xref: /openbmc/linux/drivers/block/pktcdvd.c (revision 384740dc)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom make_request_fn function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/freezer.h>
59 #include <linux/mutex.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_ioctl.h>
62 #include <scsi/scsi.h>
63 #include <linux/debugfs.h>
64 #include <linux/device.h>
65 
66 #include <asm/uaccess.h>
67 
68 #define DRIVER_NAME	"pktcdvd"
69 
70 #if PACKET_DEBUG
71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
72 #else
73 #define DPRINTK(fmt, args...)
74 #endif
75 
76 #if PACKET_DEBUG > 1
77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
78 #else
79 #define VPRINTK(fmt, args...)
80 #endif
81 
82 #define MAX_SPEED 0xffff
83 
84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
85 
86 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
87 static struct proc_dir_entry *pkt_proc;
88 static int pktdev_major;
89 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
90 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
91 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
92 static mempool_t *psd_pool;
93 
94 static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
95 static struct dentry	*pkt_debugfs_root = NULL; /* /debug/pktcdvd */
96 
97 /* forward declaration */
98 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
99 static int pkt_remove_dev(dev_t pkt_dev);
100 static int pkt_seq_show(struct seq_file *m, void *p);
101 
102 
103 
104 /*
105  * create and register a pktcdvd kernel object.
106  */
107 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
108 					const char* name,
109 					struct kobject* parent,
110 					struct kobj_type* ktype)
111 {
112 	struct pktcdvd_kobj *p;
113 	int error;
114 
115 	p = kzalloc(sizeof(*p), GFP_KERNEL);
116 	if (!p)
117 		return NULL;
118 	p->pd = pd;
119 	error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
120 	if (error) {
121 		kobject_put(&p->kobj);
122 		return NULL;
123 	}
124 	kobject_uevent(&p->kobj, KOBJ_ADD);
125 	return p;
126 }
127 /*
128  * remove a pktcdvd kernel object.
129  */
130 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
131 {
132 	if (p)
133 		kobject_put(&p->kobj);
134 }
135 /*
136  * default release function for pktcdvd kernel objects.
137  */
138 static void pkt_kobj_release(struct kobject *kobj)
139 {
140 	kfree(to_pktcdvdkobj(kobj));
141 }
142 
143 
144 /**********************************************************
145  *
146  * sysfs interface for pktcdvd
147  * by (C) 2006  Thomas Maier <balagi@justmail.de>
148  *
149  **********************************************************/
150 
151 #define DEF_ATTR(_obj,_name,_mode) \
152 	static struct attribute _obj = { .name = _name, .mode = _mode }
153 
154 /**********************************************************
155   /sys/class/pktcdvd/pktcdvd[0-7]/
156                      stat/reset
157                      stat/packets_started
158                      stat/packets_finished
159                      stat/kb_written
160                      stat/kb_read
161                      stat/kb_read_gather
162                      write_queue/size
163                      write_queue/congestion_off
164                      write_queue/congestion_on
165  **********************************************************/
166 
167 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
168 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
169 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
170 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
171 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
172 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
173 
174 static struct attribute *kobj_pkt_attrs_stat[] = {
175 	&kobj_pkt_attr_st1,
176 	&kobj_pkt_attr_st2,
177 	&kobj_pkt_attr_st3,
178 	&kobj_pkt_attr_st4,
179 	&kobj_pkt_attr_st5,
180 	&kobj_pkt_attr_st6,
181 	NULL
182 };
183 
184 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
185 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
186 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
187 
188 static struct attribute *kobj_pkt_attrs_wqueue[] = {
189 	&kobj_pkt_attr_wq1,
190 	&kobj_pkt_attr_wq2,
191 	&kobj_pkt_attr_wq3,
192 	NULL
193 };
194 
195 static ssize_t kobj_pkt_show(struct kobject *kobj,
196 			struct attribute *attr, char *data)
197 {
198 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
199 	int n = 0;
200 	int v;
201 	if (strcmp(attr->name, "packets_started") == 0) {
202 		n = sprintf(data, "%lu\n", pd->stats.pkt_started);
203 
204 	} else if (strcmp(attr->name, "packets_finished") == 0) {
205 		n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
206 
207 	} else if (strcmp(attr->name, "kb_written") == 0) {
208 		n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
209 
210 	} else if (strcmp(attr->name, "kb_read") == 0) {
211 		n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
212 
213 	} else if (strcmp(attr->name, "kb_read_gather") == 0) {
214 		n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
215 
216 	} else if (strcmp(attr->name, "size") == 0) {
217 		spin_lock(&pd->lock);
218 		v = pd->bio_queue_size;
219 		spin_unlock(&pd->lock);
220 		n = sprintf(data, "%d\n", v);
221 
222 	} else if (strcmp(attr->name, "congestion_off") == 0) {
223 		spin_lock(&pd->lock);
224 		v = pd->write_congestion_off;
225 		spin_unlock(&pd->lock);
226 		n = sprintf(data, "%d\n", v);
227 
228 	} else if (strcmp(attr->name, "congestion_on") == 0) {
229 		spin_lock(&pd->lock);
230 		v = pd->write_congestion_on;
231 		spin_unlock(&pd->lock);
232 		n = sprintf(data, "%d\n", v);
233 	}
234 	return n;
235 }
236 
237 static void init_write_congestion_marks(int* lo, int* hi)
238 {
239 	if (*hi > 0) {
240 		*hi = max(*hi, 500);
241 		*hi = min(*hi, 1000000);
242 		if (*lo <= 0)
243 			*lo = *hi - 100;
244 		else {
245 			*lo = min(*lo, *hi - 100);
246 			*lo = max(*lo, 100);
247 		}
248 	} else {
249 		*hi = -1;
250 		*lo = -1;
251 	}
252 }
253 
254 static ssize_t kobj_pkt_store(struct kobject *kobj,
255 			struct attribute *attr,
256 			const char *data, size_t len)
257 {
258 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
259 	int val;
260 
261 	if (strcmp(attr->name, "reset") == 0 && len > 0) {
262 		pd->stats.pkt_started = 0;
263 		pd->stats.pkt_ended = 0;
264 		pd->stats.secs_w = 0;
265 		pd->stats.secs_rg = 0;
266 		pd->stats.secs_r = 0;
267 
268 	} else if (strcmp(attr->name, "congestion_off") == 0
269 		   && sscanf(data, "%d", &val) == 1) {
270 		spin_lock(&pd->lock);
271 		pd->write_congestion_off = val;
272 		init_write_congestion_marks(&pd->write_congestion_off,
273 					&pd->write_congestion_on);
274 		spin_unlock(&pd->lock);
275 
276 	} else if (strcmp(attr->name, "congestion_on") == 0
277 		   && sscanf(data, "%d", &val) == 1) {
278 		spin_lock(&pd->lock);
279 		pd->write_congestion_on = val;
280 		init_write_congestion_marks(&pd->write_congestion_off,
281 					&pd->write_congestion_on);
282 		spin_unlock(&pd->lock);
283 	}
284 	return len;
285 }
286 
287 static struct sysfs_ops kobj_pkt_ops = {
288 	.show = kobj_pkt_show,
289 	.store = kobj_pkt_store
290 };
291 static struct kobj_type kobj_pkt_type_stat = {
292 	.release = pkt_kobj_release,
293 	.sysfs_ops = &kobj_pkt_ops,
294 	.default_attrs = kobj_pkt_attrs_stat
295 };
296 static struct kobj_type kobj_pkt_type_wqueue = {
297 	.release = pkt_kobj_release,
298 	.sysfs_ops = &kobj_pkt_ops,
299 	.default_attrs = kobj_pkt_attrs_wqueue
300 };
301 
302 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
303 {
304 	if (class_pktcdvd) {
305 		pd->dev = device_create_drvdata(class_pktcdvd, NULL,
306 						pd->pkt_dev, NULL,
307 						"%s", pd->name);
308 		if (IS_ERR(pd->dev))
309 			pd->dev = NULL;
310 	}
311 	if (pd->dev) {
312 		pd->kobj_stat = pkt_kobj_create(pd, "stat",
313 					&pd->dev->kobj,
314 					&kobj_pkt_type_stat);
315 		pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
316 					&pd->dev->kobj,
317 					&kobj_pkt_type_wqueue);
318 	}
319 }
320 
321 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
322 {
323 	pkt_kobj_remove(pd->kobj_stat);
324 	pkt_kobj_remove(pd->kobj_wqueue);
325 	if (class_pktcdvd)
326 		device_destroy(class_pktcdvd, pd->pkt_dev);
327 }
328 
329 
330 /********************************************************************
331   /sys/class/pktcdvd/
332                      add            map block device
333                      remove         unmap packet dev
334                      device_map     show mappings
335  *******************************************************************/
336 
337 static void class_pktcdvd_release(struct class *cls)
338 {
339 	kfree(cls);
340 }
341 static ssize_t class_pktcdvd_show_map(struct class *c, char *data)
342 {
343 	int n = 0;
344 	int idx;
345 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
346 	for (idx = 0; idx < MAX_WRITERS; idx++) {
347 		struct pktcdvd_device *pd = pkt_devs[idx];
348 		if (!pd)
349 			continue;
350 		n += sprintf(data+n, "%s %u:%u %u:%u\n",
351 			pd->name,
352 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
353 			MAJOR(pd->bdev->bd_dev),
354 			MINOR(pd->bdev->bd_dev));
355 	}
356 	mutex_unlock(&ctl_mutex);
357 	return n;
358 }
359 
360 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf,
361 					size_t count)
362 {
363 	unsigned int major, minor;
364 
365 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
366 		/* pkt_setup_dev() expects caller to hold reference to self */
367 		if (!try_module_get(THIS_MODULE))
368 			return -ENODEV;
369 
370 		pkt_setup_dev(MKDEV(major, minor), NULL);
371 
372 		module_put(THIS_MODULE);
373 
374 		return count;
375 	}
376 
377 	return -EINVAL;
378 }
379 
380 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf,
381 					size_t count)
382 {
383 	unsigned int major, minor;
384 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
385 		pkt_remove_dev(MKDEV(major, minor));
386 		return count;
387 	}
388 	return -EINVAL;
389 }
390 
391 static struct class_attribute class_pktcdvd_attrs[] = {
392  __ATTR(add,            0200, NULL, class_pktcdvd_store_add),
393  __ATTR(remove,         0200, NULL, class_pktcdvd_store_remove),
394  __ATTR(device_map,     0444, class_pktcdvd_show_map, NULL),
395  __ATTR_NULL
396 };
397 
398 
399 static int pkt_sysfs_init(void)
400 {
401 	int ret = 0;
402 
403 	/*
404 	 * create control files in sysfs
405 	 * /sys/class/pktcdvd/...
