1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom make_request_fn function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #include <linux/pktcdvd.h> 48 #include <linux/module.h> 49 #include <linux/types.h> 50 #include <linux/kernel.h> 51 #include <linux/kthread.h> 52 #include <linux/errno.h> 53 #include <linux/spinlock.h> 54 #include <linux/file.h> 55 #include <linux/proc_fs.h> 56 #include <linux/seq_file.h> 57 #include <linux/miscdevice.h> 58 #include <linux/freezer.h> 59 #include <linux/mutex.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_ioctl.h> 62 #include <scsi/scsi.h> 63 #include <linux/debugfs.h> 64 #include <linux/device.h> 65 66 #include <asm/uaccess.h> 67 68 #define DRIVER_NAME "pktcdvd" 69 70 #if PACKET_DEBUG 71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 72 #else 73 #define DPRINTK(fmt, args...) 74 #endif 75 76 #if PACKET_DEBUG > 1 77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 78 #else 79 #define VPRINTK(fmt, args...) 80 #endif 81 82 #define MAX_SPEED 0xffff 83 84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1)) 85 86 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 87 static struct proc_dir_entry *pkt_proc; 88 static int pktdev_major; 89 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 90 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 91 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 92 static mempool_t *psd_pool; 93 94 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */ 95 static struct dentry *pkt_debugfs_root = NULL; /* /debug/pktcdvd */ 96 97 /* forward declaration */ 98 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 99 static int pkt_remove_dev(dev_t pkt_dev); 100 static int pkt_seq_show(struct seq_file *m, void *p); 101 102 103 104 /* 105 * create and register a pktcdvd kernel object. 106 */ 107 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd, 108 const char* name, 109 struct kobject* parent, 110 struct kobj_type* ktype) 111 { 112 struct pktcdvd_kobj *p; 113 int error; 114 115 p = kzalloc(sizeof(*p), GFP_KERNEL); 116 if (!p) 117 return NULL; 118 p->pd = pd; 119 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name); 120 if (error) { 121 kobject_put(&p->kobj); 122 return NULL; 123 } 124 kobject_uevent(&p->kobj, KOBJ_ADD); 125 return p; 126 } 127 /* 128 * remove a pktcdvd kernel object. 129 */ 130 static void pkt_kobj_remove(struct pktcdvd_kobj *p) 131 { 132 if (p) 133 kobject_put(&p->kobj); 134 } 135 /* 136 * default release function for pktcdvd kernel objects. 137 */ 138 static void pkt_kobj_release(struct kobject *kobj) 139 { 140 kfree(to_pktcdvdkobj(kobj)); 141 } 142 143 144 /********************************************************** 145 * 146 * sysfs interface for pktcdvd 147 * by (C) 2006 Thomas Maier <balagi@justmail.de> 148 * 149 **********************************************************/ 150 151 #define DEF_ATTR(_obj,_name,_mode) \ 152 static struct attribute _obj = { .name = _name, .mode = _mode } 153 154 /********************************************************** 155 /sys/class/pktcdvd/pktcdvd[0-7]/ 156 stat/reset 157 stat/packets_started 158 stat/packets_finished 159 stat/kb_written 160 stat/kb_read 161 stat/kb_read_gather 162 write_queue/size 163 write_queue/congestion_off 164 write_queue/congestion_on 165 **********************************************************/ 166 167 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200); 168 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444); 169 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444); 170 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444); 171 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444); 172 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444); 173 174 static struct attribute *kobj_pkt_attrs_stat[] = { 175 &kobj_pkt_attr_st1, 176 &kobj_pkt_attr_st2, 177 &kobj_pkt_attr_st3, 178 &kobj_pkt_attr_st4, 179 &kobj_pkt_attr_st5, 180 &kobj_pkt_attr_st6, 181 NULL 182 }; 183 184 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444); 185 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644); 186 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644); 187 188 static struct attribute *kobj_pkt_attrs_wqueue[] = { 189 &kobj_pkt_attr_wq1, 190 &kobj_pkt_attr_wq2, 191 &kobj_pkt_attr_wq3, 192 NULL 193 }; 194 195 static ssize_t kobj_pkt_show(struct kobject *kobj, 196 struct attribute *attr, char *data) 197 { 198 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 199 int n = 0; 200 int v; 201 if (strcmp(attr->name, "packets_started") == 0) { 202 n = sprintf(data, "%lu\n", pd->stats.pkt_started); 203 204 } else if (strcmp(attr->name, "packets_finished") == 0) { 205 n = sprintf(data, "%lu\n", pd->stats.pkt_ended); 206 207 } else if (strcmp(attr->name, "kb_written") == 0) { 208 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1); 209 210 } else if (strcmp(attr->name, "kb_read") == 0) { 211 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1); 212 213 } else if (strcmp(attr->name, "kb_read_gather") == 0) { 214 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1); 215 216 } else if (strcmp(attr->name, "size") == 0) { 217 spin_lock(&pd->lock); 218 v = pd->bio_queue_size; 219 spin_unlock(&pd->lock); 220 n = sprintf(data, "%d\n", v); 221 222 } else if (strcmp(attr->name, "congestion_off") == 0) { 223 spin_lock(&pd->lock); 224 v = pd->write_congestion_off; 225 spin_unlock(&pd->lock); 226 n = sprintf(data, "%d\n", v); 227 228 } else if (strcmp(attr->name, "congestion_on") == 0) { 229 spin_lock(&pd->lock); 230 v = pd->write_congestion_on; 231 spin_unlock(&pd->lock); 232 n = sprintf(data, "%d\n", v); 233 } 234 return n; 235 } 236 237 static void init_write_congestion_marks(int* lo, int* hi) 238 { 239 if (*hi > 0) { 240 *hi = max(*hi, 500); 241 *hi = min(*hi, 1000000); 242 if (*lo <= 0) 243 *lo = *hi - 100; 244 else { 245 *lo = min(*lo, *hi - 100); 246 *lo = max(*lo, 100); 247 } 248 } else { 249 *hi = -1; 250 *lo = -1; 251 } 252 } 253 254 static ssize_t kobj_pkt_store(struct kobject *kobj, 255 struct attribute *attr, 256 const char *data, size_t len) 257 { 258 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 259 int val; 260 261 if (strcmp(attr->name, "reset") == 0 && len > 0) { 262 pd->stats.pkt_started = 0; 263 pd->stats.pkt_ended = 0; 264 pd->stats.secs_w = 0; 265 pd->stats.secs_rg = 0; 266 pd->stats.secs_r = 0; 267 268 } else if (strcmp(attr->name, "congestion_off") == 0 269 && sscanf(data, "%d", &val) == 1) { 270 spin_lock(&pd->lock); 271 pd->write_congestion_off = val; 272 init_write_congestion_marks(&pd->write_congestion_off, 273 &pd->write_congestion_on); 274 spin_unlock(&pd->lock); 275 276 } else if (strcmp(attr->name, "congestion_on") == 0 277 && sscanf(data, "%d", &val) == 1) { 278 spin_lock(&pd->lock); 279 pd->write_congestion_on = val; 280 init_write_congestion_marks(&pd->write_congestion_off, 281 &pd->write_congestion_on); 282 spin_unlock(&pd->lock); 283 } 284 return len; 285 } 286 287 static struct sysfs_ops kobj_pkt_ops = { 288 .show = kobj_pkt_show, 289 .store = kobj_pkt_store 290 }; 291 static struct kobj_type kobj_pkt_type_stat = { 292 .release = pkt_kobj_release, 293 .sysfs_ops = &kobj_pkt_ops, 294 .default_attrs = kobj_pkt_attrs_stat 295 }; 296 static struct kobj_type kobj_pkt_type_wqueue = { 297 .release = pkt_kobj_release, 298 .sysfs_ops = &kobj_pkt_ops, 299 .default_attrs = kobj_pkt_attrs_wqueue 300 }; 301 302 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 303 { 304 if (class_pktcdvd) { 305 pd->dev = device_create_drvdata(class_pktcdvd, NULL, 306 pd->pkt_dev, NULL, 307 "%s", pd->name); 308 if (IS_ERR(pd->dev)) 309 pd->dev = NULL; 310 } 311 if (pd->dev) { 312 pd->kobj_stat = pkt_kobj_create(pd, "stat", 313 &pd->dev->kobj, 314 &kobj_pkt_type_stat); 315 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue", 316 &pd->dev->kobj, 317 &kobj_pkt_type_wqueue); 318 } 319 } 320 321 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 322 { 323 pkt_kobj_remove(pd->kobj_stat); 324 pkt_kobj_remove(pd->kobj_wqueue); 325 if (class_pktcdvd) 326 device_destroy(class_pktcdvd, pd->pkt_dev); 327 } 328 329 330 /******************************************************************** 331 /sys/class/pktcdvd/ 332 add map block device 333 remove unmap packet dev 334 device_map show mappings 335 *******************************************************************/ 336 337 static void class_pktcdvd_release(struct class *cls) 338 { 339 kfree(cls); 340 } 341 static ssize_t class_pktcdvd_show_map(struct class *c, char *data) 342 { 343 int n = 0; 344 int idx; 345 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 346 for (idx = 0; idx < MAX_WRITERS; idx++) { 347 struct pktcdvd_device *pd = pkt_devs[idx]; 348 if (!pd) 349 continue; 350 n += sprintf(data+n, "%s %u:%u %u:%u\n", 351 pd->name, 352 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 353 MAJOR(pd->bdev->bd_dev), 354 MINOR(pd->bdev->bd_dev)); 355 } 356 mutex_unlock(&ctl_mutex); 357 return n; 358 } 359 360 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf, 361 size_t count) 362 { 363 unsigned int major, minor; 364 365 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 366 /* pkt_setup_dev() expects caller to hold reference to self */ 367 if (!try_module_get(THIS_MODULE)) 368 return -ENODEV; 369 370 pkt_setup_dev(MKDEV(major, minor), NULL); 371 372 module_put(THIS_MODULE); 373 374 return count; 375 } 376 377 return -EINVAL; 378 } 379 380 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf, 381 size_t count) 382 { 383 unsigned int major, minor; 384 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 385 pkt_remove_dev(MKDEV(major, minor)); 386 return count; 387 } 388 return -EINVAL; 389 } 390 391 static struct class_attribute class_pktcdvd_attrs[] = { 392 __ATTR(add, 0200, NULL, class_pktcdvd_store_add), 393 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove), 394 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL), 395 __ATTR_NULL 396 }; 397 398 399 static int pkt_sysfs_init(void) 400 { 401 int ret = 0; 402 403 /* 404 * create control files in sysfs 405 * /sys/class/pktcdvd/... 