1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom make_request_fn function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #include <linux/pktcdvd.h> 48 #include <linux/module.h> 49 #include <linux/types.h> 50 #include <linux/kernel.h> 51 #include <linux/kthread.h> 52 #include <linux/errno.h> 53 #include <linux/spinlock.h> 54 #include <linux/file.h> 55 #include <linux/proc_fs.h> 56 #include <linux/seq_file.h> 57 #include <linux/miscdevice.h> 58 #include <linux/freezer.h> 59 #include <linux/mutex.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_ioctl.h> 62 #include <scsi/scsi.h> 63 #include <linux/debugfs.h> 64 #include <linux/device.h> 65 66 #include <asm/uaccess.h> 67 68 #define DRIVER_NAME "pktcdvd" 69 70 #if PACKET_DEBUG 71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 72 #else 73 #define DPRINTK(fmt, args...) 74 #endif 75 76 #if PACKET_DEBUG > 1 77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 78 #else 79 #define VPRINTK(fmt, args...) 80 #endif 81 82 #define MAX_SPEED 0xffff 83 84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1)) 85 86 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 87 static struct proc_dir_entry *pkt_proc; 88 static int pktdev_major; 89 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 90 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 91 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 92 static mempool_t *psd_pool; 93 94 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */ 95 static struct dentry *pkt_debugfs_root = NULL; /* /debug/pktcdvd */ 96 97 /* forward declaration */ 98 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 99 static int pkt_remove_dev(dev_t pkt_dev); 100 static int pkt_seq_show(struct seq_file *m, void *p); 101 102 103 104 /* 105 * create and register a pktcdvd kernel object. 106 */ 107 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd, 108 const char* name, 109 struct kobject* parent, 110 struct kobj_type* ktype) 111 { 112 struct pktcdvd_kobj *p; 113 int error; 114 115 p = kzalloc(sizeof(*p), GFP_KERNEL); 116 if (!p) 117 return NULL; 118 p->pd = pd; 119 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name); 120 if (error) { 121 kobject_put(&p->kobj); 122 return NULL; 123 } 124 kobject_uevent(&p->kobj, KOBJ_ADD); 125 return p; 126 } 127 /* 128 * remove a pktcdvd kernel object. 129 */ 130 static void pkt_kobj_remove(struct pktcdvd_kobj *p) 131 { 132 if (p) 133 kobject_put(&p->kobj); 134 } 135 /* 136 * default release function for pktcdvd kernel objects. 137 */ 138 static void pkt_kobj_release(struct kobject *kobj) 139 { 140 kfree(to_pktcdvdkobj(kobj)); 141 } 142 143 144 /********************************************************** 145 * 146 * sysfs interface for pktcdvd 147 * by (C) 2006 Thomas Maier <balagi@justmail.de> 148 * 149 **********************************************************/ 150 151 #define DEF_ATTR(_obj,_name,_mode) \ 152 static struct attribute _obj = { .name = _name, .mode = _mode } 153 154 /********************************************************** 155 /sys/class/pktcdvd/pktcdvd[0-7]/ 156 stat/reset 157 stat/packets_started 158 stat/packets_finished 159 stat/kb_written 160 stat/kb_read 161 stat/kb_read_gather 162 write_queue/size 163 write_queue/congestion_off 164 write_queue/congestion_on 165 **********************************************************/ 166 167 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200); 168 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444); 169 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444); 170 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444); 171 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444); 172 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444); 173 174 static struct attribute *kobj_pkt_attrs_stat[] = { 175 &kobj_pkt_attr_st1, 176 &kobj_pkt_attr_st2, 177 &kobj_pkt_attr_st3, 178 &kobj_pkt_attr_st4, 179 &kobj_pkt_attr_st5, 180 &kobj_pkt_attr_st6, 181 NULL 182 }; 183 184 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444); 185 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644); 186 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644); 187 188 static struct attribute *kobj_pkt_attrs_wqueue[] = { 189 &kobj_pkt_attr_wq1, 190 &kobj_pkt_attr_wq2, 191 &kobj_pkt_attr_wq3, 192 NULL 193 }; 194 195 static ssize_t kobj_pkt_show(struct kobject *kobj, 196 struct attribute *attr, char *data) 197 { 198 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 199 int n = 0; 200 int v; 201 if (strcmp(attr->name, "packets_started") == 0) { 202 n = sprintf(data, "%lu\n", pd->stats.pkt_started); 203 204 } else if (strcmp(attr->name, "packets_finished") == 0) { 205 n = sprintf(data, "%lu\n", pd->stats.pkt_ended); 206 207 } else if (strcmp(attr->name, "kb_written") == 0) { 208 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1); 209 210 } else if (strcmp(attr->name, "kb_read") == 0) { 211 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1); 212 213 } else if (strcmp(attr->name, "kb_read_gather") == 0) { 214 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1); 215 216 } else if (strcmp(attr->name, "size") == 0) { 217 spin_lock(&pd->lock); 218 v = pd->bio_queue_size; 219 spin_unlock(&pd->lock); 220 n = sprintf(data, "%d\n", v); 221 222 } else if (strcmp(attr->name, "congestion_off") == 0) { 223 spin_lock(&pd->lock); 224 v = pd->write_congestion_off; 225 spin_unlock(&pd->lock); 226 n = sprintf(data, "%d\n", v); 227 228 } else if (strcmp(attr->name, "congestion_on") == 0) { 229 spin_lock(&pd->lock); 230 v = pd->write_congestion_on; 231 spin_unlock(&pd->lock); 232 n = sprintf(data, "%d\n", v); 233 } 234 return n; 235 } 236 237 static void init_write_congestion_marks(int* lo, int* hi) 238 { 239 if (*hi > 0) { 240 *hi = max(*hi, 500); 241 *hi = min(*hi, 1000000); 242 if (*lo <= 0) 243 *lo = *hi - 100; 244 else { 245 *lo = min(*lo, *hi - 100); 246 *lo = max(*lo, 100); 247 } 248 } else { 249 *hi = -1; 250 *lo = -1; 251 } 252 } 253 254 static ssize_t kobj_pkt_store(struct kobject *kobj, 255 struct attribute *attr, 256 const char *data, size_t len) 257 { 258 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 259 int val; 260 261 if (strcmp(attr->name, "reset") == 0 && len > 0) { 262 pd->stats.pkt_started = 0; 263 pd->stats.pkt_ended = 0; 264 pd->stats.secs_w = 0; 265 pd->stats.secs_rg = 0; 266 pd->stats.secs_r = 0; 267 268 } else if (strcmp(attr->name, "congestion_off") == 0 269 && sscanf(data, "%d", &val) == 1) { 270 spin_lock(&pd->lock); 271 pd->write_congestion_off = val; 272 init_write_congestion_marks(&pd->write_congestion_off, 273 &pd->write_congestion_on); 274 spin_unlock(&pd->lock); 275 276 } else if (strcmp(attr->name, "congestion_on") == 0 277 && sscanf(data, "%d", &val) == 1) { 278 spin_lock(&pd->lock); 279 pd->write_congestion_on = val; 280 init_write_congestion_marks(&pd->write_congestion_off, 281 &pd->write_congestion_on); 282 spin_unlock(&pd->lock); 283 } 284 return len; 285 } 286 287 static struct sysfs_ops kobj_pkt_ops = { 288 .show = kobj_pkt_show, 289 .store = kobj_pkt_store 290 }; 291 static struct kobj_type kobj_pkt_type_stat = { 292 .release = pkt_kobj_release, 293 .sysfs_ops = &kobj_pkt_ops, 294 .default_attrs = kobj_pkt_attrs_stat 295 }; 296 static struct kobj_type kobj_pkt_type_wqueue = { 297 .release = pkt_kobj_release, 298 .sysfs_ops = &kobj_pkt_ops, 299 .default_attrs = kobj_pkt_attrs_wqueue 300 }; 301 302 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 303 { 304 if (class_pktcdvd) { 305 pd->dev = device_create(class_pktcdvd, NULL, pd->pkt_dev, "%s", pd->name); 306 if (IS_ERR(pd->dev)) 307 pd->dev = NULL; 308 } 309 if (pd->dev) { 310 pd->kobj_stat = pkt_kobj_create(pd, "stat", 311 &pd->dev->kobj, 312 &kobj_pkt_type_stat); 313 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue", 314 &pd->dev->kobj, 315 &kobj_pkt_type_wqueue); 316 } 317 } 318 319 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 320 { 321 pkt_kobj_remove(pd->kobj_stat); 322 pkt_kobj_remove(pd->kobj_wqueue); 323 if (class_pktcdvd) 324 device_destroy(class_pktcdvd, pd->pkt_dev); 325 } 326 327 328 /******************************************************************** 329 /sys/class/pktcdvd/ 330 add map block device 331 remove unmap packet dev 332 device_map show mappings 333 *******************************************************************/ 334 335 static void class_pktcdvd_release(struct class *cls) 336 { 337 kfree(cls); 338 } 339 static ssize_t class_pktcdvd_show_map(struct class *c, char *data) 340 { 341 int n = 0; 342 int idx; 343 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 344 for (idx = 0; idx < MAX_WRITERS; idx++) { 345 struct pktcdvd_device *pd = pkt_devs[idx]; 346 if (!pd) 347 continue; 348 n += sprintf(data+n, "%s %u:%u %u:%u\n", 349 pd->name, 350 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 351 MAJOR(pd->bdev->bd_dev), 352 MINOR(pd->bdev->bd_dev)); 353 } 354 mutex_unlock(&ctl_mutex); 355 return n; 356 } 357 358 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf, 359 size_t count) 360 { 361 unsigned int major, minor; 362 363 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 364 /* pkt_setup_dev() expects caller to hold reference to self */ 365 if (!try_module_get(THIS_MODULE)) 366 return -ENODEV; 367 368 pkt_setup_dev(MKDEV(major, minor), NULL); 369 370 module_put(THIS_MODULE); 371 372 return count; 373 } 374 375 return -EINVAL; 376 } 377 378 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf, 379 size_t count) 380 { 381 unsigned int major, minor; 382 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 383 pkt_remove_dev(MKDEV(major, minor)); 384 return count; 385 } 386 return -EINVAL; 387 } 388 389 static struct class_attribute class_pktcdvd_attrs[] = { 390 __ATTR(add, 0200, NULL, class_pktcdvd_store_add), 391 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove), 392 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL), 393 __ATTR_NULL 394 }; 395 396 397 static int pkt_sysfs_init(void) 398 { 399 int ret = 0; 400 401 /* 402 * create control files in sysfs 403 * /sys/class/pktcdvd/... 