1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom make_request_fn function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #include <linux/pktcdvd.h> 48 #include <linux/module.h> 49 #include <linux/types.h> 50 #include <linux/kernel.h> 51 #include <linux/kthread.h> 52 #include <linux/errno.h> 53 #include <linux/spinlock.h> 54 #include <linux/file.h> 55 #include <linux/proc_fs.h> 56 #include <linux/seq_file.h> 57 #include <linux/miscdevice.h> 58 #include <linux/freezer.h> 59 #include <linux/mutex.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_ioctl.h> 62 #include <scsi/scsi.h> 63 #include <linux/debugfs.h> 64 #include <linux/device.h> 65 66 #include <asm/uaccess.h> 67 68 #define DRIVER_NAME "pktcdvd" 69 70 #if PACKET_DEBUG 71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 72 #else 73 #define DPRINTK(fmt, args...) 74 #endif 75 76 #if PACKET_DEBUG > 1 77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 78 #else 79 #define VPRINTK(fmt, args...) 80 #endif 81 82 #define MAX_SPEED 0xffff 83 84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1)) 85 86 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 87 static struct proc_dir_entry *pkt_proc; 88 static int pktdev_major; 89 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 90 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 91 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 92 static mempool_t *psd_pool; 93 94 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */ 95 static struct dentry *pkt_debugfs_root = NULL; /* /debug/pktcdvd */ 96 97 /* forward declaration */ 98 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 99 static int pkt_remove_dev(dev_t pkt_dev); 100 static int pkt_seq_show(struct seq_file *m, void *p); 101 102 103 104 /* 105 * create and register a pktcdvd kernel object. 106 */ 107 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd, 108 const char* name, 109 struct kobject* parent, 110 struct kobj_type* ktype) 111 { 112 struct pktcdvd_kobj *p; 113 p = kzalloc(sizeof(*p), GFP_KERNEL); 114 if (!p) 115 return NULL; 116 kobject_set_name(&p->kobj, "%s", name); 117 p->kobj.parent = parent; 118 p->kobj.ktype = ktype; 119 p->pd = pd; 120 if (kobject_register(&p->kobj) != 0) 121 return NULL; 122 return p; 123 } 124 /* 125 * remove a pktcdvd kernel object. 126 */ 127 static void pkt_kobj_remove(struct pktcdvd_kobj *p) 128 { 129 if (p) 130 kobject_unregister(&p->kobj); 131 } 132 /* 133 * default release function for pktcdvd kernel objects. 134 */ 135 static void pkt_kobj_release(struct kobject *kobj) 136 { 137 kfree(to_pktcdvdkobj(kobj)); 138 } 139 140 141 /********************************************************** 142 * 143 * sysfs interface for pktcdvd 144 * by (C) 2006 Thomas Maier <balagi@justmail.de> 145 * 146 **********************************************************/ 147 148 #define DEF_ATTR(_obj,_name,_mode) \ 149 static struct attribute _obj = { \ 150 .name = _name, .owner = THIS_MODULE, .mode = _mode } 151 152 /********************************************************** 153 /sys/class/pktcdvd/pktcdvd[0-7]/ 154 stat/reset 155 stat/packets_started 156 stat/packets_finished 157 stat/kb_written 158 stat/kb_read 159 stat/kb_read_gather 160 write_queue/size 161 write_queue/congestion_off 162 write_queue/congestion_on 163 **********************************************************/ 164 165 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200); 166 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444); 167 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444); 168 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444); 169 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444); 170 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444); 171 172 static struct attribute *kobj_pkt_attrs_stat[] = { 173 &kobj_pkt_attr_st1, 174 &kobj_pkt_attr_st2, 175 &kobj_pkt_attr_st3, 176 &kobj_pkt_attr_st4, 177 &kobj_pkt_attr_st5, 178 &kobj_pkt_attr_st6, 179 NULL 180 }; 181 182 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444); 183 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644); 184 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644); 185 186 static struct attribute *kobj_pkt_attrs_wqueue[] = { 187 &kobj_pkt_attr_wq1, 188 &kobj_pkt_attr_wq2, 189 &kobj_pkt_attr_wq3, 190 NULL 191 }; 192 193 static ssize_t kobj_pkt_show(struct kobject *kobj, 194 struct attribute *attr, char *data) 195 { 196 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 197 int n = 0; 198 int v; 199 if (strcmp(attr->name, "packets_started") == 0) { 200 n = sprintf(data, "%lu\n", pd->stats.pkt_started); 201 202 } else if (strcmp(attr->name, "packets_finished") == 0) { 203 n = sprintf(data, "%lu\n", pd->stats.pkt_ended); 204 205 } else if (strcmp(attr->name, "kb_written") == 0) { 206 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1); 207 208 } else if (strcmp(attr->name, "kb_read") == 0) { 209 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1); 210 211 } else if (strcmp(attr->name, "kb_read_gather") == 0) { 212 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1); 213 214 } else if (strcmp(attr->name, "size") == 0) { 215 spin_lock(&pd->lock); 216 v = pd->bio_queue_size; 217 spin_unlock(&pd->lock); 218 n = sprintf(data, "%d\n", v); 219 220 } else if (strcmp(attr->name, "congestion_off") == 0) { 221 spin_lock(&pd->lock); 222 v = pd->write_congestion_off; 223 spin_unlock(&pd->lock); 224 n = sprintf(data, "%d\n", v); 225 226 } else if (strcmp(attr->name, "congestion_on") == 0) { 227 spin_lock(&pd->lock); 228 v = pd->write_congestion_on; 229 spin_unlock(&pd->lock); 230 n = sprintf(data, "%d\n", v); 231 } 232 return n; 233 } 234 235 static void init_write_congestion_marks(int* lo, int* hi) 236 { 237 if (*hi > 0) { 238 *hi = max(*hi, 500); 239 *hi = min(*hi, 1000000); 240 if (*lo <= 0) 241 *lo = *hi - 100; 242 else { 243 *lo = min(*lo, *hi - 100); 244 *lo = max(*lo, 100); 245 } 246 } else { 247 *hi = -1; 248 *lo = -1; 249 } 250 } 251 252 static ssize_t kobj_pkt_store(struct kobject *kobj, 253 struct attribute *attr, 254 const char *data, size_t len) 255 { 256 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 257 int val; 258 259 if (strcmp(attr->name, "reset") == 0 && len > 0) { 260 pd->stats.pkt_started = 0; 261 pd->stats.pkt_ended = 0; 262 pd->stats.secs_w = 0; 263 pd->stats.secs_rg = 0; 264 pd->stats.secs_r = 0; 265 266 } else if (strcmp(attr->name, "congestion_off") == 0 267 && sscanf(data, "%d", &val) == 1) { 268 spin_lock(&pd->lock); 269 pd->write_congestion_off = val; 270 init_write_congestion_marks(&pd->write_congestion_off, 271 &pd->write_congestion_on); 272 spin_unlock(&pd->lock); 273 274 } else if (strcmp(attr->name, "congestion_on") == 0 275 && sscanf(data, "%d", &val) == 1) { 276 spin_lock(&pd->lock); 277 pd->write_congestion_on = val; 278 init_write_congestion_marks(&pd->write_congestion_off, 279 &pd->write_congestion_on); 280 spin_unlock(&pd->lock); 281 } 282 return len; 283 } 284 285 static struct sysfs_ops kobj_pkt_ops = { 286 .show = kobj_pkt_show, 287 .store = kobj_pkt_store 288 }; 289 static struct kobj_type kobj_pkt_type_stat = { 290 .release = pkt_kobj_release, 291 .sysfs_ops = &kobj_pkt_ops, 292 .default_attrs = kobj_pkt_attrs_stat 293 }; 294 static struct kobj_type kobj_pkt_type_wqueue = { 295 .release = pkt_kobj_release, 296 .sysfs_ops = &kobj_pkt_ops, 297 .default_attrs = kobj_pkt_attrs_wqueue 298 }; 299 300 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 301 { 302 if (class_pktcdvd) { 303 pd->clsdev = class_device_create(class_pktcdvd, 304 NULL, pd->pkt_dev, 305 NULL, "%s", pd->name); 306 if (IS_ERR(pd->clsdev)) 307 pd->clsdev = NULL; 308 } 309 if (pd->clsdev) { 310 pd->kobj_stat = pkt_kobj_create(pd, "stat", 311 &pd->clsdev->kobj, 312 &kobj_pkt_type_stat); 313 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue", 314 &pd->clsdev->kobj, 315 &kobj_pkt_type_wqueue); 316 } 317 } 318 319 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 320 { 321 pkt_kobj_remove(pd->kobj_stat); 322 pkt_kobj_remove(pd->kobj_wqueue); 323 if (class_pktcdvd) 324 class_device_destroy(class_pktcdvd, pd->pkt_dev); 325 } 326 327 328 /******************************************************************** 329 /sys/class/pktcdvd/ 330 add map block device 331 remove unmap packet dev 332 device_map show mappings 333 *******************************************************************/ 334 335 static void class_pktcdvd_release(struct class *cls) 336 { 337 kfree(cls); 338 } 339 static ssize_t class_pktcdvd_show_map(struct class *c, char *data) 340 { 341 int n = 0; 342 int idx; 343 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 344 for (idx = 0; idx < MAX_WRITERS; idx++) { 345 struct pktcdvd_device *pd = pkt_devs[idx]; 346 if (!pd) 347 continue; 348 n += sprintf(data+n, "%s %u:%u %u:%u\n", 349 pd->name, 350 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 351 MAJOR(pd->bdev->bd_dev), 352 MINOR(pd->bdev->bd_dev)); 353 } 354 mutex_unlock(&ctl_mutex); 355 return n; 356 } 357 358 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf, 359 size_t count) 360 { 361 unsigned int major, minor; 362 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 363 pkt_setup_dev(MKDEV(major, minor), NULL); 364 return count; 365 } 366 return -EINVAL; 367 } 368 369 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf, 370 size_t count) 371 { 372 unsigned int major, minor; 373 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 374 pkt_remove_dev(MKDEV(major, minor)); 375 return count; 376 } 377 return -EINVAL; 378 } 379 380 static struct class_attribute class_pktcdvd_attrs[] = { 381 __ATTR(add, 0200, NULL, class_pktcdvd_store_add), 382 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove), 383 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL), 384 __ATTR_NULL 385 }; 386 387 388 static int pkt_sysfs_init(void) 389 { 390 int ret = 0; 391 392 /* 393 * create control files in sysfs 394 * /sys/class/pktcdvd/... 