xref: /openbmc/linux/drivers/block/pktcdvd.c (revision 297ce026)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom ->submit_bio function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <linux/backing-dev.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_ioctl.h>
67 #include <scsi/scsi.h>
68 #include <linux/debugfs.h>
69 #include <linux/device.h>
70 #include <linux/nospec.h>
71 #include <linux/uaccess.h>
72 
73 #define DRIVER_NAME	"pktcdvd"
74 
75 #define pkt_err(pd, fmt, ...)						\
76 	pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
77 #define pkt_notice(pd, fmt, ...)					\
78 	pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
79 #define pkt_info(pd, fmt, ...)						\
80 	pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
81 
82 #define pkt_dbg(level, pd, fmt, ...)					\
83 do {									\
84 	if (level == 2 && PACKET_DEBUG >= 2)				\
85 		pr_notice("%s: %s():" fmt,				\
86 			  pd->name, __func__, ##__VA_ARGS__);		\
87 	else if (level == 1 && PACKET_DEBUG >= 1)			\
88 		pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__);		\
89 } while (0)
90 
91 #define MAX_SPEED 0xffff
92 
93 static DEFINE_MUTEX(pktcdvd_mutex);
94 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
95 static struct proc_dir_entry *pkt_proc;
96 static int pktdev_major;
97 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
98 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
99 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
100 static mempool_t psd_pool;
101 static struct bio_set pkt_bio_set;
102 
103 static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
104 static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
105 
106 /* forward declaration */
107 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
108 static int pkt_remove_dev(dev_t pkt_dev);
109 static int pkt_seq_show(struct seq_file *m, void *p);
110 
111 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
112 {
113 	return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
114 }
115 
116 /**********************************************************
117  * sysfs interface for pktcdvd
118  * by (C) 2006  Thomas Maier <balagi@justmail.de>
119 
120   /sys/class/pktcdvd/pktcdvd[0-7]/
121                      stat/reset
122                      stat/packets_started
123                      stat/packets_finished
124                      stat/kb_written
125                      stat/kb_read
126                      stat/kb_read_gather
127                      write_queue/size
128                      write_queue/congestion_off
129                      write_queue/congestion_on
130  **********************************************************/
131 
132 static ssize_t packets_started_show(struct device *dev,
133 				    struct device_attribute *attr, char *buf)
134 {
135 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
136 
137 	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_started);
138 }
139 static DEVICE_ATTR_RO(packets_started);
140 
141 static ssize_t packets_finished_show(struct device *dev,
142 				     struct device_attribute *attr, char *buf)
143 {
144 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
145 
146 	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_ended);
147 }
148 static DEVICE_ATTR_RO(packets_finished);
149 
150 static ssize_t kb_written_show(struct device *dev,
151 			       struct device_attribute *attr, char *buf)
152 {
153 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
154 
155 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_w >> 1);
156 }
157 static DEVICE_ATTR_RO(kb_written);
158 
159 static ssize_t kb_read_show(struct device *dev,
160 			    struct device_attribute *attr, char *buf)
161 {
162 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
163 
164 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_r >> 1);
165 }
166 static DEVICE_ATTR_RO(kb_read);
167 
168 static ssize_t kb_read_gather_show(struct device *dev,
169 				   struct device_attribute *attr, char *buf)
170 {
171 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
172 
173 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_rg >> 1);
174 }
175 static DEVICE_ATTR_RO(kb_read_gather);
176 
177 static ssize_t reset_store(struct device *dev, struct device_attribute *attr,
178 			   const char *buf, size_t len)
179 {
180 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
181 
182 	if (len > 0) {
183 		pd->stats.pkt_started = 0;
184 		pd->stats.pkt_ended = 0;
185 		pd->stats.secs_w = 0;
186 		pd->stats.secs_rg = 0;
187 		pd->stats.secs_r = 0;
188 	}
189 	return len;
190 }
191 static DEVICE_ATTR_WO(reset);
192 
193 static struct attribute *pkt_stat_attrs[] = {
194 	&dev_attr_packets_finished.attr,
195 	&dev_attr_packets_started.attr,
196 	&dev_attr_kb_read.attr,
197 	&dev_attr_kb_written.attr,
198 	&dev_attr_kb_read_gather.attr,
199 	&dev_attr_reset.attr,
200 	NULL,
201 };
202 
203 static const struct attribute_group pkt_stat_group = {
204 	.name = "stat",
205 	.attrs = pkt_stat_attrs,
206 };
207 
208 static ssize_t size_show(struct device *dev,
209 			 struct device_attribute *attr, char *buf)
210 {
211 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
212 	int n;
213 
214 	spin_lock(&pd->lock);
215 	n = sysfs_emit(buf, "%d\n", pd->bio_queue_size);
216 	spin_unlock(&pd->lock);
217 	return n;
218 }
219 static DEVICE_ATTR_RO(size);
220 
221 static void init_write_congestion_marks(int* lo, int* hi)
222 {
223 	if (*hi > 0) {
224 		*hi = max(*hi, 500);
225 		*hi = min(*hi, 1000000);
226 		if (*lo <= 0)
227 			*lo = *hi - 100;
228 		else {
229 			*lo = min(*lo, *hi - 100);
230 			*lo = max(*lo, 100);
231 		}
232 	} else {
233 		*hi = -1;
234 		*lo = -1;
235 	}
236 }
237 
238 static ssize_t congestion_off_show(struct device *dev,
239 				   struct device_attribute *attr, char *buf)
240 {
241 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
242 	int n;
243 
244 	spin_lock(&pd->lock);
245 	n = sysfs_emit(buf, "%d\n", pd->write_congestion_off);
246 	spin_unlock(&pd->lock);
247 	return n;
248 }
249 
250 static ssize_t congestion_off_store(struct device *dev,
251 				    struct device_attribute *attr,
252 				    const char *buf, size_t len)
253 {
254 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
255 	int val;
256 
257 	if (sscanf(buf, "%d", &val) == 1) {
258 		spin_lock(&pd->lock);
259 		pd->write_congestion_off = val;
260 		init_write_congestion_marks(&pd->write_congestion_off,
261 					&pd->write_congestion_on);
262 		spin_unlock(&pd->lock);
263 	}
264 	return len;
265 }
266 static DEVICE_ATTR_RW(congestion_off);
267 
268 static ssize_t congestion_on_show(struct device *dev,
269 				  struct device_attribute *attr, char *buf)
270 {
271 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
272 	int n;
273 
274 	spin_lock(&pd->lock);
275 	n = sysfs_emit(buf, "%d\n", pd->write_congestion_on);
276 	spin_unlock(&pd->lock);
277 	return n;
278 }
279 
280 static ssize_t congestion_on_store(struct device *dev,
281 				   struct device_attribute *attr,
282 				   const char *buf, size_t len)
283 {
284 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
285 	int val;
286 
287 	if (sscanf(buf, "%d", &val) == 1) {
288 		spin_lock(&pd->lock);
289 		pd->write_congestion_on = val;
290 		init_write_congestion_marks(&pd->write_congestion_off,
291 					&pd->write_congestion_on);
292 		spin_unlock(&pd->lock);
293 	}
294 	return len;
295 }
296 static DEVICE_ATTR_RW(congestion_on);
297 
298 static struct attribute *pkt_wq_attrs[] = {
299 	&dev_attr_congestion_on.attr,
300 	&dev_attr_congestion_off.attr,
301 	&dev_attr_size.attr,
302 	NULL,
303 };
304 
305 static const struct attribute_group pkt_wq_group = {
306 	.name = "write_queue",
307 	.attrs = pkt_wq_attrs,
308 };
309 
310 static const struct attribute_group *pkt_groups[] = {
311 	&pkt_stat_group,
312 	&pkt_wq_group,
313 	NULL,
314 };
315 
316 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
317 {
318 	if (class_pktcdvd) {
319 		pd->dev = device_create_with_groups(class_pktcdvd, NULL,
320 						    MKDEV(0, 0), pd, pkt_groups,
321 						    "%s", pd->name);
322 		if (IS_ERR(pd->dev))
323 			pd->dev = NULL;
324 	}
325 }
326 
327 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
328 {
329 	if (class_pktcdvd)
330 		device_unregister(pd->dev);
331 }
332 
333 
334 /********************************************************************
335   /sys/class/pktcdvd/
336                      add            map block device
337                      remove         unmap packet dev
338                      device_map     show mappings
339  *******************************************************************/
340 
341 static void class_pktcdvd_release(struct class *cls)
342 {
343 	kfree(cls);
344 }
345 
346 static ssize_t device_map_show(struct class *c, struct class_attribute *attr,
347 			       char *data)
348 {
349 	int n = 0;
350 	int idx;
351 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
352 	for (idx = 0; idx < MAX_WRITERS; idx++) {
353 		struct pktcdvd_device *pd = pkt_devs[idx];
354 		if (!pd)
355 			continue;
356 		n += sprintf(data+n, "%s %u:%u %u:%u\n",
357 			pd->name,
358 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
359 			MAJOR(pd->bdev->bd_dev),
360 			MINOR(pd->bdev->bd_dev));
361 	}
362 	mutex_unlock(&ctl_mutex);
363 	return n;
364 }
365 static CLASS_ATTR_RO(device_map);
366 
367 static ssize_t add_store(struct class *c, struct class_attribute *attr,
368 			 const char *buf, size_t count)
369 {
370 	unsigned int major, minor;
371 
372 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
373 		/* pkt_setup_dev() expects caller to hold reference to self */
374 		if (!try_module_get(THIS_MODULE))
375 			return -ENODEV;
376 
377 		pkt_setup_dev(MKDEV(major, minor), NULL);
378 
379 		module_put(THIS_MODULE);
380 
381 		return count;
382 	}
383 
384 	return -EINVAL;
385 }
386 static CLASS_ATTR_WO(add);
387 
388 static ssize_t remove_store(struct class *c, struct class_attribute *attr,
389 			    const char *buf, size_t count)
390 {
391 	unsigned int major, minor;
392 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
393 		pkt_remove_dev(MKDEV(major, minor));
394 		return count;
395 	}
396 	return -EINVAL;
397 }
398 static CLASS_ATTR_WO(remove);
399 
400 static struct attribute *class_pktcdvd_attrs[] = {
401 	&class_attr_add.attr,
402 	&class_attr_remove.attr,
403 	&class_attr_device_map.attr,
404 	NULL,
405 };
406 ATTRIBUTE_GROUPS(class_pktcdvd);
407 
408 static int pkt_sysfs_init(void)
409 {
410 	int ret = 0;
411 
412 	/*
413 	 * create control files in sysfs
414 	 * /sys/class/pktcdvd/...