406 	 */
407 	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
408 	if (!class_pktcdvd)
409 		return -ENOMEM;
410 	class_pktcdvd->name = DRIVER_NAME;
411 	class_pktcdvd->owner = THIS_MODULE;
412 	class_pktcdvd->class_release = class_pktcdvd_release;
413 	class_pktcdvd->class_attrs = class_pktcdvd_attrs;
414 	ret = class_register(class_pktcdvd);
415 	if (ret) {
416 		kfree(class_pktcdvd);
417 		class_pktcdvd = NULL;
418 		printk(DRIVER_NAME": failed to create class pktcdvd\n");
419 		return ret;
420 	}
421 	return 0;
422 }
423 
424 static void pkt_sysfs_cleanup(void)
425 {
426 	if (class_pktcdvd)
427 		class_destroy(class_pktcdvd);
428 	class_pktcdvd = NULL;
429 }
430 
431 /********************************************************************
432   entries in debugfs
433 
434   /debugfs/pktcdvd[0-7]/
435 			info
436 
437  *******************************************************************/
438 
439 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
440 {
441 	return pkt_seq_show(m, p);
442 }
443 
444 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
445 {
446 	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
447 }
448 
449 static const struct file_operations debug_fops = {
450 	.open		= pkt_debugfs_fops_open,
451 	.read		= seq_read,
452 	.llseek		= seq_lseek,
453 	.release	= single_release,
454 	.owner		= THIS_MODULE,
455 };
456 
457 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
458 {
459 	if (!pkt_debugfs_root)
460 		return;
461 	pd->dfs_f_info = NULL;
462 	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
463 	if (IS_ERR(pd->dfs_d_root)) {
464 		pd->dfs_d_root = NULL;
465 		return;
466 	}
467 	pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
468 				pd->dfs_d_root, pd, &debug_fops);
469 	if (IS_ERR(pd->dfs_f_info)) {
470 		pd->dfs_f_info = NULL;
471 		return;
472 	}
473 }
474 
475 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
476 {
477 	if (!pkt_debugfs_root)
478 		return;
479 	if (pd->dfs_f_info)
480 		debugfs_remove(pd->dfs_f_info);
481 	pd->dfs_f_info = NULL;
482 	if (pd->dfs_d_root)
483 		debugfs_remove(pd->dfs_d_root);
484 	pd->dfs_d_root = NULL;
485 }
486 
487 static void pkt_debugfs_init(void)
488 {
489 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
490 	if (IS_ERR(pkt_debugfs_root)) {
491 		pkt_debugfs_root = NULL;
492 		return;
493 	}
494 }
495 
496 static void pkt_debugfs_cleanup(void)
497 {
498 	if (!pkt_debugfs_root)
499 		return;
500 	debugfs_remove(pkt_debugfs_root);
501 	pkt_debugfs_root = NULL;
502 }
503 
504 /* ----------------------------------------------------------*/
505 
506 
507 static void pkt_bio_finished(struct pktcdvd_device *pd)
508 {
509 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
510 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
511 		VPRINTK(DRIVER_NAME": queue empty\n");
512 		atomic_set(&pd->iosched.attention, 1);
513 		wake_up(&pd->wqueue);
514 	}
515 }
516 
517 static void pkt_bio_destructor(struct bio *bio)
518 {
519 	kfree(bio->bi_io_vec);
520 	kfree(bio);
521 }
522 
523 static struct bio *pkt_bio_alloc(int nr_iovecs)
524 {
525 	struct bio_vec *bvl = NULL;
526 	struct bio *bio;
527 
528 	bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
529 	if (!bio)
530 		goto no_bio;
531 	bio_init(bio);
532 
533 	bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
534 	if (!bvl)
535 		goto no_bvl;
536 
537 	bio->bi_max_vecs = nr_iovecs;
538 	bio->bi_io_vec = bvl;
539 	bio->bi_destructor = pkt_bio_destructor;
540 
541 	return bio;
542 
543  no_bvl:
544 	kfree(bio);
545  no_bio:
546 	return NULL;
547 }
548 
549 /*
550  * Allocate a packet_data struct
551  */
552 static struct packet_data *pkt_alloc_packet_data(int frames)
553 {
554 	int i;
555 	struct packet_data *pkt;
556 
557 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
558 	if (!pkt)
559 		goto no_pkt;
560 
561 	pkt->frames = frames;
562 	pkt->w_bio = pkt_bio_alloc(frames);
563 	if (!pkt->w_bio)
564 		goto no_bio;
565 
566 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
567 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
568 		if (!pkt->pages[i])
569 			goto no_page;
570 	}
571 
572 	spin_lock_init(&pkt->lock);
573 
574 	for (i = 0; i < frames; i++) {
575 		struct bio *bio = pkt_bio_alloc(1);
576 		if (!bio)
577 			goto no_rd_bio;
578 		pkt->r_bios[i] = bio;
579 	}
580 
581 	return pkt;
582 
583 no_rd_bio:
584 	for (i = 0; i < frames; i++) {
585 		struct bio *bio = pkt->r_bios[i];
586 		if (bio)
587 			bio_put(bio);
588 	}
589 
590 no_page:
591 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
592 		if (pkt->pages[i])
593 			__free_page(pkt->pages[i]);
594 	bio_put(pkt->w_bio);
595 no_bio:
596 	kfree(pkt);
597 no_pkt:
598 	return NULL;
599 }
600 
601 /*
602  * Free a packet_data struct
603  */
604 static void pkt_free_packet_data(struct packet_data *pkt)
605 {
606 	int i;
607 
608 	for (i = 0; i < pkt->frames; i++) {
609 		struct bio *bio = pkt->r_bios[i];
610 		if (bio)
611 			bio_put(bio);
612 	}
613 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
614 		__free_page(pkt->pages[i]);
615 	bio_put(pkt->w_bio);
616 	kfree(pkt);
617 }
618 
619 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
620 {
621 	struct packet_data *pkt, *next;
622 
623 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
624 
625 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
626 		pkt_free_packet_data(pkt);
627 	}
628 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
629 }
630 
631 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
632 {
633 	struct packet_data *pkt;
634 
635 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
636 
637 	while (nr_packets > 0) {
638 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
639 		if (!pkt) {
640 			pkt_shrink_pktlist(pd);
641 			return 0;
642 		}
643 		pkt->id = nr_packets;
644 		pkt->pd = pd;
645 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
646 		nr_packets--;
647 	}
648 	return 1;
649 }
650 
651 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
652 {
653 	struct rb_node *n = rb_next(&node->rb_node);
654 	if (!n)
655 		return NULL;
656 	return rb_entry(n, struct pkt_rb_node, rb_node);
657 }
658 
659 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
660 {
661 	rb_erase(&node->rb_node, &pd->bio_queue);
662 	mempool_free(node, pd->rb_pool);
663 	pd->bio_queue_size--;
664 	BUG_ON(pd->bio_queue_size < 0);
665 }
666 
667 /*
668  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
669  */
670 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
671 {
672 	struct rb_node *n = pd->bio_queue.rb_node;
673 	struct rb_node *next;
674 	struct pkt_rb_node *tmp;
675 
676 	if (!n) {
677 		BUG_ON(pd->bio_queue_size > 0);
678 		return NULL;
679 	}
680 
681 	for (;;) {
682 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
683 		if (s <= tmp->bio->bi_sector)
684 			next = n->rb_left;
685 		else
686 			next = n->rb_right;
687 		if (!next)
688 			break;
689 		n = next;
690 	}
691 
692 	if (s > tmp->bio->bi_sector) {
693 		tmp = pkt_rbtree_next(tmp);
694 		if (!tmp)
695 			return NULL;
696 	}
697 	BUG_ON(s > tmp->bio->bi_sector);
698 	return tmp;
699 }
700 
701 /*
702  * Insert a node into the pd->bio_queue rb tree.
703  */
704 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
705 {
706 	struct rb_node **p = &pd->bio_queue.rb_node;
707 	struct rb_node *parent = NULL;
708 	sector_t s = node->bio->bi_sector;
709 	struct pkt_rb_node *tmp;
710 
711 	while (*p) {
712 		parent = *p;
713 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
714 		if (s < tmp->bio->bi_sector)
715 			p = &(*p)->rb_left;
716 		else
717 			p = &(*p)->rb_right;
718 	}
719 	rb_link_node(&node->rb_node, parent, p);
720 	rb_insert_color(&node->rb_node, &pd->bio_queue);
721 	pd->bio_queue_size++;
722 }
723 
724 /*
725  * Add a bio to a single linked list defined by its head and tail pointers.
726  */
727 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
728 {
729 	bio->bi_next = NULL;
730 	if (*list_tail) {
731 		BUG_ON((*list_head) == NULL);
732 		(*list_tail)->bi_next = bio;
733 		(*list_tail) = bio;
734 	} else {
735 		BUG_ON((*list_head) != NULL);
736 		(*list_head) = bio;
737 		(*list_tail) = bio;
738 	}
739 }
740 
741 /*
742  * Remove and return the first bio from a single linked list defined by its
743  * head and tail pointers.
744  */
745 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
746 {
747 	struct bio *bio;
748 
749 	if (*list_head == NULL)
750 		return NULL;
751 
752 	bio = *list_head;
753 	*list_head = bio->bi_next;
754 	if (*list_head == NULL)
755 		*list_tail = NULL;
756 
757 	bio->bi_next = NULL;
758 	return bio;
759 }
760 
761 /*
762  * Send a packet_command to the underlying block device and
763  * wait for completion.
764  */
765 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
766 {
767 	struct request_queue *q = bdev_get_queue(pd->bdev);
768 	struct request *rq;
769 	int ret = 0;
770 
771 	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
772 			     WRITE : READ, __GFP_WAIT);
773 
774 	if (cgc->buflen) {
775 		if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
776 			goto out;
777 	}
778 
779 	rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
780 	memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
781 
782 	rq->timeout = 60*HZ;
783 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
784 	rq->cmd_flags |= REQ_HARDBARRIER;
785 	if (cgc->quiet)
786 		rq->cmd_flags |= REQ_QUIET;
787 
788 	blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
789 	if (rq->errors)
790 		ret = -EIO;
791 out:
792 	blk_put_request(rq);
793 	return ret;
794 }
795 
796 /*
797  * A generic sense dump / resolve mechanism should be implemented across
798  * all ATAPI + SCSI devices.
799  */
800 static void pkt_dump_sense(struct packet_command *cgc)
801 {
802 	static char *info[9] = { "No sense", "Recovered error", "Not ready",
803 				 "Medium error", "Hardware error", "Illegal request",
804 				 "Unit attention", "Data protect", "Blank check" };
805 	int i;
806 	struct request_sense *sense = cgc->sense;
807 
808 	printk(DRIVER_NAME":");
809 	for (i = 0; i < CDROM_PACKET_SIZE; i++)
810 		printk(" %02x", cgc->cmd[i]);
811 	printk(" - ");
812 
813 	if (sense == NULL) {
814 		printk("no sense\n");
815 		return;
816 	}
817 
818 	printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
819 
820 	if (sense->sense_key > 8) {
821 		printk(" (INVALID)\n");
822 		return;
823 	}
824 
825 	printk(" (%s)\n", info[sense->sense_key]);
826 }
827 
828 /*
829  * flush the drive cache to media
830  */
831 static int pkt_flush_cache(struct pktcdvd_device *pd)
832 {
833 	struct packet_command cgc;
834 
835 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
836 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
837 	cgc.quiet = 1;
838 
839 	/*
840 	 * the IMMED bit -- we default to not setting it, although that
841 	 * would allow a much faster close, this is safer
842 	 */
843 #if 0
844 	cgc.cmd[1] = 1 << 1;
845 #endif
846 	return pkt_generic_packet(pd, &cgc);
847 }
848 
849 /*
850  * speed is given as the normal factor, e.g. 4 for 4x
851  */
852 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
853 				unsigned write_speed, unsigned read_speed)
854 {
855 	struct packet_command cgc;
856 	struct request_sense sense;
857 	int ret;
858 
859 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
860 	cgc.sense = &sense;
861 	cgc.cmd[0] = GPCMD_SET_SPEED;
862 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
863 	cgc.cmd[3] = read_speed & 0xff;
864 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
865 	cgc.cmd[5] = write_speed & 0xff;
866 
867 	if ((ret = pkt_generic_packet(pd, &cgc)))
868 		pkt_dump_sense(&cgc);
869 
870 	return ret;
871 }
872 
873 /*
874  * Queue a bio for processing by the low-level CD device. Must be called
875  * from process context.