404 */ 405 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL); 406 if (!class_pktcdvd) 407 return -ENOMEM; 408 class_pktcdvd->name = DRIVER_NAME; 409 class_pktcdvd->owner = THIS_MODULE; 410 class_pktcdvd->class_release = class_pktcdvd_release; 411 class_pktcdvd->class_attrs = class_pktcdvd_attrs; 412 ret = class_register(class_pktcdvd); 413 if (ret) { 414 kfree(class_pktcdvd); 415 class_pktcdvd = NULL; 416 printk(DRIVER_NAME": failed to create class pktcdvd\n"); 417 return ret; 418 } 419 return 0; 420 } 421 422 static void pkt_sysfs_cleanup(void) 423 { 424 if (class_pktcdvd) 425 class_destroy(class_pktcdvd); 426 class_pktcdvd = NULL; 427 } 428 429 /******************************************************************** 430 entries in debugfs 431 432 /debugfs/pktcdvd[0-7]/ 433 info 434 435 *******************************************************************/ 436 437 static int pkt_debugfs_seq_show(struct seq_file *m, void *p) 438 { 439 return pkt_seq_show(m, p); 440 } 441 442 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file) 443 { 444 return single_open(file, pkt_debugfs_seq_show, inode->i_private); 445 } 446 447 static const struct file_operations debug_fops = { 448 .open = pkt_debugfs_fops_open, 449 .read = seq_read, 450 .llseek = seq_lseek, 451 .release = single_release, 452 .owner = THIS_MODULE, 453 }; 454 455 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 456 { 457 if (!pkt_debugfs_root) 458 return; 459 pd->dfs_f_info = NULL; 460 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root); 461 if (IS_ERR(pd->dfs_d_root)) { 462 pd->dfs_d_root = NULL; 463 return; 464 } 465 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO, 466 pd->dfs_d_root, pd, &debug_fops); 467 if (IS_ERR(pd->dfs_f_info)) { 468 pd->dfs_f_info = NULL; 469 return; 470 } 471 } 472 473 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 474 { 475 if (!pkt_debugfs_root) 476 return; 477 if (pd->dfs_f_info) 478 debugfs_remove(pd->dfs_f_info); 479 pd->dfs_f_info = NULL; 480 if (pd->dfs_d_root) 481 debugfs_remove(pd->dfs_d_root); 482 pd->dfs_d_root = NULL; 483 } 484 485 static void pkt_debugfs_init(void) 486 { 487 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 488 if (IS_ERR(pkt_debugfs_root)) { 489 pkt_debugfs_root = NULL; 490 return; 491 } 492 } 493 494 static void pkt_debugfs_cleanup(void) 495 { 496 if (!pkt_debugfs_root) 497 return; 498 debugfs_remove(pkt_debugfs_root); 499 pkt_debugfs_root = NULL; 500 } 501 502 /* ----------------------------------------------------------*/ 503 504 505 static void pkt_bio_finished(struct pktcdvd_device *pd) 506 { 507 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 508 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 509 VPRINTK(DRIVER_NAME": queue empty\n"); 510 atomic_set(&pd->iosched.attention, 1); 511 wake_up(&pd->wqueue); 512 } 513 } 514 515 static void pkt_bio_destructor(struct bio *bio) 516 { 517 kfree(bio->bi_io_vec); 518 kfree(bio); 519 } 520 521 static struct bio *pkt_bio_alloc(int nr_iovecs) 522 { 523 struct bio_vec *bvl = NULL; 524 struct bio *bio; 525 526 bio = kmalloc(sizeof(struct bio), GFP_KERNEL); 527 if (!bio) 528 goto no_bio; 529 bio_init(bio); 530 531 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL); 532 if (!bvl) 533 goto no_bvl; 534 535 bio->bi_max_vecs = nr_iovecs; 536 bio->bi_io_vec = bvl; 537 bio->bi_destructor = pkt_bio_destructor; 538 539 return bio; 540 541 no_bvl: 542 kfree(bio); 543 no_bio: 544 return NULL; 545 } 546 547 /* 548 * Allocate a packet_data struct 549 */ 550 static struct packet_data *pkt_alloc_packet_data(int frames) 551 { 552 int i; 553 struct packet_data *pkt; 554 555 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 556 if (!pkt) 557 goto no_pkt; 558 559 pkt->frames = frames; 560 pkt->w_bio = pkt_bio_alloc(frames); 561 if (!pkt->w_bio) 562 goto no_bio; 563 564 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 565 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 566 if (!pkt->pages[i]) 567 goto no_page; 568 } 569 570 spin_lock_init(&pkt->lock); 571 572 for (i = 0; i < frames; i++) { 573 struct bio *bio = pkt_bio_alloc(1); 574 if (!bio) 575 goto no_rd_bio; 576 pkt->r_bios[i] = bio; 577 } 578 579 return pkt; 580 581 no_rd_bio: 582 for (i = 0; i < frames; i++) { 583 struct bio *bio = pkt->r_bios[i]; 584 if (bio) 585 bio_put(bio); 586 } 587 588 no_page: 589 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 590 if (pkt->pages[i]) 591 __free_page(pkt->pages[i]); 592 bio_put(pkt->w_bio); 593 no_bio: 594 kfree(pkt); 595 no_pkt: 596 return NULL; 597 } 598 599 /* 600 * Free a packet_data struct 601 */ 602 static void pkt_free_packet_data(struct packet_data *pkt) 603 { 604 int i; 605 606 for (i = 0; i < pkt->frames; i++) { 607 struct bio *bio = pkt->r_bios[i]; 608 if (bio) 609 bio_put(bio); 610 } 611 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 612 __free_page(pkt->pages[i]); 613 bio_put(pkt->w_bio); 614 kfree(pkt); 615 } 616 617 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 618 { 619 struct packet_data *pkt, *next; 620 621 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 622 623 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 624 pkt_free_packet_data(pkt); 625 } 626 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 627 } 628 629 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 630 { 631 struct packet_data *pkt; 632 633 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 634 635 while (nr_packets > 0) { 636 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 637 if (!pkt) { 638 pkt_shrink_pktlist(pd); 639 return 0; 640 } 641 pkt->id = nr_packets; 642 pkt->pd = pd; 643 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 644 nr_packets--; 645 } 646 return 1; 647 } 648 649 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 650 { 651 struct rb_node *n = rb_next(&node->rb_node); 652 if (!n) 653 return NULL; 654 return rb_entry(n, struct pkt_rb_node, rb_node); 655 } 656 657 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 658 { 659 rb_erase(&node->rb_node, &pd->bio_queue); 660 mempool_free(node, pd->rb_pool); 661 pd->bio_queue_size--; 662 BUG_ON(pd->bio_queue_size < 0); 663 } 664 665 /* 666 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 667 */ 668 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 669 { 670 struct rb_node *n = pd->bio_queue.rb_node; 671 struct rb_node *next; 672 struct pkt_rb_node *tmp; 673 674 if (!n) { 675 BUG_ON(pd->bio_queue_size > 0); 676 return NULL; 677 } 678 679 for (;;) { 680 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 681 if (s <= tmp->bio->bi_sector) 682 next = n->rb_left; 683 else 684 next = n->rb_right; 685 if (!next) 686 break; 687 n = next; 688 } 689 690 if (s > tmp->bio->bi_sector) { 691 tmp = pkt_rbtree_next(tmp); 692 if (!tmp) 693 return NULL; 694 } 695 BUG_ON(s > tmp->bio->bi_sector); 696 return tmp; 697 } 698 699 /* 700 * Insert a node into the pd->bio_queue rb tree. 701 */ 702 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 703 { 704 struct rb_node **p = &pd->bio_queue.rb_node; 705 struct rb_node *parent = NULL; 706 sector_t s = node->bio->bi_sector; 707 struct pkt_rb_node *tmp; 708 709 while (*p) { 710 parent = *p; 711 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 712 if (s < tmp->bio->bi_sector) 713 p = &(*p)->rb_left; 714 else 715 p = &(*p)->rb_right; 716 } 717 rb_link_node(&node->rb_node, parent, p); 718 rb_insert_color(&node->rb_node, &pd->bio_queue); 719 pd->bio_queue_size++; 720 } 721 722 /* 723 * Add a bio to a single linked list defined by its head and tail pointers. 724 */ 725 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail) 726 { 727 bio->bi_next = NULL; 728 if (*list_tail) { 729 BUG_ON((*list_head) == NULL); 730 (*list_tail)->bi_next = bio; 731 (*list_tail) = bio; 732 } else { 733 BUG_ON((*list_head) != NULL); 734 (*list_head) = bio; 735 (*list_tail) = bio; 736 } 737 } 738 739 /* 740 * Remove and return the first bio from a single linked list defined by its 741 * head and tail pointers. 742 */ 743 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail) 744 { 745 struct bio *bio; 746 747 if (*list_head == NULL) 748 return NULL; 749 750 bio = *list_head; 751 *list_head = bio->bi_next; 752 if (*list_head == NULL) 753 *list_tail = NULL; 754 755 bio->bi_next = NULL; 756 return bio; 757 } 758 759 /* 760 * Send a packet_command to the underlying block device and 761 * wait for completion. 762 */ 763 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 764 { 765 struct request_queue *q = bdev_get_queue(pd->bdev); 766 struct request *rq; 767 int ret = 0; 768 769 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 770 WRITE : READ, __GFP_WAIT); 771 772 if (cgc->buflen) { 773 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT)) 774 goto out; 775 } 776 777 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 778 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE); 779 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE) 780 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE); 781 782 rq->timeout = 60*HZ; 783 rq->cmd_type = REQ_TYPE_BLOCK_PC; 784 rq->cmd_flags |= REQ_HARDBARRIER; 785 if (cgc->quiet) 786 rq->cmd_flags |= REQ_QUIET; 787 788 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0); 789 if (rq->errors) 790 ret = -EIO; 791 out: 792 blk_put_request(rq); 793 return ret; 794 } 795 796 /* 797 * A generic sense dump / resolve mechanism should be implemented across 798 * all ATAPI + SCSI devices. 799 */ 800 static void pkt_dump_sense(struct packet_command *cgc) 801 { 802 static char *info[9] = { "No sense", "Recovered error", "Not ready", 803 "Medium error", "Hardware error", "Illegal request", 804 "Unit attention", "Data protect", "Blank check" }; 805 int i; 806 struct request_sense *sense = cgc->sense; 807 808 printk(DRIVER_NAME":"); 809 for (i = 0; i < CDROM_PACKET_SIZE; i++) 810 printk(" %02x", cgc->cmd[i]); 811 printk(" - "); 812 813 if (sense == NULL) { 814 printk("no sense\n"); 815 return; 816 } 817 818 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq); 819 820 if (sense->sense_key > 8) { 821 printk(" (INVALID)\n"); 822 return; 823 } 824 825 printk(" (%s)\n", info[sense->sense_key]); 826 } 827 828 /* 829 * flush the drive cache to media 830 */ 831 static int pkt_flush_cache(struct pktcdvd_device *pd) 832 { 833 struct packet_command cgc; 834 835 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 836 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 837 cgc.quiet = 1; 838 839 /* 840 * the IMMED bit -- we default to not setting it, although that 841 * would allow a much faster close, this is safer 842 */ 843 #if 0 844 cgc.cmd[1] = 1 << 1; 845 #endif 846 return pkt_generic_packet(pd, &cgc); 847 } 848 849 /* 850 * speed is given as the normal factor, e.g. 4 for 4x 851 */ 852 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed) 853 { 854 struct packet_command cgc; 855 struct request_sense sense; 856 int ret; 857 858 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 859 cgc.sense = &sense; 860 cgc.cmd[0] = GPCMD_SET_SPEED; 861 cgc.cmd[2] = (read_speed >> 8) & 0xff; 862 cgc.cmd[3] = read_speed & 0xff; 863 cgc.cmd[4] = (write_speed >> 8) & 0xff; 864 cgc.cmd[5] = write_speed & 0xff; 865 866 if ((ret = pkt_generic_packet(pd, &cgc))) 867 pkt_dump_sense(&cgc); 868 869 return ret; 870 } 871 872 /* 873 * Queue a bio for processing by the low-level CD device. Must be called 874 * from process context. 