415 	 */
416 	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
417 	if (!class_pktcdvd)
418 		return -ENOMEM;
419 	class_pktcdvd->name = DRIVER_NAME;
420 	class_pktcdvd->owner = THIS_MODULE;
421 	class_pktcdvd->class_release = class_pktcdvd_release;
422 	class_pktcdvd->class_groups = class_pktcdvd_groups;
423 	ret = class_register(class_pktcdvd);
424 	if (ret) {
425 		kfree(class_pktcdvd);
426 		class_pktcdvd = NULL;
427 		pr_err("failed to create class pktcdvd\n");
428 		return ret;
429 	}
430 	return 0;
431 }
432 
433 static void pkt_sysfs_cleanup(void)
434 {
435 	if (class_pktcdvd)
436 		class_destroy(class_pktcdvd);
437 	class_pktcdvd = NULL;
438 }
439 
440 /********************************************************************
441   entries in debugfs
442 
443   /sys/kernel/debug/pktcdvd[0-7]/
444 			info
445 
446  *******************************************************************/
447 
448 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
449 {
450 	return pkt_seq_show(m, p);
451 }
452 
453 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
454 {
455 	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
456 }
457 
458 static const struct file_operations debug_fops = {
459 	.open		= pkt_debugfs_fops_open,
460 	.read		= seq_read,
461 	.llseek		= seq_lseek,
462 	.release	= single_release,
463 	.owner		= THIS_MODULE,
464 };
465 
466 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
467 {
468 	if (!pkt_debugfs_root)
469 		return;
470 	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
471 	if (!pd->dfs_d_root)
472 		return;
473 
474 	pd->dfs_f_info = debugfs_create_file("info", 0444,
475 					     pd->dfs_d_root, pd, &debug_fops);
476 }
477 
478 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
479 {
480 	if (!pkt_debugfs_root)
481 		return;
482 	debugfs_remove(pd->dfs_f_info);
483 	debugfs_remove(pd->dfs_d_root);
484 	pd->dfs_f_info = NULL;
485 	pd->dfs_d_root = NULL;
486 }
487 
488 static void pkt_debugfs_init(void)
489 {
490 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
491 }
492 
493 static void pkt_debugfs_cleanup(void)
494 {
495 	debugfs_remove(pkt_debugfs_root);
496 	pkt_debugfs_root = NULL;
497 }
498 
499 /* ----------------------------------------------------------*/
500 
501 
502 static void pkt_bio_finished(struct pktcdvd_device *pd)
503 {
504 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
505 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
506 		pkt_dbg(2, pd, "queue empty\n");
507 		atomic_set(&pd->iosched.attention, 1);
508 		wake_up(&pd->wqueue);
509 	}
510 }
511 
512 /*
513  * Allocate a packet_data struct
514  */
515 static struct packet_data *pkt_alloc_packet_data(int frames)
516 {
517 	int i;
518 	struct packet_data *pkt;
519 
520 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
521 	if (!pkt)
522 		goto no_pkt;
523 
524 	pkt->frames = frames;
525 	pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
526 	if (!pkt->w_bio)
527 		goto no_bio;
528 
529 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
530 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
531 		if (!pkt->pages[i])
532 			goto no_page;
533 	}
534 
535 	spin_lock_init(&pkt->lock);
536 	bio_list_init(&pkt->orig_bios);
537 
538 	for (i = 0; i < frames; i++) {
539 		struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
540 		if (!bio)
541 			goto no_rd_bio;
542 
543 		pkt->r_bios[i] = bio;
544 	}
545 
546 	return pkt;
547 
548 no_rd_bio:
549 	for (i = 0; i < frames; i++) {
550 		struct bio *bio = pkt->r_bios[i];
551 		if (bio)
552 			bio_put(bio);
553 	}
554 
555 no_page:
556 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
557 		if (pkt->pages[i])
558 			__free_page(pkt->pages[i]);
559 	bio_put(pkt->w_bio);
560 no_bio:
561 	kfree(pkt);
562 no_pkt:
563 	return NULL;
564 }
565 
566 /*
567  * Free a packet_data struct
568  */
569 static void pkt_free_packet_data(struct packet_data *pkt)
570 {
571 	int i;
572 
573 	for (i = 0; i < pkt->frames; i++) {
574 		struct bio *bio = pkt->r_bios[i];
575 		if (bio)
576 			bio_put(bio);
577 	}
578 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
579 		__free_page(pkt->pages[i]);
580 	bio_put(pkt->w_bio);
581 	kfree(pkt);
582 }
583 
584 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
585 {
586 	struct packet_data *pkt, *next;
587 
588 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
589 
590 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
591 		pkt_free_packet_data(pkt);
592 	}
593 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
594 }
595 
596 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
597 {
598 	struct packet_data *pkt;
599 
600 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
601 
602 	while (nr_packets > 0) {
603 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
604 		if (!pkt) {
605 			pkt_shrink_pktlist(pd);
606 			return 0;
607 		}
608 		pkt->id = nr_packets;
609 		pkt->pd = pd;
610 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
611 		nr_packets--;
612 	}
613 	return 1;
614 }
615 
616 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
617 {
618 	struct rb_node *n = rb_next(&node->rb_node);
619 	if (!n)
620 		return NULL;
621 	return rb_entry(n, struct pkt_rb_node, rb_node);
622 }
623 
624 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
625 {
626 	rb_erase(&node->rb_node, &pd->bio_queue);
627 	mempool_free(node, &pd->rb_pool);
628 	pd->bio_queue_size--;
629 	BUG_ON(pd->bio_queue_size < 0);
630 }
631 
632 /*
633  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
634  */
635 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
636 {
637 	struct rb_node *n = pd->bio_queue.rb_node;
638 	struct rb_node *next;
639 	struct pkt_rb_node *tmp;
640 
641 	if (!n) {
642 		BUG_ON(pd->bio_queue_size > 0);
643 		return NULL;
644 	}
645 
646 	for (;;) {
647 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
648 		if (s <= tmp->bio->bi_iter.bi_sector)
649 			next = n->rb_left;
650 		else
651 			next = n->rb_right;
652 		if (!next)
653 			break;
654 		n = next;
655 	}
656 
657 	if (s > tmp->bio->bi_iter.bi_sector) {
658 		tmp = pkt_rbtree_next(tmp);
659 		if (!tmp)
660 			return NULL;
661 	}
662 	BUG_ON(s > tmp->bio->bi_iter.bi_sector);
663 	return tmp;
664 }
665 
666 /*
667  * Insert a node into the pd->bio_queue rb tree.
668  */
669 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
670 {
671 	struct rb_node **p = &pd->bio_queue.rb_node;
672 	struct rb_node *parent = NULL;
673 	sector_t s = node->bio->bi_iter.bi_sector;
674 	struct pkt_rb_node *tmp;
675 
676 	while (*p) {
677 		parent = *p;
678 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
679 		if (s < tmp->bio->bi_iter.bi_sector)
680 			p = &(*p)->rb_left;
681 		else
682 			p = &(*p)->rb_right;
683 	}
684 	rb_link_node(&node->rb_node, parent, p);
685 	rb_insert_color(&node->rb_node, &pd->bio_queue);
686 	pd->bio_queue_size++;
687 }
688 
689 /*
690  * Send a packet_command to the underlying block device and
691  * wait for completion.
692  */
693 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
694 {
695 	struct request_queue *q = bdev_get_queue(pd->bdev);
696 	struct scsi_cmnd *scmd;
697 	struct request *rq;
698 	int ret = 0;
699 
700 	rq = scsi_alloc_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
701 			     REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
702 	if (IS_ERR(rq))
703 		return PTR_ERR(rq);
704 	scmd = blk_mq_rq_to_pdu(rq);
705 
706 	if (cgc->buflen) {
707 		ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
708 				      GFP_NOIO);
709 		if (ret)
710 			goto out;
711 	}
712 
713 	scmd->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
714 	memcpy(scmd->cmnd, cgc->cmd, CDROM_PACKET_SIZE);
715 
716 	rq->timeout = 60*HZ;
717 	if (cgc->quiet)
718 		rq->rq_flags |= RQF_QUIET;
719 
720 	blk_execute_rq(rq, false);
721 	if (scmd->result)
722 		ret = -EIO;
723 out:
724 	blk_mq_free_request(rq);
725 	return ret;
726 }
727 
728 static const char *sense_key_string(__u8 index)
729 {
730 	static const char * const info[] = {
731 		"No sense", "Recovered error", "Not ready",
732 		"Medium error", "Hardware error", "Illegal request",
733 		"Unit attention", "Data protect", "Blank check",
734 	};
735 
736 	return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
737 }
738 
739 /*
740  * A generic sense dump / resolve mechanism should be implemented across
741  * all ATAPI + SCSI devices.
742  */
743 static void pkt_dump_sense(struct pktcdvd_device *pd,
744 			   struct packet_command *cgc)
745 {
746 	struct scsi_sense_hdr *sshdr = cgc->sshdr;
747 
748 	if (sshdr)
749 		pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
750 			CDROM_PACKET_SIZE, cgc->cmd,
751 			sshdr->sense_key, sshdr->asc, sshdr->ascq,
752 			sense_key_string(sshdr->sense_key));
753 	else
754 		pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
755 }
756 
757 /*
758  * flush the drive cache to media
759  */
760 static int pkt_flush_cache(struct pktcdvd_device *pd)
761 {
762 	struct packet_command cgc;
763 
764 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
765 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
766 	cgc.quiet = 1;
767 
768 	/*
769 	 * the IMMED bit -- we default to not setting it, although that
770 	 * would allow a much faster close, this is safer
771 	 */
772 #if 0
773 	cgc.cmd[1] = 1 << 1;
774 #endif
775 	return pkt_generic_packet(pd, &cgc);
776 }
777 
778 /*
779  * speed is given as the normal factor, e.g. 4 for 4x
780  */
781 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
782 				unsigned write_speed, unsigned read_speed)
783 {
784 	struct packet_command cgc;
785 	struct scsi_sense_hdr sshdr;
786 	int ret;
787 
788 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
789 	cgc.sshdr = &sshdr;
790 	cgc.cmd[0] = GPCMD_SET_SPEED;
791 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
792 	cgc.cmd[3] = read_speed & 0xff;
793 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
794 	cgc.cmd[5] = write_speed & 0xff;
795 
796 	ret = pkt_generic_packet(pd, &cgc);
797 	if (ret)
798 		pkt_dump_sense(pd, &cgc);
799 
800 	return ret;
801 }
802 
803 /*
804  * Queue a bio for processing by the low-level CD device. Must be called
805  * from process context.
