1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom make_request_fn function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #include <linux/pktcdvd.h> 48 #include <linux/module.h> 49 #include <linux/types.h> 50 #include <linux/kernel.h> 51 #include <linux/kthread.h> 52 #include <linux/smp_lock.h> 53 #include <linux/errno.h> 54 #include <linux/spinlock.h> 55 #include <linux/file.h> 56 #include <linux/proc_fs.h> 57 #include <linux/seq_file.h> 58 #include <linux/miscdevice.h> 59 #include <linux/freezer.h> 60 #include <linux/mutex.h> 61 #include <scsi/scsi_cmnd.h> 62 #include <scsi/scsi_ioctl.h> 63 #include <scsi/scsi.h> 64 #include <linux/debugfs.h> 65 #include <linux/device.h> 66 67 #include <asm/uaccess.h> 68 69 #define DRIVER_NAME "pktcdvd" 70 71 #if PACKET_DEBUG 72 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 73 #else 74 #define DPRINTK(fmt, args...) 75 #endif 76 77 #if PACKET_DEBUG > 1 78 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 79 #else 80 #define VPRINTK(fmt, args...) 81 #endif 82 83 #define MAX_SPEED 0xffff 84 85 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1)) 86 87 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 88 static struct proc_dir_entry *pkt_proc; 89 static int pktdev_major; 90 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 91 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 92 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 93 static mempool_t *psd_pool; 94 95 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */ 96 static struct dentry *pkt_debugfs_root = NULL; /* /debug/pktcdvd */ 97 98 /* forward declaration */ 99 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 100 static int pkt_remove_dev(dev_t pkt_dev); 101 static int pkt_seq_show(struct seq_file *m, void *p); 102 103 104 105 /* 106 * create and register a pktcdvd kernel object. 107 */ 108 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd, 109 const char* name, 110 struct kobject* parent, 111 struct kobj_type* ktype) 112 { 113 struct pktcdvd_kobj *p; 114 int error; 115 116 p = kzalloc(sizeof(*p), GFP_KERNEL); 117 if (!p) 118 return NULL; 119 p->pd = pd; 120 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name); 121 if (error) { 122 kobject_put(&p->kobj); 123 return NULL; 124 } 125 kobject_uevent(&p->kobj, KOBJ_ADD); 126 return p; 127 } 128 /* 129 * remove a pktcdvd kernel object. 130 */ 131 static void pkt_kobj_remove(struct pktcdvd_kobj *p) 132 { 133 if (p) 134 kobject_put(&p->kobj); 135 } 136 /* 137 * default release function for pktcdvd kernel objects. 138 */ 139 static void pkt_kobj_release(struct kobject *kobj) 140 { 141 kfree(to_pktcdvdkobj(kobj)); 142 } 143 144 145 /********************************************************** 146 * 147 * sysfs interface for pktcdvd 148 * by (C) 2006 Thomas Maier <balagi@justmail.de> 149 * 150 **********************************************************/ 151 152 #define DEF_ATTR(_obj,_name,_mode) \ 153 static struct attribute _obj = { .name = _name, .mode = _mode } 154 155 /********************************************************** 156 /sys/class/pktcdvd/pktcdvd[0-7]/ 157 stat/reset 158 stat/packets_started 159 stat/packets_finished 160 stat/kb_written 161 stat/kb_read 162 stat/kb_read_gather 163 write_queue/size 164 write_queue/congestion_off 165 write_queue/congestion_on 166 **********************************************************/ 167 168 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200); 169 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444); 170 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444); 171 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444); 172 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444); 173 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444); 174 175 static struct attribute *kobj_pkt_attrs_stat[] = { 176 &kobj_pkt_attr_st1, 177 &kobj_pkt_attr_st2, 178 &kobj_pkt_attr_st3, 179 &kobj_pkt_attr_st4, 180 &kobj_pkt_attr_st5, 181 &kobj_pkt_attr_st6, 182 NULL 183 }; 184 185 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444); 186 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644); 187 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644); 188 189 static struct attribute *kobj_pkt_attrs_wqueue[] = { 190 &kobj_pkt_attr_wq1, 191 &kobj_pkt_attr_wq2, 192 &kobj_pkt_attr_wq3, 193 NULL 194 }; 195 196 static ssize_t kobj_pkt_show(struct kobject *kobj, 197 struct attribute *attr, char *data) 198 { 199 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 200 int n = 0; 201 int v; 202 if (strcmp(attr->name, "packets_started") == 0) { 203 n = sprintf(data, "%lu\n", pd->stats.pkt_started); 204 205 } else if (strcmp(attr->name, "packets_finished") == 0) { 206 n = sprintf(data, "%lu\n", pd->stats.pkt_ended); 207 208 } else if (strcmp(attr->name, "kb_written") == 0) { 209 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1); 210 211 } else if (strcmp(attr->name, "kb_read") == 0) { 212 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1); 213 214 } else if (strcmp(attr->name, "kb_read_gather") == 0) { 215 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1); 216 217 } else if (strcmp(attr->name, "size") == 0) { 218 spin_lock(&pd->lock); 219 v = pd->bio_queue_size; 220 spin_unlock(&pd->lock); 221 n = sprintf(data, "%d\n", v); 222 223 } else if (strcmp(attr->name, "congestion_off") == 0) { 224 spin_lock(&pd->lock); 225 v = pd->write_congestion_off; 226 spin_unlock(&pd->lock); 227 n = sprintf(data, "%d\n", v); 228 229 } else if (strcmp(attr->name, "congestion_on") == 0) { 230 spin_lock(&pd->lock); 231 v = pd->write_congestion_on; 232 spin_unlock(&pd->lock); 233 n = sprintf(data, "%d\n", v); 234 } 235 return n; 236 } 237 238 static void init_write_congestion_marks(int* lo, int* hi) 239 { 240 if (*hi > 0) { 241 *hi = max(*hi, 500); 242 *hi = min(*hi, 1000000); 243 if (*lo <= 0) 244 *lo = *hi - 100; 245 else { 246 *lo = min(*lo, *hi - 100); 247 *lo = max(*lo, 100); 248 } 249 } else { 250 *hi = -1; 251 *lo = -1; 252 } 253 } 254 255 static ssize_t kobj_pkt_store(struct kobject *kobj, 256 struct attribute *attr, 257 const char *data, size_t len) 258 { 259 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 260 int val; 261 262 if (strcmp(attr->name, "reset") == 0 && len > 0) { 263 pd->stats.pkt_started = 0; 264 pd->stats.pkt_ended = 0; 265 pd->stats.secs_w = 0; 266 pd->stats.secs_rg = 0; 267 pd->stats.secs_r = 0; 268 269 } else if (strcmp(attr->name, "congestion_off") == 0 270 && sscanf(data, "%d", &val) == 1) { 271 spin_lock(&pd->lock); 272 pd->write_congestion_off = val; 273 init_write_congestion_marks(&pd->write_congestion_off, 274 &pd->write_congestion_on); 275 spin_unlock(&pd->lock); 276 277 } else if (strcmp(attr->name, "congestion_on") == 0 278 && sscanf(data, "%d", &val) == 1) { 279 spin_lock(&pd->lock); 280 pd->write_congestion_on = val; 281 init_write_congestion_marks(&pd->write_congestion_off, 282 &pd->write_congestion_on); 283 spin_unlock(&pd->lock); 284 } 285 return len; 286 } 287 288 static struct sysfs_ops kobj_pkt_ops = { 289 .show = kobj_pkt_show, 290 .store = kobj_pkt_store 291 }; 292 static struct kobj_type kobj_pkt_type_stat = { 293 .release = pkt_kobj_release, 294 .sysfs_ops = &kobj_pkt_ops, 295 .default_attrs = kobj_pkt_attrs_stat 296 }; 297 static struct kobj_type kobj_pkt_type_wqueue = { 298 .release = pkt_kobj_release, 299 .sysfs_ops = &kobj_pkt_ops, 300 .default_attrs = kobj_pkt_attrs_wqueue 301 }; 302 303 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 304 { 305 if (class_pktcdvd) { 306 pd->dev = device_create_drvdata(class_pktcdvd, NULL, 307 pd->pkt_dev, NULL, 308 "%s", pd->name); 309 if (IS_ERR(pd->dev)) 310 pd->dev = NULL; 311 } 312 if (pd->dev) { 313 pd->kobj_stat = pkt_kobj_create(pd, "stat", 314 &pd->dev->kobj, 315 &kobj_pkt_type_stat); 316 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue", 317 &pd->dev->kobj, 318 &kobj_pkt_type_wqueue); 319 } 320 } 321 322 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 323 { 324 pkt_kobj_remove(pd->kobj_stat); 325 pkt_kobj_remove(pd->kobj_wqueue); 326 if (class_pktcdvd) 327 device_destroy(class_pktcdvd, pd->pkt_dev); 328 } 329 330 331 /******************************************************************** 332 /sys/class/pktcdvd/ 333 add map block device 334 remove unmap packet dev 335 device_map show mappings 336 *******************************************************************/ 337 338 static void class_pktcdvd_release(struct class *cls) 339 { 340 kfree(cls); 341 } 342 static ssize_t class_pktcdvd_show_map(struct class *c, char *data) 343 { 344 int n = 0; 345 int idx; 346 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 347 for (idx = 0; idx < MAX_WRITERS; idx++) { 348 struct pktcdvd_device *pd = pkt_devs[idx]; 349 if (!pd) 350 continue; 351 n += sprintf(data+n, "%s %u:%u %u:%u\n", 352 pd->name, 353 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 354 MAJOR(pd->bdev->bd_dev), 355 MINOR(pd->bdev->bd_dev)); 356 } 357 mutex_unlock(&ctl_mutex); 358 return n; 359 } 360 361 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf, 362 size_t count) 363 { 364 unsigned int major, minor; 365 366 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 367 /* pkt_setup_dev() expects caller to hold reference to self */ 368 if (!try_module_get(THIS_MODULE)) 369 return -ENODEV; 370 371 pkt_setup_dev(MKDEV(major, minor), NULL); 372 373 module_put(THIS_MODULE); 374 375 return count; 376 } 377 378 return -EINVAL; 379 } 380 381 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf, 382 size_t count) 383 { 384 unsigned int major, minor; 385 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 386 pkt_remove_dev(MKDEV(major, minor)); 387 return count; 388 } 389 return -EINVAL; 390 } 391 392 static struct class_attribute class_pktcdvd_attrs[] = { 393 __ATTR(add, 0200, NULL, class_pktcdvd_store_add), 394 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove), 395 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL), 396 __ATTR_NULL 397 }; 398 399 400 static int pkt_sysfs_init(void) 401 { 402 int ret = 0; 403 404 /* 405 * create control files in sysfs 406 * /sys/class/pktcdvd/... 