395 */ 396 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL); 397 if (!class_pktcdvd) 398 return -ENOMEM; 399 class_pktcdvd->name = DRIVER_NAME; 400 class_pktcdvd->owner = THIS_MODULE; 401 class_pktcdvd->class_release = class_pktcdvd_release; 402 class_pktcdvd->class_attrs = class_pktcdvd_attrs; 403 ret = class_register(class_pktcdvd); 404 if (ret) { 405 kfree(class_pktcdvd); 406 class_pktcdvd = NULL; 407 printk(DRIVER_NAME": failed to create class pktcdvd\n"); 408 return ret; 409 } 410 return 0; 411 } 412 413 static void pkt_sysfs_cleanup(void) 414 { 415 if (class_pktcdvd) 416 class_destroy(class_pktcdvd); 417 class_pktcdvd = NULL; 418 } 419 420 /******************************************************************** 421 entries in debugfs 422 423 /debugfs/pktcdvd[0-7]/ 424 info 425 426 *******************************************************************/ 427 428 static int pkt_debugfs_seq_show(struct seq_file *m, void *p) 429 { 430 return pkt_seq_show(m, p); 431 } 432 433 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file) 434 { 435 return single_open(file, pkt_debugfs_seq_show, inode->i_private); 436 } 437 438 static const struct file_operations debug_fops = { 439 .open = pkt_debugfs_fops_open, 440 .read = seq_read, 441 .llseek = seq_lseek, 442 .release = single_release, 443 .owner = THIS_MODULE, 444 }; 445 446 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 447 { 448 if (!pkt_debugfs_root) 449 return; 450 pd->dfs_f_info = NULL; 451 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root); 452 if (IS_ERR(pd->dfs_d_root)) { 453 pd->dfs_d_root = NULL; 454 return; 455 } 456 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO, 457 pd->dfs_d_root, pd, &debug_fops); 458 if (IS_ERR(pd->dfs_f_info)) { 459 pd->dfs_f_info = NULL; 460 return; 461 } 462 } 463 464 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 465 { 466 if (!pkt_debugfs_root) 467 return; 468 if (pd->dfs_f_info) 469 debugfs_remove(pd->dfs_f_info); 470 pd->dfs_f_info = NULL; 471 if (pd->dfs_d_root) 472 debugfs_remove(pd->dfs_d_root); 473 pd->dfs_d_root = NULL; 474 } 475 476 static void pkt_debugfs_init(void) 477 { 478 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 479 if (IS_ERR(pkt_debugfs_root)) { 480 pkt_debugfs_root = NULL; 481 return; 482 } 483 } 484 485 static void pkt_debugfs_cleanup(void) 486 { 487 if (!pkt_debugfs_root) 488 return; 489 debugfs_remove(pkt_debugfs_root); 490 pkt_debugfs_root = NULL; 491 } 492 493 /* ----------------------------------------------------------*/ 494 495 496 static void pkt_bio_finished(struct pktcdvd_device *pd) 497 { 498 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 499 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 500 VPRINTK(DRIVER_NAME": queue empty\n"); 501 atomic_set(&pd->iosched.attention, 1); 502 wake_up(&pd->wqueue); 503 } 504 } 505 506 static void pkt_bio_destructor(struct bio *bio) 507 { 508 kfree(bio->bi_io_vec); 509 kfree(bio); 510 } 511 512 static struct bio *pkt_bio_alloc(int nr_iovecs) 513 { 514 struct bio_vec *bvl = NULL; 515 struct bio *bio; 516 517 bio = kmalloc(sizeof(struct bio), GFP_KERNEL); 518 if (!bio) 519 goto no_bio; 520 bio_init(bio); 521 522 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL); 523 if (!bvl) 524 goto no_bvl; 525 526 bio->bi_max_vecs = nr_iovecs; 527 bio->bi_io_vec = bvl; 528 bio->bi_destructor = pkt_bio_destructor; 529 530 return bio; 531 532 no_bvl: 533 kfree(bio); 534 no_bio: 535 return NULL; 536 } 537 538 /* 539 * Allocate a packet_data struct 540 */ 541 static struct packet_data *pkt_alloc_packet_data(int frames) 542 { 543 int i; 544 struct packet_data *pkt; 545 546 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 547 if (!pkt) 548 goto no_pkt; 549 550 pkt->frames = frames; 551 pkt->w_bio = pkt_bio_alloc(frames); 552 if (!pkt->w_bio) 553 goto no_bio; 554 555 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 556 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 557 if (!pkt->pages[i]) 558 goto no_page; 559 } 560 561 spin_lock_init(&pkt->lock); 562 563 for (i = 0; i < frames; i++) { 564 struct bio *bio = pkt_bio_alloc(1); 565 if (!bio) 566 goto no_rd_bio; 567 pkt->r_bios[i] = bio; 568 } 569 570 return pkt; 571 572 no_rd_bio: 573 for (i = 0; i < frames; i++) { 574 struct bio *bio = pkt->r_bios[i]; 575 if (bio) 576 bio_put(bio); 577 } 578 579 no_page: 580 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 581 if (pkt->pages[i]) 582 __free_page(pkt->pages[i]); 583 bio_put(pkt->w_bio); 584 no_bio: 585 kfree(pkt); 586 no_pkt: 587 return NULL; 588 } 589 590 /* 591 * Free a packet_data struct 592 */ 593 static void pkt_free_packet_data(struct packet_data *pkt) 594 { 595 int i; 596 597 for (i = 0; i < pkt->frames; i++) { 598 struct bio *bio = pkt->r_bios[i]; 599 if (bio) 600 bio_put(bio); 601 } 602 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 603 __free_page(pkt->pages[i]); 604 bio_put(pkt->w_bio); 605 kfree(pkt); 606 } 607 608 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 609 { 610 struct packet_data *pkt, *next; 611 612 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 613 614 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 615 pkt_free_packet_data(pkt); 616 } 617 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 618 } 619 620 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 621 { 622 struct packet_data *pkt; 623 624 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 625 626 while (nr_packets > 0) { 627 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 628 if (!pkt) { 629 pkt_shrink_pktlist(pd); 630 return 0; 631 } 632 pkt->id = nr_packets; 633 pkt->pd = pd; 634 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 635 nr_packets--; 636 } 637 return 1; 638 } 639 640 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 641 { 642 struct rb_node *n = rb_next(&node->rb_node); 643 if (!n) 644 return NULL; 645 return rb_entry(n, struct pkt_rb_node, rb_node); 646 } 647 648 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 649 { 650 rb_erase(&node->rb_node, &pd->bio_queue); 651 mempool_free(node, pd->rb_pool); 652 pd->bio_queue_size--; 653 BUG_ON(pd->bio_queue_size < 0); 654 } 655 656 /* 657 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 658 */ 659 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 660 { 661 struct rb_node *n = pd->bio_queue.rb_node; 662 struct rb_node *next; 663 struct pkt_rb_node *tmp; 664 665 if (!n) { 666 BUG_ON(pd->bio_queue_size > 0); 667 return NULL; 668 } 669 670 for (;;) { 671 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 672 if (s <= tmp->bio->bi_sector) 673 next = n->rb_left; 674 else 675 next = n->rb_right; 676 if (!next) 677 break; 678 n = next; 679 } 680 681 if (s > tmp->bio->bi_sector) { 682 tmp = pkt_rbtree_next(tmp); 683 if (!tmp) 684 return NULL; 685 } 686 BUG_ON(s > tmp->bio->bi_sector); 687 return tmp; 688 } 689 690 /* 691 * Insert a node into the pd->bio_queue rb tree. 692 */ 693 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 694 { 695 struct rb_node **p = &pd->bio_queue.rb_node; 696 struct rb_node *parent = NULL; 697 sector_t s = node->bio->bi_sector; 698 struct pkt_rb_node *tmp; 699 700 while (*p) { 701 parent = *p; 702 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 703 if (s < tmp->bio->bi_sector) 704 p = &(*p)->rb_left; 705 else 706 p = &(*p)->rb_right; 707 } 708 rb_link_node(&node->rb_node, parent, p); 709 rb_insert_color(&node->rb_node, &pd->bio_queue); 710 pd->bio_queue_size++; 711 } 712 713 /* 714 * Add a bio to a single linked list defined by its head and tail pointers. 715 */ 716 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail) 717 { 718 bio->bi_next = NULL; 719 if (*list_tail) { 720 BUG_ON((*list_head) == NULL); 721 (*list_tail)->bi_next = bio; 722 (*list_tail) = bio; 723 } else { 724 BUG_ON((*list_head) != NULL); 725 (*list_head) = bio; 726 (*list_tail) = bio; 727 } 728 } 729 730 /* 731 * Remove and return the first bio from a single linked list defined by its 732 * head and tail pointers. 733 */ 734 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail) 735 { 736 struct bio *bio; 737 738 if (*list_head == NULL) 739 return NULL; 740 741 bio = *list_head; 742 *list_head = bio->bi_next; 743 if (*list_head == NULL) 744 *list_tail = NULL; 745 746 bio->bi_next = NULL; 747 return bio; 748 } 749 750 /* 751 * Send a packet_command to the underlying block device and 752 * wait for completion. 753 */ 754 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 755 { 756 request_queue_t *q = bdev_get_queue(pd->bdev); 757 struct request *rq; 758 int ret = 0; 759 760 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 761 WRITE : READ, __GFP_WAIT); 762 763 if (cgc->buflen) { 764 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT)) 765 goto out; 766 } 767 768 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 769 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE); 770 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE) 771 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE); 772 773 rq->timeout = 60*HZ; 774 rq->cmd_type = REQ_TYPE_BLOCK_PC; 775 rq->cmd_flags |= REQ_HARDBARRIER; 776 if (cgc->quiet) 777 rq->cmd_flags |= REQ_QUIET; 778 779 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0); 780 if (rq->errors) 781 ret = -EIO; 782 out: 783 blk_put_request(rq); 784 return ret; 785 } 786 787 /* 788 * A generic sense dump / resolve mechanism should be implemented across 789 * all ATAPI + SCSI devices. 790 */ 791 static void pkt_dump_sense(struct packet_command *cgc) 792 { 793 static char *info[9] = { "No sense", "Recovered error", "Not ready", 794 "Medium error", "Hardware error", "Illegal request", 795 "Unit attention", "Data protect", "Blank check" }; 796 int i; 797 struct request_sense *sense = cgc->sense; 798 799 printk(DRIVER_NAME":"); 800 for (i = 0; i < CDROM_PACKET_SIZE; i++) 801 printk(" %02x", cgc->cmd[i]); 802 printk(" - "); 803 804 if (sense == NULL) { 805 printk("no sense\n"); 806 return; 807 } 808 809 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq); 810 811 if (sense->sense_key > 8) { 812 printk(" (INVALID)\n"); 813 return; 814 } 815 816 printk(" (%s)\n", info[sense->sense_key]); 817 } 818 819 /* 820 * flush the drive cache to media 821 */ 822 static int pkt_flush_cache(struct pktcdvd_device *pd) 823 { 824 struct packet_command cgc; 825 826 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 827 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 828 cgc.quiet = 1; 829 830 /* 831 * the IMMED bit -- we default to not setting it, although that 832 * would allow a much faster close, this is safer 833 */ 834 #if 0 835 cgc.cmd[1] = 1 << 1; 836 #endif 837 return pkt_generic_packet(pd, &cgc); 838 } 839 840 /* 841 * speed is given as the normal factor, e.g. 4 for 4x 842 */ 843 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed) 844 { 845 struct packet_command cgc; 846 struct request_sense sense; 847 int ret; 848 849 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 850 cgc.sense = &sense; 851 cgc.cmd[0] = GPCMD_SET_SPEED; 852 cgc.cmd[2] = (read_speed >> 8) & 0xff; 853 cgc.cmd[3] = read_speed & 0xff; 854 cgc.cmd[4] = (write_speed >> 8) & 0xff; 855 cgc.cmd[5] = write_speed & 0xff; 856 857 if ((ret = pkt_generic_packet(pd, &cgc))) 858 pkt_dump_sense(&cgc); 859 860 return ret; 861 } 862 863 /* 864 * Queue a bio for processing by the low-level CD device. Must be called 865 * from process context. 