806  */
807 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
808 {
809 	spin_lock(&pd->iosched.lock);
810 	if (bio_data_dir(bio) == READ)
811 		bio_list_add(&pd->iosched.read_queue, bio);
812 	else
813 		bio_list_add(&pd->iosched.write_queue, bio);
814 	spin_unlock(&pd->iosched.lock);
815 
816 	atomic_set(&pd->iosched.attention, 1);
817 	wake_up(&pd->wqueue);
818 }
819 
820 /*
821  * Process the queued read/write requests. This function handles special
822  * requirements for CDRW drives:
823  * - A cache flush command must be inserted before a read request if the
824  *   previous request was a write.
825  * - Switching between reading and writing is slow, so don't do it more often
826  *   than necessary.
827  * - Optimize for throughput at the expense of latency. This means that streaming
828  *   writes will never be interrupted by a read, but if the drive has to seek
829  *   before the next write, switch to reading instead if there are any pending
830  *   read requests.
831  * - Set the read speed according to current usage pattern. When only reading
832  *   from the device, it's best to use the highest possible read speed, but
833  *   when switching often between reading and writing, it's better to have the
834  *   same read and write speeds.
835  */
836 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
837 {
838 
839 	if (atomic_read(&pd->iosched.attention) == 0)
840 		return;
841 	atomic_set(&pd->iosched.attention, 0);
842 
843 	for (;;) {
844 		struct bio *bio;
845 		int reads_queued, writes_queued;
846 
847 		spin_lock(&pd->iosched.lock);
848 		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
849 		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
850 		spin_unlock(&pd->iosched.lock);
851 
852 		if (!reads_queued && !writes_queued)
853 			break;
854 
855 		if (pd->iosched.writing) {
856 			int need_write_seek = 1;
857 			spin_lock(&pd->iosched.lock);
858 			bio = bio_list_peek(&pd->iosched.write_queue);
859 			spin_unlock(&pd->iosched.lock);
860 			if (bio && (bio->bi_iter.bi_sector ==
861 				    pd->iosched.last_write))
862 				need_write_seek = 0;
863 			if (need_write_seek && reads_queued) {
864 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
865 					pkt_dbg(2, pd, "write, waiting\n");
866 					break;
867 				}
868 				pkt_flush_cache(pd);
869 				pd->iosched.writing = 0;
870 			}
871 		} else {
872 			if (!reads_queued && writes_queued) {
873 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
874 					pkt_dbg(2, pd, "read, waiting\n");
875 					break;
876 				}
877 				pd->iosched.writing = 1;
878 			}
879 		}
880 
881 		spin_lock(&pd->iosched.lock);
882 		if (pd->iosched.writing)
883 			bio = bio_list_pop(&pd->iosched.write_queue);
884 		else
885 			bio = bio_list_pop(&pd->iosched.read_queue);
886 		spin_unlock(&pd->iosched.lock);
887 
888 		if (!bio)
889 			continue;
890 
891 		if (bio_data_dir(bio) == READ)
892 			pd->iosched.successive_reads +=
893 				bio->bi_iter.bi_size >> 10;
894 		else {
895 			pd->iosched.successive_reads = 0;
896 			pd->iosched.last_write = bio_end_sector(bio);
897 		}
898 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
899 			if (pd->read_speed == pd->write_speed) {
900 				pd->read_speed = MAX_SPEED;
901 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
902 			}
903 		} else {
904 			if (pd->read_speed != pd->write_speed) {
905 				pd->read_speed = pd->write_speed;
906 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
907 			}
908 		}
909 
910 		atomic_inc(&pd->cdrw.pending_bios);
911 		submit_bio_noacct(bio);
912 	}
913 }
914 
915 /*
916  * Special care is needed if the underlying block device has a small
917  * max_phys_segments value.
918  */
919 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
920 {
921 	if ((pd->settings.size << 9) / CD_FRAMESIZE
922 	    <= queue_max_segments(q)) {
923 		/*
924 		 * The cdrom device can handle one segment/frame
925 		 */
926 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
927 		return 0;
928 	} else if ((pd->settings.size << 9) / PAGE_SIZE
929 		   <= queue_max_segments(q)) {
930 		/*
931 		 * We can handle this case at the expense of some extra memory
932 		 * copies during write operations
933 		 */
934 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
935 		return 0;
936 	} else {
937 		pkt_err(pd, "cdrom max_phys_segments too small\n");
938 		return -EIO;
939 	}
940 }
941 
942 static void pkt_end_io_read(struct bio *bio)
943 {
944 	struct packet_data *pkt = bio->bi_private;
945 	struct pktcdvd_device *pd = pkt->pd;
946 	BUG_ON(!pd);
947 
948 	pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
949 		bio, (unsigned long long)pkt->sector,
950 		(unsigned long long)bio->bi_iter.bi_sector, bio->bi_status);
951 
952 	if (bio->bi_status)
953 		atomic_inc(&pkt->io_errors);
954 	if (atomic_dec_and_test(&pkt->io_wait)) {
955 		atomic_inc(&pkt->run_sm);
956 		wake_up(&pd->wqueue);
957 	}
958 	pkt_bio_finished(pd);
959 }
960 
961 static void pkt_end_io_packet_write(struct bio *bio)
962 {
963 	struct packet_data *pkt = bio->bi_private;
964 	struct pktcdvd_device *pd = pkt->pd;
965 	BUG_ON(!pd);
966 
967 	pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_status);
968 
969 	pd->stats.pkt_ended++;
970 
971 	pkt_bio_finished(pd);
972 	atomic_dec(&pkt->io_wait);
973 	atomic_inc(&pkt->run_sm);
974 	wake_up(&pd->wqueue);
975 }
976 
977 /*
978  * Schedule reads for the holes in a packet
979  */
980 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
981 {
982 	int frames_read = 0;
983 	struct bio *bio;
984 	int f;
985 	char written[PACKET_MAX_SIZE];
986 
987 	BUG_ON(bio_list_empty(&pkt->orig_bios));
988 
989 	atomic_set(&pkt->io_wait, 0);
990 	atomic_set(&pkt->io_errors, 0);
991 
992 	/*
993 	 * Figure out which frames we need to read before we can write.
994 	 */
995 	memset(written, 0, sizeof(written));
996 	spin_lock(&pkt->lock);
997 	bio_list_for_each(bio, &pkt->orig_bios) {
998 		int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
999 			(CD_FRAMESIZE >> 9);
1000 		int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1001 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1002 		BUG_ON(first_frame < 0);
1003 		BUG_ON(first_frame + num_frames > pkt->frames);
1004 		for (f = first_frame; f < first_frame + num_frames; f++)
1005 			written[f] = 1;
1006 	}
1007 	spin_unlock(&pkt->lock);
1008 
1009 	if (pkt->cache_valid) {
1010 		pkt_dbg(2, pd, "zone %llx cached\n",
1011 			(unsigned long long)pkt->sector);
1012 		goto out_account;
1013 	}
1014 
1015 	/*
1016 	 * Schedule reads for missing parts of the packet.
1017 	 */
1018 	for (f = 0; f < pkt->frames; f++) {
1019 		int p, offset;
1020 
1021 		if (written[f])
1022 			continue;
1023 
1024 		bio = pkt->r_bios[f];
1025 		bio_reset(bio, pd->bdev, REQ_OP_READ);
1026 		bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1027 		bio->bi_end_io = pkt_end_io_read;
1028 		bio->bi_private = pkt;
1029 
1030 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1031 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1032 		pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1033 			f, pkt->pages[p], offset);
1034 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1035 			BUG();
1036 
1037 		atomic_inc(&pkt->io_wait);
1038 		pkt_queue_bio(pd, bio);
1039 		frames_read++;
1040 	}
1041 
1042 out_account:
1043 	pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1044 		frames_read, (unsigned long long)pkt->sector);
1045 	pd->stats.pkt_started++;
1046 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1047 }
1048 
1049 /*
1050  * Find a packet matching zone, or the least recently used packet if
1051  * there is no match.
1052  */
1053 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1054 {
1055 	struct packet_data *pkt;
1056 
1057 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1058 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1059 			list_del_init(&pkt->list);
1060 			if (pkt->sector != zone)
1061 				pkt->cache_valid = 0;
1062 			return pkt;
1063 		}
1064 	}
1065 	BUG();
1066 	return NULL;
1067 }
1068 
1069 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1070 {
1071 	if (pkt->cache_valid) {
1072 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1073 	} else {
1074 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1075 	}
1076 }
1077 
1078 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1079 {
1080 #if PACKET_DEBUG > 1
1081 	static const char *state_name[] = {
1082 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1083 	};
1084 	enum packet_data_state old_state = pkt->state;
1085 	pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1086 		pkt->id, (unsigned long long)pkt->sector,
1087 		state_name[old_state], state_name[state]);
1088 #endif
1089 	pkt->state = state;
1090 }
1091 
1092 /*
1093  * Scan the work queue to see if we can start a new packet.
1094  * returns non-zero if any work was done.
1095  */
1096 static int pkt_handle_queue(struct pktcdvd_device *pd)
1097 {
1098 	struct packet_data *pkt, *p;
1099 	struct bio *bio = NULL;
1100 	sector_t zone = 0; /* Suppress gcc warning */
1101 	struct pkt_rb_node *node, *first_node;
1102 	struct rb_node *n;
1103 
1104 	atomic_set(&pd->scan_queue, 0);
1105 
1106 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1107 		pkt_dbg(2, pd, "no pkt\n");
1108 		return 0;
1109 	}
1110 
1111 	/*
1112 	 * Try to find a zone we are not already working on.
1113 	 */
1114 	spin_lock(&pd->lock);
1115 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1116 	if (!first_node) {
1117 		n = rb_first(&pd->bio_queue);
1118 		if (n)
1119 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1120 	}
1121 	node = first_node;
1122 	while (node) {
1123 		bio = node->bio;
1124 		zone = get_zone(bio->bi_iter.bi_sector, pd);
1125 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1126 			if (p->sector == zone) {
1127 				bio = NULL;
1128 				goto try_next_bio;
1129 			}
1130 		}
1131 		break;
1132 try_next_bio:
1133 		node = pkt_rbtree_next(node);
1134 		if (!node) {
1135 			n = rb_first(&pd->bio_queue);
1136 			if (n)
1137 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1138 		}
1139 		if (node == first_node)
1140 			node = NULL;
1141 	}
1142 	spin_unlock(&pd->lock);
1143 	if (!bio) {
1144 		pkt_dbg(2, pd, "no bio\n");
1145 		return 0;
1146 	}
1147 
1148 	pkt = pkt_get_packet_data(pd, zone);
1149 
1150 	pd->current_sector = zone + pd->settings.size;
1151 	pkt->sector = zone;
1152 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1153 	pkt->write_size = 0;
1154 
1155 	/*
1156 	 * Scan work queue for bios in the same zone and link them
1157 	 * to this packet.
