xref: /openbmc/linux/drivers/block/pktcdvd.c (revision 643d1f7f)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom make_request_fn function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/freezer.h>
59 #include <linux/mutex.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_ioctl.h>
62 #include <scsi/scsi.h>
63 #include <linux/debugfs.h>
64 #include <linux/device.h>
65 
66 #include <asm/uaccess.h>
67 
68 #define DRIVER_NAME	"pktcdvd"
69 
70 #if PACKET_DEBUG
71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
72 #else
73 #define DPRINTK(fmt, args...)
74 #endif
75 
76 #if PACKET_DEBUG > 1
77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
78 #else
79 #define VPRINTK(fmt, args...)
80 #endif
81 
82 #define MAX_SPEED 0xffff
83 
84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
85 
86 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
87 static struct proc_dir_entry *pkt_proc;
88 static int pktdev_major;
89 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
90 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
91 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
92 static mempool_t *psd_pool;
93 
94 static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
95 static struct dentry	*pkt_debugfs_root = NULL; /* /debug/pktcdvd */
96 
97 /* forward declaration */
98 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
99 static int pkt_remove_dev(dev_t pkt_dev);
100 static int pkt_seq_show(struct seq_file *m, void *p);
101 
102 
103 
104 /*
105  * create and register a pktcdvd kernel object.
106  */
107 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
108 					const char* name,
109 					struct kobject* parent,
110 					struct kobj_type* ktype)
111 {
112 	struct pktcdvd_kobj *p;
113 	int error;
114 
115 	p = kzalloc(sizeof(*p), GFP_KERNEL);
116 	if (!p)
117 		return NULL;
118 	p->pd = pd;
119 	error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
120 	if (error) {
121 		kobject_put(&p->kobj);
122 		return NULL;
123 	}
124 	kobject_uevent(&p->kobj, KOBJ_ADD);
125 	return p;
126 }
127 /*
128  * remove a pktcdvd kernel object.
129  */
130 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
131 {
132 	if (p)
133 		kobject_put(&p->kobj);
134 }
135 /*
136  * default release function for pktcdvd kernel objects.
137  */
138 static void pkt_kobj_release(struct kobject *kobj)
139 {
140 	kfree(to_pktcdvdkobj(kobj));
141 }
142 
143 
144 /**********************************************************
145  *
146  * sysfs interface for pktcdvd
147  * by (C) 2006  Thomas Maier <balagi@justmail.de>
148  *
149  **********************************************************/
150 
151 #define DEF_ATTR(_obj,_name,_mode) \
152 	static struct attribute _obj = { .name = _name, .mode = _mode }
153 
154 /**********************************************************
155   /sys/class/pktcdvd/pktcdvd[0-7]/
156                      stat/reset
157                      stat/packets_started
158                      stat/packets_finished
159                      stat/kb_written
160                      stat/kb_read
161                      stat/kb_read_gather
162                      write_queue/size
163                      write_queue/congestion_off
164                      write_queue/congestion_on
165  **********************************************************/
166 
167 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
168 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
169 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
170 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
171 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
172 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
173 
174 static struct attribute *kobj_pkt_attrs_stat[] = {
175 	&kobj_pkt_attr_st1,
176 	&kobj_pkt_attr_st2,
177 	&kobj_pkt_attr_st3,
178 	&kobj_pkt_attr_st4,
179 	&kobj_pkt_attr_st5,
180 	&kobj_pkt_attr_st6,
181 	NULL
182 };
183 
184 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
185 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
186 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
187 
188 static struct attribute *kobj_pkt_attrs_wqueue[] = {
189 	&kobj_pkt_attr_wq1,
190 	&kobj_pkt_attr_wq2,
191 	&kobj_pkt_attr_wq3,
192 	NULL
193 };
194 
195 static ssize_t kobj_pkt_show(struct kobject *kobj,
196 			struct attribute *attr, char *data)
197 {
198 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
199 	int n = 0;
200 	int v;
201 	if (strcmp(attr->name, "packets_started") == 0) {
202 		n = sprintf(data, "%lu\n", pd->stats.pkt_started);
203 
204 	} else if (strcmp(attr->name, "packets_finished") == 0) {
205 		n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
206 
207 	} else if (strcmp(attr->name, "kb_written") == 0) {
208 		n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
209 
210 	} else if (strcmp(attr->name, "kb_read") == 0) {
211 		n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
212 
213 	} else if (strcmp(attr->name, "kb_read_gather") == 0) {
214 		n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
215 
216 	} else if (strcmp(attr->name, "size") == 0) {
217 		spin_lock(&pd->lock);
218 		v = pd->bio_queue_size;
219 		spin_unlock(&pd->lock);
220 		n = sprintf(data, "%d\n", v);
221 
222 	} else if (strcmp(attr->name, "congestion_off") == 0) {
223 		spin_lock(&pd->lock);
224 		v = pd->write_congestion_off;
225 		spin_unlock(&pd->lock);
226 		n = sprintf(data, "%d\n", v);
227 
228 	} else if (strcmp(attr->name, "congestion_on") == 0) {
229 		spin_lock(&pd->lock);
230 		v = pd->write_congestion_on;
231 		spin_unlock(&pd->lock);
232 		n = sprintf(data, "%d\n", v);
233 	}
234 	return n;
235 }
236 
237 static void init_write_congestion_marks(int* lo, int* hi)
238 {
239 	if (*hi > 0) {
240 		*hi = max(*hi, 500);
241 		*hi = min(*hi, 1000000);
242 		if (*lo <= 0)
243 			*lo = *hi - 100;
244 		else {
245 			*lo = min(*lo, *hi - 100);
246 			*lo = max(*lo, 100);
247 		}
248 	} else {
249 		*hi = -1;
250 		*lo = -1;
251 	}
252 }
253 
254 static ssize_t kobj_pkt_store(struct kobject *kobj,
255 			struct attribute *attr,
256 			const char *data, size_t len)
257 {
258 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
259 	int val;
260 
261 	if (strcmp(attr->name, "reset") == 0 && len > 0) {
262 		pd->stats.pkt_started = 0;
263 		pd->stats.pkt_ended = 0;
264 		pd->stats.secs_w = 0;
265 		pd->stats.secs_rg = 0;
266 		pd->stats.secs_r = 0;
267 
268 	} else if (strcmp(attr->name, "congestion_off") == 0
269 		   && sscanf(data, "%d", &val) == 1) {
270 		spin_lock(&pd->lock);
271 		pd->write_congestion_off = val;
272 		init_write_congestion_marks(&pd->write_congestion_off,
273 					&pd->write_congestion_on);
274 		spin_unlock(&pd->lock);
275 
276 	} else if (strcmp(attr->name, "congestion_on") == 0
277 		   && sscanf(data, "%d", &val) == 1) {
278 		spin_lock(&pd->lock);
279 		pd->write_congestion_on = val;
280 		init_write_congestion_marks(&pd->write_congestion_off,
281 					&pd->write_congestion_on);
282 		spin_unlock(&pd->lock);
283 	}
284 	return len;
285 }
286 
287 static struct sysfs_ops kobj_pkt_ops = {
288 	.show = kobj_pkt_show,
289 	.store = kobj_pkt_store
290 };
291 static struct kobj_type kobj_pkt_type_stat = {
292 	.release = pkt_kobj_release,
293 	.sysfs_ops = &kobj_pkt_ops,
294 	.default_attrs = kobj_pkt_attrs_stat
295 };
296 static struct kobj_type kobj_pkt_type_wqueue = {
297 	.release = pkt_kobj_release,
298 	.sysfs_ops = &kobj_pkt_ops,
299 	.default_attrs = kobj_pkt_attrs_wqueue
300 };
301 
302 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
303 {
304 	if (class_pktcdvd) {
305 		pd->dev = device_create(class_pktcdvd, NULL, pd->pkt_dev, "%s", pd->name);
306 		if (IS_ERR(pd->dev))
307 			pd->dev = NULL;
308 	}
309 	if (pd->dev) {
310 		pd->kobj_stat = pkt_kobj_create(pd, "stat",
311 					&pd->dev->kobj,
312 					&kobj_pkt_type_stat);
313 		pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
314 					&pd->dev->kobj,
315 					&kobj_pkt_type_wqueue);
316 	}
317 }
318 
319 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
320 {
321 	pkt_kobj_remove(pd->kobj_stat);
322 	pkt_kobj_remove(pd->kobj_wqueue);
323 	if (class_pktcdvd)
324 		device_destroy(class_pktcdvd, pd->pkt_dev);
325 }
326 
327 
328 /********************************************************************
329   /sys/class/pktcdvd/
330                      add            map block device
331                      remove         unmap packet dev
332                      device_map     show mappings
333  *******************************************************************/
334 
335 static void class_pktcdvd_release(struct class *cls)
336 {
337 	kfree(cls);
338 }
339 static ssize_t class_pktcdvd_show_map(struct class *c, char *data)
340 {
341 	int n = 0;
342 	int idx;
343 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
344 	for (idx = 0; idx < MAX_WRITERS; idx++) {
345 		struct pktcdvd_device *pd = pkt_devs[idx];
346 		if (!pd)
347 			continue;
348 		n += sprintf(data+n, "%s %u:%u %u:%u\n",
349 			pd->name,
350 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
351 			MAJOR(pd->bdev->bd_dev),
352 			MINOR(pd->bdev->bd_dev));
353 	}
354 	mutex_unlock(&ctl_mutex);
355 	return n;
356 }
357 
358 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf,
359 					size_t count)
360 {
361 	unsigned int major, minor;
362 
363 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
364 		/* pkt_setup_dev() expects caller to hold reference to self */
365 		if (!try_module_get(THIS_MODULE))
366 			return -ENODEV;
367 
368 		pkt_setup_dev(MKDEV(major, minor), NULL);
369 
370 		module_put(THIS_MODULE);
371 
372 		return count;
373 	}
374 
375 	return -EINVAL;
376 }
377 
378 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf,
379 					size_t count)
380 {
381 	unsigned int major, minor;
382 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
383 		pkt_remove_dev(MKDEV(major, minor));
384 		return count;
385 	}
386 	return -EINVAL;
387 }
388 
389 static struct class_attribute class_pktcdvd_attrs[] = {
390  __ATTR(add,            0200, NULL, class_pktcdvd_store_add),
391  __ATTR(remove,         0200, NULL, class_pktcdvd_store_remove),
392  __ATTR(device_map,     0444, class_pktcdvd_show_map, NULL),
393  __ATTR_NULL
394 };
395 
396 
397 static int pkt_sysfs_init(void)
398 {
399 	int ret = 0;
400 
401 	/*
402 	 * create control files in sysfs
403 	 * /sys/class/pktcdvd/...
