xref: /openbmc/linux/drivers/block/pktcdvd.c (revision 545e4006)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom make_request_fn function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/smp_lock.h>
53 #include <linux/errno.h>
54 #include <linux/spinlock.h>
55 #include <linux/file.h>
56 #include <linux/proc_fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/miscdevice.h>
59 #include <linux/freezer.h>
60 #include <linux/mutex.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_ioctl.h>
63 #include <scsi/scsi.h>
64 #include <linux/debugfs.h>
65 #include <linux/device.h>
66 
67 #include <asm/uaccess.h>
68 
69 #define DRIVER_NAME	"pktcdvd"
70 
71 #if PACKET_DEBUG
72 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
73 #else
74 #define DPRINTK(fmt, args...)
75 #endif
76 
77 #if PACKET_DEBUG > 1
78 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
79 #else
80 #define VPRINTK(fmt, args...)
81 #endif
82 
83 #define MAX_SPEED 0xffff
84 
85 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
86 
87 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
88 static struct proc_dir_entry *pkt_proc;
89 static int pktdev_major;
90 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
91 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
92 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
93 static mempool_t *psd_pool;
94 
95 static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
96 static struct dentry	*pkt_debugfs_root = NULL; /* /debug/pktcdvd */
97 
98 /* forward declaration */
99 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
100 static int pkt_remove_dev(dev_t pkt_dev);
101 static int pkt_seq_show(struct seq_file *m, void *p);
102 
103 
104 
105 /*
106  * create and register a pktcdvd kernel object.
107  */
108 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
109 					const char* name,
110 					struct kobject* parent,
111 					struct kobj_type* ktype)
112 {
113 	struct pktcdvd_kobj *p;
114 	int error;
115 
116 	p = kzalloc(sizeof(*p), GFP_KERNEL);
117 	if (!p)
118 		return NULL;
119 	p->pd = pd;
120 	error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
121 	if (error) {
122 		kobject_put(&p->kobj);
123 		return NULL;
124 	}
125 	kobject_uevent(&p->kobj, KOBJ_ADD);
126 	return p;
127 }
128 /*
129  * remove a pktcdvd kernel object.
130  */
131 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
132 {
133 	if (p)
134 		kobject_put(&p->kobj);
135 }
136 /*
137  * default release function for pktcdvd kernel objects.
138  */
139 static void pkt_kobj_release(struct kobject *kobj)
140 {
141 	kfree(to_pktcdvdkobj(kobj));
142 }
143 
144 
145 /**********************************************************
146  *
147  * sysfs interface for pktcdvd
148  * by (C) 2006  Thomas Maier <balagi@justmail.de>
149  *
150  **********************************************************/
151 
152 #define DEF_ATTR(_obj,_name,_mode) \
153 	static struct attribute _obj = { .name = _name, .mode = _mode }
154 
155 /**********************************************************
156   /sys/class/pktcdvd/pktcdvd[0-7]/
157                      stat/reset
158                      stat/packets_started
159                      stat/packets_finished
160                      stat/kb_written
161                      stat/kb_read
162                      stat/kb_read_gather
163                      write_queue/size
164                      write_queue/congestion_off
165                      write_queue/congestion_on
166  **********************************************************/
167 
168 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
169 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
170 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
171 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
172 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
173 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
174 
175 static struct attribute *kobj_pkt_attrs_stat[] = {
176 	&kobj_pkt_attr_st1,
177 	&kobj_pkt_attr_st2,
178 	&kobj_pkt_attr_st3,
179 	&kobj_pkt_attr_st4,
180 	&kobj_pkt_attr_st5,
181 	&kobj_pkt_attr_st6,
182 	NULL
183 };
184 
185 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
186 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
187 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
188 
189 static struct attribute *kobj_pkt_attrs_wqueue[] = {
190 	&kobj_pkt_attr_wq1,
191 	&kobj_pkt_attr_wq2,
192 	&kobj_pkt_attr_wq3,
193 	NULL
194 };
195 
196 static ssize_t kobj_pkt_show(struct kobject *kobj,
197 			struct attribute *attr, char *data)
198 {
199 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
200 	int n = 0;
201 	int v;
202 	if (strcmp(attr->name, "packets_started") == 0) {
203 		n = sprintf(data, "%lu\n", pd->stats.pkt_started);
204 
205 	} else if (strcmp(attr->name, "packets_finished") == 0) {
206 		n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
207 
208 	} else if (strcmp(attr->name, "kb_written") == 0) {
209 		n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
210 
211 	} else if (strcmp(attr->name, "kb_read") == 0) {
212 		n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
213 
214 	} else if (strcmp(attr->name, "kb_read_gather") == 0) {
215 		n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
216 
217 	} else if (strcmp(attr->name, "size") == 0) {
218 		spin_lock(&pd->lock);
219 		v = pd->bio_queue_size;
220 		spin_unlock(&pd->lock);
221 		n = sprintf(data, "%d\n", v);
222 
223 	} else if (strcmp(attr->name, "congestion_off") == 0) {
224 		spin_lock(&pd->lock);
225 		v = pd->write_congestion_off;
226 		spin_unlock(&pd->lock);
227 		n = sprintf(data, "%d\n", v);
228 
229 	} else if (strcmp(attr->name, "congestion_on") == 0) {
230 		spin_lock(&pd->lock);
231 		v = pd->write_congestion_on;
232 		spin_unlock(&pd->lock);
233 		n = sprintf(data, "%d\n", v);
234 	}
235 	return n;
236 }
237 
238 static void init_write_congestion_marks(int* lo, int* hi)
239 {
240 	if (*hi > 0) {
241 		*hi = max(*hi, 500);
242 		*hi = min(*hi, 1000000);
243 		if (*lo <= 0)
244 			*lo = *hi - 100;
245 		else {
246 			*lo = min(*lo, *hi - 100);
247 			*lo = max(*lo, 100);
248 		}
249 	} else {
250 		*hi = -1;
251 		*lo = -1;
252 	}
253 }
254 
255 static ssize_t kobj_pkt_store(struct kobject *kobj,
256 			struct attribute *attr,
257 			const char *data, size_t len)
258 {
259 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
260 	int val;
261 
262 	if (strcmp(attr->name, "reset") == 0 && len > 0) {
263 		pd->stats.pkt_started = 0;
264 		pd->stats.pkt_ended = 0;
265 		pd->stats.secs_w = 0;
266 		pd->stats.secs_rg = 0;
267 		pd->stats.secs_r = 0;
268 
269 	} else if (strcmp(attr->name, "congestion_off") == 0
270 		   && sscanf(data, "%d", &val) == 1) {
271 		spin_lock(&pd->lock);
272 		pd->write_congestion_off = val;
273 		init_write_congestion_marks(&pd->write_congestion_off,
274 					&pd->write_congestion_on);
275 		spin_unlock(&pd->lock);
276 
277 	} else if (strcmp(attr->name, "congestion_on") == 0
278 		   && sscanf(data, "%d", &val) == 1) {
279 		spin_lock(&pd->lock);
280 		pd->write_congestion_on = val;
281 		init_write_congestion_marks(&pd->write_congestion_off,
282 					&pd->write_congestion_on);
283 		spin_unlock(&pd->lock);
284 	}
285 	return len;
286 }
287 
288 static struct sysfs_ops kobj_pkt_ops = {
289 	.show = kobj_pkt_show,
290 	.store = kobj_pkt_store
291 };
292 static struct kobj_type kobj_pkt_type_stat = {
293 	.release = pkt_kobj_release,
294 	.sysfs_ops = &kobj_pkt_ops,
295 	.default_attrs = kobj_pkt_attrs_stat
296 };
297 static struct kobj_type kobj_pkt_type_wqueue = {
298 	.release = pkt_kobj_release,
299 	.sysfs_ops = &kobj_pkt_ops,
300 	.default_attrs = kobj_pkt_attrs_wqueue
301 };
302 
303 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
304 {
305 	if (class_pktcdvd) {
306 		pd->dev = device_create_drvdata(class_pktcdvd, NULL,
307 						pd->pkt_dev, NULL,
308 						"%s", pd->name);
309 		if (IS_ERR(pd->dev))
310 			pd->dev = NULL;
311 	}
312 	if (pd->dev) {
313 		pd->kobj_stat = pkt_kobj_create(pd, "stat",
314 					&pd->dev->kobj,
315 					&kobj_pkt_type_stat);
316 		pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
317 					&pd->dev->kobj,
318 					&kobj_pkt_type_wqueue);
319 	}
320 }
321 
322 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
323 {
324 	pkt_kobj_remove(pd->kobj_stat);
325 	pkt_kobj_remove(pd->kobj_wqueue);
326 	if (class_pktcdvd)
327 		device_destroy(class_pktcdvd, pd->pkt_dev);
328 }
329 
330 
331 /********************************************************************
332   /sys/class/pktcdvd/
333                      add            map block device
334                      remove         unmap packet dev
335                      device_map     show mappings
336  *******************************************************************/
337 
338 static void class_pktcdvd_release(struct class *cls)
339 {
340 	kfree(cls);
341 }
342 static ssize_t class_pktcdvd_show_map(struct class *c, char *data)
343 {
344 	int n = 0;
345 	int idx;
346 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
347 	for (idx = 0; idx < MAX_WRITERS; idx++) {
348 		struct pktcdvd_device *pd = pkt_devs[idx];
349 		if (!pd)
350 			continue;
351 		n += sprintf(data+n, "%s %u:%u %u:%u\n",
352 			pd->name,
353 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
354 			MAJOR(pd->bdev->bd_dev),
355 			MINOR(pd->bdev->bd_dev));
356 	}
357 	mutex_unlock(&ctl_mutex);
358 	return n;
359 }
360 
361 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf,
362 					size_t count)
363 {
364 	unsigned int major, minor;
365 
366 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
367 		/* pkt_setup_dev() expects caller to hold reference to self */
368 		if (!try_module_get(THIS_MODULE))
369 			return -ENODEV;
370 
371 		pkt_setup_dev(MKDEV(major, minor), NULL);
372 
373 		module_put(THIS_MODULE);
374 
375 		return count;
376 	}
377 
378 	return -EINVAL;
379 }
380 
381 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf,
382 					size_t count)
383 {
384 	unsigned int major, minor;
385 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
386 		pkt_remove_dev(MKDEV(major, minor));
387 		return count;
388 	}
389 	return -EINVAL;
390 }
391 
392 static struct class_attribute class_pktcdvd_attrs[] = {
393  __ATTR(add,            0200, NULL, class_pktcdvd_store_add),
394  __ATTR(remove,         0200, NULL, class_pktcdvd_store_remove),
395  __ATTR(device_map,     0444, class_pktcdvd_show_map, NULL),
396  __ATTR_NULL
397 };
398 
399 
400 static int pkt_sysfs_init(void)
401 {
402 	int ret = 0;
403 
404 	/*
405 	 * create control files in sysfs
406 	 * /sys/class/pktcdvd/...