1158 	 */
1159 	spin_lock(&pd->lock);
1160 	pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1161 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1162 		bio = node->bio;
1163 		pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1164 			get_zone(bio->bi_iter.bi_sector, pd));
1165 		if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1166 			break;
1167 		pkt_rbtree_erase(pd, node);
1168 		spin_lock(&pkt->lock);
1169 		bio_list_add(&pkt->orig_bios, bio);
1170 		pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1171 		spin_unlock(&pkt->lock);
1172 	}
1173 	/* check write congestion marks, and if bio_queue_size is
1174 	 * below, wake up any waiters
1175 	 */
1176 	if (pd->congested &&
1177 	    pd->bio_queue_size <= pd->write_congestion_off) {
1178 		pd->congested = false;
1179 		wake_up_var(&pd->congested);
1180 	}
1181 	spin_unlock(&pd->lock);
1182 
1183 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1184 	pkt_set_state(pkt, PACKET_WAITING_STATE);
1185 	atomic_set(&pkt->run_sm, 1);
1186 
1187 	spin_lock(&pd->cdrw.active_list_lock);
1188 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1189 	spin_unlock(&pd->cdrw.active_list_lock);
1190 
1191 	return 1;
1192 }
1193 
1194 /**
1195  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1196  * another
1197  * @src: source bio list
1198  * @dst: destination bio list
1199  *
1200  * Stops when it reaches the end of either the @src list or @dst list - that is,
1201  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1202  * bios).
1203  */
1204 static void bio_list_copy_data(struct bio *dst, struct bio *src)
1205 {
1206 	struct bvec_iter src_iter = src->bi_iter;
1207 	struct bvec_iter dst_iter = dst->bi_iter;
1208 
1209 	while (1) {
1210 		if (!src_iter.bi_size) {
1211 			src = src->bi_next;
1212 			if (!src)
1213 				break;
1214 
1215 			src_iter = src->bi_iter;
1216 		}
1217 
1218 		if (!dst_iter.bi_size) {
1219 			dst = dst->bi_next;
1220 			if (!dst)
1221 				break;
1222 
1223 			dst_iter = dst->bi_iter;
1224 		}
1225 
1226 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1227 	}
1228 }
1229 
1230 /*
1231  * Assemble a bio to write one packet and queue the bio for processing
1232  * by the underlying block device.
1233  */
1234 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1235 {
1236 	int f;
1237 
1238 	bio_reset(pkt->w_bio, pd->bdev, REQ_OP_WRITE);
1239 	pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1240 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1241 	pkt->w_bio->bi_private = pkt;
1242 
1243 	/* XXX: locking? */
1244 	for (f = 0; f < pkt->frames; f++) {
1245 		struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1246 		unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1247 
1248 		if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1249 			BUG();
1250 	}
1251 	pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1252 
1253 	/*
1254 	 * Fill-in bvec with data from orig_bios.
1255 	 */
1256 	spin_lock(&pkt->lock);
1257 	bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1258 
1259 	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1260 	spin_unlock(&pkt->lock);
1261 
1262 	pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1263 		pkt->write_size, (unsigned long long)pkt->sector);
1264 
1265 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1266 		pkt->cache_valid = 1;
1267 	else
1268 		pkt->cache_valid = 0;
1269 
1270 	/* Start the write request */
1271 	atomic_set(&pkt->io_wait, 1);
1272 	pkt_queue_bio(pd, pkt->w_bio);
1273 }
1274 
1275 static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1276 {
1277 	struct bio *bio;
1278 
1279 	if (status)
1280 		pkt->cache_valid = 0;
1281 
1282 	/* Finish all bios corresponding to this packet */
1283 	while ((bio = bio_list_pop(&pkt->orig_bios))) {
1284 		bio->bi_status = status;
1285 		bio_endio(bio);
1286 	}
1287 }
1288 
1289 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1290 {
1291 	pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1292 
1293 	for (;;) {
1294 		switch (pkt->state) {
1295 		case PACKET_WAITING_STATE:
1296 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1297 				return;
1298 
1299 			pkt->sleep_time = 0;
1300 			pkt_gather_data(pd, pkt);
1301 			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1302 			break;
1303 
1304 		case PACKET_READ_WAIT_STATE:
1305 			if (atomic_read(&pkt->io_wait) > 0)
1306 				return;
1307 
1308 			if (atomic_read(&pkt->io_errors) > 0) {
1309 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1310 			} else {
1311 				pkt_start_write(pd, pkt);
1312 			}
1313 			break;
1314 
1315 		case PACKET_WRITE_WAIT_STATE:
1316 			if (atomic_read(&pkt->io_wait) > 0)
1317 				return;
1318 
1319 			if (!pkt->w_bio->bi_status) {
1320 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1321 			} else {
1322 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1323 			}
1324 			break;
1325 
1326 		case PACKET_RECOVERY_STATE:
1327 			pkt_dbg(2, pd, "No recovery possible\n");
1328 			pkt_set_state(pkt, PACKET_FINISHED_STATE);
1329 			break;
1330 
1331 		case PACKET_FINISHED_STATE:
1332 			pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1333 			return;
1334 
1335 		default:
1336 			BUG();
1337 			break;
1338 		}
1339 	}
1340 }
1341 
1342 static void pkt_handle_packets(struct pktcdvd_device *pd)
1343 {
1344 	struct packet_data *pkt, *next;
1345 
1346 	/*
1347 	 * Run state machine for active packets
1348 	 */
1349 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1350 		if (atomic_read(&pkt->run_sm) > 0) {
1351 			atomic_set(&pkt->run_sm, 0);
1352 			pkt_run_state_machine(pd, pkt);
1353 		}
1354 	}
1355 
1356 	/*
1357 	 * Move no longer active packets to the free list
1358 	 */
1359 	spin_lock(&pd->cdrw.active_list_lock);
1360 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1361 		if (pkt->state == PACKET_FINISHED_STATE) {
1362 			list_del(&pkt->list);
1363 			pkt_put_packet_data(pd, pkt);
1364 			pkt_set_state(pkt, PACKET_IDLE_STATE);
1365 			atomic_set(&pd->scan_queue, 1);
1366 		}
1367 	}
1368 	spin_unlock(&pd->cdrw.active_list_lock);
1369 }
1370 
1371 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1372 {
1373 	struct packet_data *pkt;
1374 	int i;
1375 
1376 	for (i = 0; i < PACKET_NUM_STATES; i++)
1377 		states[i] = 0;
1378 
1379 	spin_lock(&pd->cdrw.active_list_lock);
1380 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1381 		states[pkt->state]++;
1382 	}
1383 	spin_unlock(&pd->cdrw.active_list_lock);
1384 }
1385 
1386 /*
1387  * kcdrwd is woken up when writes have been queued for one of our
1388  * registered devices
1389  */
1390 static int kcdrwd(void *foobar)
1391 {
1392 	struct pktcdvd_device *pd = foobar;
1393 	struct packet_data *pkt;
1394 	long min_sleep_time, residue;
1395 
1396 	set_user_nice(current, MIN_NICE);
1397 	set_freezable();
1398 
1399 	for (;;) {
1400 		DECLARE_WAITQUEUE(wait, current);
1401 
1402 		/*
1403 		 * Wait until there is something to do
1404 		 */
1405 		add_wait_queue(&pd->wqueue, &wait);
1406 		for (;;) {
1407 			set_current_state(TASK_INTERRUPTIBLE);
1408 
1409 			/* Check if we need to run pkt_handle_queue */
1410 			if (atomic_read(&pd->scan_queue) > 0)
1411 				goto work_to_do;
1412 
1413 			/* Check if we need to run the state machine for some packet */
1414 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1415 				if (atomic_read(&pkt->run_sm) > 0)
1416 					goto work_to_do;
1417 			}
1418 
1419 			/* Check if we need to process the iosched queues */
1420 			if (atomic_read(&pd->iosched.attention) != 0)
1421 				goto work_to_do;
1422 
1423 			/* Otherwise, go to sleep */
1424 			if (PACKET_DEBUG > 1) {
1425 				int states[PACKET_NUM_STATES];
1426 				pkt_count_states(pd, states);
1427 				pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1428 					states[0], states[1], states[2],
1429 					states[3], states[4], states[5]);
1430 			}
1431 
1432 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1433 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1434 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1435 					min_sleep_time = pkt->sleep_time;
1436 			}
1437 
1438 			pkt_dbg(2, pd, "sleeping\n");
1439 			residue = schedule_timeout(min_sleep_time);
1440 			pkt_dbg(2, pd, "wake up\n");
1441 
1442 			/* make swsusp happy with our thread */
1443 			try_to_freeze();
1444 
1445 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1446 				if (!pkt->sleep_time)
1447 					continue;
1448 				pkt->sleep_time -= min_sleep_time - residue;
1449 				if (pkt->sleep_time <= 0) {
1450 					pkt->sleep_time = 0;
1451 					atomic_inc(&pkt->run_sm);
1452 				}
1453 			}
1454 
1455 			if (kthread_should_stop())
1456 				break;
1457 		}
1458 work_to_do:
1459 		set_current_state(TASK_RUNNING);
1460 		remove_wait_queue(&pd->wqueue, &wait);
1461 
1462 		if (kthread_should_stop())
1463 			break;
1464 
1465 		/*
1466 		 * if pkt_handle_queue returns true, we can queue
1467 		 * another request.