876  */
877 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
878 {
879 	spin_lock(&pd->iosched.lock);
880 	if (bio_data_dir(bio) == READ) {
881 		pkt_add_list_last(bio, &pd->iosched.read_queue,
882 				  &pd->iosched.read_queue_tail);
883 	} else {
884 		pkt_add_list_last(bio, &pd->iosched.write_queue,
885 				  &pd->iosched.write_queue_tail);
886 	}
887 	spin_unlock(&pd->iosched.lock);
888 
889 	atomic_set(&pd->iosched.attention, 1);
890 	wake_up(&pd->wqueue);
891 }
892 
893 /*
894  * Process the queued read/write requests. This function handles special
895  * requirements for CDRW drives:
896  * - A cache flush command must be inserted before a read request if the
897  *   previous request was a write.
898  * - Switching between reading and writing is slow, so don't do it more often
899  *   than necessary.
900  * - Optimize for throughput at the expense of latency. This means that streaming
901  *   writes will never be interrupted by a read, but if the drive has to seek
902  *   before the next write, switch to reading instead if there are any pending
903  *   read requests.
904  * - Set the read speed according to current usage pattern. When only reading
905  *   from the device, it's best to use the highest possible read speed, but
906  *   when switching often between reading and writing, it's better to have the
907  *   same read and write speeds.
908  */
909 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
910 {
911 
912 	if (atomic_read(&pd->iosched.attention) == 0)
913 		return;
914 	atomic_set(&pd->iosched.attention, 0);
915 
916 	for (;;) {
917 		struct bio *bio;
918 		int reads_queued, writes_queued;
919 
920 		spin_lock(&pd->iosched.lock);
921 		reads_queued = (pd->iosched.read_queue != NULL);
922 		writes_queued = (pd->iosched.write_queue != NULL);
923 		spin_unlock(&pd->iosched.lock);
924 
925 		if (!reads_queued && !writes_queued)
926 			break;
927 
928 		if (pd->iosched.writing) {
929 			int need_write_seek = 1;
930 			spin_lock(&pd->iosched.lock);
931 			bio = pd->iosched.write_queue;
932 			spin_unlock(&pd->iosched.lock);
933 			if (bio && (bio->bi_sector == pd->iosched.last_write))
934 				need_write_seek = 0;
935 			if (need_write_seek && reads_queued) {
936 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
937 					VPRINTK(DRIVER_NAME": write, waiting\n");
938 					break;
939 				}
940 				pkt_flush_cache(pd);
941 				pd->iosched.writing = 0;
942 			}
943 		} else {
944 			if (!reads_queued && writes_queued) {
945 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
946 					VPRINTK(DRIVER_NAME": read, waiting\n");
947 					break;
948 				}
949 				pd->iosched.writing = 1;
950 			}
951 		}
952 
953 		spin_lock(&pd->iosched.lock);
954 		if (pd->iosched.writing) {
955 			bio = pkt_get_list_first(&pd->iosched.write_queue,
956 						 &pd->iosched.write_queue_tail);
957 		} else {
958 			bio = pkt_get_list_first(&pd->iosched.read_queue,
959 						 &pd->iosched.read_queue_tail);
960 		}
961 		spin_unlock(&pd->iosched.lock);
962 
963 		if (!bio)
964 			continue;
965 
966 		if (bio_data_dir(bio) == READ)
967 			pd->iosched.successive_reads += bio->bi_size >> 10;
968 		else {
969 			pd->iosched.successive_reads = 0;
970 			pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
971 		}
972 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
973 			if (pd->read_speed == pd->write_speed) {
974 				pd->read_speed = MAX_SPEED;
975 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
976 			}
977 		} else {
978 			if (pd->read_speed != pd->write_speed) {
979 				pd->read_speed = pd->write_speed;
980 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
981 			}
982 		}
983 
984 		atomic_inc(&pd->cdrw.pending_bios);
985 		generic_make_request(bio);
986 	}
987 }
988 
989 /*
990  * Special care is needed if the underlying block device has a small
991  * max_phys_segments value.
992  */
993 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
994 {
995 	if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
996 		/*
997 		 * The cdrom device can handle one segment/frame
998 		 */
999 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
1000 		return 0;
1001 	} else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
1002 		/*
1003 		 * We can handle this case at the expense of some extra memory
1004 		 * copies during write operations
1005 		 */
1006 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
1007 		return 0;
1008 	} else {
1009 		printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
1010 		return -EIO;
1011 	}
1012 }
1013 
1014 /*
1015  * Copy CD_FRAMESIZE bytes from src_bio into a destination page
1016  */
1017 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
1018 {
1019 	unsigned int copy_size = CD_FRAMESIZE;
1020 
1021 	while (copy_size > 0) {
1022 		struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
1023 		void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
1024 			src_bvl->bv_offset + offs;
1025 		void *vto = page_address(dst_page) + dst_offs;
1026 		int len = min_t(int, copy_size, src_bvl->bv_len - offs);
1027 
1028 		BUG_ON(len < 0);
1029 		memcpy(vto, vfrom, len);
1030 		kunmap_atomic(vfrom, KM_USER0);
1031 
1032 		seg++;
1033 		offs = 0;
1034 		dst_offs += len;
1035 		copy_size -= len;
1036 	}
1037 }
1038 
1039 /*
1040  * Copy all data for this packet to pkt->pages[], so that
1041  * a) The number of required segments for the write bio is minimized, which
1042  *    is necessary for some scsi controllers.
1043  * b) The data can be used as cache to avoid read requests if we receive a
1044  *    new write request for the same zone.
1045  */
1046 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1047 {
1048 	int f, p, offs;
1049 
1050 	/* Copy all data to pkt->pages[] */
1051 	p = 0;
1052 	offs = 0;
1053 	for (f = 0; f < pkt->frames; f++) {
1054 		if (bvec[f].bv_page != pkt->pages[p]) {
1055 			void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1056 			void *vto = page_address(pkt->pages[p]) + offs;
1057 			memcpy(vto, vfrom, CD_FRAMESIZE);
1058 			kunmap_atomic(vfrom, KM_USER0);
1059 			bvec[f].bv_page = pkt->pages[p];
1060 			bvec[f].bv_offset = offs;
1061 		} else {
1062 			BUG_ON(bvec[f].bv_offset != offs);
1063 		}
1064 		offs += CD_FRAMESIZE;
1065 		if (offs >= PAGE_SIZE) {
1066 			offs = 0;
1067 			p++;
1068 		}
1069 	}
1070 }
1071 
1072 static void pkt_end_io_read(struct bio *bio, int err)
1073 {
1074 	struct packet_data *pkt = bio->bi_private;
1075 	struct pktcdvd_device *pd = pkt->pd;
1076 	BUG_ON(!pd);
1077 
1078 	VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1079 		(unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1080 
1081 	if (err)
1082 		atomic_inc(&pkt->io_errors);
1083 	if (atomic_dec_and_test(&pkt->io_wait)) {
1084 		atomic_inc(&pkt->run_sm);
1085 		wake_up(&pd->wqueue);
1086 	}
1087 	pkt_bio_finished(pd);
1088 }
1089 
1090 static void pkt_end_io_packet_write(struct bio *bio, int err)
1091 {
1092 	struct packet_data *pkt = bio->bi_private;
1093 	struct pktcdvd_device *pd = pkt->pd;
1094 	BUG_ON(!pd);
1095 
1096 	VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1097 
1098 	pd->stats.pkt_ended++;
1099 
1100 	pkt_bio_finished(pd);
1101 	atomic_dec(&pkt->io_wait);
1102 	atomic_inc(&pkt->run_sm);
1103 	wake_up(&pd->wqueue);
1104 }
1105 
1106 /*
1107  * Schedule reads for the holes in a packet
1108  */
1109 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1110 {
1111 	int frames_read = 0;
1112 	struct bio *bio;
1113 	int f;
1114 	char written[PACKET_MAX_SIZE];
1115 
1116 	BUG_ON(!pkt->orig_bios);
1117 
1118 	atomic_set(&pkt->io_wait, 0);
1119 	atomic_set(&pkt->io_errors, 0);
1120 
1121 	/*
1122 	 * Figure out which frames we need to read before we can write.
1123 	 */
1124 	memset(written, 0, sizeof(written));
1125 	spin_lock(&pkt->lock);
1126 	for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1127 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1128 		int num_frames = bio->bi_size / CD_FRAMESIZE;
1129 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1130 		BUG_ON(first_frame < 0);
1131 		BUG_ON(first_frame + num_frames > pkt->frames);
1132 		for (f = first_frame; f < first_frame + num_frames; f++)
1133 			written[f] = 1;
1134 	}
1135 	spin_unlock(&pkt->lock);
1136 
1137 	if (pkt->cache_valid) {
1138 		VPRINTK("pkt_gather_data: zone %llx cached\n",
1139 			(unsigned long long)pkt->sector);
1140 		goto out_account;
1141 	}
1142 
1143 	/*
1144 	 * Schedule reads for missing parts of the packet.
1145 	 */
1146 	for (f = 0; f < pkt->frames; f++) {
1147 		struct bio_vec *vec;
1148 
1149 		int p, offset;
1150 		if (written[f])
1151 			continue;
1152 		bio = pkt->r_bios[f];
1153 		vec = bio->bi_io_vec;
1154 		bio_init(bio);
1155 		bio->bi_max_vecs = 1;
1156 		bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1157 		bio->bi_bdev = pd->bdev;
1158 		bio->bi_end_io = pkt_end_io_read;
1159 		bio->bi_private = pkt;
1160 		bio->bi_io_vec = vec;
1161 		bio->bi_destructor = pkt_bio_destructor;
1162 
1163 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1164 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1165 		VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1166 			f, pkt->pages[p], offset);
1167 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1168 			BUG();
1169 
1170 		atomic_inc(&pkt->io_wait);
1171 		bio->bi_rw = READ;
1172 		pkt_queue_bio(pd, bio);
1173 		frames_read++;
1174 	}
1175 
1176 out_account:
1177 	VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1178 		frames_read, (unsigned long long)pkt->sector);
1179 	pd->stats.pkt_started++;
1180 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1181 }
1182 
1183 /*
1184  * Find a packet matching zone, or the least recently used packet if
1185  * there is no match.
1186  */
1187 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1188 {
1189 	struct packet_data *pkt;
1190 
1191 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1192 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1193 			list_del_init(&pkt->list);
1194 			if (pkt->sector != zone)
1195 				pkt->cache_valid = 0;
1196 			return pkt;
1197 		}
1198 	}
1199 	BUG();
1200 	return NULL;
1201 }
1202 
1203 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1204 {
1205 	if (pkt->cache_valid) {
1206 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1207 	} else {
1208 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1209 	}
1210 }
1211 
1212 /*
1213  * recover a failed write, query for relocation if possible
1214  *
1215  * returns 1 if recovery is possible, or 0 if not
1216  *
1217  */
1218 static int pkt_start_recovery(struct packet_data *pkt)
1219 {
1220 	/*
1221 	 * FIXME. We need help from the file system to implement
1222 	 * recovery handling.