407 */ 408 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL); 409 if (!class_pktcdvd) 410 return -ENOMEM; 411 class_pktcdvd->name = DRIVER_NAME; 412 class_pktcdvd->owner = THIS_MODULE; 413 class_pktcdvd->class_release = class_pktcdvd_release; 414 class_pktcdvd->class_attrs = class_pktcdvd_attrs; 415 ret = class_register(class_pktcdvd); 416 if (ret) { 417 kfree(class_pktcdvd); 418 class_pktcdvd = NULL; 419 printk(DRIVER_NAME": failed to create class pktcdvd\n"); 420 return ret; 421 } 422 return 0; 423 } 424 425 static void pkt_sysfs_cleanup(void) 426 { 427 if (class_pktcdvd) 428 class_destroy(class_pktcdvd); 429 class_pktcdvd = NULL; 430 } 431 432 /******************************************************************** 433 entries in debugfs 434 435 /debugfs/pktcdvd[0-7]/ 436 info 437 438 *******************************************************************/ 439 440 static int pkt_debugfs_seq_show(struct seq_file *m, void *p) 441 { 442 return pkt_seq_show(m, p); 443 } 444 445 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file) 446 { 447 return single_open(file, pkt_debugfs_seq_show, inode->i_private); 448 } 449 450 static const struct file_operations debug_fops = { 451 .open = pkt_debugfs_fops_open, 452 .read = seq_read, 453 .llseek = seq_lseek, 454 .release = single_release, 455 .owner = THIS_MODULE, 456 }; 457 458 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 459 { 460 if (!pkt_debugfs_root) 461 return; 462 pd->dfs_f_info = NULL; 463 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root); 464 if (IS_ERR(pd->dfs_d_root)) { 465 pd->dfs_d_root = NULL; 466 return; 467 } 468 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO, 469 pd->dfs_d_root, pd, &debug_fops); 470 if (IS_ERR(pd->dfs_f_info)) { 471 pd->dfs_f_info = NULL; 472 return; 473 } 474 } 475 476 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 477 { 478 if (!pkt_debugfs_root) 479 return; 480 if (pd->dfs_f_info) 481 debugfs_remove(pd->dfs_f_info); 482 pd->dfs_f_info = NULL; 483 if (pd->dfs_d_root) 484 debugfs_remove(pd->dfs_d_root); 485 pd->dfs_d_root = NULL; 486 } 487 488 static void pkt_debugfs_init(void) 489 { 490 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 491 if (IS_ERR(pkt_debugfs_root)) { 492 pkt_debugfs_root = NULL; 493 return; 494 } 495 } 496 497 static void pkt_debugfs_cleanup(void) 498 { 499 if (!pkt_debugfs_root) 500 return; 501 debugfs_remove(pkt_debugfs_root); 502 pkt_debugfs_root = NULL; 503 } 504 505 /* ----------------------------------------------------------*/ 506 507 508 static void pkt_bio_finished(struct pktcdvd_device *pd) 509 { 510 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 511 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 512 VPRINTK(DRIVER_NAME": queue empty\n"); 513 atomic_set(&pd->iosched.attention, 1); 514 wake_up(&pd->wqueue); 515 } 516 } 517 518 static void pkt_bio_destructor(struct bio *bio) 519 { 520 kfree(bio->bi_io_vec); 521 kfree(bio); 522 } 523 524 static struct bio *pkt_bio_alloc(int nr_iovecs) 525 { 526 struct bio_vec *bvl = NULL; 527 struct bio *bio; 528 529 bio = kmalloc(sizeof(struct bio), GFP_KERNEL); 530 if (!bio) 531 goto no_bio; 532 bio_init(bio); 533 534 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL); 535 if (!bvl) 536 goto no_bvl; 537 538 bio->bi_max_vecs = nr_iovecs; 539 bio->bi_io_vec = bvl; 540 bio->bi_destructor = pkt_bio_destructor; 541 542 return bio; 543 544 no_bvl: 545 kfree(bio); 546 no_bio: 547 return NULL; 548 } 549 550 /* 551 * Allocate a packet_data struct 552 */ 553 static struct packet_data *pkt_alloc_packet_data(int frames) 554 { 555 int i; 556 struct packet_data *pkt; 557 558 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 559 if (!pkt) 560 goto no_pkt; 561 562 pkt->frames = frames; 563 pkt->w_bio = pkt_bio_alloc(frames); 564 if (!pkt->w_bio) 565 goto no_bio; 566 567 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 568 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 569 if (!pkt->pages[i]) 570 goto no_page; 571 } 572 573 spin_lock_init(&pkt->lock); 574 575 for (i = 0; i < frames; i++) { 576 struct bio *bio = pkt_bio_alloc(1); 577 if (!bio) 578 goto no_rd_bio; 579 pkt->r_bios[i] = bio; 580 } 581 582 return pkt; 583 584 no_rd_bio: 585 for (i = 0; i < frames; i++) { 586 struct bio *bio = pkt->r_bios[i]; 587 if (bio) 588 bio_put(bio); 589 } 590 591 no_page: 592 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 593 if (pkt->pages[i]) 594 __free_page(pkt->pages[i]); 595 bio_put(pkt->w_bio); 596 no_bio: 597 kfree(pkt); 598 no_pkt: 599 return NULL; 600 } 601 602 /* 603 * Free a packet_data struct 604 */ 605 static void pkt_free_packet_data(struct packet_data *pkt) 606 { 607 int i; 608 609 for (i = 0; i < pkt->frames; i++) { 610 struct bio *bio = pkt->r_bios[i]; 611 if (bio) 612 bio_put(bio); 613 } 614 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 615 __free_page(pkt->pages[i]); 616 bio_put(pkt->w_bio); 617 kfree(pkt); 618 } 619 620 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 621 { 622 struct packet_data *pkt, *next; 623 624 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 625 626 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 627 pkt_free_packet_data(pkt); 628 } 629 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 630 } 631 632 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 633 { 634 struct packet_data *pkt; 635 636 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 637 638 while (nr_packets > 0) { 639 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 640 if (!pkt) { 641 pkt_shrink_pktlist(pd); 642 return 0; 643 } 644 pkt->id = nr_packets; 645 pkt->pd = pd; 646 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 647 nr_packets--; 648 } 649 return 1; 650 } 651 652 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 653 { 654 struct rb_node *n = rb_next(&node->rb_node); 655 if (!n) 656 return NULL; 657 return rb_entry(n, struct pkt_rb_node, rb_node); 658 } 659 660 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 661 { 662 rb_erase(&node->rb_node, &pd->bio_queue); 663 mempool_free(node, pd->rb_pool); 664 pd->bio_queue_size--; 665 BUG_ON(pd->bio_queue_size < 0); 666 } 667 668 /* 669 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 670 */ 671 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 672 { 673 struct rb_node *n = pd->bio_queue.rb_node; 674 struct rb_node *next; 675 struct pkt_rb_node *tmp; 676 677 if (!n) { 678 BUG_ON(pd->bio_queue_size > 0); 679 return NULL; 680 } 681 682 for (;;) { 683 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 684 if (s <= tmp->bio->bi_sector) 685 next = n->rb_left; 686 else 687 next = n->rb_right; 688 if (!next) 689 break; 690 n = next; 691 } 692 693 if (s > tmp->bio->bi_sector) { 694 tmp = pkt_rbtree_next(tmp); 695 if (!tmp) 696 return NULL; 697 } 698 BUG_ON(s > tmp->bio->bi_sector); 699 return tmp; 700 } 701 702 /* 703 * Insert a node into the pd->bio_queue rb tree. 704 */ 705 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 706 { 707 struct rb_node **p = &pd->bio_queue.rb_node; 708 struct rb_node *parent = NULL; 709 sector_t s = node->bio->bi_sector; 710 struct pkt_rb_node *tmp; 711 712 while (*p) { 713 parent = *p; 714 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 715 if (s < tmp->bio->bi_sector) 716 p = &(*p)->rb_left; 717 else 718 p = &(*p)->rb_right; 719 } 720 rb_link_node(&node->rb_node, parent, p); 721 rb_insert_color(&node->rb_node, &pd->bio_queue); 722 pd->bio_queue_size++; 723 } 724 725 /* 726 * Add a bio to a single linked list defined by its head and tail pointers. 727 */ 728 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail) 729 { 730 bio->bi_next = NULL; 731 if (*list_tail) { 732 BUG_ON((*list_head) == NULL); 733 (*list_tail)->bi_next = bio; 734 (*list_tail) = bio; 735 } else { 736 BUG_ON((*list_head) != NULL); 737 (*list_head) = bio; 738 (*list_tail) = bio; 739 } 740 } 741 742 /* 743 * Remove and return the first bio from a single linked list defined by its 744 * head and tail pointers. 745 */ 746 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail) 747 { 748 struct bio *bio; 749 750 if (*list_head == NULL) 751 return NULL; 752 753 bio = *list_head; 754 *list_head = bio->bi_next; 755 if (*list_head == NULL) 756 *list_tail = NULL; 757 758 bio->bi_next = NULL; 759 return bio; 760 } 761 762 /* 763 * Send a packet_command to the underlying block device and 764 * wait for completion. 765 */ 766 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 767 { 768 struct request_queue *q = bdev_get_queue(pd->bdev); 769 struct request *rq; 770 int ret = 0; 771 772 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 773 WRITE : READ, __GFP_WAIT); 774 775 if (cgc->buflen) { 776 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT)) 777 goto out; 778 } 779 780 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 781 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE); 782 783 rq->timeout = 60*HZ; 784 rq->cmd_type = REQ_TYPE_BLOCK_PC; 785 rq->cmd_flags |= REQ_HARDBARRIER; 786 if (cgc->quiet) 787 rq->cmd_flags |= REQ_QUIET; 788 789 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0); 790 if (rq->errors) 791 ret = -EIO; 792 out: 793 blk_put_request(rq); 794 return ret; 795 } 796 797 /* 798 * A generic sense dump / resolve mechanism should be implemented across 799 * all ATAPI + SCSI devices. 800 */ 801 static void pkt_dump_sense(struct packet_command *cgc) 802 { 803 static char *info[9] = { "No sense", "Recovered error", "Not ready", 804 "Medium error", "Hardware error", "Illegal request", 805 "Unit attention", "Data protect", "Blank check" }; 806 int i; 807 struct request_sense *sense = cgc->sense; 808 809 printk(DRIVER_NAME":"); 810 for (i = 0; i < CDROM_PACKET_SIZE; i++) 811 printk(" %02x", cgc->cmd[i]); 812 printk(" - "); 813 814 if (sense == NULL) { 815 printk("no sense\n"); 816 return; 817 } 818 819 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq); 820 821 if (sense->sense_key > 8) { 822 printk(" (INVALID)\n"); 823 return; 824 } 825 826 printk(" (%s)\n", info[sense->sense_key]); 827 } 828 829 /* 830 * flush the drive cache to media 831 */ 832 static int pkt_flush_cache(struct pktcdvd_device *pd) 833 { 834 struct packet_command cgc; 835 836 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 837 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 838 cgc.quiet = 1; 839 840 /* 841 * the IMMED bit -- we default to not setting it, although that 842 * would allow a much faster close, this is safer 843 */ 844 #if 0 845 cgc.cmd[1] = 1 << 1; 846 #endif 847 return pkt_generic_packet(pd, &cgc); 848 } 849 850 /* 851 * speed is given as the normal factor, e.g. 4 for 4x 852 */ 853 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd, 854 unsigned write_speed, unsigned read_speed) 855 { 856 struct packet_command cgc; 857 struct request_sense sense; 858 int ret; 859 860 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 861 cgc.sense = &sense; 862 cgc.cmd[0] = GPCMD_SET_SPEED; 863 cgc.cmd[2] = (read_speed >> 8) & 0xff; 864 cgc.cmd[3] = read_speed & 0xff; 865 cgc.cmd[4] = (write_speed >> 8) & 0xff; 866 cgc.cmd[5] = write_speed & 0xff; 867 868 if ((ret = pkt_generic_packet(pd, &cgc))) 869 pkt_dump_sense(&cgc); 870 871 return ret; 872 } 873 874 /* 875 * Queue a bio for processing by the low-level CD device. Must be called 876 * from process context. 