1468 		 */
1469 		while (pkt_handle_queue(pd))
1470 			;
1471 
1472 		/*
1473 		 * Handle packet state machine
1474 		 */
1475 		pkt_handle_packets(pd);
1476 
1477 		/*
1478 		 * Handle iosched queues
1479 		 */
1480 		pkt_iosched_process_queue(pd);
1481 	}
1482 
1483 	return 0;
1484 }
1485 
1486 static void pkt_print_settings(struct pktcdvd_device *pd)
1487 {
1488 	pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1489 		 pd->settings.fp ? "Fixed" : "Variable",
1490 		 pd->settings.size >> 2,
1491 		 pd->settings.block_mode == 8 ? '1' : '2');
1492 }
1493 
1494 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1495 {
1496 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1497 
1498 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1499 	cgc->cmd[2] = page_code | (page_control << 6);
1500 	cgc->cmd[7] = cgc->buflen >> 8;
1501 	cgc->cmd[8] = cgc->buflen & 0xff;
1502 	cgc->data_direction = CGC_DATA_READ;
1503 	return pkt_generic_packet(pd, cgc);
1504 }
1505 
1506 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1507 {
1508 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1509 	memset(cgc->buffer, 0, 2);
1510 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1511 	cgc->cmd[1] = 0x10;		/* PF */
1512 	cgc->cmd[7] = cgc->buflen >> 8;
1513 	cgc->cmd[8] = cgc->buflen & 0xff;
1514 	cgc->data_direction = CGC_DATA_WRITE;
1515 	return pkt_generic_packet(pd, cgc);
1516 }
1517 
1518 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1519 {
1520 	struct packet_command cgc;
1521 	int ret;
1522 
1523 	/* set up command and get the disc info */
1524 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1525 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1526 	cgc.cmd[8] = cgc.buflen = 2;
1527 	cgc.quiet = 1;
1528 
1529 	ret = pkt_generic_packet(pd, &cgc);
1530 	if (ret)
1531 		return ret;
1532 
1533 	/* not all drives have the same disc_info length, so requeue
1534 	 * packet with the length the drive tells us it can supply
1535 	 */
1536 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1537 		     sizeof(di->disc_information_length);
1538 
1539 	if (cgc.buflen > sizeof(disc_information))
1540 		cgc.buflen = sizeof(disc_information);
1541 
1542 	cgc.cmd[8] = cgc.buflen;
1543 	return pkt_generic_packet(pd, &cgc);
1544 }
1545 
1546 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1547 {
1548 	struct packet_command cgc;
1549 	int ret;
1550 
1551 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1552 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1553 	cgc.cmd[1] = type & 3;
1554 	cgc.cmd[4] = (track & 0xff00) >> 8;
1555 	cgc.cmd[5] = track & 0xff;
1556 	cgc.cmd[8] = 8;
1557 	cgc.quiet = 1;
1558 
1559 	ret = pkt_generic_packet(pd, &cgc);
1560 	if (ret)
1561 		return ret;
1562 
1563 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1564 		     sizeof(ti->track_information_length);
1565 
1566 	if (cgc.buflen > sizeof(track_information))
1567 		cgc.buflen = sizeof(track_information);
1568 
1569 	cgc.cmd[8] = cgc.buflen;
1570 	return pkt_generic_packet(pd, &cgc);
1571 }
1572 
1573 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1574 						long *last_written)
1575 {
1576 	disc_information di;
1577 	track_information ti;
1578 	__u32 last_track;
1579 	int ret;
1580 
1581 	ret = pkt_get_disc_info(pd, &di);
1582 	if (ret)
1583 		return ret;
1584 
1585 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1586 	ret = pkt_get_track_info(pd, last_track, 1, &ti);
1587 	if (ret)
1588 		return ret;
1589 
1590 	/* if this track is blank, try the previous. */
1591 	if (ti.blank) {
1592 		last_track--;
1593 		ret = pkt_get_track_info(pd, last_track, 1, &ti);
1594 		if (ret)
1595 			return ret;
1596 	}
1597 
1598 	/* if last recorded field is valid, return it. */
1599 	if (ti.lra_v) {
1600 		*last_written = be32_to_cpu(ti.last_rec_address);
1601 	} else {
1602 		/* make it up instead */
1603 		*last_written = be32_to_cpu(ti.track_start) +
1604 				be32_to_cpu(ti.track_size);
1605 		if (ti.free_blocks)
1606 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1607 	}
1608 	return 0;
1609 }
1610 
1611 /*
1612  * write mode select package based on pd->settings
1613  */
1614 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1615 {
1616 	struct packet_command cgc;
1617 	struct scsi_sense_hdr sshdr;
1618 	write_param_page *wp;
1619 	char buffer[128];
1620 	int ret, size;
1621 
1622 	/* doesn't apply to DVD+RW or DVD-RAM */
1623 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1624 		return 0;
1625 
1626 	memset(buffer, 0, sizeof(buffer));
1627 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1628 	cgc.sshdr = &sshdr;
1629 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1630 	if (ret) {
1631 		pkt_dump_sense(pd, &cgc);
1632 		return ret;
1633 	}
1634 
1635 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1636 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1637 	if (size > sizeof(buffer))
1638 		size = sizeof(buffer);
1639 
1640 	/*
1641 	 * now get it all
1642 	 */
1643 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1644 	cgc.sshdr = &sshdr;
1645 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1646 	if (ret) {
1647 		pkt_dump_sense(pd, &cgc);
1648 		return ret;
1649 	}
1650 
1651 	/*
1652 	 * write page is offset header + block descriptor length
1653 	 */
1654 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1655 
1656 	wp->fp = pd->settings.fp;
1657 	wp->track_mode = pd->settings.track_mode;
1658 	wp->write_type = pd->settings.write_type;
1659 	wp->data_block_type = pd->settings.block_mode;
1660 
1661 	wp->multi_session = 0;
1662 
1663 #ifdef PACKET_USE_LS
1664 	wp->link_size = 7;
1665 	wp->ls_v = 1;
1666 #endif
1667 
1668 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1669 		wp->session_format = 0;
1670 		wp->subhdr2 = 0x20;
1671 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1672 		wp->session_format = 0x20;
1673 		wp->subhdr2 = 8;
1674 #if 0
1675 		wp->mcn[0] = 0x80;
1676 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1677 #endif
1678 	} else {
1679 		/*
1680 		 * paranoia
1681 		 */
1682 		pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1683 		return 1;
1684 	}
1685 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1686 
1687 	cgc.buflen = cgc.cmd[8] = size;
1688 	ret = pkt_mode_select(pd, &cgc);
1689 	if (ret) {
1690 		pkt_dump_sense(pd, &cgc);
1691 		return ret;
1692 	}
1693 
1694 	pkt_print_settings(pd);
1695 	return 0;
1696 }
1697 
1698 /*
1699  * 1 -- we can write to this track, 0 -- we can't
1700  */
1701 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1702 {
1703 	switch (pd->mmc3_profile) {
1704 		case 0x1a: /* DVD+RW */
1705 		case 0x12: /* DVD-RAM */
1706 			/* The track is always writable on DVD+RW/DVD-RAM */
1707 			return 1;
1708 		default:
1709 			break;
1710 	}
1711 
1712 	if (!ti->packet || !ti->fp)
1713 		return 0;
1714 
1715 	/*
1716 	 * "good" settings as per Mt Fuji.
1717 	 */
1718 	if (ti->rt == 0 && ti->blank == 0)
1719 		return 1;
1720 
1721 	if (ti->rt == 0 && ti->blank == 1)
1722 		return 1;
1723 
1724 	if (ti->rt == 1 && ti->blank == 0)
1725 		return 1;
1726 
1727 	pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1728 	return 0;
1729 }
1730 
1731 /*
1732  * 1 -- we can write to this disc, 0 -- we can't
1733  */
1734 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1735 {
1736 	switch (pd->mmc3_profile) {
1737 		case 0x0a: /* CD-RW */
1738 		case 0xffff: /* MMC3 not supported */
1739 			break;
1740 		case 0x1a: /* DVD+RW */
1741 		case 0x13: /* DVD-RW */
1742 		case 0x12: /* DVD-RAM */
1743 			return 1;
1744 		default:
1745 			pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1746 				pd->mmc3_profile);
1747 			return 0;
1748 	}
1749 
1750 	/*
1751 	 * for disc type 0xff we should probably reserve a new track.
1752 	 * but i'm not sure, should we leave this to user apps? probably.
1753 	 */
1754 	if (di->disc_type == 0xff) {
1755 		pkt_notice(pd, "unknown disc - no track?\n");
1756 		return 0;
1757 	}
1758 
1759 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1760 		pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1761 		return 0;
1762 	}
1763 
1764 	if (di->erasable == 0) {
1765 		pkt_notice(pd, "disc not erasable\n");
1766 		return 0;
1767 	}
1768 
1769 	if (di->border_status == PACKET_SESSION_RESERVED) {
1770 		pkt_err(pd, "can't write to last track (reserved)\n");
1771 		return 0;
1772 	}
1773 
1774 	return 1;
1775 }
1776 
1777 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1778 {
1779 	struct packet_command cgc;
1780 	unsigned char buf[12];
1781 	disc_information di;
1782 	track_information ti;
1783 	int ret, track;
1784 
1785 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1786 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1787 	cgc.cmd[8] = 8;
1788 	ret = pkt_generic_packet(pd, &cgc);
1789 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1790 
1791 	memset(&di, 0, sizeof(disc_information));
1792 	memset(&ti, 0, sizeof(track_information));
1793 
1794 	ret = pkt_get_disc_info(pd, &di);
1795 	if (ret) {
1796 		pkt_err(pd, "failed get_disc\n");
1797 		return ret;
1798 	}
1799 
1800 	if (!pkt_writable_disc(pd, &di))
1801 		return -EROFS;
1802 
1803 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1804 
1805 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1806 	ret = pkt_get_track_info(pd, track, 1, &ti);
1807 	if (ret) {
1808 		pkt_err(pd, "failed get_track\n");
1809 		return ret;
1810 	}
1811 
1812 	if (!pkt_writable_track(pd, &ti)) {
1813 		pkt_err(pd, "can't write to this track\n");
1814 		return -EROFS;
1815 	}
1816 
1817 	/*
1818 	 * we keep packet size in 512 byte units, makes it easier to
1819 	 * deal with request calculations.
1820 	 */
1821 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1822 	if (pd->settings.size == 0) {
1823 		pkt_notice(pd, "detected zero packet size!\n");
1824 		return -ENXIO;
1825 	}
1826 	if (pd->settings.size > PACKET_MAX_SECTORS) {
1827 		pkt_err(pd, "packet size is too big\n");
1828 		return -EROFS;
1829 	}
1830 	pd->settings.fp = ti.fp;
1831 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1832 
1833 	if (ti.nwa_v) {
1834 		pd->nwa = be32_to_cpu(ti.next_writable);
1835 		set_bit(PACKET_NWA_VALID, &pd->flags);
1836 	}
1837 
1838 	/*
1839 	 * in theory we could use lra on -RW media as well and just zero
1840 	 * blocks that haven't been written yet, but in practice that
1841 	 * is just a no-go. we'll use that for -R, naturally.