406 */ 407 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL); 408 if (!class_pktcdvd) 409 return -ENOMEM; 410 class_pktcdvd->name = DRIVER_NAME; 411 class_pktcdvd->owner = THIS_MODULE; 412 class_pktcdvd->class_release = class_pktcdvd_release; 413 class_pktcdvd->class_attrs = class_pktcdvd_attrs; 414 ret = class_register(class_pktcdvd); 415 if (ret) { 416 kfree(class_pktcdvd); 417 class_pktcdvd = NULL; 418 printk(DRIVER_NAME": failed to create class pktcdvd\n"); 419 return ret; 420 } 421 return 0; 422 } 423 424 static void pkt_sysfs_cleanup(void) 425 { 426 if (class_pktcdvd) 427 class_destroy(class_pktcdvd); 428 class_pktcdvd = NULL; 429 } 430 431 /******************************************************************** 432 entries in debugfs 433 434 /debugfs/pktcdvd[0-7]/ 435 info 436 437 *******************************************************************/ 438 439 static int pkt_debugfs_seq_show(struct seq_file *m, void *p) 440 { 441 return pkt_seq_show(m, p); 442 } 443 444 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file) 445 { 446 return single_open(file, pkt_debugfs_seq_show, inode->i_private); 447 } 448 449 static const struct file_operations debug_fops = { 450 .open = pkt_debugfs_fops_open, 451 .read = seq_read, 452 .llseek = seq_lseek, 453 .release = single_release, 454 .owner = THIS_MODULE, 455 }; 456 457 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 458 { 459 if (!pkt_debugfs_root) 460 return; 461 pd->dfs_f_info = NULL; 462 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root); 463 if (IS_ERR(pd->dfs_d_root)) { 464 pd->dfs_d_root = NULL; 465 return; 466 } 467 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO, 468 pd->dfs_d_root, pd, &debug_fops); 469 if (IS_ERR(pd->dfs_f_info)) { 470 pd->dfs_f_info = NULL; 471 return; 472 } 473 } 474 475 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 476 { 477 if (!pkt_debugfs_root) 478 return; 479 if (pd->dfs_f_info) 480 debugfs_remove(pd->dfs_f_info); 481 pd->dfs_f_info = NULL; 482 if (pd->dfs_d_root) 483 debugfs_remove(pd->dfs_d_root); 484 pd->dfs_d_root = NULL; 485 } 486 487 static void pkt_debugfs_init(void) 488 { 489 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 490 if (IS_ERR(pkt_debugfs_root)) { 491 pkt_debugfs_root = NULL; 492 return; 493 } 494 } 495 496 static void pkt_debugfs_cleanup(void) 497 { 498 if (!pkt_debugfs_root) 499 return; 500 debugfs_remove(pkt_debugfs_root); 501 pkt_debugfs_root = NULL; 502 } 503 504 /* ----------------------------------------------------------*/ 505 506 507 static void pkt_bio_finished(struct pktcdvd_device *pd) 508 { 509 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 510 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 511 VPRINTK(DRIVER_NAME": queue empty\n"); 512 atomic_set(&pd->iosched.attention, 1); 513 wake_up(&pd->wqueue); 514 } 515 } 516 517 static void pkt_bio_destructor(struct bio *bio) 518 { 519 kfree(bio->bi_io_vec); 520 kfree(bio); 521 } 522 523 static struct bio *pkt_bio_alloc(int nr_iovecs) 524 { 525 struct bio_vec *bvl = NULL; 526 struct bio *bio; 527 528 bio = kmalloc(sizeof(struct bio), GFP_KERNEL); 529 if (!bio) 530 goto no_bio; 531 bio_init(bio); 532 533 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL); 534 if (!bvl) 535 goto no_bvl; 536 537 bio->bi_max_vecs = nr_iovecs; 538 bio->bi_io_vec = bvl; 539 bio->bi_destructor = pkt_bio_destructor; 540 541 return bio; 542 543 no_bvl: 544 kfree(bio); 545 no_bio: 546 return NULL; 547 } 548 549 /* 550 * Allocate a packet_data struct 551 */ 552 static struct packet_data *pkt_alloc_packet_data(int frames) 553 { 554 int i; 555 struct packet_data *pkt; 556 557 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 558 if (!pkt) 559 goto no_pkt; 560 561 pkt->frames = frames; 562 pkt->w_bio = pkt_bio_alloc(frames); 563 if (!pkt->w_bio) 564 goto no_bio; 565 566 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 567 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 568 if (!pkt->pages[i]) 569 goto no_page; 570 } 571 572 spin_lock_init(&pkt->lock); 573 574 for (i = 0; i < frames; i++) { 575 struct bio *bio = pkt_bio_alloc(1); 576 if (!bio) 577 goto no_rd_bio; 578 pkt->r_bios[i] = bio; 579 } 580 581 return pkt; 582 583 no_rd_bio: 584 for (i = 0; i < frames; i++) { 585 struct bio *bio = pkt->r_bios[i]; 586 if (bio) 587 bio_put(bio); 588 } 589 590 no_page: 591 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 592 if (pkt->pages[i]) 593 __free_page(pkt->pages[i]); 594 bio_put(pkt->w_bio); 595 no_bio: 596 kfree(pkt); 597 no_pkt: 598 return NULL; 599 } 600 601 /* 602 * Free a packet_data struct 603 */ 604 static void pkt_free_packet_data(struct packet_data *pkt) 605 { 606 int i; 607 608 for (i = 0; i < pkt->frames; i++) { 609 struct bio *bio = pkt->r_bios[i]; 610 if (bio) 611 bio_put(bio); 612 } 613 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 614 __free_page(pkt->pages[i]); 615 bio_put(pkt->w_bio); 616 kfree(pkt); 617 } 618 619 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 620 { 621 struct packet_data *pkt, *next; 622 623 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 624 625 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 626 pkt_free_packet_data(pkt); 627 } 628 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 629 } 630 631 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 632 { 633 struct packet_data *pkt; 634 635 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 636 637 while (nr_packets > 0) { 638 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 639 if (!pkt) { 640 pkt_shrink_pktlist(pd); 641 return 0; 642 } 643 pkt->id = nr_packets; 644 pkt->pd = pd; 645 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 646 nr_packets--; 647 } 648 return 1; 649 } 650 651 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 652 { 653 struct rb_node *n = rb_next(&node->rb_node); 654 if (!n) 655 return NULL; 656 return rb_entry(n, struct pkt_rb_node, rb_node); 657 } 658 659 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 660 { 661 rb_erase(&node->rb_node, &pd->bio_queue); 662 mempool_free(node, pd->rb_pool); 663 pd->bio_queue_size--; 664 BUG_ON(pd->bio_queue_size < 0); 665 } 666 667 /* 668 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 669 */ 670 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 671 { 672 struct rb_node *n = pd->bio_queue.rb_node; 673 struct rb_node *next; 674 struct pkt_rb_node *tmp; 675 676 if (!n) { 677 BUG_ON(pd->bio_queue_size > 0); 678 return NULL; 679 } 680 681 for (;;) { 682 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 683 if (s <= tmp->bio->bi_sector) 684 next = n->rb_left; 685 else 686 next = n->rb_right; 687 if (!next) 688 break; 689 n = next; 690 } 691 692 if (s > tmp->bio->bi_sector) { 693 tmp = pkt_rbtree_next(tmp); 694 if (!tmp) 695 return NULL; 696 } 697 BUG_ON(s > tmp->bio->bi_sector); 698 return tmp; 699 } 700 701 /* 702 * Insert a node into the pd->bio_queue rb tree. 703 */ 704 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 705 { 706 struct rb_node **p = &pd->bio_queue.rb_node; 707 struct rb_node *parent = NULL; 708 sector_t s = node->bio->bi_sector; 709 struct pkt_rb_node *tmp; 710 711 while (*p) { 712 parent = *p; 713 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 714 if (s < tmp->bio->bi_sector) 715 p = &(*p)->rb_left; 716 else 717 p = &(*p)->rb_right; 718 } 719 rb_link_node(&node->rb_node, parent, p); 720 rb_insert_color(&node->rb_node, &pd->bio_queue); 721 pd->bio_queue_size++; 722 } 723 724 /* 725 * Add a bio to a single linked list defined by its head and tail pointers. 726 */ 727 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail) 728 { 729 bio->bi_next = NULL; 730 if (*list_tail) { 731 BUG_ON((*list_head) == NULL); 732 (*list_tail)->bi_next = bio; 733 (*list_tail) = bio; 734 } else { 735 BUG_ON((*list_head) != NULL); 736 (*list_head) = bio; 737 (*list_tail) = bio; 738 } 739 } 740 741 /* 742 * Remove and return the first bio from a single linked list defined by its 743 * head and tail pointers. 744 */ 745 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail) 746 { 747 struct bio *bio; 748 749 if (*list_head == NULL) 750 return NULL; 751 752 bio = *list_head; 753 *list_head = bio->bi_next; 754 if (*list_head == NULL) 755 *list_tail = NULL; 756 757 bio->bi_next = NULL; 758 return bio; 759 } 760 761 /* 762 * Send a packet_command to the underlying block device and 763 * wait for completion. 764 */ 765 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 766 { 767 struct request_queue *q = bdev_get_queue(pd->bdev); 768 struct request *rq; 769 int ret = 0; 770 771 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 772 WRITE : READ, __GFP_WAIT); 773 774 if (cgc->buflen) { 775 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT)) 776 goto out; 777 } 778 779 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 780 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE); 781 782 rq->timeout = 60*HZ; 783 rq->cmd_type = REQ_TYPE_BLOCK_PC; 784 rq->cmd_flags |= REQ_HARDBARRIER; 785 if (cgc->quiet) 786 rq->cmd_flags |= REQ_QUIET; 787 788 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0); 789 if (rq->errors) 790 ret = -EIO; 791 out: 792 blk_put_request(rq); 793 return ret; 794 } 795 796 /* 797 * A generic sense dump / resolve mechanism should be implemented across 798 * all ATAPI + SCSI devices. 799 */ 800 static void pkt_dump_sense(struct packet_command *cgc) 801 { 802 static char *info[9] = { "No sense", "Recovered error", "Not ready", 803 "Medium error", "Hardware error", "Illegal request", 804 "Unit attention", "Data protect", "Blank check" }; 805 int i; 806 struct request_sense *sense = cgc->sense; 807 808 printk(DRIVER_NAME":"); 809 for (i = 0; i < CDROM_PACKET_SIZE; i++) 810 printk(" %02x", cgc->cmd[i]); 811 printk(" - "); 812 813 if (sense == NULL) { 814 printk("no sense\n"); 815 return; 816 } 817 818 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq); 819 820 if (sense->sense_key > 8) { 821 printk(" (INVALID)\n"); 822 return; 823 } 824 825 printk(" (%s)\n", info[sense->sense_key]); 826 } 827 828 /* 829 * flush the drive cache to media 830 */ 831 static int pkt_flush_cache(struct pktcdvd_device *pd) 832 { 833 struct packet_command cgc; 834 835 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 836 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 837 cgc.quiet = 1; 838 839 /* 840 * the IMMED bit -- we default to not setting it, although that 841 * would allow a much faster close, this is safer 842 */ 843 #if 0 844 cgc.cmd[1] = 1 << 1; 845 #endif 846 return pkt_generic_packet(pd, &cgc); 847 } 848 849 /* 850 * speed is given as the normal factor, e.g. 4 for 4x 851 */ 852 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd, 853 unsigned write_speed, unsigned read_speed) 854 { 855 struct packet_command cgc; 856 struct request_sense sense; 857 int ret; 858 859 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 860 cgc.sense = &sense; 861 cgc.cmd[0] = GPCMD_SET_SPEED; 862 cgc.cmd[2] = (read_speed >> 8) & 0xff; 863 cgc.cmd[3] = read_speed & 0xff; 864 cgc.cmd[4] = (write_speed >> 8) & 0xff; 865 cgc.cmd[5] = write_speed & 0xff; 866 867 if ((ret = pkt_generic_packet(pd, &cgc))) 868 pkt_dump_sense(&cgc); 869 870 return ret; 871 } 872 873 /* 874 * Queue a bio for processing by the low-level CD device. Must be called 875 * from process context. 