SIZE) {
1056 			offs = 0;
1057 			p++;
1058 		}
1059 	}
1060 }
1061 
1062 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
1063 {
1064 	struct packet_data *pkt = bio->bi_private;
1065 	struct pktcdvd_device *pd = pkt->pd;
1066 	BUG_ON(!pd);
1067 
1068 	if (bio->bi_size)
1069 		return 1;
1070 
1071 	VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1072 		(unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1073 
1074 	if (err)
1075 		atomic_inc(&pkt->io_errors);
1076 	if (atomic_dec_and_test(&pkt->io_wait)) {
1077 		atomic_inc(&pkt->run_sm);
1078 		wake_up(&pd->wqueue);
1079 	}
1080 	pkt_bio_finished(pd);
1081 
1082 	return 0;
1083 }
1084 
1085 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
1086 {
1087 	struct packet_data *pkt = bio->bi_private;
1088 	struct pktcdvd_device *pd = pkt->pd;
1089 	BUG_ON(!pd);
1090 
1091 	if (bio->bi_size)
1092 		return 1;
1093 
1094 	VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1095 
1096 	pd->stats.pkt_ended++;
1097 
1098 	pkt_bio_finished(pd);
1099 	atomic_dec(&pkt->io_wait);
1100 	atomic_inc(&pkt->run_sm);
1101 	wake_up(&pd->wqueue);
1102 	return 0;
1103 }
1104 
1105 /*
1106  * Schedule reads for the holes in a packet
1107  */
1108 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1109 {
1110 	int frames_read = 0;
1111 	struct bio *bio;
1112 	int f;
1113 	char written[PACKET_MAX_SIZE];
1114 
1115 	BUG_ON(!pkt->orig_bios);
1116 
1117 	atomic_set(&pkt->io_wait, 0);
1118 	atomic_set(&pkt->io_errors, 0);
1119 
1120 	/*
1121 	 * Figure out which frames we need to read before we can write.
1122 	 */
1123 	memset(written, 0, sizeof(written));
1124 	spin_lock(&pkt->lock);
1125 	for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1126 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1127 		int num_frames = bio->bi_size / CD_FRAMESIZE;
1128 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1129 		BUG_ON(first_frame < 0);
1130 		BUG_ON(first_frame + num_frames > pkt->frames);
1131 		for (f = first_frame; f < first_frame + num_frames; f++)
1132 			written[f] = 1;
1133 	}
1134 	spin_unlock(&pkt->lock);
1135 
1136 	if (pkt->cache_valid) {
1137 		VPRINTK("pkt_gather_data: zone %llx cached\n",
1138 			(unsigned long long)pkt->sector);
1139 		goto out_account;
1140 	}
1141 
1142 	/*
1143 	 * Schedule reads for missing parts of the packet.
1144 	 */
1145 	for (f = 0; f < pkt->frames; f++) {
1146 		int p, offset;
1147 		if (written[f])
1148 			continue;
1149 		bio = pkt->r_bios[f];
1150 		bio_init(bio);
1151 		bio->bi_max_vecs = 1;
1152 		bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1153 		bio->bi_bdev = pd->bdev;
1154 		bio->bi_end_io = pkt_end_io_read;
1155 		bio->bi_private = pkt;
1156 
1157 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1158 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1159 		VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1160 			f, pkt->pages[p], offset);
1161 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1162 			BUG();
1163 
1164 		atomic_inc(&pkt->io_wait);
1165 		bio->bi_rw = READ;
1166 		pkt_queue_bio(pd, bio);
1167 		frames_read++;
1168 	}
1169 
1170 out_account:
1171 	VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1172 		frames_read, (unsigned long long)pkt->sector);
1173 	pd->stats.pkt_started++;
1174 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1175 }
1176 
1177 /*
1178  * Find a packet matching zone, or the least recently used packet if
1179  * there is no match.
1180  */
1181 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1182 {
1183 	struct packet_data *pkt;
1184 
1185 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1186 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1187 			list_del_init(&pkt->list);
1188 			if (pkt->sector != zone)
1189 				pkt->cache_valid = 0;
1190 			return pkt;
1191 		}
1192 	}
1193 	BUG();
1194 	return NULL;
1195 }
1196 
1197 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1198 {
1199 	if (pkt->cache_valid) {
1200 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1201 	} else {
1202 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1203 	}
1204 }
1205 
1206 /*
1207  * recover a failed write, query for relocation if possible
1208  *
1209  * returns 1 if recovery is possible, or 0 if not
1210  *
1211  */
1212 static int pkt_start_recovery(struct packet_data *pkt)
1213 {
1214 	/*
1215 	 * FIXME. We need help from the file system to implement
1216 	 * recovery handling.
1217 	 */
1218 	return 0;
1219 #if 0
1220 	struct request *rq = pkt->rq;
1221 	struct pktcdvd_device *pd = rq->rq_disk->private_data;
1222 	struct block_device *pkt_bdev;
1223 	struct super_block *sb = NULL;
1224 	unsigned long old_block, new_block;
1225 	sector_t new_sector;
1226 
1227 	pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1228 	if (pkt_bdev) {
1229 		sb = get_super(pkt_bdev);
1230 		bdput(pkt_bdev);
1231 	}
1232 
1233 	if (!sb)
1234 		return 0;
1235 
1236 	if (!sb->s_op || !sb->s_op->relocate_blocks)
1237 		goto out;
1238 
1239 	old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1240 	if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1241 		goto out;
1242 
1243 	new_sector = new_block * (CD_FRAMESIZE >> 9);
1244 	pkt->sector = new_sector;
1245 
1246 	pkt->bio->bi_sector = new_sector;
1247 	pkt->bio->bi_next = NULL;
1248 	pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1249 	pkt->bio->bi_idx = 0;
1250 
1251 	BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
1252 	BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1253 	BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1254 	BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1255 	BUG_ON(pkt->bio->bi_private != pkt);
1256 
1257 	drop_super(sb);
1258 	return 1;
1259 
1260 out:
1261 	drop_super(sb);
1262 	return 0;
1263 #endif
1264 }
1265 
1266 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1267 {
1268 #if PACKET_DEBUG > 1
1269 	static const char *state_name[] = {
1270 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1271 	};
1272 	enum packet_data_state old_state = pkt->state;
1273 	VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1274 		state_name[old_state], state_name[state]);
1275 #endif
1276 	pkt->state = state;
1277 }
1278 
1279 /*
1280  * Scan the work queue to see if we can start a new packet.
1281  * returns non-zero if any work was done.
1282  */
1283 static int pkt_handle_queue(struct pktcdvd_device *pd)
1284 {
1285 	struct packet_data *pkt, *p;
1286 	struct bio *bio = NULL;
1287 	sector_t zone = 0; /* Suppress gcc warning */
1288 	struct pkt_rb_node *node, *first_node;
1289 	struct rb_node *n;
1290 	int wakeup;
1291 
1292 	VPRINTK("handle_queue\n");
1293 
1294 	atomic_set(&pd->scan_queue, 0);
1295 
1296 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1297 		VPRINTK("handle_queue: no pkt\n");
1298 		return 0;
1299 	}
1300 
1301 	/*
1302 	 * Try to find a zone we are not already working on.
1303 	 */
1304 	spin_lock(&pd->lock);
1305 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1306 	if (!first_node) {
1307 		n = rb_first(&pd->bio_queue);
1308 		if (n)
1309 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1310 	}
1311 	node = first_node;
1312 	while (node) {
1313 		bio = node->bio;
1314 		zone = ZONE(bio->bi_sector, pd);
1315 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1316 			if (p->sector == zone) {
1317 				bio = NULL;
1318 				goto try_next_bio;
1319 			}
1320 		}
1321 		break;
1322 try_next_bio:
1323 		node = pkt_rbtree_next(node);
1324 		if (!node) {
1325 			n = rb_first(&pd->bio_queue);
1326 			if (n)
1327 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1328 		}
1329 		if (node == first_node)
1330 			node = NULL;
1331 	}
1332 	spin_unlock(&pd->lock);
1333 	if (!bio) {
1334 		VPRINTK("handle_queue: no bio\n");
1335 		return 0;
1336 	}
1337 
1338 	pkt = pkt_get_packet_data(pd, zone);
1339 
1340 	pd->current_sector = zone + pd->settings.size;
1341 	pkt->sector = zone;
1342 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1343 	pkt->write_size = 0;
1344 
1345 	/*
1346 	 * Scan work queue for bios in the same zone and link them
1347 	 * to this packet.