1842 	 */
1843 	if (ti.lra_v) {
1844 		pd->lra = be32_to_cpu(ti.last_rec_address);
1845 		set_bit(PACKET_LRA_VALID, &pd->flags);
1846 	} else {
1847 		pd->lra = 0xffffffff;
1848 		set_bit(PACKET_LRA_VALID, &pd->flags);
1849 	}
1850 
1851 	/*
1852 	 * fine for now
1853 	 */
1854 	pd->settings.link_loss = 7;
1855 	pd->settings.write_type = 0;	/* packet */
1856 	pd->settings.track_mode = ti.track_mode;
1857 
1858 	/*
1859 	 * mode1 or mode2 disc
1860 	 */
1861 	switch (ti.data_mode) {
1862 		case PACKET_MODE1:
1863 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1864 			break;
1865 		case PACKET_MODE2:
1866 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1867 			break;
1868 		default:
1869 			pkt_err(pd, "unknown data mode\n");
1870 			return -EROFS;
1871 	}
1872 	return 0;
1873 }
1874 
1875 /*
1876  * enable/disable write caching on drive
1877  */
1878 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1879 						int set)
1880 {
1881 	struct packet_command cgc;
1882 	struct scsi_sense_hdr sshdr;
1883 	unsigned char buf[64];
1884 	int ret;
1885 
1886 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1887 	cgc.sshdr = &sshdr;
1888 	cgc.buflen = pd->mode_offset + 12;
1889 
1890 	/*
1891 	 * caching mode page might not be there, so quiet this command
1892 	 */
1893 	cgc.quiet = 1;
1894 
1895 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1896 	if (ret)
1897 		return ret;
1898 
1899 	buf[pd->mode_offset + 10] |= (!!set << 2);
1900 
1901 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1902 	ret = pkt_mode_select(pd, &cgc);
1903 	if (ret) {
1904 		pkt_err(pd, "write caching control failed\n");
1905 		pkt_dump_sense(pd, &cgc);
1906 	} else if (!ret && set)
1907 		pkt_notice(pd, "enabled write caching\n");
1908 	return ret;
1909 }
1910 
1911 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1912 {
1913 	struct packet_command cgc;
1914 
1915 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1916 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1917 	cgc.cmd[4] = lockflag ? 1 : 0;
1918 	return pkt_generic_packet(pd, &cgc);
1919 }
1920 
1921 /*
1922  * Returns drive maximum write speed
1923  */
1924 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1925 						unsigned *write_speed)
1926 {
1927 	struct packet_command cgc;
1928 	struct scsi_sense_hdr sshdr;
1929 	unsigned char buf[256+18];
1930 	unsigned char *cap_buf;
1931 	int ret, offset;
1932 
1933 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1934 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1935 	cgc.sshdr = &sshdr;
1936 
1937 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1938 	if (ret) {
1939 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1940 			     sizeof(struct mode_page_header);
1941 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1942 		if (ret) {
1943 			pkt_dump_sense(pd, &cgc);
1944 			return ret;
1945 		}
1946 	}
1947 
1948 	offset = 20;			    /* Obsoleted field, used by older drives */
1949 	if (cap_buf[1] >= 28)
1950 		offset = 28;		    /* Current write speed selected */
1951 	if (cap_buf[1] >= 30) {
1952 		/* If the drive reports at least one "Logical Unit Write
1953 		 * Speed Performance Descriptor Block", use the information
1954 		 * in the first block. (contains the highest speed)
1955 		 */
1956 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1957 		if (num_spdb > 0)
1958 			offset = 34;
1959 	}
1960 
1961 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1962 	return 0;
1963 }
1964 
1965 /* These tables from cdrecord - I don't have orange book */
1966 /* standard speed CD-RW (1-4x) */
1967 static char clv_to_speed[16] = {
1968 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1969 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1970 };
1971 /* high speed CD-RW (-10x) */
1972 static char hs_clv_to_speed[16] = {
1973 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1974 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1975 };
1976 /* ultra high speed CD-RW */
1977 static char us_clv_to_speed[16] = {
1978 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1979 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1980 };
1981 
1982 /*
1983  * reads the maximum media speed from ATIP
1984  */
1985 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
1986 						unsigned *speed)
1987 {
1988 	struct packet_command cgc;
1989 	struct scsi_sense_hdr sshdr;
1990 	unsigned char buf[64];
1991 	unsigned int size, st, sp;
1992 	int ret;
1993 
1994 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
1995 	cgc.sshdr = &sshdr;
1996 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1997 	cgc.cmd[1] = 2;
1998 	cgc.cmd[2] = 4; /* READ ATIP */
1999 	cgc.cmd[8] = 2;
2000 	ret = pkt_generic_packet(pd, &cgc);
2001 	if (ret) {
2002 		pkt_dump_sense(pd, &cgc);
2003 		return ret;
2004 	}
2005 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2006 	if (size > sizeof(buf))
2007 		size = sizeof(buf);
2008 
2009 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2010 	cgc.sshdr = &sshdr;
2011 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2012 	cgc.cmd[1] = 2;
2013 	cgc.cmd[2] = 4;
2014 	cgc.cmd[8] = size;
2015 	ret = pkt_generic_packet(pd, &cgc);
2016 	if (ret) {
2017 		pkt_dump_sense(pd, &cgc);
2018 		return ret;
2019 	}
2020 
2021 	if (!(buf[6] & 0x40)) {
2022 		pkt_notice(pd, "disc type is not CD-RW\n");
2023 		return 1;
2024 	}
2025 	if (!(buf[6] & 0x4)) {
2026 		pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2027 		return 1;
2028 	}
2029 
2030 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2031 
2032 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2033 
2034 	/* Info from cdrecord */
2035 	switch (st) {
2036 		case 0: /* standard speed */
2037 			*speed = clv_to_speed[sp];
2038 			break;
2039 		case 1: /* high speed */
2040 			*speed = hs_clv_to_speed[sp];
2041 			break;
2042 		case 2: /* ultra high speed */
2043 			*speed = us_clv_to_speed[sp];
2044 			break;
2045 		default:
2046 			pkt_notice(pd, "unknown disc sub-type %d\n", st);
2047 			return 1;
2048 	}
2049 	if (*speed) {
2050 		pkt_info(pd, "maximum media speed: %d\n", *speed);
2051 		return 0;
2052 	} else {
2053 		pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2054 		return 1;
2055 	}
2056 }
2057 
2058 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2059 {
2060 	struct packet_command cgc;
2061 	struct scsi_sense_hdr sshdr;
2062 	int ret;
2063 
2064 	pkt_dbg(2, pd, "Performing OPC\n");
2065 
2066 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2067 	cgc.sshdr = &sshdr;
2068 	cgc.timeout = 60*HZ;
2069 	cgc.cmd[0] = GPCMD_SEND_OPC;
2070 	cgc.cmd[1] = 1;
2071 	ret = pkt_generic_packet(pd, &cgc);
2072 	if (ret)
2073 		pkt_dump_sense(pd, &cgc);
2074 	return ret;
2075 }
2076 
2077 static int pkt_open_write(struct pktcdvd_device *pd)
2078 {
2079 	int ret;
2080 	unsigned int write_speed, media_write_speed, read_speed;
2081 
2082 	ret = pkt_probe_settings(pd);
2083 	if (ret) {
2084 		pkt_dbg(2, pd, "failed probe\n");
2085 		return ret;
2086 	}
2087 
2088 	ret = pkt_set_write_settings(pd);
2089 	if (ret) {
2090 		pkt_dbg(1, pd, "failed saving write settings\n");
2091 		return -EIO;
2092 	}
2093 
2094 	pkt_write_caching(pd, USE_WCACHING);
2095 
2096 	ret = pkt_get_max_speed(pd, &write_speed);
2097 	if (ret)
2098 		write_speed = 16 * 177;
2099 	switch (pd->mmc3_profile) {
2100 		case 0x13: /* DVD-RW */
2101 		case 0x1a: /* DVD+RW */
2102 		case 0x12: /* DVD-RAM */
2103 			pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2104 			break;
2105 		default:
2106 			ret = pkt_media_speed(pd, &media_write_speed);
2107 			if (ret)
2108 				media_write_speed = 16;
2109 			write_speed = min(write_speed, media_write_speed * 177);
2110 			pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2111 			break;
2112 	}
2113 	read_speed = write_speed;
2114 
2115 	ret = pkt_set_speed(pd, write_speed, read_speed);
2116 	if (ret) {
2117 		pkt_dbg(1, pd, "couldn't set write speed\n");
2118 		return -EIO;
2119 	}
2120 	pd->write_speed = write_speed;
2121 	pd->read_speed = read_speed;
2122 
2123 	ret = pkt_perform_opc(pd);
2124 	if (ret) {
2125 		pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2126 	}
2127 
2128 	return 0;
2129 }
2130 
2131 /*
2132  * called at open time.
2133  */
2134 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2135 {
2136 	int ret;
2137 	long lba;
2138 	struct request_queue *q;
2139 	struct block_device *bdev;
2140 
2141 	/*
2142 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2143 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2144 	 * so open should not fail.
2145 	 */
2146 	bdev = blkdev_get_by_dev(pd->bdev->bd_dev, FMODE_READ | FMODE_EXCL, pd);
2147 	if (IS_ERR(bdev)) {
2148 		ret = PTR_ERR(bdev);
2149 		goto out;
2150 	}
2151 
2152 	ret = pkt_get_last_written(pd, &lba);
2153 	if (ret) {
2154 		pkt_err(pd, "pkt_get_last_written failed\n");
2155 		goto out_putdev;
2156 	}
2157 
2158 	set_capacity(pd->disk, lba << 2);
2159 	set_capacity_and_notify(pd->bdev->bd_disk, lba << 2);
2160 
2161 	q = bdev_get_queue(pd->bdev);
2162 	if (write) {
2163 		ret = pkt_open_write(pd);
2164 		if (ret)
2165 			goto out_putdev;
2166 		/*
2167 		 * Some CDRW drives can not handle writes larger than one packet,
2168 		 * even if the size is a multiple of the packet size.
2169 		 */
2170 		blk_queue_max_hw_sectors(q, pd->settings.size);
2171 		set_bit(PACKET_WRITABLE, &pd->flags);
2172 	} else {
2173 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2174 		clear_bit(PACKET_WRITABLE, &pd->flags);
2175 	}
2176 
2177 	ret = pkt_set_segment_merging(pd, q);
2178 	if (ret)
2179 		goto out_putdev;
2180 
2181 	if (write) {
2182 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2183 			pkt_err(pd, "not enough memory for buffers\n");
2184 			ret = -ENOMEM;
2185 			goto out_putdev;
2186 		}
2187 		pkt_info(pd, "%lukB available on disc\n", lba << 1);
2188 	}
2189 
2190 	return 0;
2191 
2192 out_putdev:
2193 	blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
2194 out:
2195 	return ret;
2196 }
2197 
2198 /*
2199  * called when the device is closed. makes sure that the device flushes
2200  * the internal cache before we close.