407 	 */
408 	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
409 	if (!class_pktcdvd)
410 		return -ENOMEM;
411 	class_pktcdvd->name = DRIVER_NAME;
412 	class_pktcdvd->owner = THIS_MODULE;
413 	class_pktcdvd->class_release = class_pktcdvd_release;
414 	class_pktcdvd->class_attrs = class_pktcdvd_attrs;
415 	ret = class_register(class_pktcdvd);
416 	if (ret) {
417 		kfree(class_pktcdvd);
418 		class_pktcdvd = NULL;
419 		printk(DRIVER_NAME": failed to create class pktcdvd\n");
420 		return ret;
421 	}
422 	return 0;
423 }
424 
425 static void pkt_sysfs_cleanup(void)
426 {
427 	if (class_pktcdvd)
428 		class_destroy(class_pktcdvd);
429 	class_pktcdvd = NULL;
430 }
431 
432 /********************************************************************
433   entries in debugfs
434 
435   /debugfs/pktcdvd[0-7]/
436 			info
437 
438  *******************************************************************/
439 
440 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
441 {
442 	return pkt_seq_show(m, p);
443 }
444 
445 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
446 {
447 	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
448 }
449 
450 static const struct file_operations debug_fops = {
451 	.open		= pkt_debugfs_fops_open,
452 	.read		= seq_read,
453 	.llseek		= seq_lseek,
454 	.release	= single_release,
455 	.owner		= THIS_MODULE,
456 };
457 
458 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
459 {
460 	if (!pkt_debugfs_root)
461 		return;
462 	pd->dfs_f_info = NULL;
463 	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
464 	if (IS_ERR(pd->dfs_d_root)) {
465 		pd->dfs_d_root = NULL;
466 		return;
467 	}
468 	pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
469 				pd->dfs_d_root, pd, &debug_fops);
470 	if (IS_ERR(pd->dfs_f_info)) {
471 		pd->dfs_f_info = NULL;
472 		return;
473 	}
474 }
475 
476 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
477 {
478 	if (!pkt_debugfs_root)
479 		return;
480 	if (pd->dfs_f_info)
481 		debugfs_remove(pd->dfs_f_info);
482 	pd->dfs_f_info = NULL;
483 	if (pd->dfs_d_root)
484 		debugfs_remove(pd->dfs_d_root);
485 	pd->dfs_d_root = NULL;
486 }
487 
488 static void pkt_debugfs_init(void)
489 {
490 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
491 	if (IS_ERR(pkt_debugfs_root)) {
492 		pkt_debugfs_root = NULL;
493 		return;
494 	}
495 }
496 
497 static void pkt_debugfs_cleanup(void)
498 {
499 	if (!pkt_debugfs_root)
500 		return;
501 	debugfs_remove(pkt_debugfs_root);
502 	pkt_debugfs_root = NULL;
503 }
504 
505 /* ----------------------------------------------------------*/
506 
507 
508 static void pkt_bio_finished(struct pktcdvd_device *pd)
509 {
510 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
511 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
512 		VPRINTK(DRIVER_NAME": queue empty\n");
513 		atomic_set(&pd->iosched.attention, 1);
514 		wake_up(&pd->wqueue);
515 	}
516 }
517 
518 static void pkt_bio_destructor(struct bio *bio)
519 {
520 	kfree(bio->bi_io_vec);
521 	kfree(bio);
522 }
523 
524 static struct bio *pkt_bio_alloc(int nr_iovecs)
525 {
526 	struct bio_vec *bvl = NULL;
527 	struct bio *bio;
528 
529 	bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
530 	if (!bio)
531 		goto no_bio;
532 	bio_init(bio);
533 
534 	bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
535 	if (!bvl)
536 		goto no_bvl;
537 
538 	bio->bi_max_vecs = nr_iovecs;
539 	bio->bi_io_vec = bvl;
540 	bio->bi_destructor = pkt_bio_destructor;
541 
542 	return bio;
543 
544  no_bvl:
545 	kfree(bio);
546  no_bio:
547 	return NULL;
548 }
549 
550 /*
551  * Allocate a packet_data struct
552  */
553 static struct packet_data *pkt_alloc_packet_data(int frames)
554 {
555 	int i;
556 	struct packet_data *pkt;
557 
558 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
559 	if (!pkt)
560 		goto no_pkt;
561 
562 	pkt->frames = frames;
563 	pkt->w_bio = pkt_bio_alloc(frames);
564 	if (!pkt->w_bio)
565 		goto no_bio;
566 
567 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
568 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
569 		if (!pkt->pages[i])
570 			goto no_page;
571 	}
572 
573 	spin_lock_init(&pkt->lock);
574 
575 	for (i = 0; i < frames; i++) {
576 		struct bio *bio = pkt_bio_alloc(1);
577 		if (!bio)
578 			goto no_rd_bio;
579 		pkt->r_bios[i] = bio;
580 	}
581 
582 	return pkt;
583 
584 no_rd_bio:
585 	for (i = 0; i < frames; i++) {
586 		struct bio *bio = pkt->r_bios[i];
587 		if (bio)
588 			bio_put(bio);
589 	}
590 
591 no_page:
592 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
593 		if (pkt->pages[i])
594 			__free_page(pkt->pages[i]);
595 	bio_put(pkt->w_bio);
596 no_bio:
597 	kfree(pkt);
598 no_pkt:
599 	return NULL;
600 }
601 
602 /*
603  * Free a packet_data struct
604  */
605 static void pkt_free_packet_data(struct packet_data *pkt)
606 {
607 	int i;
608 
609 	for (i = 0; i < pkt->frames; i++) {
610 		struct bio *bio = pkt->r_bios[i];
611 		if (bio)
612 			bio_put(bio);
613 	}
614 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
615 		__free_page(pkt->pages[i]);
616 	bio_put(pkt->w_bio);
617 	kfree(pkt);
618 }
619 
620 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
621 {
622 	struct packet_data *pkt, *next;
623 
624 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
625 
626 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
627 		pkt_free_packet_data(pkt);
628 	}
629 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
630 }
631 
632 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
633 {
634 	struct packet_data *pkt;
635 
636 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
637 
638 	while (nr_packets > 0) {
639 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
640 		if (!pkt) {
641 			pkt_shrink_pktlist(pd);
642 			return 0;
643 		}
644 		pkt->id = nr_packets;
645 		pkt->pd = pd;
646 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
647 		nr_packets--;
648 	}
649 	return 1;
650 }
651 
652 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
653 {
654 	struct rb_node *n = rb_next(&node->rb_node);
655 	if (!n)
656 		return NULL;
657 	return rb_entry(n, struct pkt_rb_node, rb_node);
658 }
659 
660 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
661 {
662 	rb_erase(&node->rb_node, &pd->bio_queue);
663 	mempool_free(node, pd->rb_pool);
664 	pd->bio_queue_size--;
665 	BUG_ON(pd->bio_queue_size < 0);
666 }
667 
668 /*
669  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
670  */
671 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
672 {
673 	struct rb_node *n = pd->bio_queue.rb_node;
674 	struct rb_node *next;
675 	struct pkt_rb_node *tmp;
676 
677 	if (!n) {
678 		BUG_ON(pd->bio_queue_size > 0);
679 		return NULL;
680 	}
681 
682 	for (;;) {
683 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
684 		if (s <= tmp->bio->bi_sector)
685 			next = n->rb_left;
686 		else
687 			next = n->rb_right;
688 		if (!next)
689 			break;
690 		n = next;
691 	}
692 
693 	if (s > tmp->bio->bi_sector) {
694 		tmp = pkt_rbtree_next(tmp);
695 		if (!tmp)
696 			return NULL;
697 	}
698 	BUG_ON(s > tmp->bio->bi_sector);
699 	return tmp;
700 }
701 
702 /*
703  * Insert a node into the pd->bio_queue rb tree.
704  */
705 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
706 {
707 	struct rb_node **p = &pd->bio_queue.rb_node;
708 	struct rb_node *parent = NULL;
709 	sector_t s = node->bio->bi_sector;
710 	struct pkt_rb_node *tmp;
711 
712 	while (*p) {
713 		parent = *p;
714 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
715 		if (s < tmp->bio->bi_sector)
716 			p = &(*p)->rb_left;
717 		else
718 			p = &(*p)->rb_right;
719 	}
720 	rb_link_node(&node->rb_node, parent, p);
721 	rb_insert_color(&node->rb_node, &pd->bio_queue);
722 	pd->bio_queue_size++;
723 }
724 
725 /*
726  * Add a bio to a single linked list defined by its head and tail pointers.
727  */
728 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
729 {
730 	bio->bi_next = NULL;
731 	if (*list_tail) {
732 		BUG_ON((*list_head) == NULL);
733 		(*list_tail)->bi_next = bio;
734 		(*list_tail) = bio;
735 	} else {
736 		BUG_ON((*list_head) != NULL);
737 		(*list_head) = bio;
738 		(*list_tail) = bio;
739 	}
740 }
741 
742 /*
743  * Remove and return the first bio from a single linked list defined by its
744  * head and tail pointers.
745  */
746 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
747 {
748 	struct bio *bio;
749 
750 	if (*list_head == NULL)
751 		return NULL;
752 
753 	bio = *list_head;
754 	*list_head = bio->bi_next;
755 	if (*list_head == NULL)
756 		*list_tail = NULL;
757 
758 	bio->bi_next = NULL;
759 	return bio;
760 }
761 
762 /*
763  * Send a packet_command to the underlying block device and
764  * wait for completion.
765  */
766 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
767 {
768 	struct request_queue *q = bdev_get_queue(pd->bdev);
769 	struct request *rq;
770 	int ret = 0;
771 
772 	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
773 			     WRITE : READ, __GFP_WAIT);
774 
775 	if (cgc->buflen) {
776 		if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
777 			goto out;
778 	}
779 
780 	rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
781 	memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
782 
783 	rq->timeout = 60*HZ;
784 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
785 	rq->cmd_flags |= REQ_HARDBARRIER;
786 	if (cgc->quiet)
787 		rq->cmd_flags |= REQ_QUIET;
788 
789 	blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
790 	if (rq->errors)
791 		ret = -EIO;
792 out:
793 	blk_put_request(rq);
794 	return ret;
795 }
796 
797 /*
798  * A generic sense dump / resolve mechanism should be implemented across
799  * all ATAPI + SCSI devices.
800  */
801 static void pkt_dump_sense(struct packet_command *cgc)
802 {
803 	static char *info[9] = { "No sense", "Recovered error", "Not ready",
804 				 "Medium error", "Hardware error", "Illegal request",
805 				 "Unit attention", "Data protect", "Blank check" };
806 	int i;
807 	struct request_sense *sense = cgc->sense;
808 
809 	printk(DRIVER_NAME":");
810 	for (i = 0; i < CDROM_PACKET_SIZE; i++)
811 		printk(" %02x", cgc->cmd[i]);
812 	printk(" - ");
813 
814 	if (sense == NULL) {
815 		printk("no sense\n");
816 		return;
817 	}
818 
819 	printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
820 
821 	if (sense->sense_key > 8) {
822 		printk(" (INVALID)\n");
823 		return;
824 	}
825 
826 	printk(" (%s)\n", info[sense->sense_key]);
827 }
828 
829 /*
830  * flush the drive cache to media
831  */
832 static int pkt_flush_cache(struct pktcdvd_device *pd)
833 {
834 	struct packet_command cgc;
835 
836 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
837 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
838 	cgc.quiet = 1;
839 
840 	/*
841 	 * the IMMED bit -- we default to not setting it, although that
842 	 * would allow a much faster close, this is safer
843 	 */
844 #if 0
845 	cgc.cmd[1] = 1 << 1;
846 #endif
847 	return pkt_generic_packet(pd, &cgc);
848 }
849 
850 /*
851  * speed is given as the normal factor, e.g. 4 for 4x
852  */
853 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
854 				unsigned write_speed, unsigned read_speed)
855 {
856 	struct packet_command cgc;
857 	struct request_sense sense;
858 	int ret;
859 
860 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
861 	cgc.sense = &sense;
862 	cgc.cmd[0] = GPCMD_SET_SPEED;
863 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
864 	cgc.cmd[3] = read_speed & 0xff;
865 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
866 	cgc.cmd[5] = write_speed & 0xff;
867 
868 	if ((ret = pkt_generic_packet(pd, &cgc)))
869 		pkt_dump_sense(&cgc);
870 
871 	return ret;
872 }
873 
874 /*
875  * Queue a bio for processing by the low-level CD device. Must be called
876  * from process context.