875 */ 876 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 877 { 878 spin_lock(&pd->iosched.lock); 879 if (bio_data_dir(bio) == READ) { 880 pkt_add_list_last(bio, &pd->iosched.read_queue, 881 &pd->iosched.read_queue_tail); 882 } else { 883 pkt_add_list_last(bio, &pd->iosched.write_queue, 884 &pd->iosched.write_queue_tail); 885 } 886 spin_unlock(&pd->iosched.lock); 887 888 atomic_set(&pd->iosched.attention, 1); 889 wake_up(&pd->wqueue); 890 } 891 892 /* 893 * Process the queued read/write requests. This function handles special 894 * requirements for CDRW drives: 895 * - A cache flush command must be inserted before a read request if the 896 * previous request was a write. 897 * - Switching between reading and writing is slow, so don't do it more often 898 * than necessary. 899 * - Optimize for throughput at the expense of latency. This means that streaming 900 * writes will never be interrupted by a read, but if the drive has to seek 901 * before the next write, switch to reading instead if there are any pending 902 * read requests. 903 * - Set the read speed according to current usage pattern. When only reading 904 * from the device, it's best to use the highest possible read speed, but 905 * when switching often between reading and writing, it's better to have the 906 * same read and write speeds. 907 */ 908 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 909 { 910 911 if (atomic_read(&pd->iosched.attention) == 0) 912 return; 913 atomic_set(&pd->iosched.attention, 0); 914 915 for (;;) { 916 struct bio *bio; 917 int reads_queued, writes_queued; 918 919 spin_lock(&pd->iosched.lock); 920 reads_queued = (pd->iosched.read_queue != NULL); 921 writes_queued = (pd->iosched.write_queue != NULL); 922 spin_unlock(&pd->iosched.lock); 923 924 if (!reads_queued && !writes_queued) 925 break; 926 927 if (pd->iosched.writing) { 928 int need_write_seek = 1; 929 spin_lock(&pd->iosched.lock); 930 bio = pd->iosched.write_queue; 931 spin_unlock(&pd->iosched.lock); 932 if (bio && (bio->bi_sector == pd->iosched.last_write)) 933 need_write_seek = 0; 934 if (need_write_seek && reads_queued) { 935 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 936 VPRINTK(DRIVER_NAME": write, waiting\n"); 937 break; 938 } 939 pkt_flush_cache(pd); 940 pd->iosched.writing = 0; 941 } 942 } else { 943 if (!reads_queued && writes_queued) { 944 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 945 VPRINTK(DRIVER_NAME": read, waiting\n"); 946 break; 947 } 948 pd->iosched.writing = 1; 949 } 950 } 951 952 spin_lock(&pd->iosched.lock); 953 if (pd->iosched.writing) { 954 bio = pkt_get_list_first(&pd->iosched.write_queue, 955 &pd->iosched.write_queue_tail); 956 } else { 957 bio = pkt_get_list_first(&pd->iosched.read_queue, 958 &pd->iosched.read_queue_tail); 959 } 960 spin_unlock(&pd->iosched.lock); 961 962 if (!bio) 963 continue; 964 965 if (bio_data_dir(bio) == READ) 966 pd->iosched.successive_reads += bio->bi_size >> 10; 967 else { 968 pd->iosched.successive_reads = 0; 969 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio); 970 } 971 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 972 if (pd->read_speed == pd->write_speed) { 973 pd->read_speed = MAX_SPEED; 974 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 975 } 976 } else { 977 if (pd->read_speed != pd->write_speed) { 978 pd->read_speed = pd->write_speed; 979 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 980 } 981 } 982 983 atomic_inc(&pd->cdrw.pending_bios); 984 generic_make_request(bio); 985 } 986 } 987 988 /* 989 * Special care is needed if the underlying block device has a small 990 * max_phys_segments value. 991 */ 992 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q) 993 { 994 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) { 995 /* 996 * The cdrom device can handle one segment/frame 997 */ 998 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 999 return 0; 1000 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) { 1001 /* 1002 * We can handle this case at the expense of some extra memory 1003 * copies during write operations 1004 */ 1005 set_bit(PACKET_MERGE_SEGS, &pd->flags); 1006 return 0; 1007 } else { 1008 printk(DRIVER_NAME": cdrom max_phys_segments too small\n"); 1009 return -EIO; 1010 } 1011 } 1012 1013 /* 1014 * Copy CD_FRAMESIZE bytes from src_bio into a destination page 1015 */ 1016 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs) 1017 { 1018 unsigned int copy_size = CD_FRAMESIZE; 1019 1020 while (copy_size > 0) { 1021 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg); 1022 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) + 1023 src_bvl->bv_offset + offs; 1024 void *vto = page_address(dst_page) + dst_offs; 1025 int len = min_t(int, copy_size, src_bvl->bv_len - offs); 1026 1027 BUG_ON(len < 0); 1028 memcpy(vto, vfrom, len); 1029 kunmap_atomic(vfrom, KM_USER0); 1030 1031 seg++; 1032 offs = 0; 1033 dst_offs += len; 1034 copy_size -= len; 1035 } 1036 } 1037 1038 /* 1039 * Copy all data for this packet to pkt->pages[], so that 1040 * a) The number of required segments for the write bio is minimized, which 1041 * is necessary for some scsi controllers. 1042 * b) The data can be used as cache to avoid read requests if we receive a 1043 * new write request for the same zone. 1044 */ 1045 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec) 1046 { 1047 int f, p, offs; 1048 1049 /* Copy all data to pkt->pages[] */ 1050 p = 0; 1051 offs = 0; 1052 for (f = 0; f < pkt->frames; f++) { 1053 if (bvec[f].bv_page != pkt->pages[p]) { 1054 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset; 1055 void *vto = page_address(pkt->pages[p]) + offs; 1056 memcpy(vto, vfrom, CD_FRAMESIZE); 1057 kunmap_atomic(vfrom, KM_USER0); 1058 bvec[f].bv_page = pkt->pages[p]; 1059 bvec[f].bv_offset = offs; 1060 } else { 1061 BUG_ON(bvec[f].bv_offset != offs); 1062 } 1063 offs += CD_FRAMESIZE; 1064 if (offs >= PAGE_SIZE) { 1065 offs = 0; 1066 p++; 1067 } 1068 } 1069 } 1070 1071 static void pkt_end_io_read(struct bio *bio, int err) 1072 { 1073 struct packet_data *pkt = bio->bi_private; 1074 struct pktcdvd_device *pd = pkt->pd; 1075 BUG_ON(!pd); 1076 1077 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio, 1078 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err); 1079 1080 if (err) 1081 atomic_inc(&pkt->io_errors); 1082 if (atomic_dec_and_test(&pkt->io_wait)) { 1083 atomic_inc(&pkt->run_sm); 1084 wake_up(&pd->wqueue); 1085 } 1086 pkt_bio_finished(pd); 1087 } 1088 1089 static void pkt_end_io_packet_write(struct bio *bio, int err) 1090 { 1091 struct packet_data *pkt = bio->bi_private; 1092 struct pktcdvd_device *pd = pkt->pd; 1093 BUG_ON(!pd); 1094 1095 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err); 1096 1097 pd->stats.pkt_ended++; 1098 1099 pkt_bio_finished(pd); 1100 atomic_dec(&pkt->io_wait); 1101 atomic_inc(&pkt->run_sm); 1102 wake_up(&pd->wqueue); 1103 } 1104 1105 /* 1106 * Schedule reads for the holes in a packet 1107 */ 1108 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1109 { 1110 int frames_read = 0; 1111 struct bio *bio; 1112 int f; 1113 char written[PACKET_MAX_SIZE]; 1114 1115 BUG_ON(!pkt->orig_bios); 1116 1117 atomic_set(&pkt->io_wait, 0); 1118 atomic_set(&pkt->io_errors, 0); 1119 1120 /* 1121 * Figure out which frames we need to read before we can write. 1122 */ 1123 memset(written, 0, sizeof(written)); 1124 spin_lock(&pkt->lock); 1125 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1126 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1127 int num_frames = bio->bi_size / CD_FRAMESIZE; 1128 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 1129 BUG_ON(first_frame < 0); 1130 BUG_ON(first_frame + num_frames > pkt->frames); 1131 for (f = first_frame; f < first_frame + num_frames; f++) 1132 written[f] = 1; 1133 } 1134 spin_unlock(&pkt->lock); 1135 1136 if (pkt->cache_valid) { 1137 VPRINTK("pkt_gather_data: zone %llx cached\n", 1138 (unsigned long long)pkt->sector); 1139 goto out_account; 1140 } 1141 1142 /* 1143 * Schedule reads for missing parts of the packet. 1144 */ 1145 for (f = 0; f < pkt->frames; f++) { 1146 struct bio_vec *vec; 1147 1148 int p, offset; 1149 if (written[f]) 1150 continue; 1151 bio = pkt->r_bios[f]; 1152 vec = bio->bi_io_vec; 1153 bio_init(bio); 1154 bio->bi_max_vecs = 1; 1155 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1156 bio->bi_bdev = pd->bdev; 1157 bio->bi_end_io = pkt_end_io_read; 1158 bio->bi_private = pkt; 1159 bio->bi_io_vec = vec; 1160 bio->bi_destructor = pkt_bio_destructor; 1161 1162 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1163 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1164 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n", 1165 f, pkt->pages[p], offset); 1166 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1167 BUG(); 1168 1169 atomic_inc(&pkt->io_wait); 1170 bio->bi_rw = READ; 1171 pkt_queue_bio(pd, bio); 1172 frames_read++; 1173 } 1174 1175 out_account: 1176 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n", 1177 frames_read, (unsigned long long)pkt->sector); 1178 pd->stats.pkt_started++; 1179 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1180 } 1181 1182 /* 1183 * Find a packet matching zone, or the least recently used packet if 1184 * there is no match. 1185 */ 1186 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1187 { 1188 struct packet_data *pkt; 1189 1190 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1191 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1192 list_del_init(&pkt->list); 1193 if (pkt->sector != zone) 1194 pkt->cache_valid = 0; 1195 return pkt; 1196 } 1197 } 1198 BUG(); 1199 return NULL; 1200 } 1201 1202 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1203 { 1204 if (pkt->cache_valid) { 1205 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1206 } else { 1207 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1208 } 1209 } 1210 1211 /* 1212 * recover a failed write, query for relocation if possible 1213 * 1214 * returns 1 if recovery is possible, or 0 if not 1215 * 1216 */ 1217 static int pkt_start_recovery(struct packet_data *pkt) 1218 { 1219 /* 1220 * FIXME. We need help from the file system to implement 1221 * recovery handling. 