2201  */
2202 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2203 {
2204 	if (flush && pkt_flush_cache(pd))
2205 		pkt_dbg(1, pd, "not flushing cache\n");
2206 
2207 	pkt_lock_door(pd, 0);
2208 
2209 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2210 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2211 
2212 	pkt_shrink_pktlist(pd);
2213 }
2214 
2215 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2216 {
2217 	if (dev_minor >= MAX_WRITERS)
2218 		return NULL;
2219 
2220 	dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2221 	return pkt_devs[dev_minor];
2222 }
2223 
2224 static int pkt_open(struct block_device *bdev, fmode_t mode)
2225 {
2226 	struct pktcdvd_device *pd = NULL;
2227 	int ret;
2228 
2229 	mutex_lock(&pktcdvd_mutex);
2230 	mutex_lock(&ctl_mutex);
2231 	pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2232 	if (!pd) {
2233 		ret = -ENODEV;
2234 		goto out;
2235 	}
2236 	BUG_ON(pd->refcnt < 0);
2237 
2238 	pd->refcnt++;
2239 	if (pd->refcnt > 1) {
2240 		if ((mode & FMODE_WRITE) &&
2241 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2242 			ret = -EBUSY;
2243 			goto out_dec;
2244 		}
2245 	} else {
2246 		ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2247 		if (ret)
2248 			goto out_dec;
2249 		/*
2250 		 * needed here as well, since ext2 (among others) may change
2251 		 * the blocksize at mount time
2252 		 */
2253 		set_blocksize(bdev, CD_FRAMESIZE);
2254 	}
2255 
2256 	mutex_unlock(&ctl_mutex);
2257 	mutex_unlock(&pktcdvd_mutex);
2258 	return 0;
2259 
2260 out_dec:
2261 	pd->refcnt--;
2262 out:
2263 	mutex_unlock(&ctl_mutex);
2264 	mutex_unlock(&pktcdvd_mutex);
2265 	return ret;
2266 }
2267 
2268 static void pkt_close(struct gendisk *disk, fmode_t mode)
2269 {
2270 	struct pktcdvd_device *pd = disk->private_data;
2271 
2272 	mutex_lock(&pktcdvd_mutex);
2273 	mutex_lock(&ctl_mutex);
2274 	pd->refcnt--;
2275 	BUG_ON(pd->refcnt < 0);
2276 	if (pd->refcnt == 0) {
2277 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2278 		pkt_release_dev(pd, flush);
2279 	}
2280 	mutex_unlock(&ctl_mutex);
2281 	mutex_unlock(&pktcdvd_mutex);
2282 }
2283 
2284 
2285 static void pkt_end_io_read_cloned(struct bio *bio)
2286 {
2287 	struct packet_stacked_data *psd = bio->bi_private;
2288 	struct pktcdvd_device *pd = psd->pd;
2289 
2290 	psd->bio->bi_status = bio->bi_status;
2291 	bio_put(bio);
2292 	bio_endio(psd->bio);
2293 	mempool_free(psd, &psd_pool);
2294 	pkt_bio_finished(pd);
2295 }
2296 
2297 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2298 {
2299 	struct bio *cloned_bio =
2300 		bio_alloc_clone(pd->bdev, bio, GFP_NOIO, &pkt_bio_set);
2301 	struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2302 
2303 	psd->pd = pd;
2304 	psd->bio = bio;
2305 	cloned_bio->bi_private = psd;
2306 	cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2307 	pd->stats.secs_r += bio_sectors(bio);
2308 	pkt_queue_bio(pd, cloned_bio);
2309 }
2310 
2311 static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2312 {
2313 	struct pktcdvd_device *pd = q->queuedata;
2314 	sector_t zone;
2315 	struct packet_data *pkt;
2316 	int was_empty, blocked_bio;
2317 	struct pkt_rb_node *node;
2318 
2319 	zone = get_zone(bio->bi_iter.bi_sector, pd);
2320 
2321 	/*
2322 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2323 	 * just append this bio to that packet.
2324 	 */
2325 	spin_lock(&pd->cdrw.active_list_lock);
2326 	blocked_bio = 0;
2327 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2328 		if (pkt->sector == zone) {
2329 			spin_lock(&pkt->lock);
2330 			if ((pkt->state == PACKET_WAITING_STATE) ||
2331 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2332 				bio_list_add(&pkt->orig_bios, bio);
2333 				pkt->write_size +=
2334 					bio->bi_iter.bi_size / CD_FRAMESIZE;
2335 				if ((pkt->write_size >= pkt->frames) &&
2336 				    (pkt->state == PACKET_WAITING_STATE)) {
2337 					atomic_inc(&pkt->run_sm);
2338 					wake_up(&pd->wqueue);
2339 				}
2340 				spin_unlock(&pkt->lock);
2341 				spin_unlock(&pd->cdrw.active_list_lock);
2342 				return;
2343 			} else {
2344 				blocked_bio = 1;
2345 			}
2346 			spin_unlock(&pkt->lock);
2347 		}
2348 	}
2349 	spin_unlock(&pd->cdrw.active_list_lock);
2350 
2351 	/*
2352 	 * Test if there is enough room left in the bio work queue
2353 	 * (queue size >= congestion on mark).
2354 	 * If not, wait till the work queue size is below the congestion off mark.
2355 	 */
2356 	spin_lock(&pd->lock);
2357 	if (pd->write_congestion_on > 0
2358 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2359 		struct wait_bit_queue_entry wqe;
2360 
2361 		init_wait_var_entry(&wqe, &pd->congested, 0);
2362 		for (;;) {
2363 			prepare_to_wait_event(__var_waitqueue(&pd->congested),
2364 					      &wqe.wq_entry,
2365 					      TASK_UNINTERRUPTIBLE);
2366 			if (pd->bio_queue_size <= pd->write_congestion_off)
2367 				break;
2368 			pd->congested = true;
2369 			spin_unlock(&pd->lock);
2370 			schedule();
2371 			spin_lock(&pd->lock);
2372 		}
2373 	}
2374 	spin_unlock(&pd->lock);
2375 
2376 	/*
2377 	 * No matching packet found. Store the bio in the work queue.
2378 	 */
2379 	node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2380 	node->bio = bio;
2381 	spin_lock(&pd->lock);
2382 	BUG_ON(pd->bio_queue_size < 0);
2383 	was_empty = (pd->bio_queue_size == 0);
2384 	pkt_rbtree_insert(pd, node);
2385 	spin_unlock(&pd->lock);
2386 
2387 	/*
2388 	 * Wake up the worker thread.
2389 	 */
2390 	atomic_set(&pd->scan_queue, 1);
2391 	if (was_empty) {
2392 		/* This wake_up is required for correct operation */
2393 		wake_up(&pd->wqueue);
2394 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2395 		/*
2396 		 * This wake up is not required for correct operation,
2397 		 * but improves performance in some cases.
2398 		 */
2399 		wake_up(&pd->wqueue);
2400 	}
2401 }
2402 
2403 static void pkt_submit_bio(struct bio *bio)
2404 {
2405 	struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->queue->queuedata;
2406 	struct bio *split;
2407 
2408 	blk_queue_split(&bio);
2409 
2410 	pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2411 		(unsigned long long)bio->bi_iter.bi_sector,
2412 		(unsigned long long)bio_end_sector(bio));
2413 
2414 	/*
2415 	 * Clone READ bios so we can have our own bi_end_io callback.
2416 	 */
2417 	if (bio_data_dir(bio) == READ) {
2418 		pkt_make_request_read(pd, bio);
2419 		return;
2420 	}
2421 
2422 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2423 		pkt_notice(pd, "WRITE for ro device (%llu)\n",
2424 			   (unsigned long long)bio->bi_iter.bi_sector);
2425 		goto end_io;
2426 	}
2427 
2428 	if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2429 		pkt_err(pd, "wrong bio size\n");
2430 		goto end_io;
2431 	}
2432 
2433 	do {
2434 		sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2435 		sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2436 
2437 		if (last_zone != zone) {
2438 			BUG_ON(last_zone != zone + pd->settings.size);
2439 
2440 			split = bio_split(bio, last_zone -
2441 					  bio->bi_iter.bi_sector,
2442 					  GFP_NOIO, &pkt_bio_set);
2443 			bio_chain(split, bio);
2444 		} else {
2445 			split = bio;
2446 		}
2447 
2448 		pkt_make_request_write(bio->bi_bdev->bd_disk->queue, split);
2449 	} while (split != bio);
2450 
2451 	return;
2452 end_io:
2453 	bio_io_error(bio);
2454 }
2455 
2456 static void pkt_init_queue(struct pktcdvd_device *pd)
2457 {
2458 	struct request_queue *q = pd->disk->queue;
2459 
2460 	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2461 	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2462 	q->queuedata = pd;
2463 }
2464 
2465 static int pkt_seq_show(struct seq_file *m, void *p)
2466 {
2467 	struct pktcdvd_device *pd = m->private;
2468 	char *msg;
2469 	char bdev_buf[BDEVNAME_SIZE];
2470 	int states[PACKET_NUM_STATES];
2471 
2472 	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2473 		   bdevname(pd->bdev, bdev_buf));
2474 
2475 	seq_printf(m, "\nSettings:\n");
2476 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2477 
2478 	if (pd->settings.write_type == 0)
2479 		msg = "Packet";
2480 	else
2481 		msg = "Unknown";
2482 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2483 
2484 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2485 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2486 
2487 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2488 
2489 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2490 		msg = "Mode 1";
2491 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2492 		msg = "Mode 2";
2493 	else
2494 		msg = "Unknown";
2495 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2496 
2497 	seq_printf(m, "\nStatistics:\n");
2498 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2499 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2500 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2501 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2502 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2503 
2504 	seq_printf(m, "\nMisc:\n");
2505 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2506 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2507 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2508 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2509 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2510 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2511 
2512 	seq_printf(m, "\nQueue state:\n");
2513 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2514 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2515 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2516 
2517 	pkt_count_states(pd, states);
2518 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2519 		   states[0], states[1], states[2], states[3], states[4], states[5]);
2520 
2521 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2522 			pd->write_congestion_off,
2523 			pd->write_congestion_on);
2524 	return 0;
2525 }
2526 
2527 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2528 {
2529 	int i;
2530 	char b[BDEVNAME_SIZE];
2531 	struct block_device *bdev;
2532 	struct scsi_device *sdev;
2533 
2534 	if (pd->pkt_dev == dev) {
2535 		pkt_err(pd, "recursive setup not allowed\n");
2536 		return -EBUSY;
2537 	}
2538 	for (i = 0; i < MAX_WRITERS; i++) {
2539 		struct pktcdvd_device *pd2 = pkt_devs[i];
2540 		if (!pd2)
2541 			continue;
2542 		if (pd2->bdev->bd_dev == dev) {
2543 			pkt_err(pd, "%s already setup\n",
2544 				bdevname(pd2->bdev, b));
2545 			return -EBUSY;
2546 		}
2547 		if (pd2->pkt_dev == dev) {
2548 			pkt_err(pd, "can't chain pktcdvd devices\n");
2549 			return -EBUSY;
2550 		}
2551 	}
2552 
2553 	bdev = blkdev_get_by_dev(dev, FMODE_READ | FMODE_NDELAY, NULL);
2554 	if (IS_ERR(bdev))
2555 		return PTR_ERR(bdev);
2556 	sdev = scsi_device_from_queue(bdev->bd_disk->queue);
2557 	if (!sdev) {
2558 		blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2559 		return -EINVAL;
2560 	}
2561 	put_device(&sdev->sdev_gendev);
2562 
2563 	/* This is safe, since we have a reference from open(). */
2564 	__module_get(THIS_MODULE);
2565 
2566 	pd->bdev = bdev;
2567 	set_blocksize(bdev, CD_FRAMESIZE);
2568 
2569 	pkt_init_queue(pd);
2570 
2571 	atomic_set(&pd->cdrw.pending_bios, 0);
2572 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2573 	if (IS_ERR(pd->cdrw.thread)) {
2574 		pkt_err(pd, "can't start kernel thread\n");
2575 		goto out_mem;
2576 	}
2577 
2578 	proc_create_single_data(pd->name, 0, pkt_proc, pkt_seq_show, pd);
2579 	pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2580 	return 0;
2581 
2582 out_mem:
2583 	blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2584 	/* This is safe: open() is still holding a reference. */
2585 	module_put(THIS_MODULE);
2586 	return -ENOMEM;
2587 }
2588 
2589 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2590 {
2591 	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2592 	int ret;
2593 
2594 	pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2595 		cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2596 
2597 	mutex_lock(&pktcdvd_mutex);
2598 	switch (cmd) {
2599 	case CDROMEJECT:
2600 		/*
2601 		 * The door gets locked when the device is opened, so we
2602 		 * have to unlock it or else the eject command fails.