404 	 */
405 	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
406 	if (!class_pktcdvd)
407 		return -ENOMEM;
408 	class_pktcdvd->name = DRIVER_NAME;
409 	class_pktcdvd->owner = THIS_MODULE;
410 	class_pktcdvd->class_release = class_pktcdvd_release;
411 	class_pktcdvd->class_attrs = class_pktcdvd_attrs;
412 	ret = class_register(class_pktcdvd);
413 	if (ret) {
414 		kfree(class_pktcdvd);
415 		class_pktcdvd = NULL;
416 		printk(DRIVER_NAME": failed to create class pktcdvd\n");
417 		return ret;
418 	}
419 	return 0;
420 }
421 
422 static void pkt_sysfs_cleanup(void)
423 {
424 	if (class_pktcdvd)
425 		class_destroy(class_pktcdvd);
426 	class_pktcdvd = NULL;
427 }
428 
429 /********************************************************************
430   entries in debugfs
431 
432   /debugfs/pktcdvd[0-7]/
433 			info
434 
435  *******************************************************************/
436 
437 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
438 {
439 	return pkt_seq_show(m, p);
440 }
441 
442 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
443 {
444 	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
445 }
446 
447 static const struct file_operations debug_fops = {
448 	.open		= pkt_debugfs_fops_open,
449 	.read		= seq_read,
450 	.llseek		= seq_lseek,
451 	.release	= single_release,
452 	.owner		= THIS_MODULE,
453 };
454 
455 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
456 {
457 	if (!pkt_debugfs_root)
458 		return;
459 	pd->dfs_f_info = NULL;
460 	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
461 	if (IS_ERR(pd->dfs_d_root)) {
462 		pd->dfs_d_root = NULL;
463 		return;
464 	}
465 	pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
466 				pd->dfs_d_root, pd, &debug_fops);
467 	if (IS_ERR(pd->dfs_f_info)) {
468 		pd->dfs_f_info = NULL;
469 		return;
470 	}
471 }
472 
473 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
474 {
475 	if (!pkt_debugfs_root)
476 		return;
477 	if (pd->dfs_f_info)
478 		debugfs_remove(pd->dfs_f_info);
479 	pd->dfs_f_info = NULL;
480 	if (pd->dfs_d_root)
481 		debugfs_remove(pd->dfs_d_root);
482 	pd->dfs_d_root = NULL;
483 }
484 
485 static void pkt_debugfs_init(void)
486 {
487 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
488 	if (IS_ERR(pkt_debugfs_root)) {
489 		pkt_debugfs_root = NULL;
490 		return;
491 	}
492 }
493 
494 static void pkt_debugfs_cleanup(void)
495 {
496 	if (!pkt_debugfs_root)
497 		return;
498 	debugfs_remove(pkt_debugfs_root);
499 	pkt_debugfs_root = NULL;
500 }
501 
502 /* ----------------------------------------------------------*/
503 
504 
505 static void pkt_bio_finished(struct pktcdvd_device *pd)
506 {
507 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
508 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
509 		VPRINTK(DRIVER_NAME": queue empty\n");
510 		atomic_set(&pd->iosched.attention, 1);
511 		wake_up(&pd->wqueue);
512 	}
513 }
514 
515 static void pkt_bio_destructor(struct bio *bio)
516 {
517 	kfree(bio->bi_io_vec);
518 	kfree(bio);
519 }
520 
521 static struct bio *pkt_bio_alloc(int nr_iovecs)
522 {
523 	struct bio_vec *bvl = NULL;
524 	struct bio *bio;
525 
526 	bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
527 	if (!bio)
528 		goto no_bio;
529 	bio_init(bio);
530 
531 	bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
532 	if (!bvl)
533 		goto no_bvl;
534 
535 	bio->bi_max_vecs = nr_iovecs;
536 	bio->bi_io_vec = bvl;
537 	bio->bi_destructor = pkt_bio_destructor;
538 
539 	return bio;
540 
541  no_bvl:
542 	kfree(bio);
543  no_bio:
544 	return NULL;
545 }
546 
547 /*
548  * Allocate a packet_data struct
549  */
550 static struct packet_data *pkt_alloc_packet_data(int frames)
551 {
552 	int i;
553 	struct packet_data *pkt;
554 
555 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
556 	if (!pkt)
557 		goto no_pkt;
558 
559 	pkt->frames = frames;
560 	pkt->w_bio = pkt_bio_alloc(frames);
561 	if (!pkt->w_bio)
562 		goto no_bio;
563 
564 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
565 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
566 		if (!pkt->pages[i])
567 			goto no_page;
568 	}
569 
570 	spin_lock_init(&pkt->lock);
571 
572 	for (i = 0; i < frames; i++) {
573 		struct bio *bio = pkt_bio_alloc(1);
574 		if (!bio)
575 			goto no_rd_bio;
576 		pkt->r_bios[i] = bio;
577 	}
578 
579 	return pkt;
580 
581 no_rd_bio:
582 	for (i = 0; i < frames; i++) {
583 		struct bio *bio = pkt->r_bios[i];
584 		if (bio)
585 			bio_put(bio);
586 	}
587 
588 no_page:
589 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
590 		if (pkt->pages[i])
591 			__free_page(pkt->pages[i]);
592 	bio_put(pkt->w_bio);
593 no_bio:
594 	kfree(pkt);
595 no_pkt:
596 	return NULL;
597 }
598 
599 /*
600  * Free a packet_data struct
601  */
602 static void pkt_free_packet_data(struct packet_data *pkt)
603 {
604 	int i;
605 
606 	for (i = 0; i < pkt->frames; i++) {
607 		struct bio *bio = pkt->r_bios[i];
608 		if (bio)
609 			bio_put(bio);
610 	}
611 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
612 		__free_page(pkt->pages[i]);
613 	bio_put(pkt->w_bio);
614 	kfree(pkt);
615 }
616 
617 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
618 {
619 	struct packet_data *pkt, *next;
620 
621 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
622 
623 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
624 		pkt_free_packet_data(pkt);
625 	}
626 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
627 }
628 
629 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
630 {
631 	struct packet_data *pkt;
632 
633 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
634 
635 	while (nr_packets > 0) {
636 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
637 		if (!pkt) {
638 			pkt_shrink_pktlist(pd);
639 			return 0;
640 		}
641 		pkt->id = nr_packets;
642 		pkt->pd = pd;
643 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
644 		nr_packets--;
645 	}
646 	return 1;
647 }
648 
649 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
650 {
651 	struct rb_node *n = rb_next(&node->rb_node);
652 	if (!n)
653 		return NULL;
654 	return rb_entry(n, struct pkt_rb_node, rb_node);
655 }
656 
657 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
658 {
659 	rb_erase(&node->rb_node, &pd->bio_queue);
660 	mempool_free(node, pd->rb_pool);
661 	pd->bio_queue_size--;
662 	BUG_ON(pd->bio_queue_size < 0);
663 }
664 
665 /*
666  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
667  */
668 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
669 {
670 	struct rb_node *n = pd->bio_queue.rb_node;
671 	struct rb_node *next;
672 	struct pkt_rb_node *tmp;
673 
674 	if (!n) {
675 		BUG_ON(pd->bio_queue_size > 0);
676 		return NULL;
677 	}
678 
679 	for (;;) {
680 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
681 		if (s <= tmp->bio->bi_sector)
682 			next = n->rb_left;
683 		else
684 			next = n->rb_right;
685 		if (!next)
686 			break;
687 		n = next;
688 	}
689 
690 	if (s > tmp->bio->bi_sector) {
691 		tmp = pkt_rbtree_next(tmp);
692 		if (!tmp)
693 			return NULL;
694 	}
695 	BUG_ON(s > tmp->bio->bi_sector);
696 	return tmp;
697 }
698 
699 /*
700  * Insert a node into the pd->bio_queue rb tree.
701  */
702 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
703 {
704 	struct rb_node **p = &pd->bio_queue.rb_node;
705 	struct rb_node *parent = NULL;
706 	sector_t s = node->bio->bi_sector;
707 	struct pkt_rb_node *tmp;
708 
709 	while (*p) {
710 		parent = *p;
711 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
712 		if (s < tmp->bio->bi_sector)
713 			p = &(*p)->rb_left;
714 		else
715 			p = &(*p)->rb_right;
716 	}
717 	rb_link_node(&node->rb_node, parent, p);
718 	rb_insert_color(&node->rb_node, &pd->bio_queue);
719 	pd->bio_queue_size++;
720 }
721 
722 /*
723  * Add a bio to a single linked list defined by its head and tail pointers.
724  */
725 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
726 {
727 	bio->bi_next = NULL;
728 	if (*list_tail) {
729 		BUG_ON((*list_head) == NULL);
730 		(*list_tail)->bi_next = bio;
731 		(*list_tail) = bio;
732 	} else {
733 		BUG_ON((*list_head) != NULL);
734 		(*list_head) = bio;
735 		(*list_tail) = bio;
736 	}
737 }
738 
739 /*
740  * Remove and return the first bio from a single linked list defined by its
741  * head and tail pointers.
742  */
743 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
744 {
745 	struct bio *bio;
746 
747 	if (*list_head == NULL)
748 		return NULL;
749 
750 	bio = *list_head;
751 	*list_head = bio->bi_next;
752 	if (*list_head == NULL)
753 		*list_tail = NULL;
754 
755 	bio->bi_next = NULL;
756 	return bio;
757 }
758 
759 /*
760  * Send a packet_command to the underlying block device and
761  * wait for completion.
762  */
763 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
764 {
765 	struct request_queue *q = bdev_get_queue(pd->bdev);
766 	struct request *rq;
767 	int ret = 0;
768 
769 	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
770 			     WRITE : READ, __GFP_WAIT);
771 
772 	if (cgc->buflen) {
773 		if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
774 			goto out;
775 	}
776 
777 	rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
778 	memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
779 	if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
780 		memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
781 
782 	rq->timeout = 60*HZ;
783 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
784 	rq->cmd_flags |= REQ_HARDBARRIER;
785 	if (cgc->quiet)
786 		rq->cmd_flags |= REQ_QUIET;
787 
788 	blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
789 	if (rq->errors)
790 		ret = -EIO;
791 out:
792 	blk_put_request(rq);
793 	return ret;
794 }
795 
796 /*
797  * A generic sense dump / resolve mechanism should be implemented across
798  * all ATAPI + SCSI devices.
799  */
800 static void pkt_dump_sense(struct packet_command *cgc)
801 {
802 	static char *info[9] = { "No sense", "Recovered error", "Not ready",
803 				 "Medium error", "Hardware error", "Illegal request",
804 				 "Unit attention", "Data protect", "Blank check" };
805 	int i;
806 	struct request_sense *sense = cgc->sense;
807 
808 	printk(DRIVER_NAME":");
809 	for (i = 0; i < CDROM_PACKET_SIZE; i++)
810 		printk(" %02x", cgc->cmd[i]);
811 	printk(" - ");
812 
813 	if (sense == NULL) {
814 		printk("no sense\n");
815 		return;
816 	}
817 
818 	printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
819 
820 	if (sense->sense_key > 8) {
821 		printk(" (INVALID)\n");
822 		return;
823 	}
824 
825 	printk(" (%s)\n", info[sense->sense_key]);
826 }
827 
828 /*
829  * flush the drive cache to media
830  */
831 static int pkt_flush_cache(struct pktcdvd_device *pd)
832 {
833 	struct packet_command cgc;
834 
835 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
836 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
837 	cgc.quiet = 1;
838 
839 	/*
840 	 * the IMMED bit -- we default to not setting it, although that
841 	 * would allow a much faster close, this is safer
842 	 */
843 #if 0
844 	cgc.cmd[1] = 1 << 1;
845 #endif
846 	return pkt_generic_packet(pd, &cgc);
847 }
848 
849 /*
850  * speed is given as the normal factor, e.g. 4 for 4x
851  */
852 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
853 {
854 	struct packet_command cgc;
855 	struct request_sense sense;
856 	int ret;
857 
858 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
859 	cgc.sense = &sense;
860 	cgc.cmd[0] = GPCMD_SET_SPEED;
861 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
862 	cgc.cmd[3] = read_speed & 0xff;
863 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
864 	cgc.cmd[5] = write_speed & 0xff;
865 
866 	if ((ret = pkt_generic_packet(pd, &cgc)))
867 		pkt_dump_sense(&cgc);
868 
869 	return ret;
870 }
871 
872 /*
873  * Queue a bio for processing by the low-level CD device. Must be called
874  * from process context.