1348 	 */
1349 	spin_lock(&pd->lock);
1350 	VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1351 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1352 		bio = node->bio;
1353 		VPRINTK("pkt_handle_queue: found zone=%llx\n",
1354 			(unsigned long long)ZONE(bio->bi_sector, pd));
1355 		if (ZONE(bio->bi_sector, pd) != zone)
1356 			break;
1357 		pkt_rbtree_erase(pd, node);
1358 		spin_lock(&pkt->lock);
1359 		pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
1360 		pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1361 		spin_unlock(&pkt->lock);
1362 	}
1363 	/* check write congestion marks, and if bio_queue_size is
1364 	   below, wake up any waiters */
1365 	wakeup = (pd->write_congestion_on > 0
1366 	 		&& pd->bio_queue_size <= pd->write_congestion_off);
1367 	spin_unlock(&pd->lock);
1368 	if (wakeup)
1369 		clear_bdi_congested(&pd->disk->queue->backing_dev_info, WRITE);
1370 
1371 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1372 	pkt_set_state(pkt, PACKET_WAITING_STATE);
1373 	atomic_set(&pkt->run_sm, 1);
1374 
1375 	spin_lock(&pd->cdrw.active_list_lock);
1376 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1377 	spin_unlock(&pd->cdrw.active_list_lock);
1378 
1379 	return 1;
1380 }
1381 
1382 /*
1383  * Assemble a bio to write one packet and queue the bio for processing
1384  * by the underlying block device.
1385  */
1386 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1387 {
1388 	struct bio *bio;
1389 	int f;
1390 	int frames_write;
1391 	struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1392 
1393 	for (f = 0; f < pkt->frames; f++) {
1394 		bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1395 		bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1396 	}
1397 
1398 	/*
1399 	 * Fill-in bvec with data from orig_bios.
1400 	 */
1401 	frames_write = 0;
1402 	spin_lock(&pkt->lock);
1403 	for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1404 		int segment = bio->bi_idx;
1405 		int src_offs = 0;
1406 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1407 		int num_frames = bio->bi_size / CD_FRAMESIZE;
1408 		BUG_ON(first_frame < 0);
1409 		BUG_ON(first_frame + num_frames > pkt->frames);
1410 		for (f = first_frame; f < first_frame + num_frames; f++) {
1411 			struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1412 
1413 			while (src_offs >= src_bvl->bv_len) {
1414 				src_offs -= src_bvl->bv_len;
1415 				segment++;
1416 				BUG_ON(segment >= bio->bi_vcnt);
1417 				src_bvl = bio_iovec_idx(bio, segment);
1418 			}
1419 
1420 			if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1421 				bvec[f].bv_page = src_bvl->bv_page;
1422 				bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1423 			} else {
1424 				pkt_copy_bio_data(bio, segment, src_offs,
1425 						  bvec[f].bv_page, bvec[f].bv_offset);
1426 			}
1427 			src_offs += CD_FRAMESIZE;
1428 			frames_write++;
1429 		}
1430 	}
1431 	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1432 	spin_unlock(&pkt->lock);
1433 
1434 	VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1435 		frames_write, (unsigned long long)pkt->sector);
1436 	BUG_ON(frames_write != pkt->write_size);
1437 
1438 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1439 		pkt_make_local_copy(pkt, bvec);
1440 		pkt->cache_valid = 1;
1441 	} else {
1442 		pkt->cache_valid = 0;
1443 	}
1444 
1445 	/* Start the write request */
1446 	bio_init(pkt->w_bio);
1447 	pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1448 	pkt->w_bio->bi_sector = pkt->sector;
1449 	pkt->w_bio->bi_bdev = pd->bdev;
1450 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1451 	pkt->w_bio->bi_private = pkt;
1452 	for (f = 0; f < pkt->frames; f++)
1453 		if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1454 			BUG();
1455 	VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1456 
1457 	atomic_set(&pkt->io_wait, 1);
1458 	pkt->w_bio->bi_rw = WRITE;
1459 	pkt_queue_bio(pd, pkt->w_bio);
1460 }
1461 
1462 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1463 {
1464 	struct bio *bio, *next;
1465 
1466 	if (!uptodate)
1467 		pkt->cache_valid = 0;
1468 
1469 	/* Finish all bios corresponding to this packet */
1470 	bio = pkt->orig_bios;
1471 	while (bio) {
1472 		next = bio->bi_next;
1473 		bio->bi_next = NULL;
1474 		bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
1475 		bio = next;
1476 	}
1477 	pkt->orig_bios = pkt->orig_bios_tail = NULL;
1478 }
1479 
1480 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1481 {
1482 	int uptodate;
1483 
1484 	VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1485 
1486 	for (;;) {
1487 		switch (pkt->state) {
1488 		case PACKET_WAITING_STATE:
1489 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1490 				return;
1491 
1492 			pkt->sleep_time = 0;
1493 			pkt_gather_data(pd, pkt);
1494 			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1495 			break;
1496 
1497 		case PACKET_READ_WAIT_STATE:
1498 			if (atomic_read(&pkt->io_wait) > 0)
1499 				return;
1500 
1501 			if (atomic_read(&pkt->io_errors) > 0) {
1502 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1503 			} else {
1504 				pkt_start_write(pd, pkt);
1505 			}
1506 			break;
1507 
1508 		case PACKET_WRITE_WAIT_STATE:
1509 			if (atomic_read(&pkt->io_wait) > 0)
1510 				return;
1511 
1512 			if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1513 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1514 			} else {
1515 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1516 			}
1517 			break;
1518 
1519 		case PACKET_RECOVERY_STATE:
1520 			if (pkt_start_recovery(pkt)) {
1521 				pkt_start_write(pd, pkt);
1522 			} else {
1523 				VPRINTK("No recovery possible\n");
1524 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1525 			}
1526 			break;
1527 
1528 		case PACKET_FINISHED_STATE:
1529 			uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1530 			pkt_finish_packet(pkt, uptodate);
1531 			return;
1532 
1533 		default:
1534 			BUG();
1535 			break;
1536 		}
1537 	}
1538 }
1539 
1540 static void pkt_handle_packets(struct pktcdvd_device *pd)
1541 {
1542 	struct packet_data *pkt, *next;
1543 
1544 	VPRINTK("pkt_handle_packets\n");
1545 
1546 	/*
1547 	 * Run state machine for active packets
1548 	 */
1549 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1550 		if (atomic_read(&pkt->run_sm) > 0) {
1551 			atomic_set(&pkt->run_sm, 0);
1552 			pkt_run_state_machine(pd, pkt);
1553 		}
1554 	}
1555 
1556 	/*
1557 	 * Move no longer active packets to the free list
1558 	 */
1559 	spin_lock(&pd->cdrw.active_list_lock);
1560 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1561 		if (pkt->state == PACKET_FINISHED_STATE) {
1562 			list_del(&pkt->list);
1563 			pkt_put_packet_data(pd, pkt);
1564 			pkt_set_state(pkt, PACKET_IDLE_STATE);
1565 			atomic_set(&pd->scan_queue, 1);
1566 		}
1567 	}
1568 	spin_unlock(&pd->cdrw.active_list_lock);
1569 }
1570 
1571 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1572 {
1573 	struct packet_data *pkt;
1574 	int i;
1575 
1576 	for (i = 0; i < PACKET_NUM_STATES; i++)
1577 		states[i] = 0;
1578 
1579 	spin_lock(&pd->cdrw.active_list_lock);
1580 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1581 		states[pkt->state]++;
1582 	}
1583 	spin_unlock(&pd->cdrw.active_list_lock);
1584 }
1585 
1586 /*
1587  * kcdrwd is woken up when writes have been queued for one of our
1588  * registered devices
1589  */
1590 static int kcdrwd(void *foobar)
1591 {
1592 	struct pktcdvd_device *pd = foobar;
1593 	struct packet_data *pkt;
1594 	long min_sleep_time, residue;
1595 
1596 	set_user_nice(current, -20);
1597 
1598 	for (;;) {
1599 		DECLARE_WAITQUEUE(wait, current);
1600 
1601 		/*
1602 		 * Wait until there is something to do
1603 		 */
1604 		add_wait_queue(&pd->wqueue, &wait);
1605 		for (;;) {
1606 			set_current_state(TASK_INTERRUPTIBLE);
1607 
1608 			/* Check if we need to run pkt_handle_queue */
1609 			if (atomic_read(&pd->scan_queue) > 0)
1610 				goto work_to_do;
1611 
1612 			/* Check if we need to run the state machine for some packet */
1613 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1614 				if (atomic_read(&pkt->run_sm) > 0)
1615 					goto work_to_do;
1616 			}
1617 
1618 			/* Check if we need to process the iosched queues */
1619 			if (atomic_read(&pd->iosched.attention) != 0)