866 */ 867 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 868 { 869 spin_lock(&pd->iosched.lock); 870 if (bio_data_dir(bio) == READ) { 871 pkt_add_list_last(bio, &pd->iosched.read_queue, 872 &pd->iosched.read_queue_tail); 873 } else { 874 pkt_add_list_last(bio, &pd->iosched.write_queue, 875 &pd->iosched.write_queue_tail); 876 } 877 spin_unlock(&pd->iosched.lock); 878 879 atomic_set(&pd->iosched.attention, 1); 880 wake_up(&pd->wqueue); 881 } 882 883 /* 884 * Process the queued read/write requests. This function handles special 885 * requirements for CDRW drives: 886 * - A cache flush command must be inserted before a read request if the 887 * previous request was a write. 888 * - Switching between reading and writing is slow, so don't do it more often 889 * than necessary. 890 * - Optimize for throughput at the expense of latency. This means that streaming 891 * writes will never be interrupted by a read, but if the drive has to seek 892 * before the next write, switch to reading instead if there are any pending 893 * read requests. 894 * - Set the read speed according to current usage pattern. When only reading 895 * from the device, it's best to use the highest possible read speed, but 896 * when switching often between reading and writing, it's better to have the 897 * same read and write speeds. 898 */ 899 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 900 { 901 902 if (atomic_read(&pd->iosched.attention) == 0) 903 return; 904 atomic_set(&pd->iosched.attention, 0); 905 906 for (;;) { 907 struct bio *bio; 908 int reads_queued, writes_queued; 909 910 spin_lock(&pd->iosched.lock); 911 reads_queued = (pd->iosched.read_queue != NULL); 912 writes_queued = (pd->iosched.write_queue != NULL); 913 spin_unlock(&pd->iosched.lock); 914 915 if (!reads_queued && !writes_queued) 916 break; 917 918 if (pd->iosched.writing) { 919 int need_write_seek = 1; 920 spin_lock(&pd->iosched.lock); 921 bio = pd->iosched.write_queue; 922 spin_unlock(&pd->iosched.lock); 923 if (bio && (bio->bi_sector == pd->iosched.last_write)) 924 need_write_seek = 0; 925 if (need_write_seek && reads_queued) { 926 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 927 VPRINTK(DRIVER_NAME": write, waiting\n"); 928 break; 929 } 930 pkt_flush_cache(pd); 931 pd->iosched.writing = 0; 932 } 933 } else { 934 if (!reads_queued && writes_queued) { 935 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 936 VPRINTK(DRIVER_NAME": read, waiting\n"); 937 break; 938 } 939 pd->iosched.writing = 1; 940 } 941 } 942 943 spin_lock(&pd->iosched.lock); 944 if (pd->iosched.writing) { 945 bio = pkt_get_list_first(&pd->iosched.write_queue, 946 &pd->iosched.write_queue_tail); 947 } else { 948 bio = pkt_get_list_first(&pd->iosched.read_queue, 949 &pd->iosched.read_queue_tail); 950 } 951 spin_unlock(&pd->iosched.lock); 952 953 if (!bio) 954 continue; 955 956 if (bio_data_dir(bio) == READ) 957 pd->iosched.successive_reads += bio->bi_size >> 10; 958 else { 959 pd->iosched.successive_reads = 0; 960 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio); 961 } 962 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 963 if (pd->read_speed == pd->write_speed) { 964 pd->read_speed = MAX_SPEED; 965 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 966 } 967 } else { 968 if (pd->read_speed != pd->write_speed) { 969 pd->read_speed = pd->write_speed; 970 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 971 } 972 } 973 974 atomic_inc(&pd->cdrw.pending_bios); 975 generic_make_request(bio); 976 } 977 } 978 979 /* 980 * Special care is needed if the underlying block device has a small 981 * max_phys_segments value. 982 */ 983 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q) 984 { 985 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) { 986 /* 987 * The cdrom device can handle one segment/frame 988 */ 989 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 990 return 0; 991 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) { 992 /* 993 * We can handle this case at the expense of some extra memory 994 * copies during write operations 995 */ 996 set_bit(PACKET_MERGE_SEGS, &pd->flags); 997 return 0; 998 } else { 999 printk(DRIVER_NAME": cdrom max_phys_segments too small\n"); 1000 return -EIO; 1001 } 1002 } 1003 1004 /* 1005 * Copy CD_FRAMESIZE bytes from src_bio into a destination page 1006 */ 1007 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs) 1008 { 1009 unsigned int copy_size = CD_FRAMESIZE; 1010 1011 while (copy_size > 0) { 1012 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg); 1013 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) + 1014 src_bvl->bv_offset + offs; 1015 void *vto = page_address(dst_page) + dst_offs; 1016 int len = min_t(int, copy_size, src_bvl->bv_len - offs); 1017 1018 BUG_ON(len < 0); 1019 memcpy(vto, vfrom, len); 1020 kunmap_atomic(vfrom, KM_USER0); 1021 1022 seg++; 1023 offs = 0; 1024 dst_offs += len; 1025 copy_size -= len; 1026 } 1027 } 1028 1029 /* 1030 * Copy all data for this packet to pkt->pages[], so that 1031 * a) The number of required segments for the write bio is minimized, which 1032 * is necessary for some scsi controllers. 1033 * b) The data can be used as cache to avoid read requests if we receive a 1034 * new write request for the same zone. 1035 */ 1036 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec) 1037 { 1038 int f, p, offs; 1039 1040 /* Copy all data to pkt->pages[] */ 1041 p = 0; 1042 offs = 0; 1043 for (f = 0; f < pkt->frames; f++) { 1044 if (bvec[f].bv_page != pkt->pages[p]) { 1045 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset; 1046 void *vto = page_address(pkt->pages[p]) + offs; 1047 memcpy(vto, vfrom, CD_FRAMESIZE); 1048 kunmap_atomic(vfrom, KM_USER0); 1049 bvec[f].bv_page = pkt->pages[p]; 1050 bvec[f].bv_offset = offs; 1051 } else { 1052 BUG_ON(bvec[f].bv_offset != offs); 1053 } 1054 offs += CD_FRAMESIZE; 1055 if (offs >= PAGE_SIZE) { 1056 offs = 0; 1057 p++; 1058 } 1059 } 1060 } 1061 1062 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err) 1063 { 1064 struct packet_data *pkt = bio->bi_private; 1065 struct pktcdvd_device *pd = pkt->pd; 1066 BUG_ON(!pd); 1067 1068 if (bio->bi_size) 1069 return 1; 1070 1071 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio, 1072 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err); 1073 1074 if (err) 1075 atomic_inc(&pkt->io_errors); 1076 if (atomic_dec_and_test(&pkt->io_wait)) { 1077 atomic_inc(&pkt->run_sm); 1078 wake_up(&pd->wqueue); 1079 } 1080 pkt_bio_finished(pd); 1081 1082 return 0; 1083 } 1084 1085 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err) 1086 { 1087 struct packet_data *pkt = bio->bi_private; 1088 struct pktcdvd_device *pd = pkt->pd; 1089 BUG_ON(!pd); 1090 1091 if (bio->bi_size) 1092 return 1; 1093 1094 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err); 1095 1096 pd->stats.pkt_ended++; 1097 1098 pkt_bio_finished(pd); 1099 atomic_dec(&pkt->io_wait); 1100 atomic_inc(&pkt->run_sm); 1101 wake_up(&pd->wqueue); 1102 return 0; 1103 } 1104 1105 /* 1106 * Schedule reads for the holes in a packet 1107 */ 1108 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1109 { 1110 int frames_read = 0; 1111 struct bio *bio; 1112 int f; 1113 char written[PACKET_MAX_SIZE]; 1114 1115 BUG_ON(!pkt->orig_bios); 1116 1117 atomic_set(&pkt->io_wait, 0); 1118 atomic_set(&pkt->io_errors, 0); 1119 1120 /* 1121 * Figure out which frames we need to read before we can write. 1122 */ 1123 memset(written, 0, sizeof(written)); 1124 spin_lock(&pkt->lock); 1125 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1126 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1127 int num_frames = bio->bi_size / CD_FRAMESIZE; 1128 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 1129 BUG_ON(first_frame < 0); 1130 BUG_ON(first_frame + num_frames > pkt->frames); 1131 for (f = first_frame; f < first_frame + num_frames; f++) 1132 written[f] = 1; 1133 } 1134 spin_unlock(&pkt->lock); 1135 1136 if (pkt->cache_valid) { 1137 VPRINTK("pkt_gather_data: zone %llx cached\n", 1138 (unsigned long long)pkt->sector); 1139 goto out_account; 1140 } 1141 1142 /* 1143 * Schedule reads for missing parts of the packet. 1144 */ 1145 for (f = 0; f < pkt->frames; f++) { 1146 int p, offset; 1147 if (written[f]) 1148 continue; 1149 bio = pkt->r_bios[f]; 1150 bio_init(bio); 1151 bio->bi_max_vecs = 1; 1152 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1153 bio->bi_bdev = pd->bdev; 1154 bio->bi_end_io = pkt_end_io_read; 1155 bio->bi_private = pkt; 1156 1157 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1158 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1159 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n", 1160 f, pkt->pages[p], offset); 1161 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1162 BUG(); 1163 1164 atomic_inc(&pkt->io_wait); 1165 bio->bi_rw = READ; 1166 pkt_queue_bio(pd, bio); 1167 frames_read++; 1168 } 1169 1170 out_account: 1171 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n", 1172 frames_read, (unsigned long long)pkt->sector); 1173 pd->stats.pkt_started++; 1174 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1175 } 1176 1177 /* 1178 * Find a packet matching zone, or the least recently used packet if 1179 * there is no match. 1180 */ 1181 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1182 { 1183 struct packet_data *pkt; 1184 1185 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1186 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1187 list_del_init(&pkt->list); 1188 if (pkt->sector != zone) 1189 pkt->cache_valid = 0; 1190 return pkt; 1191 } 1192 } 1193 BUG(); 1194 return NULL; 1195 } 1196 1197 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1198 { 1199 if (pkt->cache_valid) { 1200 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1201 } else { 1202 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1203 } 1204 } 1205 1206 /* 1207 * recover a failed write, query for relocation if possible 1208 * 1209 * returns 1 if recovery is possible, or 0 if not 1210 * 1211 */ 1212 static int pkt_start_recovery(struct packet_data *pkt) 1213 { 1214 /* 1215 * FIXME. We need help from the file system to implement 1216 * recovery handling. 