877  */
878 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
879 {
880 	spin_lock(&pd->iosched.lock);
881 	if (bio_data_dir(bio) == READ) {
882 		pkt_add_list_last(bio, &pd->iosched.read_queue,
883 				  &pd->iosched.read_queue_tail);
884 	} else {
885 		pkt_add_list_last(bio, &pd->iosched.write_queue,
886 				  &pd->iosched.write_queue_tail);
887 	}
888 	spin_unlock(&pd->iosched.lock);
889 
890 	atomic_set(&pd->iosched.attention, 1);
891 	wake_up(&pd->wqueue);
892 }
893 
894 /*
895  * Process the queued read/write requests. This function handles special
896  * requirements for CDRW drives:
897  * - A cache flush command must be inserted before a read request if the
898  *   previous request was a write.
899  * - Switching between reading and writing is slow, so don't do it more often
900  *   than necessary.
901  * - Optimize for throughput at the expense of latency. This means that streaming
902  *   writes will never be interrupted by a read, but if the drive has to seek
903  *   before the next write, switch to reading instead if there are any pending
904  *   read requests.
905  * - Set the read speed according to current usage pattern. When only reading
906  *   from the device, it's best to use the highest possible read speed, but
907  *   when switching often between reading and writing, it's better to have the
908  *   same read and write speeds.
909  */
910 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
911 {
912 
913 	if (atomic_read(&pd->iosched.attention) == 0)
914 		return;
915 	atomic_set(&pd->iosched.attention, 0);
916 
917 	for (;;) {
918 		struct bio *bio;
919 		int reads_queued, writes_queued;
920 
921 		spin_lock(&pd->iosched.lock);
922 		reads_queued = (pd->iosched.read_queue != NULL);
923 		writes_queued = (pd->iosched.write_queue != NULL);
924 		spin_unlock(&pd->iosched.lock);
925 
926 		if (!reads_queued && !writes_queued)
927 			break;
928 
929 		if (pd->iosched.writing) {
930 			int need_write_seek = 1;
931 			spin_lock(&pd->iosched.lock);
932 			bio = pd->iosched.write_queue;
933 			spin_unlock(&pd->iosched.lock);
934 			if (bio && (bio->bi_sector == pd->iosched.last_write))
935 				need_write_seek = 0;
936 			if (need_write_seek && reads_queued) {
937 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
938 					VPRINTK(DRIVER_NAME": write, waiting\n");
939 					break;
940 				}
941 				pkt_flush_cache(pd);
942 				pd->iosched.writing = 0;
943 			}
944 		} else {
945 			if (!reads_queued && writes_queued) {
946 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
947 					VPRINTK(DRIVER_NAME": read, waiting\n");
948 					break;
949 				}
950 				pd->iosched.writing = 1;
951 			}
952 		}
953 
954 		spin_lock(&pd->iosched.lock);
955 		if (pd->iosched.writing) {
956 			bio = pkt_get_list_first(&pd->iosched.write_queue,
957 						 &pd->iosched.write_queue_tail);
958 		} else {
959 			bio = pkt_get_list_first(&pd->iosched.read_queue,
960 						 &pd->iosched.read_queue_tail);
961 		}
962 		spin_unlock(&pd->iosched.lock);
963 
964 		if (!bio)
965 			continue;
966 
967 		if (bio_data_dir(bio) == READ)
968 			pd->iosched.successive_reads += bio->bi_size >> 10;
969 		else {
970 			pd->iosched.successive_reads = 0;
971 			pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
972 		}
973 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
974 			if (pd->read_speed == pd->write_speed) {
975 				pd->read_speed = MAX_SPEED;
976 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
977 			}
978 		} else {
979 			if (pd->read_speed != pd->write_speed) {
980 				pd->read_speed = pd->write_speed;
981 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
982 			}
983 		}
984 
985 		atomic_inc(&pd->cdrw.pending_bios);
986 		generic_make_request(bio);
987 	}
988 }
989 
990 /*
991  * Special care is needed if the underlying block device has a small
992  * max_phys_segments value.
993  */
994 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
995 {
996 	if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
997 		/*
998 		 * The cdrom device can handle one segment/frame
999 		 */
1000 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
1001 		return 0;
1002 	} else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
1003 		/*
1004 		 * We can handle this case at the expense of some extra memory
1005 		 * copies during write operations
1006 		 */
1007 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
1008 		return 0;
1009 	} else {
1010 		printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
1011 		return -EIO;
1012 	}
1013 }
1014 
1015 /*
1016  * Copy CD_FRAMESIZE bytes from src_bio into a destination page
1017  */
1018 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
1019 {
1020 	unsigned int copy_size = CD_FRAMESIZE;
1021 
1022 	while (copy_size > 0) {
1023 		struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
1024 		void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
1025 			src_bvl->bv_offset + offs;
1026 		void *vto = page_address(dst_page) + dst_offs;
1027 		int len = min_t(int, copy_size, src_bvl->bv_len - offs);
1028 
1029 		BUG_ON(len < 0);
1030 		memcpy(vto, vfrom, len);
1031 		kunmap_atomic(vfrom, KM_USER0);
1032 
1033 		seg++;
1034 		offs = 0;
1035 		dst_offs += len;
1036 		copy_size -= len;
1037 	}
1038 }
1039 
1040 /*
1041  * Copy all data for this packet to pkt->pages[], so that
1042  * a) The number of required segments for the write bio is minimized, which
1043  *    is necessary for some scsi controllers.
1044  * b) The data can be used as cache to avoid read requests if we receive a
1045  *    new write request for the same zone.
1046  */
1047 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1048 {
1049 	int f, p, offs;
1050 
1051 	/* Copy all data to pkt->pages[] */
1052 	p = 0;
1053 	offs = 0;
1054 	for (f = 0; f < pkt->frames; f++) {
1055 		if (bvec[f].bv_page != pkt->pages[p]) {
1056 			void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1057 			void *vto = page_address(pkt->pages[p]) + offs;
1058 			memcpy(vto, vfrom, CD_FRAMESIZE);
1059 			kunmap_atomic(vfrom, KM_USER0);
1060 			bvec[f].bv_page = pkt->pages[p];
1061 			bvec[f].bv_offset = offs;
1062 		} else {
1063 			BUG_ON(bvec[f].bv_offset != offs);
1064 		}
1065 		offs += CD_FRAMESIZE;
1066 		if (offs >= PAGE_SIZE) {
1067 			offs = 0;
1068 			p++;
1069 		}
1070 	}
1071 }
1072 
1073 static void pkt_end_io_read(struct bio *bio, int err)
1074 {
1075 	struct packet_data *pkt = bio->bi_private;
1076 	struct pktcdvd_device *pd = pkt->pd;
1077 	BUG_ON(!pd);
1078 
1079 	VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1080 		(unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1081 
1082 	if (err)
1083 		atomic_inc(&pkt->io_errors);
1084 	if (atomic_dec_and_test(&pkt->io_wait)) {
1085 		atomic_inc(&pkt->run_sm);
1086 		wake_up(&pd->wqueue);
1087 	}
1088 	pkt_bio_finished(pd);
1089 }
1090 
1091 static void pkt_end_io_packet_write(struct bio *bio, int err)
1092 {
1093 	struct packet_data *pkt = bio->bi_private;
1094 	struct pktcdvd_device *pd = pkt->pd;
1095 	BUG_ON(!pd);
1096 
1097 	VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1098 
1099 	pd->stats.pkt_ended++;
1100 
1101 	pkt_bio_finished(pd);
1102 	atomic_dec(&pkt->io_wait);
1103 	atomic_inc(&pkt->run_sm);
1104 	wake_up(&pd->wqueue);
1105 }
1106 
1107 /*
1108  * Schedule reads for the holes in a packet
1109  */
1110 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1111 {
1112 	int frames_read = 0;
1113 	struct bio *bio;
1114 	int f;
1115 	char written[PACKET_MAX_SIZE];
1116 
1117 	BUG_ON(!pkt->orig_bios);
1118 
1119 	atomic_set(&pkt->io_wait, 0);
1120 	atomic_set(&pkt->io_errors, 0);
1121 
1122 	/*
1123 	 * Figure out which frames we need to read before we can write.
1124 	 */
1125 	memset(written, 0, sizeof(written));
1126 	spin_lock(&pkt->lock);
1127 	for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1128 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1129 		int num_frames = bio->bi_size / CD_FRAMESIZE;
1130 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1131 		BUG_ON(first_frame < 0);
1132 		BUG_ON(first_frame + num_frames > pkt->frames);
1133 		for (f = first_frame; f < first_frame + num_frames; f++)
1134 			written[f] = 1;
1135 	}
1136 	spin_unlock(&pkt->lock);
1137 
1138 	if (pkt->cache_valid) {
1139 		VPRINTK("pkt_gather_data: zone %llx cached\n",
1140 			(unsigned long long)pkt->sector);
1141 		goto out_account;
1142 	}
1143 
1144 	/*
1145 	 * Schedule reads for missing parts of the packet.
1146 	 */
1147 	for (f = 0; f < pkt->frames; f++) {
1148 		struct bio_vec *vec;
1149 
1150 		int p, offset;
1151 		if (written[f])
1152 			continue;
1153 		bio = pkt->r_bios[f];
1154 		vec = bio->bi_io_vec;
1155 		bio_init(bio);
1156 		bio->bi_max_vecs = 1;
1157 		bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1158 		bio->bi_bdev = pd->bdev;
1159 		bio->bi_end_io = pkt_end_io_read;
1160 		bio->bi_private = pkt;
1161 		bio->bi_io_vec = vec;
1162 		bio->bi_destructor = pkt_bio_destructor;
1163 
1164 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1165 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1166 		VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1167 			f, pkt->pages[p], offset);
1168 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1169 			BUG();
1170 
1171 		atomic_inc(&pkt->io_wait);
1172 		bio->bi_rw = READ;
1173 		pkt_queue_bio(pd, bio);
1174 		frames_read++;
1175 	}
1176 
1177 out_account:
1178 	VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1179 		frames_read, (unsigned long long)pkt->sector);
1180 	pd->stats.pkt_started++;
1181 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1182 }
1183 
1184 /*
1185  * Find a packet matching zone, or the least recently used packet if
1186  * there is no match.
1187  */
1188 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1189 {
1190 	struct packet_data *pkt;
1191 
1192 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1193 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1194 			list_del_init(&pkt->list);
1195 			if (pkt->sector != zone)
1196 				pkt->cache_valid = 0;
1197 			return pkt;
1198 		}
1199 	}
1200 	BUG();
1201 	return NULL;
1202 }
1203 
1204 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1205 {
1206 	if (pkt->cache_valid) {
1207 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1208 	} else {
1209 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1210 	}
1211 }
1212 
1213 /*
1214  * recover a failed write, query for relocation if possible
1215  *
1216  * returns 1 if recovery is possible, or 0 if not
1217  *
1218  */
1219 static int pkt_start_recovery(struct packet_data *pkt)
1220 {
1221 	/*
1222 	 * FIXME. We need help from the file system to implement
1223 	 * recovery handling.