1620 				goto work_to_do;
1621 
1622 			/* Otherwise, go to sleep */
1623 			if (PACKET_DEBUG > 1) {
1624 				int states[PACKET_NUM_STATES];
1625 				pkt_count_states(pd, states);
1626 				VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1627 					states[0], states[1], states[2], states[3],
1628 					states[4], states[5]);
1629 			}
1630 
1631 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1632 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1633 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1634 					min_sleep_time = pkt->sleep_time;
1635 			}
1636 
1637 			generic_unplug_device(bdev_get_queue(pd->bdev));
1638 
1639 			VPRINTK("kcdrwd: sleeping\n");
1640 			residue = schedule_timeout(min_sleep_time);
1641 			VPRINTK("kcdrwd: wake up\n");
1642 
1643 			/* make swsusp happy with our thread */
1644 			try_to_freeze();
1645 
1646 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1647 				if (!pkt->sleep_time)
1648 					continue;
1649 				pkt->sleep_time -= min_sleep_time - residue;
1650 				if (pkt->sleep_time <= 0) {
1651 					pkt->sleep_time = 0;
1652 					atomic_inc(&pkt->run_sm);
1653 				}
1654 			}
1655 
1656 			if (signal_pending(current)) {
1657 				flush_signals(current);
1658 			}
1659 			if (kthread_should_stop())
1660 				break;
1661 		}
1662 work_to_do:
1663 		set_current_state(TASK_RUNNING);
1664 		remove_wait_queue(&pd->wqueue, &wait);
1665 
1666 		if (kthread_should_stop())
1667 			break;
1668 
1669 		/*
1670 		 * if pkt_handle_queue returns true, we can queue
1671 		 * another request.
1672 		 */
1673 		while (pkt_handle_queue(pd))
1674 			;
1675 
1676 		/*
1677 		 * Handle packet state machine
1678 		 */
1679 		pkt_handle_packets(pd);
1680 
1681 		/*
1682 		 * Handle iosched queues
1683 		 */
1684 		pkt_iosched_process_queue(pd);
1685 	}
1686 
1687 	return 0;
1688 }
1689 
1690 static void pkt_print_settings(struct pktcdvd_device *pd)
1691 {
1692 	printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1693 	printk("%u blocks, ", pd->settings.size >> 2);
1694 	printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1695 }
1696 
1697 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1698 {
1699 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1700 
1701 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1702 	cgc->cmd[2] = page_code | (page_control << 6);
1703 	cgc->cmd[7] = cgc->buflen >> 8;
1704 	cgc->cmd[8] = cgc->buflen & 0xff;
1705 	cgc->data_direction = CGC_DATA_READ;
1706 	return pkt_generic_packet(pd, cgc);
1707 }
1708 
1709 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1710 {
1711 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1712 	memset(cgc->buffer, 0, 2);
1713 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1714 	cgc->cmd[1] = 0x10;		/* PF */
1715 	cgc->cmd[7] = cgc->buflen >> 8;
1716 	cgc->cmd[8] = cgc->buflen & 0xff;
1717 	cgc->data_direction = CGC_DATA_WRITE;
1718 	return pkt_generic_packet(pd, cgc);
1719 }
1720 
1721 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1722 {
1723 	struct packet_command cgc;
1724 	int ret;
1725 
1726 	/* set up command and get the disc info */
1727 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1728 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1729 	cgc.cmd[8] = cgc.buflen = 2;
1730 	cgc.quiet = 1;
1731 
1732 	if ((ret = pkt_generic_packet(pd, &cgc)))
1733 		return ret;
1734 
1735 	/* not all drives have the same disc_info length, so requeue
1736 	 * packet with the length the drive tells us it can supply
1737 	 */
1738 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1739 		     sizeof(di->disc_information_length);
1740 
1741 	if (cgc.buflen > sizeof(disc_information))
1742 		cgc.buflen = sizeof(disc_information);
1743 
1744 	cgc.cmd[8] = cgc.buflen;
1745 	return pkt_generic_packet(pd, &cgc);
1746 }
1747 
1748 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1749 {
1750 	struct packet_command cgc;
1751 	int ret;
1752 
1753 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1754 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1755 	cgc.cmd[1] = type & 3;
1756 	cgc.cmd[4] = (track & 0xff00) >> 8;
1757 	cgc.cmd[5] = track & 0xff;
1758 	cgc.cmd[8] = 8;
1759 	cgc.quiet = 1;
1760 
1761 	if ((ret = pkt_generic_packet(pd, &cgc)))
1762 		return ret;
1763 
1764 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1765 		     sizeof(ti->track_information_length);
1766 
1767 	if (cgc.buflen > sizeof(track_information))
1768 		cgc.buflen = sizeof(track_information);
1769 
1770 	cgc.cmd[8] = cgc.buflen;
1771 	return pkt_generic_packet(pd, &cgc);
1772 }
1773 
1774 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1775 {
1776 	disc_information di;
1777 	track_information ti;
1778 	__u32 last_track;
1779 	int ret = -1;
1780 
1781 	if ((ret = pkt_get_disc_info(pd, &di)))
1782 		return ret;
1783 
1784 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1785 	if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1786 		return ret;
1787 
1788 	/* if this track is blank, try the previous. */
1789 	if (ti.blank) {
1790 		last_track--;
1791 		if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1792 			return ret;
1793 	}
1794 
1795 	/* if last recorded field is valid, return it. */
1796 	if (ti.lra_v) {
1797 		*last_written = be32_to_cpu(ti.last_rec_address);
1798 	} else {
1799 		/* make it up instead */
1800 		*last_written = be32_to_cpu(ti.track_start) +
1801 				be32_to_cpu(ti.track_size);
1802 		if (ti.free_blocks)
1803 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1804 	}
1805 	return 0;
1806 }
1807 
1808 /*
1809  * write mode select package based on pd->settings
1810  */
1811 static int pkt_set_write_settings(struct pktcdvd_device *pd)
1812 {
1813 	struct packet_command cgc;
1814 	struct request_sense sense;
1815 	write_param_page *wp;
1816 	char buffer[128];
1817 	int ret, size;
1818 
1819 	/* doesn't apply to DVD+RW or DVD-RAM */
1820 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1821 		return 0;
1822 
1823 	memset(buffer, 0, sizeof(buffer));
1824 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1825 	cgc.sense = &sense;
1826 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1827 		pkt_dump_sense(&cgc);
1828 		return ret;
1829 	}
1830 
1831 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1832 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1833 	if (size > sizeof(buffer))
1834 		size = sizeof(buffer);
1835 
1836 	/*
1837 	 * now get it all
1838 	 */
1839 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1840 	cgc.sense = &sense;
1841 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1842 		pkt_dump_sense(&cgc);
1843 		return ret;
1844 	}
1845 
1846 	/*
1847 	 * write page is offset header + block descriptor length
1848 	 */
1849 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1850 
1851 	wp->fp = pd->settings.fp;
1852 	wp->track_mode = pd->settings.track_mode;
1853 	wp->write_type = pd->settings.write_type;
1854 	wp->data_block_type = pd->settings.block_mode;
1855 
1856 	wp->multi_session = 0;
1857 
1858 #ifdef PACKET_USE_LS
1859 	wp->link_size = 7;
1860 	wp->ls_v = 1;
1861 #endif
1862 
1863 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1864 		wp->session_format = 0;
1865 		wp->subhdr2 = 0x20;
1866 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1867 		wp->session_format = 0x20;
1868 		wp->subhdr2 = 8;
1869 #if 0
1870 		wp->mcn[0] = 0x80;
1871 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1872 #endif
1873 	} else {
1874 		/*
1875 		 * paranoia
1876 		 */
1877 		printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1878 		return 1;
1879 	}
1880 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1881 
1882 	cgc.buflen = cgc.cmd[8] = size;
1883 	if ((ret = pkt_mode_select(pd, &cgc))) {
1884 		pkt_dump_sense(&cgc);
1885 		return ret;
1886 	}
1887 
1888 	pkt_print_settings(pd);
1889 	return 0;
1890 }
1891 
1892 /*
1893  * 1 -- we can write to this track, 0 -- we can't
1894  */
1895 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1896 {
1897 	switch (pd->mmc3_profile) {
1898 		case 0x1a: /* DVD+RW */
1899 		case 0x12: /* DVD-RAM */
1900 			/* The track is always writable on DVD+RW/DVD-RAM */
1901 			return 1;
1902 		default:
1903 			break;
1904 	}
1905 
1906 	if (!ti->packet || !ti->fp)
1907 		return 0;
1908 
1909 	/*
1910 	 * "good" settings as per Mt Fuji.