875  */
876 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
877 {
878 	spin_lock(&pd->iosched.lock);
879 	if (bio_data_dir(bio) == READ) {
880 		pkt_add_list_last(bio, &pd->iosched.read_queue,
881 				  &pd->iosched.read_queue_tail);
882 	} else {
883 		pkt_add_list_last(bio, &pd->iosched.write_queue,
884 				  &pd->iosched.write_queue_tail);
885 	}
886 	spin_unlock(&pd->iosched.lock);
887 
888 	atomic_set(&pd->iosched.attention, 1);
889 	wake_up(&pd->wqueue);
890 }
891 
892 /*
893  * Process the queued read/write requests. This function handles special
894  * requirements for CDRW drives:
895  * - A cache flush command must be inserted before a read request if the
896  *   previous request was a write.
897  * - Switching between reading and writing is slow, so don't do it more often
898  *   than necessary.
899  * - Optimize for throughput at the expense of latency. This means that streaming
900  *   writes will never be interrupted by a read, but if the drive has to seek
901  *   before the next write, switch to reading instead if there are any pending
902  *   read requests.
903  * - Set the read speed according to current usage pattern. When only reading
904  *   from the device, it's best to use the highest possible read speed, but
905  *   when switching often between reading and writing, it's better to have the
906  *   same read and write speeds.
907  */
908 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
909 {
910 
911 	if (atomic_read(&pd->iosched.attention) == 0)
912 		return;
913 	atomic_set(&pd->iosched.attention, 0);
914 
915 	for (;;) {
916 		struct bio *bio;
917 		int reads_queued, writes_queued;
918 
919 		spin_lock(&pd->iosched.lock);
920 		reads_queued = (pd->iosched.read_queue != NULL);
921 		writes_queued = (pd->iosched.write_queue != NULL);
922 		spin_unlock(&pd->iosched.lock);
923 
924 		if (!reads_queued && !writes_queued)
925 			break;
926 
927 		if (pd->iosched.writing) {
928 			int need_write_seek = 1;
929 			spin_lock(&pd->iosched.lock);
930 			bio = pd->iosched.write_queue;
931 			spin_unlock(&pd->iosched.lock);
932 			if (bio && (bio->bi_sector == pd->iosched.last_write))
933 				need_write_seek = 0;
934 			if (need_write_seek && reads_queued) {
935 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
936 					VPRINTK(DRIVER_NAME": write, waiting\n");
937 					break;
938 				}
939 				pkt_flush_cache(pd);
940 				pd->iosched.writing = 0;
941 			}
942 		} else {
943 			if (!reads_queued && writes_queued) {
944 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
945 					VPRINTK(DRIVER_NAME": read, waiting\n");
946 					break;
947 				}
948 				pd->iosched.writing = 1;
949 			}
950 		}
951 
952 		spin_lock(&pd->iosched.lock);
953 		if (pd->iosched.writing) {
954 			bio = pkt_get_list_first(&pd->iosched.write_queue,
955 						 &pd->iosched.write_queue_tail);
956 		} else {
957 			bio = pkt_get_list_first(&pd->iosched.read_queue,
958 						 &pd->iosched.read_queue_tail);
959 		}
960 		spin_unlock(&pd->iosched.lock);
961 
962 		if (!bio)
963 			continue;
964 
965 		if (bio_data_dir(bio) == READ)
966 			pd->iosched.successive_reads += bio->bi_size >> 10;
967 		else {
968 			pd->iosched.successive_reads = 0;
969 			pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
970 		}
971 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
972 			if (pd->read_speed == pd->write_speed) {
973 				pd->read_speed = MAX_SPEED;
974 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
975 			}
976 		} else {
977 			if (pd->read_speed != pd->write_speed) {
978 				pd->read_speed = pd->write_speed;
979 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
980 			}
981 		}
982 
983 		atomic_inc(&pd->cdrw.pending_bios);
984 		generic_make_request(bio);
985 	}
986 }
987 
988 /*
989  * Special care is needed if the underlying block device has a small
990  * max_phys_segments value.
991  */
992 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
993 {
994 	if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
995 		/*
996 		 * The cdrom device can handle one segment/frame
997 		 */
998 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
999 		return 0;
1000 	} else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
1001 		/*
1002 		 * We can handle this case at the expense of some extra memory
1003 		 * copies during write operations
1004 		 */
1005 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
1006 		return 0;
1007 	} else {
1008 		printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
1009 		return -EIO;
1010 	}
1011 }
1012 
1013 /*
1014  * Copy CD_FRAMESIZE bytes from src_bio into a destination page
1015  */
1016 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
1017 {
1018 	unsigned int copy_size = CD_FRAMESIZE;
1019 
1020 	while (copy_size > 0) {
1021 		struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
1022 		void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
1023 			src_bvl->bv_offset + offs;
1024 		void *vto = page_address(dst_page) + dst_offs;
1025 		int len = min_t(int, copy_size, src_bvl->bv_len - offs);
1026 
1027 		BUG_ON(len < 0);
1028 		memcpy(vto, vfrom, len);
1029 		kunmap_atomic(vfrom, KM_USER0);
1030 
1031 		seg++;
1032 		offs = 0;
1033 		dst_offs += len;
1034 		copy_size -= len;
1035 	}
1036 }
1037 
1038 /*
1039  * Copy all data for this packet to pkt->pages[], so that
1040  * a) The number of required segments for the write bio is minimized, which
1041  *    is necessary for some scsi controllers.
1042  * b) The data can be used as cache to avoid read requests if we receive a
1043  *    new write request for the same zone.
1044  */
1045 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1046 {
1047 	int f, p, offs;
1048 
1049 	/* Copy all data to pkt->pages[] */
1050 	p = 0;
1051 	offs = 0;
1052 	for (f = 0; f < pkt->frames; f++) {
1053 		if (bvec[f].bv_page != pkt->pages[p]) {
1054 			void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1055 			void *vto = page_address(pkt->pages[p]) + offs;
1056 			memcpy(vto, vfrom, CD_FRAMESIZE);
1057 			kunmap_atomic(vfrom, KM_USER0);
1058 			bvec[f].bv_page = pkt->pages[p];
1059 			bvec[f].bv_offset = offs;
1060 		} else {
1061 			BUG_ON(bvec[f].bv_offset != offs);
1062 		}
1063 		offs += CD_FRAMESIZE;
1064 		if (offs >= PAGE_SIZE) {
1065 			offs = 0;
1066 			p++;
1067 		}
1068 	}
1069 }
1070 
1071 static void pkt_end_io_read(struct bio *bio, int err)
1072 {
1073 	struct packet_data *pkt = bio->bi_private;
1074 	struct pktcdvd_device *pd = pkt->pd;
1075 	BUG_ON(!pd);
1076 
1077 	VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1078 		(unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1079 
1080 	if (err)
1081 		atomic_inc(&pkt->io_errors);
1082 	if (atomic_dec_and_test(&pkt->io_wait)) {
1083 		atomic_inc(&pkt->run_sm);
1084 		wake_up(&pd->wqueue);
1085 	}
1086 	pkt_bio_finished(pd);
1087 }
1088 
1089 static void pkt_end_io_packet_write(struct bio *bio, int err)
1090 {
1091 	struct packet_data *pkt = bio->bi_private;
1092 	struct pktcdvd_device *pd = pkt->pd;
1093 	BUG_ON(!pd);
1094 
1095 	VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1096 
1097 	pd->stats.pkt_ended++;
1098 
1099 	pkt_bio_finished(pd);
1100 	atomic_dec(&pkt->io_wait);
1101 	atomic_inc(&pkt->run_sm);
1102 	wake_up(&pd->wqueue);
1103 }
1104 
1105 /*
1106  * Schedule reads for the holes in a packet
1107  */
1108 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1109 {
1110 	int frames_read = 0;
1111 	struct bio *bio;
1112 	int f;
1113 	char written[PACKET_MAX_SIZE];
1114 
1115 	BUG_ON(!pkt->orig_bios);
1116 
1117 	atomic_set(&pkt->io_wait, 0);
1118 	atomic_set(&pkt->io_errors, 0);
1119 
1120 	/*
1121 	 * Figure out which frames we need to read before we can write.
1122 	 */
1123 	memset(written, 0, sizeof(written));
1124 	spin_lock(&pkt->lock);
1125 	for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1126 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1127 		int num_frames = bio->bi_size / CD_FRAMESIZE;
1128 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1129 		BUG_ON(first_frame < 0);
1130 		BUG_ON(first_frame + num_frames > pkt->frames);
1131 		for (f = first_frame; f < first_frame + num_frames; f++)
1132 			written[f] = 1;
1133 	}
1134 	spin_unlock(&pkt->lock);
1135 
1136 	if (pkt->cache_valid) {
1137 		VPRINTK("pkt_gather_data: zone %llx cached\n",
1138 			(unsigned long long)pkt->sector);
1139 		goto out_account;
1140 	}
1141 
1142 	/*
1143 	 * Schedule reads for missing parts of the packet.
1144 	 */
1145 	for (f = 0; f < pkt->frames; f++) {
1146 		struct bio_vec *vec;
1147 
1148 		int p, offset;
1149 		if (written[f])
1150 			continue;
1151 		bio = pkt->r_bios[f];
1152 		vec = bio->bi_io_vec;
1153 		bio_init(bio);
1154 		bio->bi_max_vecs = 1;
1155 		bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1156 		bio->bi_bdev = pd->bdev;
1157 		bio->bi_end_io = pkt_end_io_read;
1158 		bio->bi_private = pkt;
1159 		bio->bi_io_vec = vec;
1160 		bio->bi_destructor = pkt_bio_destructor;
1161 
1162 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1163 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1164 		VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1165 			f, pkt->pages[p], offset);
1166 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1167 			BUG();
1168 
1169 		atomic_inc(&pkt->io_wait);
1170 		bio->bi_rw = READ;
1171 		pkt_queue_bio(pd, bio);
1172 		frames_read++;
1173 	}
1174 
1175 out_account:
1176 	VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1177 		frames_read, (unsigned long long)pkt->sector);
1178 	pd->stats.pkt_started++;
1179 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1180 }
1181 
1182 /*
1183  * Find a packet matching zone, or the least recently used packet if
1184  * there is no match.
1185  */
1186 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1187 {
1188 	struct packet_data *pkt;
1189 
1190 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1191 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1192 			list_del_init(&pkt->list);
1193 			if (pkt->sector != zone)
1194 				pkt->cache_valid = 0;
1195 			return pkt;
1196 		}
1197 	}
1198 	BUG();
1199 	return NULL;
1200 }
1201 
1202 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1203 {
1204 	if (pkt->cache_valid) {
1205 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1206 	} else {
1207 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1208 	}
1209 }
1210 
1211 /*
1212  * recover a failed write, query for relocation if possible
1213  *
1214  * returns 1 if recovery is possible, or 0 if not
1215  *
1216  */
1217 static int pkt_start_recovery(struct packet_data *pkt)
1218 {
1219 	/*
1220 	 * FIXME. We need help from the file system to implement
1221 	 * recovery handling.