1217 */ 1218 return 0; 1219 #if 0 1220 struct request *rq = pkt->rq; 1221 struct pktcdvd_device *pd = rq->rq_disk->private_data; 1222 struct block_device *pkt_bdev; 1223 struct super_block *sb = NULL; 1224 unsigned long old_block, new_block; 1225 sector_t new_sector; 1226 1227 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 1228 if (pkt_bdev) { 1229 sb = get_super(pkt_bdev); 1230 bdput(pkt_bdev); 1231 } 1232 1233 if (!sb) 1234 return 0; 1235 1236 if (!sb->s_op || !sb->s_op->relocate_blocks) 1237 goto out; 1238 1239 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 1240 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 1241 goto out; 1242 1243 new_sector = new_block * (CD_FRAMESIZE >> 9); 1244 pkt->sector = new_sector; 1245 1246 pkt->bio->bi_sector = new_sector; 1247 pkt->bio->bi_next = NULL; 1248 pkt->bio->bi_flags = 1 << BIO_UPTODATE; 1249 pkt->bio->bi_idx = 0; 1250 1251 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW)); 1252 BUG_ON(pkt->bio->bi_vcnt != pkt->frames); 1253 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE); 1254 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write); 1255 BUG_ON(pkt->bio->bi_private != pkt); 1256 1257 drop_super(sb); 1258 return 1; 1259 1260 out: 1261 drop_super(sb); 1262 return 0; 1263 #endif 1264 } 1265 1266 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 1267 { 1268 #if PACKET_DEBUG > 1 1269 static const char *state_name[] = { 1270 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1271 }; 1272 enum packet_data_state old_state = pkt->state; 1273 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector, 1274 state_name[old_state], state_name[state]); 1275 #endif 1276 pkt->state = state; 1277 } 1278 1279 /* 1280 * Scan the work queue to see if we can start a new packet. 1281 * returns non-zero if any work was done. 1282 */ 1283 static int pkt_handle_queue(struct pktcdvd_device *pd) 1284 { 1285 struct packet_data *pkt, *p; 1286 struct bio *bio = NULL; 1287 sector_t zone = 0; /* Suppress gcc warning */ 1288 struct pkt_rb_node *node, *first_node; 1289 struct rb_node *n; 1290 int wakeup; 1291 1292 VPRINTK("handle_queue\n"); 1293 1294 atomic_set(&pd->scan_queue, 0); 1295 1296 if (list_empty(&pd->cdrw.pkt_free_list)) { 1297 VPRINTK("handle_queue: no pkt\n"); 1298 return 0; 1299 } 1300 1301 /* 1302 * Try to find a zone we are not already working on. 1303 */ 1304 spin_lock(&pd->lock); 1305 first_node = pkt_rbtree_find(pd, pd->current_sector); 1306 if (!first_node) { 1307 n = rb_first(&pd->bio_queue); 1308 if (n) 1309 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1310 } 1311 node = first_node; 1312 while (node) { 1313 bio = node->bio; 1314 zone = ZONE(bio->bi_sector, pd); 1315 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1316 if (p->sector == zone) { 1317 bio = NULL; 1318 goto try_next_bio; 1319 } 1320 } 1321 break; 1322 try_next_bio: 1323 node = pkt_rbtree_next(node); 1324 if (!node) { 1325 n = rb_first(&pd->bio_queue); 1326 if (n) 1327 node = rb_entry(n, struct pkt_rb_node, rb_node); 1328 } 1329 if (node == first_node) 1330 node = NULL; 1331 } 1332 spin_unlock(&pd->lock); 1333 if (!bio) { 1334 VPRINTK("handle_queue: no bio\n"); 1335 return 0; 1336 } 1337 1338 pkt = pkt_get_packet_data(pd, zone); 1339 1340 pd->current_sector = zone + pd->settings.size; 1341 pkt->sector = zone; 1342 BUG_ON(pkt->frames != pd->settings.size >> 2); 1343 pkt->write_size = 0; 1344 1345 /* 1346 * Scan work queue for bios in the same zone and link them 1347 * to this packet. 1348 */ 1349 spin_lock(&pd->lock); 1350 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone); 1351 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1352 bio = node->bio; 1353 VPRINTK("pkt_handle_queue: found zone=%llx\n", 1354 (unsigned long long)ZONE(bio->bi_sector, pd)); 1355 if (ZONE(bio->bi_sector, pd) != zone) 1356 break; 1357 pkt_rbtree_erase(pd, node); 1358 spin_lock(&pkt->lock); 1359 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail); 1360 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 1361 spin_unlock(&pkt->lock); 1362 } 1363 /* check write congestion marks, and if bio_queue_size is 1364 below, wake up any waiters */ 1365 wakeup = (pd->write_congestion_on > 0 1366 && pd->bio_queue_size <= pd->write_congestion_off); 1367 spin_unlock(&pd->lock); 1368 if (wakeup) 1369 clear_bdi_congested(&pd->disk->queue->backing_dev_info, WRITE); 1370 1371 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1372 pkt_set_state(pkt, PACKET_WAITING_STATE); 1373 atomic_set(&pkt->run_sm, 1); 1374 1375 spin_lock(&pd->cdrw.active_list_lock); 1376 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1377 spin_unlock(&pd->cdrw.active_list_lock); 1378 1379 return 1; 1380 } 1381 1382 /* 1383 * Assemble a bio to write one packet and queue the bio for processing 1384 * by the underlying block device. 1385 */ 1386 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1387 { 1388 struct bio *bio; 1389 int f; 1390 int frames_write; 1391 struct bio_vec *bvec = pkt->w_bio->bi_io_vec; 1392 1393 for (f = 0; f < pkt->frames; f++) { 1394 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1395 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1396 } 1397 1398 /* 1399 * Fill-in bvec with data from orig_bios. 1400 */ 1401 frames_write = 0; 1402 spin_lock(&pkt->lock); 1403 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1404 int segment = bio->bi_idx; 1405 int src_offs = 0; 1406 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1407 int num_frames = bio->bi_size / CD_FRAMESIZE; 1408 BUG_ON(first_frame < 0); 1409 BUG_ON(first_frame + num_frames > pkt->frames); 1410 for (f = first_frame; f < first_frame + num_frames; f++) { 1411 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment); 1412 1413 while (src_offs >= src_bvl->bv_len) { 1414 src_offs -= src_bvl->bv_len; 1415 segment++; 1416 BUG_ON(segment >= bio->bi_vcnt); 1417 src_bvl = bio_iovec_idx(bio, segment); 1418 } 1419 1420 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) { 1421 bvec[f].bv_page = src_bvl->bv_page; 1422 bvec[f].bv_offset = src_bvl->bv_offset + src_offs; 1423 } else { 1424 pkt_copy_bio_data(bio, segment, src_offs, 1425 bvec[f].bv_page, bvec[f].bv_offset); 1426 } 1427 src_offs += CD_FRAMESIZE; 1428 frames_write++; 1429 } 1430 } 1431 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1432 spin_unlock(&pkt->lock); 1433 1434 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n", 1435 frames_write, (unsigned long long)pkt->sector); 1436 BUG_ON(frames_write != pkt->write_size); 1437 1438 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) { 1439 pkt_make_local_copy(pkt, bvec); 1440 pkt->cache_valid = 1; 1441 } else { 1442 pkt->cache_valid = 0; 1443 } 1444 1445 /* Start the write request */ 1446 bio_init(pkt->w_bio); 1447 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE; 1448 pkt->w_bio->bi_sector = pkt->sector; 1449 pkt->w_bio->bi_bdev = pd->bdev; 1450 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1451 pkt->w_bio->bi_private = pkt; 1452 for (f = 0; f < pkt->frames; f++) 1453 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset)) 1454 BUG(); 1455 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt); 1456 1457 atomic_set(&pkt->io_wait, 1); 1458 pkt->w_bio->bi_rw = WRITE; 1459 pkt_queue_bio(pd, pkt->w_bio); 1460 } 1461 1462 static void pkt_finish_packet(struct packet_data *pkt, int uptodate) 1463 { 1464 struct bio *bio, *next; 1465 1466 if (!uptodate) 1467 pkt->cache_valid = 0; 1468 1469 /* Finish all bios corresponding to this packet */ 1470 bio = pkt->orig_bios; 1471 while (bio) { 1472 next = bio->bi_next; 1473 bio->bi_next = NULL; 1474 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO); 1475 bio = next; 1476 } 1477 pkt->orig_bios = pkt->orig_bios_tail = NULL; 1478 } 1479 1480 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1481 { 1482 int uptodate; 1483 1484 VPRINTK("run_state_machine: pkt %d\n", pkt->id); 1485 1486 for (;;) { 1487 switch (pkt->state) { 1488 case PACKET_WAITING_STATE: 1489 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1490 return; 1491 1492 pkt->sleep_time = 0; 1493 pkt_gather_data(pd, pkt); 1494 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1495 break; 1496 1497 case PACKET_READ_WAIT_STATE: 1498 if (atomic_read(&pkt->io_wait) > 0) 1499 return; 1500 1501 if (atomic_read(&pkt->io_errors) > 0) { 1502 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1503 } else { 1504 pkt_start_write(pd, pkt); 1505 } 1506 break; 1507 1508 case PACKET_WRITE_WAIT_STATE: 1509 if (atomic_read(&pkt->io_wait) > 0) 1510 return; 1511 1512 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) { 1513 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1514 } else { 1515 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1516 } 1517 break; 1518 1519 case PACKET_RECOVERY_STATE: 1520 if (pkt_start_recovery(pkt)) { 1521 pkt_start_write(pd, pkt); 1522 } else { 1523 VPRINTK("No recovery possible\n"); 1524 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1525 } 1526 break; 1527 1528 case PACKET_FINISHED_STATE: 1529 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags); 1530 pkt_finish_packet(pkt, uptodate); 1531 return; 1532 1533 default: 1534 BUG(); 1535 break; 1536 } 1537 } 1538 } 1539 1540 static void pkt_handle_packets(struct pktcdvd_device *pd) 1541 { 1542 struct packet_data *pkt, *next; 1543 1544 VPRINTK("pkt_handle_packets\n"); 1545 1546 /* 1547 * Run state machine for active packets 1548 */ 1549 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1550 if (atomic_read(&pkt->run_sm) > 0) { 1551 atomic_set(&pkt->run_sm, 0); 1552 pkt_run_state_machine(pd, pkt); 1553 } 1554 } 1555 1556 /* 1557 * Move no longer active packets to the free list 1558 */ 1559 spin_lock(&pd->cdrw.active_list_lock); 1560 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1561 if (pkt->state == PACKET_FINISHED_STATE) { 1562 list_del(&pkt->list); 1563 pkt_put_packet_data(pd, pkt); 1564 pkt_set_state(pkt, PACKET_IDLE_STATE); 1565 atomic_set(&pd->scan_queue, 1); 1566 } 1567 } 1568 spin_unlock(&pd->cdrw.active_list_lock); 1569 } 1570 1571 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1572 { 1573 struct packet_data *pkt; 1574 int i; 1575 1576 for (i = 0; i < PACKET_NUM_STATES; i++) 1577 states[i] = 0; 1578 1579 spin_lock(&pd->cdrw.active_list_lock); 1580 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1581 states[pkt->state]++; 1582 } 1583 spin_unlock(&pd->cdrw.active_list_lock); 1584 } 1585 1586 /* 1587 * kcdrwd is woken up when writes have been queued for one of our 1588 * registered devices 1589 */ 1590 static int kcdrwd(void *foobar) 1591 { 1592 struct pktcdvd_device *pd = foobar; 1593 struct packet_data *pkt; 1594 long min_sleep_time, residue; 1595 1596 