1911 	 */
1912 	if (ti->rt == 0 && ti->blank == 0)
1913 		return 1;
1914 
1915 	if (ti->rt == 0 && ti->blank == 1)
1916 		return 1;
1917 
1918 	if (ti->rt == 1 && ti->blank == 0)
1919 		return 1;
1920 
1921 	printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1922 	return 0;
1923 }
1924 
1925 /*
1926  * 1 -- we can write to this disc, 0 -- we can't
1927  */
1928 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1929 {
1930 	switch (pd->mmc3_profile) {
1931 		case 0x0a: /* CD-RW */
1932 		case 0xffff: /* MMC3 not supported */
1933 			break;
1934 		case 0x1a: /* DVD+RW */
1935 		case 0x13: /* DVD-RW */
1936 		case 0x12: /* DVD-RAM */
1937 			return 1;
1938 		default:
1939 			VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1940 			return 0;
1941 	}
1942 
1943 	/*
1944 	 * for disc type 0xff we should probably reserve a new track.
1945 	 * but i'm not sure, should we leave this to user apps? probably.
1946 	 */
1947 	if (di->disc_type == 0xff) {
1948 		printk(DRIVER_NAME": Unknown disc. No track?\n");
1949 		return 0;
1950 	}
1951 
1952 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1953 		printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1954 		return 0;
1955 	}
1956 
1957 	if (di->erasable == 0) {
1958 		printk(DRIVER_NAME": Disc not erasable\n");
1959 		return 0;
1960 	}
1961 
1962 	if (di->border_status == PACKET_SESSION_RESERVED) {
1963 		printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1964 		return 0;
1965 	}
1966 
1967 	return 1;
1968 }
1969 
1970 static int pkt_probe_settings(struct pktcdvd_device *pd)
1971 {
1972 	struct packet_command cgc;
1973 	unsigned char buf[12];
1974 	disc_information di;
1975 	track_information ti;
1976 	int ret, track;
1977 
1978 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1979 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1980 	cgc.cmd[8] = 8;
1981 	ret = pkt_generic_packet(pd, &cgc);
1982 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1983 
1984 	memset(&di, 0, sizeof(disc_information));
1985 	memset(&ti, 0, sizeof(track_information));
1986 
1987 	if ((ret = pkt_get_disc_info(pd, &di))) {
1988 		printk("failed get_disc\n");
1989 		return ret;
1990 	}
1991 
1992 	if (!pkt_writable_disc(pd, &di))
1993 		return -EROFS;
1994 
1995 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1996 
1997 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1998 	if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1999 		printk(DRIVER_NAME": failed get_track\n");
2000 		return ret;
2001 	}
2002 
2003 	if (!pkt_writable_track(pd, &ti)) {
2004 		printk(DRIVER_NAME": can't write to this track\n");
2005 		return -EROFS;
2006 	}
2007 
2008 	/*
2009 	 * we keep packet size in 512 byte units, makes it easier to
2010 	 * deal with request calculations.
2011 	 */
2012 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
2013 	if (pd->settings.size == 0) {
2014 		printk(DRIVER_NAME": detected zero packet size!\n");
2015 		return -ENXIO;
2016 	}
2017 	if (pd->settings.size > PACKET_MAX_SECTORS) {
2018 		printk(DRIVER_NAME": packet size is too big\n");
2019 		return -EROFS;
2020 	}
2021 	pd->settings.fp = ti.fp;
2022 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
2023 
2024 	if (ti.nwa_v) {
2025 		pd->nwa = be32_to_cpu(ti.next_writable);
2026 		set_bit(PACKET_NWA_VALID, &pd->flags);
2027 	}
2028 
2029 	/*
2030 	 * in theory we could use lra on -RW media as well and just zero
2031 	 * blocks that haven't been written yet, but in practice that
2032 	 * is just a no-go. we'll use that for -R, naturally.
