1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom ->submit_bio function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 48 49 #include <linux/pktcdvd.h> 50 #include <linux/module.h> 51 #include <linux/types.h> 52 #include <linux/kernel.h> 53 #include <linux/compat.h> 54 #include <linux/kthread.h> 55 #include <linux/errno.h> 56 #include <linux/spinlock.h> 57 #include <linux/file.h> 58 #include <linux/proc_fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/miscdevice.h> 61 #include <linux/freezer.h> 62 #include <linux/mutex.h> 63 #include <linux/slab.h> 64 #include <linux/backing-dev.h> 65 #include <scsi/scsi_cmnd.h> 66 #include <scsi/scsi_ioctl.h> 67 #include <scsi/scsi.h> 68 #include <linux/debugfs.h> 69 #include <linux/device.h> 70 #include <linux/nospec.h> 71 #include <linux/uaccess.h> 72 73 #define DRIVER_NAME "pktcdvd" 74 75 #define pkt_err(pd, fmt, ...) \ 76 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__) 77 #define pkt_notice(pd, fmt, ...) \ 78 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__) 79 #define pkt_info(pd, fmt, ...) \ 80 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__) 81 82 #define pkt_dbg(level, pd, fmt, ...) \ 83 do { \ 84 if (level == 2 && PACKET_DEBUG >= 2) \ 85 pr_notice("%s: %s():" fmt, \ 86 pd->name, __func__, ##__VA_ARGS__); \ 87 else if (level == 1 && PACKET_DEBUG >= 1) \ 88 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \ 89 } while (0) 90 91 #define MAX_SPEED 0xffff 92 93 static DEFINE_MUTEX(pktcdvd_mutex); 94 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 95 static struct proc_dir_entry *pkt_proc; 96 static int pktdev_major; 97 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 98 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 99 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 100 static mempool_t psd_pool; 101 static struct bio_set pkt_bio_set; 102 103 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */ 104 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */ 105 106 /* forward declaration */ 107 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 108 static int pkt_remove_dev(dev_t pkt_dev); 109 static int pkt_seq_show(struct seq_file *m, void *p); 110 111 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd) 112 { 113 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1); 114 } 115 116 /********************************************************** 117 * sysfs interface for pktcdvd 118 * by (C) 2006 Thomas Maier <balagi@justmail.de> 119 120 /sys/class/pktcdvd/pktcdvd[0-7]/ 121 stat/reset 122 stat/packets_started 123 stat/packets_finished 124 stat/kb_written 125 stat/kb_read 126 stat/kb_read_gather 127 write_queue/size 128 write_queue/congestion_off 129 write_queue/congestion_on 130 **********************************************************/ 131 132 static ssize_t packets_started_show(struct device *dev, 133 struct device_attribute *attr, char *buf) 134 { 135 struct pktcdvd_device *pd = dev_get_drvdata(dev); 136 137 return sysfs_emit(buf, "%lu\n", pd->stats.pkt_started); 138 } 139 static DEVICE_ATTR_RO(packets_started); 140 141 static ssize_t packets_finished_show(struct device *dev, 142 struct device_attribute *attr, char *buf) 143 { 144 struct pktcdvd_device *pd = dev_get_drvdata(dev); 145 146 return sysfs_emit(buf, "%lu\n", pd->stats.pkt_ended); 147 } 148 static DEVICE_ATTR_RO(packets_finished); 149 150 static ssize_t kb_written_show(struct device *dev, 151 struct device_attribute *attr, char *buf) 152 { 153 struct pktcdvd_device *pd = dev_get_drvdata(dev); 154 155 return sysfs_emit(buf, "%lu\n", pd->stats.secs_w >> 1); 156 } 157 static DEVICE_ATTR_RO(kb_written); 158 159 static ssize_t kb_read_show(struct device *dev, 160 struct device_attribute *attr, char *buf) 161 { 162 struct pktcdvd_device *pd = dev_get_drvdata(dev); 163 164 return sysfs_emit(buf, "%lu\n", pd->stats.secs_r >> 1); 165 } 166 static DEVICE_ATTR_RO(kb_read); 167 168 static ssize_t kb_read_gather_show(struct device *dev, 169 struct device_attribute *attr, char *buf) 170 { 171 struct pktcdvd_device *pd = dev_get_drvdata(dev); 172 173 return sysfs_emit(buf, "%lu\n", pd->stats.secs_rg >> 1); 174 } 175 static DEVICE_ATTR_RO(kb_read_gather); 176 177 static ssize_t reset_store(struct device *dev, struct device_attribute *attr, 178 const char *buf, size_t len) 179 { 180 struct pktcdvd_device *pd = dev_get_drvdata(dev); 181 182 if (len > 0) { 183 pd->stats.pkt_started = 0; 184 pd->stats.pkt_ended = 0; 185 pd->stats.secs_w = 0; 186 pd->stats.secs_rg = 0; 187 pd->stats.secs_r = 0; 188 } 189 return len; 190 } 191 static DEVICE_ATTR_WO(reset); 192 193 static struct attribute *pkt_stat_attrs[] = { 194 &dev_attr_packets_finished.attr, 195 &dev_attr_packets_started.attr, 196 &dev_attr_kb_read.attr, 197 &dev_attr_kb_written.attr, 198 &dev_attr_kb_read_gather.attr, 199 &dev_attr_reset.attr, 200 NULL, 201 }; 202 203 static const struct attribute_group pkt_stat_group = { 204 .name = "stat", 205 .attrs = pkt_stat_attrs, 206 }; 207 208 static ssize_t size_show(struct device *dev, 209 struct device_attribute *attr, char *buf) 210 { 211 struct pktcdvd_device *pd = dev_get_drvdata(dev); 212 int n; 213 214 spin_lock(&pd->lock); 215 n = sysfs_emit(buf, "%d\n", pd->bio_queue_size); 216 spin_unlock(&pd->lock); 217 return n; 218 } 219 static DEVICE_ATTR_RO(size); 220 221 static void init_write_congestion_marks(int* lo, int* hi) 222 { 223 if (*hi > 0) { 224 *hi = max(*hi, 500); 225 *hi = min(*hi, 1000000); 226 if (*lo <= 0) 227 *lo = *hi - 100; 228 else { 229 *lo = min(*lo, *hi - 100); 230 *lo = max(*lo, 100); 231 } 232 } else { 233 *hi = -1; 234 *lo = -1; 235 } 236 } 237 238 static ssize_t congestion_off_show(struct device *dev, 239 struct device_attribute *attr, char *buf) 240 { 241 struct pktcdvd_device *pd = dev_get_drvdata(dev); 242 int n; 243 244 spin_lock(&pd->lock); 245 n = sysfs_emit(buf, "%d\n", pd->write_congestion_off); 246 spin_unlock(&pd->lock); 247 return n; 248 } 249 250 static ssize_t congestion_off_store(struct device *dev, 251 struct device_attribute *attr, 252 const char *buf, size_t len) 253 { 254 struct pktcdvd_device *pd = dev_get_drvdata(dev); 255 int val; 256 257 if (sscanf(buf, "%d", &val) == 1) { 258 spin_lock(&pd->lock); 259 pd->write_congestion_off = val; 260 init_write_congestion_marks(&pd->write_congestion_off, 261 &pd->write_congestion_on); 262 spin_unlock(&pd->lock); 263 } 264 return len; 265 } 266 static DEVICE_ATTR_RW(congestion_off); 267 268 static ssize_t congestion_on_show(struct device *dev, 269 struct device_attribute *attr, char *buf) 270 { 271 struct pktcdvd_device *pd = dev_get_drvdata(dev); 272 int n; 273 274 spin_lock(&pd->lock); 275 n = sysfs_emit(buf, "%d\n", pd->write_congestion_on); 276 spin_unlock(&pd->lock); 277 return n; 278 } 279 280 static ssize_t congestion_on_store(struct device *dev, 281 struct device_attribute *attr, 282 const char *buf, size_t len) 283 { 284 struct pktcdvd_device *pd = dev_get_drvdata(dev); 285 int val; 286 287 if (sscanf(buf, "%d", &val) == 1) { 288 spin_lock(&pd->lock); 289 pd->write_congestion_on = val; 290 init_write_congestion_marks(&pd->write_congestion_off, 291 &pd->write_congestion_on); 292 spin_unlock(&pd->lock); 293 } 294 return len; 295 } 296 static DEVICE_ATTR_RW(congestion_on); 297 298 static struct attribute *pkt_wq_attrs[] = { 299 &dev_attr_congestion_on.attr, 300 &dev_attr_congestion_off.attr, 301 &dev_attr_size.attr, 302 NULL, 303 }; 304 305 static const struct attribute_group pkt_wq_group = { 306 .name = "write_queue", 307 .attrs = pkt_wq_attrs, 308 }; 309 310 static const struct attribute_group *pkt_groups[] = { 311 &pkt_stat_group, 312 &pkt_wq_group, 313 NULL, 314 }; 315 316 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 317 { 318 if (class_pktcdvd) { 319 pd->dev = device_create_with_groups(class_pktcdvd, NULL, 320 MKDEV(0, 0), pd, pkt_groups, 321 "%s", pd->name); 322 if (IS_ERR(pd->dev)) 323 pd->dev = NULL; 324 } 325 } 326 327 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 328 { 329 if (class_pktcdvd) 330 device_unregister(pd->dev); 331 } 332 333 334 /******************************************************************** 335 /sys/class/pktcdvd/ 336 add map block device 337 remove unmap packet dev 338 device_map show mappings 339 *******************************************************************/ 340 341 static void class_pktcdvd_release(struct class *cls) 342 { 343 kfree(cls); 344 } 345 346 static ssize_t device_map_show(struct class *c, struct class_attribute *attr, 347 char *data) 348 { 349 int n = 0; 350 int idx; 351 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 352 for (idx = 0; idx < MAX_WRITERS; idx++) { 353 struct pktcdvd_device *pd = pkt_devs[idx]; 354 if (!pd) 355 continue; 356 n += sprintf(data+n, "%s %u:%u %u:%u\n", 357 pd->name, 358 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 359 MAJOR(pd->bdev->bd_dev), 360 MINOR(pd->bdev->bd_dev)); 361 } 362 mutex_unlock(&ctl_mutex); 363 return n; 364 } 365 static CLASS_ATTR_RO(device_map); 366 367 static ssize_t add_store(struct class *c, struct class_attribute *attr, 368 const char *buf, size_t count) 369 { 370 unsigned int major, minor; 371 372 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 373 /* pkt_setup_dev() expects caller to hold reference to self */ 374 if (!try_module_get(THIS_MODULE)) 375 return -ENODEV; 376 377 pkt_setup_dev(MKDEV(major, minor), NULL); 378 379 module_put(THIS_MODULE); 380 381 return count; 382 } 383 384 return -EINVAL; 385 } 386 static CLASS_ATTR_WO(add); 387 388 static ssize_t remove_store(struct class *c, struct class_attribute *attr, 389 const char *buf, size_t count) 390 { 391 unsigned int major, minor; 392 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 393 pkt_remove_dev(MKDEV(major, minor)); 394 return count; 395 } 396 return -EINVAL; 397 } 398 static CLASS_ATTR_WO(remove); 399 400 static struct attribute *class_pktcdvd_attrs[] = { 401 &class_attr_add.attr, 402 &class_attr_remove.attr, 403 &class_attr_device_map.attr, 404 NULL, 405 }; 406 ATTRIBUTE_GROUPS(class_pktcdvd); 407 408 static int pkt_sysfs_init(void) 409 { 410 int ret = 0; 411 412 /* 413 * create control files in sysfs 414 * /sys/class/pktcdvd/... 