1222 	 */
1223 	return 0;
1224 #if 0
1225 	struct request *rq = pkt->rq;
1226 	struct pktcdvd_device *pd = rq->rq_disk->private_data;
1227 	struct block_device *pkt_bdev;
1228 	struct super_block *sb = NULL;
1229 	unsigned long old_block, new_block;
1230 	sector_t new_sector;
1231 
1232 	pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1233 	if (pkt_bdev) {
1234 		sb = get_super(pkt_bdev);
1235 		bdput(pkt_bdev);
1236 	}
1237 
1238 	if (!sb)
1239 		return 0;
1240 
1241 	if (!sb->s_op || !sb->s_op->relocate_blocks)
1242 		goto out;
1243 
1244 	old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1245 	if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1246 		goto out;
1247 
1248 	new_sector = new_block * (CD_FRAMESIZE >> 9);
1249 	pkt->sector = new_sector;
1250 
1251 	pkt->bio->bi_sector = new_sector;
1252 	pkt->bio->bi_next = NULL;
1253 	pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1254 	pkt->bio->bi_idx = 0;
1255 
1256 	BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
1257 	BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1258 	BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1259 	BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1260 	BUG_ON(pkt->bio->bi_private != pkt);
1261 
1262 	drop_super(sb);
1263 	return 1;
1264 
1265 out:
1266 	drop_super(sb);
1267 	return 0;
1268 #endif
1269 }
1270 
1271 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1272 {
1273 #if PACKET_DEBUG > 1
1274 	static const char *state_name[] = {
1275 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1276 	};
1277 	enum packet_data_state old_state = pkt->state;
1278 	VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1279 		state_name[old_state], state_name[state]);
1280 #endif
1281 	pkt->state = state;
1282 }
1283 
1284 /*
1285  * Scan the work queue to see if we can start a new packet.
1286  * returns non-zero if any work was done.
1287  */
1288 static int pkt_handle_queue(struct pktcdvd_device *pd)
1289 {
1290 	struct packet_data *pkt, *p;
1291 	struct bio *bio = NULL;
1292 	sector_t zone = 0; /* Suppress gcc warning */
1293 	struct pkt_rb_node *node, *first_node;
1294 	struct rb_node *n;
1295 	int wakeup;
1296 
1297 	VPRINTK("handle_queue\n");
1298 
1299 	atomic_set(&pd->scan_queue, 0);
1300 
1301 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1302 		VPRINTK("handle_queue: no pkt\n");
1303 		return 0;
1304 	}
1305 
1306 	/*
1307 	 * Try to find a zone we are not already working on.
1308 	 */
1309 	spin_lock(&pd->lock);
1310 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1311 	if (!first_node) {
1312 		n = rb_first(&pd->bio_queue);
1313 		if (n)
1314 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1315 	}
1316 	node = first_node;
1317 	while (node) {
1318 		bio = node->bio;
1319 		zone = ZONE(bio->bi_sector, pd);
1320 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1321 			if (p->sector == zone) {
1322 				bio = NULL;
1323 				goto try_next_bio;
1324 			}
1325 		}
1326 		break;
1327 try_next_bio:
1328 		node = pkt_rbtree_next(node);
1329 		if (!node) {
1330 			n = rb_first(&pd->bio_queue);
1331 			if (n)
1332 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1333 		}
1334 		if (node == first_node)
1335 			node = NULL;
1336 	}
1337 	spin_unlock(&pd->lock);
1338 	if (!bio) {
1339 		VPRINTK("handle_queue: no bio\n");
1340 		return 0;
1341 	}
1342 
1343 	pkt = pkt_get_packet_data(pd, zone);
1344 
1345 	pd->current_sector = zone + pd->settings.size;
1346 	pkt->sector = zone;
1347 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1348 	pkt->write_size = 0;
1349 
1350 	/*
1351 	 * Scan work queue for bios in the same zone and link them
1352 	 * to this packet.
1353 	 */
1354 	spin_lock(&pd->lock);
1355 	VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1356 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1357 		bio = node->bio;
1358 		VPRINTK("pkt_handle_queue: found zone=%llx\n",
1359 			(unsigned long long)ZONE(bio->bi_sector, pd));
1360 		if (ZONE(bio->bi_sector, pd) != zone)
1361 			break;
1362 		pkt_rbtree_erase(pd, node);
1363 		spin_lock(&pkt->lock);
1364 		pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
1365 		pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1366 		spin_unlock(&pkt->lock);
1367 	}
1368 	/* check write congestion marks, and if bio_queue_size is
1369 	   below, wake up any waiters */
1370 	wakeup = (pd->write_congestion_on > 0
1371 	 		&& pd->bio_queue_size <= pd->write_congestion_off);
1372 	spin_unlock(&pd->lock);
1373 	if (wakeup)
1374 		clear_bdi_congested(&pd->disk->queue->backing_dev_info, WRITE);
1375 
1376 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1377 	pkt_set_state(pkt, PACKET_WAITING_STATE);
1378 	atomic_set(&pkt->run_sm, 1);
1379 
1380 	spin_lock(&pd->cdrw.active_list_lock);
1381 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1382 	spin_unlock(&pd->cdrw.active_list_lock);
1383 
1384 	return 1;
1385 }
1386 
1387 /*
1388  * Assemble a bio to write one packet and queue the bio for processing
1389  * by the underlying block device.
1390  */
1391 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1392 {
1393 	struct bio *bio;
1394 	int f;
1395 	int frames_write;
1396 	struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1397 
1398 	for (f = 0; f < pkt->frames; f++) {
1399 		bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1400 		bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1401 	}
1402 
1403 	/*
1404 	 * Fill-in bvec with data from orig_bios.
1405 	 */
1406 	frames_write = 0;
1407 	spin_lock(&pkt->lock);
1408 	for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1409 		int segment = bio->bi_idx;
1410 		int src_offs = 0;
1411 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1412 		int num_frames = bio->bi_size / CD_FRAMESIZE;
1413 		BUG_ON(first_frame < 0);
1414 		BUG_ON(first_frame + num_frames > pkt->frames);
1415 		for (f = first_frame; f < first_frame + num_frames; f++) {
1416 			struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1417 
1418 			while (src_offs >= src_bvl->bv_len) {
1419 				src_offs -= src_bvl->bv_len;
1420 				segment++;
1421 				BUG_ON(segment >= bio->bi_vcnt);
1422 				src_bvl = bio_iovec_idx(bio, segment);
1423 			}
1424 
1425 			if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1426 				bvec[f].bv_page = src_bvl->bv_page;
1427 				bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1428 			} else {
1429 				pkt_copy_bio_data(bio, segment, src_offs,
1430 						  bvec[f].bv_page, bvec[f].bv_offset);
1431 			}
1432 			src_offs += CD_FRAMESIZE;
1433 			frames_write++;
1434 		}
1435 	}
1436 	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1437 	spin_unlock(&pkt->lock);
1438 
1439 	VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1440 		frames_write, (unsigned long long)pkt->sector);
1441 	BUG_ON(frames_write != pkt->write_size);
1442 
1443 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1444 		pkt_make_local_copy(pkt, bvec);
1445 		pkt->cache_valid = 1;
1446 	} else {
1447 		pkt->cache_valid = 0;
1448 	}
1449 
1450 	/* Start the write request */
1451 	bio_init(pkt->w_bio);
1452 	pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1453 	pkt->w_bio->bi_sector = pkt->sector;
1454 	pkt->w_bio->bi_bdev = pd->bdev;
1455 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1456 	pkt->w_bio->bi_private = pkt;
1457 	pkt->w_bio->bi_io_vec = bvec;
1458 	pkt->w_bio->bi_destructor = pkt_bio_destructor;
1459 	for (f = 0; f < pkt->frames; f++)
1460 		if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1461 			BUG();
1462 	VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1463 
1464 	atomic_set(&pkt->io_wait, 1);
1465 	pkt->w_bio->bi_rw = WRITE;
1466 	pkt_queue_bio(pd, pkt->w_bio);
1467 }
1468 
1469 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1470 {
1471 	struct bio *bio, *next;
1472 
1473 	if (!uptodate)
1474 		pkt->cache_valid = 0;
1475 
1476 	/* Finish all bios corresponding to this packet */
1477 	bio = pkt->orig_bios;
1478 	while (bio) {
1479 		next = bio->bi_next;
1480 		bio->bi_next = NULL;
1481 		bio_endio(bio, uptodate ? 0 : -EIO);
1482 		bio = next;
1483 	}
1484 	pkt->orig_bios = pkt->orig_bios_tail = NULL;
1485 }
1486 
1487 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1488 {
1489 	int uptodate;
1490 
1491 	VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1492 
1493 	for (;;) {
1494 		switch (pkt->state) {
1495 		case PACKET_WAITING_STATE:
1496 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1497 				return;
1498 
1499 			pkt->sleep_time = 0;
1500 			pkt_gather_data(pd, pkt);
1501 			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1502 			break;
1503 
1504 		case PACKET_READ_WAIT_STATE:
1505 			if (atomic_read(&pkt->io_wait) > 0)
1506 				return;
1507 
1508 			if (atomic_read(&pkt->io_errors) > 0) {
1509 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1510 			} else {
1511 				pkt_start_write(pd, pkt);
1512 			}
1513 			break;
1514 
1515 		case PACKET_WRITE_WAIT_STATE:
1516 			if (atomic_read(&pkt->io_wait) > 0)
1517 				return;
1518 
1519 			if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1520 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1521 			} else {
1522 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1523 			}
1524 			break;
1525 
1526 		case PACKET_RECOVERY_STATE:
1527 			if (pkt_start_recovery(pkt)) {
1528 				pkt_start_write(pd, pkt);
1529 			} else {
1530 				VPRINTK("No recovery possible\n");
1531 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1532 			}
1533 			break;
1534 
1535 		case PACKET_FINISHED_STATE:
1536 			uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1537 			pkt_finish_packet(pkt, uptodate);
1538 			return;
1539 
1540 		default:
1541 			BUG();
1542 			break;
1543 		}
1544 	}
1545 }
1546 
1547 static void pkt_handle_packets(struct pktcdvd_device *pd)
1548 {
1549 	struct packet_data *pkt, *next;
1550 
1551 	VPRINTK("pkt_handle_packets\n");
1552 
1553 	/*
1554 	 * Run state machine for active packets
1555 	 */
1556 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1557 		if (atomic_read(&pkt->run_sm) > 0) {
1558 			atomic_set(&pkt->run_sm, 0);
1559 			pkt_run_state_machine(pd, pkt);
1560 		}
1561 	}
1562 
1563 	/*
1564 	 * Move no longer active packets to the free list
1565 	 */
1566 	spin_lock(&pd->cdrw.active_list_lock);
1567 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1568 		if (pkt->state == PACKET_FINISHED_STATE) {
1569 			list_del(&pkt->list);
1570 			pkt_put_packet_data(pd, pkt);
1571 			pkt_set_state(pkt, PACKET_IDLE_STATE);
1572 			atomic_set(&pd->scan_queue, 1);
1573 		}
1574 	}
1575 	spin_unlock(&pd->cdrw.active_list_lock);
1576 }
1577 
1578 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1579 {
1580 	struct packet_data *pkt;
1581 	int i;
1582 
1583 	for (i = 0; i < PACKET_NUM_STATES; i++)
1584 		states[i] = 0;
1585 
1586 	spin_lock(&pd->cdrw.active_list_lock);
1587 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1588 		states[pkt->state]++;
1589 	}
1590 	spin_unlock(&pd->cdrw.active_list_lock);
1591 }
1592 
1593 /*
1594  * kcdrwd is woken up when writes have been queued for one of our
1595  * registered devices
1596  */
1597 static int kcdrwd(void *foobar)
1598 {
1599 	struct pktcdvd_device *pd = foobar;
1600 	struct packet_data *pkt;
1601 	long min_sleep_time, residue;
1602 
1603 	set_user_nice(current, -20);
1604 	set_freezable();
1605 
1606 	for (;;) {
1607 		DECLARE_WAITQUEUE(wait, current);
1608 
1609 		/*
1610 		 * Wait until there is something to do
1611 		 */
1612 		add_wait_queue(&pd->wqueue, &wait);
1613 		for (;;) {
1614 			set_current_state(TASK_INTERRUPTIBLE);
1615 
1616 			/* Check if we need to run pkt_handle_queue */
1617 			if (atomic_read(&pd->scan_queue) > 0)
1618 				goto work_to_do;
1619 
1620 			/* Check if we need to run the state machine for some packet */
1621 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1622 				if (atomic_read(&pkt->run_sm) > 0)
1623 					goto work_to_do;
1624 			}
1625 
1626 			/* Check if we need to process the iosched queues */
1627 			if (atomic_read(&pd->iosched.attention) != 0)
1628 				goto work_to_do;
1629 
1630 			/* Otherwise, go to sleep */
1631 			if (PACKET_DEBUG > 1) {
1632 				int states[PACKET_NUM_STATES];
1633 				pkt_count_states(pd, states);
1634 				VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1635 					states[0], states[1], states[2], states[3],
1636 					states[4], states[5]);
1637 			}
1638 
1639 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1640 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1641 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1642 					min_sleep_time = pkt->sleep_time;
1643 			}
1644 
1645 			generic_unplug_device(bdev_get_queue(pd->bdev));
1646 
1647 			VPRINTK("kcdrwd: sleeping\n");
1648 			residue = schedule_timeout(min_sleep_time);
1649 			VPRINTK("kcdrwd: wake up\n");
1650 
1651 			/* make swsusp happy with our thread */
1652 			try_to_freeze();
1653 
1654 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1655 				if (!pkt->sleep_time)
1656 					continue;
1657 				pkt->sleep_time -= min_sleep_time - residue;
1658 				if (pkt->sleep_time <= 0) {
1659 					pkt->sleep_time = 0;
1660 					atomic_inc(&pkt->run_sm);
1661 				}
1662 			}
1663 
1664 			if (kthread_should_stop())
1665 				break;
1666 		}
1667 work_to_do:
1668 		set_current_state(TASK_RUNNING);
1669 		remove_wait_queue(&pd->wqueue, &wait);
1670 
1671 		if (kthread_should_stop())
1672 			break;
1673 
1674 		/*
1675 		 * if pkt_handle_queue returns true, we can queue
1676 		 * another request.