877 */ 878 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 879 { 880 spin_lock(&pd->iosched.lock); 881 if (bio_data_dir(bio) == READ) { 882 pkt_add_list_last(bio, &pd->iosched.read_queue, 883 &pd->iosched.read_queue_tail); 884 } else { 885 pkt_add_list_last(bio, &pd->iosched.write_queue, 886 &pd->iosched.write_queue_tail); 887 } 888 spin_unlock(&pd->iosched.lock); 889 890 atomic_set(&pd->iosched.attention, 1); 891 wake_up(&pd->wqueue); 892 } 893 894 /* 895 * Process the queued read/write requests. This function handles special 896 * requirements for CDRW drives: 897 * - A cache flush command must be inserted before a read request if the 898 * previous request was a write. 899 * - Switching between reading and writing is slow, so don't do it more often 900 * than necessary. 901 * - Optimize for throughput at the expense of latency. This means that streaming 902 * writes will never be interrupted by a read, but if the drive has to seek 903 * before the next write, switch to reading instead if there are any pending 904 * read requests. 905 * - Set the read speed according to current usage pattern. When only reading 906 * from the device, it's best to use the highest possible read speed, but 907 * when switching often between reading and writing, it's better to have the 908 * same read and write speeds. 909 */ 910 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 911 { 912 913 if (atomic_read(&pd->iosched.attention) == 0) 914 return; 915 atomic_set(&pd->iosched.attention, 0); 916 917 for (;;) { 918 struct bio *bio; 919 int reads_queued, writes_queued; 920 921 spin_lock(&pd->iosched.lock); 922 reads_queued = (pd->iosched.read_queue != NULL); 923 writes_queued = (pd->iosched.write_queue != NULL); 924 spin_unlock(&pd->iosched.lock); 925 926 if (!reads_queued && !writes_queued) 927 break; 928 929 if (pd->iosched.writing) { 930 int need_write_seek = 1; 931 spin_lock(&pd->iosched.lock); 932 bio = pd->iosched.write_queue; 933 spin_unlock(&pd->iosched.lock); 934 if (bio && (bio->bi_sector == pd->iosched.last_write)) 935 need_write_seek = 0; 936 if (need_write_seek && reads_queued) { 937 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 938 VPRINTK(DRIVER_NAME": write, waiting\n"); 939 break; 940 } 941 pkt_flush_cache(pd); 942 pd->iosched.writing = 0; 943 } 944 } else { 945 if (!reads_queued && writes_queued) { 946 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 947 VPRINTK(DRIVER_NAME": read, waiting\n"); 948 break; 949 } 950 pd->iosched.writing = 1; 951 } 952 } 953 954 spin_lock(&pd->iosched.lock); 955 if (pd->iosched.writing) { 956 bio = pkt_get_list_first(&pd->iosched.write_queue, 957 &pd->iosched.write_queue_tail); 958 } else { 959 bio = pkt_get_list_first(&pd->iosched.read_queue, 960 &pd->iosched.read_queue_tail); 961 } 962 spin_unlock(&pd->iosched.lock); 963 964 if (!bio) 965 continue; 966 967 if (bio_data_dir(bio) == READ) 968 pd->iosched.successive_reads += bio->bi_size >> 10; 969 else { 970 pd->iosched.successive_reads = 0; 971 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio); 972 } 973 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 974 if (pd->read_speed == pd->write_speed) { 975 pd->read_speed = MAX_SPEED; 976 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 977 } 978 } else { 979 if (pd->read_speed != pd->write_speed) { 980 pd->read_speed = pd->write_speed; 981 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 982 } 983 } 984 985 atomic_inc(&pd->cdrw.pending_bios); 986 generic_make_request(bio); 987 } 988 } 989 990 /* 991 * Special care is needed if the underlying block device has a small 992 * max_phys_segments value. 993 */ 994 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q) 995 { 996 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) { 997 /* 998 * The cdrom device can handle one segment/frame 999 */ 1000 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 1001 return 0; 1002 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) { 1003 /* 1004 * We can handle this case at the expense of some extra memory 1005 * copies during write operations 1006 */ 1007 set_bit(PACKET_MERGE_SEGS, &pd->flags); 1008 return 0; 1009 } else { 1010 printk(DRIVER_NAME": cdrom max_phys_segments too small\n"); 1011 return -EIO; 1012 } 1013 } 1014 1015 /* 1016 * Copy CD_FRAMESIZE bytes from src_bio into a destination page 1017 */ 1018 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs) 1019 { 1020 unsigned int copy_size = CD_FRAMESIZE; 1021 1022 while (copy_size > 0) { 1023 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg); 1024 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) + 1025 src_bvl->bv_offset + offs; 1026 void *vto = page_address(dst_page) + dst_offs; 1027 int len = min_t(int, copy_size, src_bvl->bv_len - offs); 1028 1029 BUG_ON(len < 0); 1030 memcpy(vto, vfrom, len); 1031 kunmap_atomic(vfrom, KM_USER0); 1032 1033 seg++; 1034 offs = 0; 1035 dst_offs += len; 1036 copy_size -= len; 1037 } 1038 } 1039 1040 /* 1041 * Copy all data for this packet to pkt->pages[], so that 1042 * a) The number of required segments for the write bio is minimized, which 1043 * is necessary for some scsi controllers. 1044 * b) The data can be used as cache to avoid read requests if we receive a 1045 * new write request for the same zone. 1046 */ 1047 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec) 1048 { 1049 int f, p, offs; 1050 1051 /* Copy all data to pkt->pages[] */ 1052 p = 0; 1053 offs = 0; 1054 for (f = 0; f < pkt->frames; f++) { 1055 if (bvec[f].bv_page != pkt->pages[p]) { 1056 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset; 1057 void *vto = page_address(pkt->pages[p]) + offs; 1058 memcpy(vto, vfrom, CD_FRAMESIZE); 1059 kunmap_atomic(vfrom, KM_USER0); 1060 bvec[f].bv_page = pkt->pages[p]; 1061 bvec[f].bv_offset = offs; 1062 } else { 1063 BUG_ON(bvec[f].bv_offset != offs); 1064 } 1065 offs += CD_FRAMESIZE; 1066 if (offs >= PAGE_SIZE) { 1067 offs = 0; 1068 p++; 1069 } 1070 } 1071 } 1072 1073 static void pkt_end_io_read(struct bio *bio, int err) 1074 { 1075 struct packet_data *pkt = bio->bi_private; 1076 struct pktcdvd_device *pd = pkt->pd; 1077 BUG_ON(!pd); 1078 1079 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio, 1080 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err); 1081 1082 if (err) 1083 atomic_inc(&pkt->io_errors); 1084 if (atomic_dec_and_test(&pkt->io_wait)) { 1085 atomic_inc(&pkt->run_sm); 1086 wake_up(&pd->wqueue); 1087 } 1088 pkt_bio_finished(pd); 1089 } 1090 1091 static void pkt_end_io_packet_write(struct bio *bio, int err) 1092 { 1093 struct packet_data *pkt = bio->bi_private; 1094 struct pktcdvd_device *pd = pkt->pd; 1095 BUG_ON(!pd); 1096 1097 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err); 1098 1099 pd->stats.pkt_ended++; 1100 1101 pkt_bio_finished(pd); 1102 atomic_dec(&pkt->io_wait); 1103 atomic_inc(&pkt->run_sm); 1104 wake_up(&pd->wqueue); 1105 } 1106 1107 /* 1108 * Schedule reads for the holes in a packet 1109 */ 1110 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1111 { 1112 int frames_read = 0; 1113 struct bio *bio; 1114 int f; 1115 char written[PACKET_MAX_SIZE]; 1116 1117 BUG_ON(!pkt->orig_bios); 1118 1119 atomic_set(&pkt->io_wait, 0); 1120 atomic_set(&pkt->io_errors, 0); 1121 1122 /* 1123 * Figure out which frames we need to read before we can write. 1124 */ 1125 memset(written, 0, sizeof(written)); 1126 spin_lock(&pkt->lock); 1127 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1128 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1129 int num_frames = bio->bi_size / CD_FRAMESIZE; 1130 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 1131 BUG_ON(first_frame < 0); 1132 BUG_ON(first_frame + num_frames > pkt->frames); 1133 for (f = first_frame; f < first_frame + num_frames; f++) 1134 written[f] = 1; 1135 } 1136 spin_unlock(&pkt->lock); 1137 1138 if (pkt->cache_valid) { 1139 VPRINTK("pkt_gather_data: zone %llx cached\n", 1140 (unsigned long long)pkt->sector); 1141 goto out_account; 1142 } 1143 1144 /* 1145 * Schedule reads for missing parts of the packet. 1146 */ 1147 for (f = 0; f < pkt->frames; f++) { 1148 struct bio_vec *vec; 1149 1150 int p, offset; 1151 if (written[f]) 1152 continue; 1153 bio = pkt->r_bios[f]; 1154 vec = bio->bi_io_vec; 1155 bio_init(bio); 1156 bio->bi_max_vecs = 1; 1157 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1158 bio->bi_bdev = pd->bdev; 1159 bio->bi_end_io = pkt_end_io_read; 1160 bio->bi_private = pkt; 1161 bio->bi_io_vec = vec; 1162 bio->bi_destructor = pkt_bio_destructor; 1163 1164 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1165 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1166 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n", 1167 f, pkt->pages[p], offset); 1168 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1169 BUG(); 1170 1171 atomic_inc(&pkt->io_wait); 1172 bio->bi_rw = READ; 1173 pkt_queue_bio(pd, bio); 1174 frames_read++; 1175 } 1176 1177 out_account: 1178 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n", 1179 frames_read, (unsigned long long)pkt->sector); 1180 pd->stats.pkt_started++; 1181 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1182 } 1183 1184 /* 1185 * Find a packet matching zone, or the least recently used packet if 1186 * there is no match. 1187 */ 1188 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1189 { 1190 struct packet_data *pkt; 1191 1192 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1193 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1194 list_del_init(&pkt->list); 1195 if (pkt->sector != zone) 1196 pkt->cache_valid = 0; 1197 return pkt; 1198 } 1199 } 1200 BUG(); 1201 return NULL; 1202 } 1203 1204 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1205 { 1206 if (pkt->cache_valid) { 1207 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1208 } else { 1209 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1210 } 1211 } 1212 1213 /* 1214 * recover a failed write, query for relocation if possible 1215 * 1216 * returns 1 if recovery is possible, or 0 if not 1217 * 1218 */ 1219 static int pkt_start_recovery(struct packet_data *pkt) 1220 { 1221 /* 1222 * FIXME. We need help from the file system to implement 1223 * recovery handling. 