1223 	 */
1224 	return 0;
1225 #if 0
1226 	struct request *rq = pkt->rq;
1227 	struct pktcdvd_device *pd = rq->rq_disk->private_data;
1228 	struct block_device *pkt_bdev;
1229 	struct super_block *sb = NULL;
1230 	unsigned long old_block, new_block;
1231 	sector_t new_sector;
1232 
1233 	pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1234 	if (pkt_bdev) {
1235 		sb = get_super(pkt_bdev);
1236 		bdput(pkt_bdev);
1237 	}
1238 
1239 	if (!sb)
1240 		return 0;
1241 
1242 	if (!sb->s_op || !sb->s_op->relocate_blocks)
1243 		goto out;
1244 
1245 	old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1246 	if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1247 		goto out;
1248 
1249 	new_sector = new_block * (CD_FRAMESIZE >> 9);
1250 	pkt->sector = new_sector;
1251 
1252 	pkt->bio->bi_sector = new_sector;
1253 	pkt->bio->bi_next = NULL;
1254 	pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1255 	pkt->bio->bi_idx = 0;
1256 
1257 	BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
1258 	BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1259 	BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1260 	BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1261 	BUG_ON(pkt->bio->bi_private != pkt);
1262 
1263 	drop_super(sb);
1264 	return 1;
1265 
1266 out:
1267 	drop_super(sb);
1268 	return 0;
1269 #endif
1270 }
1271 
1272 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1273 {
1274 #if PACKET_DEBUG > 1
1275 	static const char *state_name[] = {
1276 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1277 	};
1278 	enum packet_data_state old_state = pkt->state;
1279 	VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1280 		state_name[old_state], state_name[state]);
1281 #endif
1282 	pkt->state = state;
1283 }
1284 
1285 /*
1286  * Scan the work queue to see if we can start a new packet.
1287  * returns non-zero if any work was done.
1288  */
1289 static int pkt_handle_queue(struct pktcdvd_device *pd)
1290 {
1291 	struct packet_data *pkt, *p;
1292 	struct bio *bio = NULL;
1293 	sector_t zone = 0; /* Suppress gcc warning */
1294 	struct pkt_rb_node *node, *first_node;
1295 	struct rb_node *n;
1296 	int wakeup;
1297 
1298 	VPRINTK("handle_queue\n");
1299 
1300 	atomic_set(&pd->scan_queue, 0);
1301 
1302 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1303 		VPRINTK("handle_queue: no pkt\n");
1304 		return 0;
1305 	}
1306 
1307 	/*
1308 	 * Try to find a zone we are not already working on.
1309 	 */
1310 	spin_lock(&pd->lock);
1311 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1312 	if (!first_node) {
1313 		n = rb_first(&pd->bio_queue);
1314 		if (n)
1315 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1316 	}
1317 	node = first_node;
1318 	while (node) {
1319 		bio = node->bio;
1320 		zone = ZONE(bio->bi_sector, pd);
1321 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1322 			if (p->sector == zone) {
1323 				bio = NULL;
1324 				goto try_next_bio;
1325 			}
1326 		}
1327 		break;
1328 try_next_bio:
1329 		node = pkt_rbtree_next(node);
1330 		if (!node) {
1331 			n = rb_first(&pd->bio_queue);
1332 			if (n)
1333 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1334 		}
1335 		if (node == first_node)
1336 			node = NULL;
1337 	}
1338 	spin_unlock(&pd->lock);
1339 	if (!bio) {
1340 		VPRINTK("handle_queue: no bio\n");
1341 		return 0;
1342 	}
1343 
1344 	pkt = pkt_get_packet_data(pd, zone);
1345 
1346 	pd->current_sector = zone + pd->settings.size;
1347 	pkt->sector = zone;
1348 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1349 	pkt->write_size = 0;
1350 
1351 	/*
1352 	 * Scan work queue for bios in the same zone and link them
1353 	 * to this packet.
1354 	 */
1355 	spin_lock(&pd->lock);
1356 	VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1357 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1358 		bio = node->bio;
1359 		VPRINTK("pkt_handle_queue: found zone=%llx\n",
1360 			(unsigned long long)ZONE(bio->bi_sector, pd));
1361 		if (ZONE(bio->bi_sector, pd) != zone)
1362 			break;
1363 		pkt_rbtree_erase(pd, node);
1364 		spin_lock(&pkt->lock);
1365 		pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
1366 		pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1367 		spin_unlock(&pkt->lock);
1368 	}
1369 	/* check write congestion marks, and if bio_queue_size is
1370 	   below, wake up any waiters */
1371 	wakeup = (pd->write_congestion_on > 0
1372 	 		&& pd->bio_queue_size <= pd->write_congestion_off);
1373 	spin_unlock(&pd->lock);
1374 	if (wakeup)
1375 		clear_bdi_congested(&pd->disk->queue->backing_dev_info, WRITE);
1376 
1377 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1378 	pkt_set_state(pkt, PACKET_WAITING_STATE);
1379 	atomic_set(&pkt->run_sm, 1);
1380 
1381 	spin_lock(&pd->cdrw.active_list_lock);
1382 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1383 	spin_unlock(&pd->cdrw.active_list_lock);
1384 
1385 	return 1;
1386 }
1387 
1388 /*
1389  * Assemble a bio to write one packet and queue the bio for processing
1390  * by the underlying block device.
1391  */
1392 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1393 {
1394 	struct bio *bio;
1395 	int f;
1396 	int frames_write;
1397 	struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1398 
1399 	for (f = 0; f < pkt->frames; f++) {
1400 		bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1401 		bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1402 	}
1403 
1404 	/*
1405 	 * Fill-in bvec with data from orig_bios.
1406 	 */
1407 	frames_write = 0;
1408 	spin_lock(&pkt->lock);
1409 	for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1410 		int segment = bio->bi_idx;
1411 		int src_offs = 0;
1412 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1413 		int num_frames = bio->bi_size / CD_FRAMESIZE;
1414 		BUG_ON(first_frame < 0);
1415 		BUG_ON(first_frame + num_frames > pkt->frames);
1416 		for (f = first_frame; f < first_frame + num_frames; f++) {
1417 			struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1418 
1419 			while (src_offs >= src_bvl->bv_len) {
1420 				src_offs -= src_bvl->bv_len;
1421 				segment++;
1422 				BUG_ON(segment >= bio->bi_vcnt);
1423 				src_bvl = bio_iovec_idx(bio, segment);
1424 			}
1425 
1426 			if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1427 				bvec[f].bv_page = src_bvl->bv_page;
1428 				bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1429 			} else {
1430 				pkt_copy_bio_data(bio, segment, src_offs,
1431 						  bvec[f].bv_page, bvec[f].bv_offset);
1432 			}
1433 			src_offs += CD_FRAMESIZE;
1434 			frames_write++;
1435 		}
1436 	}
1437 	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1438 	spin_unlock(&pkt->lock);
1439 
1440 	VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1441 		frames_write, (unsigned long long)pkt->sector);
1442 	BUG_ON(frames_write != pkt->write_size);
1443 
1444 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1445 		pkt_make_local_copy(pkt, bvec);
1446 		pkt->cache_valid = 1;
1447 	} else {
1448 		pkt->cache_valid = 0;
1449 	}
1450 
1451 	/* Start the write request */
1452 	bio_init(pkt->w_bio);
1453 	pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1454 	pkt->w_bio->bi_sector = pkt->sector;
1455 	pkt->w_bio->bi_bdev = pd->bdev;
1456 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1457 	pkt->w_bio->bi_private = pkt;
1458 	pkt->w_bio->bi_io_vec = bvec;
1459 	pkt->w_bio->bi_destructor = pkt_bio_destructor;
1460 	for (f = 0; f < pkt->frames; f++)
1461 		if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1462 			BUG();
1463 	VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1464 
1465 	atomic_set(&pkt->io_wait, 1);
1466 	pkt->w_bio->bi_rw = WRITE;
1467 	pkt_queue_bio(pd, pkt->w_bio);
1468 }
1469 
1470 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1471 {
1472 	struct bio *bio, *next;
1473 
1474 	if (!uptodate)
1475 		pkt->cache_valid = 0;
1476 
1477 	/* Finish all bios corresponding to this packet */
1478 	bio = pkt->orig_bios;
1479 	while (bio) {
1480 		next = bio->bi_next;
1481 		bio->bi_next = NULL;
1482 		bio_endio(bio, uptodate ? 0 : -EIO);
1483 		bio = next;
1484 	}
1485 	pkt->orig_bios = pkt->orig_bios_tail = NULL;
1486 }
1487 
1488 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1489 {
1490 	int uptodate;
1491 
1492 	VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1493 
1494 	for (;;) {
1495 		switch (pkt->state) {
1496 		case PACKET_WAITING_STATE:
1497 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1498 				return;
1499 
1500 			pkt->sleep_time = 0;
1501 			pkt_gather_data(pd, pkt);
1502 			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1503 			break;
1504 
1505 		case PACKET_READ_WAIT_STATE:
1506 			if (atomic_read(&pkt->io_wait) > 0)
1507 				return;
1508 
1509 			if (atomic_read(&pkt->io_errors) > 0) {
1510 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1511 			} else {
1512 				pkt_start_write(pd, pkt);
1513 			}
1514 			break;
1515 
1516 		case PACKET_WRITE_WAIT_STATE:
1517 			if (atomic_read(&pkt->io_wait) > 0)
1518 				return;
1519 
1520 			if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1521 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1522 			} else {
1523 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1524 			}
1525 			break;
1526 
1527 		case PACKET_RECOVERY_STATE:
1528 			if (pkt_start_recovery(pkt)) {
1529 				pkt_start_write(pd, pkt);
1530 			} else {
1531 				VPRINTK("No recovery possible\n");
1532 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1533 			}
1534 			break;
1535 
1536 		case PACKET_FINISHED_STATE:
1537 			uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1538 			pkt_finish_packet(pkt, uptodate);
1539 			return;
1540 
1541 		default:
1542 			BUG();
1543 			break;
1544 		}
1545 	}
1546 }
1547 
1548 static void pkt_handle_packets(struct pktcdvd_device *pd)
1549 {
1550 	struct packet_data *pkt, *next;
1551 
1552 	VPRINTK("pkt_handle_packets\n");
1553 
1554 	/*
1555 	 * Run state machine for active packets
1556 	 */
1557 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1558 		if (atomic_read(&pkt->run_sm) > 0) {
1559 			atomic_set(&pkt->run_sm, 0);
1560 			pkt_run_state_machine(pd, pkt);
1561 		}
1562 	}
1563 
1564 	/*
1565 	 * Move no longer active packets to the free list
1566 	 */
1567 	spin_lock(&pd->cdrw.active_list_lock);
1568 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1569 		if (pkt->state == PACKET_FINISHED_STATE) {
1570 			list_del(&pkt->list);
1571 			pkt_put_packet_data(pd, pkt);
1572 			pkt_set_state(pkt, PACKET_IDLE_STATE);
1573 			atomic_set(&pd->scan_queue, 1);
1574 		}
1575 	}
1576 	spin_unlock(&pd->cdrw.active_list_lock);
1577 }
1578 
1579 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1580 {
1581 	struct packet_data *pkt;
1582 	int i;
1583 
1584 	for (i = 0; i < PACKET_NUM_STATES; i++)
1585 		states[i] = 0;
1586 
1587 	spin_lock(&pd->cdrw.active_list_lock);
1588 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1589 		states[pkt->state]++;
1590 	}
1591 	spin_unlock(&pd->cdrw.active_list_lock);
1592 }
1593 
1594 /*
1595  * kcdrwd is woken up when writes have been queued for one of our
1596  * registered devices
1597  */
1598 static int kcdrwd(void *foobar)
1599 {
1600 	struct pktcdvd_device *pd = foobar;
1601 	struct packet_data *pkt;
1602 	long min_sleep_time, residue;
1603 
1604 	set_user_nice(current, -20);
1605 	set_freezable();
1606 
1607 	for (;;) {
1608 		DECLARE_WAITQUEUE(wait, current);
1609 
1610 		/*
1611 		 * Wait until there is something to do
1612 		 */
1613 		add_wait_queue(&pd->wqueue, &wait);
1614 		for (;;) {
1615 			set_current_state(TASK_INTERRUPTIBLE);
1616 
1617 			/* Check if we need to run pkt_handle_queue */
1618 			if (atomic_read(&pd->scan_queue) > 0)
1619 				goto work_to_do;
1620 
1621 			/* Check if we need to run the state machine for some packet */
1622 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1623 				if (atomic_read(&pkt->run_sm) > 0)
1624 					goto work_to_do;
1625 			}
1626 
1627 			/* Check if we need to process the iosched queues */
1628 			if (atomic_read(&pd->iosched.attention) != 0)
1629 				goto work_to_do;
1630 
1631 			/* Otherwise, go to sleep */
1632 			if (PACKET_DEBUG > 1) {
1633 				int states[PACKET_NUM_STATES];
1634 				pkt_count_states(pd, states);
1635 				VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1636 					states[0], states[1], states[2], states[3],
1637 					states[4], states[5]);
1638 			}
1639 
1640 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1641 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1642 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1643 					min_sleep_time = pkt->sleep_time;
1644 			}
1645 
1646 			generic_unplug_device(bdev_get_queue(pd->bdev));
1647 
1648 			VPRINTK("kcdrwd: sleeping\n");
1649 			residue = schedule_timeout(min_sleep_time);
1650 			VPRINTK("kcdrwd: wake up\n");
1651 
1652 			/* make swsusp happy with our thread */
1653 			try_to_freeze();
1654 
1655 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1656 				if (!pkt->sleep_time)
1657 					continue;
1658 				pkt->sleep_time -= min_sleep_time - residue;
1659 				if (pkt->sleep_time <= 0) {
1660 					pkt->sleep_time = 0;
1661 					atomic_inc(&pkt->run_sm);
1662 				}
1663 			}
1664 
1665 			if (kthread_should_stop())
1666 				break;
1667 		}
1668 work_to_do:
1669 		set_current_state(TASK_RUNNING);
1670 		remove_wait_queue(&pd->wqueue, &wait);
1671 
1672 		if (kthread_should_stop())
1673 			break;
1674 
1675 		/*
1676 		 * if pkt_handle_queue returns true, we can queue
1677 		 * another request.