876 */ 877 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 878 { 879 spin_lock(&pd->iosched.lock); 880 if (bio_data_dir(bio) == READ) { 881 pkt_add_list_last(bio, &pd->iosched.read_queue, 882 &pd->iosched.read_queue_tail); 883 } else { 884 pkt_add_list_last(bio, &pd->iosched.write_queue, 885 &pd->iosched.write_queue_tail); 886 } 887 spin_unlock(&pd->iosched.lock); 888 889 atomic_set(&pd->iosched.attention, 1); 890 wake_up(&pd->wqueue); 891 } 892 893 /* 894 * Process the queued read/write requests. This function handles special 895 * requirements for CDRW drives: 896 * - A cache flush command must be inserted before a read request if the 897 * previous request was a write. 898 * - Switching between reading and writing is slow, so don't do it more often 899 * than necessary. 900 * - Optimize for throughput at the expense of latency. This means that streaming 901 * writes will never be interrupted by a read, but if the drive has to seek 902 * before the next write, switch to reading instead if there are any pending 903 * read requests. 904 * - Set the read speed according to current usage pattern. When only reading 905 * from the device, it's best to use the highest possible read speed, but 906 * when switching often between reading and writing, it's better to have the 907 * same read and write speeds. 908 */ 909 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 910 { 911 912 if (atomic_read(&pd->iosched.attention) == 0) 913 return; 914 atomic_set(&pd->iosched.attention, 0); 915 916 for (;;) { 917 struct bio *bio; 918 int reads_queued, writes_queued; 919 920 spin_lock(&pd->iosched.lock); 921 reads_queued = (pd->iosched.read_queue != NULL); 922 writes_queued = (pd->iosched.write_queue != NULL); 923 spin_unlock(&pd->iosched.lock); 924 925 if (!reads_queued && !writes_queued) 926 break; 927 928 if (pd->iosched.writing) { 929 int need_write_seek = 1; 930 spin_lock(&pd->iosched.lock); 931 bio = pd->iosched.write_queue; 932 spin_unlock(&pd->iosched.lock); 933 if (bio && (bio->bi_sector == pd->iosched.last_write)) 934 need_write_seek = 0; 935 if (need_write_seek && reads_queued) { 936 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 937 VPRINTK(DRIVER_NAME": write, waiting\n"); 938 break; 939 } 940 pkt_flush_cache(pd); 941 pd->iosched.writing = 0; 942 } 943 } else { 944 if (!reads_queued && writes_queued) { 945 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 946 VPRINTK(DRIVER_NAME": read, waiting\n"); 947 break; 948 } 949 pd->iosched.writing = 1; 950 } 951 } 952 953 spin_lock(&pd->iosched.lock); 954 if (pd->iosched.writing) { 955 bio = pkt_get_list_first(&pd->iosched.write_queue, 956 &pd->iosched.write_queue_tail); 957 } else { 958 bio = pkt_get_list_first(&pd->iosched.read_queue, 959 &pd->iosched.read_queue_tail); 960 } 961 spin_unlock(&pd->iosched.lock); 962 963 if (!bio) 964 continue; 965 966 if (bio_data_dir(bio) == READ) 967 pd->iosched.successive_reads += bio->bi_size >> 10; 968 else { 969 pd->iosched.successive_reads = 0; 970 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio); 971 } 972 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 973 if (pd->read_speed == pd->write_speed) { 974 pd->read_speed = MAX_SPEED; 975 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 976 } 977 } else { 978 if (pd->read_speed != pd->write_speed) { 979 pd->read_speed = pd->write_speed; 980 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 981 } 982 } 983 984 atomic_inc(&pd->cdrw.pending_bios); 985 generic_make_request(bio); 986 } 987 } 988 989 /* 990 * Special care is needed if the underlying block device has a small 991 * max_phys_segments value. 992 */ 993 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q) 994 { 995 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) { 996 /* 997 * The cdrom device can handle one segment/frame 998 */ 999 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 1000 return 0; 1001 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) { 1002 /* 1003 * We can handle this case at the expense of some extra memory 1004 * copies during write operations 1005 */ 1006 set_bit(PACKET_MERGE_SEGS, &pd->flags); 1007 return 0; 1008 } else { 1009 printk(DRIVER_NAME": cdrom max_phys_segments too small\n"); 1010 return -EIO; 1011 } 1012 } 1013 1014 /* 1015 * Copy CD_FRAMESIZE bytes from src_bio into a destination page 1016 */ 1017 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs) 1018 { 1019 unsigned int copy_size = CD_FRAMESIZE; 1020 1021 while (copy_size > 0) { 1022 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg); 1023 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) + 1024 src_bvl->bv_offset + offs; 1025 void *vto = page_address(dst_page) + dst_offs; 1026 int len = min_t(int, copy_size, src_bvl->bv_len - offs); 1027 1028 BUG_ON(len < 0); 1029 memcpy(vto, vfrom, len); 1030 kunmap_atomic(vfrom, KM_USER0); 1031 1032 seg++; 1033 offs = 0; 1034 dst_offs += len; 1035 copy_size -= len; 1036 } 1037 } 1038 1039 /* 1040 * Copy all data for this packet to pkt->pages[], so that 1041 * a) The number of required segments for the write bio is minimized, which 1042 * is necessary for some scsi controllers. 1043 * b) The data can be used as cache to avoid read requests if we receive a 1044 * new write request for the same zone. 1045 */ 1046 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec) 1047 { 1048 int f, p, offs; 1049 1050 /* Copy all data to pkt->pages[] */ 1051 p = 0; 1052 offs = 0; 1053 for (f = 0; f < pkt->frames; f++) { 1054 if (bvec[f].bv_page != pkt->pages[p]) { 1055 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset; 1056 void *vto = page_address(pkt->pages[p]) + offs; 1057 memcpy(vto, vfrom, CD_FRAMESIZE); 1058 kunmap_atomic(vfrom, KM_USER0); 1059 bvec[f].bv_page = pkt->pages[p]; 1060 bvec[f].bv_offset = offs; 1061 } else { 1062 BUG_ON(bvec[f].bv_offset != offs); 1063 } 1064 offs += CD_FRAMESIZE; 1065 if (offs >= PAGE_SIZE) { 1066 offs = 0; 1067 p++; 1068 } 1069 } 1070 } 1071 1072 static void pkt_end_io_read(struct bio *bio, int err) 1073 { 1074 struct packet_data *pkt = bio->bi_private; 1075 struct pktcdvd_device *pd = pkt->pd; 1076 BUG_ON(!pd); 1077 1078 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio, 1079 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err); 1080 1081 if (err) 1082 atomic_inc(&pkt->io_errors); 1083 if (atomic_dec_and_test(&pkt->io_wait)) { 1084 atomic_inc(&pkt->run_sm); 1085 wake_up(&pd->wqueue); 1086 } 1087 pkt_bio_finished(pd); 1088 } 1089 1090 static void pkt_end_io_packet_write(struct bio *bio, int err) 1091 { 1092 struct packet_data *pkt = bio->bi_private; 1093 struct pktcdvd_device *pd = pkt->pd; 1094 BUG_ON(!pd); 1095 1096 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err); 1097 1098 pd->stats.pkt_ended++; 1099 1100 pkt_bio_finished(pd); 1101 atomic_dec(&pkt->io_wait); 1102 atomic_inc(&pkt->run_sm); 1103 wake_up(&pd->wqueue); 1104 } 1105 1106 /* 1107 * Schedule reads for the holes in a packet 1108 */ 1109 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1110 { 1111 int frames_read = 0; 1112 struct bio *bio; 1113 int f; 1114 char written[PACKET_MAX_SIZE]; 1115 1116 BUG_ON(!pkt->orig_bios); 1117 1118 atomic_set(&pkt->io_wait, 0); 1119 atomic_set(&pkt->io_errors, 0); 1120 1121 /* 1122 * Figure out which frames we need to read before we can write. 1123 */ 1124 memset(written, 0, sizeof(written)); 1125 spin_lock(&pkt->lock); 1126 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1127 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1128 int num_frames = bio->bi_size / CD_FRAMESIZE; 1129 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 1130 BUG_ON(first_frame < 0); 1131 BUG_ON(first_frame + num_frames > pkt->frames); 1132 for (f = first_frame; f < first_frame + num_frames; f++) 1133 written[f] = 1; 1134 } 1135 spin_unlock(&pkt->lock); 1136 1137 if (pkt->cache_valid) { 1138 VPRINTK("pkt_gather_data: zone %llx cached\n", 1139 (unsigned long long)pkt->sector); 1140 goto out_account; 1141 } 1142 1143 /* 1144 * Schedule reads for missing parts of the packet. 1145 */ 1146 for (f = 0; f < pkt->frames; f++) { 1147 struct bio_vec *vec; 1148 1149 int p, offset; 1150 if (written[f]) 1151 continue; 1152 bio = pkt->r_bios[f]; 1153 vec = bio->bi_io_vec; 1154 bio_init(bio); 1155 bio->bi_max_vecs = 1; 1156 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1157 bio->bi_bdev = pd->bdev; 1158 bio->bi_end_io = pkt_end_io_read; 1159 bio->bi_private = pkt; 1160 bio->bi_io_vec = vec; 1161 bio->bi_destructor = pkt_bio_destructor; 1162 1163 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1164 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1165 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n", 1166 f, pkt->pages[p], offset); 1167 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1168 BUG(); 1169 1170 atomic_inc(&pkt->io_wait); 1171 bio->bi_rw = READ; 1172 pkt_queue_bio(pd, bio); 1173 frames_read++; 1174 } 1175 1176 out_account: 1177 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n", 1178 frames_read, (unsigned long long)pkt->sector); 1179 pd->stats.pkt_started++; 1180 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1181 } 1182 1183 /* 1184 * Find a packet matching zone, or the least recently used packet if 1185 * there is no match. 1186 */ 1187 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1188 { 1189 struct packet_data *pkt; 1190 1191 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1192 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1193 list_del_init(&pkt->list); 1194 if (pkt->sector != zone) 1195 pkt->cache_valid = 0; 1196 return pkt; 1197 } 1198 } 1199 BUG(); 1200 return NULL; 1201 } 1202 1203 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1204 { 1205 if (pkt->cache_valid) { 1206 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1207 } else { 1208 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1209 } 1210 } 1211 1212 /* 1213 * recover a failed write, query for relocation if possible 1214 * 1215 * returns 1 if recovery is possible, or 0 if not 1216 * 1217 */ 1218 static int pkt_start_recovery(struct packet_data *pkt) 1219 { 1220 /* 1221 * FIXME. We need help from the file system to implement 1222 * recovery handling. 