1224 */ 1225 return 0; 1226 #if 0 1227 struct request *rq = pkt->rq; 1228 struct pktcdvd_device *pd = rq->rq_disk->private_data; 1229 struct block_device *pkt_bdev; 1230 struct super_block *sb = NULL; 1231 unsigned long old_block, new_block; 1232 sector_t new_sector; 1233 1234 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 1235 if (pkt_bdev) { 1236 sb = get_super(pkt_bdev); 1237 bdput(pkt_bdev); 1238 } 1239 1240 if (!sb) 1241 return 0; 1242 1243 if (!sb->s_op || !sb->s_op->relocate_blocks) 1244 goto out; 1245 1246 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 1247 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 1248 goto out; 1249 1250 new_sector = new_block * (CD_FRAMESIZE >> 9); 1251 pkt->sector = new_sector; 1252 1253 pkt->bio->bi_sector = new_sector; 1254 pkt->bio->bi_next = NULL; 1255 pkt->bio->bi_flags = 1 << BIO_UPTODATE; 1256 pkt->bio->bi_idx = 0; 1257 1258 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW)); 1259 BUG_ON(pkt->bio->bi_vcnt != pkt->frames); 1260 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE); 1261 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write); 1262 BUG_ON(pkt->bio->bi_private != pkt); 1263 1264 drop_super(sb); 1265 return 1; 1266 1267 out: 1268 drop_super(sb); 1269 return 0; 1270 #endif 1271 } 1272 1273 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 1274 { 1275 #if PACKET_DEBUG > 1 1276 static const char *state_name[] = { 1277 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1278 }; 1279 enum packet_data_state old_state = pkt->state; 1280 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector, 1281 state_name[old_state], state_name[state]); 1282 #endif 1283 pkt->state = state; 1284 } 1285 1286 /* 1287 * Scan the work queue to see if we can start a new packet. 1288 * returns non-zero if any work was done. 1289 */ 1290 static int pkt_handle_queue(struct pktcdvd_device *pd) 1291 { 1292 struct packet_data *pkt, *p; 1293 struct bio *bio = NULL; 1294 sector_t zone = 0; /* Suppress gcc warning */ 1295 struct pkt_rb_node *node, *first_node; 1296 struct rb_node *n; 1297 int wakeup; 1298 1299 VPRINTK("handle_queue\n"); 1300 1301 atomic_set(&pd->scan_queue, 0); 1302 1303 if (list_empty(&pd->cdrw.pkt_free_list)) { 1304 VPRINTK("handle_queue: no pkt\n"); 1305 return 0; 1306 } 1307 1308 /* 1309 * Try to find a zone we are not already working on. 1310 */ 1311 spin_lock(&pd->lock); 1312 first_node = pkt_rbtree_find(pd, pd->current_sector); 1313 if (!first_node) { 1314 n = rb_first(&pd->bio_queue); 1315 if (n) 1316 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1317 } 1318 node = first_node; 1319 while (node) { 1320 bio = node->bio; 1321 zone = ZONE(bio->bi_sector, pd); 1322 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1323 if (p->sector == zone) { 1324 bio = NULL; 1325 goto try_next_bio; 1326 } 1327 } 1328 break; 1329 try_next_bio: 1330 node = pkt_rbtree_next(node); 1331 if (!node) { 1332 n = rb_first(&pd->bio_queue); 1333 if (n) 1334 node = rb_entry(n, struct pkt_rb_node, rb_node); 1335 } 1336 if (node == first_node) 1337 node = NULL; 1338 } 1339 spin_unlock(&pd->lock); 1340 if (!bio) { 1341 VPRINTK("handle_queue: no bio\n"); 1342 return 0; 1343 } 1344 1345 pkt = pkt_get_packet_data(pd, zone); 1346 1347 pd->current_sector = zone + pd->settings.size; 1348 pkt->sector = zone; 1349 BUG_ON(pkt->frames != pd->settings.size >> 2); 1350 pkt->write_size = 0; 1351 1352 /* 1353 * Scan work queue for bios in the same zone and link them 1354 * to this packet. 1355 */ 1356 spin_lock(&pd->lock); 1357 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone); 1358 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1359 bio = node->bio; 1360 VPRINTK("pkt_handle_queue: found zone=%llx\n", 1361 (unsigned long long)ZONE(bio->bi_sector, pd)); 1362 if (ZONE(bio->bi_sector, pd) != zone) 1363 break; 1364 pkt_rbtree_erase(pd, node); 1365 spin_lock(&pkt->lock); 1366 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail); 1367 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 1368 spin_unlock(&pkt->lock); 1369 } 1370 /* check write congestion marks, and if bio_queue_size is 1371 below, wake up any waiters */ 1372 wakeup = (pd->write_congestion_on > 0 1373 && pd->bio_queue_size <= pd->write_congestion_off); 1374 spin_unlock(&pd->lock); 1375 if (wakeup) 1376 clear_bdi_congested(&pd->disk->queue->backing_dev_info, WRITE); 1377 1378 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1379 pkt_set_state(pkt, PACKET_WAITING_STATE); 1380 atomic_set(&pkt->run_sm, 1); 1381 1382 spin_lock(&pd->cdrw.active_list_lock); 1383 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1384 spin_unlock(&pd->cdrw.active_list_lock); 1385 1386 return 1; 1387 } 1388 1389 /* 1390 * Assemble a bio to write one packet and queue the bio for processing 1391 * by the underlying block device. 1392 */ 1393 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1394 { 1395 struct bio *bio; 1396 int f; 1397 int frames_write; 1398 struct bio_vec *bvec = pkt->w_bio->bi_io_vec; 1399 1400 for (f = 0; f < pkt->frames; f++) { 1401 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1402 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1403 } 1404 1405 /* 1406 * Fill-in bvec with data from orig_bios. 1407 */ 1408 frames_write = 0; 1409 spin_lock(&pkt->lock); 1410 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1411 int segment = bio->bi_idx; 1412 int src_offs = 0; 1413 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1414 int num_frames = bio->bi_size / CD_FRAMESIZE; 1415 BUG_ON(first_frame < 0); 1416 BUG_ON(first_frame + num_frames > pkt->frames); 1417 for (f = first_frame; f < first_frame + num_frames; f++) { 1418 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment); 1419 1420 while (src_offs >= src_bvl->bv_len) { 1421 src_offs -= src_bvl->bv_len; 1422 segment++; 1423 BUG_ON(segment >= bio->bi_vcnt); 1424 src_bvl = bio_iovec_idx(bio, segment); 1425 } 1426 1427 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) { 1428 bvec[f].bv_page = src_bvl->bv_page; 1429 bvec[f].bv_offset = src_bvl->bv_offset + src_offs; 1430 } else { 1431 pkt_copy_bio_data(bio, segment, src_offs, 1432 bvec[f].bv_page, bvec[f].bv_offset); 1433 } 1434 src_offs += CD_FRAMESIZE; 1435 frames_write++; 1436 } 1437 } 1438 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1439 spin_unlock(&pkt->lock); 1440 1441 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n", 1442 frames_write, (unsigned long long)pkt->sector); 1443 BUG_ON(frames_write != pkt->write_size); 1444 1445 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) { 1446 pkt_make_local_copy(pkt, bvec); 1447 pkt->cache_valid = 1; 1448 } else { 1449 pkt->cache_valid = 0; 1450 } 1451 1452 /* Start the write request */ 1453 bio_init(pkt->w_bio); 1454 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE; 1455 pkt->w_bio->bi_sector = pkt->sector; 1456 pkt->w_bio->bi_bdev = pd->bdev; 1457 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1458 pkt->w_bio->bi_private = pkt; 1459 pkt->w_bio->bi_io_vec = bvec; 1460 pkt->w_bio->bi_destructor = pkt_bio_destructor; 1461 for (f = 0; f < pkt->frames; f++) 1462 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset)) 1463 BUG(); 1464 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt); 1465 1466 atomic_set(&pkt->io_wait, 1); 1467 pkt->w_bio->bi_rw = WRITE; 1468 pkt_queue_bio(pd, pkt->w_bio); 1469 } 1470 1471 static void pkt_finish_packet(struct packet_data *pkt, int uptodate) 1472 { 1473 struct bio *bio, *next; 1474 1475 if (!uptodate) 1476 pkt->cache_valid = 0; 1477 1478 /* Finish all bios corresponding to this packet */ 1479 bio = pkt->orig_bios; 1480 while (bio) { 1481 next = bio->bi_next; 1482 bio->bi_next = NULL; 1483 bio_endio(bio, uptodate ? 0 : -EIO); 1484 bio = next; 1485 } 1486 pkt->orig_bios = pkt->orig_bios_tail = NULL; 1487 } 1488 1489 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1490 { 1491 int uptodate; 1492 1493 VPRINTK("run_state_machine: pkt %d\n", pkt->id); 1494 1495 for (;;) { 1496 switch (pkt->state) { 1497 case PACKET_WAITING_STATE: 1498 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1499 return; 1500 1501 pkt->sleep_time = 0; 1502 pkt_gather_data(pd, pkt); 1503 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1504 break; 1505 1506 case PACKET_READ_WAIT_STATE: 1507 if (atomic_read(&pkt->io_wait) > 0) 1508 return; 1509 1510 if (atomic_read(&pkt->io_errors) > 0) { 1511 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1512 } else { 1513 pkt_start_write(pd, pkt); 1514 } 1515 break; 1516 1517 case PACKET_WRITE_WAIT_STATE: 1518 if (atomic_read(&pkt->io_wait) > 0) 1519 return; 1520 1521 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) { 1522 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1523 } else { 1524 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1525 } 1526 break; 1527 1528 case PACKET_RECOVERY_STATE: 1529 if (pkt_start_recovery(pkt)) { 1530 pkt_start_write(pd, pkt); 1531 } else { 1532 VPRINTK("No recovery possible\n"); 1533 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1534 } 1535 break; 1536 1537 case PACKET_FINISHED_STATE: 1538 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags); 1539 pkt_finish_packet(pkt, uptodate); 1540 return; 1541 1542 default: 1543 BUG(); 1544 break; 1545 } 1546 } 1547 } 1548 1549 static void pkt_handle_packets(struct pktcdvd_device *pd) 1550 { 1551 struct packet_data *pkt, *next; 1552 1553 VPRINTK("pkt_handle_packets\n"); 1554 1555 /* 1556 * Run state machine for active packets 1557 */ 1558 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1559 if (atomic_read(&pkt->run_sm) > 0) { 1560 atomic_set(&pkt->run_sm, 0); 1561 pkt_run_state_machine(pd, pkt); 1562 } 1563 } 1564 1565 /* 1566 * Move no longer active packets to the free list 1567 */ 1568 spin_lock(&pd->cdrw.active_list_lock); 1569 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1570 if (pkt->state == PACKET_FINISHED_STATE) { 1571 list_del(&pkt->list); 1572 pkt_put_packet_data(pd, pkt); 1573 pkt_set_state(pkt, PACKET_IDLE_STATE); 1574 atomic_set(&pd->scan_queue, 1); 1575 } 1576 } 1577 spin_unlock(&pd->cdrw.active_list_lock); 1578 } 1579 1580 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1581 { 1582 struct packet_data *pkt; 1583 int i; 1584 1585 for (i = 0; i < PACKET_NUM_STATES; i++) 1586 states[i] = 0; 1587 1588 spin_lock(&pd->cdrw.active_list_lock); 1589 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1590 states[pkt->state]++; 1591 } 1592 spin_unlock(&pd->cdrw.active_list_lock); 1593 } 1594 1595 /* 1596 * kcdrwd is woken up when writes have been queued for one of our 1597 * registered devices 1598 */ 1599 static int kcdrwd(void *foobar) 1600 { 1601 struct pktcdvd_device *pd = foobar; 1602 struct packet_data *pkt; 1603 long