1678 		 */
1679 		while (pkt_handle_queue(pd))
1680 			;
1681 
1682 		/*
1683 		 * Handle packet state machine
1684 		 */
1685 		pkt_handle_packets(pd);
1686 
1687 		/*
1688 		 * Handle iosched queues
1689 		 */
1690 		pkt_iosched_process_queue(pd);
1691 	}
1692 
1693 	return 0;
1694 }
1695 
1696 static void pkt_print_settings(struct pktcdvd_device *pd)
1697 {
1698 	printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1699 	printk("%u blocks, ", pd->settings.size >> 2);
1700 	printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1701 }
1702 
1703 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1704 {
1705 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1706 
1707 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1708 	cgc->cmd[2] = page_code | (page_control << 6);
1709 	cgc->cmd[7] = cgc->buflen >> 8;
1710 	cgc->cmd[8] = cgc->buflen & 0xff;
1711 	cgc->data_direction = CGC_DATA_READ;
1712 	return pkt_generic_packet(pd, cgc);
1713 }
1714 
1715 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1716 {
1717 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1718 	memset(cgc->buffer, 0, 2);
1719 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1720 	cgc->cmd[1] = 0x10;		/* PF */
1721 	cgc->cmd[7] = cgc->buflen >> 8;
1722 	cgc->cmd[8] = cgc->buflen & 0xff;
1723 	cgc->data_direction = CGC_DATA_WRITE;
1724 	return pkt_generic_packet(pd, cgc);
1725 }
1726 
1727 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1728 {
1729 	struct packet_command cgc;
1730 	int ret;
1731 
1732 	/* set up command and get the disc info */
1733 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1734 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1735 	cgc.cmd[8] = cgc.buflen = 2;
1736 	cgc.quiet = 1;
1737 
1738 	if ((ret = pkt_generic_packet(pd, &cgc)))
1739 		return ret;
1740 
1741 	/* not all drives have the same disc_info length, so requeue
1742 	 * packet with the length the drive tells us it can supply
1743 	 */
1744 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1745 		     sizeof(di->disc_information_length);
1746 
1747 	if (cgc.buflen > sizeof(disc_information))
1748 		cgc.buflen = sizeof(disc_information);
1749 
1750 	cgc.cmd[8] = cgc.buflen;
1751 	return pkt_generic_packet(pd, &cgc);
1752 }
1753 
1754 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1755 {
1756 	struct packet_command cgc;
1757 	int ret;
1758 
1759 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1760 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1761 	cgc.cmd[1] = type & 3;
1762 	cgc.cmd[4] = (track & 0xff00) >> 8;
1763 	cgc.cmd[5] = track & 0xff;
1764 	cgc.cmd[8] = 8;
1765 	cgc.quiet = 1;
1766 
1767 	if ((ret = pkt_generic_packet(pd, &cgc)))
1768 		return ret;
1769 
1770 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1771 		     sizeof(ti->track_information_length);
1772 
1773 	if (cgc.buflen > sizeof(track_information))
1774 		cgc.buflen = sizeof(track_information);
1775 
1776 	cgc.cmd[8] = cgc.buflen;
1777 	return pkt_generic_packet(pd, &cgc);
1778 }
1779 
1780 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1781 						long *last_written)
1782 {
1783 	disc_information di;
1784 	track_information ti;
1785 	__u32 last_track;
1786 	int ret = -1;
1787 
1788 	if ((ret = pkt_get_disc_info(pd, &di)))
1789 		return ret;
1790 
1791 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1792 	if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1793 		return ret;
1794 
1795 	/* if this track is blank, try the previous. */
1796 	if (ti.blank) {
1797 		last_track--;
1798 		if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1799 			return ret;
1800 	}
1801 
1802 	/* if last recorded field is valid, return it. */
1803 	if (ti.lra_v) {
1804 		*last_written = be32_to_cpu(ti.last_rec_address);
1805 	} else {
1806 		/* make it up instead */
1807 		*last_written = be32_to_cpu(ti.track_start) +
1808 				be32_to_cpu(ti.track_size);
1809 		if (ti.free_blocks)
1810 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1811 	}
1812 	return 0;
1813 }
1814 
1815 /*
1816  * write mode select package based on pd->settings
1817  */
1818 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1819 {
1820 	struct packet_command cgc;
1821 	struct request_sense sense;
1822 	write_param_page *wp;
1823 	char buffer[128];
1824 	int ret, size;
1825 
1826 	/* doesn't apply to DVD+RW or DVD-RAM */
1827 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1828 		return 0;
1829 
1830 	memset(buffer, 0, sizeof(buffer));
1831 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1832 	cgc.sense = &sense;
1833 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1834 		pkt_dump_sense(&cgc);
1835 		return ret;
1836 	}
1837 
1838 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1839 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1840 	if (size > sizeof(buffer))
1841 		size = sizeof(buffer);
1842 
1843 	/*
1844 	 * now get it all
1845 	 */
1846 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1847 	cgc.sense = &sense;
1848 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1849 		pkt_dump_sense(&cgc);
1850 		return ret;
1851 	}
1852 
1853 	/*
1854 	 * write page is offset header + block descriptor length
1855 	 */
1856 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1857 
1858 	wp->fp = pd->settings.fp;
1859 	wp->track_mode = pd->settings.track_mode;
1860 	wp->write_type = pd->settings.write_type;
1861 	wp->data_block_type = pd->settings.block_mode;
1862 
1863 	wp->multi_session = 0;
1864 
1865 #ifdef PACKET_USE_LS
1866 	wp->link_size = 7;
1867 	wp->ls_v = 1;
1868 #endif
1869 
1870 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1871 		wp->session_format = 0;
1872 		wp->subhdr2 = 0x20;
1873 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1874 		wp->session_format = 0x20;
1875 		wp->subhdr2 = 8;
1876 #if 0
1877 		wp->mcn[0] = 0x80;
1878 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1879 #endif
1880 	} else {
1881 		/*
1882 		 * paranoia
1883 		 */
1884 		printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1885 		return 1;
1886 	}
1887 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1888 
1889 	cgc.buflen = cgc.cmd[8] = size;
1890 	if ((ret = pkt_mode_select(pd, &cgc))) {
1891 		pkt_dump_sense(&cgc);
1892 		return ret;
1893 	}
1894 
1895 	pkt_print_settings(pd);
1896 	return 0;
1897 }
1898 
1899 /*
1900  * 1 -- we can write to this track, 0 -- we can't
1901  */
1902 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1903 {
1904 	switch (pd->mmc3_profile) {
1905 		case 0x1a: /* DVD+RW */
1906 		case 0x12: /* DVD-RAM */
1907 			/* The track is always writable on DVD+RW/DVD-RAM */
1908 			return 1;
1909 		default:
1910 			break;
1911 	}
1912 
1913 	if (!ti->packet || !ti->fp)
1914 		return 0;
1915 
1916 	/*
1917 	 * "good" settings as per Mt Fuji.
1918 	 */
1919 	if (ti->rt == 0 && ti->blank == 0)
1920 		return 1;
1921 
1922 	if (ti->rt == 0 && ti->blank == 1)
1923 		return 1;
1924 
1925 	if (ti->rt == 1 && ti->blank == 0)
1926 		return 1;
1927 
1928 	printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1929 	return 0;
1930 }
1931 
1932 /*
1933  * 1 -- we can write to this disc, 0 -- we can't
1934  */
1935 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1936 {
1937 	switch (pd->mmc3_profile) {
1938 		case 0x0a: /* CD-RW */
1939 		case 0xffff: /* MMC3 not supported */
1940 			break;
1941 		case 0x1a: /* DVD+RW */
1942 		case 0x13: /* DVD-RW */
1943 		case 0x12: /* DVD-RAM */
1944 			return 1;
1945 		default:
1946 			VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1947 			return 0;
1948 	}
1949 
1950 	/*
1951 	 * for disc type 0xff we should probably reserve a new track.
1952 	 * but i'm not sure, should we leave this to user apps? probably.
1953 	 */
1954 	if (di->disc_type == 0xff) {
1955 		printk(DRIVER_NAME": Unknown disc. No track?\n");
1956 		return 0;
1957 	}
1958 
1959 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1960 		printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1961 		return 0;
1962 	}
1963 
1964 	if (di->erasable == 0) {
1965 		printk(DRIVER_NAME": Disc not erasable\n");
1966 		return 0;
1967 	}
1968 
1969 	if (di->border_status == PACKET_SESSION_RESERVED) {
1970 		printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1971 		return 0;
1972 	}
1973 
1974 	return 1;
1975 }
1976 
1977 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1978 {
1979 	struct packet_command cgc;
1980 	unsigned char buf[12];
1981 	disc_information di;
1982 	track_information ti;
1983 	int ret, track;
1984 
1985 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1986 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1987 	cgc.cmd[8] = 8;
1988 	ret = pkt_generic_packet(pd, &cgc);
1989 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1990 
1991 	memset(&di, 0, sizeof(disc_information));
1992 	memset(&ti, 0, sizeof(track_information));
1993 
1994 	if ((ret = pkt_get_disc_info(pd, &di))) {
1995 		printk("failed get_disc\n");
1996 		return ret;
1997 	}
1998 
1999 	if (!pkt_writable_disc(pd, &di))
2000 		return -EROFS;
2001 
2002 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
2003 
2004 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
2005 	if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
2006 		printk(DRIVER_NAME": failed get_track\n");
2007 		return ret;
2008 	}
2009 
2010 	if (!pkt_writable_track(pd, &ti)) {
2011 		printk(DRIVER_NAME": can't write to this track\n");
2012 		return -EROFS;
2013 	}
2014 
2015 	/*
2016 	 * we keep packet size in 512 byte units, makes it easier to
2017 	 * deal with request calculations.