1222 */ 1223 return 0; 1224 #if 0 1225 struct request *rq = pkt->rq; 1226 struct pktcdvd_device *pd = rq->rq_disk->private_data; 1227 struct block_device *pkt_bdev; 1228 struct super_block *sb = NULL; 1229 unsigned long old_block, new_block; 1230 sector_t new_sector; 1231 1232 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 1233 if (pkt_bdev) { 1234 sb = get_super(pkt_bdev); 1235 bdput(pkt_bdev); 1236 } 1237 1238 if (!sb) 1239 return 0; 1240 1241 if (!sb->s_op || !sb->s_op->relocate_blocks) 1242 goto out; 1243 1244 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 1245 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 1246 goto out; 1247 1248 new_sector = new_block * (CD_FRAMESIZE >> 9); 1249 pkt->sector = new_sector; 1250 1251 pkt->bio->bi_sector = new_sector; 1252 pkt->bio->bi_next = NULL; 1253 pkt->bio->bi_flags = 1 << BIO_UPTODATE; 1254 pkt->bio->bi_idx = 0; 1255 1256 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW)); 1257 BUG_ON(pkt->bio->bi_vcnt != pkt->frames); 1258 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE); 1259 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write); 1260 BUG_ON(pkt->bio->bi_private != pkt); 1261 1262 drop_super(sb); 1263 return 1; 1264 1265 out: 1266 drop_super(sb); 1267 return 0; 1268 #endif 1269 } 1270 1271 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 1272 { 1273 #if PACKET_DEBUG > 1 1274 static const char *state_name[] = { 1275 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1276 }; 1277 enum packet_data_state old_state = pkt->state; 1278 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector, 1279 state_name[old_state], state_name[state]); 1280 #endif 1281 pkt->state = state; 1282 } 1283 1284 /* 1285 * Scan the work queue to see if we can start a new packet. 1286 * returns non-zero if any work was done. 1287 */ 1288 static int pkt_handle_queue(struct pktcdvd_device *pd) 1289 { 1290 struct packet_data *pkt, *p; 1291 struct bio *bio = NULL; 1292 sector_t zone = 0; /* Suppress gcc warning */ 1293 struct pkt_rb_node *node, *first_node; 1294 struct rb_node *n; 1295 int wakeup; 1296 1297 VPRINTK("handle_queue\n"); 1298 1299 atomic_set(&pd->scan_queue, 0); 1300 1301 if (list_empty(&pd->cdrw.pkt_free_list)) { 1302 VPRINTK("handle_queue: no pkt\n"); 1303 return 0; 1304 } 1305 1306 /* 1307 * Try to find a zone we are not already working on. 1308 */ 1309 spin_lock(&pd->lock); 1310 first_node = pkt_rbtree_find(pd, pd->current_sector); 1311 if (!first_node) { 1312 n = rb_first(&pd->bio_queue); 1313 if (n) 1314 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1315 } 1316 node = first_node; 1317 while (node) { 1318 bio = node->bio; 1319 zone = ZONE(bio->bi_sector, pd); 1320 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1321 if (p->sector == zone) { 1322 bio = NULL; 1323 goto try_next_bio; 1324 } 1325 } 1326 break; 1327 try_next_bio: 1328 node = pkt_rbtree_next(node); 1329 if (!node) { 1330 n = rb_first(&pd->bio_queue); 1331 if (n) 1332 node = rb_entry(n, struct pkt_rb_node, rb_node); 1333 } 1334 if (node == first_node) 1335 node = NULL; 1336 } 1337 spin_unlock(&pd->lock); 1338 if (!bio) { 1339 VPRINTK("handle_queue: no bio\n"); 1340 return 0; 1341 } 1342 1343 pkt = pkt_get_packet_data(pd, zone); 1344 1345 pd->current_sector = zone + pd->settings.size; 1346 pkt->sector = zone; 1347 BUG_ON(pkt->frames != pd->settings.size >> 2); 1348 pkt->write_size = 0; 1349 1350 /* 1351 * Scan work queue for bios in the same zone and link them 1352 * to this packet. 1353 */ 1354 spin_lock(&pd->lock); 1355 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone); 1356 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1357 bio = node->bio; 1358 VPRINTK("pkt_handle_queue: found zone=%llx\n", 1359 (unsigned long long)ZONE(bio->bi_sector, pd)); 1360 if (ZONE(bio->bi_sector, pd) != zone) 1361 break; 1362 pkt_rbtree_erase(pd, node); 1363 spin_lock(&pkt->lock); 1364 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail); 1365 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 1366 spin_unlock(&pkt->lock); 1367 } 1368 /* check write congestion marks, and if bio_queue_size is 1369 below, wake up any waiters */ 1370 wakeup = (pd->write_congestion_on > 0 1371 && pd->bio_queue_size <= pd->write_congestion_off); 1372 spin_unlock(&pd->lock); 1373 if (wakeup) 1374 clear_bdi_congested(&pd->disk->queue->backing_dev_info, WRITE); 1375 1376 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1377 pkt_set_state(pkt, PACKET_WAITING_STATE); 1378 atomic_set(&pkt->run_sm, 1); 1379 1380 spin_lock(&pd->cdrw.active_list_lock); 1381 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1382 spin_unlock(&pd->cdrw.active_list_lock); 1383 1384 return 1; 1385 } 1386 1387 /* 1388 * Assemble a bio to write one packet and queue the bio for processing 1389 * by the underlying block device. 1390 */ 1391 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1392 { 1393 struct bio *bio; 1394 int f; 1395 int frames_write; 1396 struct bio_vec *bvec = pkt->w_bio->bi_io_vec; 1397 1398 for (f = 0; f < pkt->frames; f++) { 1399 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1400 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1401 } 1402 1403 /* 1404 * Fill-in bvec with data from orig_bios. 1405 */ 1406 frames_write = 0; 1407 spin_lock(&pkt->lock); 1408 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1409 int segment = bio->bi_idx; 1410 int src_offs = 0; 1411 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1412 int num_frames = bio->bi_size / CD_FRAMESIZE; 1413 BUG_ON(first_frame < 0); 1414 BUG_ON(first_frame + num_frames > pkt->frames); 1415 for (f = first_frame; f < first_frame + num_frames; f++) { 1416 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment); 1417 1418 while (src_offs >= src_bvl->bv_len) { 1419 src_offs -= src_bvl->bv_len; 1420 segment++; 1421 BUG_ON(segment >= bio->bi_vcnt); 1422 src_bvl = bio_iovec_idx(bio, segment); 1423 } 1424 1425 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) { 1426 bvec[f].bv_page = src_bvl->bv_page; 1427 bvec[f].bv_offset = src_bvl->bv_offset + src_offs; 1428 } else { 1429 pkt_copy_bio_data(bio, segment, src_offs, 1430 bvec[f].bv_page, bvec[f].bv_offset); 1431 } 1432 src_offs += CD_FRAMESIZE; 1433 frames_write++; 1434 } 1435 } 1436 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1437 spin_unlock(&pkt->lock); 1438 1439 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n", 1440 frames_write, (unsigned long long)pkt->sector); 1441 BUG_ON(frames_write != pkt->write_size); 1442 1443 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) { 1444 pkt_make_local_copy(pkt, bvec); 1445 pkt->cache_valid = 1; 1446 } else { 1447 pkt->cache_valid = 0; 1448 } 1449 1450 /* Start the write request */ 1451 bio_init(pkt->w_bio); 1452 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE; 1453 pkt->w_bio->bi_sector = pkt->sector; 1454 pkt->w_bio->bi_bdev = pd->bdev; 1455 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1456 pkt->w_bio->bi_private = pkt; 1457 pkt->w_bio->bi_io_vec = bvec; 1458 pkt->w_bio->bi_destructor = pkt_bio_destructor; 1459 for (f = 0; f < pkt->frames; f++) 1460 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset)) 1461 BUG(); 1462 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt); 1463 1464 atomic_set(&pkt->io_wait, 1); 1465 pkt->w_bio->bi_rw = WRITE; 1466 pkt_queue_bio(pd, pkt->w_bio); 1467 } 1468 1469 static void pkt_finish_packet(struct packet_data *pkt, int uptodate) 1470 { 1471 struct bio *bio, *next; 1472 1473 if (!uptodate) 1474 pkt->cache_valid = 0; 1475 1476 /* Finish all bios corresponding to this packet */ 1477 bio = pkt->orig_bios; 1478 while (bio) { 1479 next = bio->bi_next; 1480 bio->bi_next = NULL; 1481 bio_endio(bio, uptodate ? 0 : -EIO); 1482 bio = next; 1483 } 1484 pkt->orig_bios = pkt->orig_bios_tail = NULL; 1485 } 1486 1487 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1488 { 1489 int uptodate; 1490 1491 VPRINTK("run_state_machine: pkt %d\n", pkt->id); 1492 1493 for (;;) { 1494 switch (pkt->state) { 1495 case PACKET_WAITING_STATE: 1496 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1497 return; 1498 1499 pkt->sleep_time = 0; 1500 pkt_gather_data(pd, pkt); 1501 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1502 break; 1503 1504 case PACKET_READ_WAIT_STATE: 1505 if (atomic_read(&pkt->io_wait) > 0) 1506 return; 1507 1508 if (atomic_read(&pkt->io_errors) > 0) { 1509 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1510 } else { 1511 pkt_start_write(pd, pkt); 1512 } 1513 break; 1514 1515 case PACKET_WRITE_WAIT_STATE: 1516 if (atomic_read(&pkt->io_wait) > 0) 1517 return; 1518 1519 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) { 1520 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1521 } else { 1522 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1523 } 1524 break; 1525 1526 case PACKET_RECOVERY_STATE: 1527 if (pkt_start_recovery(pkt)) { 1528 pkt_start_write(pd, pkt); 1529 } else { 1530 VPRINTK("No recovery possible\n"); 1531 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1532 } 1533 break; 1534 1535 case PACKET_FINISHED_STATE: 1536 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags); 1537 pkt_finish_packet(pkt, uptodate); 1538 return; 1539 1540 default: 1541 BUG(); 1542 break; 1543 } 1544 } 1545 } 1546 1547 static void pkt_handle_packets(struct pktcdvd_device *pd) 1548 { 1549 struct packet_data *pkt, *next; 1550 1551 VPRINTK("pkt_handle_packets\n"); 1552 1553 /* 1554 * Run state machine for active packets 1555 */ 1556 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1557 if (atomic_read(&pkt->run_sm) > 0) { 1558 atomic_set(&pkt->run_sm, 0); 1559 pkt_run_state_machine(pd, pkt); 1560 } 1561 } 1562 1563 /* 1564 * Move no longer active packets to the free list 1565 */ 1566 spin_lock(&pd->cdrw.active_list_lock); 1567 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1568 if (pkt->state == PACKET_FINISHED_STATE) { 1569 list_del(&pkt->list); 1570 pkt_put_packet_data(pd, pkt); 1571 pkt_set_state(pkt, PACKET_IDLE_STATE); 1572 atomic_set(&pd->scan_queue, 1); 1573 } 1574 } 1575 spin_unlock(&pd->cdrw.active_list_lock); 1576 } 1577 1578 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1579 { 1580 struct packet_data *pkt; 1581 int i; 1582 1583 for (i = 0; i < PACKET_NUM_STATES; i++) 1584 states[i] = 0; 1585 1586 spin_lock(&pd->cdrw.active_list_lock); 1587 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1588 states[pkt->state]++; 1589 } 1590 spin_unlock(&pd->cdrw.active_list_lock); 1591 } 1592 1593 /* 1594 * kcdrwd is woken up when writes have been queued for one of our 1595 * registered devices 1596 */ 