min_sleep_time, residue; 1604 1605 set_user_nice(current, -20); 1606 set_freezable(); 1607 1608 for (;;) { 1609 DECLARE_WAITQUEUE(wait, current); 1610 1611 /* 1612 * Wait until there is something to do 1613 */ 1614 add_wait_queue(&pd->wqueue, &wait); 1615 for (;;) { 1616 set_current_state(TASK_INTERRUPTIBLE); 1617 1618 /* Check if we need to run pkt_handle_queue */ 1619 if (atomic_read(&pd->scan_queue) > 0) 1620 goto work_to_do; 1621 1622 /* Check if we need to run the state machine for some packet */ 1623 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1624 if (atomic_read(&pkt->run_sm) > 0) 1625 goto work_to_do; 1626 } 1627 1628 /* Check if we need to process the iosched queues */ 1629 if (atomic_read(&pd->iosched.attention) != 0) 1630 goto work_to_do; 1631 1632 /* Otherwise, go to sleep */ 1633 if (PACKET_DEBUG > 1) { 1634 int states[PACKET_NUM_STATES]; 1635 pkt_count_states(pd, states); 1636 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1637 states[0], states[1], states[2], states[3], 1638 states[4], states[5]); 1639 } 1640 1641 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1642 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1643 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1644 min_sleep_time = pkt->sleep_time; 1645 } 1646 1647 generic_unplug_device(bdev_get_queue(pd->bdev)); 1648 1649 VPRINTK("kcdrwd: sleeping\n"); 1650 residue = schedule_timeout(min_sleep_time); 1651 VPRINTK("kcdrwd: wake up\n"); 1652 1653 /* make swsusp happy with our thread */ 1654 try_to_freeze(); 1655 1656 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1657 if (!pkt->sleep_time) 1658 continue; 1659 pkt->sleep_time -= min_sleep_time - residue; 1660 if (pkt->sleep_time <= 0) { 1661 pkt->sleep_time = 0; 1662 atomic_inc(&pkt->run_sm); 1663 } 1664 } 1665 1666 if (kthread_should_stop()) 1667 break; 1668 } 1669 work_to_do: 1670 set_current_state(TASK_RUNNING); 1671 remove_wait_queue(&pd->wqueue, &wait); 1672 1673 if (kthread_should_stop()) 1674 break; 1675 1676 /* 1677 * if pkt_handle_queue returns true, we can queue 1678 * another request. 1679 */ 1680 while (pkt_handle_queue(pd)) 1681 ; 1682 1683 /* 1684 * Handle packet state machine 1685 */ 1686 pkt_handle_packets(pd); 1687 1688 /* 1689 * Handle iosched queues 1690 */ 1691 pkt_iosched_process_queue(pd); 1692 } 1693 1694 return 0; 1695 } 1696 1697 static void pkt_print_settings(struct pktcdvd_device *pd) 1698 { 1699 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable"); 1700 printk("%u blocks, ", pd->settings.size >> 2); 1701 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2'); 1702 } 1703 1704 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1705 { 1706 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1707 1708 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1709 cgc->cmd[2] = page_code | (page_control << 6); 1710 cgc->cmd[7] = cgc->buflen >> 8; 1711 cgc->cmd[8] = cgc->buflen & 0xff; 1712 cgc->data_direction = CGC_DATA_READ; 1713 return pkt_generic_packet(pd, cgc); 1714 } 1715 1716 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1717 { 1718 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1719 memset(cgc->buffer, 0, 2); 1720 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1721 cgc->cmd[1] = 0x10; /* PF */ 1722 cgc->cmd[7] = cgc->buflen >> 8; 1723 cgc->cmd[8] = cgc->buflen & 0xff; 1724 cgc->data_direction = CGC_DATA_WRITE; 1725 return pkt_generic_packet(pd, cgc); 1726 } 1727 1728 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1729 { 1730 struct packet_command cgc; 1731 int ret; 1732 1733 /* set up command and get the disc info */ 1734 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1735 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1736 cgc.cmd[8] = cgc.buflen = 2; 1737 cgc.quiet = 1; 1738 1739 if ((ret = pkt_generic_packet(pd, &cgc))) 1740 return ret; 1741 1742 /* not all drives have the same disc_info length, so requeue 1743 * packet with the length the drive tells us it can supply 1744 */ 1745 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1746 sizeof(di->disc_information_length); 1747 1748 if (cgc.buflen > sizeof(disc_information)) 1749 cgc.buflen = sizeof(disc_information); 1750 1751 cgc.cmd[8] = cgc.buflen; 1752 return pkt_generic_packet(pd, &cgc); 1753 } 1754 1755 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1756 { 1757 struct packet_command cgc; 1758 int ret; 1759 1760 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1761 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1762 cgc.cmd[1] = type & 3; 1763 cgc.cmd[4] = (track & 0xff00) >> 8; 1764 cgc.cmd[5] = track & 0xff; 1765 cgc.cmd[8] = 8; 1766 cgc.quiet = 1; 1767 1768 if ((ret = pkt_generic_packet(pd, &cgc))) 1769 return ret; 1770 1771 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1772 sizeof(ti->track_information_length); 1773 1774 if (cgc.buflen > sizeof(track_information)) 1775 cgc.buflen = sizeof(track_information); 1776 1777 cgc.cmd[8] = cgc.buflen; 1778 return pkt_generic_packet(pd, &cgc); 1779 } 1780 1781 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd, 1782 long *last_written) 1783 { 1784 disc_information di; 1785 track_information ti; 1786 __u32 last_track; 1787 int ret = -1; 1788 1789 if ((ret = pkt_get_disc_info(pd, &di))) 1790 return ret; 1791 1792 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1793 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1794 return ret; 1795 1796 /* if this track is blank, try the previous. */ 1797 if (ti.blank) { 1798 last_track--; 1799 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1800 return ret; 1801 } 1802 1803 /* if last recorded field is valid, return it. */ 1804 if (ti.lra_v) { 1805 *last_written = be32_to_cpu(ti.last_rec_address); 1806 } else { 1807 /* make it up instead */ 1808 *last_written = be32_to_cpu(ti.track_start) + 1809 be32_to_cpu(ti.track_size); 1810 if (ti.free_blocks) 1811 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1812 } 1813 return 0; 1814 } 1815 1816 /* 1817 * write mode select package based on pd->settings 1818 */ 1819 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd) 1820 { 1821 struct packet_command cgc; 1822 struct request_sense sense; 1823 write_param_page *wp; 1824 char buffer[128]; 1825 int ret, size; 1826 1827 /* doesn't apply to DVD+RW or DVD-RAM */ 1828 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1829 return 0; 1830 1831 memset(buffer, 0, sizeof(buffer)); 1832 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1833 cgc.sense = &sense; 1834 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1835 pkt_dump_sense(&cgc); 1836 return ret; 1837 } 1838 1839 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1840 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1841 if (size > sizeof(buffer)) 1842 size = sizeof(buffer); 1843 1844 /* 1845 * now get it all 1846 */ 1847 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1848 cgc.sense = &sense; 1849 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1850 pkt_dump_sense(&cgc); 1851 return ret; 1852 } 1853 1854 /* 1855 * write page is offset header + block descriptor length 1856 */ 1857 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1858 1859 wp->fp = pd->settings.fp; 1860 wp->track_mode = pd->settings.track_mode; 1861 wp->write_type = pd->settings.write_type; 1862 wp->data_block_type = pd->settings.block_mode; 1863 1864 wp->multi_session = 0; 1865 1866 #ifdef PACKET_USE_LS 1867 wp->link_size = 7; 1868 wp->ls_v = 1; 1869 #endif 1870 1871 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1872 wp->session_format = 0; 1873 wp->subhdr2 = 0x20; 1874 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1875 wp->session_format = 0x20; 1876 wp->subhdr2 = 8; 1877 #if 0 1878 wp->mcn[0] = 0x80; 1879 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1880 #endif 1881 } else { 1882 /* 1883 * paranoia 1884 */ 1885 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type); 1886 return 1; 1887 } 1888 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1889 1890 cgc.buflen = cgc.cmd[8] = size; 1891 if ((ret = pkt_mode_select(pd, &cgc))) { 1892 pkt_dump_sense(&cgc); 1893 return ret; 1894 } 1895 1896 pkt_print_settings(pd); 1897 return 0; 1898 } 1899 1900 /* 1901 * 1 -- we can write to this track, 0 -- we can't 1902 */ 1903 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1904 { 1905 switch (pd->mmc3_profile) { 1906 case 0x1a: /* DVD+RW */ 1907 case 0x12: /* DVD-RAM */ 1908 /* The track is always writable on DVD+RW/DVD-RAM */ 1909 return 1; 1910 default: 1911 break; 1912 } 1913 1914 if (!ti->packet || !ti->fp) 1915 return 0; 1916 1917 /* 1918 * "good" settings as per Mt Fuji. 1919 */ 1920 if (ti->rt == 0 && ti->blank == 0) 1921 return 1; 1922 1923 if (ti->rt == 0 && ti->blank == 1) 1924 return 1; 1925 1926 if (ti->rt == 1 && ti->blank == 0) 1927 return 1; 1928 1929 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1930 return 0; 1931 } 1932 1933 /* 1934 * 1 -- we can write to this disc, 0 -- we can't 1935 */ 1936 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1937 { 1938 switch (pd->mmc3_profile) { 1939 case 0x0a: /* CD-RW */ 1940 case 0xffff: /* MMC3 not supported */ 1941 break; 1942 case 0x1a: /* DVD+RW */ 1943 case 0x13: /* DVD-RW */ 1944 case 0x12: /* DVD-RAM */ 1945 return 1; 1946 default: 1947 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile); 1948 return 0; 1949 } 1950 1951 /* 1952 * for disc type 0xff we should probably reserve a new track. 1953 * but i'm not sure, should we leave this to user apps? probably. 1954 */ 1955 if (di->disc_type == 0xff) { 1956 printk(DRIVER_NAME": Unknown disc. No track?\n"); 1957 return 0; 1958 } 1959 1960 if (di->disc_type != 0x20 && di->disc_type != 0) { 1961 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type); 1962 return 0; 1963 } 1964 1965 if (di->erasable == 0) { 1966 printk(DRIVER_NAME": Disc not erasable\n"); 1967 return 0; 1968 } 1969 1970 if (di->border_status == PACKET_SESSION_RESERVED) { 1971 printk(DRIVER_NAME": Can't write to last track (reserved)\n"); 1972 return 0; 1973 } 1974 1975 return 1; 1976 } 1977 1978 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd) 1979 { 1980 struct packet_command cgc; 1981 unsigned char buf[12]; 1982 disc_information di; 1983 track_information ti; 1984 int ret, track; 1985 1986 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1987 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1988 cgc.cmd[8] = 8; 1989 ret = pkt_generic_packet(pd, &cgc); 1990 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1991 1992 memset(&di, 0, sizeof(disc_information)); 1993 memset(&ti, 0, sizeof(track_information)); 1994 1995 if ((ret = pkt_get_disc_info(pd, &di))) { 1996 printk("failed get_disc\n"); 1997 return ret; 1998 } 1999 2000 if (!pkt_writable_disc(pd, &di)) 2001 return -EROFS; 2002 2003 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 2004 2005 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 2006 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 2007 printk(DRIVER_NAME": failed get_track\n"); 2008 return ret; 2009 } 2010 2011 if (!pkt_writable_track(pd, &ti)) { 2012 printk(DRIVER_NAME": can't write to this track\n"); 2013 return -EROFS; 2014 } 2015 2016 /* 2017 * we keep packet size in 512 byte units, makes it easier to 2018 * deal with request calculations. 