1224 	 */
1225 	return 0;
1226 #if 0
1227 	struct request *rq = pkt->rq;
1228 	struct pktcdvd_device *pd = rq->rq_disk->private_data;
1229 	struct block_device *pkt_bdev;
1230 	struct super_block *sb = NULL;
1231 	unsigned long old_block, new_block;
1232 	sector_t new_sector;
1233 
1234 	pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1235 	if (pkt_bdev) {
1236 		sb = get_super(pkt_bdev);
1237 		bdput(pkt_bdev);
1238 	}
1239 
1240 	if (!sb)
1241 		return 0;
1242 
1243 	if (!sb->s_op || !sb->s_op->relocate_blocks)
1244 		goto out;
1245 
1246 	old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1247 	if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1248 		goto out;
1249 
1250 	new_sector = new_block * (CD_FRAMESIZE >> 9);
1251 	pkt->sector = new_sector;
1252 
1253 	pkt->bio->bi_sector = new_sector;
1254 	pkt->bio->bi_next = NULL;
1255 	pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1256 	pkt->bio->bi_idx = 0;
1257 
1258 	BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
1259 	BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1260 	BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1261 	BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1262 	BUG_ON(pkt->bio->bi_private != pkt);
1263 
1264 	drop_super(sb);
1265 	return 1;
1266 
1267 out:
1268 	drop_super(sb);
1269 	return 0;
1270 #endif
1271 }
1272 
1273 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1274 {
1275 #if PACKET_DEBUG > 1
1276 	static const char *state_name[] = {
1277 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1278 	};
1279 	enum packet_data_state old_state = pkt->state;
1280 	VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1281 		state_name[old_state], state_name[state]);
1282 #endif
1283 	pkt->state = state;
1284 }
1285 
1286 /*
1287  * Scan the work queue to see if we can start a new packet.
1288  * returns non-zero if any work was done.
1289  */
1290 static int pkt_handle_queue(struct pktcdvd_device *pd)
1291 {
1292 	struct packet_data *pkt, *p;
1293 	struct bio *bio = NULL;
1294 	sector_t zone = 0; /* Suppress gcc warning */
1295 	struct pkt_rb_node *node, *first_node;
1296 	struct rb_node *n;
1297 	int wakeup;
1298 
1299 	VPRINTK("handle_queue\n");
1300 
1301 	atomic_set(&pd->scan_queue, 0);
1302 
1303 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1304 		VPRINTK("handle_queue: no pkt\n");
1305 		return 0;
1306 	}
1307 
1308 	/*
1309 	 * Try to find a zone we are not already working on.
1310 	 */
1311 	spin_lock(&pd->lock);
1312 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1313 	if (!first_node) {
1314 		n = rb_first(&pd->bio_queue);
1315 		if (n)
1316 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1317 	}
1318 	node = first_node;
1319 	while (node) {
1320 		bio = node->bio;
1321 		zone = ZONE(bio->bi_sector, pd);
1322 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1323 			if (p->sector == zone) {
1324 				bio = NULL;
1325 				goto try_next_bio;
1326 			}
1327 		}
1328 		break;
1329 try_next_bio:
1330 		node = pkt_rbtree_next(node);
1331 		if (!node) {
1332 			n = rb_first(&pd->bio_queue);
1333 			if (n)
1334 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1335 		}
1336 		if (node == first_node)
1337 			node = NULL;
1338 	}
1339 	spin_unlock(&pd->lock);
1340 	if (!bio) {
1341 		VPRINTK("handle_queue: no bio\n");
1342 		return 0;
1343 	}
1344 
1345 	pkt = pkt_get_packet_data(pd, zone);
1346 
1347 	pd->current_sector = zone + pd->settings.size;
1348 	pkt->sector = zone;
1349 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1350 	pkt->write_size = 0;
1351 
1352 	/*
1353 	 * Scan work queue for bios in the same zone and link them
1354 	 * to this packet.
1355 	 */
1356 	spin_lock(&pd->lock);
1357 	VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1358 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1359 		bio = node->bio;
1360 		VPRINTK("pkt_handle_queue: found zone=%llx\n",
1361 			(unsigned long long)ZONE(bio->bi_sector, pd));
1362 		if (ZONE(bio->bi_sector, pd) != zone)
1363 			break;
1364 		pkt_rbtree_erase(pd, node);
1365 		spin_lock(&pkt->lock);
1366 		pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
1367 		pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1368 		spin_unlock(&pkt->lock);
1369 	}
1370 	/* check write congestion marks, and if bio_queue_size is
1371 	   below, wake up any waiters */
1372 	wakeup = (pd->write_congestion_on > 0
1373 	 		&& pd->bio_queue_size <= pd->write_congestion_off);
1374 	spin_unlock(&pd->lock);
1375 	if (wakeup)
1376 		clear_bdi_congested(&pd->disk->queue->backing_dev_info, WRITE);
1377 
1378 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1379 	pkt_set_state(pkt, PACKET_WAITING_STATE);
1380 	atomic_set(&pkt->run_sm, 1);
1381 
1382 	spin_lock(&pd->cdrw.active_list_lock);
1383 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1384 	spin_unlock(&pd->cdrw.active_list_lock);
1385 
1386 	return 1;
1387 }
1388 
1389 /*
1390  * Assemble a bio to write one packet and queue the bio for processing
1391  * by the underlying block device.
1392  */
1393 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1394 {
1395 	struct bio *bio;
1396 	int f;
1397 	int frames_write;
1398 	struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1399 
1400 	for (f = 0; f < pkt->frames; f++) {
1401 		bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1402 		bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1403 	}
1404 
1405 	/*
1406 	 * Fill-in bvec with data from orig_bios.
1407 	 */
1408 	frames_write = 0;
1409 	spin_lock(&pkt->lock);
1410 	for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1411 		int segment = bio->bi_idx;
1412 		int src_offs = 0;
1413 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1414 		int num_frames = bio->bi_size / CD_FRAMESIZE;
1415 		BUG_ON(first_frame < 0);
1416 		BUG_ON(first_frame + num_frames > pkt->frames);
1417 		for (f = first_frame; f < first_frame + num_frames; f++) {
1418 			struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1419 
1420 			while (src_offs >= src_bvl->bv_len) {
1421 				src_offs -= src_bvl->bv_len;
1422 				segment++;
1423 				BUG_ON(segment >= bio->bi_vcnt);
1424 				src_bvl = bio_iovec_idx(bio, segment);
1425 			}
1426 
1427 			if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1428 				bvec[f].bv_page = src_bvl->bv_page;
1429 				bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1430 			} else {
1431 				pkt_copy_bio_data(bio, segment, src_offs,
1432 						  bvec[f].bv_page, bvec[f].bv_offset);
1433 			}
1434 			src_offs += CD_FRAMESIZE;
1435 			frames_write++;
1436 		}
1437 	}
1438 	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1439 	spin_unlock(&pkt->lock);
1440 
1441 	VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1442 		frames_write, (unsigned long long)pkt->sector);
1443 	BUG_ON(frames_write != pkt->write_size);
1444 
1445 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1446 		pkt_make_local_copy(pkt, bvec);
1447 		pkt->cache_valid = 1;
1448 	} else {
1449 		pkt->cache_valid = 0;
1450 	}
1451 
1452 	/* Start the write request */
1453 	bio_init(pkt->w_bio);
1454 	pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1455 	pkt->w_bio->bi_sector = pkt->sector;
1456 	pkt->w_bio->bi_bdev = pd->bdev;
1457 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1458 	pkt->w_bio->bi_private = pkt;
1459 	pkt->w_bio->bi_io_vec = bvec;
1460 	pkt->w_bio->bi_destructor = pkt_bio_destructor;
1461 	for (f = 0; f < pkt->frames; f++)
1462 		if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1463 			BUG();
1464 	VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1465 
1466 	atomic_set(&pkt->io_wait, 1);
1467 	pkt->w_bio->bi_rw = WRITE;
1468 	pkt_queue_bio(pd, pkt->w_bio);
1469 }
1470 
1471 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1472 {
1473 	struct bio *bio, *next;
1474 
1475 	if (!uptodate)
1476 		pkt->cache_valid = 0;
1477 
1478 	/* Finish all bios corresponding to this packet */
1479 	bio = pkt->orig_bios;
1480 	while (bio) {
1481 		next = bio->bi_next;
1482 		bio->bi_next = NULL;
1483 		bio_endio(bio, uptodate ? 0 : -EIO);
1484 		bio = next;
1485 	}
1486 	pkt->orig_bios = pkt->orig_bios_tail = NULL;
1487 }
1488 
1489 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1490 {
1491 	int uptodate;
1492 
1493 	VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1494 
1495 	for (;;) {
1496 		switch (pkt->state) {
1497 		case PACKET_WAITING_STATE:
1498 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1499 				return;
1500 
1501 			pkt->sleep_time = 0;
1502 			pkt_gather_data(pd, pkt);
1503 			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1504 			break;
1505 
1506 		case PACKET_READ_WAIT_STATE:
1507 			if (atomic_read(&pkt->io_wait) > 0)
1508 				return;
1509 
1510 			if (atomic_read(&pkt->io_errors) > 0) {
1511 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1512 			} else {
1513 				pkt_start_write(pd, pkt);
1514 			}
1515 			break;
1516 
1517 		case PACKET_WRITE_WAIT_STATE:
1518 			if (atomic_read(&pkt->io_wait) > 0)
1519 				return;
1520 
1521 			if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1522 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1523 			} else {
1524 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1525 			}
1526 			break;
1527 
1528 		case PACKET_RECOVERY_STATE:
1529 			if (pkt_start_recovery(pkt)) {
1530 				pkt_start_write(pd, pkt);
1531 			} else {
1532 				VPRINTK("No recovery possible\n");
1533 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1534 			}
1535 			break;
1536 
1537 		case PACKET_FINISHED_STATE:
1538 			uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1539 			pkt_finish_packet(pkt, uptodate);
1540 			return;
1541 
1542 		default:
1543 			BUG();
1544 			break;
1545 		}
1546 	}
1547 }
1548 
1549 static void pkt_handle_packets(struct pktcdvd_device *pd)
1550 {
1551 	struct packet_data *pkt, *next;
1552 
1553 	VPRINTK("pkt_handle_packets\n");
1554 
1555 	/*
1556 	 * Run state machine for active packets
1557 	 */
1558 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1559 		if (atomic_read(&pkt->run_sm) > 0) {
1560 			atomic_set(&pkt->run_sm, 0);
1561 			pkt_run_state_machine(pd, pkt);
1562 		}
1563 	}
1564 
1565 	/*
1566 	 * Move no longer active packets to the free list
1567 	 */
1568 	spin_lock(&pd->cdrw.active_list_lock);
1569 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1570 		if (pkt->state == PACKET_FINISHED_STATE) {
1571 			list_del(&pkt->list);
1572 			pkt_put_packet_data(pd, pkt);
1573 			pkt_set_state(pkt, PACKET_IDLE_STATE);
1574 			atomic_set(&pd->scan_queue, 1);
1575 		}
1576 	}
1577 	spin_unlock(&pd->cdrw.active_list_lock);
1578 }
1579 
1580 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1581 {
1582 	struct packet_data *pkt;
1583 	int i;
1584 
1585 	for (i = 0; i < PACKET_NUM_STATES; i++)
1586 		states[i] = 0;
1587 
1588 	spin_lock(&pd->cdrw.active_list_lock);
1589 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1590 		states[pkt->state]++;
1591 	}
1592 	spin_unlock(&pd->cdrw.active_list_lock);
1593 }
1594 
1595 /*
1596  * kcdrwd is woken up when writes have been queued for one of our
1597  * registered devices
1598  */
1599 static int kcdrwd(void *foobar)
1600 {
1601 	struct pktcdvd_device *pd = foobar;
1602 	struct packet_data *pkt;
1603 	long min_sleep_time, residue;
1604 
1605 	set_user_nice(current, -20);
1606 	set_freezable();
1607 
1608 	for (;;) {
1609 		DECLARE_WAITQUEUE(wait, current);
1610 
1611 		/*
1612 		 * Wait until there is something to do
1613 		 */
1614 		add_wait_queue(&pd->wqueue, &wait);
1615 		for (;;) {
1616 			set_current_state(TASK_INTERRUPTIBLE);
1617 
1618 			/* Check if we need to run pkt_handle_queue */
1619 			if (atomic_read(&pd->scan_queue) > 0)
1620 				goto work_to_do;
1621 
1622 			/* Check if we need to run the state machine for some packet */
1623 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1624 				if (atomic_read(&pkt->run_sm) > 0)
1625 					goto work_to_do;
1626 			}
1627 
1628 			/* Check if we need to process the iosched queues */
1629 			if (atomic_read(&pd->iosched.attention) != 0)
1630 				goto work_to_do;
1631 
1632 			/* Otherwise, go to sleep */
1633 			if (PACKET_DEBUG > 1) {
1634 				int states[PACKET_NUM_STATES];
1635 				pkt_count_states(pd, states);
1636 				VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1637 					states[0], states[1], states[2], states[3],
1638 					states[4], states[5]);
1639 			}
1640 
1641 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1642 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1643 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1644 					min_sleep_time = pkt->sleep_time;
1645 			}
1646 
1647 			generic_unplug_device(bdev_get_queue(pd->bdev));
1648 
1649 			VPRINTK("kcdrwd: sleeping\n");
1650 			residue = schedule_timeout(min_sleep_time);
1651 			VPRINTK("kcdrwd: wake up\n");
1652 
1653 			/* make swsusp happy with our thread */
1654 			try_to_freeze();
1655 
1656 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1657 				if (!pkt->sleep_time)
1658 					continue;
1659 				pkt->sleep_time -= min_sleep_time - residue;
1660 				if (pkt->sleep_time <= 0) {
1661 					pkt->sleep_time = 0;
1662 					atomic_inc(&pkt->run_sm);
1663 				}
1664 			}
1665 
1666 			if (kthread_should_stop())
1667 				break;
1668 		}
1669 work_to_do:
1670 		set_current_state(TASK_RUNNING);
1671 		remove_wait_queue(&pd->wqueue, &wait);
1672 
1673 		if (kthread_should_stop())
1674 			break;
1675 
1676 		/*
1677 		 * if pkt_handle_queue returns true, we can queue
1678 		 * another request.