set_user_nice(current, -20); 1597 1598 for (;;) { 1599 DECLARE_WAITQUEUE(wait, current); 1600 1601 /* 1602 * Wait until there is something to do 1603 */ 1604 add_wait_queue(&pd->wqueue, &wait); 1605 for (;;) { 1606 set_current_state(TASK_INTERRUPTIBLE); 1607 1608 /* Check if we need to run pkt_handle_queue */ 1609 if (atomic_read(&pd->scan_queue) > 0) 1610 goto work_to_do; 1611 1612 /* Check if we need to run the state machine for some packet */ 1613 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1614 if (atomic_read(&pkt->run_sm) > 0) 1615 goto work_to_do; 1616 } 1617 1618 /* Check if we need to process the iosched queues */ 1619 if (atomic_read(&pd->iosched.attention) != 0) 1620 goto work_to_do; 1621 1622 /* Otherwise, go to sleep */ 1623 if (PACKET_DEBUG > 1) { 1624 int states[PACKET_NUM_STATES]; 1625 pkt_count_states(pd, states); 1626 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1627 states[0], states[1], states[2], states[3], 1628 states[4], states[5]); 1629 } 1630 1631 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1632 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1633 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1634 min_sleep_time = pkt->sleep_time; 1635 } 1636 1637 generic_unplug_device(bdev_get_queue(pd->bdev)); 1638 1639 VPRINTK("kcdrwd: sleeping\n"); 1640 residue = schedule_timeout(min_sleep_time); 1641 VPRINTK("kcdrwd: wake up\n"); 1642 1643 /* make swsusp happy with our thread */ 1644 try_to_freeze(); 1645 1646 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1647 if (!pkt->sleep_time) 1648 continue; 1649 pkt->sleep_time -= min_sleep_time - residue; 1650 if (pkt->sleep_time <= 0) { 1651 pkt->sleep_time = 0; 1652 atomic_inc(&pkt->run_sm); 1653 } 1654 } 1655 1656 if (signal_pending(current)) { 1657 flush_signals(current); 1658 } 1659 if (kthread_should_stop()) 1660 break; 1661 } 1662 work_to_do: 1663 set_current_state(TASK_RUNNING); 1664 remove_wait_queue(&pd->wqueue, &wait); 1665 1666 if (kthread_should_stop()) 1667 break; 1668 1669 /* 1670 * if pkt_handle_queue returns true, we can queue 1671 * another request. 1672 */ 1673 while (pkt_handle_queue(pd)) 1674 ; 1675 1676 /* 1677 * Handle packet state machine 1678 */ 1679 pkt_handle_packets(pd); 1680 1681 /* 1682 * Handle iosched queues 1683 */ 1684 pkt_iosched_process_queue(pd); 1685 } 1686 1687 return 0; 1688 } 1689 1690 static void pkt_print_settings(struct pktcdvd_device *pd) 1691 { 1692 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable"); 1693 printk("%u blocks, ", pd->settings.size >> 2); 1694 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2'); 1695 } 1696 1697 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1698 { 1699 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1700 1701 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1702 cgc->cmd[2] = page_code | (page_control << 6); 1703 cgc->cmd[7] = cgc->buflen >> 8; 1704 cgc->cmd[8] = cgc->buflen & 0xff; 1705 cgc->data_direction = CGC_DATA_READ; 1706 return pkt_generic_packet(pd, cgc); 1707 } 1708 1709 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1710 { 1711 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1712 memset(cgc->buffer, 0, 2); 1713 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1714 cgc->cmd[1] = 0x10; /* PF */ 1715 cgc->cmd[7] = cgc->buflen >> 8; 1716 cgc->cmd[8] = cgc->buflen & 0xff; 1717 cgc->data_direction = CGC_DATA_WRITE; 1718 return pkt_generic_packet(pd, cgc); 1719 } 1720 1721 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1722 { 1723 struct packet_command cgc; 1724 int ret; 1725 1726 /* set up command and get the disc info */ 1727 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1728 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1729 cgc.cmd[8] = cgc.buflen = 2; 1730 cgc.quiet = 1; 1731 1732 if ((ret = pkt_generic_packet(pd, &cgc))) 1733 return ret; 1734 1735 /* not all drives have the same disc_info length, so requeue 1736 * packet with the length the drive tells us it can supply 1737 */ 1738 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1739 sizeof(di->disc_information_length); 1740 1741 if (cgc.buflen > sizeof(disc_information)) 1742 cgc.buflen = sizeof(disc_information); 1743 1744 cgc.cmd[8] = cgc.buflen; 1745 return pkt_generic_packet(pd, &cgc); 1746 } 1747 1748 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1749 { 1750 struct packet_command cgc; 1751 int ret; 1752 1753 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1754 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1755 cgc.cmd[1] = type & 3; 1756 cgc.cmd[4] = (track & 0xff00) >> 8; 1757 cgc.cmd[5] = track & 0xff; 1758 cgc.cmd[8] = 8; 1759 cgc.quiet = 1; 1760 1761 if ((ret = pkt_generic_packet(pd, &cgc))) 1762 return ret; 1763 1764 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1765 sizeof(ti->track_information_length); 1766 1767 if (cgc.buflen > sizeof(track_information)) 1768 cgc.buflen = sizeof(track_information); 1769 1770 cgc.cmd[8] = cgc.buflen; 1771 return pkt_generic_packet(pd, &cgc); 1772 } 1773 1774 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written) 1775 { 1776 disc_information di; 1777 track_information ti; 1778 __u32 last_track; 1779 int ret = -1; 1780 1781 if ((ret = pkt_get_disc_info(pd, &di))) 1782 return ret; 1783 1784 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1785 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1786 return ret; 1787 1788 /* if this track is blank, try the previous. */ 1789 if (ti.blank) { 1790 last_track--; 1791 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1792 return ret; 1793 } 1794 1795 /* if last recorded field is valid, return it. */ 1796 if (ti.lra_v) { 1797 *last_written = be32_to_cpu(ti.last_rec_address); 1798 } else { 1799 /* make it up instead */ 1800 *last_written = be32_to_cpu(ti.track_start) + 1801 be32_to_cpu(ti.track_size); 1802 if (ti.free_blocks) 1803 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1804 } 1805 return 0; 1806 } 1807 1808 /* 1809 * write mode select package based on pd->settings 1810 */ 1811 static int pkt_set_write_settings(struct pktcdvd_device *pd) 1812 { 1813 struct packet_command cgc; 1814 struct request_sense sense; 1815 write_param_page *wp; 1816 char buffer[128]; 1817 int ret, size; 1818 1819 /* doesn't apply to DVD+RW or DVD-RAM */ 1820 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1821 return 0; 1822 1823 memset(buffer, 0, sizeof(buffer)); 1824 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1825 cgc.sense = &sense; 1826 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1827 pkt_dump_sense(&cgc); 1828 return ret; 1829 } 1830 1831 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1832 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1833 if (size > sizeof(buffer)) 1834 size = sizeof(buffer); 1835 1836 /* 1837 * now get it all 1838 */ 1839 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1840 cgc.sense = &sense; 1841 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1842 pkt_dump_sense(&cgc); 1843 return ret; 1844 } 1845 1846 /* 1847 * write page is offset header + block descriptor length 1848 */ 1849 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1850 1851 wp->fp = pd->settings.fp; 1852 wp->track_mode = pd->settings.track_mode; 1853 wp->write_type = pd->settings.write_type; 1854 wp->data_block_type = pd->settings.block_mode; 1855 1856 wp->multi_session = 0; 1857 1858 #ifdef PACKET_USE_LS 1859 wp->link_size = 7; 1860 wp->ls_v = 1; 1861 #endif 1862 1863 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1864 wp->session_format = 0; 1865 wp->subhdr2 = 0x20; 1866 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1867 wp->session_format = 0x20; 1868 wp->subhdr2 = 8; 1869 #if 0 1870 wp->mcn[0] = 0x80; 1871 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1872 #endif 1873 } else { 1874 /* 1875 * paranoia 1876 */ 1877 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type); 1878 return 1; 1879 } 1880 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1881 1882 cgc.buflen = cgc.cmd[8] = size; 1883 if ((ret = pkt_mode_select(pd, &cgc))) { 1884 pkt_dump_sense(&cgc); 1885 return ret; 1886 } 1887 1888 pkt_print_settings(pd); 1889 return 0; 1890 } 1891 1892 /* 1893 * 1 -- we can write to this track, 0 -- we can't 1894 */ 1895 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1896 { 1897 switch (pd->mmc3_profile) { 1898 case 0x1a: /* DVD+RW */ 1899 case 0x12: /* DVD-RAM */ 1900 /* The track is always writable on DVD+RW/DVD-RAM */ 1901 return 1; 1902 default: 1903 break; 1904 } 1905 1906 if (!ti->packet || !ti->fp) 1907 return 0; 1908 1909 /* 1910 * "good" settings as per Mt Fuji. 1911 */ 1912 if (ti->rt == 0 && ti->blank == 0) 1913 return 1; 1914 1915 if (ti->rt == 0 && ti->blank == 1) 1916 return 1; 1917 1918 if (ti->rt == 1 && ti->blank == 0) 1919 return 1; 1920 1921 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1922 return 0; 1923 } 1924 1925 /* 1926 * 1 -- we can write to this disc, 0 -- we can't 1927 */ 1928 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1929 { 1930 switch (pd->mmc3_profile) { 1931 case 0x0a: /* CD-RW */ 1932 case 0xffff: /* MMC3 not supported */ 1933 break; 1934 case 0x1a: /* DVD+RW */ 1935 case 0x13: /* DVD-RW */ 1936 case 0x12: /* DVD-RAM */ 1937 return 1; 1938 default: 1939 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile); 1940 return 0; 1941 } 1942 1943 /* 1944 * for disc type 0xff we should probably reserve a new track. 1945 * but i'm not sure, should we leave this to user apps? probably. 1946 */ 1947 if (di->disc_type == 0xff) { 1948 printk(DRIVER_NAME": Unknown disc. No track?\n"); 1949 return 0; 1950 } 1951 1952 if (di->disc_type != 0x20 && di->disc_type != 0) { 1953 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type); 1954 return 0; 1955 } 1956 1957 if (di->erasable == 0) { 1958 printk(DRIVER_NAME": Disc not erasable\n"); 1959 return 0; 1960 } 1961 1962 if (di->border_status == PACKET_SESSION_RESERVED) { 1963 printk(DRIVER_NAME": Can't write to last track (reserved)\n"); 1964 return 0; 1965 } 1966 1967 return 1; 1968 } 1969 1970 static int pkt_probe_settings(struct pktcdvd_device *pd) 1971 { 1972 struct packet_command cgc; 1973 unsigned char buf[12]; 1974 disc_information di; 1975 track_information ti; 1976 int ret, track; 1977 1978 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1979 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1980 cgc.cmd[8] = 8; 1981 ret = pkt_generic_packet(pd, &cgc); 1982 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1983 1984 memset(&di, 0, sizeof(disc_information)); 1985 memset(&ti, 0, sizeof(track_information)); 1986 1987 if ((ret = pkt_get_disc_info(pd, &di))) { 1988 printk("failed get_disc\n"); 1989 return ret; 1990 } 1991 1992 if (!pkt_writable_disc(pd, &di)) 1993 return -EROFS; 1994 1995 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 1996 1997 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 1998 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 1999 printk(DRIVER_NAME": failed get_track\n"); 2000 return ret; 2001 } 2002 2003 if (!pkt_writable_track(pd, &ti)) { 2004 printk(DRIVER_NAME": can't write to this track\n"); 2005 return -EROFS; 2006 } 2007 2008 /* 2009 * we keep packet size in 512 byte units, makes it easier to 2010 * deal with request calculations. 