415 */ 416 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL); 417 if (!class_pktcdvd) 418 return -ENOMEM; 419 class_pktcdvd->name = DRIVER_NAME; 420 class_pktcdvd->owner = THIS_MODULE; 421 class_pktcdvd->class_release = class_pktcdvd_release; 422 class_pktcdvd->class_groups = class_pktcdvd_groups; 423 ret = class_register(class_pktcdvd); 424 if (ret) { 425 kfree(class_pktcdvd); 426 class_pktcdvd = NULL; 427 pr_err("failed to create class pktcdvd\n"); 428 return ret; 429 } 430 return 0; 431 } 432 433 static void pkt_sysfs_cleanup(void) 434 { 435 if (class_pktcdvd) 436 class_destroy(class_pktcdvd); 437 class_pktcdvd = NULL; 438 } 439 440 /******************************************************************** 441 entries in debugfs 442 443 /sys/kernel/debug/pktcdvd[0-7]/ 444 info 445 446 *******************************************************************/ 447 448 static int pkt_debugfs_seq_show(struct seq_file *m, void *p) 449 { 450 return pkt_seq_show(m, p); 451 } 452 453 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file) 454 { 455 return single_open(file, pkt_debugfs_seq_show, inode->i_private); 456 } 457 458 static const struct file_operations debug_fops = { 459 .open = pkt_debugfs_fops_open, 460 .read = seq_read, 461 .llseek = seq_lseek, 462 .release = single_release, 463 .owner = THIS_MODULE, 464 }; 465 466 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 467 { 468 if (!pkt_debugfs_root) 469 return; 470 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root); 471 if (!pd->dfs_d_root) 472 return; 473 474 pd->dfs_f_info = debugfs_create_file("info", 0444, 475 pd->dfs_d_root, pd, &debug_fops); 476 } 477 478 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 479 { 480 if (!pkt_debugfs_root) 481 return; 482 debugfs_remove(pd->dfs_f_info); 483 debugfs_remove(pd->dfs_d_root); 484 pd->dfs_f_info = NULL; 485 pd->dfs_d_root = NULL; 486 } 487 488 static void pkt_debugfs_init(void) 489 { 490 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 491 } 492 493 static void pkt_debugfs_cleanup(void) 494 { 495 debugfs_remove(pkt_debugfs_root); 496 pkt_debugfs_root = NULL; 497 } 498 499 /* ----------------------------------------------------------*/ 500 501 502 static void pkt_bio_finished(struct pktcdvd_device *pd) 503 { 504 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 505 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 506 pkt_dbg(2, pd, "queue empty\n"); 507 atomic_set(&pd->iosched.attention, 1); 508 wake_up(&pd->wqueue); 509 } 510 } 511 512 /* 513 * Allocate a packet_data struct 514 */ 515 static struct packet_data *pkt_alloc_packet_data(int frames) 516 { 517 int i; 518 struct packet_data *pkt; 519 520 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 521 if (!pkt) 522 goto no_pkt; 523 524 pkt->frames = frames; 525 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames); 526 if (!pkt->w_bio) 527 goto no_bio; 528 529 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 530 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 531 if (!pkt->pages[i]) 532 goto no_page; 533 } 534 535 spin_lock_init(&pkt->lock); 536 bio_list_init(&pkt->orig_bios); 537 538 for (i = 0; i < frames; i++) { 539 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1); 540 if (!bio) 541 goto no_rd_bio; 542 543 pkt->r_bios[i] = bio; 544 } 545 546 return pkt; 547 548 no_rd_bio: 549 for (i = 0; i < frames; i++) { 550 struct bio *bio = pkt->r_bios[i]; 551 if (bio) 552 bio_put(bio); 553 } 554 555 no_page: 556 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 557 if (pkt->pages[i]) 558 __free_page(pkt->pages[i]); 559 bio_put(pkt->w_bio); 560 no_bio: 561 kfree(pkt); 562 no_pkt: 563 return NULL; 564 } 565 566 /* 567 * Free a packet_data struct 568 */ 569 static void pkt_free_packet_data(struct packet_data *pkt) 570 { 571 int i; 572 573 for (i = 0; i < pkt->frames; i++) { 574 struct bio *bio = pkt->r_bios[i]; 575 if (bio) 576 bio_put(bio); 577 } 578 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 579 __free_page(pkt->pages[i]); 580 bio_put(pkt->w_bio); 581 kfree(pkt); 582 } 583 584 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 585 { 586 struct packet_data *pkt, *next; 587 588 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 589 590 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 591 pkt_free_packet_data(pkt); 592 } 593 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 594 } 595 596 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 597 { 598 struct packet_data *pkt; 599 600 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 601 602 while (nr_packets > 0) { 603 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 604 if (!pkt) { 605 pkt_shrink_pktlist(pd); 606 return 0; 607 } 608 pkt->id = nr_packets; 609 pkt->pd = pd; 610 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 611 nr_packets--; 612 } 613 return 1; 614 } 615 616 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 617 { 618 struct rb_node *n = rb_next(&node->rb_node); 619 if (!n) 620 return NULL; 621 return rb_entry(n, struct pkt_rb_node, rb_node); 622 } 623 624 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 625 { 626 rb_erase(&node->rb_node, &pd->bio_queue); 627 mempool_free(node, &pd->rb_pool); 628 pd->bio_queue_size--; 629 BUG_ON(pd->bio_queue_size < 0); 630 } 631 632 /* 633 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 634 */ 635 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 636 { 637 struct rb_node *n = pd->bio_queue.rb_node; 638 struct rb_node *next; 639 struct pkt_rb_node *tmp; 640 641 if (!n) { 642 BUG_ON(pd->bio_queue_size > 0); 643 return NULL; 644 } 645 646 for (;;) { 647 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 648 if (s <= tmp->bio->bi_iter.bi_sector) 649 next = n->rb_left; 650 else 651 next = n->rb_right; 652 if (!next) 653 break; 654 n = next; 655 } 656 657 if (s > tmp->bio->bi_iter.bi_sector) { 658 tmp = pkt_rbtree_next(tmp); 659 if (!tmp) 660 return NULL; 661 } 662 BUG_ON(s > tmp->bio->bi_iter.bi_sector); 663 return tmp; 664 } 665 666 /* 667 * Insert a node into the pd->bio_queue rb tree. 668 */ 669 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 670 { 671 struct rb_node **p = &pd->bio_queue.rb_node; 672 struct rb_node *parent = NULL; 673 sector_t s = node->bio->bi_iter.bi_sector; 674 struct pkt_rb_node *tmp; 675 676 while (*p) { 677 parent = *p; 678 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 679 if (s < tmp->bio->bi_iter.bi_sector) 680 p = &(*p)->rb_left; 681 else 682 p = &(*p)->rb_right; 683 } 684 rb_link_node(&node->rb_node, parent, p); 685 rb_insert_color(&node->rb_node, &pd->bio_queue); 686 pd->bio_queue_size++; 687 } 688 689 /* 690 * Send a packet_command to the underlying block device and 691 * wait for completion. 692 */ 693 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 694 { 695 struct request_queue *q = bdev_get_queue(pd->bdev); 696 struct scsi_cmnd *scmd; 697 struct request *rq; 698 int ret = 0; 699 700 rq = scsi_alloc_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 701 REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 702 if (IS_ERR(rq)) 703 return PTR_ERR(rq); 704 scmd = blk_mq_rq_to_pdu(rq); 705 706 if (cgc->buflen) { 707 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, 708 GFP_NOIO); 709 if (ret) 710 goto out; 711 } 712 713 scmd->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 714 memcpy(scmd->cmnd, cgc->cmd, CDROM_PACKET_SIZE); 715 716 rq->timeout = 60*HZ; 717 if (cgc->quiet) 718 rq->rq_flags |= RQF_QUIET; 719 720 blk_execute_rq(rq, false); 721 if (scmd->result) 722 ret = -EIO; 723 out: 724 blk_mq_free_request(rq); 725 return ret; 726 } 727 728 static const char *sense_key_string(__u8 index) 729 { 730 static const char * const info[] = { 731 "No sense", "Recovered error", "Not ready", 732 "Medium error", "Hardware error", "Illegal request", 733 "Unit attention", "Data protect", "Blank check", 734 }; 735 736 return index < ARRAY_SIZE(info) ? info[index] : "INVALID"; 737 } 738 739 /* 740 * A generic sense dump / resolve mechanism should be implemented across 741 * all ATAPI + SCSI devices. 742 */ 743 static void pkt_dump_sense(struct pktcdvd_device *pd, 744 struct packet_command *cgc) 745 { 746 struct scsi_sense_hdr *sshdr = cgc->sshdr; 747 748 if (sshdr) 749 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n", 750 CDROM_PACKET_SIZE, cgc->cmd, 751 sshdr->sense_key, sshdr->asc, sshdr->ascq, 752 sense_key_string(sshdr->sense_key)); 753 else 754 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd); 755 } 756 757 /* 758 * flush the drive cache to media 759 */ 760 static int pkt_flush_cache(struct pktcdvd_device *pd) 761 { 762 struct packet_command cgc; 763 764 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 765 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 766 cgc.quiet = 1; 767 768 /* 769 * the IMMED bit -- we default to not setting it, although that 770 * would allow a much faster close, this is safer 771 */ 772 #if 0 773 cgc.cmd[1] = 1 << 1; 774 #endif 775 return pkt_generic_packet(pd, &cgc); 776 } 777 778 /* 779 * speed is given as the normal factor, e.g. 4 for 4x 780 */ 781 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd, 782 unsigned write_speed, unsigned read_speed) 783 { 784 struct packet_command cgc; 785 struct scsi_sense_hdr sshdr; 786 int ret; 787 788 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 789 cgc.sshdr = &sshdr; 790 cgc.cmd[0] = GPCMD_SET_SPEED; 791 cgc.cmd[2] = (read_speed >> 8) & 0xff; 792 cgc.cmd[3] = read_speed & 0xff; 793 cgc.cmd[4] = (write_speed >> 8) & 0xff; 794 cgc.cmd[5] = write_speed & 0xff; 795 796 ret = pkt_generic_packet(pd, &cgc); 797 if (ret) 798 pkt_dump_sense(pd, &cgc); 799 800 return ret; 801 } 802 803 /* 804 * Queue a bio for processing by the low-level CD device. Must be called 805 * from process context. 