1597 static int kcdrwd(void *foobar) 1598 { 1599 struct pktcdvd_device *pd = foobar; 1600 struct packet_data *pkt; 1601 long min_sleep_time, residue; 1602 1603 set_user_nice(current, -20); 1604 set_freezable(); 1605 1606 for (;;) { 1607 DECLARE_WAITQUEUE(wait, current); 1608 1609 /* 1610 * Wait until there is something to do 1611 */ 1612 add_wait_queue(&pd->wqueue, &wait); 1613 for (;;) { 1614 set_current_state(TASK_INTERRUPTIBLE); 1615 1616 /* Check if we need to run pkt_handle_queue */ 1617 if (atomic_read(&pd->scan_queue) > 0) 1618 goto work_to_do; 1619 1620 /* Check if we need to run the state machine for some packet */ 1621 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1622 if (atomic_read(&pkt->run_sm) > 0) 1623 goto work_to_do; 1624 } 1625 1626 /* Check if we need to process the iosched queues */ 1627 if (atomic_read(&pd->iosched.attention) != 0) 1628 goto work_to_do; 1629 1630 /* Otherwise, go to sleep */ 1631 if (PACKET_DEBUG > 1) { 1632 int states[PACKET_NUM_STATES]; 1633 pkt_count_states(pd, states); 1634 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1635 states[0], states[1], states[2], states[3], 1636 states[4], states[5]); 1637 } 1638 1639 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1640 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1641 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1642 min_sleep_time = pkt->sleep_time; 1643 } 1644 1645 generic_unplug_device(bdev_get_queue(pd->bdev)); 1646 1647 VPRINTK("kcdrwd: sleeping\n"); 1648 residue = schedule_timeout(min_sleep_time); 1649 VPRINTK("kcdrwd: wake up\n"); 1650 1651 /* make swsusp happy with our thread */ 1652 try_to_freeze(); 1653 1654 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1655 if (!pkt->sleep_time) 1656 continue; 1657 pkt->sleep_time -= min_sleep_time - residue; 1658 if (pkt->sleep_time <= 0) { 1659 pkt->sleep_time = 0; 1660 atomic_inc(&pkt->run_sm); 1661 } 1662 } 1663 1664 if (kthread_should_stop()) 1665 break; 1666 } 1667 work_to_do: 1668 set_current_state(TASK_RUNNING); 1669 remove_wait_queue(&pd->wqueue, &wait); 1670 1671 if (kthread_should_stop()) 1672 break; 1673 1674 /* 1675 * if pkt_handle_queue returns true, we can queue 1676 * another request. 1677 */ 1678 while (pkt_handle_queue(pd)) 1679 ; 1680 1681 /* 1682 * Handle packet state machine 1683 */ 1684 pkt_handle_packets(pd); 1685 1686 /* 1687 * Handle iosched queues 1688 */ 1689 pkt_iosched_process_queue(pd); 1690 } 1691 1692 return 0; 1693 } 1694 1695 static void pkt_print_settings(struct pktcdvd_device *pd) 1696 { 1697 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable"); 1698 printk("%u blocks, ", pd->settings.size >> 2); 1699 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2'); 1700 } 1701 1702 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1703 { 1704 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1705 1706 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1707 cgc->cmd[2] = page_code | (page_control << 6); 1708 cgc->cmd[7] = cgc->buflen >> 8; 1709 cgc->cmd[8] = cgc->buflen & 0xff; 1710 cgc->data_direction = CGC_DATA_READ; 1711 return pkt_generic_packet(pd, cgc); 1712 } 1713 1714 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1715 { 1716 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1717 memset(cgc->buffer, 0, 2); 1718 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1719 cgc->cmd[1] = 0x10; /* PF */ 1720 cgc->cmd[7] = cgc->buflen >> 8; 1721 cgc->cmd[8] = cgc->buflen & 0xff; 1722 cgc->data_direction = CGC_DATA_WRITE; 1723 return pkt_generic_packet(pd, cgc); 1724 } 1725 1726 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1727 { 1728 struct packet_command cgc; 1729 int ret; 1730 1731 /* set up command and get the disc info */ 1732 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1733 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1734 cgc.cmd[8] = cgc.buflen = 2; 1735 cgc.quiet = 1; 1736 1737 if ((ret = pkt_generic_packet(pd, &cgc))) 1738 return ret; 1739 1740 /* not all drives have the same disc_info length, so requeue 1741 * packet with the length the drive tells us it can supply 1742 */ 1743 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1744 sizeof(di->disc_information_length); 1745 1746 if (cgc.buflen > sizeof(disc_information)) 1747 cgc.buflen = sizeof(disc_information); 1748 1749 cgc.cmd[8] = cgc.buflen; 1750 return pkt_generic_packet(pd, &cgc); 1751 } 1752 1753 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1754 { 1755 struct packet_command cgc; 1756 int ret; 1757 1758 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1759 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1760 cgc.cmd[1] = type & 3; 1761 cgc.cmd[4] = (track & 0xff00) >> 8; 1762 cgc.cmd[5] = track & 0xff; 1763 cgc.cmd[8] = 8; 1764 cgc.quiet = 1; 1765 1766 if ((ret = pkt_generic_packet(pd, &cgc))) 1767 return ret; 1768 1769 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1770 sizeof(ti->track_information_length); 1771 1772 if (cgc.buflen > sizeof(track_information)) 1773 cgc.buflen = sizeof(track_information); 1774 1775 cgc.cmd[8] = cgc.buflen; 1776 return pkt_generic_packet(pd, &cgc); 1777 } 1778 1779 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written) 1780 { 1781 disc_information di; 1782 track_information ti; 1783 __u32 last_track; 1784 int ret = -1; 1785 1786 if ((ret = pkt_get_disc_info(pd, &di))) 1787 return ret; 1788 1789 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1790 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1791 return ret; 1792 1793 /* if this track is blank, try the previous. */ 1794 if (ti.blank) { 1795 last_track--; 1796 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1797 return ret; 1798 } 1799 1800 /* if last recorded field is valid, return it. */ 1801 if (ti.lra_v) { 1802 *last_written = be32_to_cpu(ti.last_rec_address); 1803 } else { 1804 /* make it up instead */ 1805 *last_written = be32_to_cpu(ti.track_start) + 1806 be32_to_cpu(ti.track_size); 1807 if (ti.free_blocks) 1808 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1809 } 1810 return 0; 1811 } 1812 1813 /* 1814 * write mode select package based on pd->settings 1815 */ 1816 static int pkt_set_write_settings(struct pktcdvd_device *pd) 1817 { 1818 struct packet_command cgc; 1819 struct request_sense sense; 1820 write_param_page *wp; 1821 char buffer[128]; 1822 int ret, size; 1823 1824 /* doesn't apply to DVD+RW or DVD-RAM */ 1825 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1826 return 0; 1827 1828 memset(buffer, 0, sizeof(buffer)); 1829 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1830 cgc.sense = &sense; 1831 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1832 pkt_dump_sense(&cgc); 1833 return ret; 1834 } 1835 1836 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1837 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1838 if (size > sizeof(buffer)) 1839 size = sizeof(buffer); 1840 1841 /* 1842 * now get it all 1843 */ 1844 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1845 cgc.sense = &sense; 1846 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1847 pkt_dump_sense(&cgc); 1848 return ret; 1849 } 1850 1851 /* 1852 * write page is offset header + block descriptor length 1853 */ 1854 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1855 1856 wp->fp = pd->settings.fp; 1857 wp->track_mode = pd->settings.track_mode; 1858 wp->write_type = pd->settings.write_type; 1859 wp->data_block_type = pd->settings.block_mode; 1860 1861 wp->multi_session = 0; 1862 1863 #ifdef PACKET_USE_LS 1864 wp->link_size = 7; 1865 wp->ls_v = 1; 1866 #endif 1867 1868 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1869 wp->session_format = 0; 1870 wp->subhdr2 = 0x20; 1871 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1872 wp->session_format = 0x20; 1873 wp->subhdr2 = 8; 1874 #if 0 1875 wp->mcn[0] = 0x80; 1876 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1877 #endif 1878 } else { 1879 /* 1880 * paranoia 1881 */ 1882 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type); 1883 return 1; 1884 } 1885 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1886 1887 cgc.buflen = cgc.cmd[8] = size; 1888 if ((ret = pkt_mode_select(pd, &cgc))) { 1889 pkt_dump_sense(&cgc); 1890 return ret; 1891 } 1892 1893 pkt_print_settings(pd); 1894 return 0; 1895 } 1896 1897 /* 1898 * 1 -- we can write to this track, 0 -- we can't 1899 */ 1900 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1901 { 1902 switch (pd->mmc3_profile) { 1903 case 0x1a: /* DVD+RW */ 1904 case 0x12: /* DVD-RAM */ 1905 /* The track is always writable on DVD+RW/DVD-RAM */ 1906 return 1; 1907 default: 1908 break; 1909 } 1910 1911 if (!ti->packet || !ti->fp) 1912 return 0; 1913 1914 /* 1915 * "good" settings as per Mt Fuji. 1916 */ 1917 if (ti->rt == 0 && ti->blank == 0) 1918 return 1; 1919 1920 if (ti->rt == 0 && ti->blank == 1) 1921 return 1; 1922 1923 if (ti->rt == 1 && ti->blank == 0) 1924 return 1; 1925 1926 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1927 return 0; 1928 } 1929 1930 /* 1931 * 1 -- we can write to this disc, 0 -- we can't 1932 */ 1933 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1934 { 1935 switch (pd->mmc3_profile) { 1936 case 0x0a: /* CD-RW */ 1937 case 0xffff: /* MMC3 not supported */ 1938 break; 1939 case 0x1a: /* DVD+RW */ 1940 case 0x13: /* DVD-RW */ 1941 case 0x12: /* DVD-RAM */ 1942 return 1; 1943 default: 1944 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile); 1945 return 0; 1946 } 1947 1948 /* 1949 * for disc type 0xff we should probably reserve a new track. 1950 * but i'm not sure, should we leave this to user apps? probably. 1951 */ 1952 if (di->disc_type == 0xff) { 1953 printk(DRIVER_NAME": Unknown disc. No track?\n"); 1954 return 0; 1955 } 1956 1957 if (di->disc_type != 0x20 && di->disc_type != 0) { 1958 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type); 1959 return 0; 1960 } 1961 1962 if (di->erasable == 0) { 1963 printk(DRIVER_NAME": Disc not erasable\n"); 1964 return 0; 1965 } 1966 1967 if (di->border_status == PACKET_SESSION_RESERVED) { 1968 printk(DRIVER_NAME": Can't write to last track (reserved)\n"); 1969 return 0; 1970 } 1971 1972 return 1; 1973 } 1974 1975 static int pkt_probe_settings(struct pktcdvd_device *pd) 1976 { 1977 struct packet_command cgc; 1978 unsigned char buf[12]; 1979 disc_information di; 1980 track_information ti; 1981 int ret, track; 1982 1983 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1984 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1985 cgc.cmd[8] = 8; 1986 ret = pkt_generic_packet(pd, &cgc); 1987 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1988 1989 memset(&di, 0, sizeof(disc_information)); 1990 memset(&ti, 0, sizeof(track_information)); 1991 1992 if ((ret = pkt_get_disc_info(pd, &di))) { 1993 printk("failed get_disc\n"); 1994 return ret; 1995 } 1996 1997 if (!pkt_writable_disc(pd, &di)) 1998 return -EROFS; 1999 2000 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 2001 2002 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 2003 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 2004 printk(DRIVER_NAME": failed get_track\n"); 2005 return ret; 2006 } 2007 2008 if (!pkt_writable_track(pd, &ti)) { 2009 printk(DRIVER_NAME": can't write to this track\n"); 2010 return -EROFS; 2011 } 2012 2013 /* 2014 * we keep packet size in 512 byte units, makes it easier to 2015 * deal with request calculations. 