1679 		 */
1680 		while (pkt_handle_queue(pd))
1681 			;
1682 
1683 		/*
1684 		 * Handle packet state machine
1685 		 */
1686 		pkt_handle_packets(pd);
1687 
1688 		/*
1689 		 * Handle iosched queues
1690 		 */
1691 		pkt_iosched_process_queue(pd);
1692 	}
1693 
1694 	return 0;
1695 }
1696 
1697 static void pkt_print_settings(struct pktcdvd_device *pd)
1698 {
1699 	printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1700 	printk("%u blocks, ", pd->settings.size >> 2);
1701 	printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1702 }
1703 
1704 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1705 {
1706 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1707 
1708 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1709 	cgc->cmd[2] = page_code | (page_control << 6);
1710 	cgc->cmd[7] = cgc->buflen >> 8;
1711 	cgc->cmd[8] = cgc->buflen & 0xff;
1712 	cgc->data_direction = CGC_DATA_READ;
1713 	return pkt_generic_packet(pd, cgc);
1714 }
1715 
1716 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1717 {
1718 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1719 	memset(cgc->buffer, 0, 2);
1720 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1721 	cgc->cmd[1] = 0x10;		/* PF */
1722 	cgc->cmd[7] = cgc->buflen >> 8;
1723 	cgc->cmd[8] = cgc->buflen & 0xff;
1724 	cgc->data_direction = CGC_DATA_WRITE;
1725 	return pkt_generic_packet(pd, cgc);
1726 }
1727 
1728 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1729 {
1730 	struct packet_command cgc;
1731 	int ret;
1732 
1733 	/* set up command and get the disc info */
1734 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1735 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1736 	cgc.cmd[8] = cgc.buflen = 2;
1737 	cgc.quiet = 1;
1738 
1739 	if ((ret = pkt_generic_packet(pd, &cgc)))
1740 		return ret;
1741 
1742 	/* not all drives have the same disc_info length, so requeue
1743 	 * packet with the length the drive tells us it can supply
1744 	 */
1745 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1746 		     sizeof(di->disc_information_length);
1747 
1748 	if (cgc.buflen > sizeof(disc_information))
1749 		cgc.buflen = sizeof(disc_information);
1750 
1751 	cgc.cmd[8] = cgc.buflen;
1752 	return pkt_generic_packet(pd, &cgc);
1753 }
1754 
1755 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1756 {
1757 	struct packet_command cgc;
1758 	int ret;
1759 
1760 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1761 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1762 	cgc.cmd[1] = type & 3;
1763 	cgc.cmd[4] = (track & 0xff00) >> 8;
1764 	cgc.cmd[5] = track & 0xff;
1765 	cgc.cmd[8] = 8;
1766 	cgc.quiet = 1;
1767 
1768 	if ((ret = pkt_generic_packet(pd, &cgc)))
1769 		return ret;
1770 
1771 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1772 		     sizeof(ti->track_information_length);
1773 
1774 	if (cgc.buflen > sizeof(track_information))
1775 		cgc.buflen = sizeof(track_information);
1776 
1777 	cgc.cmd[8] = cgc.buflen;
1778 	return pkt_generic_packet(pd, &cgc);
1779 }
1780 
1781 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1782 						long *last_written)
1783 {
1784 	disc_information di;
1785 	track_information ti;
1786 	__u32 last_track;
1787 	int ret = -1;
1788 
1789 	if ((ret = pkt_get_disc_info(pd, &di)))
1790 		return ret;
1791 
1792 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1793 	if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1794 		return ret;
1795 
1796 	/* if this track is blank, try the previous. */
1797 	if (ti.blank) {
1798 		last_track--;
1799 		if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1800 			return ret;
1801 	}
1802 
1803 	/* if last recorded field is valid, return it. */
1804 	if (ti.lra_v) {
1805 		*last_written = be32_to_cpu(ti.last_rec_address);
1806 	} else {
1807 		/* make it up instead */
1808 		*last_written = be32_to_cpu(ti.track_start) +
1809 				be32_to_cpu(ti.track_size);
1810 		if (ti.free_blocks)
1811 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1812 	}
1813 	return 0;
1814 }
1815 
1816 /*
1817  * write mode select package based on pd->settings
1818  */
1819 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1820 {
1821 	struct packet_command cgc;
1822 	struct request_sense sense;
1823 	write_param_page *wp;
1824 	char buffer[128];
1825 	int ret, size;
1826 
1827 	/* doesn't apply to DVD+RW or DVD-RAM */
1828 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1829 		return 0;
1830 
1831 	memset(buffer, 0, sizeof(buffer));
1832 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1833 	cgc.sense = &sense;
1834 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1835 		pkt_dump_sense(&cgc);
1836 		return ret;
1837 	}
1838 
1839 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1840 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1841 	if (size > sizeof(buffer))
1842 		size = sizeof(buffer);
1843 
1844 	/*
1845 	 * now get it all
1846 	 */
1847 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1848 	cgc.sense = &sense;
1849 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1850 		pkt_dump_sense(&cgc);
1851 		return ret;
1852 	}
1853 
1854 	/*
1855 	 * write page is offset header + block descriptor length
1856 	 */
1857 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1858 
1859 	wp->fp = pd->settings.fp;
1860 	wp->track_mode = pd->settings.track_mode;
1861 	wp->write_type = pd->settings.write_type;
1862 	wp->data_block_type = pd->settings.block_mode;
1863 
1864 	wp->multi_session = 0;
1865 
1866 #ifdef PACKET_USE_LS
1867 	wp->link_size = 7;
1868 	wp->ls_v = 1;
1869 #endif
1870 
1871 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1872 		wp->session_format = 0;
1873 		wp->subhdr2 = 0x20;
1874 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1875 		wp->session_format = 0x20;
1876 		wp->subhdr2 = 8;
1877 #if 0
1878 		wp->mcn[0] = 0x80;
1879 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1880 #endif
1881 	} else {
1882 		/*
1883 		 * paranoia
1884 		 */
1885 		printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1886 		return 1;
1887 	}
1888 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1889 
1890 	cgc.buflen = cgc.cmd[8] = size;
1891 	if ((ret = pkt_mode_select(pd, &cgc))) {
1892 		pkt_dump_sense(&cgc);
1893 		return ret;
1894 	}
1895 
1896 	pkt_print_settings(pd);
1897 	return 0;
1898 }
1899 
1900 /*
1901  * 1 -- we can write to this track, 0 -- we can't
1902  */
1903 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1904 {
1905 	switch (pd->mmc3_profile) {
1906 		case 0x1a: /* DVD+RW */
1907 		case 0x12: /* DVD-RAM */
1908 			/* The track is always writable on DVD+RW/DVD-RAM */
1909 			return 1;
1910 		default:
1911 			break;
1912 	}
1913 
1914 	if (!ti->packet || !ti->fp)
1915 		return 0;
1916 
1917 	/*
1918 	 * "good" settings as per Mt Fuji.
1919 	 */
1920 	if (ti->rt == 0 && ti->blank == 0)
1921 		return 1;
1922 
1923 	if (ti->rt == 0 && ti->blank == 1)
1924 		return 1;
1925 
1926 	if (ti->rt == 1 && ti->blank == 0)
1927 		return 1;
1928 
1929 	printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1930 	return 0;
1931 }
1932 
1933 /*
1934  * 1 -- we can write to this disc, 0 -- we can't
1935  */
1936 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1937 {
1938 	switch (pd->mmc3_profile) {
1939 		case 0x0a: /* CD-RW */
1940 		case 0xffff: /* MMC3 not supported */
1941 			break;
1942 		case 0x1a: /* DVD+RW */
1943 		case 0x13: /* DVD-RW */
1944 		case 0x12: /* DVD-RAM */
1945 			return 1;
1946 		default:
1947 			VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1948 			return 0;
1949 	}
1950 
1951 	/*
1952 	 * for disc type 0xff we should probably reserve a new track.
1953 	 * but i'm not sure, should we leave this to user apps? probably.
1954 	 */
1955 	if (di->disc_type == 0xff) {
1956 		printk(DRIVER_NAME": Unknown disc. No track?\n");
1957 		return 0;
1958 	}
1959 
1960 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1961 		printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1962 		return 0;
1963 	}
1964 
1965 	if (di->erasable == 0) {
1966 		printk(DRIVER_NAME": Disc not erasable\n");
1967 		return 0;
1968 	}
1969 
1970 	if (di->border_status == PACKET_SESSION_RESERVED) {
1971 		printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1972 		return 0;
1973 	}
1974 
1975 	return 1;
1976 }
1977 
1978 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1979 {
1980 	struct packet_command cgc;
1981 	unsigned char buf[12];
1982 	disc_information di;
1983 	track_information ti;
1984 	int ret, track;
1985 
1986 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1987 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1988 	cgc.cmd[8] = 8;
1989 	ret = pkt_generic_packet(pd, &cgc);
1990 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1991 
1992 	memset(&di, 0, sizeof(disc_information));
1993 	memset(&ti, 0, sizeof(track_information));
1994 
1995 	if ((ret = pkt_get_disc_info(pd, &di))) {
1996 		printk("failed get_disc\n");
1997 		return ret;
1998 	}
1999 
2000 	if (!pkt_writable_disc(pd, &di))
2001 		return -EROFS;
2002 
2003 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
2004 
2005 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
2006 	if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
2007 		printk(DRIVER_NAME": failed get_track\n");
2008 		return ret;
2009 	}
2010 
2011 	if (!pkt_writable_track(pd, &ti)) {
2012 		printk(DRIVER_NAME": can't write to this track\n");
2013 		return -EROFS;
2014 	}
2015 
2016 	/*
2017 	 * we keep packet size in 512 byte units, makes it easier to
2018 	 * deal with request calculations.