2033 	 */
2034 	if (ti.lra_v) {
2035 		pd->lra = be32_to_cpu(ti.last_rec_address);
2036 		set_bit(PACKET_LRA_VALID, &pd->flags);
2037 	} else {
2038 		pd->lra = 0xffffffff;
2039 		set_bit(PACKET_LRA_VALID, &pd->flags);
2040 	}
2041 
2042 	/*
2043 	 * fine for now
2044 	 */
2045 	pd->settings.link_loss = 7;
2046 	pd->settings.write_type = 0;	/* packet */
2047 	pd->settings.track_mode = ti.track_mode;
2048 
2049 	/*
2050 	 * mode1 or mode2 disc
2051 	 */
2052 	switch (ti.data_mode) {
2053 		case PACKET_MODE1:
2054 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
2055 			break;
2056 		case PACKET_MODE2:
2057 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
2058 			break;
2059 		default:
2060 			printk(DRIVER_NAME": unknown data mode\n");
2061 			return -EROFS;
2062 	}
2063 	return 0;
2064 }
2065 
2066 /*
2067  * enable/disable write caching on drive
2068  */
2069 static int pkt_write_caching(struct pktcdvd_device *pd, int set)
2070 {
2071 	struct packet_command cgc;
2072 	struct request_sense sense;
2073 	unsigned char buf[64];
2074 	int ret;
2075 
2076 	memset(buf, 0, sizeof(buf));
2077 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2078 	cgc.sense = &sense;
2079 	cgc.buflen = pd->mode_offset + 12;
2080 
2081 	/*
2082 	 * caching mode page might not be there, so quiet this command
2083 	 */
2084 	cgc.quiet = 1;
2085 
2086 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2087 		return ret;
2088 
2089 	buf[pd->mode_offset + 10] |= (!!set << 2);
2090 
2091 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2092 	ret = pkt_mode_select(pd, &cgc);
2093 	if (ret) {
2094 		printk(DRIVER_NAME": write caching control failed\n");
2095 		pkt_dump_sense(&cgc);
2096 	} else if (!ret && set)
2097 		printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2098 	return ret;
2099 }
2100 
2101 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2102 {
2103 	struct packet_command cgc;
2104 
2105 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2106 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2107 	cgc.cmd[4] = lockflag ? 1 : 0;
2108 	return pkt_generic_packet(pd, &cgc);
2109 }
2110 
2111 /*
2112  * Returns drive maximum write speed
2113  */
2114 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
2115 {
2116 	struct packet_command cgc;
2117 	struct request_sense sense;
2118 	unsigned char buf[256+18];
2119 	unsigned char *cap_buf;
2120 	int ret, offset;
2121 
2122 	memset(buf, 0, sizeof(buf));
2123 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2124 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2125 	cgc.sense = &sense;
2126 
2127 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2128 	if (ret) {
2129 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2130 			     sizeof(struct mode_page_header);
2131 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2132 		if (ret) {
2133 			pkt_dump_sense(&cgc);
2134 			return ret;
2135 		}
2136 	}
2137 
2138 	offset = 20;			    /* Obsoleted field, used by older drives */
2139 	if (cap_buf[1] >= 28)
2140 		offset = 28;		    /* Current write speed selected */
2141 	if (cap_buf[1] >= 30) {
2142 		/* If the drive reports at least one "Logical Unit Write
2143 		 * Speed Performance Descriptor Block", use the information
2144 		 * in the first block. (contains the highest speed)
2145 		 */
2146 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2147 		if (num_spdb > 0)
2148 			offset = 34;
2149 	}
2150 
2151 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2152 	return 0;
2153 }
2154 
2155 /* These tables from cdrecord - I don't have orange book */
2156 /* standard speed CD-RW (1-4x) */
2157 static char clv_to_speed[16] = {
2158 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2159 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2160 };
2161 /* high speed CD-RW (-10x) */
2162 static char hs_clv_to_speed[16] = {
2163 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2164 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2165 };
2166 /* ultra high speed CD-RW */
2167 static char us_clv_to_speed[16] = {
2168 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2169 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2170 };
2171 
2172 /*
2173  * reads the maximum media speed from ATIP
2174  */
2175 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
2176 {
2177 	struct packet_command cgc;
2178 	struct request_sense sense;
2179 	unsigned char buf[64];
2180 	unsigned int size, st, sp;
2181 	int ret;
2182 
2183 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2184 	cgc.sense = &sense;
2185 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2186 	cgc.cmd[1] = 2;
2187 	cgc.cmd[2] = 4; /* READ ATIP */
2188 	cgc.cmd[8] = 2;
2189 	ret = pkt_generic_packet(pd, &cgc);
2190 	if (ret) {
2191 		pkt_dump_sense(&cgc);
2192 		return ret;
2193 	}
2194 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2195 	if (size > sizeof(buf))
2196 		size = sizeof(buf);
2197 
2198 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2199 	cgc.sense = &sense;
2200 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2201 	cgc.cmd[1] = 2;
2202 	cgc.cmd[2] = 4;
2203 	cgc.cmd[8] = size;
2204 	ret = pkt_generic_packet(pd, &cgc);
2205 	if (ret) {
2206 		pkt_dump_sense(&cgc);
2207 		return ret;
2208 	}
2209 
2210 	if (!buf[6] & 0x40) {
2211 		printk(DRIVER_NAME": Disc type is not CD-RW\n");
2212 		return 1;
2213 	}
2214 	if (!buf[6] & 0x4) {
2215 		printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2216 		return 1;
2217 	}
2218 
2219 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2220 
2221 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2222 
2223 	/* Info from cdrecord */
2224 	switch (st) {
2225 		case 0: /* standard speed */
2226 			*speed = clv_to_speed[sp];
2227 			break;
2228 		case 1: /* high speed */
2229 			*speed = hs_clv_to_speed[sp];
2230 			break;
2231 		case 2: /* ultra high speed */
2232 			*speed = us_clv_to_speed[sp];
2233 			break;
2234 		default:
2235 			printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2236 			return 1;
2237 	}
2238 	if (*speed) {
2239 		printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2240 		return 0;
2241 	} else {
2242 		printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2243 		return 1;
2244 	}
2245 }
2246 
2247 static int pkt_perform_opc(struct pktcdvd_device *pd)
2248 {
2249 	struct packet_command cgc;
2250 	struct request_sense sense;
2251 	int ret;
2252 
2253 	VPRINTK(DRIVER_NAME": Performing OPC\n");
2254 
2255 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2256 	cgc.sense = &sense;
2257 	cgc.timeout = 60*HZ;
2258 	cgc.cmd[0] = GPCMD_SEND_OPC;
2259 	cgc.cmd[1] = 1;
2260 	if ((ret = pkt_generic_packet(pd, &cgc)))
2261 		pkt_dump_sense(&cgc);
2262 	return ret;
2263 }
2264 
2265 static int pkt_open_write(struct pktcdvd_device *pd)
2266 {
2267 	int ret;
2268 	unsigned int write_speed, media_write_speed, read_speed;
2269 
2270 	if ((ret = pkt_probe_settings(pd))) {
2271 		VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2272 		return ret;
2273 	}
2274 
2275 	if ((ret = pkt_set_write_settings(pd))) {
2276 		DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2277 		return -EIO;
2278 	}
2279 
2280 	pkt_write_caching(pd, USE_WCACHING);
2281 
2282 	if ((ret = pkt_get_max_speed(pd, &write_speed)))
2283 		write_speed = 16 * 177;
2284 	switch (pd->mmc3_profile) {
2285 		case 0x13: /* DVD-RW */
2286 		case 0x1a: /* DVD+RW */
2287 		case 0x12: /* DVD-RAM */
2288 			DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2289 			break;
2290 		default:
2291 			if ((ret = pkt_media_speed(pd, &media_write_speed)))
2292 				media_write_speed = 16;
2293 			write_speed = min(write_speed, media_write_speed * 177);
2294 			DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2295 			break;
2296 	}
2297 	read_speed = write_speed;
2298 
2299 	if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2300 		DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2301 		return -EIO;
2302 	}
2303 	pd->write_speed = write_speed;
2304 	pd->read_speed = read_speed;
2305 
2306 	if ((ret = pkt_perform_opc(pd))) {
2307 		DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2308 	}
2309 
2310 	return 0;
2311 }
2312 
2313 /*
2314  * called at open time.
2315  */
2316 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
2317 {
2318 	int ret;
2319 	long lba;
2320 	request_queue_t *q;
2321 
2322 	/*
2323 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2324 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2325 	 * so bdget() can't fail.
2326 	 */
2327 	bdget(pd->bdev->bd_dev);
2328 	if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
2329 		goto out;
2330 
2331 	if ((ret = bd_claim(pd->bdev, pd)))
2332 		goto out_putdev;
2333 
2334 	if ((ret = pkt_get_last_written(pd, &lba))) {
2335 		printk(DRIVER_NAME": pkt_get_last_written failed\n");
2336 		goto out_unclaim;
2337 	}
2338 
2339 	set_capacity(pd->disk, lba << 2);
2340 	set_capacity(pd->bdev->bd_disk, lba << 2);
2341 	bd_set_size(pd->bdev, (loff_t)lba << 11);
2342 
2343 	q = bdev_get_queue(pd->bdev);
2344 	if (write) {
2345 		if ((ret = pkt_open_write(pd)))
2346 			goto out_unclaim;
2347 		/*
2348 		 * Some CDRW drives can not handle writes larger than one packet,
2349 		 * even if the size is a multiple of the packet size.