1223 */ 1224 return 0; 1225 #if 0 1226 struct request *rq = pkt->rq; 1227 struct pktcdvd_device *pd = rq->rq_disk->private_data; 1228 struct block_device *pkt_bdev; 1229 struct super_block *sb = NULL; 1230 unsigned long old_block, new_block; 1231 sector_t new_sector; 1232 1233 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 1234 if (pkt_bdev) { 1235 sb = get_super(pkt_bdev); 1236 bdput(pkt_bdev); 1237 } 1238 1239 if (!sb) 1240 return 0; 1241 1242 if (!sb->s_op || !sb->s_op->relocate_blocks) 1243 goto out; 1244 1245 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 1246 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 1247 goto out; 1248 1249 new_sector = new_block * (CD_FRAMESIZE >> 9); 1250 pkt->sector = new_sector; 1251 1252 pkt->bio->bi_sector = new_sector; 1253 pkt->bio->bi_next = NULL; 1254 pkt->bio->bi_flags = 1 << BIO_UPTODATE; 1255 pkt->bio->bi_idx = 0; 1256 1257 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW)); 1258 BUG_ON(pkt->bio->bi_vcnt != pkt->frames); 1259 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE); 1260 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write); 1261 BUG_ON(pkt->bio->bi_private != pkt); 1262 1263 drop_super(sb); 1264 return 1; 1265 1266 out: 1267 drop_super(sb); 1268 return 0; 1269 #endif 1270 } 1271 1272 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 1273 { 1274 #if PACKET_DEBUG > 1 1275 static const char *state_name[] = { 1276 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1277 }; 1278 enum packet_data_state old_state = pkt->state; 1279 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector, 1280 state_name[old_state], state_name[state]); 1281 #endif 1282 pkt->state = state; 1283 } 1284 1285 /* 1286 * Scan the work queue to see if we can start a new packet. 1287 * returns non-zero if any work was done. 1288 */ 1289 static int pkt_handle_queue(struct pktcdvd_device *pd) 1290 { 1291 struct packet_data *pkt, *p; 1292 struct bio *bio = NULL; 1293 sector_t zone = 0; /* Suppress gcc warning */ 1294 struct pkt_rb_node *node, *first_node; 1295 struct rb_node *n; 1296 int wakeup; 1297 1298 VPRINTK("handle_queue\n"); 1299 1300 atomic_set(&pd->scan_queue, 0); 1301 1302 if (list_empty(&pd->cdrw.pkt_free_list)) { 1303 VPRINTK("handle_queue: no pkt\n"); 1304 return 0; 1305 } 1306 1307 /* 1308 * Try to find a zone we are not already working on. 1309 */ 1310 spin_lock(&pd->lock); 1311 first_node = pkt_rbtree_find(pd, pd->current_sector); 1312 if (!first_node) { 1313 n = rb_first(&pd->bio_queue); 1314 if (n) 1315 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1316 } 1317 node = first_node; 1318 while (node) { 1319 bio = node->bio; 1320 zone = ZONE(bio->bi_sector, pd); 1321 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1322 if (p->sector == zone) { 1323 bio = NULL; 1324 goto try_next_bio; 1325 } 1326 } 1327 break; 1328 try_next_bio: 1329 node = pkt_rbtree_next(node); 1330 if (!node) { 1331 n = rb_first(&pd->bio_queue); 1332 if (n) 1333 node = rb_entry(n, struct pkt_rb_node, rb_node); 1334 } 1335 if (node == first_node) 1336 node = NULL; 1337 } 1338 spin_unlock(&pd->lock); 1339 if (!bio) { 1340 VPRINTK("handle_queue: no bio\n"); 1341 return 0; 1342 } 1343 1344 pkt = pkt_get_packet_data(pd, zone); 1345 1346 pd->current_sector = zone + pd->settings.size; 1347 pkt->sector = zone; 1348 BUG_ON(pkt->frames != pd->settings.size >> 2); 1349 pkt->write_size = 0; 1350 1351 /* 1352 * Scan work queue for bios in the same zone and link them 1353 * to this packet. 1354 */ 1355 spin_lock(&pd->lock); 1356 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone); 1357 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1358 bio = node->bio; 1359 VPRINTK("pkt_handle_queue: found zone=%llx\n", 1360 (unsigned long long)ZONE(bio->bi_sector, pd)); 1361 if (ZONE(bio->bi_sector, pd) != zone) 1362 break; 1363 pkt_rbtree_erase(pd, node); 1364 spin_lock(&pkt->lock); 1365 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail); 1366 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 1367 spin_unlock(&pkt->lock); 1368 } 1369 /* check write congestion marks, and if bio_queue_size is 1370 below, wake up any waiters */ 1371 wakeup = (pd->write_congestion_on > 0 1372 && pd->bio_queue_size <= pd->write_congestion_off); 1373 spin_unlock(&pd->lock); 1374 if (wakeup) 1375 clear_bdi_congested(&pd->disk->queue->backing_dev_info, WRITE); 1376 1377 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1378 pkt_set_state(pkt, PACKET_WAITING_STATE); 1379 atomic_set(&pkt->run_sm, 1); 1380 1381 spin_lock(&pd->cdrw.active_list_lock); 1382 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1383 spin_unlock(&pd->cdrw.active_list_lock); 1384 1385 return 1; 1386 } 1387 1388 /* 1389 * Assemble a bio to write one packet and queue the bio for processing 1390 * by the underlying block device. 1391 */ 1392 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1393 { 1394 struct bio *bio; 1395 int f; 1396 int frames_write; 1397 struct bio_vec *bvec = pkt->w_bio->bi_io_vec; 1398 1399 for (f = 0; f < pkt->frames; f++) { 1400 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1401 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1402 } 1403 1404 /* 1405 * Fill-in bvec with data from orig_bios. 1406 */ 1407 frames_write = 0; 1408 spin_lock(&pkt->lock); 1409 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1410 int segment = bio->bi_idx; 1411 int src_offs = 0; 1412 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1413 int num_frames = bio->bi_size / CD_FRAMESIZE; 1414 BUG_ON(first_frame < 0); 1415 BUG_ON(first_frame + num_frames > pkt->frames); 1416 for (f = first_frame; f < first_frame + num_frames; f++) { 1417 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment); 1418 1419 while (src_offs >= src_bvl->bv_len) { 1420 src_offs -= src_bvl->bv_len; 1421 segment++; 1422 BUG_ON(segment >= bio->bi_vcnt); 1423 src_bvl = bio_iovec_idx(bio, segment); 1424 } 1425 1426 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) { 1427 bvec[f].bv_page = src_bvl->bv_page; 1428 bvec[f].bv_offset = src_bvl->bv_offset + src_offs; 1429 } else { 1430 pkt_copy_bio_data(bio, segment, src_offs, 1431 bvec[f].bv_page, bvec[f].bv_offset); 1432 } 1433 src_offs += CD_FRAMESIZE; 1434 frames_write++; 1435 } 1436 } 1437 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1438 spin_unlock(&pkt->lock); 1439 1440 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n", 1441 frames_write, (unsigned long long)pkt->sector); 1442 BUG_ON(frames_write != pkt->write_size); 1443 1444 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) { 1445 pkt_make_local_copy(pkt, bvec); 1446 pkt->cache_valid = 1; 1447 } else { 1448 pkt->cache_valid = 0; 1449 } 1450 1451 /* Start the write request */ 1452 bio_init(pkt->w_bio); 1453 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE; 1454 pkt->w_bio->bi_sector = pkt->sector; 1455 pkt->w_bio->bi_bdev = pd->bdev; 1456 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1457 pkt->w_bio->bi_private = pkt; 1458 pkt->w_bio->bi_io_vec = bvec; 1459 pkt->w_bio->bi_destructor = pkt_bio_destructor; 1460 for (f = 0; f < pkt->frames; f++) 1461 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset)) 1462 BUG(); 1463 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt); 1464 1465 atomic_set(&pkt->io_wait, 1); 1466 pkt->w_bio->bi_rw = WRITE; 1467 pkt_queue_bio(pd, pkt->w_bio); 1468 } 1469 1470 static void pkt_finish_packet(struct packet_data *pkt, int uptodate) 1471 { 1472 struct bio *bio, *next; 1473 1474 if (!uptodate) 1475 pkt->cache_valid = 0; 1476 1477 /* Finish all bios corresponding to this packet */ 1478 bio = pkt->orig_bios; 1479 while (bio) { 1480 next = bio->bi_next; 1481 bio->bi_next = NULL; 1482 bio_endio(bio, uptodate ? 0 : -EIO); 1483 bio = next; 1484 } 1485 pkt->orig_bios = pkt->orig_bios_tail = NULL; 1486 } 1487 1488 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1489 { 1490 int uptodate; 1491 1492 VPRINTK("run_state_machine: pkt %d\n", pkt->id); 1493 1494 for (;;) { 1495 switch (pkt->state) { 1496 case PACKET_WAITING_STATE: 1497 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1498 return; 1499 1500 pkt->sleep_time = 0; 1501 pkt_gather_data(pd, pkt); 1502 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1503 break; 1504 1505 case PACKET_READ_WAIT_STATE: 1506 if (atomic_read(&pkt->io_wait) > 0) 1507 return; 1508 1509 if (atomic_read(&pkt->io_errors) > 0) { 1510 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1511 } else { 1512 pkt_start_write(pd, pkt); 1513 } 1514 break; 1515 1516 case PACKET_WRITE_WAIT_STATE: 1517 if (atomic_read(&pkt->io_wait) > 0) 1518 return; 1519 1520 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) { 1521 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1522 } else { 1523 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1524 } 1525 break; 1526 1527 case PACKET_RECOVERY_STATE: 1528 if (pkt_start_recovery(pkt)) { 1529 pkt_start_write(pd, pkt); 1530 } else { 1531 VPRINTK("No recovery possible\n"); 1532 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1533 } 1534 break; 1535 1536 case PACKET_FINISHED_STATE: 1537 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags); 1538 pkt_finish_packet(pkt, uptodate); 1539 return; 1540 1541 default: 1542 BUG(); 1543 break; 1544 } 1545 } 1546 } 1547 1548 static void pkt_handle_packets(struct pktcdvd_device *pd) 1549 { 1550 struct packet_data *pkt, *next; 1551 1552 VPRINTK("pkt_handle_packets\n"); 1553 1554 /* 1555 * Run state machine for active packets 1556 */ 1557 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1558 if (atomic_read(&pkt->run_sm) > 0) { 1559 atomic_set(&pkt->run_sm, 0); 1560 pkt_run_state_machine(pd, pkt); 1561 } 1562 } 1563 1564 /* 1565 * Move no longer active packets to the free list 1566 */ 1567 spin_lock(&pd->cdrw.active_list_lock); 1568 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1569 if (pkt->state == PACKET_FINISHED_STATE) { 1570 list_del(&pkt->list); 1571 pkt_put_packet_data(pd, pkt); 1572 pkt_set_state(pkt, PACKET_IDLE_STATE); 1573 atomic_set(&pd->scan_queue, 1); 1574 } 1575 } 1576 spin_unlock(&pd->cdrw.active_list_lock); 1577 } 1578 1579 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1580 { 1581 struct packet_data *pkt; 1582 int i; 1583 1584 for (i = 0; i < PACKET_NUM_STATES; i++) 1585 states[i] = 0; 1586 1587 spin_lock(&pd->cdrw.active_list_lock); 1588 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1589 states[pkt->state]++; 1590 } 1591 spin_unlock(&pd->cdrw.active_list_lock); 1592 } 1593 1594 /* 1595 * kcdrwd is woken up when writes have been queued for one