2019 	 */
2020 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
2021 	if (pd->settings.size == 0) {
2022 		printk(DRIVER_NAME": detected zero packet size!\n");
2023 		return -ENXIO;
2024 	}
2025 	if (pd->settings.size > PACKET_MAX_SECTORS) {
2026 		printk(DRIVER_NAME": packet size is too big\n");
2027 		return -EROFS;
2028 	}
2029 	pd->settings.fp = ti.fp;
2030 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
2031 
2032 	if (ti.nwa_v) {
2033 		pd->nwa = be32_to_cpu(ti.next_writable);
2034 		set_bit(PACKET_NWA_VALID, &pd->flags);
2035 	}
2036 
2037 	/*
2038 	 * in theory we could use lra on -RW media as well and just zero
2039 	 * blocks that haven't been written yet, but in practice that
2040 	 * is just a no-go. we'll use that for -R, naturally.
2041 	 */
2042 	if (ti.lra_v) {
2043 		pd->lra = be32_to_cpu(ti.last_rec_address);
2044 		set_bit(PACKET_LRA_VALID, &pd->flags);
2045 	} else {
2046 		pd->lra = 0xffffffff;
2047 		set_bit(PACKET_LRA_VALID, &pd->flags);
2048 	}
2049 
2050 	/*
2051 	 * fine for now
2052 	 */
2053 	pd->settings.link_loss = 7;
2054 	pd->settings.write_type = 0;	/* packet */
2055 	pd->settings.track_mode = ti.track_mode;
2056 
2057 	/*
2058 	 * mode1 or mode2 disc
2059 	 */
2060 	switch (ti.data_mode) {
2061 		case PACKET_MODE1:
2062 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
2063 			break;
2064 		case PACKET_MODE2:
2065 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
2066 			break;
2067 		default:
2068 			printk(DRIVER_NAME": unknown data mode\n");
2069 			return -EROFS;
2070 	}
2071 	return 0;
2072 }
2073 
2074 /*
2075  * enable/disable write caching on drive
2076  */
2077 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2078 						int set)
2079 {
2080 	struct packet_command cgc;
2081 	struct request_sense sense;
2082 	unsigned char buf[64];
2083 	int ret;
2084 
2085 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2086 	cgc.sense = &sense;
2087 	cgc.buflen = pd->mode_offset + 12;
2088 
2089 	/*
2090 	 * caching mode page might not be there, so quiet this command
2091 	 */
2092 	cgc.quiet = 1;
2093 
2094 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2095 		return ret;
2096 
2097 	buf[pd->mode_offset + 10] |= (!!set << 2);
2098 
2099 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2100 	ret = pkt_mode_select(pd, &cgc);
2101 	if (ret) {
2102 		printk(DRIVER_NAME": write caching control failed\n");
2103 		pkt_dump_sense(&cgc);
2104 	} else if (!ret && set)
2105 		printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2106 	return ret;
2107 }
2108 
2109 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2110 {
2111 	struct packet_command cgc;
2112 
2113 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2114 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2115 	cgc.cmd[4] = lockflag ? 1 : 0;
2116 	return pkt_generic_packet(pd, &cgc);
2117 }
2118 
2119 /*
2120  * Returns drive maximum write speed
2121  */
2122 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2123 						unsigned *write_speed)
2124 {
2125 	struct packet_command cgc;
2126 	struct request_sense sense;
2127 	unsigned char buf[256+18];
2128 	unsigned char *cap_buf;
2129 	int ret, offset;
2130 
2131 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2132 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2133 	cgc.sense = &sense;
2134 
2135 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2136 	if (ret) {
2137 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2138 			     sizeof(struct mode_page_header);
2139 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2140 		if (ret) {
2141 			pkt_dump_sense(&cgc);
2142 			return ret;
2143 		}
2144 	}
2145 
2146 	offset = 20;			    /* Obsoleted field, used by older drives */
2147 	if (cap_buf[1] >= 28)
2148 		offset = 28;		    /* Current write speed selected */
2149 	if (cap_buf[1] >= 30) {
2150 		/* If the drive reports at least one "Logical Unit Write
2151 		 * Speed Performance Descriptor Block", use the information
2152 		 * in the first block. (contains the highest speed)
2153 		 */
2154 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2155 		if (num_spdb > 0)
2156 			offset = 34;
2157 	}
2158 
2159 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2160 	return 0;
2161 }
2162 
2163 /* These tables from cdrecord - I don't have orange book */
2164 /* standard speed CD-RW (1-4x) */
2165 static char clv_to_speed[16] = {
2166 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2167 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2168 };
2169 /* high speed CD-RW (-10x) */
2170 static char hs_clv_to_speed[16] = {
2171 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2172 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2173 };
2174 /* ultra high speed CD-RW */
2175 static char us_clv_to_speed[16] = {
2176 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2177 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2178 };
2179 
2180 /*
2181  * reads the maximum media speed from ATIP
2182  */
2183 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2184 						unsigned *speed)
2185 {
2186 	struct packet_command cgc;
2187 	struct request_sense sense;
2188 	unsigned char buf[64];
2189 	unsigned int size, st, sp;
2190 	int ret;
2191 
2192 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2193 	cgc.sense = &sense;
2194 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2195 	cgc.cmd[1] = 2;
2196 	cgc.cmd[2] = 4; /* READ ATIP */
2197 	cgc.cmd[8] = 2;
2198 	ret = pkt_generic_packet(pd, &cgc);
2199 	if (ret) {
2200 		pkt_dump_sense(&cgc);
2201 		return ret;
2202 	}
2203 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2204 	if (size > sizeof(buf))
2205 		size = sizeof(buf);
2206 
2207 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2208 	cgc.sense = &sense;
2209 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2210 	cgc.cmd[1] = 2;
2211 	cgc.cmd[2] = 4;
2212 	cgc.cmd[8] = size;
2213 	ret = pkt_generic_packet(pd, &cgc);
2214 	if (ret) {
2215 		pkt_dump_sense(&cgc);
2216 		return ret;
2217 	}
2218 
2219 	if (!(buf[6] & 0x40)) {
2220 		printk(DRIVER_NAME": Disc type is not CD-RW\n");
2221 		return 1;
2222 	}
2223 	if (!(buf[6] & 0x4)) {
2224 		printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2225 		return 1;
2226 	}
2227 
2228 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2229 
2230 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2231 
2232 	/* Info from cdrecord */
2233 	switch (st) {
2234 		case 0: /* standard speed */
2235 			*speed = clv_to_speed[sp];
2236 			break;
2237 		case 1: /* high speed */
2238 			*speed = hs_clv_to_speed[sp];
2239 			break;
2240 		case 2: /* ultra high speed */
2241 			*speed = us_clv_to_speed[sp];
2242 			break;
2243 		default:
2244 			printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2245 			return 1;
2246 	}
2247 	if (*speed) {
2248 		printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2249 		return 0;
2250 	} else {
2251 		printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2252 		return 1;
2253 	}
2254 }
2255 
2256 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2257 {
2258 	struct packet_command cgc;
2259 	struct request_sense sense;
2260 	int ret;
2261 
2262 	VPRINTK(DRIVER_NAME": Performing OPC\n");
2263 
2264 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2265 	cgc.sense = &sense;
2266 	cgc.timeout = 60*HZ;
2267 	cgc.cmd[0] = GPCMD_SEND_OPC;
2268 	cgc.cmd[1] = 1;
2269 	if ((ret = pkt_generic_packet(pd, &cgc)))
2270 		pkt_dump_sense(&cgc);
2271 	return ret;
2272 }
2273 
2274 static int pkt_open_write(struct pktcdvd_device *pd)
2275 {
2276 	int ret;
2277 	unsigned int write_speed, media_write_speed, read_speed;
2278 
2279 	if ((ret = pkt_probe_settings(pd))) {
2280 		VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2281 		return ret;
2282 	}
2283 
2284 	if ((ret = pkt_set_write_settings(pd))) {
2285 		DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2286 		return -EIO;
2287 	}
2288 
2289 	pkt_write_caching(pd, USE_WCACHING);
2290 
2291 	if ((ret = pkt_get_max_speed(pd, &write_speed)))
2292 		write_speed = 16 * 177;
2293 	switch (pd->mmc3_profile) {
2294 		case 0x13: /* DVD-RW */
2295 		case 0x1a: /* DVD+RW */
2296 		case 0x12: /* DVD-RAM */
2297 			DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2298 			break;
2299 		default:
2300 			if ((ret = pkt_media_speed(pd, &media_write_speed)))
2301 				media_write_speed = 16;
2302 			write_speed = min(write_speed, media_write_speed * 177);
2303 			DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2304 			break;
2305 	}
2306 	read_speed = write_speed;
2307 
2308 	if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2309 		DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2310 		return -EIO;
2311 	}
2312 	pd->write_speed = write_speed;
2313 	pd->read_speed = read_speed;
2314 
2315 	if ((ret = pkt_perform_opc(pd))) {
2316 		DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2317 	}
2318 
2319 	return 0;
2320 }
2321 
2322 /*
2323  * called at open time.
2324  */
2325 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
2326 {
2327 	int ret;
2328 	long lba;
2329 	struct request_queue *q;
2330 
2331 	/*
2332 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2333 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2334 	 * so bdget() can't fail.
2335 	 */
2336 	bdget(pd->bdev->bd_dev);
2337 	if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
2338 		goto out;
2339 
2340 	if ((ret = bd_claim(pd->bdev, pd)))
2341 		goto out_putdev;
2342 
2343 	if ((ret = pkt_get_last_written(pd, &lba))) {
2344 		printk(DRIVER_NAME": pkt_get_last_written failed\n");
2345 		goto out_unclaim;
2346 	}
2347 
2348 	set_capacity(pd->disk, lba << 2);
2349 	set_capacity(pd->bdev->bd_disk, lba << 2);
2350 	bd_set_size(pd->bdev, (loff_t)lba << 11);
2351 
2352 	q = bdev_get_queue(pd->bdev);
2353 	if (write) {
2354 		if ((ret = pkt_open_write(pd)))
2355 			goto out_unclaim;
2356 		/*
2357 		 * Some CDRW drives can not handle writes larger than one packet,
2358 		 * even if the size is a multiple of the packet size.
2359 		 */
2360 		spin_lock_irq(q->queue_lock);
2361 		blk_queue_max_sectors(q, pd->settings.size);
2362 		spin_unlock_irq(q->queue_lock);
2363 		set_bit(PACKET_WRITABLE, &pd->flags);
2364 	} else {
2365 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2366 		clear_bit(PACKET_WRITABLE, &pd->flags);
2367 	}
2368 
2369 	if ((ret = pkt_set_segment_merging(pd, q)))
2370 		goto out_unclaim;
2371 
2372 	if (write) {
2373 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2374 			printk(DRIVER_NAME": not enough memory for buffers\n");
2375 			ret = -ENOMEM;
2376 			goto out_unclaim;
2377 		}
2378 		printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2379 	}
2380 
2381 	return 0;
2382 
2383 out_unclaim:
2384 	bd_release(pd->bdev);
2385 out_putdev:
2386 	blkdev_put(pd->bdev);
2387 out:
2388 	return ret;
2389 }
2390 
2391 /*
2392  * called when the device is closed. makes sure that the device flushes
2393  * the internal cache before we close.