2016 */ 2017 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 2018 if (pd->settings.size == 0) { 2019 printk(DRIVER_NAME": detected zero packet size!\n"); 2020 return -ENXIO; 2021 } 2022 if (pd->settings.size > PACKET_MAX_SECTORS) { 2023 printk(DRIVER_NAME": packet size is too big\n"); 2024 return -EROFS; 2025 } 2026 pd->settings.fp = ti.fp; 2027 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 2028 2029 if (ti.nwa_v) { 2030 pd->nwa = be32_to_cpu(ti.next_writable); 2031 set_bit(PACKET_NWA_VALID, &pd->flags); 2032 } 2033 2034 /* 2035 * in theory we could use lra on -RW media as well and just zero 2036 * blocks that haven't been written yet, but in practice that 2037 * is just a no-go. we'll use that for -R, naturally. 2038 */ 2039 if (ti.lra_v) { 2040 pd->lra = be32_to_cpu(ti.last_rec_address); 2041 set_bit(PACKET_LRA_VALID, &pd->flags); 2042 } else { 2043 pd->lra = 0xffffffff; 2044 set_bit(PACKET_LRA_VALID, &pd->flags); 2045 } 2046 2047 /* 2048 * fine for now 2049 */ 2050 pd->settings.link_loss = 7; 2051 pd->settings.write_type = 0; /* packet */ 2052 pd->settings.track_mode = ti.track_mode; 2053 2054 /* 2055 * mode1 or mode2 disc 2056 */ 2057 switch (ti.data_mode) { 2058 case PACKET_MODE1: 2059 pd->settings.block_mode = PACKET_BLOCK_MODE1; 2060 break; 2061 case PACKET_MODE2: 2062 pd->settings.block_mode = PACKET_BLOCK_MODE2; 2063 break; 2064 default: 2065 printk(DRIVER_NAME": unknown data mode\n"); 2066 return -EROFS; 2067 } 2068 return 0; 2069 } 2070 2071 /* 2072 * enable/disable write caching on drive 2073 */ 2074 static int pkt_write_caching(struct pktcdvd_device *pd, int set) 2075 { 2076 struct packet_command cgc; 2077 struct request_sense sense; 2078 unsigned char buf[64]; 2079 int ret; 2080 2081 memset(buf, 0, sizeof(buf)); 2082 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 2083 cgc.sense = &sense; 2084 cgc.buflen = pd->mode_offset + 12; 2085 2086 /* 2087 * caching mode page might not be there, so quiet this command 2088 */ 2089 cgc.quiet = 1; 2090 2091 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 2092 return ret; 2093 2094 buf[pd->mode_offset + 10] |= (!!set << 2); 2095 2096 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 2097 ret = pkt_mode_select(pd, &cgc); 2098 if (ret) { 2099 printk(DRIVER_NAME": write caching control failed\n"); 2100 pkt_dump_sense(&cgc); 2101 } else if (!ret && set) 2102 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name); 2103 return ret; 2104 } 2105 2106 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 2107 { 2108 struct packet_command cgc; 2109 2110 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2111 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 2112 cgc.cmd[4] = lockflag ? 1 : 0; 2113 return pkt_generic_packet(pd, &cgc); 2114 } 2115 2116 /* 2117 * Returns drive maximum write speed 2118 */ 2119 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed) 2120 { 2121 struct packet_command cgc; 2122 struct request_sense sense; 2123 unsigned char buf[256+18]; 2124 unsigned char *cap_buf; 2125 int ret, offset; 2126 2127 memset(buf, 0, sizeof(buf)); 2128 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 2129 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 2130 cgc.sense = &sense; 2131 2132 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2133 if (ret) { 2134 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 2135 sizeof(struct mode_page_header); 2136 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2137 if (ret) { 2138 pkt_dump_sense(&cgc); 2139 return ret; 2140 } 2141 } 2142 2143 offset = 20; /* Obsoleted field, used by older drives */ 2144 if (cap_buf[1] >= 28) 2145 offset = 28; /* Current write speed selected */ 2146 if (cap_buf[1] >= 30) { 2147 /* If the drive reports at least one "Logical Unit Write 2148 * Speed Performance Descriptor Block", use the information 2149 * in the first block. (contains the highest speed) 2150 */ 2151 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 2152 if (num_spdb > 0) 2153 offset = 34; 2154 } 2155 2156 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 2157 return 0; 2158 } 2159 2160 /* These tables from cdrecord - I don't have orange book */ 2161 /* standard speed CD-RW (1-4x) */ 2162 static char clv_to_speed[16] = { 2163 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2164 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2165 }; 2166 /* high speed CD-RW (-10x) */ 2167 static char hs_clv_to_speed[16] = { 2168 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2169 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2170 }; 2171 /* ultra high speed CD-RW */ 2172 static char us_clv_to_speed[16] = { 2173 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2174 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 2175 }; 2176 2177 /* 2178 * reads the maximum media speed from ATIP 2179 */ 2180 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed) 2181 { 2182 struct packet_command cgc; 2183 struct request_sense sense; 2184 unsigned char buf[64]; 2185 unsigned int size, st, sp; 2186 int ret; 2187 2188 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 2189 cgc.sense = &sense; 2190 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2191 cgc.cmd[1] = 2; 2192 cgc.cmd[2] = 4; /* READ ATIP */ 2193 cgc.cmd[8] = 2; 2194 ret = pkt_generic_packet(pd, &cgc); 2195 if (ret) { 2196 pkt_dump_sense(&cgc); 2197 return ret; 2198 } 2199 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 2200 if (size > sizeof(buf)) 2201 size = sizeof(buf); 2202 2203 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2204 cgc.sense = &sense; 2205 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2206 cgc.cmd[1] = 2; 2207 cgc.cmd[2] = 4; 2208 cgc.cmd[8] = size; 2209 ret = pkt_generic_packet(pd, &cgc); 2210 if (ret) { 2211 pkt_dump_sense(&cgc); 2212 return ret; 2213 } 2214 2215 if (!buf[6] & 0x40) { 2216 printk(DRIVER_NAME": Disc type is not CD-RW\n"); 2217 return 1; 2218 } 2219 if (!buf[6] & 0x4) { 2220 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n"); 2221 return 1; 2222 } 2223 2224 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2225 2226 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2227 2228 /* Info from cdrecord */ 2229 switch (st) { 2230 case 0: /* standard speed */ 2231 *speed = clv_to_speed[sp]; 2232 break; 2233 case 1: /* high speed */ 2234 *speed = hs_clv_to_speed[sp]; 2235 break; 2236 case 2: /* ultra high speed */ 2237 *speed = us_clv_to_speed[sp]; 2238 break; 2239 default: 2240 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st); 2241 return 1; 2242 } 2243 if (*speed) { 2244 printk(DRIVER_NAME": Max. media speed: %d\n",*speed); 2245 return 0; 2246 } else { 2247 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st); 2248 return 1; 2249 } 2250 } 2251 2252 static int pkt_perform_opc(struct pktcdvd_device *pd) 2253 { 2254 struct packet_command cgc; 2255 struct request_sense sense; 2256 int ret; 2257 2258 VPRINTK(DRIVER_NAME": Performing OPC\n"); 2259 2260 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2261 cgc.sense = &sense; 2262 cgc.timeout = 60*HZ; 2263 cgc.cmd[0] = GPCMD_SEND_OPC; 2264 cgc.cmd[1] = 1; 2265 if ((ret = pkt_generic_packet(pd, &cgc))) 2266 pkt_dump_sense(&cgc); 2267 return ret; 2268 } 2269 2270 static int pkt_open_write(struct pktcdvd_device *pd) 2271 { 2272 int ret; 2273 unsigned int write_speed, media_write_speed, read_speed; 2274 2275 if ((ret = pkt_probe_settings(pd))) { 2276 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name); 2277 return ret; 2278 } 2279 2280 if ((ret = pkt_set_write_settings(pd))) { 2281 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name); 2282 return -EIO; 2283 } 2284 2285 pkt_write_caching(pd, USE_WCACHING); 2286 2287 if ((ret = pkt_get_max_speed(pd, &write_speed))) 2288 write_speed = 16 * 177; 2289 switch (pd->mmc3_profile) { 2290 case 0x13: /* DVD-RW */ 2291 case 0x1a: /* DVD+RW */ 2292 case 0x12: /* DVD-RAM */ 2293 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed); 2294 break; 2295 default: 2296 if ((ret = pkt_media_speed(pd, &media_write_speed))) 2297 media_write_speed = 16; 2298 write_speed = min(write_speed, media_write_speed * 177); 2299 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176); 2300 break; 2301 } 2302 read_speed = write_speed; 2303 2304 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 2305 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name); 2306 return -EIO; 2307 } 2308 pd->write_speed = write_speed; 2309 pd->read_speed = read_speed; 2310 2311 if ((ret = pkt_perform_opc(pd))) { 2312 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name); 2313 } 2314 2315 return 0; 2316 } 2317 2318 /* 2319 * called at open time. 2320 */ 2321 static int pkt_open_dev(struct pktcdvd_device *pd, int write) 2322 { 2323 int ret; 2324 long lba; 2325 struct request_queue *q; 2326 2327 /* 2328 * We need to re-open the cdrom device without O_NONBLOCK to be able 2329 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2330 * so bdget() can't fail. 2331 */ 2332 bdget(pd->bdev->bd_dev); 2333 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY))) 2334 goto out; 2335 2336 if ((ret = bd_claim(pd->bdev, pd))) 2337 goto out_putdev; 2338 2339 if ((ret = pkt_get_last_written(pd, &lba))) { 2340 printk(DRIVER_NAME": pkt_get_last_written failed\n"); 2341 goto out_unclaim; 2342 } 2343 2344 set_capacity(pd->disk, lba << 2); 2345 set_capacity(pd->bdev->bd_disk, lba << 2); 2346 bd_set_size(pd->bdev, (loff_t)lba << 11); 2347 2348 q = bdev_get_queue(pd->bdev); 2349 if (write) { 2350 if ((ret = pkt_open_write(pd))) 2351 goto out_unclaim; 2352 /* 2353 * Some CDRW drives can not handle writes larger than one packet, 2354 * even if the size is a multiple of the packet size. 2355 */ 2356 spin_lock_irq(q->queue_lock); 2357 blk_queue_max_sectors(q, pd->settings.size); 2358 spin_unlock_irq(q->queue_lock); 2359 set_bit(PACKET_WRITABLE, &pd->flags); 2360 } else { 2361 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2362 clear_bit(PACKET_WRITABLE, &pd->flags); 2363 } 2364 2365 if ((ret = pkt_set_segment_merging(pd, q))) 2366 goto out_unclaim; 2367 2368 if (write) { 2369 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2370 printk(DRIVER_NAME": not enough memory for buffers\n"); 2371 ret = -ENOMEM; 2372 goto out_unclaim; 2373 } 2374 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1); 2375 } 2376 2377 return 0; 2378 2379 out_unclaim: 2380 bd_release(pd->bdev); 2381 out_putdev: 2382 blkdev_put(pd->bdev); 2383 out: 2384 return ret; 2385 } 2386 2387 /* 2388 * called when the device is closed. makes sure that the device flushes 2389 * the internal cache before we close. 