2350 		 */
2351 		spin_lock_irq(q->queue_lock);
2352 		blk_queue_max_sectors(q, pd->settings.size);
2353 		spin_unlock_irq(q->queue_lock);
2354 		set_bit(PACKET_WRITABLE, &pd->flags);
2355 	} else {
2356 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2357 		clear_bit(PACKET_WRITABLE, &pd->flags);
2358 	}
2359 
2360 	if ((ret = pkt_set_segment_merging(pd, q)))
2361 		goto out_unclaim;
2362 
2363 	if (write) {
2364 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2365 			printk(DRIVER_NAME": not enough memory for buffers\n");
2366 			ret = -ENOMEM;
2367 			goto out_unclaim;
2368 		}
2369 		printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2370 	}
2371 
2372 	return 0;
2373 
2374 out_unclaim:
2375 	bd_release(pd->bdev);
2376 out_putdev:
2377 	blkdev_put(pd->bdev);
2378 out:
2379 	return ret;
2380 }
2381 
2382 /*
2383  * called when the device is closed. makes sure that the device flushes
2384  * the internal cache before we close.
2385  */
2386 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2387 {
2388 	if (flush && pkt_flush_cache(pd))
2389 		DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2390 
2391 	pkt_lock_door(pd, 0);
2392 
2393 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2394 	bd_release(pd->bdev);
2395 	blkdev_put(pd->bdev);
2396 
2397 	pkt_shrink_pktlist(pd);
2398 }
2399 
2400 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2401 {
2402 	if (dev_minor >= MAX_WRITERS)
2403 		return NULL;
2404 	return pkt_devs[dev_minor];
2405 }
2406 
2407 static int pkt_open(struct inode *inode, struct file *file)
2408 {
2409 	struct pktcdvd_device *pd = NULL;
2410 	int ret;
2411 
2412 	VPRINTK(DRIVER_NAME": entering open\n");
2413 
2414 	mutex_lock(&ctl_mutex);
2415 	pd = pkt_find_dev_from_minor(iminor(inode));
2416 	if (!pd) {
2417 		ret = -ENODEV;
2418 		goto out;
2419 	}
2420 	BUG_ON(pd->refcnt < 0);
2421 
2422 	pd->refcnt++;
2423 	if (pd->refcnt > 1) {
2424 		if ((file->f_mode & FMODE_WRITE) &&
2425 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2426 			ret = -EBUSY;
2427 			goto out_dec;
2428 		}
2429 	} else {
2430 		ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE);
2431 		if (ret)
2432 			goto out_dec;
2433 		/*
2434 		 * needed here as well, since ext2 (among others) may change
2435 		 * the blocksize at mount time
2436 		 */
2437 		set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2438 	}
2439 
2440 	mutex_unlock(&ctl_mutex);
2441 	return 0;
2442 
2443 out_dec:
2444 	pd->refcnt--;
2445 out:
2446 	VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2447 	mutex_unlock(&ctl_mutex);
2448 	return ret;
2449 }
2450 
2451 static int pkt_close(struct inode *inode, struct file *file)
2452 {
2453 	struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2454 	int ret = 0;
2455 
2456 	mutex_lock(&ctl_mutex);
2457 	pd->refcnt--;
2458 	BUG_ON(pd->refcnt < 0);
2459 	if (pd->refcnt == 0) {
2460 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2461 		pkt_release_dev(pd, flush);
2462 	}
2463 	mutex_unlock(&ctl_mutex);
2464 	return ret;
2465 }
2466 
2467 
2468 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
2469 {
2470 	struct packet_stacked_data *psd = bio->bi_private;
2471 	struct pktcdvd_device *pd = psd->pd;
2472 
2473 	if (bio->bi_size)
2474 		return 1;
2475 
2476 	bio_put(bio);
2477 	bio_endio(psd->bio, psd->bio->bi_size, err);
2478 	mempool_free(psd, psd_pool);
2479 	pkt_bio_finished(pd);
2480 	return 0;
2481 }
2482 
2483 static int pkt_make_request(request_queue_t *q, struct bio *bio)
2484 {
2485 	struct pktcdvd_device *pd;
2486 	char b[BDEVNAME_SIZE];
2487 	sector_t zone;
2488 	struct packet_data *pkt;
2489 	int was_empty, blocked_bio;
2490 	struct pkt_rb_node *node;
2491 
2492 	pd = q->queuedata;
2493 	if (!pd) {
2494 		printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2495 		goto end_io;
2496 	}
2497 
2498 	/*
2499 	 * Clone READ bios so we can have our own bi_end_io callback.
2500 	 */
2501 	if (bio_data_dir(bio) == READ) {
2502 		struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2503 		struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2504 
2505 		psd->pd = pd;
2506 		psd->bio = bio;
2507 		cloned_bio->bi_bdev = pd->bdev;
2508 		cloned_bio->bi_private = psd;
2509 		cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2510 		pd->stats.secs_r += bio->bi_size >> 9;
2511 		pkt_queue_bio(pd, cloned_bio);
2512 		return 0;
2513 	}
2514 
2515 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2516 		printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2517 			pd->name, (unsigned long long)bio->bi_sector);
2518 		goto end_io;
2519 	}
2520 
2521 	if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2522 		printk(DRIVER_NAME": wrong bio size\n");
2523 		goto end_io;
2524 	}
2525 
2526 	blk_queue_bounce(q, &bio);
2527 
2528 	zone = ZONE(bio->bi_sector, pd);
2529 	VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2530 		(unsigned long long)bio->bi_sector,
2531 		(unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2532 
2533 	/* Check if we have to split the bio */
2534 	{
2535 		struct bio_pair *bp;
2536 		sector_t last_zone;
2537 		int first_sectors;
2538 
2539 		last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2540 		if (last_zone != zone) {
2541 			BUG_ON(last_zone != zone + pd->settings.size);
2542 			first_sectors = last_zone - bio->bi_sector;
2543 			bp = bio_split(bio, bio_split_pool, first_sectors);
2544 			BUG_ON(!bp);
2545 			pkt_make_request(q, &bp->bio1);
2546 			pkt_make_request(q, &bp->bio2);
2547 			bio_pair_release(bp);
2548 			return 0;
2549 		}
2550 	}
2551 
2552 	/*
2553 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2554 	 * just append this bio to that packet.
2555 	 */
2556 	spin_lock(&pd->cdrw.active_list_lock);
2557 	blocked_bio = 0;
2558 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2559 		if (pkt->sector == zone) {
2560 			spin_lock(&pkt->lock);
2561 			if ((pkt->state == PACKET_WAITING_STATE) ||
2562 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2563 				pkt_add_list_last(bio, &pkt->orig_bios,
2564 						  &pkt->orig_bios_tail);
2565 				pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2566 				if ((pkt->write_size >= pkt->frames) &&
2567 				    (pkt->state == PACKET_WAITING_STATE)) {
2568 					atomic_inc(&pkt->run_sm);
2569 					wake_up(&pd->wqueue);
2570 				}
2571 				spin_unlock(&pkt->lock);
2572 				spin_unlock(&pd->cdrw.active_list_lock);
2573 				return 0;
2574 			} else {
2575 				blocked_bio = 1;
2576 			}
2577 			spin_unlock(&pkt->lock);
2578 		}
2579 	}
2580 	spin_unlock(&pd->cdrw.active_list_lock);
2581 
2582  	/*
2583 	 * Test if there is enough room left in the bio work queue
2584 	 * (queue size >= congestion on mark).
2585 	 * If not, wait till the work queue size is below the congestion off mark.
2586 	 */
2587 	spin_lock(&pd->lock);
2588 	if (pd->write_congestion_on > 0
2589 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2590 		set_bdi_congested(&q->backing_dev_info, WRITE);
2591 		do {
2592 			spin_unlock(&pd->lock);
2593 			congestion_wait(WRITE, HZ);
2594 			spin_lock(&pd->lock);
2595 		} while(pd->bio_queue_size > pd->write_congestion_off);
2596 	}
2597 	spin_unlock(&pd->lock);
2598 
2599 	/*
2600 	 * No matching packet found. Store the bio in the work queue.
2601 	 */
2602 	node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2603 	node->bio = bio;
2604 	spin_lock(&pd->lock);
2605 	BUG_ON(pd->bio_queue_size < 0);
2606 	was_empty = (pd->bio_queue_size == 0);
2607 	pkt_rbtree_insert(pd, node);
2608 	spin_unlock(&pd->lock);
2609 
2610 	/*
2611 	 * Wake up the worker thread.