2394  */
2395 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2396 {
2397 	if (flush && pkt_flush_cache(pd))
2398 		DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2399 
2400 	pkt_lock_door(pd, 0);
2401 
2402 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2403 	bd_release(pd->bdev);
2404 	blkdev_put(pd->bdev);
2405 
2406 	pkt_shrink_pktlist(pd);
2407 }
2408 
2409 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2410 {
2411 	if (dev_minor >= MAX_WRITERS)
2412 		return NULL;
2413 	return pkt_devs[dev_minor];
2414 }
2415 
2416 static int pkt_open(struct inode *inode, struct file *file)
2417 {
2418 	struct pktcdvd_device *pd = NULL;
2419 	int ret;
2420 
2421 	VPRINTK(DRIVER_NAME": entering open\n");
2422 
2423 	mutex_lock(&ctl_mutex);
2424 	pd = pkt_find_dev_from_minor(iminor(inode));
2425 	if (!pd) {
2426 		ret = -ENODEV;
2427 		goto out;
2428 	}
2429 	BUG_ON(pd->refcnt < 0);
2430 
2431 	pd->refcnt++;
2432 	if (pd->refcnt > 1) {
2433 		if ((file->f_mode & FMODE_WRITE) &&
2434 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2435 			ret = -EBUSY;
2436 			goto out_dec;
2437 		}
2438 	} else {
2439 		ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE);
2440 		if (ret)
2441 			goto out_dec;
2442 		/*
2443 		 * needed here as well, since ext2 (among others) may change
2444 		 * the blocksize at mount time
2445 		 */
2446 		set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2447 	}
2448 
2449 	mutex_unlock(&ctl_mutex);
2450 	return 0;
2451 
2452 out_dec:
2453 	pd->refcnt--;
2454 out:
2455 	VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2456 	mutex_unlock(&ctl_mutex);
2457 	return ret;
2458 }
2459 
2460 static int pkt_close(struct inode *inode, struct file *file)
2461 {
2462 	struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2463 	int ret = 0;
2464 
2465 	mutex_lock(&ctl_mutex);
2466 	pd->refcnt--;
2467 	BUG_ON(pd->refcnt < 0);
2468 	if (pd->refcnt == 0) {
2469 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2470 		pkt_release_dev(pd, flush);
2471 	}
2472 	mutex_unlock(&ctl_mutex);
2473 	return ret;
2474 }
2475 
2476 
2477 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2478 {
2479 	struct packet_stacked_data *psd = bio->bi_private;
2480 	struct pktcdvd_device *pd = psd->pd;
2481 
2482 	bio_put(bio);
2483 	bio_endio(psd->bio, err);
2484 	mempool_free(psd, psd_pool);
2485 	pkt_bio_finished(pd);
2486 }
2487 
2488 static int pkt_make_request(struct request_queue *q, struct bio *bio)
2489 {
2490 	struct pktcdvd_device *pd;
2491 	char b[BDEVNAME_SIZE];
2492 	sector_t zone;
2493 	struct packet_data *pkt;
2494 	int was_empty, blocked_bio;
2495 	struct pkt_rb_node *node;
2496 
2497 	pd = q->queuedata;
2498 	if (!pd) {
2499 		printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2500 		goto end_io;
2501 	}
2502 
2503 	/*
2504 	 * Clone READ bios so we can have our own bi_end_io callback.
2505 	 */
2506 	if (bio_data_dir(bio) == READ) {
2507 		struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2508 		struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2509 
2510 		psd->pd = pd;
2511 		psd->bio = bio;
2512 		cloned_bio->bi_bdev = pd->bdev;
2513 		cloned_bio->bi_private = psd;
2514 		cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2515 		pd->stats.secs_r += bio->bi_size >> 9;
2516 		pkt_queue_bio(pd, cloned_bio);
2517 		return 0;
2518 	}
2519 
2520 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2521 		printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2522 			pd->name, (unsigned long long)bio->bi_sector);
2523 		goto end_io;
2524 	}
2525 
2526 	if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2527 		printk(DRIVER_NAME": wrong bio size\n");
2528 		goto end_io;
2529 	}
2530 
2531 	blk_queue_bounce(q, &bio);
2532 
2533 	zone = ZONE(bio->bi_sector, pd);
2534 	VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2535 		(unsigned long long)bio->bi_sector,
2536 		(unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2537 
2538 	/* Check if we have to split the bio */
2539 	{
2540 		struct bio_pair *bp;
2541 		sector_t last_zone;
2542 		int first_sectors;
2543 
2544 		last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2545 		if (last_zone != zone) {
2546 			BUG_ON(last_zone != zone + pd->settings.size);
2547 			first_sectors = last_zone - bio->bi_sector;
2548 			bp = bio_split(bio, bio_split_pool, first_sectors);
2549 			BUG_ON(!bp);
2550 			pkt_make_request(q, &bp->bio1);
2551 			pkt_make_request(q, &bp->bio2);
2552 			bio_pair_release(bp);
2553 			return 0;
2554 		}
2555 	}
2556 
2557 	/*
2558 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2559 	 * just append this bio to that packet.
2560 	 */
2561 	spin_lock(&pd->cdrw.active_list_lock);
2562 	blocked_bio = 0;
2563 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2564 		if (pkt->sector == zone) {
2565 			spin_lock(&pkt->lock);
2566 			if ((pkt->state == PACKET_WAITING_STATE) ||
2567 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2568 				pkt_add_list_last(bio, &pkt->orig_bios,
2569 						  &pkt->orig_bios_tail);
2570 				pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2571 				if ((pkt->write_size >= pkt->frames) &&
2572 				    (pkt->state == PACKET_WAITING_STATE)) {
2573 					atomic_inc(&pkt->run_sm);
2574 					wake_up(&pd->wqueue);
2575 				}
2576 				spin_unlock(&pkt->lock);
2577 				spin_unlock(&pd->cdrw.active_list_lock);
2578 				return 0;
2579 			} else {
2580 				blocked_bio = 1;
2581 			}
2582 			spin_unlock(&pkt->lock);
2583 		}
2584 	}
2585 	spin_unlock(&pd->cdrw.active_list_lock);
2586 
2587  	/*
2588 	 * Test if there is enough room left in the bio work queue
2589 	 * (queue size >= congestion on mark).
2590 	 * If not, wait till the work queue size is below the congestion off mark.
2591 	 */
2592 	spin_lock(&pd->lock);
2593 	if (pd->write_congestion_on > 0
2594 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2595 		set_bdi_congested(&q->backing_dev_info, WRITE);
2596 		do {
2597 			spin_unlock(&pd->lock);
2598 			congestion_wait(WRITE, HZ);
2599 			spin_lock(&pd->lock);
2600 		} while(pd->bio_queue_size > pd->write_congestion_off);
2601 	}
2602 	spin_unlock(&pd->lock);
2603 
2604 	/*
2605 	 * No matching packet found. Store the bio in the work queue.
2606 	 */
2607 	node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2608 	node->bio = bio;
2609 	spin_lock(&pd->lock);
2610 	BUG_ON(pd->bio_queue_size < 0);
2611 	was_empty = (pd->bio_queue_size == 0);
2612 	pkt_rbtree_insert(pd, node);
2613 	spin_unlock(&pd->lock);
2614 
2615 	/*
2616 	 * Wake up the worker thread.
2617 	 */
2618 	atomic_set(&pd->scan_queue, 1);
2619 	if (was_empty) {
2620 		/* This wake_up is required for correct operation */
2621 		wake_up(&pd->wqueue);
2622 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2623 		/*
2624 		 * This wake up is not required for correct operation,
2625 		 * but improves performance in some cases.
2626 		 */
2627 		wake_up(&pd->wqueue);
2628 	}
2629 	return 0;
2630 end_io:
2631 	bio_io_error(bio);
2632 	return 0;
2633 }
2634 
2635 
2636 
2637 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2638 			  struct bio_vec *bvec)
2639 {
2640 	struct pktcdvd_device *pd = q->queuedata;
2641 	sector_t zone = ZONE(bmd->bi_sector, pd);
2642 	int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2643 	int remaining = (pd->settings.size << 9) - used;
2644 	int remaining2;
2645 
2646 	/*
2647 	 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2648 	 * boundary, pkt_make_request() will split the bio.
2649 	 */
2650 	remaining2 = PAGE_SIZE - bmd->bi_size;
2651 	remaining = max(remaining, remaining2);
2652 
2653 	BUG_ON(remaining < 0);
2654 	return remaining;
2655 }
2656 
2657 static void pkt_init_queue(struct pktcdvd_device *pd)
2658 {
2659 	struct request_queue *q = pd->disk->queue;
2660 
2661 	blk_queue_make_request(q, pkt_make_request);
2662 	blk_queue_hardsect_size(q, CD_FRAMESIZE);
2663 	blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2664 	blk_queue_merge_bvec(q, pkt_merge_bvec);
2665 	q->queuedata = pd;
2666 }
2667 
2668 static int pkt_seq_show(struct seq_file *m, void *p)
2669 {
2670 	struct pktcdvd_device *pd = m->private;
2671 	char *msg;
2672 	char bdev_buf[BDEVNAME_SIZE];
2673 	int states[PACKET_NUM_STATES];
2674 
2675 	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2676 		   bdevname(pd->bdev, bdev_buf));
2677 
2678 	seq_printf(m, "\nSettings:\n");
2679 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2680 
2681 	if (pd->settings.write_type == 0)
2682 		msg = "Packet";
2683 	else
2684 		msg = "Unknown";
2685 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2686 
2687 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2688 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2689 
2690 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2691 
2692 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2693 		msg = "Mode 1";
2694 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2695 		msg = "Mode 2";
2696 	else
2697 		msg = "Unknown";
2698 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2699 
2700 	seq_printf(m, "\nStatistics:\n");
2701 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2702 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2703 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2704 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2705 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2706 
2707 	seq_printf(m, "\nMisc:\n");
2708 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2709 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2710 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2711 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2712 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2713 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2714 
2715 	seq_printf(m, "\nQueue state:\n");
2716 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2717 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2718 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2719 
2720 	pkt_count_states(pd, states);
2721 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2722 		   states[0], states[1], states[2], states[3], states[4], states[5]);
2723 
2724 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2725 			pd->write_congestion_off,
2726 			pd->write_congestion_on);
2727 	return 0;
2728 }
2729 
2730 static int pkt_seq_open(struct inode *inode, struct file *file)
2731 {
2732 	return single_open(file, pkt_seq_show, PDE(inode)->data);
2733 }
2734 
2735 static const struct file_operations pkt_proc_fops = {
2736 	.open	= pkt_seq_open,
2737 	.read	= seq_read,
2738 	.llseek	= seq_lseek,
2739 	.release = single_release
2740 };
2741 
2742 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2743 {
2744 	int i;
2745 	int ret = 0;
2746 	char b[BDEVNAME_SIZE];
2747 	struct block_device *bdev;
2748 
2749 	if (pd->pkt_dev == dev) {
2750 		printk(DRIVER_NAME": Recursive setup not allowed\n");
2751 		return -EBUSY;
2752 	}
2753 	for (i = 0; i < MAX_WRITERS; i++) {
2754 		struct pktcdvd_device *pd2 = pkt_devs[i];
2755 		if (!pd2)
2756 			continue;
2757 		if (pd2->bdev->bd_dev == dev) {
2758 			printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2759 			return -EBUSY;
2760 		}
2761 		if (pd2->pkt_dev == dev) {
2762 			printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2763 			return -EBUSY;
2764 		}
2765 	}
2766 
2767 	bdev = bdget(dev);
2768 	if (!bdev)
2769 		return -ENOMEM;
2770 	ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2771 	if (ret)
2772 		return ret;
2773 
2774 	/* This is safe, since we have a reference from open(). */
2775 	__module_get(THIS_MODULE);
2776 
2777 	pd->bdev = bdev;
2778 	set_blocksize(bdev, CD_FRAMESIZE);
2779 
2780 	pkt_init_queue(pd);
2781 
2782 	atomic_set(&pd->cdrw.pending_bios, 0);
2783 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2784 	if (IS_ERR(pd->cdrw.thread)) {
2785 		printk(DRIVER_NAME": can't start kernel thread\n");
2786 		ret = -ENOMEM;
2787 		goto out_mem;
2788 	}
2789 
2790 	proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2791 	DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2792 	return 0;
2793 
2794 out_mem:
2795 	blkdev_put(bdev);
2796 	/* This is safe: open() is still holding a reference. */
2797 	module_put(THIS_MODULE);
2798 	return ret;
2799 }
2800 
2801 static long pkt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2802 {
2803 	struct inode *inode = file->f_path.dentry->d_inode;
2804 	struct pktcdvd_device *pd;
2805 	long ret;
2806 
2807 	lock_kernel();
2808 	pd = inode->i_bdev->bd_disk->private_data;
2809 
2810 	VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2811 
2812 	switch (cmd) {
2813 	/*
2814 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2815 	 */
2816 	case CDROMMULTISESSION:
2817 	case CDROMREADTOCENTRY:
2818 	case CDROM_LAST_WRITTEN:
2819 	case CDROM_SEND_PACKET:
2820 	case SCSI_IOCTL_SEND_COMMAND:
2821 		ret = blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2822 		break;
2823 
2824 	case CDROMEJECT:
2825 		/*
2826 		 * The door gets locked when the device is opened, so we
2827 		 * have to unlock it or else the eject command fails.