1677 		 */
1678 		while (pkt_handle_queue(pd))
1679 			;
1680 
1681 		/*
1682 		 * Handle packet state machine
1683 		 */
1684 		pkt_handle_packets(pd);
1685 
1686 		/*
1687 		 * Handle iosched queues
1688 		 */
1689 		pkt_iosched_process_queue(pd);
1690 	}
1691 
1692 	return 0;
1693 }
1694 
1695 static void pkt_print_settings(struct pktcdvd_device *pd)
1696 {
1697 	printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1698 	printk("%u blocks, ", pd->settings.size >> 2);
1699 	printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1700 }
1701 
1702 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1703 {
1704 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1705 
1706 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1707 	cgc->cmd[2] = page_code | (page_control << 6);
1708 	cgc->cmd[7] = cgc->buflen >> 8;
1709 	cgc->cmd[8] = cgc->buflen & 0xff;
1710 	cgc->data_direction = CGC_DATA_READ;
1711 	return pkt_generic_packet(pd, cgc);
1712 }
1713 
1714 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1715 {
1716 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1717 	memset(cgc->buffer, 0, 2);
1718 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1719 	cgc->cmd[1] = 0x10;		/* PF */
1720 	cgc->cmd[7] = cgc->buflen >> 8;
1721 	cgc->cmd[8] = cgc->buflen & 0xff;
1722 	cgc->data_direction = CGC_DATA_WRITE;
1723 	return pkt_generic_packet(pd, cgc);
1724 }
1725 
1726 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1727 {
1728 	struct packet_command cgc;
1729 	int ret;
1730 
1731 	/* set up command and get the disc info */
1732 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1733 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1734 	cgc.cmd[8] = cgc.buflen = 2;
1735 	cgc.quiet = 1;
1736 
1737 	if ((ret = pkt_generic_packet(pd, &cgc)))
1738 		return ret;
1739 
1740 	/* not all drives have the same disc_info length, so requeue
1741 	 * packet with the length the drive tells us it can supply
1742 	 */
1743 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1744 		     sizeof(di->disc_information_length);
1745 
1746 	if (cgc.buflen > sizeof(disc_information))
1747 		cgc.buflen = sizeof(disc_information);
1748 
1749 	cgc.cmd[8] = cgc.buflen;
1750 	return pkt_generic_packet(pd, &cgc);
1751 }
1752 
1753 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1754 {
1755 	struct packet_command cgc;
1756 	int ret;
1757 
1758 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1759 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1760 	cgc.cmd[1] = type & 3;
1761 	cgc.cmd[4] = (track & 0xff00) >> 8;
1762 	cgc.cmd[5] = track & 0xff;
1763 	cgc.cmd[8] = 8;
1764 	cgc.quiet = 1;
1765 
1766 	if ((ret = pkt_generic_packet(pd, &cgc)))
1767 		return ret;
1768 
1769 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1770 		     sizeof(ti->track_information_length);
1771 
1772 	if (cgc.buflen > sizeof(track_information))
1773 		cgc.buflen = sizeof(track_information);
1774 
1775 	cgc.cmd[8] = cgc.buflen;
1776 	return pkt_generic_packet(pd, &cgc);
1777 }
1778 
1779 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1780 {
1781 	disc_information di;
1782 	track_information ti;
1783 	__u32 last_track;
1784 	int ret = -1;
1785 
1786 	if ((ret = pkt_get_disc_info(pd, &di)))
1787 		return ret;
1788 
1789 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1790 	if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1791 		return ret;
1792 
1793 	/* if this track is blank, try the previous. */
1794 	if (ti.blank) {
1795 		last_track--;
1796 		if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1797 			return ret;
1798 	}
1799 
1800 	/* if last recorded field is valid, return it. */
1801 	if (ti.lra_v) {
1802 		*last_written = be32_to_cpu(ti.last_rec_address);
1803 	} else {
1804 		/* make it up instead */
1805 		*last_written = be32_to_cpu(ti.track_start) +
1806 				be32_to_cpu(ti.track_size);
1807 		if (ti.free_blocks)
1808 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1809 	}
1810 	return 0;
1811 }
1812 
1813 /*
1814  * write mode select package based on pd->settings
1815  */
1816 static int pkt_set_write_settings(struct pktcdvd_device *pd)
1817 {
1818 	struct packet_command cgc;
1819 	struct request_sense sense;
1820 	write_param_page *wp;
1821 	char buffer[128];
1822 	int ret, size;
1823 
1824 	/* doesn't apply to DVD+RW or DVD-RAM */
1825 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1826 		return 0;
1827 
1828 	memset(buffer, 0, sizeof(buffer));
1829 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1830 	cgc.sense = &sense;
1831 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1832 		pkt_dump_sense(&cgc);
1833 		return ret;
1834 	}
1835 
1836 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1837 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1838 	if (size > sizeof(buffer))
1839 		size = sizeof(buffer);
1840 
1841 	/*
1842 	 * now get it all
1843 	 */
1844 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1845 	cgc.sense = &sense;
1846 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1847 		pkt_dump_sense(&cgc);
1848 		return ret;
1849 	}
1850 
1851 	/*
1852 	 * write page is offset header + block descriptor length
1853 	 */
1854 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1855 
1856 	wp->fp = pd->settings.fp;
1857 	wp->track_mode = pd->settings.track_mode;
1858 	wp->write_type = pd->settings.write_type;
1859 	wp->data_block_type = pd->settings.block_mode;
1860 
1861 	wp->multi_session = 0;
1862 
1863 #ifdef PACKET_USE_LS
1864 	wp->link_size = 7;
1865 	wp->ls_v = 1;
1866 #endif
1867 
1868 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1869 		wp->session_format = 0;
1870 		wp->subhdr2 = 0x20;
1871 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1872 		wp->session_format = 0x20;
1873 		wp->subhdr2 = 8;
1874 #if 0
1875 		wp->mcn[0] = 0x80;
1876 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1877 #endif
1878 	} else {
1879 		/*
1880 		 * paranoia
1881 		 */
1882 		printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1883 		return 1;
1884 	}
1885 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1886 
1887 	cgc.buflen = cgc.cmd[8] = size;
1888 	if ((ret = pkt_mode_select(pd, &cgc))) {
1889 		pkt_dump_sense(&cgc);
1890 		return ret;
1891 	}
1892 
1893 	pkt_print_settings(pd);
1894 	return 0;
1895 }
1896 
1897 /*
1898  * 1 -- we can write to this track, 0 -- we can't
1899  */
1900 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1901 {
1902 	switch (pd->mmc3_profile) {
1903 		case 0x1a: /* DVD+RW */
1904 		case 0x12: /* DVD-RAM */
1905 			/* The track is always writable on DVD+RW/DVD-RAM */
1906 			return 1;
1907 		default:
1908 			break;
1909 	}
1910 
1911 	if (!ti->packet || !ti->fp)
1912 		return 0;
1913 
1914 	/*
1915 	 * "good" settings as per Mt Fuji.
1916 	 */
1917 	if (ti->rt == 0 && ti->blank == 0)
1918 		return 1;
1919 
1920 	if (ti->rt == 0 && ti->blank == 1)
1921 		return 1;
1922 
1923 	if (ti->rt == 1 && ti->blank == 0)
1924 		return 1;
1925 
1926 	printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1927 	return 0;
1928 }
1929 
1930 /*
1931  * 1 -- we can write to this disc, 0 -- we can't
1932  */
1933 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1934 {
1935 	switch (pd->mmc3_profile) {
1936 		case 0x0a: /* CD-RW */
1937 		case 0xffff: /* MMC3 not supported */
1938 			break;
1939 		case 0x1a: /* DVD+RW */
1940 		case 0x13: /* DVD-RW */
1941 		case 0x12: /* DVD-RAM */
1942 			return 1;
1943 		default:
1944 			VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1945 			return 0;
1946 	}
1947 
1948 	/*
1949 	 * for disc type 0xff we should probably reserve a new track.
1950 	 * but i'm not sure, should we leave this to user apps? probably.
1951 	 */
1952 	if (di->disc_type == 0xff) {
1953 		printk(DRIVER_NAME": Unknown disc. No track?\n");
1954 		return 0;
1955 	}
1956 
1957 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1958 		printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1959 		return 0;
1960 	}
1961 
1962 	if (di->erasable == 0) {
1963 		printk(DRIVER_NAME": Disc not erasable\n");
1964 		return 0;
1965 	}
1966 
1967 	if (di->border_status == PACKET_SESSION_RESERVED) {
1968 		printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1969 		return 0;
1970 	}
1971 
1972 	return 1;
1973 }
1974 
1975 static int pkt_probe_settings(struct pktcdvd_device *pd)
1976 {
1977 	struct packet_command cgc;
1978 	unsigned char buf[12];
1979 	disc_information di;
1980 	track_information ti;
1981 	int ret, track;
1982 
1983 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1984 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1985 	cgc.cmd[8] = 8;
1986 	ret = pkt_generic_packet(pd, &cgc);
1987 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1988 
1989 	memset(&di, 0, sizeof(disc_information));
1990 	memset(&ti, 0, sizeof(track_information));
1991 
1992 	if ((ret = pkt_get_disc_info(pd, &di))) {
1993 		printk("failed get_disc\n");
1994 		return ret;
1995 	}
1996 
1997 	if (!pkt_writable_disc(pd, &di))
1998 		return -EROFS;
1999 
2000 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
2001 
2002 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
2003 	if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
2004 		printk(DRIVER_NAME": failed get_track\n");
2005 		return ret;
2006 	}
2007 
2008 	if (!pkt_writable_track(pd, &ti)) {
2009 		printk(DRIVER_NAME": can't write to this track\n");
2010 		return -EROFS;
2011 	}
2012 
2013 	/*
2014 	 * we keep packet size in 512 byte units, makes it easier to
2015 	 * deal with request calculations.