2019 */ 2020 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 2021 if (pd->settings.size == 0) { 2022 printk(DRIVER_NAME": detected zero packet size!\n"); 2023 return -ENXIO; 2024 } 2025 if (pd->settings.size > PACKET_MAX_SECTORS) { 2026 printk(DRIVER_NAME": packet size is too big\n"); 2027 return -EROFS; 2028 } 2029 pd->settings.fp = ti.fp; 2030 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 2031 2032 if (ti.nwa_v) { 2033 pd->nwa = be32_to_cpu(ti.next_writable); 2034 set_bit(PACKET_NWA_VALID, &pd->flags); 2035 } 2036 2037 /* 2038 * in theory we could use lra on -RW media as well and just zero 2039 * blocks that haven't been written yet, but in practice that 2040 * is just a no-go. we'll use that for -R, naturally. 2041 */ 2042 if (ti.lra_v) { 2043 pd->lra = be32_to_cpu(ti.last_rec_address); 2044 set_bit(PACKET_LRA_VALID, &pd->flags); 2045 } else { 2046 pd->lra = 0xffffffff; 2047 set_bit(PACKET_LRA_VALID, &pd->flags); 2048 } 2049 2050 /* 2051 * fine for now 2052 */ 2053 pd->settings.link_loss = 7; 2054 pd->settings.write_type = 0; /* packet */ 2055 pd->settings.track_mode = ti.track_mode; 2056 2057 /* 2058 * mode1 or mode2 disc 2059 */ 2060 switch (ti.data_mode) { 2061 case PACKET_MODE1: 2062 pd->settings.block_mode = PACKET_BLOCK_MODE1; 2063 break; 2064 case PACKET_MODE2: 2065 pd->settings.block_mode = PACKET_BLOCK_MODE2; 2066 break; 2067 default: 2068 printk(DRIVER_NAME": unknown data mode\n"); 2069 return -EROFS; 2070 } 2071 return 0; 2072 } 2073 2074 /* 2075 * enable/disable write caching on drive 2076 */ 2077 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd, 2078 int set) 2079 { 2080 struct packet_command cgc; 2081 struct request_sense sense; 2082 unsigned char buf[64]; 2083 int ret; 2084 2085 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 2086 cgc.sense = &sense; 2087 cgc.buflen = pd->mode_offset + 12; 2088 2089 /* 2090 * caching mode page might not be there, so quiet this command 2091 */ 2092 cgc.quiet = 1; 2093 2094 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 2095 return ret; 2096 2097 buf[pd->mode_offset + 10] |= (!!set << 2); 2098 2099 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 2100 ret = pkt_mode_select(pd, &cgc); 2101 if (ret) { 2102 printk(DRIVER_NAME": write caching control failed\n"); 2103 pkt_dump_sense(&cgc); 2104 } else if (!ret && set) 2105 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name); 2106 return ret; 2107 } 2108 2109 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 2110 { 2111 struct packet_command cgc; 2112 2113 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2114 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 2115 cgc.cmd[4] = lockflag ? 1 : 0; 2116 return pkt_generic_packet(pd, &cgc); 2117 } 2118 2119 /* 2120 * Returns drive maximum write speed 2121 */ 2122 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd, 2123 unsigned *write_speed) 2124 { 2125 struct packet_command cgc; 2126 struct request_sense sense; 2127 unsigned char buf[256+18]; 2128 unsigned char *cap_buf; 2129 int ret, offset; 2130 2131 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 2132 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 2133 cgc.sense = &sense; 2134 2135 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2136 if (ret) { 2137 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 2138 sizeof(struct mode_page_header); 2139 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2140 if (ret) { 2141 pkt_dump_sense(&cgc); 2142 return ret; 2143 } 2144 } 2145 2146 offset = 20; /* Obsoleted field, used by older drives */ 2147 if (cap_buf[1] >= 28) 2148 offset = 28; /* Current write speed selected */ 2149 if (cap_buf[1] >= 30) { 2150 /* If the drive reports at least one "Logical Unit Write 2151 * Speed Performance Descriptor Block", use the information 2152 * in the first block. (contains the highest speed) 2153 */ 2154 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 2155 if (num_spdb > 0) 2156 offset = 34; 2157 } 2158 2159 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 2160 return 0; 2161 } 2162 2163 /* These tables from cdrecord - I don't have orange book */ 2164 /* standard speed CD-RW (1-4x) */ 2165 static char clv_to_speed[16] = { 2166 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2167 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2168 }; 2169 /* high speed CD-RW (-10x) */ 2170 static char hs_clv_to_speed[16] = { 2171 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2172 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2173 }; 2174 /* ultra high speed CD-RW */ 2175 static char us_clv_to_speed[16] = { 2176 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2177 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 2178 }; 2179 2180 /* 2181 * reads the maximum media speed from ATIP 2182 */ 2183 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd, 2184 unsigned *speed) 2185 { 2186 struct packet_command cgc; 2187 struct request_sense sense; 2188 unsigned char buf[64]; 2189 unsigned int size, st, sp; 2190 int ret; 2191 2192 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 2193 cgc.sense = &sense; 2194 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2195 cgc.cmd[1] = 2; 2196 cgc.cmd[2] = 4; /* READ ATIP */ 2197 cgc.cmd[8] = 2; 2198 ret = pkt_generic_packet(pd, &cgc); 2199 if (ret) { 2200 pkt_dump_sense(&cgc); 2201 return ret; 2202 } 2203 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 2204 if (size > sizeof(buf)) 2205 size = sizeof(buf); 2206 2207 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2208 cgc.sense = &sense; 2209 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2210 cgc.cmd[1] = 2; 2211 cgc.cmd[2] = 4; 2212 cgc.cmd[8] = size; 2213 ret = pkt_generic_packet(pd, &cgc); 2214 if (ret) { 2215 pkt_dump_sense(&cgc); 2216 return ret; 2217 } 2218 2219 if (!(buf[6] & 0x40)) { 2220 printk(DRIVER_NAME": Disc type is not CD-RW\n"); 2221 return 1; 2222 } 2223 if (!(buf[6] & 0x4)) { 2224 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n"); 2225 return 1; 2226 } 2227 2228 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2229 2230 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2231 2232 /* Info from cdrecord */ 2233 switch (st) { 2234 case 0: /* standard speed */ 2235 *speed = clv_to_speed[sp]; 2236 break; 2237 case 1: /* high speed */ 2238 *speed = hs_clv_to_speed[sp]; 2239 break; 2240 case 2: /* ultra high speed */ 2241 *speed = us_clv_to_speed[sp]; 2242 break; 2243 default: 2244 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st); 2245 return 1; 2246 } 2247 if (*speed) { 2248 printk(DRIVER_NAME": Max. media speed: %d\n",*speed); 2249 return 0; 2250 } else { 2251 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st); 2252 return 1; 2253 } 2254 } 2255 2256 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd) 2257 { 2258 struct packet_command cgc; 2259 struct request_sense sense; 2260 int ret; 2261 2262 VPRINTK(DRIVER_NAME": Performing OPC\n"); 2263 2264 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2265 cgc.sense = &sense; 2266 cgc.timeout = 60*HZ; 2267 cgc.cmd[0] = GPCMD_SEND_OPC; 2268 cgc.cmd[1] = 1; 2269 if ((ret = pkt_generic_packet(pd, &cgc))) 2270 pkt_dump_sense(&cgc); 2271 return ret; 2272 } 2273 2274 static int pkt_open_write(struct pktcdvd_device *pd) 2275 { 2276 int ret; 2277 unsigned int write_speed, media_write_speed, read_speed; 2278 2279 if ((ret = pkt_probe_settings(pd))) { 2280 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name); 2281 return ret; 2282 } 2283 2284 if ((ret = pkt_set_write_settings(pd))) { 2285 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name); 2286 return -EIO; 2287 } 2288 2289 pkt_write_caching(pd, USE_WCACHING); 2290 2291 if ((ret = pkt_get_max_speed(pd, &write_speed))) 2292 write_speed = 16 * 177; 2293 switch (pd->mmc3_profile) { 2294 case 0x13: /* DVD-RW */ 2295 case 0x1a: /* DVD+RW */ 2296 case 0x12: /* DVD-RAM */ 2297 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed); 2298 break; 2299 default: 2300 if ((ret = pkt_media_speed(pd, &media_write_speed))) 2301 media_write_speed = 16; 2302 write_speed = min(write_speed, media_write_speed * 177); 2303 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176); 2304 break; 2305 } 2306 read_speed = write_speed; 2307 2308 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 2309 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name); 2310 return -EIO; 2311 } 2312 pd->write_speed = write_speed; 2313 pd->read_speed = read_speed; 2314 2315 if ((ret = pkt_perform_opc(pd))) { 2316 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name); 2317 } 2318 2319 return 0; 2320 } 2321 2322 /* 2323 * called at open time. 2324 */ 2325 static int pkt_open_dev(struct pktcdvd_device *pd, int write) 2326 { 2327 int ret; 2328 long lba; 2329 struct request_queue *q; 2330 2331 /* 2332 * We need to re-open the cdrom device without O_NONBLOCK to be able 2333 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2334 * so bdget() can't fail. 2335 */ 2336 bdget(pd->bdev->bd_dev); 2337 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY))) 2338 goto out; 2339 2340 if ((ret = bd_claim(pd->bdev, pd))) 2341 goto out_putdev; 2342 2343 if ((ret = pkt_get_last_written(pd, &lba))) { 2344 printk(DRIVER_NAME": pkt_get_last_written failed\n"); 2345 goto out_unclaim; 2346 } 2347 2348 set_capacity(pd->disk, lba << 2); 2349 set_capacity(pd->bdev->bd_disk, lba << 2); 2350 bd_set_size(pd->bdev, (loff_t)lba << 11); 2351 2352 q = bdev_get_queue(pd->bdev); 2353 if (write) { 2354 if ((ret = pkt_open_write(pd))) 2355 goto out_unclaim; 2356 /* 2357 * Some CDRW drives can not handle writes larger than one packet, 2358 * even if the size is a multiple of the packet size. 2359 */ 2360 spin_lock_irq(q->queue_lock); 2361 blk_queue_max_sectors(q, pd->settings.size); 2362 spin_unlock_irq(q->queue_lock); 2363 set_bit(PACKET_WRITABLE, &pd->flags); 2364 } else { 2365 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2366 clear_bit(PACKET_WRITABLE, &pd->flags); 2367 } 2368 2369 if ((ret = pkt_set_segment_merging(pd, q))) 2370 goto out_unclaim; 2371 2372 if (write) { 2373 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2374 printk(DRIVER_NAME": not enough memory for buffers\n"); 2375 ret = -ENOMEM; 2376 goto out_unclaim; 2377 } 2378 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1); 2379 } 2380 2381 return 0; 2382 2383 out_unclaim: 2384 bd_release(pd->bdev); 2385 out_putdev: 2386 blkdev_put(pd->bdev); 2387 out: 2388 return ret; 2389 } 2390 2391 /* 2392 * called when the device is closed. makes sure that the device flushes 2393 * the internal cache before we close. 