806 */ 807 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 808 { 809 spin_lock(&pd->iosched.lock); 810 if (bio_data_dir(bio) == READ) 811 bio_list_add(&pd->iosched.read_queue, bio); 812 else 813 bio_list_add(&pd->iosched.write_queue, bio); 814 spin_unlock(&pd->iosched.lock); 815 816 atomic_set(&pd->iosched.attention, 1); 817 wake_up(&pd->wqueue); 818 } 819 820 /* 821 * Process the queued read/write requests. This function handles special 822 * requirements for CDRW drives: 823 * - A cache flush command must be inserted before a read request if the 824 * previous request was a write. 825 * - Switching between reading and writing is slow, so don't do it more often 826 * than necessary. 827 * - Optimize for throughput at the expense of latency. This means that streaming 828 * writes will never be interrupted by a read, but if the drive has to seek 829 * before the next write, switch to reading instead if there are any pending 830 * read requests. 831 * - Set the read speed according to current usage pattern. When only reading 832 * from the device, it's best to use the highest possible read speed, but 833 * when switching often between reading and writing, it's better to have the 834 * same read and write speeds. 835 */ 836 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 837 { 838 839 if (atomic_read(&pd->iosched.attention) == 0) 840 return; 841 atomic_set(&pd->iosched.attention, 0); 842 843 for (;;) { 844 struct bio *bio; 845 int reads_queued, writes_queued; 846 847 spin_lock(&pd->iosched.lock); 848 reads_queued = !bio_list_empty(&pd->iosched.read_queue); 849 writes_queued = !bio_list_empty(&pd->iosched.write_queue); 850 spin_unlock(&pd->iosched.lock); 851 852 if (!reads_queued && !writes_queued) 853 break; 854 855 if (pd->iosched.writing) { 856 int need_write_seek = 1; 857 spin_lock(&pd->iosched.lock); 858 bio = bio_list_peek(&pd->iosched.write_queue); 859 spin_unlock(&pd->iosched.lock); 860 if (bio && (bio->bi_iter.bi_sector == 861 pd->iosched.last_write)) 862 need_write_seek = 0; 863 if (need_write_seek && reads_queued) { 864 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 865 pkt_dbg(2, pd, "write, waiting\n"); 866 break; 867 } 868 pkt_flush_cache(pd); 869 pd->iosched.writing = 0; 870 } 871 } else { 872 if (!reads_queued && writes_queued) { 873 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 874 pkt_dbg(2, pd, "read, waiting\n"); 875 break; 876 } 877 pd->iosched.writing = 1; 878 } 879 } 880 881 spin_lock(&pd->iosched.lock); 882 if (pd->iosched.writing) 883 bio = bio_list_pop(&pd->iosched.write_queue); 884 else 885 bio = bio_list_pop(&pd->iosched.read_queue); 886 spin_unlock(&pd->iosched.lock); 887 888 if (!bio) 889 continue; 890 891 if (bio_data_dir(bio) == READ) 892 pd->iosched.successive_reads += 893 bio->bi_iter.bi_size >> 10; 894 else { 895 pd->iosched.successive_reads = 0; 896 pd->iosched.last_write = bio_end_sector(bio); 897 } 898 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 899 if (pd->read_speed == pd->write_speed) { 900 pd->read_speed = MAX_SPEED; 901 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 902 } 903 } else { 904 if (pd->read_speed != pd->write_speed) { 905 pd->read_speed = pd->write_speed; 906 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 907 } 908 } 909 910 atomic_inc(&pd->cdrw.pending_bios); 911 submit_bio_noacct(bio); 912 } 913 } 914 915 /* 916 * Special care is needed if the underlying block device has a small 917 * max_phys_segments value. 918 */ 919 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q) 920 { 921 if ((pd->settings.size << 9) / CD_FRAMESIZE 922 <= queue_max_segments(q)) { 923 /* 924 * The cdrom device can handle one segment/frame 925 */ 926 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 927 return 0; 928 } else if ((pd->settings.size << 9) / PAGE_SIZE 929 <= queue_max_segments(q)) { 930 /* 931 * We can handle this case at the expense of some extra memory 932 * copies during write operations 933 */ 934 set_bit(PACKET_MERGE_SEGS, &pd->flags); 935 return 0; 936 } else { 937 pkt_err(pd, "cdrom max_phys_segments too small\n"); 938 return -EIO; 939 } 940 } 941 942 static void pkt_end_io_read(struct bio *bio) 943 { 944 struct packet_data *pkt = bio->bi_private; 945 struct pktcdvd_device *pd = pkt->pd; 946 BUG_ON(!pd); 947 948 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n", 949 bio, (unsigned long long)pkt->sector, 950 (unsigned long long)bio->bi_iter.bi_sector, bio->bi_status); 951 952 if (bio->bi_status) 953 atomic_inc(&pkt->io_errors); 954 if (atomic_dec_and_test(&pkt->io_wait)) { 955 atomic_inc(&pkt->run_sm); 956 wake_up(&pd->wqueue); 957 } 958 pkt_bio_finished(pd); 959 } 960 961 static void pkt_end_io_packet_write(struct bio *bio) 962 { 963 struct packet_data *pkt = bio->bi_private; 964 struct pktcdvd_device *pd = pkt->pd; 965 BUG_ON(!pd); 966 967 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_status); 968 969 pd->stats.pkt_ended++; 970 971 pkt_bio_finished(pd); 972 atomic_dec(&pkt->io_wait); 973 atomic_inc(&pkt->run_sm); 974 wake_up(&pd->wqueue); 975 } 976 977 /* 978 * Schedule reads for the holes in a packet 979 */ 980 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 981 { 982 int frames_read = 0; 983 struct bio *bio; 984 int f; 985 char written[PACKET_MAX_SIZE]; 986 987 BUG_ON(bio_list_empty(&pkt->orig_bios)); 988 989 atomic_set(&pkt->io_wait, 0); 990 atomic_set(&pkt->io_errors, 0); 991 992 /* 993 * Figure out which frames we need to read before we can write. 994 */ 995 memset(written, 0, sizeof(written)); 996 spin_lock(&pkt->lock); 997 bio_list_for_each(bio, &pkt->orig_bios) { 998 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) / 999 (CD_FRAMESIZE >> 9); 1000 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE; 1001 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 1002 BUG_ON(first_frame < 0); 1003 BUG_ON(first_frame + num_frames > pkt->frames); 1004 for (f = first_frame; f < first_frame + num_frames; f++) 1005 written[f] = 1; 1006 } 1007 spin_unlock(&pkt->lock); 1008 1009 if (pkt->cache_valid) { 1010 pkt_dbg(2, pd, "zone %llx cached\n", 1011 (unsigned long long)pkt->sector); 1012 goto out_account; 1013 } 1014 1015 /* 1016 * Schedule reads for missing parts of the packet. 1017 */ 1018 for (f = 0; f < pkt->frames; f++) { 1019 int p, offset; 1020 1021 if (written[f]) 1022 continue; 1023 1024 bio = pkt->r_bios[f]; 1025 bio_reset(bio, pd->bdev, REQ_OP_READ); 1026 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1027 bio->bi_end_io = pkt_end_io_read; 1028 bio->bi_private = pkt; 1029 1030 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1031 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1032 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n", 1033 f, pkt->pages[p], offset); 1034 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1035 BUG(); 1036 1037 atomic_inc(&pkt->io_wait); 1038 pkt_queue_bio(pd, bio); 1039 frames_read++; 1040 } 1041 1042 out_account: 1043 pkt_dbg(2, pd, "need %d frames for zone %llx\n", 1044 frames_read, (unsigned long long)pkt->sector); 1045 pd->stats.pkt_started++; 1046 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1047 } 1048 1049 /* 1050 * Find a packet matching zone, or the least recently used packet if 1051 * there is no match. 1052 */ 1053 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1054 { 1055 struct packet_data *pkt; 1056 1057 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1058 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1059 list_del_init(&pkt->list); 1060 if (pkt->sector != zone) 1061 pkt->cache_valid = 0; 1062 return pkt; 1063 } 1064 } 1065 BUG(); 1066 return NULL; 1067 } 1068 1069 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1070 { 1071 if (pkt->cache_valid) { 1072 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1073 } else { 1074 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1075 } 1076 } 1077 1078 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 1079 { 1080 #if PACKET_DEBUG > 1 1081 static const char *state_name[] = { 1082 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1083 }; 1084 enum packet_data_state old_state = pkt->state; 1085 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n", 1086 pkt->id, (unsigned long long)pkt->sector, 1087 state_name[old_state], state_name[state]); 1088 #endif 1089 pkt->state = state; 1090 } 1091 1092 /* 1093 * Scan the work queue to see if we can start a new packet. 1094 * returns non-zero if any work was done. 1095 */ 1096 static int pkt_handle_queue(struct pktcdvd_device *pd) 1097 { 1098 struct packet_data *pkt, *p; 1099 struct bio *bio = NULL; 1100 sector_t zone = 0; /* Suppress gcc warning */ 1101 struct pkt_rb_node *node, *first_node; 1102 struct rb_node *n; 1103 1104 atomic_set(&pd->scan_queue, 0); 1105 1106 if (list_empty(&pd->cdrw.pkt_free_list)) { 1107 pkt_dbg(2, pd, "no pkt\n"); 1108 return 0; 1109 } 1110 1111 /* 1112 * Try to find a zone we are not already working on. 1113 */ 1114 spin_lock(&pd->lock); 1115 first_node = pkt_rbtree_find(pd, pd->current_sector); 1116 if (!first_node) { 1117 n = rb_first(&pd->bio_queue); 1118 if (n) 1119 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1120 } 1121 node = first_node; 1122 while (node) { 1123 bio = node->bio; 1124 zone = get_zone(bio->bi_iter.bi_sector, pd); 1125 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1126 if (p->sector == zone) { 1127 bio = NULL; 1128 goto try_next_bio; 1129 } 1130 } 1131 break; 1132 try_next_bio: 1133 node = pkt_rbtree_next(node); 1134 if (!node) { 1135 n = rb_first(&pd->bio_queue); 1136 if (n) 1137 node = rb_entry(n, struct pkt_rb_node, rb_node); 1138 } 1139 if (node == first_node) 1140 node = NULL; 1141 } 1142 spin_unlock(&pd->lock); 1143 if (!bio) { 1144 pkt_dbg(2, pd, "no bio\n"); 1145 return 0; 1146 } 1147 1148 pkt = pkt_get_packet_data(pd, zone); 1149 1150 pd->current_sector = zone + pd->settings.size; 1151 pkt->sector = zone; 1152 BUG_ON(pkt->frames != pd->settings.size >> 2); 1153 pkt->write_size = 0; 1154 1155 /* 1156 * Scan work queue for bios in the same zone and link them 1157 * to this packet. 