2018 	 */
2019 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
2020 	if (pd->settings.size == 0) {
2021 		printk(DRIVER_NAME": detected zero packet size!\n");
2022 		return -ENXIO;
2023 	}
2024 	if (pd->settings.size > PACKET_MAX_SECTORS) {
2025 		printk(DRIVER_NAME": packet size is too big\n");
2026 		return -EROFS;
2027 	}
2028 	pd->settings.fp = ti.fp;
2029 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
2030 
2031 	if (ti.nwa_v) {
2032 		pd->nwa = be32_to_cpu(ti.next_writable);
2033 		set_bit(PACKET_NWA_VALID, &pd->flags);
2034 	}
2035 
2036 	/*
2037 	 * in theory we could use lra on -RW media as well and just zero
2038 	 * blocks that haven't been written yet, but in practice that
2039 	 * is just a no-go. we'll use that for -R, naturally.
2040 	 */
2041 	if (ti.lra_v) {
2042 		pd->lra = be32_to_cpu(ti.last_rec_address);
2043 		set_bit(PACKET_LRA_VALID, &pd->flags);
2044 	} else {
2045 		pd->lra = 0xffffffff;
2046 		set_bit(PACKET_LRA_VALID, &pd->flags);
2047 	}
2048 
2049 	/*
2050 	 * fine for now
2051 	 */
2052 	pd->settings.link_loss = 7;
2053 	pd->settings.write_type = 0;	/* packet */
2054 	pd->settings.track_mode = ti.track_mode;
2055 
2056 	/*
2057 	 * mode1 or mode2 disc
2058 	 */
2059 	switch (ti.data_mode) {
2060 		case PACKET_MODE1:
2061 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
2062 			break;
2063 		case PACKET_MODE2:
2064 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
2065 			break;
2066 		default:
2067 			printk(DRIVER_NAME": unknown data mode\n");
2068 			return -EROFS;
2069 	}
2070 	return 0;
2071 }
2072 
2073 /*
2074  * enable/disable write caching on drive
2075  */
2076 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2077 						int set)
2078 {
2079 	struct packet_command cgc;
2080 	struct request_sense sense;
2081 	unsigned char buf[64];
2082 	int ret;
2083 
2084 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2085 	cgc.sense = &sense;
2086 	cgc.buflen = pd->mode_offset + 12;
2087 
2088 	/*
2089 	 * caching mode page might not be there, so quiet this command
2090 	 */
2091 	cgc.quiet = 1;
2092 
2093 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2094 		return ret;
2095 
2096 	buf[pd->mode_offset + 10] |= (!!set << 2);
2097 
2098 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2099 	ret = pkt_mode_select(pd, &cgc);
2100 	if (ret) {
2101 		printk(DRIVER_NAME": write caching control failed\n");
2102 		pkt_dump_sense(&cgc);
2103 	} else if (!ret && set)
2104 		printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2105 	return ret;
2106 }
2107 
2108 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2109 {
2110 	struct packet_command cgc;
2111 
2112 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2113 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2114 	cgc.cmd[4] = lockflag ? 1 : 0;
2115 	return pkt_generic_packet(pd, &cgc);
2116 }
2117 
2118 /*
2119  * Returns drive maximum write speed
2120  */
2121 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2122 						unsigned *write_speed)
2123 {
2124 	struct packet_command cgc;
2125 	struct request_sense sense;
2126 	unsigned char buf[256+18];
2127 	unsigned char *cap_buf;
2128 	int ret, offset;
2129 
2130 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2131 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2132 	cgc.sense = &sense;
2133 
2134 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2135 	if (ret) {
2136 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2137 			     sizeof(struct mode_page_header);
2138 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2139 		if (ret) {
2140 			pkt_dump_sense(&cgc);
2141 			return ret;
2142 		}
2143 	}
2144 
2145 	offset = 20;			    /* Obsoleted field, used by older drives */
2146 	if (cap_buf[1] >= 28)
2147 		offset = 28;		    /* Current write speed selected */
2148 	if (cap_buf[1] >= 30) {
2149 		/* If the drive reports at least one "Logical Unit Write
2150 		 * Speed Performance Descriptor Block", use the information
2151 		 * in the first block. (contains the highest speed)
2152 		 */
2153 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2154 		if (num_spdb > 0)
2155 			offset = 34;
2156 	}
2157 
2158 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2159 	return 0;
2160 }
2161 
2162 /* These tables from cdrecord - I don't have orange book */
2163 /* standard speed CD-RW (1-4x) */
2164 static char clv_to_speed[16] = {
2165 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2166 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2167 };
2168 /* high speed CD-RW (-10x) */
2169 static char hs_clv_to_speed[16] = {
2170 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2171 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2172 };
2173 /* ultra high speed CD-RW */
2174 static char us_clv_to_speed[16] = {
2175 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2176 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2177 };
2178 
2179 /*
2180  * reads the maximum media speed from ATIP
2181  */
2182 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2183 						unsigned *speed)
2184 {
2185 	struct packet_command cgc;
2186 	struct request_sense sense;
2187 	unsigned char buf[64];
2188 	unsigned int size, st, sp;
2189 	int ret;
2190 
2191 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2192 	cgc.sense = &sense;
2193 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2194 	cgc.cmd[1] = 2;
2195 	cgc.cmd[2] = 4; /* READ ATIP */
2196 	cgc.cmd[8] = 2;
2197 	ret = pkt_generic_packet(pd, &cgc);
2198 	if (ret) {
2199 		pkt_dump_sense(&cgc);
2200 		return ret;
2201 	}
2202 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2203 	if (size > sizeof(buf))
2204 		size = sizeof(buf);
2205 
2206 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2207 	cgc.sense = &sense;
2208 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2209 	cgc.cmd[1] = 2;
2210 	cgc.cmd[2] = 4;
2211 	cgc.cmd[8] = size;
2212 	ret = pkt_generic_packet(pd, &cgc);
2213 	if (ret) {
2214 		pkt_dump_sense(&cgc);
2215 		return ret;
2216 	}
2217 
2218 	if (!(buf[6] & 0x40)) {
2219 		printk(DRIVER_NAME": Disc type is not CD-RW\n");
2220 		return 1;
2221 	}
2222 	if (!(buf[6] & 0x4)) {
2223 		printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2224 		return 1;
2225 	}
2226 
2227 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2228 
2229 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2230 
2231 	/* Info from cdrecord */
2232 	switch (st) {
2233 		case 0: /* standard speed */
2234 			*speed = clv_to_speed[sp];
2235 			break;
2236 		case 1: /* high speed */
2237 			*speed = hs_clv_to_speed[sp];
2238 			break;
2239 		case 2: /* ultra high speed */
2240 			*speed = us_clv_to_speed[sp];
2241 			break;
2242 		default:
2243 			printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2244 			return 1;
2245 	}
2246 	if (*speed) {
2247 		printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2248 		return 0;
2249 	} else {
2250 		printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2251 		return 1;
2252 	}
2253 }
2254 
2255 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2256 {
2257 	struct packet_command cgc;
2258 	struct request_sense sense;
2259 	int ret;
2260 
2261 	VPRINTK(DRIVER_NAME": Performing OPC\n");
2262 
2263 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2264 	cgc.sense = &sense;
2265 	cgc.timeout = 60*HZ;
2266 	cgc.cmd[0] = GPCMD_SEND_OPC;
2267 	cgc.cmd[1] = 1;
2268 	if ((ret = pkt_generic_packet(pd, &cgc)))
2269 		pkt_dump_sense(&cgc);
2270 	return ret;
2271 }
2272 
2273 static int pkt_open_write(struct pktcdvd_device *pd)
2274 {
2275 	int ret;
2276 	unsigned int write_speed, media_write_speed, read_speed;
2277 
2278 	if ((ret = pkt_probe_settings(pd))) {
2279 		VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2280 		return ret;
2281 	}
2282 
2283 	if ((ret = pkt_set_write_settings(pd))) {
2284 		DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2285 		return -EIO;
2286 	}
2287 
2288 	pkt_write_caching(pd, USE_WCACHING);
2289 
2290 	if ((ret = pkt_get_max_speed(pd, &write_speed)))
2291 		write_speed = 16 * 177;
2292 	switch (pd->mmc3_profile) {
2293 		case 0x13: /* DVD-RW */
2294 		case 0x1a: /* DVD+RW */
2295 		case 0x12: /* DVD-RAM */
2296 			DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2297 			break;
2298 		default:
2299 			if ((ret = pkt_media_speed(pd, &media_write_speed)))
2300 				media_write_speed = 16;
2301 			write_speed = min(write_speed, media_write_speed * 177);
2302 			DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2303 			break;
2304 	}
2305 	read_speed = write_speed;
2306 
2307 	if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2308 		DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2309 		return -EIO;
2310 	}
2311 	pd->write_speed = write_speed;
2312 	pd->read_speed = read_speed;
2313 
2314 	if ((ret = pkt_perform_opc(pd))) {
2315 		DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2316 	}
2317 
2318 	return 0;
2319 }
2320 
2321 /*
2322  * called at open time.
2323  */
2324 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
2325 {
2326 	int ret;
2327 	long lba;
2328 	struct request_queue *q;
2329 
2330 	/*
2331 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2332 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2333 	 * so bdget() can't fail.
2334 	 */
2335 	bdget(pd->bdev->bd_dev);
2336 	if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
2337 		goto out;
2338 
2339 	if ((ret = bd_claim(pd->bdev, pd)))
2340 		goto out_putdev;
2341 
2342 	if ((ret = pkt_get_last_written(pd, &lba))) {
2343 		printk(DRIVER_NAME": pkt_get_last_written failed\n");
2344 		goto out_unclaim;
2345 	}
2346 
2347 	set_capacity(pd->disk, lba << 2);
2348 	set_capacity(pd->bdev->bd_disk, lba << 2);
2349 	bd_set_size(pd->bdev, (loff_t)lba << 11);
2350 
2351 	q = bdev_get_queue(pd->bdev);
2352 	if (write) {
2353 		if ((ret = pkt_open_write(pd)))
2354 			goto out_unclaim;
2355 		/*
2356 		 * Some CDRW drives can not handle writes larger than one packet,
2357 		 * even if the size is a multiple of the packet size.
2358 		 */
2359 		spin_lock_irq(q->queue_lock);
2360 		blk_queue_max_sectors(q, pd->settings.size);
2361 		spin_unlock_irq(q->queue_lock);
2362 		set_bit(PACKET_WRITABLE, &pd->flags);
2363 	} else {
2364 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2365 		clear_bit(PACKET_WRITABLE, &pd->flags);
2366 	}
2367 
2368 	if ((ret = pkt_set_segment_merging(pd, q)))
2369 		goto out_unclaim;
2370 
2371 	if (write) {
2372 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2373 			printk(DRIVER_NAME": not enough memory for buffers\n");
2374 			ret = -ENOMEM;
2375 			goto out_unclaim;
2376 		}
2377 		printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2378 	}
2379 
2380 	return 0;
2381 
2382 out_unclaim:
2383 	bd_release(pd->bdev);
2384 out_putdev:
2385 	blkdev_put(pd->bdev);
2386 out:
2387 	return ret;
2388 }
2389 
2390 /*
2391  * called when the device is closed. makes sure that the device flushes
2392  * the internal cache before we close.