of our 1596 * registered devices 1597 */ 1598 static int kcdrwd(void *foobar) 1599 { 1600 struct pktcdvd_device *pd = foobar; 1601 struct packet_data *pkt; 1602 long min_sleep_time, residue; 1603 1604 set_user_nice(current, -20); 1605 set_freezable(); 1606 1607 for (;;) { 1608 DECLARE_WAITQUEUE(wait, current); 1609 1610 /* 1611 * Wait until there is something to do 1612 */ 1613 add_wait_queue(&pd->wqueue, &wait); 1614 for (;;) { 1615 set_current_state(TASK_INTERRUPTIBLE); 1616 1617 /* Check if we need to run pkt_handle_queue */ 1618 if (atomic_read(&pd->scan_queue) > 0) 1619 goto work_to_do; 1620 1621 /* Check if we need to run the state machine for some packet */ 1622 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1623 if (atomic_read(&pkt->run_sm) > 0) 1624 goto work_to_do; 1625 } 1626 1627 /* Check if we need to process the iosched queues */ 1628 if (atomic_read(&pd->iosched.attention) != 0) 1629 goto work_to_do; 1630 1631 /* Otherwise, go to sleep */ 1632 if (PACKET_DEBUG > 1) { 1633 int states[PACKET_NUM_STATES]; 1634 pkt_count_states(pd, states); 1635 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1636 states[0], states[1], states[2], states[3], 1637 states[4], states[5]); 1638 } 1639 1640 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1641 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1642 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1643 min_sleep_time = pkt->sleep_time; 1644 } 1645 1646 generic_unplug_device(bdev_get_queue(pd->bdev)); 1647 1648 VPRINTK("kcdrwd: sleeping\n"); 1649 residue = schedule_timeout(min_sleep_time); 1650 VPRINTK("kcdrwd: wake up\n"); 1651 1652 /* make swsusp happy with our thread */ 1653 try_to_freeze(); 1654 1655 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1656 if (!pkt->sleep_time) 1657 continue; 1658 pkt->sleep_time -= min_sleep_time - residue; 1659 if (pkt->sleep_time <= 0) { 1660 pkt->sleep_time = 0; 1661 atomic_inc(&pkt->run_sm); 1662 } 1663 } 1664 1665 if (kthread_should_stop()) 1666 break; 1667 } 1668 work_to_do: 1669 set_current_state(TASK_RUNNING); 1670 remove_wait_queue(&pd->wqueue, &wait); 1671 1672 if (kthread_should_stop()) 1673 break; 1674 1675 /* 1676 * if pkt_handle_queue returns true, we can queue 1677 * another request. 1678 */ 1679 while (pkt_handle_queue(pd)) 1680 ; 1681 1682 /* 1683 * Handle packet state machine 1684 */ 1685 pkt_handle_packets(pd); 1686 1687 /* 1688 * Handle iosched queues 1689 */ 1690 pkt_iosched_process_queue(pd); 1691 } 1692 1693 return 0; 1694 } 1695 1696 static void pkt_print_settings(struct pktcdvd_device *pd) 1697 { 1698 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable"); 1699 printk("%u blocks, ", pd->settings.size >> 2); 1700 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2'); 1701 } 1702 1703 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1704 { 1705 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1706 1707 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1708 cgc->cmd[2] = page_code | (page_control << 6); 1709 cgc->cmd[7] = cgc->buflen >> 8; 1710 cgc->cmd[8] = cgc->buflen & 0xff; 1711 cgc->data_direction = CGC_DATA_READ; 1712 return pkt_generic_packet(pd, cgc); 1713 } 1714 1715 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1716 { 1717 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1718 memset(cgc->buffer, 0, 2); 1719 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1720 cgc->cmd[1] = 0x10; /* PF */ 1721 cgc->cmd[7] = cgc->buflen >> 8; 1722 cgc->cmd[8] = cgc->buflen & 0xff; 1723 cgc->data_direction = CGC_DATA_WRITE; 1724 return pkt_generic_packet(pd, cgc); 1725 } 1726 1727 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1728 { 1729 struct packet_command cgc; 1730 int ret; 1731 1732 /* set up command and get the disc info */ 1733 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1734 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1735 cgc.cmd[8] = cgc.buflen = 2; 1736 cgc.quiet = 1; 1737 1738 if ((ret = pkt_generic_packet(pd, &cgc))) 1739 return ret; 1740 1741 /* not all drives have the same disc_info length, so requeue 1742 * packet with the length the drive tells us it can supply 1743 */ 1744 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1745 sizeof(di->disc_information_length); 1746 1747 if (cgc.buflen > sizeof(disc_information)) 1748 cgc.buflen = sizeof(disc_information); 1749 1750 cgc.cmd[8] = cgc.buflen; 1751 return pkt_generic_packet(pd, &cgc); 1752 } 1753 1754 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1755 { 1756 struct packet_command cgc; 1757 int ret; 1758 1759 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1760 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1761 cgc.cmd[1] = type & 3; 1762 cgc.cmd[4] = (track & 0xff00) >> 8; 1763 cgc.cmd[5] = track & 0xff; 1764 cgc.cmd[8] = 8; 1765 cgc.quiet = 1; 1766 1767 if ((ret = pkt_generic_packet(pd, &cgc))) 1768 return ret; 1769 1770 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1771 sizeof(ti->track_information_length); 1772 1773 if (cgc.buflen > sizeof(track_information)) 1774 cgc.buflen = sizeof(track_information); 1775 1776 cgc.cmd[8] = cgc.buflen; 1777 return pkt_generic_packet(pd, &cgc); 1778 } 1779 1780 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd, 1781 long *last_written) 1782 { 1783 disc_information di; 1784 track_information ti; 1785 __u32 last_track; 1786 int ret = -1; 1787 1788 if ((ret = pkt_get_disc_info(pd, &di))) 1789 return ret; 1790 1791 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1792 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1793 return ret; 1794 1795 /* if this track is blank, try the previous. */ 1796 if (ti.blank) { 1797 last_track--; 1798 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1799 return ret; 1800 } 1801 1802 /* if last recorded field is valid, return it. */ 1803 if (ti.lra_v) { 1804 *last_written = be32_to_cpu(ti.last_rec_address); 1805 } else { 1806 /* make it up instead */ 1807 *last_written = be32_to_cpu(ti.track_start) + 1808 be32_to_cpu(ti.track_size); 1809 if (ti.free_blocks) 1810 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1811 } 1812 return 0; 1813 } 1814 1815 /* 1816 * write mode select package based on pd->settings 1817 */ 1818 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd) 1819 { 1820 struct packet_command cgc; 1821 struct request_sense sense; 1822 write_param_page *wp; 1823 char buffer[128]; 1824 int ret, size; 1825 1826 /* doesn't apply to DVD+RW or DVD-RAM */ 1827 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1828 return 0; 1829 1830 memset(buffer, 0, sizeof(buffer)); 1831 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1832 cgc.sense = &sense; 1833 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1834 pkt_dump_sense(&cgc); 1835 return ret; 1836 } 1837 1838 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1839 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1840 if (size > sizeof(buffer)) 1841 size = sizeof(buffer); 1842 1843 /* 1844 * now get it all 1845 */ 1846 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1847 cgc.sense = &sense; 1848 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1849 pkt_dump_sense(&cgc); 1850 return ret; 1851 } 1852 1853 /* 1854 * write page is offset header + block descriptor length 1855 */ 1856 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1857 1858 wp->fp = pd->settings.fp; 1859 wp->track_mode = pd->settings.track_mode; 1860 wp->write_type = pd->settings.write_type; 1861 wp->data_block_type = pd->settings.block_mode; 1862 1863 wp->multi_session = 0; 1864 1865 #ifdef PACKET_USE_LS 1866 wp->link_size = 7; 1867 wp->ls_v = 1; 1868 #endif 1869 1870 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1871 wp->session_format = 0; 1872 wp->subhdr2 = 0x20; 1873 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1874 wp->session_format = 0x20; 1875 wp->subhdr2 = 8; 1876 #if 0 1877 wp->mcn[0] = 0x80; 1878 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1879 #endif 1880 } else { 1881 /* 1882 * paranoia 1883 */ 1884 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type); 1885 return 1; 1886 } 1887 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1888 1889 cgc.buflen = cgc.cmd[8] = size; 1890 if ((ret = pkt_mode_select(pd, &cgc))) { 1891 pkt_dump_sense(&cgc); 1892 return ret; 1893 } 1894 1895 pkt_print_settings(pd); 1896 return 0; 1897 } 1898 1899 /* 1900 * 1 -- we can write to this track, 0 -- we can't 1901 */ 1902 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1903 { 1904 switch (pd->mmc3_profile) { 1905 case 0x1a: /* DVD+RW */ 1906 case 0x12: /* DVD-RAM */ 1907 /* The track is always writable on DVD+RW/DVD-RAM */ 1908 return 1; 1909 default: 1910 break; 1911 } 1912 1913 if (!ti->packet || !ti->fp) 1914 return 0; 1915 1916 /* 1917 * "good" settings as per Mt Fuji. 1918 */ 1919 if (ti->rt == 0 && ti->blank == 0) 1920 return 1; 1921 1922 if (ti->rt == 0 && ti->blank == 1) 1923 return 1; 1924 1925 if (ti->rt == 1 && ti->blank == 0) 1926 return 1; 1927 1928 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1929 return 0; 1930 } 1931 1932 /* 1933 * 1 -- we can write to this disc, 0 -- we can't 1934 */ 1935 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1936 { 1937 switch (pd->mmc3_profile) { 1938 case 0x0a: /* CD-RW */ 1939 case 0xffff: /* MMC3 not supported */ 1940 break; 1941 case 0x1a: /* DVD+RW */ 1942 case 0x13: /* DVD-RW */ 1943 case 0x12: /* DVD-RAM */ 1944 return 1; 1945 default: 1946 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile); 1947 return 0; 1948 } 1949 1950 /* 1951 * for disc type 0xff we should probably reserve a new track. 1952 * but i'm not sure, should we leave this to user apps? probably. 1953 */ 1954 if (di->disc_type == 0xff) { 1955 printk(DRIVER_NAME": Unknown disc. No track?