1158 */ 1159 spin_lock(&pd->lock); 1160 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone); 1161 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1162 bio = node->bio; 1163 pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long) 1164 get_zone(bio->bi_iter.bi_sector, pd)); 1165 if (get_zone(bio->bi_iter.bi_sector, pd) != zone) 1166 break; 1167 pkt_rbtree_erase(pd, node); 1168 spin_lock(&pkt->lock); 1169 bio_list_add(&pkt->orig_bios, bio); 1170 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE; 1171 spin_unlock(&pkt->lock); 1172 } 1173 /* check write congestion marks, and if bio_queue_size is 1174 * below, wake up any waiters 1175 */ 1176 if (pd->congested && 1177 pd->bio_queue_size <= pd->write_congestion_off) { 1178 pd->congested = false; 1179 wake_up_var(&pd->congested); 1180 } 1181 spin_unlock(&pd->lock); 1182 1183 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1184 pkt_set_state(pkt, PACKET_WAITING_STATE); 1185 atomic_set(&pkt->run_sm, 1); 1186 1187 spin_lock(&pd->cdrw.active_list_lock); 1188 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1189 spin_unlock(&pd->cdrw.active_list_lock); 1190 1191 return 1; 1192 } 1193 1194 /** 1195 * bio_list_copy_data - copy contents of data buffers from one chain of bios to 1196 * another 1197 * @src: source bio list 1198 * @dst: destination bio list 1199 * 1200 * Stops when it reaches the end of either the @src list or @dst list - that is, 1201 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of 1202 * bios). 1203 */ 1204 static void bio_list_copy_data(struct bio *dst, struct bio *src) 1205 { 1206 struct bvec_iter src_iter = src->bi_iter; 1207 struct bvec_iter dst_iter = dst->bi_iter; 1208 1209 while (1) { 1210 if (!src_iter.bi_size) { 1211 src = src->bi_next; 1212 if (!src) 1213 break; 1214 1215 src_iter = src->bi_iter; 1216 } 1217 1218 if (!dst_iter.bi_size) { 1219 dst = dst->bi_next; 1220 if (!dst) 1221 break; 1222 1223 dst_iter = dst->bi_iter; 1224 } 1225 1226 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1227 } 1228 } 1229 1230 /* 1231 * Assemble a bio to write one packet and queue the bio for processing 1232 * by the underlying block device. 1233 */ 1234 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1235 { 1236 int f; 1237 1238 bio_reset(pkt->w_bio, pd->bdev, REQ_OP_WRITE); 1239 pkt->w_bio->bi_iter.bi_sector = pkt->sector; 1240 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1241 pkt->w_bio->bi_private = pkt; 1242 1243 /* XXX: locking? */ 1244 for (f = 0; f < pkt->frames; f++) { 1245 struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1246 unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1247 1248 if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset)) 1249 BUG(); 1250 } 1251 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt); 1252 1253 /* 1254 * Fill-in bvec with data from orig_bios. 1255 */ 1256 spin_lock(&pkt->lock); 1257 bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head); 1258 1259 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1260 spin_unlock(&pkt->lock); 1261 1262 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n", 1263 pkt->write_size, (unsigned long long)pkt->sector); 1264 1265 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) 1266 pkt->cache_valid = 1; 1267 else 1268 pkt->cache_valid = 0; 1269 1270 /* Start the write request */ 1271 atomic_set(&pkt->io_wait, 1); 1272 pkt_queue_bio(pd, pkt->w_bio); 1273 } 1274 1275 static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status) 1276 { 1277 struct bio *bio; 1278 1279 if (status) 1280 pkt->cache_valid = 0; 1281 1282 /* Finish all bios corresponding to this packet */ 1283 while ((bio = bio_list_pop(&pkt->orig_bios))) { 1284 bio->bi_status = status; 1285 bio_endio(bio); 1286 } 1287 } 1288 1289 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1290 { 1291 pkt_dbg(2, pd, "pkt %d\n", pkt->id); 1292 1293 for (;;) { 1294 switch (pkt->state) { 1295 case PACKET_WAITING_STATE: 1296 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1297 return; 1298 1299 pkt->sleep_time = 0; 1300 pkt_gather_data(pd, pkt); 1301 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1302 break; 1303 1304 case PACKET_READ_WAIT_STATE: 1305 if (atomic_read(&pkt->io_wait) > 0) 1306 return; 1307 1308 if (atomic_read(&pkt->io_errors) > 0) { 1309 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1310 } else { 1311 pkt_start_write(pd, pkt); 1312 } 1313 break; 1314 1315 case PACKET_WRITE_WAIT_STATE: 1316 if (atomic_read(&pkt->io_wait) > 0) 1317 return; 1318 1319 if (!pkt->w_bio->bi_status) { 1320 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1321 } else { 1322 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1323 } 1324 break; 1325 1326 case PACKET_RECOVERY_STATE: 1327 pkt_dbg(2, pd, "No recovery possible\n"); 1328 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1329 break; 1330 1331 case PACKET_FINISHED_STATE: 1332 pkt_finish_packet(pkt, pkt->w_bio->bi_status); 1333 return; 1334 1335 default: 1336 BUG(); 1337 break; 1338 } 1339 } 1340 } 1341 1342 static void pkt_handle_packets(struct pktcdvd_device *pd) 1343 { 1344 struct packet_data *pkt, *next; 1345 1346 /* 1347 * Run state machine for active packets 1348 */ 1349 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1350 if (atomic_read(&pkt->run_sm) > 0) { 1351 atomic_set(&pkt->run_sm, 0); 1352 pkt_run_state_machine(pd, pkt); 1353 } 1354 } 1355 1356 /* 1357 * Move no longer active packets to the free list 1358 */ 1359 spin_lock(&pd->cdrw.active_list_lock); 1360 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1361 if (pkt->state == PACKET_FINISHED_STATE) { 1362 list_del(&pkt->list); 1363 pkt_put_packet_data(pd, pkt); 1364 pkt_set_state(pkt, PACKET_IDLE_STATE); 1365 atomic_set(&pd->scan_queue, 1); 1366 } 1367 } 1368 spin_unlock(&pd->cdrw.active_list_lock); 1369 } 1370 1371 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1372 { 1373 struct packet_data *pkt; 1374 int i; 1375 1376 for (i = 0; i < PACKET_NUM_STATES; i++) 1377 states[i] = 0; 1378 1379 spin_lock(&pd->cdrw.active_list_lock); 1380 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1381 states[pkt->state]++; 1382 } 1383 spin_unlock(&pd->cdrw.active_list_lock); 1384 } 1385 1386 /* 1387 * kcdrwd is woken up when writes have been queued for one of our 1388 * registered devices 1389 */ 1390 static int kcdrwd(void *foobar) 1391 { 1392 struct pktcdvd_device *pd = foobar; 1393 struct packet_data *pkt; 1394 long min_sleep_time, residue; 1395 1396 set_user_nice(current, MIN_NICE); 1397 set_freezable(); 1398 1399 for (;;) { 1400 DECLARE_WAITQUEUE(wait, current); 1401 1402 /* 1403 * Wait until there is something to do 1404 */ 1405 add_wait_queue(&pd->wqueue, &wait); 1406 for (;;) { 1407 set_current_state(TASK_INTERRUPTIBLE); 1408 1409 /* Check if we need to run pkt_handle_queue */ 1410 if (atomic_read(&pd->scan_queue) > 0) 1411 goto work_to_do; 1412 1413 /* Check if we need to run the state machine for some packet */ 1414 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1415 if (atomic_read(&pkt->run_sm) > 0) 1416 goto work_to_do; 1417 } 1418 1419 /* Check if we need to process the iosched queues */ 1420 if (atomic_read(&pd->iosched.attention) != 0) 1421 goto work_to_do; 1422 1423 /* Otherwise, go to sleep */ 1424 if (PACKET_DEBUG > 1) { 1425 int states[PACKET_NUM_STATES]; 1426 pkt_count_states(pd, states); 1427 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1428 states[0], states[1], states[2], 1429 states[3], states[4], states[5]); 1430 } 1431 1432 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1433 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1434 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1435 min_sleep_time = pkt->sleep_time; 1436 } 1437 1438 pkt_dbg(2, pd, "sleeping\n"); 1439 residue = schedule_timeout(min_sleep_time); 1440 pkt_dbg(2, pd, "wake up\n"); 1441 1442 /* make swsusp happy with our thread */ 1443 try_to_freeze(); 1444 1445 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1446 if (!pkt->sleep_time) 1447 continue; 1448 pkt->sleep_time -= min_sleep_time - residue; 1449 if (pkt->sleep_time <= 0) { 1450 pkt->sleep_time = 0; 1451 atomic_inc(&pkt->run_sm); 1452 } 1453 } 1454 1455 if (kthread_should_stop()) 1456 break; 1457 } 1458 work_to_do: 1459 set_current_state(TASK_RUNNING); 1460 remove_wait_queue(&pd->wqueue, &wait); 1461 1462 if (kthread_should_stop()) 1463 break; 1464 1465 /* 1466 * if pkt_handle_queue returns true, we can queue 1467 * another request. 