2612 	 */
2613 	atomic_set(&pd->scan_queue, 1);
2614 	if (was_empty) {
2615 		/* This wake_up is required for correct operation */
2616 		wake_up(&pd->wqueue);
2617 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2618 		/*
2619 		 * This wake up is not required for correct operation,
2620 		 * but improves performance in some cases.
2621 		 */
2622 		wake_up(&pd->wqueue);
2623 	}
2624 	return 0;
2625 end_io:
2626 	bio_io_error(bio, bio->bi_size);
2627 	return 0;
2628 }
2629 
2630 
2631 
2632 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
2633 {
2634 	struct pktcdvd_device *pd = q->queuedata;
2635 	sector_t zone = ZONE(bio->bi_sector, pd);
2636 	int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2637 	int remaining = (pd->settings.size << 9) - used;
2638 	int remaining2;
2639 
2640 	/*
2641 	 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2642 	 * boundary, pkt_make_request() will split the bio.
2643 	 */
2644 	remaining2 = PAGE_SIZE - bio->bi_size;
2645 	remaining = max(remaining, remaining2);
2646 
2647 	BUG_ON(remaining < 0);
2648 	return remaining;
2649 }
2650 
2651 static void pkt_init_queue(struct pktcdvd_device *pd)
2652 {
2653 	request_queue_t *q = pd->disk->queue;
2654 
2655 	blk_queue_make_request(q, pkt_make_request);
2656 	blk_queue_hardsect_size(q, CD_FRAMESIZE);
2657 	blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2658 	blk_queue_merge_bvec(q, pkt_merge_bvec);
2659 	q->queuedata = pd;
2660 }
2661 
2662 static int pkt_seq_show(struct seq_file *m, void *p)
2663 {
2664 	struct pktcdvd_device *pd = m->private;
2665 	char *msg;
2666 	char bdev_buf[BDEVNAME_SIZE];
2667 	int states[PACKET_NUM_STATES];
2668 
2669 	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2670 		   bdevname(pd->bdev, bdev_buf));
2671 
2672 	seq_printf(m, "\nSettings:\n");
2673 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2674 
2675 	if (pd->settings.write_type == 0)
2676 		msg = "Packet";
2677 	else
2678 		msg = "Unknown";
2679 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2680 
2681 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2682 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2683 
2684 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2685 
2686 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2687 		msg = "Mode 1";
2688 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2689 		msg = "Mode 2";
2690 	else
2691 		msg = "Unknown";
2692 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2693 
2694 	seq_printf(m, "\nStatistics:\n");
2695 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2696 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2697 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2698 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2699 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2700 
2701 	seq_printf(m, "\nMisc:\n");
2702 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2703 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2704 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2705 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2706 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2707 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2708 
2709 	seq_printf(m, "\nQueue state:\n");
2710 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2711 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2712 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2713 
2714 	pkt_count_states(pd, states);
2715 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2716 		   states[0], states[1], states[2], states[3], states[4], states[5]);
2717 
2718 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2719 			pd->write_congestion_off,
2720 			pd->write_congestion_on);
2721 	return 0;
2722 }
2723 
2724 static int pkt_seq_open(struct inode *inode, struct file *file)
2725 {
2726 	return single_open(file, pkt_seq_show, PDE(inode)->data);
2727 }
2728 
2729 static const struct file_operations pkt_proc_fops = {
2730 	.open	= pkt_seq_open,
2731 	.read	= seq_read,
2732 	.llseek	= seq_lseek,
2733 	.release = single_release
2734 };
2735 
2736 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2737 {
2738 	int i;
2739 	int ret = 0;
2740 	char b[BDEVNAME_SIZE];
2741 	struct proc_dir_entry *proc;
2742 	struct block_device *bdev;
2743 
2744 	if (pd->pkt_dev == dev) {
2745 		printk(DRIVER_NAME": Recursive setup not allowed\n");
2746 		return -EBUSY;
2747 	}
2748 	for (i = 0; i < MAX_WRITERS; i++) {
2749 		struct pktcdvd_device *pd2 = pkt_devs[i];
2750 		if (!pd2)
2751 			continue;
2752 		if (pd2->bdev->bd_dev == dev) {
2753 			printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2754 			return -EBUSY;
2755 		}
2756 		if (pd2->pkt_dev == dev) {
2757 			printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2758 			return -EBUSY;
2759 		}
2760 	}
2761 
2762 	bdev = bdget(dev);
2763 	if (!bdev)
2764 		return -ENOMEM;
2765 	ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2766 	if (ret)
2767 		return ret;
2768 
2769 	/* This is safe, since we have a reference from open(). */
2770 	__module_get(THIS_MODULE);
2771 
2772 	pd->bdev = bdev;
2773 	set_blocksize(bdev, CD_FRAMESIZE);
2774 
2775 	pkt_init_queue(pd);
2776 
2777 	atomic_set(&pd->cdrw.pending_bios, 0);
2778 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2779 	if (IS_ERR(pd->cdrw.thread)) {
2780 		printk(DRIVER_NAME": can't start kernel thread\n");
2781 		ret = -ENOMEM;
2782 		goto out_mem;
2783 	}
2784 
2785 	proc = create_proc_entry(pd->name, 0, pkt_proc);
2786 	if (proc) {
2787 		proc->data = pd;
2788 		proc->proc_fops = &pkt_proc_fops;
2789 	}
2790 	DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2791 	return 0;
2792 
2793 out_mem:
2794 	blkdev_put(bdev);
2795 	/* This is safe: open() is still holding a reference. */
2796 	module_put(THIS_MODULE);
2797 	return ret;
2798 }
2799 
2800 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2801 {
2802 	struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2803 
2804 	VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2805 
2806 	switch (cmd) {
2807 	/*
2808 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2809 	 */
2810 	case CDROMMULTISESSION:
2811 	case CDROMREADTOCENTRY:
2812 	case CDROM_LAST_WRITTEN:
2813 	case CDROM_SEND_PACKET:
2814 	case SCSI_IOCTL_SEND_COMMAND:
2815 		return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2816 
2817 	case CDROMEJECT:
2818 		/*
2819 		 * The door gets locked when the device is opened, so we
2820 		 * have to unlock it or else the eject command fails.
2821 		 */
2822 		if (pd->refcnt == 1)
2823 			pkt_lock_door(pd, 0);
2824 		return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2825 
2826 	default:
2827 		VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2828 		return -ENOTTY;
2829 	}
2830 
2831 	return 0;
2832 }
2833 
2834 static int pkt_media_changed(struct gendisk *disk)
2835 {
2836 	struct pktcdvd_device *pd = disk->private_data;
2837 	struct gendisk *attached_disk;
2838 
2839 	if (!pd)
2840 		return 0;
2841 	if (!pd->bdev)
2842 		return 0;
2843 	attached_disk = pd->bdev->bd_disk;
2844 	if (!attached_disk)
2845 		return 0;
2846 	return attached_disk->fops->media_changed(attached_disk);
2847 }
2848 
2849 static struct block_device_operations pktcdvd_ops = {
2850 	.owner =		THIS_MODULE,
2851 	.open =			pkt_open,
2852 	.release =		pkt_close,
2853 	.ioctl =		pkt_ioctl,
2854 	.media_changed =	pkt_media_changed,
2855 };
2856 
2857 /*
2858  * Set up mapping from pktcdvd device to CD-ROM device.