2393  */
2394 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2395 {
2396 	if (flush && pkt_flush_cache(pd))
2397 		DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2398 
2399 	pkt_lock_door(pd, 0);
2400 
2401 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2402 	bd_release(pd->bdev);
2403 	blkdev_put(pd->bdev);
2404 
2405 	pkt_shrink_pktlist(pd);
2406 }
2407 
2408 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2409 {
2410 	if (dev_minor >= MAX_WRITERS)
2411 		return NULL;
2412 	return pkt_devs[dev_minor];
2413 }
2414 
2415 static int pkt_open(struct inode *inode, struct file *file)
2416 {
2417 	struct pktcdvd_device *pd = NULL;
2418 	int ret;
2419 
2420 	VPRINTK(DRIVER_NAME": entering open\n");
2421 
2422 	mutex_lock(&ctl_mutex);
2423 	pd = pkt_find_dev_from_minor(iminor(inode));
2424 	if (!pd) {
2425 		ret = -ENODEV;
2426 		goto out;
2427 	}
2428 	BUG_ON(pd->refcnt < 0);
2429 
2430 	pd->refcnt++;
2431 	if (pd->refcnt > 1) {
2432 		if ((file->f_mode & FMODE_WRITE) &&
2433 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2434 			ret = -EBUSY;
2435 			goto out_dec;
2436 		}
2437 	} else {
2438 		ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE);
2439 		if (ret)
2440 			goto out_dec;
2441 		/*
2442 		 * needed here as well, since ext2 (among others) may change
2443 		 * the blocksize at mount time
2444 		 */
2445 		set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2446 	}
2447 
2448 	mutex_unlock(&ctl_mutex);
2449 	return 0;
2450 
2451 out_dec:
2452 	pd->refcnt--;
2453 out:
2454 	VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2455 	mutex_unlock(&ctl_mutex);
2456 	return ret;
2457 }
2458 
2459 static int pkt_close(struct inode *inode, struct file *file)
2460 {
2461 	struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2462 	int ret = 0;
2463 
2464 	mutex_lock(&ctl_mutex);
2465 	pd->refcnt--;
2466 	BUG_ON(pd->refcnt < 0);
2467 	if (pd->refcnt == 0) {
2468 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2469 		pkt_release_dev(pd, flush);
2470 	}
2471 	mutex_unlock(&ctl_mutex);
2472 	return ret;
2473 }
2474 
2475 
2476 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2477 {
2478 	struct packet_stacked_data *psd = bio->bi_private;
2479 	struct pktcdvd_device *pd = psd->pd;
2480 
2481 	bio_put(bio);
2482 	bio_endio(psd->bio, err);
2483 	mempool_free(psd, psd_pool);
2484 	pkt_bio_finished(pd);
2485 }
2486 
2487 static int pkt_make_request(struct request_queue *q, struct bio *bio)
2488 {
2489 	struct pktcdvd_device *pd;
2490 	char b[BDEVNAME_SIZE];
2491 	sector_t zone;
2492 	struct packet_data *pkt;
2493 	int was_empty, blocked_bio;
2494 	struct pkt_rb_node *node;
2495 
2496 	pd = q->queuedata;
2497 	if (!pd) {
2498 		printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2499 		goto end_io;
2500 	}
2501 
2502 	/*
2503 	 * Clone READ bios so we can have our own bi_end_io callback.
2504 	 */
2505 	if (bio_data_dir(bio) == READ) {
2506 		struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2507 		struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2508 
2509 		psd->pd = pd;
2510 		psd->bio = bio;
2511 		cloned_bio->bi_bdev = pd->bdev;
2512 		cloned_bio->bi_private = psd;
2513 		cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2514 		pd->stats.secs_r += bio->bi_size >> 9;
2515 		pkt_queue_bio(pd, cloned_bio);
2516 		return 0;
2517 	}
2518 
2519 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2520 		printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2521 			pd->name, (unsigned long long)bio->bi_sector);
2522 		goto end_io;
2523 	}
2524 
2525 	if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2526 		printk(DRIVER_NAME": wrong bio size\n");
2527 		goto end_io;
2528 	}
2529 
2530 	blk_queue_bounce(q, &bio);
2531 
2532 	zone = ZONE(bio->bi_sector, pd);
2533 	VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2534 		(unsigned long long)bio->bi_sector,
2535 		(unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2536 
2537 	/* Check if we have to split the bio */
2538 	{
2539 		struct bio_pair *bp;
2540 		sector_t last_zone;
2541 		int first_sectors;
2542 
2543 		last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2544 		if (last_zone != zone) {
2545 			BUG_ON(last_zone != zone + pd->settings.size);
2546 			first_sectors = last_zone - bio->bi_sector;
2547 			bp = bio_split(bio, first_sectors);
2548 			BUG_ON(!bp);
2549 			pkt_make_request(q, &bp->bio1);
2550 			pkt_make_request(q, &bp->bio2);
2551 			bio_pair_release(bp);
2552 			return 0;
2553 		}
2554 	}
2555 
2556 	/*
2557 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2558 	 * just append this bio to that packet.
2559 	 */
2560 	spin_lock(&pd->cdrw.active_list_lock);
2561 	blocked_bio = 0;
2562 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2563 		if (pkt->sector == zone) {
2564 			spin_lock(&pkt->lock);
2565 			if ((pkt->state == PACKET_WAITING_STATE) ||
2566 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2567 				pkt_add_list_last(bio, &pkt->orig_bios,
2568 						  &pkt->orig_bios_tail);
2569 				pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2570 				if ((pkt->write_size >= pkt->frames) &&
2571 				    (pkt->state == PACKET_WAITING_STATE)) {
2572 					atomic_inc(&pkt->run_sm);
2573 					wake_up(&pd->wqueue);
2574 				}
2575 				spin_unlock(&pkt->lock);
2576 				spin_unlock(&pd->cdrw.active_list_lock);
2577 				return 0;
2578 			} else {
2579 				blocked_bio = 1;
2580 			}
2581 			spin_unlock(&pkt->lock);
2582 		}
2583 	}
2584 	spin_unlock(&pd->cdrw.active_list_lock);
2585 
2586  	/*
2587 	 * Test if there is enough room left in the bio work queue
2588 	 * (queue size >= congestion on mark).
2589 	 * If not, wait till the work queue size is below the congestion off mark.
2590 	 */
2591 	spin_lock(&pd->lock);
2592 	if (pd->write_congestion_on > 0
2593 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2594 		set_bdi_congested(&q->backing_dev_info, WRITE);
2595 		do {
2596 			spin_unlock(&pd->lock);
2597 			congestion_wait(WRITE, HZ);
2598 			spin_lock(&pd->lock);
2599 		} while(pd->bio_queue_size > pd->write_congestion_off);
2600 	}
2601 	spin_unlock(&pd->lock);
2602 
2603 	/*
2604 	 * No matching packet found. Store the bio in the work queue.
2605 	 */
2606 	node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2607 	node->bio = bio;
2608 	spin_lock(&pd->lock);
2609 	BUG_ON(pd->bio_queue_size < 0);
2610 	was_empty = (pd->bio_queue_size == 0);
2611 	pkt_rbtree_insert(pd, node);
2612 	spin_unlock(&pd->lock);
2613 
2614 	/*
2615 	 * Wake up the worker thread.
2616 	 */
2617 	atomic_set(&pd->scan_queue, 1);
2618 	if (was_empty) {
2619 		/* This wake_up is required for correct operation */
2620 		wake_up(&pd->wqueue);
2621 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2622 		/*
2623 		 * This wake up is not required for correct operation,
2624 		 * but improves performance in some cases.
2625 		 */
2626 		wake_up(&pd->wqueue);
2627 	}
2628 	return 0;
2629 end_io:
2630 	bio_io_error(bio);
2631 	return 0;
2632 }
2633 
2634 
2635 
2636 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2637 			  struct bio_vec *bvec)
2638 {
2639 	struct pktcdvd_device *pd = q->queuedata;
2640 	sector_t zone = ZONE(bmd->bi_sector, pd);
2641 	int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2642 	int remaining = (pd->settings.size << 9) - used;
2643 	int remaining2;
2644 
2645 	/*
2646 	 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2647 	 * boundary, pkt_make_request() will split the bio.
2648 	 */
2649 	remaining2 = PAGE_SIZE - bmd->bi_size;
2650 	remaining = max(remaining, remaining2);
2651 
2652 	BUG_ON(remaining < 0);
2653 	return remaining;
2654 }
2655 
2656 static void pkt_init_queue(struct pktcdvd_device *pd)
2657 {
2658 	struct request_queue *q = pd->disk->queue;
2659 
2660 	blk_queue_make_request(q, pkt_make_request);
2661 	blk_queue_hardsect_size(q, CD_FRAMESIZE);
2662 	blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2663 	blk_queue_merge_bvec(q, pkt_merge_bvec);
2664 	q->queuedata = pd;
2665 }
2666 
2667 static int pkt_seq_show(struct seq_file *m, void *p)
2668 {
2669 	struct pktcdvd_device *pd = m->private;
2670 	char *msg;
2671 	char bdev_buf[BDEVNAME_SIZE];
2672 	int states[PACKET_NUM_STATES];
2673 
2674 	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2675 		   bdevname(pd->bdev, bdev_buf));
2676 
2677 	seq_printf(m, "\nSettings:\n");
2678 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2679 
2680 	if (pd->settings.write_type == 0)
2681 		msg = "Packet";
2682 	else
2683 		msg = "Unknown";
2684 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2685 
2686 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2687 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2688 
2689 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2690 
2691 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2692 		msg = "Mode 1";
2693 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2694 		msg = "Mode 2";
2695 	else
2696 		msg = "Unknown";
2697 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2698 
2699 	seq_printf(m, "\nStatistics:\n");
2700 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2701 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2702 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2703 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2704 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2705 
2706 	seq_printf(m, "\nMisc:\n");
2707 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2708 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2709 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2710 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2711 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2712 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2713 
2714 	seq_printf(m, "\nQueue state:\n");
2715 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2716 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2717 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2718 
2719 	pkt_count_states(pd, states);
2720 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2721 		   states[0], states[1], states[2], states[3], states[4], states[5]);
2722 
2723 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2724 			pd->write_congestion_off,
2725 			pd->write_congestion_on);
2726 	return 0;
2727 }
2728 
2729 static int pkt_seq_open(struct inode *inode, struct file *file)
2730 {
2731 	return single_open(file, pkt_seq_show, PDE(inode)->data);
2732 }
2733 
2734 static const struct file_operations pkt_proc_fops = {
2735 	.open	= pkt_seq_open,
2736 	.read	= seq_read,
2737 	.llseek	= seq_lseek,
2738 	.release = single_release
2739 };
2740 
2741 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2742 {
2743 	int i;
2744 	int ret = 0;
2745 	char b[BDEVNAME_SIZE];
2746 	struct block_device *bdev;
2747 
2748 	if (pd->pkt_dev == dev) {
2749 		printk(DRIVER_NAME": Recursive setup not allowed\n");
2750 		return -EBUSY;
2751 	}
2752 	for (i = 0; i < MAX_WRITERS; i++) {
2753 		struct pktcdvd_device *pd2 = pkt_devs[i];
2754 		if (!pd2)
2755 			continue;
2756 		if (pd2->bdev->bd_dev == dev) {
2757 			printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2758 			return -EBUSY;
2759 		}
2760 		if (pd2->pkt_dev == dev) {
2761 			printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2762 			return -EBUSY;
2763 		}
2764 	}
2765 
2766 	bdev = bdget(dev);
2767 	if (!bdev)
2768 		return -ENOMEM;
2769 	ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2770 	if (ret)
2771 		return ret;
2772 
2773 	/* This is safe, since we have a reference from open(). */
2774 	__module_get(THIS_MODULE);
2775 
2776 	pd->bdev = bdev;
2777 	set_blocksize(bdev, CD_FRAMESIZE);
2778 
2779 	pkt_init_queue(pd);
2780 
2781 	atomic_set(&pd->cdrw.pending_bios, 0);
2782 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2783 	if (IS_ERR(pd->cdrw.thread)) {
2784 		printk(DRIVER_NAME": can't start kernel thread\n");
2785 		ret = -ENOMEM;
2786 		goto out_mem;
2787 	}
2788 
2789 	proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2790 	DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2791 	return 0;
2792 
2793 out_mem:
2794 	blkdev_put(bdev);
2795 	/* This is safe: open() is still holding a reference. */
2796 	module_put(THIS_MODULE);
2797 	return ret;
2798 }
2799 
2800 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2801 {
2802 	struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2803 
2804 	VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2805 
2806 	switch (cmd) {
2807 	/*
2808 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2809 	 */
2810 	case CDROMMULTISESSION:
2811 	case CDROMREADTOCENTRY:
2812 	case CDROM_LAST_WRITTEN:
2813 	case CDROM_SEND_PACKET:
2814 	case SCSI_IOCTL_SEND_COMMAND:
2815 		return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2816 
2817 	case CDROMEJECT:
2818 		/*
2819 		 * The door gets locked when the device is opened, so we
2820 		 * have to unlock it or else the eject command fails.