\n"); 1956 return 0; 1957 } 1958 1959 if (di->disc_type != 0x20 && di->disc_type != 0) { 1960 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type); 1961 return 0; 1962 } 1963 1964 if (di->erasable == 0) { 1965 printk(DRIVER_NAME": Disc not erasable\n"); 1966 return 0; 1967 } 1968 1969 if (di->border_status == PACKET_SESSION_RESERVED) { 1970 printk(DRIVER_NAME": Can't write to last track (reserved)\n"); 1971 return 0; 1972 } 1973 1974 return 1; 1975 } 1976 1977 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd) 1978 { 1979 struct packet_command cgc; 1980 unsigned char buf[12]; 1981 disc_information di; 1982 track_information ti; 1983 int ret, track; 1984 1985 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1986 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1987 cgc.cmd[8] = 8; 1988 ret = pkt_generic_packet(pd, &cgc); 1989 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1990 1991 memset(&di, 0, sizeof(disc_information)); 1992 memset(&ti, 0, sizeof(track_information)); 1993 1994 if ((ret = pkt_get_disc_info(pd, &di))) { 1995 printk("failed get_disc\n"); 1996 return ret; 1997 } 1998 1999 if (!pkt_writable_disc(pd, &di)) 2000 return -EROFS; 2001 2002 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 2003 2004 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 2005 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 2006 printk(DRIVER_NAME": failed get_track\n"); 2007 return ret; 2008 } 2009 2010 if (!pkt_writable_track(pd, &ti)) { 2011 printk(DRIVER_NAME": can't write to this track\n"); 2012 return -EROFS; 2013 } 2014 2015 /* 2016 * we keep packet size in 512 byte units, makes it easier to 2017 * deal with request calculations. 2018 */ 2019 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 2020 if (pd->settings.size == 0) { 2021 printk(DRIVER_NAME": detected zero packet size!\n"); 2022 return -ENXIO; 2023 } 2024 if (pd->settings.size > PACKET_MAX_SECTORS) { 2025 printk(DRIVER_NAME": packet size is too big\n"); 2026 return -EROFS; 2027 } 2028 pd->settings.fp = ti.fp; 2029 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 2030 2031 if (ti.nwa_v) { 2032 pd->nwa = be32_to_cpu(ti.next_writable); 2033 set_bit(PACKET_NWA_VALID, &pd->flags); 2034 } 2035 2036 /* 2037 * in theory we could use lra on -RW media as well and just zero 2038 * blocks that haven't been written yet, but in practice that 2039 * is just a no-go. we'll use that for -R, naturally. 2040 */ 2041 if (ti.lra_v) { 2042 pd->lra = be32_to_cpu(ti.last_rec_address); 2043 set_bit(PACKET_LRA_VALID, &pd->flags); 2044 } else { 2045 pd->lra = 0xffffffff; 2046 set_bit(PACKET_LRA_VALID, &pd->flags); 2047 } 2048 2049 /* 2050 * fine for now 2051 */ 2052 pd->settings.link_loss = 7; 2053 pd->settings.write_type = 0; /* packet */ 2054 pd->settings.track_mode = ti.track_mode; 2055 2056 /* 2057 * mode1 or mode2 disc 2058 */ 2059 switch (ti.data_mode) { 2060 case PACKET_MODE1: 2061 pd->settings.block_mode = PACKET_BLOCK_MODE1; 2062 break; 2063 case PACKET_MODE2: 2064 pd->settings.block_mode = PACKET_BLOCK_MODE2; 2065 break; 2066 default: 2067 printk(DRIVER_NAME": unknown data mode\n"); 2068 return -EROFS; 2069 } 2070 return 0; 2071 } 2072 2073 /* 2074 * enable/disable write caching on drive 2075 */ 2076 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd, 2077 int set) 2078 { 2079 struct packet_command cgc; 2080 struct request_sense sense; 2081 unsigned char buf[64]; 2082 int ret; 2083 2084 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 2085 cgc.sense = &sense; 2086 cgc.buflen = pd->mode_offset + 12; 2087 2088 /* 2089 * caching mode page might not be there, so quiet this command 2090 */ 2091 cgc.quiet = 1; 2092 2093 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 2094 return ret; 2095 2096 buf[pd->mode_offset + 10] |= (!!set << 2); 2097 2098 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 2099 ret = pkt_mode_select(pd, &cgc); 2100 if (ret) { 2101 printk(DRIVER_NAME": write caching control failed\n"); 2102 pkt_dump_sense(&cgc); 2103 } else if (!ret && set) 2104 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name); 2105 return ret; 2106 } 2107 2108 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 2109 { 2110 struct packet_command cgc; 2111 2112 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2113 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 2114 cgc.cmd[4] = lockflag ? 1 : 0; 2115 return pkt_generic_packet(pd, &cgc); 2116 } 2117 2118 /* 2119 * Returns drive maximum write speed 2120 */ 2121 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd, 2122 unsigned *write_speed) 2123 { 2124 struct packet_command cgc; 2125 struct request_sense sense; 2126 unsigned char buf[256+18]; 2127 unsigned char *cap_buf; 2128 int ret, offset; 2129 2130 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 2131 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 2132 cgc.sense = &sense; 2133 2134 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2135 if (ret) { 2136 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 2137 sizeof(struct mode_page_header); 2138 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2139 if (ret) { 2140 pkt_dump_sense(&cgc); 2141 return ret; 2142 } 2143 } 2144 2145 offset = 20; /* Obsoleted field, used by older drives */ 2146 if (cap_buf[1] >= 28) 2147 offset = 28; /* Current write speed selected */ 2148 if (cap_buf[1] >= 30) { 2149 /* If the drive reports at least one "Logical Unit Write 2150 * Speed Performance Descriptor Block", use the information 2151 * in the first block. (contains the highest speed) 2152 */ 2153 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 2154 if (num_spdb > 0) 2155 offset = 34; 2156 } 2157 2158 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 2159 return 0; 2160 } 2161 2162 /* These tables from cdrecord - I don't have orange book */ 2163 /* standard speed CD-RW (1-4x) */ 2164 static char clv_to_speed[16] = { 2165 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2166 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2167 }; 2168 /* high speed CD-RW (-10x) */ 2169 static char hs_clv_to_speed[16] = { 2170 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2171 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2172 }; 2173 /* ultra high speed CD-RW */ 2174 static char us_clv_to_speed[16] = { 2175 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2176 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 2177 }; 2178 2179 /* 2180 * reads the maximum media speed from ATIP 2181 */ 2182 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd, 2183 unsigned *speed) 2184 { 2185 struct packet_command cgc; 2186 struct request_sense sense; 2187 unsigned char buf[64]; 2188 unsigned int size, st, sp; 2189 int ret; 2190 2191 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 2192 cgc.sense = &sense; 2193 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2194 cgc.cmd[1] = 2; 2195 cgc.cmd[2] = 4; /* READ ATIP */ 2196 cgc.cmd[8] = 2; 2197 ret = pkt_generic_packet(pd, &cgc); 2198 if (ret) { 2199 pkt_dump_sense(&cgc); 2200 return ret; 2201 } 2202 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 2203 if (size > sizeof(buf)) 2204 size = sizeof(buf); 2205 2206 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2207 cgc.sense = &sense; 2208 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2209 cgc.cmd[1] = 2; 2210 cgc.cmd[2] = 4; 2211 cgc.cmd[8] = size; 2212 ret = pkt_generic_packet(pd, &cgc); 2213 if (ret) { 2214 pkt_dump_sense(&cgc); 2215 return ret; 2216 } 2217 2218 if (!(buf[6] & 0x40)) { 2219 printk(DRIVER_NAME": Disc type is not CD-RW\n"); 2220 return 1; 2221 } 2222 if (!(buf[6] & 0x4)) { 2223 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n"); 2224 return 1; 2225 } 2226 2227 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2228 2229 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2230 2231 /* Info from cdrecord */ 2232 switch (st) { 2233 case 0: /* standard speed */ 2234 *speed = clv_to_speed[sp]; 2235 break; 2236 case 1: /* high speed */ 2237 *speed = hs_clv_to_speed[sp]; 2238 break; 2239 case 2: /* ultra high speed */ 2240 *speed = us_clv_to_speed[sp]; 2241 break; 2242 default: 2243 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st); 2244 return 1; 2245 } 2246 if (*speed) { 2247 printk(DRIVER_NAME": Max. media speed: %d\n",*speed); 2248 return 0; 2249 } else { 2250 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st); 2251 return 1; 2252 } 2253 } 2254 2255 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd) 2256 { 2257 struct packet_command cgc; 2258 struct request_sense sense; 2259 int ret; 2260 2261 VPRINTK(DRIVER_NAME": Performing OPC\n"); 2262 2263 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2264 cgc.sense = &sense; 2265 cgc.timeout = 60*HZ; 2266 cgc.cmd[0] = GPCMD_SEND_OPC; 2267 cgc.cmd[1] = 1; 2268 if ((ret = pkt_generic_packet(pd, &cgc))) 2269 pkt_dump_sense(&cgc); 2270 return ret; 2271 } 2272 2273 static int pkt_open_write(struct pktcdvd_device *pd) 2274 { 2275 int ret; 2276 unsigned int write_speed, media_write_speed, read_speed; 2277 2278 if ((ret = pkt_probe_settings(pd))) { 2279 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name); 2280 return ret; 2281 } 2282 2283 if ((ret = pkt_set_write_settings(pd))) { 2284 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name); 2285 return -EIO; 2286 } 2287 2288 pkt_write_caching(pd, USE_WCACHING); 2289 2290 if ((ret = pkt_get_max_speed(pd, &write_speed))) 2291 write_speed = 16 * 177; 2292 switch (pd->mmc3_profile) { 2293 case 0x13: /* DVD-RW */ 2294 case 0x1a: /* DVD+RW */ 2295 case 0x12: /* DVD-RAM */ 2296 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed); 2297 break; 2298 default: 2299 if ((ret = pkt_media_speed(pd, &media_write_speed))) 2300 media_write_speed = 16; 2301 write_speed = min(write_speed, media_write_speed * 177); 2302 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176); 2303 break; 2304 } 2305 read_speed = write_speed; 2306 2307 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 2308 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name); 2309 return -EIO; 2310 } 2311 pd->write_speed = write_speed; 2312 pd->read_speed = read_speed; 2313 2314 if ((ret = pkt_perform_opc(pd))) { 2315 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name); 2316 } 2317 2318 return 0; 2319 } 2320 2321 /* 2322 * called at open time. 2323 */ 2324 static int pkt_open_dev(struct pktcdvd_device *pd, int write) 2325 { 2326 int ret; 2327 long lba; 2328 struct request_queue *q; 2329 2330 /* 2331 * We need to re-open the cdrom device without O_NONBLOCK to be able 2332 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2333 * so bdget() can't fail. 2334 */ 2335 bdget(pd->bdev->bd_dev); 2336 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY))) 2337 goto out; 2338 2339 if ((ret = bd_claim(pd->bdev, pd))) 2340 goto out_putdev; 2341 2342 if ((ret = pkt_get_last_written(pd, &lba))) { 2343 printk(DRIVER_NAME": pkt_get_last_written failed\n"); 2344 goto out_unclaim; 2345 } 2346 2347 set_capacity(pd->disk, lba << 2); 2348 set_capacity(pd->bdev->bd_disk, lba << 2); 2349 bd_set_size(pd->bdev, (loff_t)lba << 11); 2350 2351 q = bdev_get_queue(pd->bdev); 2352 if (write) { 2353 if ((ret = pkt_open_write(pd))) 2354 goto out_unclaim; 2355 /* 2356 * Some CDRW drives can not handle writes larger than one packet, 2357 * even if the size is a multiple of the packet size. 2358 */ 2359 spin_lock_irq(q->queue_lock); 2360 blk_queue_max_sectors(q, pd->settings.size); 2361 spin_unlock_irq(q->queue_lock); 2362 set_bit(PACKET_WRITABLE, &pd->flags); 2363 } else { 2364 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2365 clear_bit(PACKET_WRITABLE, &pd->flags); 2366 } 2367 2368 if ((ret = pkt_set_segment_merging(pd, q))) 2369 goto out_unclaim; 2370 2371 if (write) { 2372 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2373 printk(DRIVER_NAME": not enough memory for buffers\n"); 2374 ret = -ENOMEM; 2375 goto out_unclaim; 2376 } 2377 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1); 2378 } 2379 2380 return 0; 2381 2382 out_unclaim: 2383 bd_release(pd->bdev); 2384 out_putdev: 2385 blkdev_put(pd->bdev); 2386 out: 2387 return ret; 2388 } 2389 2390 /* 2391 * called when the device is closed. makes sure that the device flushes 2392 * the internal cache before we close. 