2859  */
2860 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2861 {
2862 	int idx;
2863 	int ret = -ENOMEM;
2864 	struct pktcdvd_device *pd;
2865 	struct gendisk *disk;
2866 
2867 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2868 
2869 	for (idx = 0; idx < MAX_WRITERS; idx++)
2870 		if (!pkt_devs[idx])
2871 			break;
2872 	if (idx == MAX_WRITERS) {
2873 		printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2874 		ret = -EBUSY;
2875 		goto out_mutex;
2876 	}
2877 
2878 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2879 	if (!pd)
2880 		goto out_mutex;
2881 
2882 	pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2883 						  sizeof(struct pkt_rb_node));
2884 	if (!pd->rb_pool)
2885 		goto out_mem;
2886 
2887 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2888 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2889 	spin_lock_init(&pd->cdrw.active_list_lock);
2890 
2891 	spin_lock_init(&pd->lock);
2892 	spin_lock_init(&pd->iosched.lock);
2893 	sprintf(pd->name, DRIVER_NAME"%d", idx);
2894 	init_waitqueue_head(&pd->wqueue);
2895 	pd->bio_queue = RB_ROOT;
2896 
2897 	pd->write_congestion_on  = write_congestion_on;
2898 	pd->write_congestion_off = write_congestion_off;
2899 
2900 	disk = alloc_disk(1);
2901 	if (!disk)
2902 		goto out_mem;
2903 	pd->disk = disk;
2904 	disk->major = pktdev_major;
2905 	disk->first_minor = idx;
2906 	disk->fops = &pktcdvd_ops;
2907 	disk->flags = GENHD_FL_REMOVABLE;
2908 	strcpy(disk->disk_name, pd->name);
2909 	disk->private_data = pd;
2910 	disk->queue = blk_alloc_queue(GFP_KERNEL);
2911 	if (!disk->queue)
2912 		goto out_mem2;
2913 
2914 	pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2915 	ret = pkt_new_dev(pd, dev);
2916 	if (ret)
2917 		goto out_new_dev;
2918 
2919 	add_disk(disk);
2920 
2921 	pkt_sysfs_dev_new(pd);
2922 	pkt_debugfs_dev_new(pd);
2923 
2924 	pkt_devs[idx] = pd;
2925 	if (pkt_dev)
2926 		*pkt_dev = pd->pkt_dev;
2927 
2928 	mutex_unlock(&ctl_mutex);
2929 	return 0;
2930 
2931 out_new_dev:
2932 	blk_cleanup_queue(disk->queue);
2933 out_mem2:
2934 	put_disk(disk);
2935 out_mem:
2936 	if (pd->rb_pool)
2937 		mempool_destroy(pd->rb_pool);
2938 	kfree(pd);
2939 out_mutex:
2940 	mutex_unlock(&ctl_mutex);
2941 	printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2942 	return ret;
2943 }
2944 
2945 /*
2946  * Tear down mapping from pktcdvd device to CD-ROM device.
2947  */
2948 static int pkt_remove_dev(dev_t pkt_dev)
2949 {
2950 	struct pktcdvd_device *pd;
2951 	int idx;
2952 	int ret = 0;
2953 
2954 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2955 
2956 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2957 		pd = pkt_devs[idx];
2958 		if (pd && (pd->pkt_dev == pkt_dev))
2959 			break;
2960 	}
2961 	if (idx == MAX_WRITERS) {
2962 		DPRINTK(DRIVER_NAME": dev not setup\n");
2963 		ret = -ENXIO;
2964 		goto out;
2965 	}
2966 
2967 	if (pd->refcnt > 0) {
2968 		ret = -EBUSY;
2969 		goto out;
2970 	}
2971 	if (!IS_ERR(pd->cdrw.thread))
2972 		kthread_stop(pd->cdrw.thread);
2973 
2974 	pkt_devs[idx] = NULL;
2975 
2976 	pkt_debugfs_dev_remove(pd);
2977 	pkt_sysfs_dev_remove(pd);
2978 
2979 	blkdev_put(pd->bdev);
2980 
2981 	remove_proc_entry(pd->name, pkt_proc);
2982 	DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2983 
2984 	del_gendisk(pd->disk);
2985 	blk_cleanup_queue(pd->disk->queue);
2986 	put_disk(pd->disk);
2987 
2988 	mempool_destroy(pd->rb_pool);
2989 	kfree(pd);
2990 
2991 	/* This is safe: open() is still holding a reference. */
2992 	module_put(THIS_MODULE);
2993 
2994 out:
2995 	mutex_unlock(&ctl_mutex);
2996 	return ret;
2997 }
2998 
2999 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
3000 {
3001 	struct pktcdvd_device *pd;
3002 
3003 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3004 
3005 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
3006 	if (pd) {
3007 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
3008 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
3009 	} else {
3010 		ctrl_cmd->dev = 0;
3011 		ctrl_cmd->pkt_dev = 0;
3012 	}
3013 	ctrl_cmd->num_devices = MAX_WRITERS;
3014 
3015 	mutex_unlock(&ctl_mutex);
3016 }
3017 
3018 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
3019 {
3020 	void __user *argp = (void __user *)arg;
3021 	struct pkt_ctrl_command ctrl_cmd;
3022 	int ret = 0;
3023 	dev_t pkt_dev = 0;
3024 
3025 	if (cmd != PACKET_CTRL_CMD)
3026 		return -ENOTTY;
3027 
3028 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3029 		return -EFAULT;
3030 
3031 	switch (ctrl_cmd.command) {
3032 	case PKT_CTRL_CMD_SETUP:
3033 		if (!capable(CAP_SYS_ADMIN))
3034 			return -EPERM;
3035 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3036 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3037 		break;
3038 	case PKT_CTRL_CMD_TEARDOWN:
3039 		if (!capable(CAP_SYS_ADMIN))
3040 			return -EPERM;
3041 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3042 		break;
3043 	case PKT_CTRL_CMD_STATUS:
3044 		pkt_get_status(&ctrl_cmd);
3045 		break;
3046 	default:
3047 		return -ENOTTY;
3048 	}
3049 
3050 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3051 		return -EFAULT;
3052 	return ret;
3053 }
3054 
3055 
3056 static const struct file_operations pkt_ctl_fops = {
3057 	.ioctl	 = pkt_ctl_ioctl,
3058 	.owner	 = THIS_MODULE,
3059 };
3060 
3061 static struct miscdevice pkt_misc = {
3062 	.minor 		= MISC_DYNAMIC_MINOR,
3063 	.name  		= DRIVER_NAME,
3064 	.fops  		= &pkt_ctl_fops
3065 };
3066 
3067 static int __init pkt_init(void)
3068 {
3069 	int ret;
3070 
3071 	mutex_init(&ctl_mutex);
3072 
3073 	psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3074 					sizeof(struct packet_stacked_data));
3075 	if (!psd_pool)
3076 		return -ENOMEM;
3077 
3078 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
3079 	if (ret < 0) {
3080 		printk(DRIVER_NAME": Unable to register block device\n");
3081 		goto out2;
3082 	}
3083 	if (!pktdev_major)
3084 		pktdev_major = ret;
3085 
3086 	ret = pkt_sysfs_init();
3087 	if (ret)
3088 		goto out;
3089 
3090 	pkt_debugfs_init();
3091 
3092 	ret = misc_register(&pkt_misc);
3093 	if (ret) {
3094 		printk(DRIVER_NAME": Unable to register misc device\n");
3095 		goto out_misc;
3096 	}
3097 
3098 	pkt_proc = proc_mkdir(DRIVER_NAME, proc_root_driver);
3099 
3100 	return 0;
3101 
3102 out_misc:
3103 	pkt_debugfs_cleanup();
3104 	pkt_sysfs_cleanup();
3105 out:
3106 	unregister_blkdev(pktdev_major, DRIVER_NAME);
3107 out2:
3108 	mempool_destroy(psd_pool);
3109 	return ret;
3110 }
3111 
3112 static void __exit pkt_exit(void)
3113 {
3114 	remove_proc_entry(DRIVER_NAME, proc_root_driver);
3115 	misc_deregister(&pkt_misc);
3116 
3117 	pkt_debugfs_cleanup();
3118 	pkt_sysfs_cleanup();
3119 
3120 	unregister_blkdev(pktdev_major, DRIVER_NAME);
3121 	mempool_destroy(psd_pool);
3122 }
3123 
3124 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3125 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3126 MODULE_LICENSE("GPL");
3127 
3128 module_init(pkt_init);
3129 module_exit(pkt_exit);
3130