2016 	 */
2017 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
2018 	if (pd->settings.size == 0) {
2019 		printk(DRIVER_NAME": detected zero packet size!\n");
2020 		return -ENXIO;
2021 	}
2022 	if (pd->settings.size > PACKET_MAX_SECTORS) {
2023 		printk(DRIVER_NAME": packet size is too big\n");
2024 		return -EROFS;
2025 	}
2026 	pd->settings.fp = ti.fp;
2027 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
2028 
2029 	if (ti.nwa_v) {
2030 		pd->nwa = be32_to_cpu(ti.next_writable);
2031 		set_bit(PACKET_NWA_VALID, &pd->flags);
2032 	}
2033 
2034 	/*
2035 	 * in theory we could use lra on -RW media as well and just zero
2036 	 * blocks that haven't been written yet, but in practice that
2037 	 * is just a no-go. we'll use that for -R, naturally.
2038 	 */
2039 	if (ti.lra_v) {
2040 		pd->lra = be32_to_cpu(ti.last_rec_address);
2041 		set_bit(PACKET_LRA_VALID, &pd->flags);
2042 	} else {
2043 		pd->lra = 0xffffffff;
2044 		set_bit(PACKET_LRA_VALID, &pd->flags);
2045 	}
2046 
2047 	/*
2048 	 * fine for now
2049 	 */
2050 	pd->settings.link_loss = 7;
2051 	pd->settings.write_type = 0;	/* packet */
2052 	pd->settings.track_mode = ti.track_mode;
2053 
2054 	/*
2055 	 * mode1 or mode2 disc
2056 	 */
2057 	switch (ti.data_mode) {
2058 		case PACKET_MODE1:
2059 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
2060 			break;
2061 		case PACKET_MODE2:
2062 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
2063 			break;
2064 		default:
2065 			printk(DRIVER_NAME": unknown data mode\n");
2066 			return -EROFS;
2067 	}
2068 	return 0;
2069 }
2070 
2071 /*
2072  * enable/disable write caching on drive
2073  */
2074 static int pkt_write_caching(struct pktcdvd_device *pd, int set)
2075 {
2076 	struct packet_command cgc;
2077 	struct request_sense sense;
2078 	unsigned char buf[64];
2079 	int ret;
2080 
2081 	memset(buf, 0, sizeof(buf));
2082 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2083 	cgc.sense = &sense;
2084 	cgc.buflen = pd->mode_offset + 12;
2085 
2086 	/*
2087 	 * caching mode page might not be there, so quiet this command
2088 	 */
2089 	cgc.quiet = 1;
2090 
2091 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2092 		return ret;
2093 
2094 	buf[pd->mode_offset + 10] |= (!!set << 2);
2095 
2096 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2097 	ret = pkt_mode_select(pd, &cgc);
2098 	if (ret) {
2099 		printk(DRIVER_NAME": write caching control failed\n");
2100 		pkt_dump_sense(&cgc);
2101 	} else if (!ret && set)
2102 		printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2103 	return ret;
2104 }
2105 
2106 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2107 {
2108 	struct packet_command cgc;
2109 
2110 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2111 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2112 	cgc.cmd[4] = lockflag ? 1 : 0;
2113 	return pkt_generic_packet(pd, &cgc);
2114 }
2115 
2116 /*
2117  * Returns drive maximum write speed
2118  */
2119 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
2120 {
2121 	struct packet_command cgc;
2122 	struct request_sense sense;
2123 	unsigned char buf[256+18];
2124 	unsigned char *cap_buf;
2125 	int ret, offset;
2126 
2127 	memset(buf, 0, sizeof(buf));
2128 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2129 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2130 	cgc.sense = &sense;
2131 
2132 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2133 	if (ret) {
2134 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2135 			     sizeof(struct mode_page_header);
2136 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2137 		if (ret) {
2138 			pkt_dump_sense(&cgc);
2139 			return ret;
2140 		}
2141 	}
2142 
2143 	offset = 20;			    /* Obsoleted field, used by older drives */
2144 	if (cap_buf[1] >= 28)
2145 		offset = 28;		    /* Current write speed selected */
2146 	if (cap_buf[1] >= 30) {
2147 		/* If the drive reports at least one "Logical Unit Write
2148 		 * Speed Performance Descriptor Block", use the information
2149 		 * in the first block. (contains the highest speed)
2150 		 */
2151 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2152 		if (num_spdb > 0)
2153 			offset = 34;
2154 	}
2155 
2156 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2157 	return 0;
2158 }
2159 
2160 /* These tables from cdrecord - I don't have orange book */
2161 /* standard speed CD-RW (1-4x) */
2162 static char clv_to_speed[16] = {
2163 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2164 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2165 };
2166 /* high speed CD-RW (-10x) */
2167 static char hs_clv_to_speed[16] = {
2168 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2169 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2170 };
2171 /* ultra high speed CD-RW */
2172 static char us_clv_to_speed[16] = {
2173 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2174 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2175 };
2176 
2177 /*
2178  * reads the maximum media speed from ATIP
2179  */
2180 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
2181 {
2182 	struct packet_command cgc;
2183 	struct request_sense sense;
2184 	unsigned char buf[64];
2185 	unsigned int size, st, sp;
2186 	int ret;
2187 
2188 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2189 	cgc.sense = &sense;
2190 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2191 	cgc.cmd[1] = 2;
2192 	cgc.cmd[2] = 4; /* READ ATIP */
2193 	cgc.cmd[8] = 2;
2194 	ret = pkt_generic_packet(pd, &cgc);
2195 	if (ret) {
2196 		pkt_dump_sense(&cgc);
2197 		return ret;
2198 	}
2199 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2200 	if (size > sizeof(buf))
2201 		size = sizeof(buf);
2202 
2203 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2204 	cgc.sense = &sense;
2205 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2206 	cgc.cmd[1] = 2;
2207 	cgc.cmd[2] = 4;
2208 	cgc.cmd[8] = size;
2209 	ret = pkt_generic_packet(pd, &cgc);
2210 	if (ret) {
2211 		pkt_dump_sense(&cgc);
2212 		return ret;
2213 	}
2214 
2215 	if (!buf[6] & 0x40) {
2216 		printk(DRIVER_NAME": Disc type is not CD-RW\n");
2217 		return 1;
2218 	}
2219 	if (!buf[6] & 0x4) {
2220 		printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2221 		return 1;
2222 	}
2223 
2224 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2225 
2226 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2227 
2228 	/* Info from cdrecord */
2229 	switch (st) {
2230 		case 0: /* standard speed */
2231 			*speed = clv_to_speed[sp];
2232 			break;
2233 		case 1: /* high speed */
2234 			*speed = hs_clv_to_speed[sp];
2235 			break;
2236 		case 2: /* ultra high speed */
2237 			*speed = us_clv_to_speed[sp];
2238 			break;
2239 		default:
2240 			printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2241 			return 1;
2242 	}
2243 	if (*speed) {
2244 		printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2245 		return 0;
2246 	} else {
2247 		printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2248 		return 1;
2249 	}
2250 }
2251 
2252 static int pkt_perform_opc(struct pktcdvd_device *pd)
2253 {
2254 	struct packet_command cgc;
2255 	struct request_sense sense;
2256 	int ret;
2257 
2258 	VPRINTK(DRIVER_NAME": Performing OPC\n");
2259 
2260 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2261 	cgc.sense = &sense;
2262 	cgc.timeout = 60*HZ;
2263 	cgc.cmd[0] = GPCMD_SEND_OPC;
2264 	cgc.cmd[1] = 1;
2265 	if ((ret = pkt_generic_packet(pd, &cgc)))
2266 		pkt_dump_sense(&cgc);
2267 	return ret;
2268 }
2269 
2270 static int pkt_open_write(struct pktcdvd_device *pd)
2271 {
2272 	int ret;
2273 	unsigned int write_speed, media_write_speed, read_speed;
2274 
2275 	if ((ret = pkt_probe_settings(pd))) {
2276 		VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2277 		return ret;
2278 	}
2279 
2280 	if ((ret = pkt_set_write_settings(pd))) {
2281 		DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2282 		return -EIO;
2283 	}
2284 
2285 	pkt_write_caching(pd, USE_WCACHING);
2286 
2287 	if ((ret = pkt_get_max_speed(pd, &write_speed)))
2288 		write_speed = 16 * 177;
2289 	switch (pd->mmc3_profile) {
2290 		case 0x13: /* DVD-RW */
2291 		case 0x1a: /* DVD+RW */
2292 		case 0x12: /* DVD-RAM */
2293 			DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2294 			break;
2295 		default:
2296 			if ((ret = pkt_media_speed(pd, &media_write_speed)))
2297 				media_write_speed = 16;
2298 			write_speed = min(write_speed, media_write_speed * 177);
2299 			DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2300 			break;
2301 	}
2302 	read_speed = write_speed;
2303 
2304 	if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2305 		DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2306 		return -EIO;
2307 	}
2308 	pd->write_speed = write_speed;
2309 	pd->read_speed = read_speed;
2310 
2311 	if ((ret = pkt_perform_opc(pd))) {
2312 		DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2313 	}
2314 
2315 	return 0;
2316 }
2317 
2318 /*
2319  * called at open time.
2320  */
2321 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
2322 {
2323 	int ret;
2324 	long lba;
2325 	struct request_queue *q;
2326 
2327 	/*
2328 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2329 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2330 	 * so bdget() can't fail.
2331 	 */
2332 	bdget(pd->bdev->bd_dev);
2333 	if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
2334 		goto out;
2335 
2336 	if ((ret = bd_claim(pd->bdev, pd)))
2337 		goto out_putdev;
2338 
2339 	if ((ret = pkt_get_last_written(pd, &lba))) {
2340 		printk(DRIVER_NAME": pkt_get_last_written failed\n");
2341 		goto out_unclaim;
2342 	}
2343 
2344 	set_capacity(pd->disk, lba << 2);
2345 	set_capacity(pd->bdev->bd_disk, lba << 2);
2346 	bd_set_size(pd->bdev, (loff_t)lba << 11);
2347 
2348 	q = bdev_get_queue(pd->bdev);
2349 	if (write) {
2350 		if ((ret = pkt_open_write(pd)))
2351 			goto out_unclaim;
2352 		/*
2353 		 * Some CDRW drives can not handle writes larger than one packet,
2354 		 * even if the size is a multiple of the packet size.
2355 		 */
2356 		spin_lock_irq(q->queue_lock);
2357 		blk_queue_max_sectors(q, pd->settings.size);
2358 		spin_unlock_irq(q->queue_lock);
2359 		set_bit(PACKET_WRITABLE, &pd->flags);
2360 	} else {
2361 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2362 		clear_bit(PACKET_WRITABLE, &pd->flags);
2363 	}
2364 
2365 	if ((ret = pkt_set_segment_merging(pd, q)))
2366 		goto out_unclaim;
2367 
2368 	if (write) {
2369 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2370 			printk(DRIVER_NAME": not enough memory for buffers\n");
2371 			ret = -ENOMEM;
2372 			goto out_unclaim;
2373 		}
2374 		printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2375 	}
2376 
2377 	return 0;
2378 
2379 out_unclaim:
2380 	bd_release(pd->bdev);
2381 out_putdev:
2382 	blkdev_put(pd->bdev);
2383 out:
2384 	return ret;
2385 }
2386 
2387 /*
2388  * called when the device is closed. makes sure that the device flushes
2389  * the internal cache before we close.