2390 */ 2391 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2392 { 2393 if (flush && pkt_flush_cache(pd)) 2394 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name); 2395 2396 pkt_lock_door(pd, 0); 2397 2398 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2399 bd_release(pd->bdev); 2400 blkdev_put(pd->bdev); 2401 2402 pkt_shrink_pktlist(pd); 2403 } 2404 2405 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor) 2406 { 2407 if (dev_minor >= MAX_WRITERS) 2408 return NULL; 2409 return pkt_devs[dev_minor]; 2410 } 2411 2412 static int pkt_open(struct inode *inode, struct file *file) 2413 { 2414 struct pktcdvd_device *pd = NULL; 2415 int ret; 2416 2417 VPRINTK(DRIVER_NAME": entering open\n"); 2418 2419 mutex_lock(&ctl_mutex); 2420 pd = pkt_find_dev_from_minor(iminor(inode)); 2421 if (!pd) { 2422 ret = -ENODEV; 2423 goto out; 2424 } 2425 BUG_ON(pd->refcnt < 0); 2426 2427 pd->refcnt++; 2428 if (pd->refcnt > 1) { 2429 if ((file->f_mode & FMODE_WRITE) && 2430 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2431 ret = -EBUSY; 2432 goto out_dec; 2433 } 2434 } else { 2435 ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE); 2436 if (ret) 2437 goto out_dec; 2438 /* 2439 * needed here as well, since ext2 (among others) may change 2440 * the blocksize at mount time 2441 */ 2442 set_blocksize(inode->i_bdev, CD_FRAMESIZE); 2443 } 2444 2445 mutex_unlock(&ctl_mutex); 2446 return 0; 2447 2448 out_dec: 2449 pd->refcnt--; 2450 out: 2451 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret); 2452 mutex_unlock(&ctl_mutex); 2453 return ret; 2454 } 2455 2456 static int pkt_close(struct inode *inode, struct file *file) 2457 { 2458 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; 2459 int ret = 0; 2460 2461 mutex_lock(&ctl_mutex); 2462 pd->refcnt--; 2463 BUG_ON(pd->refcnt < 0); 2464 if (pd->refcnt == 0) { 2465 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2466 pkt_release_dev(pd, flush); 2467 } 2468 mutex_unlock(&ctl_mutex); 2469 return ret; 2470 } 2471 2472 2473 static void pkt_end_io_read_cloned(struct bio *bio, int err) 2474 { 2475 struct packet_stacked_data *psd = bio->bi_private; 2476 struct pktcdvd_device *pd = psd->pd; 2477 2478 bio_put(bio); 2479 bio_endio(psd->bio, err); 2480 mempool_free(psd, psd_pool); 2481 pkt_bio_finished(pd); 2482 } 2483 2484 static int pkt_make_request(struct request_queue *q, struct bio *bio) 2485 { 2486 struct pktcdvd_device *pd; 2487 char b[BDEVNAME_SIZE]; 2488 sector_t zone; 2489 struct packet_data *pkt; 2490 int was_empty, blocked_bio; 2491 struct pkt_rb_node *node; 2492 2493 pd = q->queuedata; 2494 if (!pd) { 2495 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b)); 2496 goto end_io; 2497 } 2498 2499 /* 2500 * Clone READ bios so we can have our own bi_end_io callback. 2501 */ 2502 if (bio_data_dir(bio) == READ) { 2503 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); 2504 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2505 2506 psd->pd = pd; 2507 psd->bio = bio; 2508 cloned_bio->bi_bdev = pd->bdev; 2509 cloned_bio->bi_private = psd; 2510 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2511 pd->stats.secs_r += bio->bi_size >> 9; 2512 pkt_queue_bio(pd, cloned_bio); 2513 return 0; 2514 } 2515 2516 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2517 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n", 2518 pd->name, (unsigned long long)bio->bi_sector); 2519 goto end_io; 2520 } 2521 2522 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) { 2523 printk(DRIVER_NAME": wrong bio size\n"); 2524 goto end_io; 2525 } 2526 2527 blk_queue_bounce(q, &bio); 2528 2529 zone = ZONE(bio->bi_sector, pd); 2530 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n", 2531 (unsigned long long)bio->bi_sector, 2532 (unsigned long long)(bio->bi_sector + bio_sectors(bio))); 2533 2534 /* Check if we have to split the bio */ 2535 { 2536 struct bio_pair *bp; 2537 sector_t last_zone; 2538 int first_sectors; 2539 2540 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd); 2541 if (last_zone != zone) { 2542 BUG_ON(last_zone != zone + pd->settings.size); 2543 first_sectors = last_zone - bio->bi_sector; 2544 bp = bio_split(bio, bio_split_pool, first_sectors); 2545 BUG_ON(!bp); 2546 pkt_make_request(q, &bp->bio1); 2547 pkt_make_request(q, &bp->bio2); 2548 bio_pair_release(bp); 2549 return 0; 2550 } 2551 } 2552 2553 /* 2554 * If we find a matching packet in state WAITING or READ_WAIT, we can 2555 * just append this bio to that packet. 2556 */ 2557 spin_lock(&pd->cdrw.active_list_lock); 2558 blocked_bio = 0; 2559 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2560 if (pkt->sector == zone) { 2561 spin_lock(&pkt->lock); 2562 if ((pkt->state == PACKET_WAITING_STATE) || 2563 (pkt->state == PACKET_READ_WAIT_STATE)) { 2564 pkt_add_list_last(bio, &pkt->orig_bios, 2565 &pkt->orig_bios_tail); 2566 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 2567 if ((pkt->write_size >= pkt->frames) && 2568 (pkt->state == PACKET_WAITING_STATE)) { 2569 atomic_inc(&pkt->run_sm); 2570 wake_up(&pd->wqueue); 2571 } 2572 spin_unlock(&pkt->lock); 2573 spin_unlock(&pd->cdrw.active_list_lock); 2574 return 0; 2575 } else { 2576 blocked_bio = 1; 2577 } 2578 spin_unlock(&pkt->lock); 2579 } 2580 } 2581 spin_unlock(&pd->cdrw.active_list_lock); 2582 2583 /* 2584 * Test if there is enough room left in the bio work queue 2585 * (queue size >= congestion on mark). 2586 * If not, wait till the work queue size is below the congestion off mark. 2587 */ 2588 spin_lock(&pd->lock); 2589 if (pd->write_congestion_on > 0 2590 && pd->bio_queue_size >= pd->write_congestion_on) { 2591 set_bdi_congested(&q->backing_dev_info, WRITE); 2592 do { 2593 spin_unlock(&pd->lock); 2594 congestion_wait(WRITE, HZ); 2595 spin_lock(&pd->lock); 2596 } while(pd->bio_queue_size > pd->write_congestion_off); 2597 } 2598 spin_unlock(&pd->lock); 2599 2600 /* 2601 * No matching packet found. Store the bio in the work queue. 2602 */ 2603 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2604 node->bio = bio; 2605 spin_lock(&pd->lock); 2606 BUG_ON(pd->bio_queue_size < 0); 2607 was_empty = (pd->bio_queue_size == 0); 2608 pkt_rbtree_insert(pd, node); 2609 spin_unlock(&pd->lock); 2610 2611 /* 2612 * Wake up the worker thread. 2613 */ 2614 atomic_set(&pd->scan_queue, 1); 2615 if (was_empty) { 2616 /* This wake_up is required for correct operation */ 2617 wake_up(&pd->wqueue); 2618 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2619 /* 2620 * This wake up is not required for correct operation, 2621 * but improves performance in some cases. 2622 */ 2623 wake_up(&pd->wqueue); 2624 } 2625 return 0; 2626 end_io: 2627 bio_io_error(bio); 2628 return 0; 2629 } 2630 2631 2632 2633 static int pkt_merge_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *bvec) 2634 { 2635 struct pktcdvd_device *pd = q->queuedata; 2636 sector_t zone = ZONE(bio->bi_sector, pd); 2637 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size; 2638 int remaining = (pd->settings.size << 9) - used; 2639 int remaining2; 2640 2641 /* 2642 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet 2643 * boundary, pkt_make_request() will split the bio. 2644 */ 2645 remaining2 = PAGE_SIZE - bio->bi_size; 2646 remaining = max(remaining, remaining2); 2647 2648 BUG_ON(remaining < 0); 2649 return remaining; 2650 } 2651 2652 static void pkt_init_queue(struct pktcdvd_device *pd) 2653 { 2654 struct request_queue *q = pd->disk->queue; 2655 2656 blk_queue_make_request(q, pkt_make_request); 2657 blk_queue_hardsect_size(q, CD_FRAMESIZE); 2658 blk_queue_max_sectors(q, PACKET_MAX_SECTORS); 2659 blk_queue_merge_bvec(q, pkt_merge_bvec); 2660 q->queuedata = pd; 2661 } 2662 2663 static int pkt_seq_show(struct seq_file *m, void *p) 2664 { 2665 struct pktcdvd_device *pd = m->private; 2666 char *msg; 2667 char bdev_buf[BDEVNAME_SIZE]; 2668 int states[PACKET_NUM_STATES]; 2669 2670 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2671 bdevname(pd->bdev, bdev_buf)); 2672 2673 seq_printf(m, "\nSettings:\n"); 2674 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2675 2676 if (pd->settings.write_type == 0) 2677 msg = "Packet"; 2678 else 2679 msg = "Unknown"; 2680 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2681 2682 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2683 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2684 2685 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2686 2687 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2688 msg = "Mode 1"; 2689 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2690 msg = "Mode 2"; 2691 else 2692 msg = "Unknown"; 2693 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2694 2695 seq_printf(m, "\nStatistics:\n"); 2696 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2697 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2698 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2699 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2700 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2701 2702 seq_printf(m, "\nMisc:\n"); 2703 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2704 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2705 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2706 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2707 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2708 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2709 2710 seq_printf(m, "\nQueue state:\n"); 2711 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2712 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2713 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2714 2715 pkt_count_states(pd, states); 2716 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2717 