2011 */ 2012 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 2013 if (pd->settings.size == 0) { 2014 printk(DRIVER_NAME": detected zero packet size!\n"); 2015 return -ENXIO; 2016 } 2017 if (pd->settings.size > PACKET_MAX_SECTORS) { 2018 printk(DRIVER_NAME": packet size is too big\n"); 2019 return -EROFS; 2020 } 2021 pd->settings.fp = ti.fp; 2022 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 2023 2024 if (ti.nwa_v) { 2025 pd->nwa = be32_to_cpu(ti.next_writable); 2026 set_bit(PACKET_NWA_VALID, &pd->flags); 2027 } 2028 2029 /* 2030 * in theory we could use lra on -RW media as well and just zero 2031 * blocks that haven't been written yet, but in practice that 2032 * is just a no-go. we'll use that for -R, naturally. 2033 */ 2034 if (ti.lra_v) { 2035 pd->lra = be32_to_cpu(ti.last_rec_address); 2036 set_bit(PACKET_LRA_VALID, &pd->flags); 2037 } else { 2038 pd->lra = 0xffffffff; 2039 set_bit(PACKET_LRA_VALID, &pd->flags); 2040 } 2041 2042 /* 2043 * fine for now 2044 */ 2045 pd->settings.link_loss = 7; 2046 pd->settings.write_type = 0; /* packet */ 2047 pd->settings.track_mode = ti.track_mode; 2048 2049 /* 2050 * mode1 or mode2 disc 2051 */ 2052 switch (ti.data_mode) { 2053 case PACKET_MODE1: 2054 pd->settings.block_mode = PACKET_BLOCK_MODE1; 2055 break; 2056 case PACKET_MODE2: 2057 pd->settings.block_mode = PACKET_BLOCK_MODE2; 2058 break; 2059 default: 2060 printk(DRIVER_NAME": unknown data mode\n"); 2061 return -EROFS; 2062 } 2063 return 0; 2064 } 2065 2066 /* 2067 * enable/disable write caching on drive 2068 */ 2069 static int pkt_write_caching(struct pktcdvd_device *pd, int set) 2070 { 2071 struct packet_command cgc; 2072 struct request_sense sense; 2073 unsigned char buf[64]; 2074 int ret; 2075 2076 memset(buf, 0, sizeof(buf)); 2077 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 2078 cgc.sense = &sense; 2079 cgc.buflen = pd->mode_offset + 12; 2080 2081 /* 2082 * caching mode page might not be there, so quiet this command 2083 */ 2084 cgc.quiet = 1; 2085 2086 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 2087 return ret; 2088 2089 buf[pd->mode_offset + 10] |= (!!set << 2); 2090 2091 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 2092 ret = pkt_mode_select(pd, &cgc); 2093 if (ret) { 2094 printk(DRIVER_NAME": write caching control failed\n"); 2095 pkt_dump_sense(&cgc); 2096 } else if (!ret && set) 2097 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name); 2098 return ret; 2099 } 2100 2101 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 2102 { 2103 struct packet_command cgc; 2104 2105 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2106 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 2107 cgc.cmd[4] = lockflag ? 1 : 0; 2108 return pkt_generic_packet(pd, &cgc); 2109 } 2110 2111 /* 2112 * Returns drive maximum write speed 2113 */ 2114 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed) 2115 { 2116 struct packet_command cgc; 2117 struct request_sense sense; 2118 unsigned char buf[256+18]; 2119 unsigned char *cap_buf; 2120 int ret, offset; 2121 2122 memset(buf, 0, sizeof(buf)); 2123 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 2124 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 2125 cgc.sense = &sense; 2126 2127 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2128 if (ret) { 2129 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 2130 sizeof(struct mode_page_header); 2131 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2132 if (ret) { 2133 pkt_dump_sense(&cgc); 2134 return ret; 2135 } 2136 } 2137 2138 offset = 20; /* Obsoleted field, used by older drives */ 2139 if (cap_buf[1] >= 28) 2140 offset = 28; /* Current write speed selected */ 2141 if (cap_buf[1] >= 30) { 2142 /* If the drive reports at least one "Logical Unit Write 2143 * Speed Performance Descriptor Block", use the information 2144 * in the first block. (contains the highest speed) 2145 */ 2146 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 2147 if (num_spdb > 0) 2148 offset = 34; 2149 } 2150 2151 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 2152 return 0; 2153 } 2154 2155 /* These tables from cdrecord - I don't have orange book */ 2156 /* standard speed CD-RW (1-4x) */ 2157 static char clv_to_speed[16] = { 2158 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2159 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2160 }; 2161 /* high speed CD-RW (-10x) */ 2162 static char hs_clv_to_speed[16] = { 2163 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2164 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2165 }; 2166 /* ultra high speed CD-RW */ 2167 static char us_clv_to_speed[16] = { 2168 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2169 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 2170 }; 2171 2172 /* 2173 * reads the maximum media speed from ATIP 2174 */ 2175 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed) 2176 { 2177 struct packet_command cgc; 2178 struct request_sense sense; 2179 unsigned char buf[64]; 2180 unsigned int size, st, sp; 2181 int ret; 2182 2183 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 2184 cgc.sense = &sense; 2185 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2186 cgc.cmd[1] = 2; 2187 cgc.cmd[2] = 4; /* READ ATIP */ 2188 cgc.cmd[8] = 2; 2189 ret = pkt_generic_packet(pd, &cgc); 2190 if (ret) { 2191 pkt_dump_sense(&cgc); 2192 return ret; 2193 } 2194 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 2195 if (size > sizeof(buf)) 2196 size = sizeof(buf); 2197 2198 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2199 cgc.sense = &sense; 2200 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2201 cgc.cmd[1] = 2; 2202 cgc.cmd[2] = 4; 2203 cgc.cmd[8] = size; 2204 ret = pkt_generic_packet(pd, &cgc); 2205 if (ret) { 2206 pkt_dump_sense(&cgc); 2207 return ret; 2208 } 2209 2210 if (!buf[6] & 0x40) { 2211 printk(DRIVER_NAME": Disc type is not CD-RW\n"); 2212 return 1; 2213 } 2214 if (!buf[6] & 0x4) { 2215 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n"); 2216 return 1; 2217 } 2218 2219 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2220 2221 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2222 2223 /* Info from cdrecord */ 2224 switch (st) { 2225 case 0: /* standard speed */ 2226 *speed = clv_to_speed[sp]; 2227 break; 2228 case 1: /* high speed */ 2229 *speed = hs_clv_to_speed[sp]; 2230 break; 2231 case 2: /* ultra high speed */ 2232 *speed = us_clv_to_speed[sp]; 2233 break; 2234 default: 2235 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st); 2236 return 1; 2237 } 2238 if (*speed) { 2239 printk(DRIVER_NAME": Max. media speed: %d\n",*speed); 2240 return 0; 2241 } else { 2242 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st); 2243 return 1; 2244 } 2245 } 2246 2247 static int pkt_perform_opc(struct pktcdvd_device *pd) 2248 { 2249 struct packet_command cgc; 2250 struct request_sense sense; 2251 int ret; 2252 2253 VPRINTK(DRIVER_NAME": Performing OPC\n"); 2254 2255 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2256 cgc.sense = &sense; 2257 cgc.timeout = 60*HZ; 2258 cgc.cmd[0] = GPCMD_SEND_OPC; 2259 cgc.cmd[1] = 1; 2260 if ((ret = pkt_generic_packet(pd, &cgc))) 2261 pkt_dump_sense(&cgc); 2262 return ret; 2263 } 2264 2265 static int pkt_open_write(struct pktcdvd_device *pd) 2266 { 2267 int ret; 2268 unsigned int write_speed, media_write_speed, read_speed; 2269 2270 if ((ret = pkt_probe_settings(pd))) { 2271 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name); 2272 return ret; 2273 } 2274 2275 if ((ret = pkt_set_write_settings(pd))) { 2276 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name); 2277 return -EIO; 2278 } 2279 2280 pkt_write_caching(pd, USE_WCACHING); 2281 2282 if ((ret = pkt_get_max_speed(pd, &write_speed))) 2283 write_speed = 16 * 177; 2284 switch (pd->mmc3_profile) { 2285 case 0x13: /* DVD-RW */ 2286 case 0x1a: /* DVD+RW */ 2287 case 0x12: /* DVD-RAM */ 2288 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed); 2289 break; 2290 default: 2291 if ((ret = pkt_media_speed(pd, &media_write_speed))) 2292 media_write_speed = 16; 2293 write_speed = min(write_speed, media_write_speed * 177); 2294 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176); 2295 break; 2296 } 2297 read_speed = write_speed; 2298 2299 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 2300 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name); 2301 return -EIO; 2302 } 2303 pd->write_speed = write_speed; 2304 pd->read_speed = read_speed; 2305 2306 if ((ret = pkt_perform_opc(pd))) { 2307 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name); 2308 } 2309 2310 return 0; 2311 } 2312 2313 /* 2314 * called at open time. 2315 */ 2316 static int pkt_open_dev(struct pktcdvd_device *pd, int write) 2317 { 2318 int ret; 2319 long lba; 2320 request_queue_t *q; 2321 2322 /* 2323 * We need to re-open the cdrom device without O_NONBLOCK to be able 2324 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2325 * so bdget() can't fail. 2326 */ 2327 bdget(pd->bdev->bd_dev); 2328 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY))) 2329 goto out; 2330 2331 if ((ret = bd_claim(pd->bdev, pd))) 2332 goto out_putdev; 2333 2334 if ((ret = pkt_get_last_written(pd, &lba))) { 2335 printk(DRIVER_NAME": pkt_get_last_written failed\n"); 2336 goto out_unclaim; 2337 } 2338 2339 set_capacity(pd->disk, lba << 2); 2340 set_capacity(pd->bdev->bd_disk, lba << 2); 2341 bd_set_size(pd->bdev, (loff_t)lba << 11); 2342 2343 q = bdev_get_queue(pd->bdev); 2344 if (write) { 2345 if ((ret = pkt_open_write(pd))) 2346 goto out_unclaim; 2347 /* 2348 * Some CDRW drives can not handle writes larger than one packet, 2349 * even if the size is a multiple of the packet size. 2350 */ 2351 spin_lock_irq(q->queue_lock); 2352 blk_queue_max_sectors(q, pd->settings.size); 2353 spin_unlock_irq(q->queue_lock); 2354 set_bit(PACKET_WRITABLE, &pd->flags); 2355 } else { 2356 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2357 clear_bit(PACKET_WRITABLE, &pd->flags); 2358 } 2359 2360 if ((ret = pkt_set_segment_merging(pd, q))) 2361 goto out_unclaim; 2362 2363 if (write) { 2364 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2365 printk(DRIVER_NAME": not enough memory for buffers\n"); 2366 ret = -ENOMEM; 2367 goto out_unclaim; 2368 } 2369 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1); 2370 } 2371 2372 return 0; 2373 2374 out_unclaim: 2375 bd_release(pd->bdev); 2376 out_putdev: 2377 blkdev_put(pd->bdev); 2378 out: 2379 return ret; 2380 } 2381 2382 /* 2383 * called when the device is closed. makes sure that the device flushes 2384 * the internal cache before we close. 