2393 */ 2394 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2395 { 2396 if (flush && pkt_flush_cache(pd)) 2397 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name); 2398 2399 pkt_lock_door(pd, 0); 2400 2401 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2402 bd_release(pd->bdev); 2403 blkdev_put(pd->bdev); 2404 2405 pkt_shrink_pktlist(pd); 2406 } 2407 2408 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor) 2409 { 2410 if (dev_minor >= MAX_WRITERS) 2411 return NULL; 2412 return pkt_devs[dev_minor]; 2413 } 2414 2415 static int pkt_open(struct inode *inode, struct file *file) 2416 { 2417 struct pktcdvd_device *pd = NULL; 2418 int ret; 2419 2420 VPRINTK(DRIVER_NAME": entering open\n"); 2421 2422 mutex_lock(&ctl_mutex); 2423 pd = pkt_find_dev_from_minor(iminor(inode)); 2424 if (!pd) { 2425 ret = -ENODEV; 2426 goto out; 2427 } 2428 BUG_ON(pd->refcnt < 0); 2429 2430 pd->refcnt++; 2431 if (pd->refcnt > 1) { 2432 if ((file->f_mode & FMODE_WRITE) && 2433 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2434 ret = -EBUSY; 2435 goto out_dec; 2436 } 2437 } else { 2438 ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE); 2439 if (ret) 2440 goto out_dec; 2441 /* 2442 * needed here as well, since ext2 (among others) may change 2443 * the blocksize at mount time 2444 */ 2445 set_blocksize(inode->i_bdev, CD_FRAMESIZE); 2446 } 2447 2448 mutex_unlock(&ctl_mutex); 2449 return 0; 2450 2451 out_dec: 2452 pd->refcnt--; 2453 out: 2454 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret); 2455 mutex_unlock(&ctl_mutex); 2456 return ret; 2457 } 2458 2459 static int pkt_close(struct inode *inode, struct file *file) 2460 { 2461 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; 2462 int ret = 0; 2463 2464 mutex_lock(&ctl_mutex); 2465 pd->refcnt--; 2466 BUG_ON(pd->refcnt < 0); 2467 if (pd->refcnt == 0) { 2468 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2469 pkt_release_dev(pd, flush); 2470 } 2471 mutex_unlock(&ctl_mutex); 2472 return ret; 2473 } 2474 2475 2476 static void pkt_end_io_read_cloned(struct bio *bio, int err) 2477 { 2478 struct packet_stacked_data *psd = bio->bi_private; 2479 struct pktcdvd_device *pd = psd->pd; 2480 2481 bio_put(bio); 2482 bio_endio(psd->bio, err); 2483 mempool_free(psd, psd_pool); 2484 pkt_bio_finished(pd); 2485 } 2486 2487 static int pkt_make_request(struct request_queue *q, struct bio *bio) 2488 { 2489 struct pktcdvd_device *pd; 2490 char b[BDEVNAME_SIZE]; 2491 sector_t zone; 2492 struct packet_data *pkt; 2493 int was_empty, blocked_bio; 2494 struct pkt_rb_node *node; 2495 2496 pd = q->queuedata; 2497 if (!pd) { 2498 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b)); 2499 goto end_io; 2500 } 2501 2502 /* 2503 * Clone READ bios so we can have our own bi_end_io callback. 2504 */ 2505 if (bio_data_dir(bio) == READ) { 2506 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); 2507 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2508 2509 psd->pd = pd; 2510 psd->bio = bio; 2511 cloned_bio->bi_bdev = pd->bdev; 2512 cloned_bio->bi_private = psd; 2513 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2514 pd->stats.secs_r += bio->bi_size >> 9; 2515 pkt_queue_bio(pd, cloned_bio); 2516 return 0; 2517 } 2518 2519 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2520 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n", 2521 pd->name, (unsigned long long)bio->bi_sector); 2522 goto end_io; 2523 } 2524 2525 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) { 2526 printk(DRIVER_NAME": wrong bio size\n"); 2527 goto end_io; 2528 } 2529 2530 blk_queue_bounce(q, &bio); 2531 2532 zone = ZONE(bio->bi_sector, pd); 2533 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n", 2534 (unsigned long long)bio->bi_sector, 2535 (unsigned long long)(bio->bi_sector + bio_sectors(bio))); 2536 2537 /* Check if we have to split the bio */ 2538 { 2539 struct bio_pair *bp; 2540 sector_t last_zone; 2541 int first_sectors; 2542 2543 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd); 2544 if (last_zone != zone) { 2545 BUG_ON(last_zone != zone + pd->settings.size); 2546 first_sectors = last_zone - bio->bi_sector; 2547 bp = bio_split(bio, first_sectors); 2548 BUG_ON(!bp); 2549 pkt_make_request(q, &bp->bio1); 2550 pkt_make_request(q, &bp->bio2); 2551 bio_pair_release(bp); 2552 return 0; 2553 } 2554 } 2555 2556 /* 2557 * If we find a matching packet in state WAITING or READ_WAIT, we can 2558 * just append this bio to that packet. 2559 */ 2560 spin_lock(&pd->cdrw.active_list_lock); 2561 blocked_bio = 0; 2562 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2563 if (pkt->sector == zone) { 2564 spin_lock(&pkt->lock); 2565 if ((pkt->state == PACKET_WAITING_STATE) || 2566 (pkt->state == PACKET_READ_WAIT_STATE)) { 2567 pkt_add_list_last(bio, &pkt->orig_bios, 2568 &pkt->orig_bios_tail); 2569 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 2570 if ((pkt->write_size >= pkt->frames) && 2571 (pkt->state == PACKET_WAITING_STATE)) { 2572 atomic_inc(&pkt->run_sm); 2573 wake_up(&pd->wqueue); 2574 } 2575 spin_unlock(&pkt->lock); 2576 spin_unlock(&pd->cdrw.active_list_lock); 2577 return 0; 2578 } else { 2579 blocked_bio = 1; 2580 } 2581 spin_unlock(&pkt->lock); 2582 } 2583 } 2584 spin_unlock(&pd->cdrw.active_list_lock); 2585 2586 /* 2587 * Test if there is enough room left in the bio work queue 2588 * (queue size >= congestion on mark). 2589 * If not, wait till the work queue size is below the congestion off mark. 2590 */ 2591 spin_lock(&pd->lock); 2592 if (pd->write_congestion_on > 0 2593 && pd->bio_queue_size >= pd->write_congestion_on) { 2594 set_bdi_congested(&q->backing_dev_info, WRITE); 2595 do { 2596 spin_unlock(&pd->lock); 2597 congestion_wait(WRITE, HZ); 2598 spin_lock(&pd->lock); 2599 } while(pd->bio_queue_size > pd->write_congestion_off); 2600 } 2601 spin_unlock(&pd->lock); 2602 2603 /* 2604 * No matching packet found. Store the bio in the work queue. 2605 */ 2606 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2607 node->bio = bio; 2608 spin_lock(&pd->lock); 2609 BUG_ON(pd->bio_queue_size < 0); 2610 was_empty = (pd->bio_queue_size == 0); 2611 pkt_rbtree_insert(pd, node); 2612 spin_unlock(&pd->lock); 2613 2614 /* 2615 * Wake up the worker thread. 2616 */ 2617 atomic_set(&pd->scan_queue, 1); 2618 if (was_empty) { 2619 /* This wake_up is required for correct operation */ 2620 wake_up(&pd->wqueue); 2621 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2622 /* 2623 * This wake up is not required for correct operation, 2624 * but improves performance in some cases. 2625 */ 2626 wake_up(&pd->wqueue); 2627 } 2628 return 0; 2629 end_io: 2630 bio_io_error(bio); 2631 return 0; 2632 } 2633 2634 2635 2636 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 2637 struct bio_vec *bvec) 2638 { 2639 struct pktcdvd_device *pd = q->queuedata; 2640 sector_t zone = ZONE(bmd->bi_sector, pd); 2641 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size; 2642 int remaining = (pd->settings.size << 9) - used; 2643 int remaining2; 2644 2645 /* 2646 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet 2647 * boundary, pkt_make_request() will split the bio. 2648 */ 2649 remaining2 = PAGE_SIZE - bmd->bi_size; 2650 remaining = max(remaining, remaining2); 2651 2652 BUG_ON(remaining < 0); 2653 return remaining; 2654 } 2655 2656 static void pkt_init_queue(struct pktcdvd_device *pd) 2657 { 2658 struct request_queue *q = pd->disk->queue; 2659 2660 blk_queue_make_request(q, pkt_make_request); 2661 blk_queue_hardsect_size(q, CD_FRAMESIZE); 2662 blk_queue_max_sectors(q, PACKET_MAX_SECTORS); 2663 blk_queue_merge_bvec(q, pkt_merge_bvec); 2664 q->queuedata = pd; 2665 } 2666 2667 static int pkt_seq_show(struct seq_file *m, void *p) 2668 { 2669 struct pktcdvd_device *pd = m->private; 2670 char *msg; 2671 char bdev_buf[BDEVNAME_SIZE]; 2672 int states[PACKET_NUM_STATES]; 2673 2674 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2675 bdevname(pd->bdev, bdev_buf)); 2676 2677 seq_printf(m, "\nSettings:\n"); 2678 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2679 2680 if (pd->settings.write_type == 0) 2681 msg = "Packet"; 2682 else 2683 msg = "Unknown"; 2684 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2685 2686 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2687 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2688 2689 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2690 2691 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2692 msg = "Mode 1"; 2693 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2694 msg = "Mode 2"; 2695 else 2696 msg = "Unknown"; 2697 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2698 2699 seq_printf(m, "\nStatistics:\n"); 2700 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2701 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2702 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2703 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2704 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2705 2706 seq_printf(m, "\nMisc:\n"); 2707 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2708 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2709 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2710 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2711 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2712 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2713 2714 seq_printf(m, "\nQueue state:\n"); 2715 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2716 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2717 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2718 