1468 */ 1469 while (pkt_handle_queue(pd)) 1470 ; 1471 1472 /* 1473 * Handle packet state machine 1474 */ 1475 pkt_handle_packets(pd); 1476 1477 /* 1478 * Handle iosched queues 1479 */ 1480 pkt_iosched_process_queue(pd); 1481 } 1482 1483 return 0; 1484 } 1485 1486 static void pkt_print_settings(struct pktcdvd_device *pd) 1487 { 1488 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n", 1489 pd->settings.fp ? "Fixed" : "Variable", 1490 pd->settings.size >> 2, 1491 pd->settings.block_mode == 8 ? '1' : '2'); 1492 } 1493 1494 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1495 { 1496 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1497 1498 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1499 cgc->cmd[2] = page_code | (page_control << 6); 1500 cgc->cmd[7] = cgc->buflen >> 8; 1501 cgc->cmd[8] = cgc->buflen & 0xff; 1502 cgc->data_direction = CGC_DATA_READ; 1503 return pkt_generic_packet(pd, cgc); 1504 } 1505 1506 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1507 { 1508 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1509 memset(cgc->buffer, 0, 2); 1510 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1511 cgc->cmd[1] = 0x10; /* PF */ 1512 cgc->cmd[7] = cgc->buflen >> 8; 1513 cgc->cmd[8] = cgc->buflen & 0xff; 1514 cgc->data_direction = CGC_DATA_WRITE; 1515 return pkt_generic_packet(pd, cgc); 1516 } 1517 1518 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1519 { 1520 struct packet_command cgc; 1521 int ret; 1522 1523 /* set up command and get the disc info */ 1524 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1525 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1526 cgc.cmd[8] = cgc.buflen = 2; 1527 cgc.quiet = 1; 1528 1529 ret = pkt_generic_packet(pd, &cgc); 1530 if (ret) 1531 return ret; 1532 1533 /* not all drives have the same disc_info length, so requeue 1534 * packet with the length the drive tells us it can supply 1535 */ 1536 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1537 sizeof(di->disc_information_length); 1538 1539 if (cgc.buflen > sizeof(disc_information)) 1540 cgc.buflen = sizeof(disc_information); 1541 1542 cgc.cmd[8] = cgc.buflen; 1543 return pkt_generic_packet(pd, &cgc); 1544 } 1545 1546 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1547 { 1548 struct packet_command cgc; 1549 int ret; 1550 1551 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1552 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1553 cgc.cmd[1] = type & 3; 1554 cgc.cmd[4] = (track & 0xff00) >> 8; 1555 cgc.cmd[5] = track & 0xff; 1556 cgc.cmd[8] = 8; 1557 cgc.quiet = 1; 1558 1559 ret = pkt_generic_packet(pd, &cgc); 1560 if (ret) 1561 return ret; 1562 1563 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1564 sizeof(ti->track_information_length); 1565 1566 if (cgc.buflen > sizeof(track_information)) 1567 cgc.buflen = sizeof(track_information); 1568 1569 cgc.cmd[8] = cgc.buflen; 1570 return pkt_generic_packet(pd, &cgc); 1571 } 1572 1573 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd, 1574 long *last_written) 1575 { 1576 disc_information di; 1577 track_information ti; 1578 __u32 last_track; 1579 int ret; 1580 1581 ret = pkt_get_disc_info(pd, &di); 1582 if (ret) 1583 return ret; 1584 1585 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1586 ret = pkt_get_track_info(pd, last_track, 1, &ti); 1587 if (ret) 1588 return ret; 1589 1590 /* if this track is blank, try the previous. */ 1591 if (ti.blank) { 1592 last_track--; 1593 ret = pkt_get_track_info(pd, last_track, 1, &ti); 1594 if (ret) 1595 return ret; 1596 } 1597 1598 /* if last recorded field is valid, return it. */ 1599 if (ti.lra_v) { 1600 *last_written = be32_to_cpu(ti.last_rec_address); 1601 } else { 1602 /* make it up instead */ 1603 *last_written = be32_to_cpu(ti.track_start) + 1604 be32_to_cpu(ti.track_size); 1605 if (ti.free_blocks) 1606 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1607 } 1608 return 0; 1609 } 1610 1611 /* 1612 * write mode select package based on pd->settings 1613 */ 1614 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd) 1615 { 1616 struct packet_command cgc; 1617 struct scsi_sense_hdr sshdr; 1618 write_param_page *wp; 1619 char buffer[128]; 1620 int ret, size; 1621 1622 /* doesn't apply to DVD+RW or DVD-RAM */ 1623 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1624 return 0; 1625 1626 memset(buffer, 0, sizeof(buffer)); 1627 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1628 cgc.sshdr = &sshdr; 1629 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0); 1630 if (ret) { 1631 pkt_dump_sense(pd, &cgc); 1632 return ret; 1633 } 1634 1635 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1636 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1637 if (size > sizeof(buffer)) 1638 size = sizeof(buffer); 1639 1640 /* 1641 * now get it all 1642 */ 1643 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1644 cgc.sshdr = &sshdr; 1645 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0); 1646 if (ret) { 1647 pkt_dump_sense(pd, &cgc); 1648 return ret; 1649 } 1650 1651 /* 1652 * write page is offset header + block descriptor length 1653 */ 1654 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1655 1656 wp->fp = pd->settings.fp; 1657 wp->track_mode = pd->settings.track_mode; 1658 wp->write_type = pd->settings.write_type; 1659 wp->data_block_type = pd->settings.block_mode; 1660 1661 wp->multi_session = 0; 1662 1663 #ifdef PACKET_USE_LS 1664 wp->link_size = 7; 1665 wp->ls_v = 1; 1666 #endif 1667 1668 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1669 wp->session_format = 0; 1670 wp->subhdr2 = 0x20; 1671 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1672 wp->session_format = 0x20; 1673 wp->subhdr2 = 8; 1674 #if 0 1675 wp->mcn[0] = 0x80; 1676 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1677 #endif 1678 } else { 1679 /* 1680 * paranoia 1681 */ 1682 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type); 1683 return 1; 1684 } 1685 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1686 1687 cgc.buflen = cgc.cmd[8] = size; 1688 ret = pkt_mode_select(pd, &cgc); 1689 if (ret) { 1690 pkt_dump_sense(pd, &cgc); 1691 return ret; 1692 } 1693 1694 pkt_print_settings(pd); 1695 return 0; 1696 } 1697 1698 /* 1699 * 1 -- we can write to this track, 0 -- we can't 1700 */ 1701 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1702 { 1703 switch (pd->mmc3_profile) { 1704 case 0x1a: /* DVD+RW */ 1705 case 0x12: /* DVD-RAM */ 1706 /* The track is always writable on DVD+RW/DVD-RAM */ 1707 return 1; 1708 default: 1709 break; 1710 } 1711 1712 if (!ti->packet || !ti->fp) 1713 return 0; 1714 1715 /* 1716 * "good" settings as per Mt Fuji. 1717 */ 1718 if (ti->rt == 0 && ti->blank == 0) 1719 return 1; 1720 1721 if (ti->rt == 0 && ti->blank == 1) 1722 return 1; 1723 1724 if (ti->rt == 1 && ti->blank == 0) 1725 return 1; 1726 1727 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1728 return 0; 1729 } 1730 1731 /* 1732 * 1 -- we can write to this disc, 0 -- we can't 1733 */ 1734 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1735 { 1736 switch (pd->mmc3_profile) { 1737 case 0x0a: /* CD-RW */ 1738 case 0xffff: /* MMC3 not supported */ 1739 break; 1740 case 0x1a: /* DVD+RW */ 1741 case 0x13: /* DVD-RW */ 1742 case 0x12: /* DVD-RAM */ 1743 return 1; 1744 default: 1745 pkt_dbg(2, pd, "Wrong disc profile (%x)\n", 1746 pd->mmc3_profile); 1747 return 0; 1748 } 1749 1750 /* 1751 * for disc type 0xff we should probably reserve a new track. 1752 * but i'm not sure, should we leave this to user apps? probably. 1753 */ 1754 if (di->disc_type == 0xff) { 1755 pkt_notice(pd, "unknown disc - no track?\n"); 1756 return 0; 1757 } 1758 1759 if (di->disc_type != 0x20 && di->disc_type != 0) { 1760 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type); 1761 return 0; 1762 } 1763 1764 if (di->erasable == 0) { 1765 pkt_notice(pd, "disc not erasable\n"); 1766 return 0; 1767 } 1768 1769 if (di->border_status == PACKET_SESSION_RESERVED) { 1770 pkt_err(pd, "can't write to last track (reserved)\n"); 1771 return 0; 1772 } 1773 1774 return 1; 1775 } 1776 1777 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd) 1778 { 1779 struct packet_command cgc; 1780 unsigned char buf[12]; 1781 disc_information di; 1782 track_information ti; 1783 int ret, track; 1784 1785 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1786 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1787 cgc.cmd[8] = 8; 1788 ret = pkt_generic_packet(pd, &cgc); 1789 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1790 1791 memset(&di, 0, sizeof(disc_information)); 1792 memset(&ti, 0, sizeof(track_information)); 1793 1794 ret = pkt_get_disc_info(pd, &di); 1795 if (ret) { 1796 pkt_err(pd, "failed get_disc\n"); 1797 return ret; 1798 } 1799 1800 if (!pkt_writable_disc(pd, &di)) 1801 return -EROFS; 1802 1803 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 1804 1805 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 1806 ret = pkt_get_track_info(pd, track, 1, &ti); 1807 if (ret) { 1808 pkt_err(pd, "failed get_track\n"); 1809 return ret; 1810 } 1811 1812 if (!pkt_writable_track(pd, &ti)) { 1813 pkt_err(pd, "can't write to this track\n"); 1814 return -EROFS; 1815 } 1816 1817 /* 1818 * we keep packet size in 512 byte units, makes it easier to 1819 * deal with request calculations. 1820 */ 1821 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 1822 if (pd->settings.size == 0) { 1823 pkt_notice(pd, "detected zero packet size!\n"); 1824 return -ENXIO; 1825 } 1826 if (pd->settings.size > PACKET_MAX_SECTORS) { 1827 pkt_err(pd, "packet size is too big\n"); 1828 return -EROFS; 1829 } 1830 pd->settings.fp = ti.fp; 1831 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 1832 1833 if (ti.nwa_v) { 1834 pd->nwa = be32_to_cpu(ti.next_writable); 1835 set_bit(PACKET_NWA_VALID, &pd->flags); 1836 } 1837 1838 /* 1839 * in theory we could use lra on -RW media as well and just zero 1840 * blocks that haven't been written yet, but in practice that 1841 * is just a no-go. we'll use that for -R, naturally. 