2390  */
2391 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2392 {
2393 	if (flush && pkt_flush_cache(pd))
2394 		DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2395 
2396 	pkt_lock_door(pd, 0);
2397 
2398 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2399 	bd_release(pd->bdev);
2400 	blkdev_put(pd->bdev);
2401 
2402 	pkt_shrink_pktlist(pd);
2403 }
2404 
2405 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2406 {
2407 	if (dev_minor >= MAX_WRITERS)
2408 		return NULL;
2409 	return pkt_devs[dev_minor];
2410 }
2411 
2412 static int pkt_open(struct inode *inode, struct file *file)
2413 {
2414 	struct pktcdvd_device *pd = NULL;
2415 	int ret;
2416 
2417 	VPRINTK(DRIVER_NAME": entering open\n");
2418 
2419 	mutex_lock(&ctl_mutex);
2420 	pd = pkt_find_dev_from_minor(iminor(inode));
2421 	if (!pd) {
2422 		ret = -ENODEV;
2423 		goto out;
2424 	}
2425 	BUG_ON(pd->refcnt < 0);
2426 
2427 	pd->refcnt++;
2428 	if (pd->refcnt > 1) {
2429 		if ((file->f_mode & FMODE_WRITE) &&
2430 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2431 			ret = -EBUSY;
2432 			goto out_dec;
2433 		}
2434 	} else {
2435 		ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE);
2436 		if (ret)
2437 			goto out_dec;
2438 		/*
2439 		 * needed here as well, since ext2 (among others) may change
2440 		 * the blocksize at mount time
2441 		 */
2442 		set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2443 	}
2444 
2445 	mutex_unlock(&ctl_mutex);
2446 	return 0;
2447 
2448 out_dec:
2449 	pd->refcnt--;
2450 out:
2451 	VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2452 	mutex_unlock(&ctl_mutex);
2453 	return ret;
2454 }
2455 
2456 static int pkt_close(struct inode *inode, struct file *file)
2457 {
2458 	struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2459 	int ret = 0;
2460 
2461 	mutex_lock(&ctl_mutex);
2462 	pd->refcnt--;
2463 	BUG_ON(pd->refcnt < 0);
2464 	if (pd->refcnt == 0) {
2465 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2466 		pkt_release_dev(pd, flush);
2467 	}
2468 	mutex_unlock(&ctl_mutex);
2469 	return ret;
2470 }
2471 
2472 
2473 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2474 {
2475 	struct packet_stacked_data *psd = bio->bi_private;
2476 	struct pktcdvd_device *pd = psd->pd;
2477 
2478 	bio_put(bio);
2479 	bio_endio(psd->bio, err);
2480 	mempool_free(psd, psd_pool);
2481 	pkt_bio_finished(pd);
2482 }
2483 
2484 static int pkt_make_request(struct request_queue *q, struct bio *bio)
2485 {
2486 	struct pktcdvd_device *pd;
2487 	char b[BDEVNAME_SIZE];
2488 	sector_t zone;
2489 	struct packet_data *pkt;
2490 	int was_empty, blocked_bio;
2491 	struct pkt_rb_node *node;
2492 
2493 	pd = q->queuedata;
2494 	if (!pd) {
2495 		printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2496 		goto end_io;
2497 	}
2498 
2499 	/*
2500 	 * Clone READ bios so we can have our own bi_end_io callback.
2501 	 */
2502 	if (bio_data_dir(bio) == READ) {
2503 		struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2504 		struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2505 
2506 		psd->pd = pd;
2507 		psd->bio = bio;
2508 		cloned_bio->bi_bdev = pd->bdev;
2509 		cloned_bio->bi_private = psd;
2510 		cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2511 		pd->stats.secs_r += bio->bi_size >> 9;
2512 		pkt_queue_bio(pd, cloned_bio);
2513 		return 0;
2514 	}
2515 
2516 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2517 		printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2518 			pd->name, (unsigned long long)bio->bi_sector);
2519 		goto end_io;
2520 	}
2521 
2522 	if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2523 		printk(DRIVER_NAME": wrong bio size\n");
2524 		goto end_io;
2525 	}
2526 
2527 	blk_queue_bounce(q, &bio);
2528 
2529 	zone = ZONE(bio->bi_sector, pd);
2530 	VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2531 		(unsigned long long)bio->bi_sector,
2532 		(unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2533 
2534 	/* Check if we have to split the bio */
2535 	{
2536 		struct bio_pair *bp;
2537 		sector_t last_zone;
2538 		int first_sectors;
2539 
2540 		last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2541 		if (last_zone != zone) {
2542 			BUG_ON(last_zone != zone + pd->settings.size);
2543 			first_sectors = last_zone - bio->bi_sector;
2544 			bp = bio_split(bio, bio_split_pool, first_sectors);
2545 			BUG_ON(!bp);
2546 			pkt_make_request(q, &bp->bio1);
2547 			pkt_make_request(q, &bp->bio2);
2548 			bio_pair_release(bp);
2549 			return 0;
2550 		}
2551 	}
2552 
2553 	/*
2554 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2555 	 * just append this bio to that packet.
2556 	 */
2557 	spin_lock(&pd->cdrw.active_list_lock);
2558 	blocked_bio = 0;
2559 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2560 		if (pkt->sector == zone) {
2561 			spin_lock(&pkt->lock);
2562 			if ((pkt->state == PACKET_WAITING_STATE) ||
2563 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2564 				pkt_add_list_last(bio, &pkt->orig_bios,
2565 						  &pkt->orig_bios_tail);
2566 				pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2567 				if ((pkt->write_size >= pkt->frames) &&
2568 				    (pkt->state == PACKET_WAITING_STATE)) {
2569 					atomic_inc(&pkt->run_sm);
2570 					wake_up(&pd->wqueue);
2571 				}
2572 				spin_unlock(&pkt->lock);
2573 				spin_unlock(&pd->cdrw.active_list_lock);
2574 				return 0;
2575 			} else {
2576 				blocked_bio = 1;
2577 			}
2578 			spin_unlock(&pkt->lock);
2579 		}
2580 	}
2581 	spin_unlock(&pd->cdrw.active_list_lock);
2582 
2583  	/*
2584 	 * Test if there is enough room left in the bio work queue
2585 	 * (queue size >= congestion on mark).
2586 	 * If not, wait till the work queue size is below the congestion off mark.
2587 	 */
2588 	spin_lock(&pd->lock);
2589 	if (pd->write_congestion_on > 0
2590 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2591 		set_bdi_congested(&q->backing_dev_info, WRITE);
2592 		do {
2593 			spin_unlock(&pd->lock);
2594 			congestion_wait(WRITE, HZ);
2595 			spin_lock(&pd->lock);
2596 		} while(pd->bio_queue_size > pd->write_congestion_off);
2597 	}
2598 	spin_unlock(&pd->lock);
2599 
2600 	/*
2601 	 * No matching packet found. Store the bio in the work queue.
2602 	 */
2603 	node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2604 	node->bio = bio;
2605 	spin_lock(&pd->lock);
2606 	BUG_ON(pd->bio_queue_size < 0);
2607 	was_empty = (pd->bio_queue_size == 0);
2608 	pkt_rbtree_insert(pd, node);
2609 	spin_unlock(&pd->lock);
2610 
2611 	/*
2612 	 * Wake up the worker thread.
2613 	 */
2614 	atomic_set(&pd->scan_queue, 1);
2615 	if (was_empty) {
2616 		/* This wake_up is required for correct operation */
2617 		wake_up(&pd->wqueue);
2618 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2619 		/*
2620 		 * This wake up is not required for correct operation,
2621 		 * but improves performance in some cases.
2622 		 */
2623 		wake_up(&pd->wqueue);
2624 	}
2625 	return 0;
2626 end_io:
2627 	bio_io_error(bio);
2628 	return 0;
2629 }
2630 
2631 
2632 
2633 static int pkt_merge_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *bvec)
2634 {
2635 	struct pktcdvd_device *pd = q->queuedata;
2636 	sector_t zone = ZONE(bio->bi_sector, pd);
2637 	int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2638 	int remaining = (pd->settings.size << 9) - used;
2639 	int remaining2;
2640 
2641 	/*
2642 	 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2643 	 * boundary, pkt_make_request() will split the bio.
2644 	 */
2645 	remaining2 = PAGE_SIZE - bio->bi_size;
2646 	remaining = max(remaining, remaining2);
2647 
2648 	BUG_ON(remaining < 0);
2649 	return remaining;
2650 }
2651 
2652 static void pkt_init_queue(struct pktcdvd_device *pd)
2653 {
2654 	struct request_queue *q = pd->disk->queue;
2655 
2656 	blk_queue_make_request(q, pkt_make_request);
2657 	blk_queue_hardsect_size(q, CD_FRAMESIZE);
2658 	blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2659 	blk_queue_merge_bvec(q, pkt_merge_bvec);
2660 	q->queuedata = pd;
2661 }
2662 
2663 static int pkt_seq_show(struct seq_file *m, void *p)
2664 {
2665 	struct pktcdvd_device *pd = m->private;
2666 	char *msg;
2667 	char bdev_buf[BDEVNAME_SIZE];
2668 	int states[PACKET_NUM_STATES];
2669 
2670 	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2671 		   bdevname(pd->bdev, bdev_buf));
2672 
2673 	seq_printf(m, "\nSettings:\n");
2674 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2675 
2676 	if (pd->settings.write_type == 0)
2677 		msg = "Packet";
2678 	else
2679 		msg = "Unknown";
2680 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2681 
2682 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2683 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2684 
2685 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2686 
2687 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2688 		msg = "Mode 1";
2689 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2690 		msg = "Mode 2";
2691 	else
2692 		msg = "Unknown";
2693 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2694 
2695 	seq_printf(m, "\nStatistics:\n");
2696 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2697 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2698 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2699 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2700 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2701 
2702 	seq_printf(m, "\nMisc:\n");
2703 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2704 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2705 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2706 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2707 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2708 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2709 
2710 	seq_printf(m, "\nQueue state:\n");
2711 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2712 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2713 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2714 
2715 	pkt_count_states(pd, states);
2716 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2717 		   states[0], states[1], states[2], states[3], states[4], states[5]);
2718 
2719 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2720 			pd->write_congestion_off,
2721 			pd->write_congestion_on);
2722 	return 0;
2723 }
2724 
2725 static int pkt_seq_open(struct inode *inode, struct file *file)
2726 {
2727 	return single_open(file, pkt_seq_show, PDE(inode)->data);
2728 }
2729 
2730 static const struct file_operations pkt_proc_fops = {
2731 	.open	= pkt_seq_open,
2732 	.read	= seq_read,
2733 	.llseek	= seq_lseek,
2734 	.release = single_release
2735 };
2736 
2737 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2738 {
2739 	int i;
2740 	int ret = 0;
2741 	char b[BDEVNAME_SIZE];
2742 	struct proc_dir_entry *proc;
2743 	struct block_device *bdev;
2744 
2745 	if (pd->pkt_dev == dev) {
2746 		printk(DRIVER_NAME": Recursive setup not allowed\n");
2747 		return -EBUSY;
2748 	}
2749 	for (i = 0; i < MAX_WRITERS; i++) {
2750 		struct pktcdvd_device *pd2 = pkt_devs[i];
2751 		if (!pd2)
2752 			continue;
2753 		if (pd2->bdev->bd_dev == dev) {
2754 			printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2755 			return -EBUSY;
2756 		}
2757 		if (pd2->pkt_dev == dev) {
2758 			printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2759 			return -EBUSY;
2760 		}
2761 	}
2762 
2763 	bdev = bdget(dev);
2764 	if (!bdev)
2765 		return -ENOMEM;
2766 	ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2767 	if (ret)
2768 		return ret;
2769 
2770 	/* This is safe, since we have a reference from open(). */
2771 	__module_get(THIS_MODULE);
2772 
2773 	pd->bdev = bdev;
2774 	set_blocksize(bdev, CD_FRAMESIZE);
2775 
2776 	pkt_init_queue(pd);
2777 
2778 	atomic_set(&pd->cdrw.pending_bios, 0);
2779 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2780 	if (IS_ERR(pd->cdrw.thread)) {
2781 		printk(DRIVER_NAME": can't start kernel thread\n");
2782 		ret = -ENOMEM;
2783 		goto out_mem;
2784 	}
2785 
2786 	proc = create_proc_entry(pd->name, 0, pkt_proc);
2787 	if (proc) {
2788 		proc->data = pd;
2789 		proc->proc_fops = &pkt_proc_fops;
2790 	}
2791 	DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2792 	return 0;
2793 
2794 out_mem:
2795 	blkdev_put(bdev);
2796 	/* This is safe: open() is still holding a reference. */
2797 	module_put(THIS_MODULE);
2798 	return ret;
2799 }
2800 
2801 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2802 {
2803 	struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2804 
2805 	VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2806 
2807 	switch (cmd) {
2808 	/*
2809 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2810 	 */
2811 	case CDROMMULTISESSION:
2812 	case CDROMREADTOCENTRY:
2813 	case CDROM_LAST_WRITTEN:
2814 	case CDROM_SEND_PACKET:
2815 	case SCSI_IOCTL_SEND_COMMAND:
2816 		return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2817 
2818 	case CDROMEJECT:
2819 		/*
2820 		 * The door gets locked when the device is opened, so we
2821 		 * have to unlock it or else the eject command fails.