2385 */ 2386 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2387 { 2388 if (flush && pkt_flush_cache(pd)) 2389 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name); 2390 2391 pkt_lock_door(pd, 0); 2392 2393 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2394 bd_release(pd->bdev); 2395 blkdev_put(pd->bdev); 2396 2397 pkt_shrink_pktlist(pd); 2398 } 2399 2400 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor) 2401 { 2402 if (dev_minor >= MAX_WRITERS) 2403 return NULL; 2404 return pkt_devs[dev_minor]; 2405 } 2406 2407 static int pkt_open(struct inode *inode, struct file *file) 2408 { 2409 struct pktcdvd_device *pd = NULL; 2410 int ret; 2411 2412 VPRINTK(DRIVER_NAME": entering open\n"); 2413 2414 mutex_lock(&ctl_mutex); 2415 pd = pkt_find_dev_from_minor(iminor(inode)); 2416 if (!pd) { 2417 ret = -ENODEV; 2418 goto out; 2419 } 2420 BUG_ON(pd->refcnt < 0); 2421 2422 pd->refcnt++; 2423 if (pd->refcnt > 1) { 2424 if ((file->f_mode & FMODE_WRITE) && 2425 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2426 ret = -EBUSY; 2427 goto out_dec; 2428 } 2429 } else { 2430 ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE); 2431 if (ret) 2432 goto out_dec; 2433 /* 2434 * needed here as well, since ext2 (among others) may change 2435 * the blocksize at mount time 2436 */ 2437 set_blocksize(inode->i_bdev, CD_FRAMESIZE); 2438 } 2439 2440 mutex_unlock(&ctl_mutex); 2441 return 0; 2442 2443 out_dec: 2444 pd->refcnt--; 2445 out: 2446 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret); 2447 mutex_unlock(&ctl_mutex); 2448 return ret; 2449 } 2450 2451 static int pkt_close(struct inode *inode, struct file *file) 2452 { 2453 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; 2454 int ret = 0; 2455 2456 mutex_lock(&ctl_mutex); 2457 pd->refcnt--; 2458 BUG_ON(pd->refcnt < 0); 2459 if (pd->refcnt == 0) { 2460 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2461 pkt_release_dev(pd, flush); 2462 } 2463 mutex_unlock(&ctl_mutex); 2464 return ret; 2465 } 2466 2467 2468 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err) 2469 { 2470 struct packet_stacked_data *psd = bio->bi_private; 2471 struct pktcdvd_device *pd = psd->pd; 2472 2473 if (bio->bi_size) 2474 return 1; 2475 2476 bio_put(bio); 2477 bio_endio(psd->bio, psd->bio->bi_size, err); 2478 mempool_free(psd, psd_pool); 2479 pkt_bio_finished(pd); 2480 return 0; 2481 } 2482 2483 static int pkt_make_request(request_queue_t *q, struct bio *bio) 2484 { 2485 struct pktcdvd_device *pd; 2486 char b[BDEVNAME_SIZE]; 2487 sector_t zone; 2488 struct packet_data *pkt; 2489 int was_empty, blocked_bio; 2490 struct pkt_rb_node *node; 2491 2492 pd = q->queuedata; 2493 if (!pd) { 2494 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b)); 2495 goto end_io; 2496 } 2497 2498 /* 2499 * Clone READ bios so we can have our own bi_end_io callback. 2500 */ 2501 if (bio_data_dir(bio) == READ) { 2502 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); 2503 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2504 2505 psd->pd = pd; 2506 psd->bio = bio; 2507 cloned_bio->bi_bdev = pd->bdev; 2508 cloned_bio->bi_private = psd; 2509 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2510 pd->stats.secs_r += bio->bi_size >> 9; 2511 pkt_queue_bio(pd, cloned_bio); 2512 return 0; 2513 } 2514 2515 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2516 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n", 2517 pd->name, (unsigned long long)bio->bi_sector); 2518 goto end_io; 2519 } 2520 2521 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) { 2522 printk(DRIVER_NAME": wrong bio size\n"); 2523 goto end_io; 2524 } 2525 2526 blk_queue_bounce(q, &bio); 2527 2528 zone = ZONE(bio->bi_sector, pd); 2529 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n", 2530 (unsigned long long)bio->bi_sector, 2531 (unsigned long long)(bio->bi_sector + bio_sectors(bio))); 2532 2533 /* Check if we have to split the bio */ 2534 { 2535 struct bio_pair *bp; 2536 sector_t last_zone; 2537 int first_sectors; 2538 2539 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd); 2540 if (last_zone != zone) { 2541 BUG_ON(last_zone != zone + pd->settings.size); 2542 first_sectors = last_zone - bio->bi_sector; 2543 bp = bio_split(bio, bio_split_pool, first_sectors); 2544 BUG_ON(!bp); 2545 pkt_make_request(q, &bp->bio1); 2546 pkt_make_request(q, &bp->bio2); 2547 bio_pair_release(bp); 2548 return 0; 2549 } 2550 } 2551 2552 /* 2553 * If we find a matching packet in state WAITING or READ_WAIT, we can 2554 * just append this bio to that packet. 2555 */ 2556 spin_lock(&pd->cdrw.active_list_lock); 2557 blocked_bio = 0; 2558 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2559 if (pkt->sector == zone) { 2560 spin_lock(&pkt->lock); 2561 if ((pkt->state == PACKET_WAITING_STATE) || 2562 (pkt->state == PACKET_READ_WAIT_STATE)) { 2563 pkt_add_list_last(bio, &pkt->orig_bios, 2564 &pkt->orig_bios_tail); 2565 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 2566 if ((pkt->write_size >= pkt->frames) && 2567 (pkt->state == PACKET_WAITING_STATE)) { 2568 atomic_inc(&pkt->run_sm); 2569 wake_up(&pd->wqueue); 2570 } 2571 spin_unlock(&pkt->lock); 2572 spin_unlock(&pd->cdrw.active_list_lock); 2573 return 0; 2574 } else { 2575 blocked_bio = 1; 2576 } 2577 spin_unlock(&pkt->lock); 2578 } 2579 } 2580 spin_unlock(&pd->cdrw.active_list_lock); 2581 2582 /* 2583 * Test if there is enough room left in the bio work queue 2584 * (queue size >= congestion on mark). 2585 * If not, wait till the work queue size is below the congestion off mark. 2586 */ 2587 spin_lock(&pd->lock); 2588 if (pd->write_congestion_on > 0 2589 && pd->bio_queue_size >= pd->write_congestion_on) { 2590 set_bdi_congested(&q->backing_dev_info, WRITE); 2591 do { 2592 spin_unlock(&pd->lock); 2593 congestion_wait(WRITE, HZ); 2594 spin_lock(&pd->lock); 2595 } while(pd->bio_queue_size > pd->write_congestion_off); 2596 } 2597 spin_unlock(&pd->lock); 2598 2599 /* 2600 * No matching packet found. Store the bio in the work queue. 2601 */ 2602 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2603 node->bio = bio; 2604 spin_lock(&pd->lock); 2605 BUG_ON(pd->bio_queue_size < 0); 2606 was_empty = (pd->bio_queue_size == 0); 2607 pkt_rbtree_insert(pd, node); 2608 spin_unlock(&pd->lock); 2609 2610 /* 2611 * Wake up the worker thread. 2612 */ 2613 atomic_set(&pd->scan_queue, 1); 2614 if (was_empty) { 2615 /* This wake_up is required for correct operation */ 2616 wake_up(&pd->wqueue); 2617 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2618 /* 2619 * This wake up is not required for correct operation, 2620 * but improves performance in some cases. 2621 */ 2622 wake_up(&pd->wqueue); 2623 } 2624 return 0; 2625 end_io: 2626 bio_io_error(bio, bio->bi_size); 2627 return 0; 2628 } 2629 2630 2631 2632 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec) 2633 { 2634 struct pktcdvd_device *pd = q->queuedata; 2635 sector_t zone = ZONE(bio->bi_sector, pd); 2636 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size; 2637 int remaining = (pd->settings.size << 9) - used; 2638 int remaining2; 2639 2640 /* 2641 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet 2642 * boundary, pkt_make_request() will split the bio. 2643 */ 2644 remaining2 = PAGE_SIZE - bio->bi_size; 2645 remaining = max(remaining, remaining2); 2646 2647 BUG_ON(remaining < 0); 2648 return remaining; 2649 } 2650 2651 static void pkt_init_queue(struct pktcdvd_device *pd) 2652 { 2653 request_queue_t *q = pd->disk->queue; 2654 2655 blk_queue_make_request(q, pkt_make_request); 2656 blk_queue_hardsect_size(q, CD_FRAMESIZE); 2657 blk_queue_max_sectors(q, PACKET_MAX_SECTORS); 2658 blk_queue_merge_bvec(q, pkt_merge_bvec); 2659 q->queuedata = pd; 2660 } 2661 2662 static int pkt_seq_show(struct seq_file *m, void *p) 2663 { 2664 struct pktcdvd_device *pd = m->private; 2665 char *msg; 2666 char bdev_buf[BDEVNAME_SIZE]; 2667 int states[PACKET_NUM_STATES]; 2668 2669 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2670 bdevname(pd->bdev, bdev_buf)); 2671 2672 seq_printf(m, "\nSettings:\n"); 2673 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2674 2675 if (pd->settings.write_type == 0) 2676 msg = "Packet"; 2677 else 2678 msg = "Unknown"; 2679 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2680 2681 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2682 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2683 2684 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2685 2686 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2687 msg = "Mode 1"; 2688 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2689 msg = "Mode 2"; 2690 else 2691 msg = "Unknown"; 2692 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2693 2694 seq_printf(m, "\nStatistics:\n"); 2695 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2696 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2697 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2698 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2699 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2700 2701 seq_printf(m, "\nMisc:\n"); 2702 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2703 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2704 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2705 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2706 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2707 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2708 2709 seq_printf(m, "\nQueue state:\n"); 2710 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2711 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2712 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2713 2714 pkt_count_states(pd, states); 2715 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2716 