1842 */ 1843 if (ti.lra_v) { 1844 pd->lra = be32_to_cpu(ti.last_rec_address); 1845 set_bit(PACKET_LRA_VALID, &pd->flags); 1846 } else { 1847 pd->lra = 0xffffffff; 1848 set_bit(PACKET_LRA_VALID, &pd->flags); 1849 } 1850 1851 /* 1852 * fine for now 1853 */ 1854 pd->settings.link_loss = 7; 1855 pd->settings.write_type = 0; /* packet */ 1856 pd->settings.track_mode = ti.track_mode; 1857 1858 /* 1859 * mode1 or mode2 disc 1860 */ 1861 switch (ti.data_mode) { 1862 case PACKET_MODE1: 1863 pd->settings.block_mode = PACKET_BLOCK_MODE1; 1864 break; 1865 case PACKET_MODE2: 1866 pd->settings.block_mode = PACKET_BLOCK_MODE2; 1867 break; 1868 default: 1869 pkt_err(pd, "unknown data mode\n"); 1870 return -EROFS; 1871 } 1872 return 0; 1873 } 1874 1875 /* 1876 * enable/disable write caching on drive 1877 */ 1878 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd, 1879 int set) 1880 { 1881 struct packet_command cgc; 1882 struct scsi_sense_hdr sshdr; 1883 unsigned char buf[64]; 1884 int ret; 1885 1886 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1887 cgc.sshdr = &sshdr; 1888 cgc.buflen = pd->mode_offset + 12; 1889 1890 /* 1891 * caching mode page might not be there, so quiet this command 1892 */ 1893 cgc.quiet = 1; 1894 1895 ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0); 1896 if (ret) 1897 return ret; 1898 1899 buf[pd->mode_offset + 10] |= (!!set << 2); 1900 1901 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 1902 ret = pkt_mode_select(pd, &cgc); 1903 if (ret) { 1904 pkt_err(pd, "write caching control failed\n"); 1905 pkt_dump_sense(pd, &cgc); 1906 } else if (!ret && set) 1907 pkt_notice(pd, "enabled write caching\n"); 1908 return ret; 1909 } 1910 1911 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 1912 { 1913 struct packet_command cgc; 1914 1915 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 1916 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 1917 cgc.cmd[4] = lockflag ? 1 : 0; 1918 return pkt_generic_packet(pd, &cgc); 1919 } 1920 1921 /* 1922 * Returns drive maximum write speed 1923 */ 1924 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd, 1925 unsigned *write_speed) 1926 { 1927 struct packet_command cgc; 1928 struct scsi_sense_hdr sshdr; 1929 unsigned char buf[256+18]; 1930 unsigned char *cap_buf; 1931 int ret, offset; 1932 1933 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 1934 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 1935 cgc.sshdr = &sshdr; 1936 1937 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1938 if (ret) { 1939 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 1940 sizeof(struct mode_page_header); 1941 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1942 if (ret) { 1943 pkt_dump_sense(pd, &cgc); 1944 return ret; 1945 } 1946 } 1947 1948 offset = 20; /* Obsoleted field, used by older drives */ 1949 if (cap_buf[1] >= 28) 1950 offset = 28; /* Current write speed selected */ 1951 if (cap_buf[1] >= 30) { 1952 /* If the drive reports at least one "Logical Unit Write 1953 * Speed Performance Descriptor Block", use the information 1954 * in the first block. (contains the highest speed) 1955 */ 1956 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 1957 if (num_spdb > 0) 1958 offset = 34; 1959 } 1960 1961 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 1962 return 0; 1963 } 1964 1965 /* These tables from cdrecord - I don't have orange book */ 1966 /* standard speed CD-RW (1-4x) */ 1967 static char clv_to_speed[16] = { 1968 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1969 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1970 }; 1971 /* high speed CD-RW (-10x) */ 1972 static char hs_clv_to_speed[16] = { 1973 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1974 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1975 }; 1976 /* ultra high speed CD-RW */ 1977 static char us_clv_to_speed[16] = { 1978 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1979 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 1980 }; 1981 1982 /* 1983 * reads the maximum media speed from ATIP 1984 */ 1985 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd, 1986 unsigned *speed) 1987 { 1988 struct packet_command cgc; 1989 struct scsi_sense_hdr sshdr; 1990 unsigned char buf[64]; 1991 unsigned int size, st, sp; 1992 int ret; 1993 1994 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 1995 cgc.sshdr = &sshdr; 1996 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 1997 cgc.cmd[1] = 2; 1998 cgc.cmd[2] = 4; /* READ ATIP */ 1999 cgc.cmd[8] = 2; 2000 ret = pkt_generic_packet(pd, &cgc); 2001 if (ret) { 2002 pkt_dump_sense(pd, &cgc); 2003 return ret; 2004 } 2005 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 2006 if (size > sizeof(buf)) 2007 size = sizeof(buf); 2008 2009 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2010 cgc.sshdr = &sshdr; 2011 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2012 cgc.cmd[1] = 2; 2013 cgc.cmd[2] = 4; 2014 cgc.cmd[8] = size; 2015 ret = pkt_generic_packet(pd, &cgc); 2016 if (ret) { 2017 pkt_dump_sense(pd, &cgc); 2018 return ret; 2019 } 2020 2021 if (!(buf[6] & 0x40)) { 2022 pkt_notice(pd, "disc type is not CD-RW\n"); 2023 return 1; 2024 } 2025 if (!(buf[6] & 0x4)) { 2026 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n"); 2027 return 1; 2028 } 2029 2030 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2031 2032 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2033 2034 /* Info from cdrecord */ 2035 switch (st) { 2036 case 0: /* standard speed */ 2037 *speed = clv_to_speed[sp]; 2038 break; 2039 case 1: /* high speed */ 2040 *speed = hs_clv_to_speed[sp]; 2041 break; 2042 case 2: /* ultra high speed */ 2043 *speed = us_clv_to_speed[sp]; 2044 break; 2045 default: 2046 pkt_notice(pd, "unknown disc sub-type %d\n", st); 2047 return 1; 2048 } 2049 if (*speed) { 2050 pkt_info(pd, "maximum media speed: %d\n", *speed); 2051 return 0; 2052 } else { 2053 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st); 2054 return 1; 2055 } 2056 } 2057 2058 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd) 2059 { 2060 struct packet_command cgc; 2061 struct scsi_sense_hdr sshdr; 2062 int ret; 2063 2064 pkt_dbg(2, pd, "Performing OPC\n"); 2065 2066 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2067 cgc.sshdr = &sshdr; 2068 cgc.timeout = 60*HZ; 2069 cgc.cmd[0] = GPCMD_SEND_OPC; 2070 cgc.cmd[1] = 1; 2071 ret = pkt_generic_packet(pd, &cgc); 2072 if (ret) 2073 pkt_dump_sense(pd, &cgc); 2074 return ret; 2075 } 2076 2077 static int pkt_open_write(struct pktcdvd_device *pd) 2078 { 2079 int ret; 2080 unsigned int write_speed, media_write_speed, read_speed; 2081 2082 ret = pkt_probe_settings(pd); 2083 if (ret) { 2084 pkt_dbg(2, pd, "failed probe\n"); 2085 return ret; 2086 } 2087 2088 ret = pkt_set_write_settings(pd); 2089 if (ret) { 2090 pkt_dbg(1, pd, "failed saving write settings\n"); 2091 return -EIO; 2092 } 2093 2094 pkt_write_caching(pd, USE_WCACHING); 2095 2096 ret = pkt_get_max_speed(pd, &write_speed); 2097 if (ret) 2098 write_speed = 16 * 177; 2099 switch (pd->mmc3_profile) { 2100 case 0x13: /* DVD-RW */ 2101 case 0x1a: /* DVD+RW */ 2102 case 0x12: /* DVD-RAM */ 2103 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed); 2104 break; 2105 default: 2106 ret = pkt_media_speed(pd, &media_write_speed); 2107 if (ret) 2108 media_write_speed = 16; 2109 write_speed = min(write_speed, media_write_speed * 177); 2110 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176); 2111 break; 2112 } 2113 read_speed = write_speed; 2114 2115 ret = pkt_set_speed(pd, write_speed, read_speed); 2116 if (ret) { 2117 pkt_dbg(1, pd, "couldn't set write speed\n"); 2118 return -EIO; 2119 } 2120 pd->write_speed = write_speed; 2121 pd->read_speed = read_speed; 2122 2123 ret = pkt_perform_opc(pd); 2124 if (ret) { 2125 pkt_dbg(1, pd, "Optimum Power Calibration failed\n"); 2126 } 2127 2128 return 0; 2129 } 2130 2131 /* 2132 * called at open time. 2133 */ 2134 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write) 2135 { 2136 int ret; 2137 long lba; 2138 struct request_queue *q; 2139 struct block_device *bdev; 2140 2141 /* 2142 * We need to re-open the cdrom device without O_NONBLOCK to be able 2143 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2144 * so open should not fail. 2145 */ 2146 bdev = blkdev_get_by_dev(pd->bdev->bd_dev, FMODE_READ | FMODE_EXCL, pd); 2147 if (IS_ERR(bdev)) { 2148 ret = PTR_ERR(bdev); 2149 goto out; 2150 } 2151 2152 ret = pkt_get_last_written(pd, &lba); 2153 if (ret) { 2154 pkt_err(pd, "pkt_get_last_written failed\n"); 2155 goto out_putdev; 2156 } 2157 2158 set_capacity(pd->disk, lba << 2); 2159 set_capacity_and_notify(pd->bdev->bd_disk, lba << 2); 2160 2161 q = bdev_get_queue(pd->bdev); 2162 if (write) { 2163 ret = pkt_open_write(pd); 2164 if (ret) 2165 goto out_putdev; 2166 /* 2167 * Some CDRW drives can not handle writes larger than one packet, 2168 * even if the size is a multiple of the packet size. 2169 */ 2170 blk_queue_max_hw_sectors(q, pd->settings.size); 2171 set_bit(PACKET_WRITABLE, &pd->flags); 2172 } else { 2173 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2174 clear_bit(PACKET_WRITABLE, &pd->flags); 2175 } 2176 2177 ret = pkt_set_segment_merging(pd, q); 2178 if (ret) 2179 goto out_putdev; 2180 2181 if (write) { 2182 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2183 pkt_err(pd, "not enough memory for buffers\n"); 2184 ret = -ENOMEM; 2185 goto out_putdev; 2186 } 2187 pkt_info(pd, "%lukB available on disc\n", lba << 1); 2188 } 2189 2190 return 0; 2191 2192 out_putdev: 2193 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 2194 out: 2195 return ret; 2196 } 2197 2198 /* 2199 * called when the device is closed. makes sure that the device flushes 2200 * the internal cache before we close. 