2394 */ 2395 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2396 { 2397 if (flush && pkt_flush_cache(pd)) 2398 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name); 2399 2400 pkt_lock_door(pd, 0); 2401 2402 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2403 bd_release(pd->bdev); 2404 blkdev_put(pd->bdev); 2405 2406 pkt_shrink_pktlist(pd); 2407 } 2408 2409 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor) 2410 { 2411 if (dev_minor >= MAX_WRITERS) 2412 return NULL; 2413 return pkt_devs[dev_minor]; 2414 } 2415 2416 static int pkt_open(struct inode *inode, struct file *file) 2417 { 2418 struct pktcdvd_device *pd = NULL; 2419 int ret; 2420 2421 VPRINTK(DRIVER_NAME": entering open\n"); 2422 2423 mutex_lock(&ctl_mutex); 2424 pd = pkt_find_dev_from_minor(iminor(inode)); 2425 if (!pd) { 2426 ret = -ENODEV; 2427 goto out; 2428 } 2429 BUG_ON(pd->refcnt < 0); 2430 2431 pd->refcnt++; 2432 if (pd->refcnt > 1) { 2433 if ((file->f_mode & FMODE_WRITE) && 2434 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2435 ret = -EBUSY; 2436 goto out_dec; 2437 } 2438 } else { 2439 ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE); 2440 if (ret) 2441 goto out_dec; 2442 /* 2443 * needed here as well, since ext2 (among others) may change 2444 * the blocksize at mount time 2445 */ 2446 set_blocksize(inode->i_bdev, CD_FRAMESIZE); 2447 } 2448 2449 mutex_unlock(&ctl_mutex); 2450 return 0; 2451 2452 out_dec: 2453 pd->refcnt--; 2454 out: 2455 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret); 2456 mutex_unlock(&ctl_mutex); 2457 return ret; 2458 } 2459 2460 static int pkt_close(struct inode *inode, struct file *file) 2461 { 2462 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; 2463 int ret = 0; 2464 2465 mutex_lock(&ctl_mutex); 2466 pd->refcnt--; 2467 BUG_ON(pd->refcnt < 0); 2468 if (pd->refcnt == 0) { 2469 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2470 pkt_release_dev(pd, flush); 2471 } 2472 mutex_unlock(&ctl_mutex); 2473 return ret; 2474 } 2475 2476 2477 static void pkt_end_io_read_cloned(struct bio *bio, int err) 2478 { 2479 struct packet_stacked_data *psd = bio->bi_private; 2480 struct pktcdvd_device *pd = psd->pd; 2481 2482 bio_put(bio); 2483 bio_endio(psd->bio, err); 2484 mempool_free(psd, psd_pool); 2485 pkt_bio_finished(pd); 2486 } 2487 2488 static int pkt_make_request(struct request_queue *q, struct bio *bio) 2489 { 2490 struct pktcdvd_device *pd; 2491 char b[BDEVNAME_SIZE]; 2492 sector_t zone; 2493 struct packet_data *pkt; 2494 int was_empty, blocked_bio; 2495 struct pkt_rb_node *node; 2496 2497 pd = q->queuedata; 2498 if (!pd) { 2499 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b)); 2500 goto end_io; 2501 } 2502 2503 /* 2504 * Clone READ bios so we can have our own bi_end_io callback. 2505 */ 2506 if (bio_data_dir(bio) == READ) { 2507 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); 2508 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2509 2510 psd->pd = pd; 2511 psd->bio = bio; 2512 cloned_bio->bi_bdev = pd->bdev; 2513 cloned_bio->bi_private = psd; 2514 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2515 pd->stats.secs_r += bio->bi_size >> 9; 2516 pkt_queue_bio(pd, cloned_bio); 2517 return 0; 2518 } 2519 2520 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2521 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n", 2522 pd->name, (unsigned long long)bio->bi_sector); 2523 goto end_io; 2524 } 2525 2526 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) { 2527 printk(DRIVER_NAME": wrong bio size\n"); 2528 goto end_io; 2529 } 2530 2531 blk_queue_bounce(q, &bio); 2532 2533 zone = ZONE(bio->bi_sector, pd); 2534 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n", 2535 (unsigned long long)bio->bi_sector, 2536 (unsigned long long)(bio->bi_sector + bio_sectors(bio))); 2537 2538 /* Check if we have to split the bio */ 2539 { 2540 struct bio_pair *bp; 2541 sector_t last_zone; 2542 int first_sectors; 2543 2544 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd); 2545 if (last_zone != zone) { 2546 BUG_ON(last_zone != zone + pd->settings.size); 2547 first_sectors = last_zone - bio->bi_sector; 2548 bp = bio_split(bio, bio_split_pool, first_sectors); 2549 BUG_ON(!bp); 2550 pkt_make_request(q, &bp->bio1); 2551 pkt_make_request(q, &bp->bio2); 2552 bio_pair_release(bp); 2553 return 0; 2554 } 2555 } 2556 2557 /* 2558 * If we find a matching packet in state WAITING or READ_WAIT, we can 2559 * just append this bio to that packet. 2560 */ 2561 spin_lock(&pd->cdrw.active_list_lock); 2562 blocked_bio = 0; 2563 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2564 if (pkt->sector == zone) { 2565 spin_lock(&pkt->lock); 2566 if ((pkt->state == PACKET_WAITING_STATE) || 2567 (pkt->state == PACKET_READ_WAIT_STATE)) { 2568 pkt_add_list_last(bio, &pkt->orig_bios, 2569 &pkt->orig_bios_tail); 2570 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 2571 if ((pkt->write_size >= pkt->frames) && 2572 (pkt->state == PACKET_WAITING_STATE)) { 2573 atomic_inc(&pkt->run_sm); 2574 wake_up(&pd->wqueue); 2575 } 2576 spin_unlock(&pkt->lock); 2577 spin_unlock(&pd->cdrw.active_list_lock); 2578 return 0; 2579 } else { 2580 blocked_bio = 1; 2581 } 2582 spin_unlock(&pkt->lock); 2583 } 2584 } 2585 spin_unlock(&pd->cdrw.active_list_lock); 2586 2587 /* 2588 * Test if there is enough room left in the bio work queue 2589 * (queue size >= congestion on mark). 2590 * If not, wait till the work queue size is below the congestion off mark. 2591 */ 2592 spin_lock(&pd->lock); 2593 if (pd->write_congestion_on > 0 2594 && pd->bio_queue_size >= pd->write_congestion_on) { 2595 set_bdi_congested(&q->backing_dev_info, WRITE); 2596 do { 2597 spin_unlock(&pd->lock); 2598 congestion_wait(WRITE, HZ); 2599 spin_lock(&pd->lock); 2600 } while(pd->bio_queue_size > pd->write_congestion_off); 2601 } 2602 spin_unlock(&pd->lock); 2603 2604 /* 2605 * No matching packet found. Store the bio in the work queue. 2606 */ 2607 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2608 node->bio = bio; 2609 spin_lock(&pd->lock); 2610 BUG_ON(pd->bio_queue_size < 0); 2611 was_empty = (pd->bio_queue_size == 0); 2612 pkt_rbtree_insert(pd, node); 2613 spin_unlock(&pd->lock); 2614 2615 /* 2616 * Wake up the worker thread. 2617 */ 2618 atomic_set(&pd->scan_queue, 1); 2619 if (was_empty) { 2620 /* This wake_up is required for correct operation */ 2621 wake_up(&pd->wqueue); 2622 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2623 /* 2624 * This wake up is not required for correct operation, 2625 * but improves performance in some cases. 2626 */ 2627 wake_up(&pd->wqueue); 2628 } 2629 return 0; 2630 end_io: 2631 bio_io_error(bio); 2632 return 0; 2633 } 2634 2635 2636 2637 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 2638 struct bio_vec *bvec) 2639 { 2640 struct pktcdvd_device *pd = q->queuedata; 2641 sector_t zone = ZONE(bmd->bi_sector, pd); 2642 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size; 2643 int remaining = (pd->settings.size << 9) - used; 2644 int remaining2; 2645 2646 /* 2647 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet 2648 * boundary, pkt_make_request() will split the bio. 2649 */ 2650 remaining2 = PAGE_SIZE - bmd->bi_size; 2651 remaining = max(remaining, remaining2); 2652 2653 BUG_ON(remaining < 0); 2654 return remaining; 2655 } 2656 2657 static void pkt_init_queue(struct pktcdvd_device *pd) 2658 { 2659 struct request_queue *q = pd->disk->queue; 2660 2661 blk_queue_make_request(q, pkt_make_request); 2662 blk_queue_hardsect_size(q, CD_FRAMESIZE); 2663 blk_queue_max_sectors(q, PACKET_MAX_SECTORS); 2664 blk_queue_merge_bvec(q, pkt_merge_bvec); 2665 q->queuedata = pd; 2666 } 2667 2668 static int pkt_seq_show(struct seq_file *m, void *p) 2669 { 2670 struct pktcdvd_device *pd = m->private; 2671 char *msg; 2672 char bdev_buf[BDEVNAME_SIZE]; 2673 int states[PACKET_NUM_STATES]; 2674 2675 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2676 bdevname(pd->bdev, bdev_buf)); 2677 2678 seq_printf(m, "\nSettings:\n"); 2679 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2680 2681 if (pd->settings.write_type == 0) 2682 msg = "Packet"; 2683 else 2684 msg = "Unknown"; 2685 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2686 2687 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2688 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2689 2690 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2691 2692 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2693 msg = "Mode 1"; 2694 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2695 msg = "Mode 2"; 2696 else 2697 msg = "Unknown"; 2698 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2699 2700 seq_printf(m, "\nStatistics:\n"); 2701 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2702 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2703 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2704 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2705 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2706 2707 seq_printf(m, "\nMisc:\n"); 2708 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2709 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2710 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2711 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2712 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2713 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2714 2715 seq_printf(m, "\nQueue state:\n"); 2716 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2717 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2718 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2719 2720 pkt_count_states(pd, states); 2721 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2722 states[0], states[1], states[2], states[3], states[4], states[5]); 2723 2724 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 2725 pd->write_congestion_off, 2726 pd->write_congestion_on); 