2821 		 */
2822 		if (pd->refcnt == 1)
2823 			pkt_lock_door(pd, 0);
2824 		return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2825 
2826 	default:
2827 		VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2828 		return -ENOTTY;
2829 	}
2830 
2831 	return 0;
2832 }
2833 
2834 static int pkt_media_changed(struct gendisk *disk)
2835 {
2836 	struct pktcdvd_device *pd = disk->private_data;
2837 	struct gendisk *attached_disk;
2838 
2839 	if (!pd)
2840 		return 0;
2841 	if (!pd->bdev)
2842 		return 0;
2843 	attached_disk = pd->bdev->bd_disk;
2844 	if (!attached_disk)
2845 		return 0;
2846 	return attached_disk->fops->media_changed(attached_disk);
2847 }
2848 
2849 static struct block_device_operations pktcdvd_ops = {
2850 	.owner =		THIS_MODULE,
2851 	.open =			pkt_open,
2852 	.release =		pkt_close,
2853 	.ioctl =		pkt_ioctl,
2854 	.media_changed =	pkt_media_changed,
2855 };
2856 
2857 /*
2858  * Set up mapping from pktcdvd device to CD-ROM device.
2859  */
2860 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2861 {
2862 	int idx;
2863 	int ret = -ENOMEM;
2864 	struct pktcdvd_device *pd;
2865 	struct gendisk *disk;
2866 
2867 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2868 
2869 	for (idx = 0; idx < MAX_WRITERS; idx++)
2870 		if (!pkt_devs[idx])
2871 			break;
2872 	if (idx == MAX_WRITERS) {
2873 		printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2874 		ret = -EBUSY;
2875 		goto out_mutex;
2876 	}
2877 
2878 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2879 	if (!pd)
2880 		goto out_mutex;
2881 
2882 	pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2883 						  sizeof(struct pkt_rb_node));
2884 	if (!pd->rb_pool)
2885 		goto out_mem;
2886 
2887 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2888 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2889 	spin_lock_init(&pd->cdrw.active_list_lock);
2890 
2891 	spin_lock_init(&pd->lock);
2892 	spin_lock_init(&pd->iosched.lock);
2893 	sprintf(pd->name, DRIVER_NAME"%d", idx);
2894 	init_waitqueue_head(&pd->wqueue);
2895 	pd->bio_queue = RB_ROOT;
2896 
2897 	pd->write_congestion_on  = write_congestion_on;
2898 	pd->write_congestion_off = write_congestion_off;
2899 
2900 	disk = alloc_disk(1);
2901 	if (!disk)
2902 		goto out_mem;
2903 	pd->disk = disk;
2904 	disk->major = pktdev_major;
2905 	disk->first_minor = idx;
2906 	disk->fops = &pktcdvd_ops;
2907 	disk->flags = GENHD_FL_REMOVABLE;
2908 	strcpy(disk->disk_name, pd->name);
2909 	disk->private_data = pd;
2910 	disk->queue = blk_alloc_queue(GFP_KERNEL);
2911 	if (!disk->queue)
2912 		goto out_mem2;
2913 
2914 	pd->pkt_dev = MKDEV(pktdev_major, idx);
2915 	ret = pkt_new_dev(pd, dev);
2916 	if (ret)
2917 		goto out_new_dev;
2918 
2919 	add_disk(disk);
2920 
2921 	pkt_sysfs_dev_new(pd);
2922 	pkt_debugfs_dev_new(pd);
2923 
2924 	pkt_devs[idx] = pd;
2925 	if (pkt_dev)
2926 		*pkt_dev = pd->pkt_dev;
2927 
2928 	mutex_unlock(&ctl_mutex);
2929 	return 0;
2930 
2931 out_new_dev:
2932 	blk_cleanup_queue(disk->queue);
2933 out_mem2:
2934 	put_disk(disk);
2935 out_mem:
2936 	if (pd->rb_pool)
2937 		mempool_destroy(pd->rb_pool);
2938 	kfree(pd);
2939 out_mutex:
2940 	mutex_unlock(&ctl_mutex);
2941 	printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2942 	return ret;
2943 }
2944 
2945 /*
2946  * Tear down mapping from pktcdvd device to CD-ROM device.
2947  */
2948 static int pkt_remove_dev(dev_t pkt_dev)
2949 {
2950 	struct pktcdvd_device *pd;
2951 	int idx;
2952 	int ret = 0;
2953 
2954 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2955 
2956 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2957 		pd = pkt_devs[idx];
2958 		if (pd && (pd->pkt_dev == pkt_dev))
2959 			break;
2960 	}
2961 	if (idx == MAX_WRITERS) {
2962 		DPRINTK(DRIVER_NAME": dev not setup\n");
2963 		ret = -ENXIO;
2964 		goto out;
2965 	}
2966 
2967 	if (pd->refcnt > 0) {
2968 		ret = -EBUSY;
2969 		goto out;
2970 	}
2971 	if (!IS_ERR(pd->cdrw.thread))
2972 		kthread_stop(pd->cdrw.thread);
2973 
2974 	pkt_devs[idx] = NULL;
2975 
2976 	pkt_debugfs_dev_remove(pd);
2977 	pkt_sysfs_dev_remove(pd);
2978 
2979 	blkdev_put(pd->bdev);
2980 
2981 	remove_proc_entry(pd->name, pkt_proc);
2982 	DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2983 
2984 	del_gendisk(pd->disk);
2985 	blk_cleanup_queue(pd->disk->queue);
2986 	put_disk(pd->disk);
2987 
2988 	mempool_destroy(pd->rb_pool);
2989 	kfree(pd);
2990 
2991 	/* This is safe: open() is still holding a reference. */
2992 	module_put(THIS_MODULE);
2993 
2994 out:
2995 	mutex_unlock(&ctl_mutex);
2996 	return ret;
2997 }
2998 
2999 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
3000 {
3001 	struct pktcdvd_device *pd;
3002 
3003 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3004 
3005 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
3006 	if (pd) {
3007 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
3008 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
3009 	} else {
3010 		ctrl_cmd->dev = 0;
3011 		ctrl_cmd->pkt_dev = 0;
3012 	}
3013 	ctrl_cmd->num_devices = MAX_WRITERS;
3014 
3015 	mutex_unlock(&ctl_mutex);
3016 }
3017 
3018 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
3019 {
3020 	void __user *argp = (void __user *)arg;
3021 	struct pkt_ctrl_command ctrl_cmd;
3022 	int ret = 0;
3023 	dev_t pkt_dev = 0;
3024 
3025 	if (cmd != PACKET_CTRL_CMD)
3026 		return -ENOTTY;
3027 
3028 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3029 		return -EFAULT;
3030 
3031 	switch (ctrl_cmd.command) {
3032 	case PKT_CTRL_CMD_SETUP:
3033 		if (!capable(CAP_SYS_ADMIN))
3034 			return -EPERM;
3035 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3036 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3037 		break;
3038 	case PKT_CTRL_CMD_TEARDOWN:
3039 		if (!capable(CAP_SYS_ADMIN))
3040 			return -EPERM;
3041 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3042 		break;
3043 	case PKT_CTRL_CMD_STATUS:
3044 		pkt_get_status(&ctrl_cmd);
3045 		break;
3046 	default:
3047 		return -ENOTTY;
3048 	}
3049 
3050 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3051 		return -EFAULT;
3052 	return ret;
3053 }
3054 
3055 
3056 static const struct file_operations pkt_ctl_fops = {
3057 	.ioctl	 = pkt_ctl_ioctl,
3058 	.owner	 = THIS_MODULE,
3059 };
3060 
3061 static struct miscdevice pkt_misc = {
3062 	.minor 		= MISC_DYNAMIC_MINOR,
3063 	.name  		= DRIVER_NAME,
3064 	.fops  		= &pkt_ctl_fops
3065 };
3066 
3067 static int __init pkt_init(void)
3068 {
3069 	int ret;
3070 
3071 	mutex_init(&ctl_mutex);
3072 
3073 	psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3074 					sizeof(struct packet_stacked_data));
3075 	if (!psd_pool)
3076 		return -ENOMEM;
3077 
3078 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
3079 	if (ret < 0) {
3080 		printk(DRIVER_NAME": Unable to register block device\n");
3081 		goto out2;
3082 	}
3083 	if (!pktdev_major)
3084 		pktdev_major = ret;
3085 
3086 	ret = pkt_sysfs_init();
3087 	if (ret)
3088 		goto out;
3089 
3090 	pkt_debugfs_init();
3091 
3092 	ret = misc_register(&pkt_misc);
3093 	if (ret) {
3094 		printk(DRIVER_NAME": Unable to register misc device\n");
3095 		goto out_misc;
3096 	}
3097 
3098 	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3099 
3100 	return 0;
3101 
3102 out_misc:
3103 	pkt_debugfs_cleanup();
3104 	pkt_sysfs_cleanup();
3105 out:
3106 	unregister_blkdev(pktdev_major, DRIVER_NAME);
3107 out2:
3108 	mempool_destroy(psd_pool);
3109 	return ret;
3110 }
3111 
3112 static void __exit pkt_exit(void)
3113 {
3114 	remove_proc_entry("driver/"DRIVER_NAME, NULL);
3115 	misc_deregister(&pkt_misc);
3116 
3117 	pkt_debugfs_cleanup();
3118 	pkt_sysfs_cleanup();
3119 
3120 	unregister_blkdev(pktdev_major, DRIVER_NAME);
3121 	mempool_destroy(psd_pool);
3122 }
3123 
3124 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3125 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3126 MODULE_LICENSE("GPL");
3127 
3128 module_init(pkt_init);
3129 module_exit(pkt_exit);
3130