2822 		 */
2823 		if (pd->refcnt == 1)
2824 			pkt_lock_door(pd, 0);
2825 		return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2826 
2827 	default:
2828 		VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2829 		return -ENOTTY;
2830 	}
2831 
2832 	return 0;
2833 }
2834 
2835 static int pkt_media_changed(struct gendisk *disk)
2836 {
2837 	struct pktcdvd_device *pd = disk->private_data;
2838 	struct gendisk *attached_disk;
2839 
2840 	if (!pd)
2841 		return 0;
2842 	if (!pd->bdev)
2843 		return 0;
2844 	attached_disk = pd->bdev->bd_disk;
2845 	if (!attached_disk)
2846 		return 0;
2847 	return attached_disk->fops->media_changed(attached_disk);
2848 }
2849 
2850 static struct block_device_operations pktcdvd_ops = {
2851 	.owner =		THIS_MODULE,
2852 	.open =			pkt_open,
2853 	.release =		pkt_close,
2854 	.ioctl =		pkt_ioctl,
2855 	.media_changed =	pkt_media_changed,
2856 };
2857 
2858 /*
2859  * Set up mapping from pktcdvd device to CD-ROM device.
2860  */
2861 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2862 {
2863 	int idx;
2864 	int ret = -ENOMEM;
2865 	struct pktcdvd_device *pd;
2866 	struct gendisk *disk;
2867 
2868 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2869 
2870 	for (idx = 0; idx < MAX_WRITERS; idx++)
2871 		if (!pkt_devs[idx])
2872 			break;
2873 	if (idx == MAX_WRITERS) {
2874 		printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2875 		ret = -EBUSY;
2876 		goto out_mutex;
2877 	}
2878 
2879 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2880 	if (!pd)
2881 		goto out_mutex;
2882 
2883 	pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2884 						  sizeof(struct pkt_rb_node));
2885 	if (!pd->rb_pool)
2886 		goto out_mem;
2887 
2888 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2889 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2890 	spin_lock_init(&pd->cdrw.active_list_lock);
2891 
2892 	spin_lock_init(&pd->lock);
2893 	spin_lock_init(&pd->iosched.lock);
2894 	sprintf(pd->name, DRIVER_NAME"%d", idx);
2895 	init_waitqueue_head(&pd->wqueue);
2896 	pd->bio_queue = RB_ROOT;
2897 
2898 	pd->write_congestion_on  = write_congestion_on;
2899 	pd->write_congestion_off = write_congestion_off;
2900 
2901 	disk = alloc_disk(1);
2902 	if (!disk)
2903 		goto out_mem;
2904 	pd->disk = disk;
2905 	disk->major = pktdev_major;
2906 	disk->first_minor = idx;
2907 	disk->fops = &pktcdvd_ops;
2908 	disk->flags = GENHD_FL_REMOVABLE;
2909 	strcpy(disk->disk_name, pd->name);
2910 	disk->private_data = pd;
2911 	disk->queue = blk_alloc_queue(GFP_KERNEL);
2912 	if (!disk->queue)
2913 		goto out_mem2;
2914 
2915 	pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2916 	ret = pkt_new_dev(pd, dev);
2917 	if (ret)
2918 		goto out_new_dev;
2919 
2920 	add_disk(disk);
2921 
2922 	pkt_sysfs_dev_new(pd);
2923 	pkt_debugfs_dev_new(pd);
2924 
2925 	pkt_devs[idx] = pd;
2926 	if (pkt_dev)
2927 		*pkt_dev = pd->pkt_dev;
2928 
2929 	mutex_unlock(&ctl_mutex);
2930 	return 0;
2931 
2932 out_new_dev:
2933 	blk_cleanup_queue(disk->queue);
2934 out_mem2:
2935 	put_disk(disk);
2936 out_mem:
2937 	if (pd->rb_pool)
2938 		mempool_destroy(pd->rb_pool);
2939 	kfree(pd);
2940 out_mutex:
2941 	mutex_unlock(&ctl_mutex);
2942 	printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2943 	return ret;
2944 }
2945 
2946 /*
2947  * Tear down mapping from pktcdvd device to CD-ROM device.
2948  */
2949 static int pkt_remove_dev(dev_t pkt_dev)
2950 {
2951 	struct pktcdvd_device *pd;
2952 	int idx;
2953 	int ret = 0;
2954 
2955 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2956 
2957 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2958 		pd = pkt_devs[idx];
2959 		if (pd && (pd->pkt_dev == pkt_dev))
2960 			break;
2961 	}
2962 	if (idx == MAX_WRITERS) {
2963 		DPRINTK(DRIVER_NAME": dev not setup\n");
2964 		ret = -ENXIO;
2965 		goto out;
2966 	}
2967 
2968 	if (pd->refcnt > 0) {
2969 		ret = -EBUSY;
2970 		goto out;
2971 	}
2972 	if (!IS_ERR(pd->cdrw.thread))
2973 		kthread_stop(pd->cdrw.thread);
2974 
2975 	pkt_devs[idx] = NULL;
2976 
2977 	pkt_debugfs_dev_remove(pd);
2978 	pkt_sysfs_dev_remove(pd);
2979 
2980 	blkdev_put(pd->bdev);
2981 
2982 	remove_proc_entry(pd->name, pkt_proc);
2983 	DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2984 
2985 	del_gendisk(pd->disk);
2986 	blk_cleanup_queue(pd->disk->queue);
2987 	put_disk(pd->disk);
2988 
2989 	mempool_destroy(pd->rb_pool);
2990 	kfree(pd);
2991 
2992 	/* This is safe: open() is still holding a reference. */
2993 	module_put(THIS_MODULE);
2994 
2995 out:
2996 	mutex_unlock(&ctl_mutex);
2997 	return ret;
2998 }
2999 
3000 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
3001 {
3002 	struct pktcdvd_device *pd;
3003 
3004 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3005 
3006 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
3007 	if (pd) {
3008 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
3009 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
3010 	} else {
3011 		ctrl_cmd->dev = 0;
3012 		ctrl_cmd->pkt_dev = 0;
3013 	}
3014 	ctrl_cmd->num_devices = MAX_WRITERS;
3015 
3016 	mutex_unlock(&ctl_mutex);
3017 }
3018 
3019 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
3020 {
3021 	void __user *argp = (void __user *)arg;
3022 	struct pkt_ctrl_command ctrl_cmd;
3023 	int ret = 0;
3024 	dev_t pkt_dev = 0;
3025 
3026 	if (cmd != PACKET_CTRL_CMD)
3027 		return -ENOTTY;
3028 
3029 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3030 		return -EFAULT;
3031 
3032 	switch (ctrl_cmd.command) {
3033 	case PKT_CTRL_CMD_SETUP:
3034 		if (!capable(CAP_SYS_ADMIN))
3035 			return -EPERM;
3036 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3037 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3038 		break;
3039 	case PKT_CTRL_CMD_TEARDOWN:
3040 		if (!capable(CAP_SYS_ADMIN))
3041 			return -EPERM;
3042 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3043 		break;
3044 	case PKT_CTRL_CMD_STATUS:
3045 		pkt_get_status(&ctrl_cmd);
3046 		break;
3047 	default:
3048 		return -ENOTTY;
3049 	}
3050 
3051 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3052 		return -EFAULT;
3053 	return ret;
3054 }
3055 
3056 
3057 static const struct file_operations pkt_ctl_fops = {
3058 	.ioctl	 = pkt_ctl_ioctl,
3059 	.owner	 = THIS_MODULE,
3060 };
3061 
3062 static struct miscdevice pkt_misc = {
3063 	.minor 		= MISC_DYNAMIC_MINOR,
3064 	.name  		= DRIVER_NAME,
3065 	.fops  		= &pkt_ctl_fops
3066 };
3067 
3068 static int __init pkt_init(void)
3069 {
3070 	int ret;
3071 
3072 	mutex_init(&ctl_mutex);
3073 
3074 	psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3075 					sizeof(struct packet_stacked_data));
3076 	if (!psd_pool)
3077 		return -ENOMEM;
3078 
3079 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
3080 	if (ret < 0) {
3081 		printk(DRIVER_NAME": Unable to register block device\n");
3082 		goto out2;
3083 	}
3084 	if (!pktdev_major)
3085 		pktdev_major = ret;
3086 
3087 	ret = pkt_sysfs_init();
3088 	if (ret)
3089 		goto out;
3090 
3091 	pkt_debugfs_init();
3092 
3093 	ret = misc_register(&pkt_misc);
3094 	if (ret) {
3095 		printk(DRIVER_NAME": Unable to register misc device\n");
3096 		goto out_misc;
3097 	}
3098 
3099 	pkt_proc = proc_mkdir(DRIVER_NAME, proc_root_driver);
3100 
3101 	return 0;
3102 
3103 out_misc:
3104 	pkt_debugfs_cleanup();
3105 	pkt_sysfs_cleanup();
3106 out:
3107 	unregister_blkdev(pktdev_major, DRIVER_NAME);
3108 out2:
3109 	mempool_destroy(psd_pool);
3110 	return ret;
3111 }
3112 
3113 static void __exit pkt_exit(void)
3114 {
3115 	remove_proc_entry(DRIVER_NAME, proc_root_driver);
3116 	misc_deregister(&pkt_misc);
3117 
3118 	pkt_debugfs_cleanup();
3119 	pkt_sysfs_cleanup();
3120 
3121 	unregister_blkdev(pktdev_major, DRIVER_NAME);
3122 	mempool_destroy(psd_pool);
3123 }
3124 
3125 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3126 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3127 MODULE_LICENSE("GPL");
3128 
3129 module_init(pkt_init);
3130 module_exit(pkt_exit);
3131