2727 return 0; 2728 } 2729 2730 static int pkt_seq_open(struct inode *inode, struct file *file) 2731 { 2732 return single_open(file, pkt_seq_show, PDE(inode)->data); 2733 } 2734 2735 static const struct file_operations pkt_proc_fops = { 2736 .open = pkt_seq_open, 2737 .read = seq_read, 2738 .llseek = seq_lseek, 2739 .release = single_release 2740 }; 2741 2742 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2743 { 2744 int i; 2745 int ret = 0; 2746 char b[BDEVNAME_SIZE]; 2747 struct block_device *bdev; 2748 2749 if (pd->pkt_dev == dev) { 2750 printk(DRIVER_NAME": Recursive setup not allowed\n"); 2751 return -EBUSY; 2752 } 2753 for (i = 0; i < MAX_WRITERS; i++) { 2754 struct pktcdvd_device *pd2 = pkt_devs[i]; 2755 if (!pd2) 2756 continue; 2757 if (pd2->bdev->bd_dev == dev) { 2758 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b)); 2759 return -EBUSY; 2760 } 2761 if (pd2->pkt_dev == dev) { 2762 printk(DRIVER_NAME": Can't chain pktcdvd devices\n"); 2763 return -EBUSY; 2764 } 2765 } 2766 2767 bdev = bdget(dev); 2768 if (!bdev) 2769 return -ENOMEM; 2770 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK); 2771 if (ret) 2772 return ret; 2773 2774 /* This is safe, since we have a reference from open(). */ 2775 __module_get(THIS_MODULE); 2776 2777 pd->bdev = bdev; 2778 set_blocksize(bdev, CD_FRAMESIZE); 2779 2780 pkt_init_queue(pd); 2781 2782 atomic_set(&pd->cdrw.pending_bios, 0); 2783 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2784 if (IS_ERR(pd->cdrw.thread)) { 2785 printk(DRIVER_NAME": can't start kernel thread\n"); 2786 ret = -ENOMEM; 2787 goto out_mem; 2788 } 2789 2790 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd); 2791 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b)); 2792 return 0; 2793 2794 out_mem: 2795 blkdev_put(bdev); 2796 /* This is safe: open() is still holding a reference. */ 2797 module_put(THIS_MODULE); 2798 return ret; 2799 } 2800 2801 static long pkt_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2802 { 2803 struct inode *inode = file->f_path.dentry->d_inode; 2804 struct pktcdvd_device *pd; 2805 long ret; 2806 2807 lock_kernel(); 2808 pd = inode->i_bdev->bd_disk->private_data; 2809 2810 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode)); 2811 2812 switch (cmd) { 2813 /* 2814 * forward selected CDROM ioctls to CD-ROM, for UDF 2815 */ 2816 case CDROMMULTISESSION: 2817 case CDROMREADTOCENTRY: 2818 case CDROM_LAST_WRITTEN: 2819 case CDROM_SEND_PACKET: 2820 case SCSI_IOCTL_SEND_COMMAND: 2821 ret = blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); 2822 break; 2823 2824 case CDROMEJECT: 2825 /* 2826 * The door gets locked when the device is opened, so we 2827 * have to unlock it or else the eject command fails. 2828 */ 2829 if (pd->refcnt == 1) 2830 pkt_lock_door(pd, 0); 2831 ret = blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); 2832 break; 2833 2834 default: 2835 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd); 2836 ret = -ENOTTY; 2837 } 2838 unlock_kernel(); 2839 return ret; 2840 } 2841 2842 static int pkt_media_changed(struct gendisk *disk) 2843 { 2844 struct pktcdvd_device *pd = disk->private_data; 2845 struct gendisk *attached_disk; 2846 2847 if (!pd) 2848 return 0; 2849 if (!pd->bdev) 2850 return 0; 2851 attached_disk = pd->bdev->bd_disk; 2852 if (!attached_disk) 2853 return 0; 2854 return attached_disk->fops->media_changed(attached_disk); 2855 } 2856 2857 static struct block_device_operations pktcdvd_ops = { 2858 .owner = THIS_MODULE, 2859 .open = pkt_open, 2860 .release = pkt_close, 2861 .unlocked_ioctl = pkt_ioctl, 2862 .media_changed = pkt_media_changed, 2863 }; 2864 2865 /* 2866 * Set up mapping from pktcdvd device to CD-ROM device. 2867 */ 2868 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2869 { 2870 int idx; 2871 int ret = -ENOMEM; 2872 struct pktcdvd_device *pd; 2873 struct gendisk *disk; 2874 2875 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2876 2877 for (idx = 0; idx < MAX_WRITERS; idx++) 2878 if (!pkt_devs[idx]) 2879 break; 2880 if (idx == MAX_WRITERS) { 2881 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS); 2882 ret = -EBUSY; 2883 goto out_mutex; 2884 } 2885 2886 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2887 if (!pd) 2888 goto out_mutex; 2889 2890 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE, 2891 sizeof(struct pkt_rb_node)); 2892 if (!pd->rb_pool) 2893 goto out_mem; 2894 2895 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2896 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2897 spin_lock_init(&pd->cdrw.active_list_lock); 2898 2899 spin_lock_init(&pd->lock); 2900 spin_lock_init(&pd->iosched.lock); 2901 sprintf(pd->name, DRIVER_NAME"%d", idx); 2902 init_waitqueue_head(&pd->wqueue); 2903 pd->bio_queue = RB_ROOT; 2904 2905 pd->write_congestion_on = write_congestion_on; 2906 pd->write_congestion_off = write_congestion_off; 2907 2908 disk = alloc_disk(1); 2909 if (!disk) 2910 goto out_mem; 2911 pd->disk = disk; 2912 disk->major = pktdev_major; 2913 disk->first_minor = idx; 2914 disk->fops = &pktcdvd_ops; 2915 disk->flags = GENHD_FL_REMOVABLE; 2916 strcpy(disk->disk_name, pd->name); 2917 disk->private_data = pd; 2918 disk->queue = blk_alloc_queue(GFP_KERNEL); 2919 if (!disk->queue) 2920 goto out_mem2; 2921 2922 pd->pkt_dev = MKDEV(disk->major, disk->first_minor); 2923 ret = pkt_new_dev(pd, dev); 2924 if (ret) 2925 goto out_new_dev; 2926 2927 add_disk(disk); 2928 2929 pkt_sysfs_dev_new(pd); 2930 pkt_debugfs_dev_new(pd); 2931 2932 pkt_devs[idx] = pd; 2933 if (pkt_dev) 2934 *pkt_dev = pd->pkt_dev; 2935 2936 mutex_unlock(&ctl_mutex); 2937 return 0; 2938 2939 out_new_dev: 2940 blk_cleanup_queue(disk->queue); 2941 out_mem2: 2942 put_disk(disk); 2943 out_mem: 2944 if (pd->rb_pool) 2945 mempool_destroy(pd->rb_pool); 2946 kfree(pd); 2947 out_mutex: 2948 mutex_unlock(&ctl_mutex); 2949 printk(DRIVER_NAME": setup of pktcdvd device failed\n"); 2950 return ret; 2951 } 2952 2953 /* 2954 * Tear down mapping from pktcdvd device to CD-ROM device. 2955 */ 2956 static int pkt_remove_dev(dev_t pkt_dev) 2957 { 2958 struct pktcdvd_device *pd; 2959 int idx; 2960 int ret = 0; 2961 2962 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2963 2964 for (idx = 0; idx < MAX_WRITERS; idx++) { 2965 pd = pkt_devs[idx]; 2966 if (pd && (pd->pkt_dev == pkt_dev)) 2967 break; 2968 } 2969 if (idx == MAX_WRITERS) { 2970 DPRINTK(DRIVER_NAME": dev not setup\n"); 2971 ret = -ENXIO; 2972 goto out; 2973 } 2974 2975 if (pd->refcnt > 0) { 2976 ret = -EBUSY; 2977 goto out; 2978 } 2979 if (!IS_ERR(pd->cdrw.thread)) 2980 kthread_stop(pd->cdrw.thread); 2981 2982 pkt_devs[idx] = NULL; 2983 2984 pkt_debugfs_dev_remove(pd); 2985 pkt_sysfs_dev_remove(pd); 2986 2987 blkdev_put(pd->bdev); 2988 2989 remove_proc_entry(pd->name, pkt_proc); 2990 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name); 2991 2992 del_gendisk(pd->disk); 2993 blk_cleanup_queue(pd->disk->queue); 2994 put_disk(pd->disk); 2995 2996 mempool_destroy(pd->rb_pool); 2997 kfree(pd); 2998 2999 /* This is safe: open() is still holding a reference. */ 3000 module_put(THIS_MODULE); 3001 3002 out: 3003 mutex_unlock(&ctl_mutex); 3004 return ret; 3005 } 3006 3007 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 3008 { 3009 struct pktcdvd_device *pd; 3010 3011 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 3012 3013 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 3014 if (pd) { 3015 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 3016 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 3017 } else { 3018 ctrl_cmd->dev = 0; 3019 ctrl_cmd->pkt_dev = 0; 3020 } 3021 ctrl_cmd->num_devices = MAX_WRITERS; 3022 3023 mutex_unlock(&ctl_mutex); 3024 } 3025 3026 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, 3027 unsigned long arg) 3028 { 3029 void __user *argp = (void __user *)arg; 3030 struct pkt_ctrl_command ctrl_cmd; 3031 int ret = 0; 3032 dev_t pkt_dev = 0; 3033 3034 if (cmd != PACKET_CTRL_CMD) 3035 return -ENOTTY; 3036 3037 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 3038 return -EFAULT; 3039 3040 switch (ctrl_cmd.command) { 3041 case PKT_CTRL_CMD_SETUP: 3042 if (!capable(CAP_SYS_ADMIN)) 3043 return -EPERM; 3044 lock_kernel(); 3045 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 3046 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 3047 unlock_kernel(); 3048 break; 3049 case PKT_CTRL_CMD_TEARDOWN: 3050 if (!capable(CAP_SYS_ADMIN)) 3051 return -EPERM; 3052 lock_kernel(); 3053 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 3054 unlock_kernel(); 3055 break; 3056 case PKT_CTRL_CMD_STATUS: 3057 lock_kernel(); 3058 pkt_get_status(&ctrl_cmd); 3059 unlock_kernel(); 3060 break; 3061 default: 3062 return -ENOTTY; 3063 } 3064 3065 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 3066 return -EFAULT; 3067 return ret; 3068 } 3069 3070 3071 static const struct file_operations pkt_ctl_fops = { 3072 .unlocked_ioctl = pkt_ctl_ioctl, 3073 .owner = THIS_MODULE, 3074 }; 3075 3076 static struct miscdevice pkt_misc = { 3077 .minor = MISC_DYNAMIC_MINOR, 3078 .name = DRIVER_NAME, 3079 .fops = &pkt_ctl_fops 3080 }; 3081 3082 static int __init pkt_init(void) 3083 { 3084 int ret; 3085 3086 mutex_init(&ctl_mutex); 3087 3088 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE, 3089 sizeof(struct packet_stacked_data)); 3090 if (!psd_pool) 3091 return -ENOMEM; 3092 3093 ret = register_blkdev(pktdev_major, DRIVER_NAME); 3094 if (ret < 0) { 3095 printk(DRIVER_NAME": Unable to register block device\n"); 3096 goto out2; 3097 } 3098 if (!pktdev_major) 3099 pktdev_major = ret; 3100 3101 ret = pkt_sysfs_init(); 3102 if (ret) 3103 goto out; 3104 3105 pkt_debugfs_init(); 3106 3107 ret = misc_register(&pkt_misc); 3108 if (ret) { 3109 printk(DRIVER_NAME": Unable to register misc device\n"); 3110 goto out_misc; 3111 } 3112 3113 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL); 3114 3115 return 0; 3116 3117 out_misc: 3118 pkt_debugfs_cleanup(); 3119 pkt_sysfs_cleanup(); 3120 out: 3121 unregister_blkdev(pktdev_major, DRIVER_NAME); 3122 out2: 3123 mempool_destroy(psd_pool); 3124 return ret; 3125 } 3126 3127 static void __exit pkt_exit(void) 3128 { 3129 remove_proc_entry("driver/"DRIVER_NAME, NULL); 3130 misc_deregister(&pkt_misc); 3131 3132 pkt_debugfs_cleanup(); 3133 pkt_sysfs_cleanup(); 3134 3135 unregister_blkdev(pktdev_major, DRIVER_NAME); 3136 mempool_destroy(psd_pool); 3137 } 3138 3139 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 3140 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 3141 MODULE_LICENSE("GPL"); 3142 3143 module_init(pkt_init); 3144 module_exit(pkt_exit); 3145