2201 */ 2202 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2203 { 2204 if (flush && pkt_flush_cache(pd)) 2205 pkt_dbg(1, pd, "not flushing cache\n"); 2206 2207 pkt_lock_door(pd, 0); 2208 2209 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2210 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL); 2211 2212 pkt_shrink_pktlist(pd); 2213 } 2214 2215 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor) 2216 { 2217 if (dev_minor >= MAX_WRITERS) 2218 return NULL; 2219 2220 dev_minor = array_index_nospec(dev_minor, MAX_WRITERS); 2221 return pkt_devs[dev_minor]; 2222 } 2223 2224 static int pkt_open(struct block_device *bdev, fmode_t mode) 2225 { 2226 struct pktcdvd_device *pd = NULL; 2227 int ret; 2228 2229 mutex_lock(&pktcdvd_mutex); 2230 mutex_lock(&ctl_mutex); 2231 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev)); 2232 if (!pd) { 2233 ret = -ENODEV; 2234 goto out; 2235 } 2236 BUG_ON(pd->refcnt < 0); 2237 2238 pd->refcnt++; 2239 if (pd->refcnt > 1) { 2240 if ((mode & FMODE_WRITE) && 2241 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2242 ret = -EBUSY; 2243 goto out_dec; 2244 } 2245 } else { 2246 ret = pkt_open_dev(pd, mode & FMODE_WRITE); 2247 if (ret) 2248 goto out_dec; 2249 /* 2250 * needed here as well, since ext2 (among others) may change 2251 * the blocksize at mount time 2252 */ 2253 set_blocksize(bdev, CD_FRAMESIZE); 2254 } 2255 2256 mutex_unlock(&ctl_mutex); 2257 mutex_unlock(&pktcdvd_mutex); 2258 return 0; 2259 2260 out_dec: 2261 pd->refcnt--; 2262 out: 2263 mutex_unlock(&ctl_mutex); 2264 mutex_unlock(&pktcdvd_mutex); 2265 return ret; 2266 } 2267 2268 static void pkt_close(struct gendisk *disk, fmode_t mode) 2269 { 2270 struct pktcdvd_device *pd = disk->private_data; 2271 2272 mutex_lock(&pktcdvd_mutex); 2273 mutex_lock(&ctl_mutex); 2274 pd->refcnt--; 2275 BUG_ON(pd->refcnt < 0); 2276 if (pd->refcnt == 0) { 2277 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2278 pkt_release_dev(pd, flush); 2279 } 2280 mutex_unlock(&ctl_mutex); 2281 mutex_unlock(&pktcdvd_mutex); 2282 } 2283 2284 2285 static void pkt_end_io_read_cloned(struct bio *bio) 2286 { 2287 struct packet_stacked_data *psd = bio->bi_private; 2288 struct pktcdvd_device *pd = psd->pd; 2289 2290 psd->bio->bi_status = bio->bi_status; 2291 bio_put(bio); 2292 bio_endio(psd->bio); 2293 mempool_free(psd, &psd_pool); 2294 pkt_bio_finished(pd); 2295 } 2296 2297 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio) 2298 { 2299 struct bio *cloned_bio = 2300 bio_alloc_clone(pd->bdev, bio, GFP_NOIO, &pkt_bio_set); 2301 struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO); 2302 2303 psd->pd = pd; 2304 psd->bio = bio; 2305 cloned_bio->bi_private = psd; 2306 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2307 pd->stats.secs_r += bio_sectors(bio); 2308 pkt_queue_bio(pd, cloned_bio); 2309 } 2310 2311 static void pkt_make_request_write(struct request_queue *q, struct bio *bio) 2312 { 2313 struct pktcdvd_device *pd = q->queuedata; 2314 sector_t zone; 2315 struct packet_data *pkt; 2316 int was_empty, blocked_bio; 2317 struct pkt_rb_node *node; 2318 2319 zone = get_zone(bio->bi_iter.bi_sector, pd); 2320 2321 /* 2322 * If we find a matching packet in state WAITING or READ_WAIT, we can 2323 * just append this bio to that packet. 2324 */ 2325 spin_lock(&pd->cdrw.active_list_lock); 2326 blocked_bio = 0; 2327 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2328 if (pkt->sector == zone) { 2329 spin_lock(&pkt->lock); 2330 if ((pkt->state == PACKET_WAITING_STATE) || 2331 (pkt->state == PACKET_READ_WAIT_STATE)) { 2332 bio_list_add(&pkt->orig_bios, bio); 2333 pkt->write_size += 2334 bio->bi_iter.bi_size / CD_FRAMESIZE; 2335 if ((pkt->write_size >= pkt->frames) && 2336 (pkt->state == PACKET_WAITING_STATE)) { 2337 atomic_inc(&pkt->run_sm); 2338 wake_up(&pd->wqueue); 2339 } 2340 spin_unlock(&pkt->lock); 2341 spin_unlock(&pd->cdrw.active_list_lock); 2342 return; 2343 } else { 2344 blocked_bio = 1; 2345 } 2346 spin_unlock(&pkt->lock); 2347 } 2348 } 2349 spin_unlock(&pd->cdrw.active_list_lock); 2350 2351 /* 2352 * Test if there is enough room left in the bio work queue 2353 * (queue size >= congestion on mark). 2354 * If not, wait till the work queue size is below the congestion off mark. 2355 */ 2356 spin_lock(&pd->lock); 2357 if (pd->write_congestion_on > 0 2358 && pd->bio_queue_size >= pd->write_congestion_on) { 2359 struct wait_bit_queue_entry wqe; 2360 2361 init_wait_var_entry(&wqe, &pd->congested, 0); 2362 for (;;) { 2363 prepare_to_wait_event(__var_waitqueue(&pd->congested), 2364 &wqe.wq_entry, 2365 TASK_UNINTERRUPTIBLE); 2366 if (pd->bio_queue_size <= pd->write_congestion_off) 2367 break; 2368 pd->congested = true; 2369 spin_unlock(&pd->lock); 2370 schedule(); 2371 spin_lock(&pd->lock); 2372 } 2373 } 2374 spin_unlock(&pd->lock); 2375 2376 /* 2377 * No matching packet found. Store the bio in the work queue. 2378 */ 2379 node = mempool_alloc(&pd->rb_pool, GFP_NOIO); 2380 node->bio = bio; 2381 spin_lock(&pd->lock); 2382 BUG_ON(pd->bio_queue_size < 0); 2383 was_empty = (pd->bio_queue_size == 0); 2384 pkt_rbtree_insert(pd, node); 2385 spin_unlock(&pd->lock); 2386 2387 /* 2388 * Wake up the worker thread. 2389 */ 2390 atomic_set(&pd->scan_queue, 1); 2391 if (was_empty) { 2392 /* This wake_up is required for correct operation */ 2393 wake_up(&pd->wqueue); 2394 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2395 /* 2396 * This wake up is not required for correct operation, 2397 * but improves performance in some cases. 2398 */ 2399 wake_up(&pd->wqueue); 2400 } 2401 } 2402 2403 static void pkt_submit_bio(struct bio *bio) 2404 { 2405 struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->queue->queuedata; 2406 struct bio *split; 2407 2408 blk_queue_split(&bio); 2409 2410 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n", 2411 (unsigned long long)bio->bi_iter.bi_sector, 2412 (unsigned long long)bio_end_sector(bio)); 2413 2414 /* 2415 * Clone READ bios so we can have our own bi_end_io callback. 2416 */ 2417 if (bio_data_dir(bio) == READ) { 2418 pkt_make_request_read(pd, bio); 2419 return; 2420 } 2421 2422 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2423 pkt_notice(pd, "WRITE for ro device (%llu)\n", 2424 (unsigned long long)bio->bi_iter.bi_sector); 2425 goto end_io; 2426 } 2427 2428 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) { 2429 pkt_err(pd, "wrong bio size\n"); 2430 goto end_io; 2431 } 2432 2433 do { 2434 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd); 2435 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd); 2436 2437 if (last_zone != zone) { 2438 BUG_ON(last_zone != zone + pd->settings.size); 2439 2440 split = bio_split(bio, last_zone - 2441 bio->bi_iter.bi_sector, 2442 GFP_NOIO, &pkt_bio_set); 2443 bio_chain(split, bio); 2444 } else { 2445 split = bio; 2446 } 2447 2448 pkt_make_request_write(bio->bi_bdev->bd_disk->queue, split); 2449 } while (split != bio); 2450 2451 return; 2452 end_io: 2453 bio_io_error(bio); 2454 } 2455 2456 static void pkt_init_queue(struct pktcdvd_device *pd) 2457 { 2458 struct request_queue *q = pd->disk->queue; 2459 2460 blk_queue_logical_block_size(q, CD_FRAMESIZE); 2461 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS); 2462 q->queuedata = pd; 2463 } 2464 2465 static int pkt_seq_show(struct seq_file *m, void *p) 2466 { 2467 struct pktcdvd_device *pd = m->private; 2468 char *msg; 2469 char bdev_buf[BDEVNAME_SIZE]; 2470 int states[PACKET_NUM_STATES]; 2471 2472 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2473 bdevname(pd->bdev, bdev_buf)); 2474 2475 seq_printf(m, "\nSettings:\n"); 2476 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2477 2478 if (pd->settings.write_type == 0) 2479 msg = "Packet"; 2480 else 2481 msg = "Unknown"; 2482 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2483 2484 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2485 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2486 2487 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2488 2489 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2490 msg = "Mode 1"; 2491 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2492 msg = "Mode 2"; 2493 else 2494 msg = "Unknown"; 2495 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2496 2497 seq_printf(m, "\nStatistics:\n"); 2498 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2499 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2500 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2501 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2502 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2503 2504 seq_printf(m, "\nMisc:\n"); 2505 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2506 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2507 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2508 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2509 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2510 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2511 2512 seq_printf(m, "\nQueue state:\n"); 2513 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2514 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2515 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2516 2517 pkt_count_states(pd, states); 2518 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2519 states[0], states[1], states[2], states[3], states[4], states[5]); 2520 2521 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 2522 pd->write_congestion_off, 2523 pd->write_congestion_on); 2524 return 0; 2525 } 2526 2527 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2528 { 2529 int i; 2530 char b[BDEVNAME_SIZE]; 2531 struct block_device *bdev; 2532 struct scsi_device *sdev; 2533 2534 if (pd->pkt_dev == dev) { 2535 pkt_err(pd, "recursive setup not allowed\n"); 2536 return -EBUSY; 2537 } 2538 for (i = 0; i < MAX_WRITERS; i++) { 2539 struct pktcdvd_device *pd2 = pkt_devs[i]; 2540 if (!pd2) 2541 continue; 2542 if (pd2->bdev->bd_dev == dev) { 2543 pkt_err(pd, "%s already setup\n", 2544 bdevname(pd2->bdev, b)); 2545 return -EBUSY; 2546 } 2547 if (pd2->pkt_dev == dev) { 2548 pkt_err(pd, "can't chain pktcdvd devices\n"); 2549 return -EBUSY; 2550 } 2551 } 2552 2553 bdev = blkdev_get_by_dev(dev, FMODE_READ | FMODE_NDELAY, NULL); 2554 if (IS_ERR(bdev)) 2555 return PTR_ERR(bdev); 2556 sdev = scsi_device_from_queue(bdev->bd_disk->queue); 2557 if (!sdev) { 2558 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY); 2559 return -EINVAL; 2560 } 2561 put_device(&sdev->sdev_gendev); 2562 2563 /* This is safe, since we have a reference from open(). */ 2564 __module_get(THIS_MODULE); 2565 2566 pd->bdev = bdev; 2567 set_blocksize(bdev, CD_FRAMESIZE); 2568 2569 pkt_init_queue(pd); 2570 2571 atomic_set(&pd->cdrw.pending_bios, 0); 2572 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2573 if (IS_ERR(pd->cdrw.thread)) { 2574 pkt_err(pd, "can't start kernel thread\n"); 2575 goto out_mem; 2576 } 2577 2578 proc_create_single_data(pd->name, 0, pkt_proc, pkt_seq_show, pd); 2579 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b)); 2580 return 0; 2581 2582 out_mem: 2583 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY); 2584 /* This is safe: open() is still holding a reference. */ 2585 module_put(THIS_MODULE); 2586 return -ENOMEM; 2587 } 2588 2589 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) 2590 { 2591 struct pktcdvd_device *pd = bdev->bd_disk->private_data; 2592 int ret; 2593 2594 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n", 2595 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2596 2597 mutex_lock(&pktcdvd_mutex); 2598 switch (cmd) { 2599 case CDROMEJECT: 2600 /* 2601 * The door gets locked when the device is opened, so we 2602 * have to unlock it or else the eject command fails. 