2719 pkt_count_states(pd, states); 2720 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2721 states[0], states[1], states[2], states[3], states[4], states[5]); 2722 2723 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 2724 pd->write_congestion_off, 2725 pd->write_congestion_on); 2726 return 0; 2727 } 2728 2729 static int pkt_seq_open(struct inode *inode, struct file *file) 2730 { 2731 return single_open(file, pkt_seq_show, PDE(inode)->data); 2732 } 2733 2734 static const struct file_operations pkt_proc_fops = { 2735 .open = pkt_seq_open, 2736 .read = seq_read, 2737 .llseek = seq_lseek, 2738 .release = single_release 2739 }; 2740 2741 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2742 { 2743 int i; 2744 int ret = 0; 2745 char b[BDEVNAME_SIZE]; 2746 struct block_device *bdev; 2747 2748 if (pd->pkt_dev == dev) { 2749 printk(DRIVER_NAME": Recursive setup not allowed\n"); 2750 return -EBUSY; 2751 } 2752 for (i = 0; i < MAX_WRITERS; i++) { 2753 struct pktcdvd_device *pd2 = pkt_devs[i]; 2754 if (!pd2) 2755 continue; 2756 if (pd2->bdev->bd_dev == dev) { 2757 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b)); 2758 return -EBUSY; 2759 } 2760 if (pd2->pkt_dev == dev) { 2761 printk(DRIVER_NAME": Can't chain pktcdvd devices\n"); 2762 return -EBUSY; 2763 } 2764 } 2765 2766 bdev = bdget(dev); 2767 if (!bdev) 2768 return -ENOMEM; 2769 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK); 2770 if (ret) 2771 return ret; 2772 2773 /* This is safe, since we have a reference from open(). */ 2774 __module_get(THIS_MODULE); 2775 2776 pd->bdev = bdev; 2777 set_blocksize(bdev, CD_FRAMESIZE); 2778 2779 pkt_init_queue(pd); 2780 2781 atomic_set(&pd->cdrw.pending_bios, 0); 2782 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2783 if (IS_ERR(pd->cdrw.thread)) { 2784 printk(DRIVER_NAME": can't start kernel thread\n"); 2785 ret = -ENOMEM; 2786 goto out_mem; 2787 } 2788 2789 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd); 2790 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b)); 2791 return 0; 2792 2793 out_mem: 2794 blkdev_put(bdev); 2795 /* This is safe: open() is still holding a reference. */ 2796 module_put(THIS_MODULE); 2797 return ret; 2798 } 2799 2800 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 2801 { 2802 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; 2803 2804 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode)); 2805 2806 switch (cmd) { 2807 /* 2808 * forward selected CDROM ioctls to CD-ROM, for UDF 2809 */ 2810 case CDROMMULTISESSION: 2811 case CDROMREADTOCENTRY: 2812 case CDROM_LAST_WRITTEN: 2813 case CDROM_SEND_PACKET: 2814 case SCSI_IOCTL_SEND_COMMAND: 2815 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); 2816 2817 case CDROMEJECT: 2818 /* 2819 * The door gets locked when the device is opened, so we 2820 * have to unlock it or else the eject command fails. 2821 */ 2822 if (pd->refcnt == 1) 2823 pkt_lock_door(pd, 0); 2824 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); 2825 2826 default: 2827 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd); 2828 return -ENOTTY; 2829 } 2830 2831 return 0; 2832 } 2833 2834 static int pkt_media_changed(struct gendisk *disk) 2835 { 2836 struct pktcdvd_device *pd = disk->private_data; 2837 struct gendisk *attached_disk; 2838 2839 if (!pd) 2840 return 0; 2841 if (!pd->bdev) 2842 return 0; 2843 attached_disk = pd->bdev->bd_disk; 2844 if (!attached_disk) 2845 return 0; 2846 return attached_disk->fops->media_changed(attached_disk); 2847 } 2848 2849 static struct block_device_operations pktcdvd_ops = { 2850 .owner = THIS_MODULE, 2851 .open = pkt_open, 2852 .release = pkt_close, 2853 .ioctl = pkt_ioctl, 2854 .media_changed = pkt_media_changed, 2855 }; 2856 2857 /* 2858 * Set up mapping from pktcdvd device to CD-ROM device. 2859 */ 2860 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2861 { 2862 int idx; 2863 int ret = -ENOMEM; 2864 struct pktcdvd_device *pd; 2865 struct gendisk *disk; 2866 2867 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2868 2869 for (idx = 0; idx < MAX_WRITERS; idx++) 2870 if (!pkt_devs[idx]) 2871 break; 2872 if (idx == MAX_WRITERS) { 2873 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS); 2874 ret = -EBUSY; 2875 goto out_mutex; 2876 } 2877 2878 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2879 if (!pd) 2880 goto out_mutex; 2881 2882 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE, 2883 sizeof(struct pkt_rb_node)); 2884 if (!pd->rb_pool) 2885 goto out_mem; 2886 2887 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2888 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2889 spin_lock_init(&pd->cdrw.active_list_lock); 2890 2891 spin_lock_init(&pd->lock); 2892 spin_lock_init(&pd->iosched.lock); 2893 sprintf(pd->name, DRIVER_NAME"%d", idx); 2894 init_waitqueue_head(&pd->wqueue); 2895 pd->bio_queue = RB_ROOT; 2896 2897 pd->write_congestion_on = write_congestion_on; 2898 pd->write_congestion_off = write_congestion_off; 2899 2900 disk = alloc_disk(1); 2901 if (!disk) 2902 goto out_mem; 2903 pd->disk = disk; 2904 disk->major = pktdev_major; 2905 disk->first_minor = idx; 2906 disk->fops = &pktcdvd_ops; 2907 disk->flags = GENHD_FL_REMOVABLE; 2908 strcpy(disk->disk_name, pd->name); 2909 disk->private_data = pd; 2910 disk->queue = blk_alloc_queue(GFP_KERNEL); 2911 if (!disk->queue) 2912 goto out_mem2; 2913 2914 pd->pkt_dev = MKDEV(pktdev_major, idx); 2915 ret = pkt_new_dev(pd, dev); 2916 if (ret) 2917 goto out_new_dev; 2918 2919 add_disk(disk); 2920 2921 pkt_sysfs_dev_new(pd); 2922 pkt_debugfs_dev_new(pd); 2923 2924 pkt_devs[idx] = pd; 2925 if (pkt_dev) 2926 *pkt_dev = pd->pkt_dev; 2927 2928 mutex_unlock(&ctl_mutex); 2929 return 0; 2930 2931 out_new_dev: 2932 blk_cleanup_queue(disk->queue); 2933 out_mem2: 2934 put_disk(disk); 2935 out_mem: 2936 if (pd->rb_pool) 2937 mempool_destroy(pd->rb_pool); 2938 kfree(pd); 2939 out_mutex: 2940 mutex_unlock(&ctl_mutex); 2941 printk(DRIVER_NAME": setup of pktcdvd device failed\n"); 2942 return ret; 2943 } 2944 2945 /* 2946 * Tear down mapping from pktcdvd device to CD-ROM device. 2947 */ 2948 static int pkt_remove_dev(dev_t pkt_dev) 2949 { 2950 struct pktcdvd_device *pd; 2951 int idx; 2952 int ret = 0; 2953 2954 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2955 2956 for (idx = 0; idx < MAX_WRITERS; idx++) { 2957 pd = pkt_devs[idx]; 2958 if (pd && (pd->pkt_dev == pkt_dev)) 2959 break; 2960 } 2961 if (idx == MAX_WRITERS) { 2962 DPRINTK(DRIVER_NAME": dev not setup\n"); 2963 ret = -ENXIO; 2964 goto out; 2965 } 2966 2967 if (pd->refcnt > 0) { 2968 ret = -EBUSY; 2969 goto out; 2970 } 2971 if (!IS_ERR(pd->cdrw.thread)) 2972 kthread_stop(pd->cdrw.thread); 2973 2974 pkt_devs[idx] = NULL; 2975 2976 pkt_debugfs_dev_remove(pd); 2977 pkt_sysfs_dev_remove(pd); 2978 2979 blkdev_put(pd->bdev); 2980 2981 remove_proc_entry(pd->name, pkt_proc); 2982 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name); 2983 2984 del_gendisk(pd->disk); 2985 blk_cleanup_queue(pd->disk->queue); 2986 put_disk(pd->disk); 2987 2988 mempool_destroy(pd->rb_pool); 2989 kfree(pd); 2990 2991 /* This is safe: open() is still holding a reference. */ 2992 module_put(THIS_MODULE); 2993 2994 out: 2995 mutex_unlock(&ctl_mutex); 2996 return ret; 2997 } 2998 2999 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 3000 { 3001 struct pktcdvd_device *pd; 3002 3003 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 3004 3005 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 3006 if (pd) { 3007 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 3008 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 3009 } else { 3010 ctrl_cmd->dev = 0; 3011 ctrl_cmd->pkt_dev = 0; 3012 } 3013 ctrl_cmd->num_devices = MAX_WRITERS; 3014 3015 mutex_unlock(&ctl_mutex); 3016 } 3017 3018 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 3019 { 3020 void __user *argp = (void __user *)arg; 3021 struct pkt_ctrl_command ctrl_cmd; 3022 int ret = 0; 3023 dev_t pkt_dev = 0; 3024 3025 if (cmd != PACKET_CTRL_CMD) 3026 return -ENOTTY; 3027 3028 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 3029 return -EFAULT; 3030 3031 switch (ctrl_cmd.command) { 3032 case PKT_CTRL_CMD_SETUP: 3033 if (!capable(CAP_SYS_ADMIN)) 3034 return -EPERM; 3035 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 3036 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 3037 break; 3038 case PKT_CTRL_CMD_TEARDOWN: 3039 if (!capable(CAP_SYS_ADMIN)) 3040 return -EPERM; 3041 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 3042 break; 3043 case PKT_CTRL_CMD_STATUS: 3044 pkt_get_status(&ctrl_cmd); 3045 break; 3046 default: 3047 return -ENOTTY; 3048 } 3049 3050 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 3051 return -EFAULT; 3052 return ret; 3053 } 3054 3055 3056 static const struct file_operations pkt_ctl_fops = { 3057 .ioctl = pkt_ctl_ioctl, 3058 .owner = THIS_MODULE, 3059 }; 3060 3061 static struct miscdevice pkt_misc = { 3062 .minor = MISC_DYNAMIC_MINOR, 3063 .name = DRIVER_NAME, 3064 .fops = &pkt_ctl_fops 3065 }; 3066 3067 static int __init pkt_init(void) 3068 { 3069 int ret; 3070 3071 mutex_init(&ctl_mutex); 3072 3073 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE, 3074 sizeof(struct packet_stacked_data)); 3075 if (!psd_pool) 3076 return -ENOMEM; 3077 3078 ret = register_blkdev(pktdev_major, DRIVER_NAME); 3079 if (ret < 0) { 3080 printk(DRIVER_NAME": Unable to register block device\n"); 3081 goto out2; 3082 } 3083 if (!pktdev_major) 3084 pktdev_major = ret; 3085 3086 ret = pkt_sysfs_init(); 3087 if (ret) 3088 goto out; 3089 3090 pkt_debugfs_init(); 3091 3092 ret = misc_register(&pkt_misc); 3093 if (ret) { 3094 printk(DRIVER_NAME": Unable to register misc device\n"); 3095 goto out_misc; 3096 } 3097 3098 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL); 3099 3100 return 0; 3101 3102 out_misc: 3103 pkt_debugfs_cleanup(); 3104 pkt_sysfs_cleanup(); 3105 out: 3106 unregister_blkdev(pktdev_major, DRIVER_NAME); 3107 out2: 3108 mempool_destroy(psd_pool); 3109 return ret; 3110 } 3111 3112 static void __exit pkt_exit(void) 3113 { 3114 remove_proc_entry("driver/"DRIVER_NAME, NULL); 3115 misc_deregister(&pkt_misc); 3116 3117 pkt_debugfs_cleanup(); 3118 pkt_sysfs_cleanup(); 3119 3120 unregister_blkdev(pktdev_major, DRIVER_NAME); 3121 mempool_destroy(psd_pool); 3122 } 3123 3124 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 3125 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 3126 MODULE_LICENSE("GPL"); 3127 3128 module_init(pkt_init); 3129 module_exit(pkt_exit); 3130