states[0], states[1], states[2], states[3], states[4], states[5]); 2717 2718 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 2719 pd->write_congestion_off, 2720 pd->write_congestion_on); 2721 return 0; 2722 } 2723 2724 static int pkt_seq_open(struct inode *inode, struct file *file) 2725 { 2726 return single_open(file, pkt_seq_show, PDE(inode)->data); 2727 } 2728 2729 static const struct file_operations pkt_proc_fops = { 2730 .open = pkt_seq_open, 2731 .read = seq_read, 2732 .llseek = seq_lseek, 2733 .release = single_release 2734 }; 2735 2736 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2737 { 2738 int i; 2739 int ret = 0; 2740 char b[BDEVNAME_SIZE]; 2741 struct proc_dir_entry *proc; 2742 struct block_device *bdev; 2743 2744 if (pd->pkt_dev == dev) { 2745 printk(DRIVER_NAME": Recursive setup not allowed\n"); 2746 return -EBUSY; 2747 } 2748 for (i = 0; i < MAX_WRITERS; i++) { 2749 struct pktcdvd_device *pd2 = pkt_devs[i]; 2750 if (!pd2) 2751 continue; 2752 if (pd2->bdev->bd_dev == dev) { 2753 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b)); 2754 return -EBUSY; 2755 } 2756 if (pd2->pkt_dev == dev) { 2757 printk(DRIVER_NAME": Can't chain pktcdvd devices\n"); 2758 return -EBUSY; 2759 } 2760 } 2761 2762 bdev = bdget(dev); 2763 if (!bdev) 2764 return -ENOMEM; 2765 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK); 2766 if (ret) 2767 return ret; 2768 2769 /* This is safe, since we have a reference from open(). */ 2770 __module_get(THIS_MODULE); 2771 2772 pd->bdev = bdev; 2773 set_blocksize(bdev, CD_FRAMESIZE); 2774 2775 pkt_init_queue(pd); 2776 2777 atomic_set(&pd->cdrw.pending_bios, 0); 2778 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2779 if (IS_ERR(pd->cdrw.thread)) { 2780 printk(DRIVER_NAME": can't start kernel thread\n"); 2781 ret = -ENOMEM; 2782 goto out_mem; 2783 } 2784 2785 proc = create_proc_entry(pd->name, 0, pkt_proc); 2786 if (proc) { 2787 proc->data = pd; 2788 proc->proc_fops = &pkt_proc_fops; 2789 } 2790 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b)); 2791 return 0; 2792 2793 out_mem: 2794 blkdev_put(bdev); 2795 /* This is safe: open() is still holding a reference. */ 2796 module_put(THIS_MODULE); 2797 return ret; 2798 } 2799 2800 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 2801 { 2802 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; 2803 2804 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode)); 2805 2806 switch (cmd) { 2807 /* 2808 * forward selected CDROM ioctls to CD-ROM, for UDF 2809 */ 2810 case CDROMMULTISESSION: 2811 case CDROMREADTOCENTRY: 2812 case CDROM_LAST_WRITTEN: 2813 case CDROM_SEND_PACKET: 2814 case SCSI_IOCTL_SEND_COMMAND: 2815 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); 2816 2817 case CDROMEJECT: 2818 /* 2819 * The door gets locked when the device is opened, so we 2820 * have to unlock it or else the eject command fails. 2821 */ 2822 if (pd->refcnt == 1) 2823 pkt_lock_door(pd, 0); 2824 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); 2825 2826 default: 2827 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd); 2828 return -ENOTTY; 2829 } 2830 2831 return 0; 2832 } 2833 2834 static int pkt_media_changed(struct gendisk *disk) 2835 { 2836 struct pktcdvd_device *pd = disk->private_data; 2837 struct gendisk *attached_disk; 2838 2839 if (!pd) 2840 return 0; 2841 if (!pd->bdev) 2842 return 0; 2843 attached_disk = pd->bdev->bd_disk; 2844 if (!attached_disk) 2845 return 0; 2846 return attached_disk->fops->media_changed(attached_disk); 2847 } 2848 2849 static struct block_device_operations pktcdvd_ops = { 2850 .owner = THIS_MODULE, 2851 .open = pkt_open, 2852 .release = pkt_close, 2853 .ioctl = pkt_ioctl, 2854 .media_changed = pkt_media_changed, 2855 }; 2856 2857 /* 2858 * Set up mapping from pktcdvd device to CD-ROM device. 2859 */ 2860 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2861 { 2862 int idx; 2863 int ret = -ENOMEM; 2864 struct pktcdvd_device *pd; 2865 struct gendisk *disk; 2866 2867 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2868 2869 for (idx = 0; idx < MAX_WRITERS; idx++) 2870 if (!pkt_devs[idx]) 2871 break; 2872 if (idx == MAX_WRITERS) { 2873 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS); 2874 ret = -EBUSY; 2875 goto out_mutex; 2876 } 2877 2878 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2879 if (!pd) 2880 goto out_mutex; 2881 2882 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE, 2883 sizeof(struct pkt_rb_node)); 2884 if (!pd->rb_pool) 2885 goto out_mem; 2886 2887 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2888 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2889 spin_lock_init(&pd->cdrw.active_list_lock); 2890 2891 spin_lock_init(&pd->lock); 2892 spin_lock_init(&pd->iosched.lock); 2893 sprintf(pd->name, DRIVER_NAME"%d", idx); 2894 init_waitqueue_head(&pd->wqueue); 2895 pd->bio_queue = RB_ROOT; 2896 2897 pd->write_congestion_on = write_congestion_on; 2898 pd->write_congestion_off = write_congestion_off; 2899 2900 disk = alloc_disk(1); 2901 if (!disk) 2902 goto out_mem; 2903 pd->disk = disk; 2904 disk->major = pktdev_major; 2905 disk->first_minor = idx; 2906 disk->fops = &pktcdvd_ops; 2907 disk->flags = GENHD_FL_REMOVABLE; 2908 strcpy(disk->disk_name, pd->name); 2909 disk->private_data = pd; 2910 disk->queue = blk_alloc_queue(GFP_KERNEL); 2911 if (!disk->queue) 2912 goto out_mem2; 2913 2914 pd->pkt_dev = MKDEV(disk->major, disk->first_minor); 2915 ret = pkt_new_dev(pd, dev); 2916 if (ret) 2917 goto out_new_dev; 2918 2919 add_disk(disk); 2920 2921 pkt_sysfs_dev_new(pd); 2922 pkt_debugfs_dev_new(pd); 2923 2924 pkt_devs[idx] = pd; 2925 if (pkt_dev) 2926 *pkt_dev = pd->pkt_dev; 2927 2928 mutex_unlock(&ctl_mutex); 2929 return 0; 2930 2931 out_new_dev: 2932 blk_cleanup_queue(disk->queue); 2933 out_mem2: 2934 put_disk(disk); 2935 out_mem: 2936 if (pd->rb_pool) 2937 mempool_destroy(pd->rb_pool); 2938 kfree(pd); 2939 out_mutex: 2940 mutex_unlock(&ctl_mutex); 2941 printk(DRIVER_NAME": setup of pktcdvd device failed\n"); 2942 return ret; 2943 } 2944 2945 /* 2946 * Tear down mapping from pktcdvd device to CD-ROM device. 2947 */ 2948 static int pkt_remove_dev(dev_t pkt_dev) 2949 { 2950 struct pktcdvd_device *pd; 2951 int idx; 2952 int ret = 0; 2953 2954 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2955 2956 for (idx = 0; idx < MAX_WRITERS; idx++) { 2957 pd = pkt_devs[idx]; 2958 if (pd && (pd->pkt_dev == pkt_dev)) 2959 break; 2960 } 2961 if (idx == MAX_WRITERS) { 2962 DPRINTK(DRIVER_NAME": dev not setup\n"); 2963 ret = -ENXIO; 2964 goto out; 2965 } 2966 2967 if (pd->refcnt > 0) { 2968 ret = -EBUSY; 2969 goto out; 2970 } 2971 if (!IS_ERR(pd->cdrw.thread)) 2972 kthread_stop(pd->cdrw.thread); 2973 2974 pkt_devs[idx] = NULL; 2975 2976 pkt_debugfs_dev_remove(pd); 2977 pkt_sysfs_dev_remove(pd); 2978 2979 blkdev_put(pd->bdev); 2980 2981 remove_proc_entry(pd->name, pkt_proc); 2982 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name); 2983 2984 del_gendisk(pd->disk); 2985 blk_cleanup_queue(pd->disk->queue); 2986 put_disk(pd->disk); 2987 2988 mempool_destroy(pd->rb_pool); 2989 kfree(pd); 2990 2991 /* This is safe: open() is still holding a reference. */ 2992 module_put(THIS_MODULE); 2993 2994 out: 2995 mutex_unlock(&ctl_mutex); 2996 return ret; 2997 } 2998 2999 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 3000 { 3001 struct pktcdvd_device *pd; 3002 3003 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 3004 3005 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 3006 if (pd) { 3007 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 3008 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 3009 } else { 3010 ctrl_cmd->dev = 0; 3011 ctrl_cmd->pkt_dev = 0; 3012 } 3013 ctrl_cmd->num_devices = MAX_WRITERS; 3014 3015 mutex_unlock(&ctl_mutex); 3016 } 3017 3018 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 3019 { 3020 void __user *argp = (void __user *)arg; 3021 struct pkt_ctrl_command ctrl_cmd; 3022 int ret = 0; 3023 dev_t pkt_dev = 0; 3024 3025 if (cmd != PACKET_CTRL_CMD) 3026 return -ENOTTY; 3027 3028 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 3029 return -EFAULT; 3030 3031 switch (ctrl_cmd.command) { 3032 case PKT_CTRL_CMD_SETUP: 3033 if (!capable(CAP_SYS_ADMIN)) 3034 return -EPERM; 3035 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 3036 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 3037 break; 3038 case PKT_CTRL_CMD_TEARDOWN: 3039 if (!capable(CAP_SYS_ADMIN)) 3040 return -EPERM; 3041 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 3042 break; 3043 case PKT_CTRL_CMD_STATUS: 3044 pkt_get_status(&ctrl_cmd); 3045 break; 3046 default: 3047 return -ENOTTY; 3048 } 3049 3050 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 3051 return -EFAULT; 3052 return ret; 3053 } 3054 3055 3056 static const struct file_operations pkt_ctl_fops = { 3057 .ioctl = pkt_ctl_ioctl, 3058 .owner = THIS_MODULE, 3059 }; 3060 3061 static struct miscdevice pkt_misc = { 3062 .minor = MISC_DYNAMIC_MINOR, 3063 .name = DRIVER_NAME, 3064 .fops = &pkt_ctl_fops 3065 }; 3066 3067 static int __init pkt_init(void) 3068 { 3069 int ret; 3070 3071 mutex_init(&ctl_mutex); 3072 3073 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE, 3074 sizeof(struct packet_stacked_data)); 3075 if (!psd_pool) 3076 return -ENOMEM; 3077 3078 ret = register_blkdev(pktdev_major, DRIVER_NAME); 3079 if (ret < 0) { 3080 printk(DRIVER_NAME": Unable to register block device\n"); 3081 goto out2; 3082 } 3083 if (!pktdev_major) 3084 pktdev_major = ret; 3085 3086 ret = pkt_sysfs_init(); 3087 if (ret) 3088 goto out; 3089 3090 pkt_debugfs_init(); 3091 3092 ret = misc_register(&pkt_misc); 3093 if (ret) { 3094 printk(DRIVER_NAME": Unable to register misc device\n"); 3095 goto out_misc; 3096 } 3097 3098 pkt_proc = proc_mkdir(DRIVER_NAME, proc_root_driver); 3099 3100 return 0; 3101 3102 out_misc: 3103 pkt_debugfs_cleanup(); 3104 pkt_sysfs_cleanup(); 3105 out: 3106 unregister_blkdev(pktdev_major, DRIVER_NAME); 3107 out2: 3108 mempool_destroy(psd_pool); 3109 return ret; 3110 } 3111 3112 static void __exit pkt_exit(void) 3113 { 3114 remove_proc_entry(DRIVER_NAME, proc_root_driver); 3115 misc_deregister(&pkt_misc); 3116 3117 pkt_debugfs_cleanup(); 3118 pkt_sysfs_cleanup(); 3119 3120 unregister_blkdev(pktdev_major, DRIVER_NAME); 3121 mempool_destroy(psd_pool); 3122 } 3123 3124 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 3125 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 3126 MODULE_LICENSE("GPL"); 3127 3128 module_init(pkt_init); 3129 module_exit(pkt_exit); 3130