2603 */ 2604 if (pd->refcnt == 1) 2605 pkt_lock_door(pd, 0); 2606 fallthrough; 2607 /* 2608 * forward selected CDROM ioctls to CD-ROM, for UDF 2609 */ 2610 case CDROMMULTISESSION: 2611 case CDROMREADTOCENTRY: 2612 case CDROM_LAST_WRITTEN: 2613 case CDROM_SEND_PACKET: 2614 case SCSI_IOCTL_SEND_COMMAND: 2615 if (!bdev->bd_disk->fops->ioctl) 2616 ret = -ENOTTY; 2617 else 2618 ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 2619 break; 2620 default: 2621 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd); 2622 ret = -ENOTTY; 2623 } 2624 mutex_unlock(&pktcdvd_mutex); 2625 2626 return ret; 2627 } 2628 2629 static unsigned int pkt_check_events(struct gendisk *disk, 2630 unsigned int clearing) 2631 { 2632 struct pktcdvd_device *pd = disk->private_data; 2633 struct gendisk *attached_disk; 2634 2635 if (!pd) 2636 return 0; 2637 if (!pd->bdev) 2638 return 0; 2639 attached_disk = pd->bdev->bd_disk; 2640 if (!attached_disk || !attached_disk->fops->check_events) 2641 return 0; 2642 return attached_disk->fops->check_events(attached_disk, clearing); 2643 } 2644 2645 static char *pkt_devnode(struct gendisk *disk, umode_t *mode) 2646 { 2647 return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name); 2648 } 2649 2650 static const struct block_device_operations pktcdvd_ops = { 2651 .owner = THIS_MODULE, 2652 .submit_bio = pkt_submit_bio, 2653 .open = pkt_open, 2654 .release = pkt_close, 2655 .ioctl = pkt_ioctl, 2656 .compat_ioctl = blkdev_compat_ptr_ioctl, 2657 .check_events = pkt_check_events, 2658 .devnode = pkt_devnode, 2659 }; 2660 2661 /* 2662 * Set up mapping from pktcdvd device to CD-ROM device. 2663 */ 2664 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2665 { 2666 int idx; 2667 int ret = -ENOMEM; 2668 struct pktcdvd_device *pd; 2669 struct gendisk *disk; 2670 2671 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2672 2673 for (idx = 0; idx < MAX_WRITERS; idx++) 2674 if (!pkt_devs[idx]) 2675 break; 2676 if (idx == MAX_WRITERS) { 2677 pr_err("max %d writers supported\n", MAX_WRITERS); 2678 ret = -EBUSY; 2679 goto out_mutex; 2680 } 2681 2682 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2683 if (!pd) 2684 goto out_mutex; 2685 2686 ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE, 2687 sizeof(struct pkt_rb_node)); 2688 if (ret) 2689 goto out_mem; 2690 2691 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2692 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2693 spin_lock_init(&pd->cdrw.active_list_lock); 2694 2695 spin_lock_init(&pd->lock); 2696 spin_lock_init(&pd->iosched.lock); 2697 bio_list_init(&pd->iosched.read_queue); 2698 bio_list_init(&pd->iosched.write_queue); 2699 sprintf(pd->name, DRIVER_NAME"%d", idx); 2700 init_waitqueue_head(&pd->wqueue); 2701 pd->bio_queue = RB_ROOT; 2702 2703 pd->write_congestion_on = write_congestion_on; 2704 pd->write_congestion_off = write_congestion_off; 2705 2706 ret = -ENOMEM; 2707 disk = blk_alloc_disk(NUMA_NO_NODE); 2708 if (!disk) 2709 goto out_mem; 2710 pd->disk = disk; 2711 disk->major = pktdev_major; 2712 disk->first_minor = idx; 2713 disk->minors = 1; 2714 disk->fops = &pktcdvd_ops; 2715 disk->flags = GENHD_FL_REMOVABLE | GENHD_FL_NO_PART; 2716 strcpy(disk->disk_name, pd->name); 2717 disk->private_data = pd; 2718 2719 pd->pkt_dev = MKDEV(pktdev_major, idx); 2720 ret = pkt_new_dev(pd, dev); 2721 if (ret) 2722 goto out_mem2; 2723 2724 /* inherit events of the host device */ 2725 disk->events = pd->bdev->bd_disk->events; 2726 2727 ret = add_disk(disk); 2728 if (ret) 2729 goto out_mem2; 2730 2731 pkt_sysfs_dev_new(pd); 2732 pkt_debugfs_dev_new(pd); 2733 2734 pkt_devs[idx] = pd; 2735 if (pkt_dev) 2736 *pkt_dev = pd->pkt_dev; 2737 2738 mutex_unlock(&ctl_mutex); 2739 return 0; 2740 2741 out_mem2: 2742 blk_cleanup_disk(disk); 2743 out_mem: 2744 mempool_exit(&pd->rb_pool); 2745 kfree(pd); 2746 out_mutex: 2747 mutex_unlock(&ctl_mutex); 2748 pr_err("setup of pktcdvd device failed\n"); 2749 return ret; 2750 } 2751 2752 /* 2753 * Tear down mapping from pktcdvd device to CD-ROM device. 2754 */ 2755 static int pkt_remove_dev(dev_t pkt_dev) 2756 { 2757 struct pktcdvd_device *pd; 2758 int idx; 2759 int ret = 0; 2760 2761 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2762 2763 for (idx = 0; idx < MAX_WRITERS; idx++) { 2764 pd = pkt_devs[idx]; 2765 if (pd && (pd->pkt_dev == pkt_dev)) 2766 break; 2767 } 2768 if (idx == MAX_WRITERS) { 2769 pr_debug("dev not setup\n"); 2770 ret = -ENXIO; 2771 goto out; 2772 } 2773 2774 if (pd->refcnt > 0) { 2775 ret = -EBUSY; 2776 goto out; 2777 } 2778 if (!IS_ERR(pd->cdrw.thread)) 2779 kthread_stop(pd->cdrw.thread); 2780 2781 pkt_devs[idx] = NULL; 2782 2783 pkt_debugfs_dev_remove(pd); 2784 pkt_sysfs_dev_remove(pd); 2785 2786 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY); 2787 2788 remove_proc_entry(pd->name, pkt_proc); 2789 pkt_dbg(1, pd, "writer unmapped\n"); 2790 2791 del_gendisk(pd->disk); 2792 blk_cleanup_disk(pd->disk); 2793 2794 mempool_exit(&pd->rb_pool); 2795 kfree(pd); 2796 2797 /* This is safe: open() is still holding a reference. */ 2798 module_put(THIS_MODULE); 2799 2800 out: 2801 mutex_unlock(&ctl_mutex); 2802 return ret; 2803 } 2804 2805 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 2806 { 2807 struct pktcdvd_device *pd; 2808 2809 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2810 2811 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 2812 if (pd) { 2813 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 2814 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2815 } else { 2816 ctrl_cmd->dev = 0; 2817 ctrl_cmd->pkt_dev = 0; 2818 } 2819 ctrl_cmd->num_devices = MAX_WRITERS; 2820 2821 mutex_unlock(&ctl_mutex); 2822 } 2823 2824 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2825 { 2826 void __user *argp = (void __user *)arg; 2827 struct pkt_ctrl_command ctrl_cmd; 2828 int ret = 0; 2829 dev_t pkt_dev = 0; 2830 2831 if (cmd != PACKET_CTRL_CMD) 2832 return -ENOTTY; 2833 2834 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 2835 return -EFAULT; 2836 2837 switch (ctrl_cmd.command) { 2838 case PKT_CTRL_CMD_SETUP: 2839 if (!capable(CAP_SYS_ADMIN)) 2840 return -EPERM; 2841 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 2842 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 2843 break; 2844 case PKT_CTRL_CMD_TEARDOWN: 2845 if (!capable(CAP_SYS_ADMIN)) 2846 return -EPERM; 2847 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 2848 break; 2849 case PKT_CTRL_CMD_STATUS: 2850 pkt_get_status(&ctrl_cmd); 2851 break; 2852 default: 2853 return -ENOTTY; 2854 } 2855 2856 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 2857 return -EFAULT; 2858 return ret; 2859 } 2860 2861 #ifdef CONFIG_COMPAT 2862 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2863 { 2864 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); 2865 } 2866 #endif 2867 2868 static const struct file_operations pkt_ctl_fops = { 2869 .open = nonseekable_open, 2870 .unlocked_ioctl = pkt_ctl_ioctl, 2871 #ifdef CONFIG_COMPAT 2872 .compat_ioctl = pkt_ctl_compat_ioctl, 2873 #endif 2874 .owner = THIS_MODULE, 2875 .llseek = no_llseek, 2876 }; 2877 2878 static struct miscdevice pkt_misc = { 2879 .minor = MISC_DYNAMIC_MINOR, 2880 .name = DRIVER_NAME, 2881 .nodename = "pktcdvd/control", 2882 .fops = &pkt_ctl_fops 2883 }; 2884 2885 static int __init pkt_init(void) 2886 { 2887 int ret; 2888 2889 mutex_init(&ctl_mutex); 2890 2891 ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE, 2892 sizeof(struct packet_stacked_data)); 2893 if (ret) 2894 return ret; 2895 ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0); 2896 if (ret) { 2897 mempool_exit(&psd_pool); 2898 return ret; 2899 } 2900 2901 ret = register_blkdev(pktdev_major, DRIVER_NAME); 2902 if (ret < 0) { 2903 pr_err("unable to register block device\n"); 2904 goto out2; 2905 } 2906 if (!pktdev_major) 2907 pktdev_major = ret; 2908 2909 ret = pkt_sysfs_init(); 2910 if (ret) 2911 goto out; 2912 2913 pkt_debugfs_init(); 2914 2915 ret = misc_register(&pkt_misc); 2916 if (ret) { 2917 pr_err("unable to register misc device\n"); 2918 goto out_misc; 2919 } 2920 2921 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL); 2922 2923 return 0; 2924 2925 out_misc: 2926 pkt_debugfs_cleanup(); 2927 pkt_sysfs_cleanup(); 2928 out: 2929 unregister_blkdev(pktdev_major, DRIVER_NAME); 2930 out2: 2931 mempool_exit(&psd_pool); 2932 bioset_exit(&pkt_bio_set); 2933 return ret; 2934 } 2935 2936 static void __exit pkt_exit(void) 2937 { 2938 remove_proc_entry("driver/"DRIVER_NAME, NULL); 2939 misc_deregister(&pkt_misc); 2940 2941 pkt_debugfs_cleanup(); 2942 pkt_sysfs_cleanup(); 2943 2944 unregister_blkdev(pktdev_major, DRIVER_NAME); 2945 mempool_exit(&psd_pool); 2946 bioset_exit(&pkt_bio_set); 2947 } 2948 2949 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 2950 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 2951 MODULE_LICENSE("GPL"); 2952 2953 module_init(pkt_init); 2954 module_exit(pkt_exit); 2955