2828 		 */
2829 		if (pd->refcnt == 1)
2830 			pkt_lock_door(pd, 0);
2831 		ret = blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2832 		break;
2833 
2834 	default:
2835 		VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2836 		ret = -ENOTTY;
2837 	}
2838 	unlock_kernel();
2839 	return ret;
2840 }
2841 
2842 static int pkt_media_changed(struct gendisk *disk)
2843 {
2844 	struct pktcdvd_device *pd = disk->private_data;
2845 	struct gendisk *attached_disk;
2846 
2847 	if (!pd)
2848 		return 0;
2849 	if (!pd->bdev)
2850 		return 0;
2851 	attached_disk = pd->bdev->bd_disk;
2852 	if (!attached_disk)
2853 		return 0;
2854 	return attached_disk->fops->media_changed(attached_disk);
2855 }
2856 
2857 static struct block_device_operations pktcdvd_ops = {
2858 	.owner =		THIS_MODULE,
2859 	.open =			pkt_open,
2860 	.release =		pkt_close,
2861 	.unlocked_ioctl =	pkt_ioctl,
2862 	.media_changed =	pkt_media_changed,
2863 };
2864 
2865 /*
2866  * Set up mapping from pktcdvd device to CD-ROM device.
2867  */
2868 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2869 {
2870 	int idx;
2871 	int ret = -ENOMEM;
2872 	struct pktcdvd_device *pd;
2873 	struct gendisk *disk;
2874 
2875 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2876 
2877 	for (idx = 0; idx < MAX_WRITERS; idx++)
2878 		if (!pkt_devs[idx])
2879 			break;
2880 	if (idx == MAX_WRITERS) {
2881 		printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2882 		ret = -EBUSY;
2883 		goto out_mutex;
2884 	}
2885 
2886 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2887 	if (!pd)
2888 		goto out_mutex;
2889 
2890 	pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2891 						  sizeof(struct pkt_rb_node));
2892 	if (!pd->rb_pool)
2893 		goto out_mem;
2894 
2895 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2896 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2897 	spin_lock_init(&pd->cdrw.active_list_lock);
2898 
2899 	spin_lock_init(&pd->lock);
2900 	spin_lock_init(&pd->iosched.lock);
2901 	sprintf(pd->name, DRIVER_NAME"%d", idx);
2902 	init_waitqueue_head(&pd->wqueue);
2903 	pd->bio_queue = RB_ROOT;
2904 
2905 	pd->write_congestion_on  = write_congestion_on;
2906 	pd->write_congestion_off = write_congestion_off;
2907 
2908 	disk = alloc_disk(1);
2909 	if (!disk)
2910 		goto out_mem;
2911 	pd->disk = disk;
2912 	disk->major = pktdev_major;
2913 	disk->first_minor = idx;
2914 	disk->fops = &pktcdvd_ops;
2915 	disk->flags = GENHD_FL_REMOVABLE;
2916 	strcpy(disk->disk_name, pd->name);
2917 	disk->private_data = pd;
2918 	disk->queue = blk_alloc_queue(GFP_KERNEL);
2919 	if (!disk->queue)
2920 		goto out_mem2;
2921 
2922 	pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2923 	ret = pkt_new_dev(pd, dev);
2924 	if (ret)
2925 		goto out_new_dev;
2926 
2927 	add_disk(disk);
2928 
2929 	pkt_sysfs_dev_new(pd);
2930 	pkt_debugfs_dev_new(pd);
2931 
2932 	pkt_devs[idx] = pd;
2933 	if (pkt_dev)
2934 		*pkt_dev = pd->pkt_dev;
2935 
2936 	mutex_unlock(&ctl_mutex);
2937 	return 0;
2938 
2939 out_new_dev:
2940 	blk_cleanup_queue(disk->queue);
2941 out_mem2:
2942 	put_disk(disk);
2943 out_mem:
2944 	if (pd->rb_pool)
2945 		mempool_destroy(pd->rb_pool);
2946 	kfree(pd);
2947 out_mutex:
2948 	mutex_unlock(&ctl_mutex);
2949 	printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2950 	return ret;
2951 }
2952 
2953 /*
2954  * Tear down mapping from pktcdvd device to CD-ROM device.
2955  */
2956 static int pkt_remove_dev(dev_t pkt_dev)
2957 {
2958 	struct pktcdvd_device *pd;
2959 	int idx;
2960 	int ret = 0;
2961 
2962 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2963 
2964 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2965 		pd = pkt_devs[idx];
2966 		if (pd && (pd->pkt_dev == pkt_dev))
2967 			break;
2968 	}
2969 	if (idx == MAX_WRITERS) {
2970 		DPRINTK(DRIVER_NAME": dev not setup\n");
2971 		ret = -ENXIO;
2972 		goto out;
2973 	}
2974 
2975 	if (pd->refcnt > 0) {
2976 		ret = -EBUSY;
2977 		goto out;
2978 	}
2979 	if (!IS_ERR(pd->cdrw.thread))
2980 		kthread_stop(pd->cdrw.thread);
2981 
2982 	pkt_devs[idx] = NULL;
2983 
2984 	pkt_debugfs_dev_remove(pd);
2985 	pkt_sysfs_dev_remove(pd);
2986 
2987 	blkdev_put(pd->bdev);
2988 
2989 	remove_proc_entry(pd->name, pkt_proc);
2990 	DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2991 
2992 	del_gendisk(pd->disk);
2993 	blk_cleanup_queue(pd->disk->queue);
2994 	put_disk(pd->disk);
2995 
2996 	mempool_destroy(pd->rb_pool);
2997 	kfree(pd);
2998 
2999 	/* This is safe: open() is still holding a reference. */
3000 	module_put(THIS_MODULE);
3001 
3002 out:
3003 	mutex_unlock(&ctl_mutex);
3004 	return ret;
3005 }
3006 
3007 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
3008 {
3009 	struct pktcdvd_device *pd;
3010 
3011 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3012 
3013 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
3014 	if (pd) {
3015 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
3016 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
3017 	} else {
3018 		ctrl_cmd->dev = 0;
3019 		ctrl_cmd->pkt_dev = 0;
3020 	}
3021 	ctrl_cmd->num_devices = MAX_WRITERS;
3022 
3023 	mutex_unlock(&ctl_mutex);
3024 }
3025 
3026 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd,
3027 						unsigned long arg)
3028 {
3029 	void __user *argp = (void __user *)arg;
3030 	struct pkt_ctrl_command ctrl_cmd;
3031 	int ret = 0;
3032 	dev_t pkt_dev = 0;
3033 
3034 	if (cmd != PACKET_CTRL_CMD)
3035 		return -ENOTTY;
3036 
3037 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3038 		return -EFAULT;
3039 
3040 	switch (ctrl_cmd.command) {
3041 	case PKT_CTRL_CMD_SETUP:
3042 		if (!capable(CAP_SYS_ADMIN))
3043 			return -EPERM;
3044 		lock_kernel();
3045 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3046 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3047 		unlock_kernel();
3048 		break;
3049 	case PKT_CTRL_CMD_TEARDOWN:
3050 		if (!capable(CAP_SYS_ADMIN))
3051 			return -EPERM;
3052 		lock_kernel();
3053 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3054 		unlock_kernel();
3055 		break;
3056 	case PKT_CTRL_CMD_STATUS:
3057 		lock_kernel();
3058 		pkt_get_status(&ctrl_cmd);
3059 		unlock_kernel();
3060 		break;
3061 	default:
3062 		return -ENOTTY;
3063 	}
3064 
3065 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3066 		return -EFAULT;
3067 	return ret;
3068 }
3069 
3070 
3071 static const struct file_operations pkt_ctl_fops = {
3072 	.unlocked_ioctl	 = pkt_ctl_ioctl,
3073 	.owner	 = THIS_MODULE,
3074 };
3075 
3076 static struct miscdevice pkt_misc = {
3077 	.minor 		= MISC_DYNAMIC_MINOR,
3078 	.name  		= DRIVER_NAME,
3079 	.fops  		= &pkt_ctl_fops
3080 };
3081 
3082 static int __init pkt_init(void)
3083 {
3084 	int ret;
3085 
3086 	mutex_init(&ctl_mutex);
3087 
3088 	psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3089 					sizeof(struct packet_stacked_data));
3090 	if (!psd_pool)
3091 		return -ENOMEM;
3092 
3093 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
3094 	if (ret < 0) {
3095 		printk(DRIVER_NAME": Unable to register block device\n");
3096 		goto out2;
3097 	}
3098 	if (!pktdev_major)
3099 		pktdev_major = ret;
3100 
3101 	ret = pkt_sysfs_init();
3102 	if (ret)
3103 		goto out;
3104 
3105 	pkt_debugfs_init();
3106 
3107 	ret = misc_register(&pkt_misc);
3108 	if (ret) {
3109 		printk(DRIVER_NAME": Unable to register misc device\n");
3110 		goto out_misc;
3111 	}
3112 
3113 	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3114 
3115 	return 0;
3116 
3117 out_misc:
3118 	pkt_debugfs_cleanup();
3119 	pkt_sysfs_cleanup();
3120 out:
3121 	unregister_blkdev(pktdev_major, DRIVER_NAME);
3122 out2:
3123 	mempool_destroy(psd_pool);
3124 	return ret;
3125 }
3126 
3127 static void __exit pkt_exit(void)
3128 {
3129 	remove_proc_entry("driver/"DRIVER_NAME, NULL);
3130 	misc_deregister(&pkt_misc);
3131 
3132 	pkt_debugfs_cleanup();
3133 	pkt_sysfs_cleanup();
3134 
3135 	unregister_blkdev(pktdev_major, DRIVER_NAME);
3136 	mempool_destroy(psd_pool);
3137 }
3138 
3139 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3140 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3141 MODULE_LICENSE("GPL");
3142 
3143 module_init(pkt_init);
3144 module_exit(pkt_exit);
3145