states[0], states[1], states[2], states[3], states[4], states[5]); 2718 2719 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 2720 pd->write_congestion_off, 2721 pd->write_congestion_on); 2722 return 0; 2723 } 2724 2725 static int pkt_seq_open(struct inode *inode, struct file *file) 2726 { 2727 return single_open(file, pkt_seq_show, PDE(inode)->data); 2728 } 2729 2730 static const struct file_operations pkt_proc_fops = { 2731 .open = pkt_seq_open, 2732 .read = seq_read, 2733 .llseek = seq_lseek, 2734 .release = single_release 2735 }; 2736 2737 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2738 { 2739 int i; 2740 int ret = 0; 2741 char b[BDEVNAME_SIZE]; 2742 struct proc_dir_entry *proc; 2743 struct block_device *bdev; 2744 2745 if (pd->pkt_dev == dev) { 2746 printk(DRIVER_NAME": Recursive setup not allowed\n"); 2747 return -EBUSY; 2748 } 2749 for (i = 0; i < MAX_WRITERS; i++) { 2750 struct pktcdvd_device *pd2 = pkt_devs[i]; 2751 if (!pd2) 2752 continue; 2753 if (pd2->bdev->bd_dev == dev) { 2754 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b)); 2755 return -EBUSY; 2756 } 2757 if (pd2->pkt_dev == dev) { 2758 printk(DRIVER_NAME": Can't chain pktcdvd devices\n"); 2759 return -EBUSY; 2760 } 2761 } 2762 2763 bdev = bdget(dev); 2764 if (!bdev) 2765 return -ENOMEM; 2766 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK); 2767 if (ret) 2768 return ret; 2769 2770 /* This is safe, since we have a reference from open(). */ 2771 __module_get(THIS_MODULE); 2772 2773 pd->bdev = bdev; 2774 set_blocksize(bdev, CD_FRAMESIZE); 2775 2776 pkt_init_queue(pd); 2777 2778 atomic_set(&pd->cdrw.pending_bios, 0); 2779 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2780 if (IS_ERR(pd->cdrw.thread)) { 2781 printk(DRIVER_NAME": can't start kernel thread\n"); 2782 ret = -ENOMEM; 2783 goto out_mem; 2784 } 2785 2786 proc = create_proc_entry(pd->name, 0, pkt_proc); 2787 if (proc) { 2788 proc->data = pd; 2789 proc->proc_fops = &pkt_proc_fops; 2790 } 2791 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b)); 2792 return 0; 2793 2794 out_mem: 2795 blkdev_put(bdev); 2796 /* This is safe: open() is still holding a reference. */ 2797 module_put(THIS_MODULE); 2798 return ret; 2799 } 2800 2801 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 2802 { 2803 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; 2804 2805 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode)); 2806 2807 switch (cmd) { 2808 /* 2809 * forward selected CDROM ioctls to CD-ROM, for UDF 2810 */ 2811 case CDROMMULTISESSION: 2812 case CDROMREADTOCENTRY: 2813 case CDROM_LAST_WRITTEN: 2814 case CDROM_SEND_PACKET: 2815 case SCSI_IOCTL_SEND_COMMAND: 2816 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); 2817 2818 case CDROMEJECT: 2819 /* 2820 * The door gets locked when the device is opened, so we 2821 * have to unlock it or else the eject command fails. 2822 */ 2823 if (pd->refcnt == 1) 2824 pkt_lock_door(pd, 0); 2825 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); 2826 2827 default: 2828 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd); 2829 return -ENOTTY; 2830 } 2831 2832 return 0; 2833 } 2834 2835 static int pkt_media_changed(struct gendisk *disk) 2836 { 2837 struct pktcdvd_device *pd = disk->private_data; 2838 struct gendisk *attached_disk; 2839 2840 if (!pd) 2841 return 0; 2842 if (!pd->bdev) 2843 return 0; 2844 attached_disk = pd->bdev->bd_disk; 2845 if (!attached_disk) 2846 return 0; 2847 return attached_disk->fops->media_changed(attached_disk); 2848 } 2849 2850 static struct block_device_operations pktcdvd_ops = { 2851 .owner = THIS_MODULE, 2852 .open = pkt_open, 2853 .release = pkt_close, 2854 .ioctl = pkt_ioctl, 2855 .media_changed = pkt_media_changed, 2856 }; 2857 2858 /* 2859 * Set up mapping from pktcdvd device to CD-ROM device. 2860 */ 2861 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2862 { 2863 int idx; 2864 int ret = -ENOMEM; 2865 struct pktcdvd_device *pd; 2866 struct gendisk *disk; 2867 2868 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2869 2870 for (idx = 0; idx < MAX_WRITERS; idx++) 2871 if (!pkt_devs[idx]) 2872 break; 2873 if (idx == MAX_WRITERS) { 2874 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS); 2875 ret = -EBUSY; 2876 goto out_mutex; 2877 } 2878 2879 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2880 if (!pd) 2881 goto out_mutex; 2882 2883 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE, 2884 sizeof(struct pkt_rb_node)); 2885 if (!pd->rb_pool) 2886 goto out_mem; 2887 2888 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2889 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2890 spin_lock_init(&pd->cdrw.active_list_lock); 2891 2892 spin_lock_init(&pd->lock); 2893 spin_lock_init(&pd->iosched.lock); 2894 sprintf(pd->name, DRIVER_NAME"%d", idx); 2895 init_waitqueue_head(&pd->wqueue); 2896 pd->bio_queue = RB_ROOT; 2897 2898 pd->write_congestion_on = write_congestion_on; 2899 pd->write_congestion_off = write_congestion_off; 2900 2901 disk = alloc_disk(1); 2902 if (!disk) 2903 goto out_mem; 2904 pd->disk = disk; 2905 disk->major = pktdev_major; 2906 disk->first_minor = idx; 2907 disk->fops = &pktcdvd_ops; 2908 disk->flags = GENHD_FL_REMOVABLE; 2909 strcpy(disk->disk_name, pd->name); 2910 disk->private_data = pd; 2911 disk->queue = blk_alloc_queue(GFP_KERNEL); 2912 if (!disk->queue) 2913 goto out_mem2; 2914 2915 pd->pkt_dev = MKDEV(disk->major, disk->first_minor); 2916 ret = pkt_new_dev(pd, dev); 2917 if (ret) 2918 goto out_new_dev; 2919 2920 add_disk(disk); 2921 2922 pkt_sysfs_dev_new(pd); 2923 pkt_debugfs_dev_new(pd); 2924 2925 pkt_devs[idx] = pd; 2926 if (pkt_dev) 2927 *pkt_dev = pd->pkt_dev; 2928 2929 mutex_unlock(&ctl_mutex); 2930 return 0; 2931 2932 out_new_dev: 2933 blk_cleanup_queue(disk->queue); 2934 out_mem2: 2935 put_disk(disk); 2936 out_mem: 2937 if (pd->rb_pool) 2938 mempool_destroy(pd->rb_pool); 2939 kfree(pd); 2940 out_mutex: 2941 mutex_unlock(&ctl_mutex); 2942 printk(DRIVER_NAME": setup of pktcdvd device failed\n"); 2943 return ret; 2944 } 2945 2946 /* 2947 * Tear down mapping from pktcdvd device to CD-ROM device. 2948 */ 2949 static int pkt_remove_dev(dev_t pkt_dev) 2950 { 2951 struct pktcdvd_device *pd; 2952 int idx; 2953 int ret = 0; 2954 2955 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2956 2957 for (idx = 0; idx < MAX_WRITERS; idx++) { 2958 pd = pkt_devs[idx]; 2959 if (pd && (pd->pkt_dev == pkt_dev)) 2960 break; 2961 } 2962 if (idx == MAX_WRITERS) { 2963 DPRINTK(DRIVER_NAME": dev not setup\n"); 2964 ret = -ENXIO; 2965 goto out; 2966 } 2967 2968 if (pd->refcnt > 0) { 2969 ret = -EBUSY; 2970 goto out; 2971 } 2972 if (!IS_ERR(pd->cdrw.thread)) 2973 kthread_stop(pd->cdrw.thread); 2974 2975 pkt_devs[idx] = NULL; 2976 2977 pkt_debugfs_dev_remove(pd); 2978 pkt_sysfs_dev_remove(pd); 2979 2980 blkdev_put(pd->bdev); 2981 2982 remove_proc_entry(pd->name, pkt_proc); 2983 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name); 2984 2985 del_gendisk(pd->disk); 2986 blk_cleanup_queue(pd->disk->queue); 2987 put_disk(pd->disk); 2988 2989 mempool_destroy(pd->rb_pool); 2990 kfree(pd); 2991 2992 /* This is safe: open() is still holding a reference. */ 2993 module_put(THIS_MODULE); 2994 2995 out: 2996 mutex_unlock(&ctl_mutex); 2997 return ret; 2998 } 2999 3000 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 3001 { 3002 struct pktcdvd_device *pd; 3003 3004 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 3005 3006 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 3007 if (pd) { 3008 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 3009 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 3010 } else { 3011 ctrl_cmd->dev = 0; 3012 ctrl_cmd->pkt_dev = 0; 3013 } 3014 ctrl_cmd->num_devices = MAX_WRITERS; 3015 3016 mutex_unlock(&ctl_mutex); 3017 } 3018 3019 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 3020 { 3021 void __user *argp = (void __user *)arg; 3022 struct pkt_ctrl_command ctrl_cmd; 3023 int ret = 0; 3024 dev_t pkt_dev = 0; 3025 3026 if (cmd != PACKET_CTRL_CMD) 3027 return -ENOTTY; 3028 3029 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 3030 return -EFAULT; 3031 3032 switch (ctrl_cmd.command) { 3033 case PKT_CTRL_CMD_SETUP: 3034 if (!capable(CAP_SYS_ADMIN)) 3035 return -EPERM; 3036 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 3037 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 3038 break; 3039 case PKT_CTRL_CMD_TEARDOWN: 3040 if (!capable(CAP_SYS_ADMIN)) 3041 return -EPERM; 3042 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 3043 break; 3044 case PKT_CTRL_CMD_STATUS: 3045 pkt_get_status(&ctrl_cmd); 3046 break; 3047 default: 3048 return -ENOTTY; 3049 } 3050 3051 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 3052 return -EFAULT; 3053 return ret; 3054 } 3055 3056 3057 static const struct file_operations pkt_ctl_fops = { 3058 .ioctl = pkt_ctl_ioctl, 3059 .owner = THIS_MODULE, 3060 }; 3061 3062 static struct miscdevice pkt_misc = { 3063 .minor = MISC_DYNAMIC_MINOR, 3064 .name = DRIVER_NAME, 3065 .fops = &pkt_ctl_fops 3066 }; 3067 3068 static int __init pkt_init(void) 3069 { 3070 int ret; 3071 3072 mutex_init(&ctl_mutex); 3073 3074 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE, 3075 sizeof(struct packet_stacked_data)); 3076 if (!psd_pool) 3077 return -ENOMEM; 3078 3079 ret = register_blkdev(pktdev_major, DRIVER_NAME); 3080 if (ret < 0) { 3081 printk(DRIVER_NAME": Unable to register block device\n"); 3082 goto out2; 3083 } 3084 if (!pktdev_major) 3085 pktdev_major = ret; 3086 3087 ret = pkt_sysfs_init(); 3088 if (ret) 3089 goto out; 3090 3091 pkt_debugfs_init(); 3092 3093 ret = misc_register(&pkt_misc); 3094 if (ret) { 3095 printk(DRIVER_NAME": Unable to register misc device\n"); 3096 goto out_misc; 3097 } 3098 3099 pkt_proc = proc_mkdir(DRIVER_NAME, proc_root_driver); 3100 3101 return 0; 3102 3103 out_misc: 3104 pkt_debugfs_cleanup(); 3105 pkt_sysfs_cleanup(); 3106 out: 3107 unregister_blkdev(pktdev_major, DRIVER_NAME); 3108 out2: 3109 mempool_destroy(psd_pool); 3110 return ret; 3111 } 3112 3113 static void __exit pkt_exit(void) 3114 { 3115 remove_proc_entry(DRIVER_NAME, proc_root_driver); 3116 misc_deregister(&pkt_misc); 3117 3118 pkt_debugfs_cleanup(); 3119 pkt_sysfs_cleanup(); 3120 3121 unregister_blkdev(pktdev_major, DRIVER_NAME); 3122 mempool_destroy(psd_pool); 3123 } 3124 3125 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 3126 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 3127 MODULE_LICENSE("GPL"); 3128 3129 module_init(pkt_init); 3130 module_exit(pkt_exit); 3131