2603 		 */
2604 		if (pd->refcnt == 1)
2605 			pkt_lock_door(pd, 0);
2606 		fallthrough;
2607 	/*
2608 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2609 	 */
2610 	case CDROMMULTISESSION:
2611 	case CDROMREADTOCENTRY:
2612 	case CDROM_LAST_WRITTEN:
2613 	case CDROM_SEND_PACKET:
2614 	case SCSI_IOCTL_SEND_COMMAND:
2615 		if (!bdev->bd_disk->fops->ioctl)
2616 			ret = -ENOTTY;
2617 		else
2618 			ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
2619 		break;
2620 	default:
2621 		pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2622 		ret = -ENOTTY;
2623 	}
2624 	mutex_unlock(&pktcdvd_mutex);
2625 
2626 	return ret;
2627 }
2628 
2629 static unsigned int pkt_check_events(struct gendisk *disk,
2630 				     unsigned int clearing)
2631 {
2632 	struct pktcdvd_device *pd = disk->private_data;
2633 	struct gendisk *attached_disk;
2634 
2635 	if (!pd)
2636 		return 0;
2637 	if (!pd->bdev)
2638 		return 0;
2639 	attached_disk = pd->bdev->bd_disk;
2640 	if (!attached_disk || !attached_disk->fops->check_events)
2641 		return 0;
2642 	return attached_disk->fops->check_events(attached_disk, clearing);
2643 }
2644 
2645 static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2646 {
2647 	return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2648 }
2649 
2650 static const struct block_device_operations pktcdvd_ops = {
2651 	.owner =		THIS_MODULE,
2652 	.submit_bio =		pkt_submit_bio,
2653 	.open =			pkt_open,
2654 	.release =		pkt_close,
2655 	.ioctl =		pkt_ioctl,
2656 	.compat_ioctl =		blkdev_compat_ptr_ioctl,
2657 	.check_events =		pkt_check_events,
2658 	.devnode =		pkt_devnode,
2659 };
2660 
2661 /*
2662  * Set up mapping from pktcdvd device to CD-ROM device.
2663  */
2664 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2665 {
2666 	int idx;
2667 	int ret = -ENOMEM;
2668 	struct pktcdvd_device *pd;
2669 	struct gendisk *disk;
2670 
2671 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2672 
2673 	for (idx = 0; idx < MAX_WRITERS; idx++)
2674 		if (!pkt_devs[idx])
2675 			break;
2676 	if (idx == MAX_WRITERS) {
2677 		pr_err("max %d writers supported\n", MAX_WRITERS);
2678 		ret = -EBUSY;
2679 		goto out_mutex;
2680 	}
2681 
2682 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2683 	if (!pd)
2684 		goto out_mutex;
2685 
2686 	ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2687 					sizeof(struct pkt_rb_node));
2688 	if (ret)
2689 		goto out_mem;
2690 
2691 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2692 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2693 	spin_lock_init(&pd->cdrw.active_list_lock);
2694 
2695 	spin_lock_init(&pd->lock);
2696 	spin_lock_init(&pd->iosched.lock);
2697 	bio_list_init(&pd->iosched.read_queue);
2698 	bio_list_init(&pd->iosched.write_queue);
2699 	sprintf(pd->name, DRIVER_NAME"%d", idx);
2700 	init_waitqueue_head(&pd->wqueue);
2701 	pd->bio_queue = RB_ROOT;
2702 
2703 	pd->write_congestion_on  = write_congestion_on;
2704 	pd->write_congestion_off = write_congestion_off;
2705 
2706 	ret = -ENOMEM;
2707 	disk = blk_alloc_disk(NUMA_NO_NODE);
2708 	if (!disk)
2709 		goto out_mem;
2710 	pd->disk = disk;
2711 	disk->major = pktdev_major;
2712 	disk->first_minor = idx;
2713 	disk->minors = 1;
2714 	disk->fops = &pktcdvd_ops;
2715 	disk->flags = GENHD_FL_REMOVABLE | GENHD_FL_NO_PART;
2716 	strcpy(disk->disk_name, pd->name);
2717 	disk->private_data = pd;
2718 
2719 	pd->pkt_dev = MKDEV(pktdev_major, idx);
2720 	ret = pkt_new_dev(pd, dev);
2721 	if (ret)
2722 		goto out_mem2;
2723 
2724 	/* inherit events of the host device */
2725 	disk->events = pd->bdev->bd_disk->events;
2726 
2727 	ret = add_disk(disk);
2728 	if (ret)
2729 		goto out_mem2;
2730 
2731 	pkt_sysfs_dev_new(pd);
2732 	pkt_debugfs_dev_new(pd);
2733 
2734 	pkt_devs[idx] = pd;
2735 	if (pkt_dev)
2736 		*pkt_dev = pd->pkt_dev;
2737 
2738 	mutex_unlock(&ctl_mutex);
2739 	return 0;
2740 
2741 out_mem2:
2742 	blk_cleanup_disk(disk);
2743 out_mem:
2744 	mempool_exit(&pd->rb_pool);
2745 	kfree(pd);
2746 out_mutex:
2747 	mutex_unlock(&ctl_mutex);
2748 	pr_err("setup of pktcdvd device failed\n");
2749 	return ret;
2750 }
2751 
2752 /*
2753  * Tear down mapping from pktcdvd device to CD-ROM device.
2754  */
2755 static int pkt_remove_dev(dev_t pkt_dev)
2756 {
2757 	struct pktcdvd_device *pd;
2758 	int idx;
2759 	int ret = 0;
2760 
2761 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2762 
2763 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2764 		pd = pkt_devs[idx];
2765 		if (pd && (pd->pkt_dev == pkt_dev))
2766 			break;
2767 	}
2768 	if (idx == MAX_WRITERS) {
2769 		pr_debug("dev not setup\n");
2770 		ret = -ENXIO;
2771 		goto out;
2772 	}
2773 
2774 	if (pd->refcnt > 0) {
2775 		ret = -EBUSY;
2776 		goto out;
2777 	}
2778 	if (!IS_ERR(pd->cdrw.thread))
2779 		kthread_stop(pd->cdrw.thread);
2780 
2781 	pkt_devs[idx] = NULL;
2782 
2783 	pkt_debugfs_dev_remove(pd);
2784 	pkt_sysfs_dev_remove(pd);
2785 
2786 	blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2787 
2788 	remove_proc_entry(pd->name, pkt_proc);
2789 	pkt_dbg(1, pd, "writer unmapped\n");
2790 
2791 	del_gendisk(pd->disk);
2792 	blk_cleanup_disk(pd->disk);
2793 
2794 	mempool_exit(&pd->rb_pool);
2795 	kfree(pd);
2796 
2797 	/* This is safe: open() is still holding a reference. */
2798 	module_put(THIS_MODULE);
2799 
2800 out:
2801 	mutex_unlock(&ctl_mutex);
2802 	return ret;
2803 }
2804 
2805 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2806 {
2807 	struct pktcdvd_device *pd;
2808 
2809 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2810 
2811 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2812 	if (pd) {
2813 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2814 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2815 	} else {
2816 		ctrl_cmd->dev = 0;
2817 		ctrl_cmd->pkt_dev = 0;
2818 	}
2819 	ctrl_cmd->num_devices = MAX_WRITERS;
2820 
2821 	mutex_unlock(&ctl_mutex);
2822 }
2823 
2824 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2825 {
2826 	void __user *argp = (void __user *)arg;
2827 	struct pkt_ctrl_command ctrl_cmd;
2828 	int ret = 0;
2829 	dev_t pkt_dev = 0;
2830 
2831 	if (cmd != PACKET_CTRL_CMD)
2832 		return -ENOTTY;
2833 
2834 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2835 		return -EFAULT;
2836 
2837 	switch (ctrl_cmd.command) {
2838 	case PKT_CTRL_CMD_SETUP:
2839 		if (!capable(CAP_SYS_ADMIN))
2840 			return -EPERM;
2841 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2842 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2843 		break;
2844 	case PKT_CTRL_CMD_TEARDOWN:
2845 		if (!capable(CAP_SYS_ADMIN))
2846 			return -EPERM;
2847 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2848 		break;
2849 	case PKT_CTRL_CMD_STATUS:
2850 		pkt_get_status(&ctrl_cmd);
2851 		break;
2852 	default:
2853 		return -ENOTTY;
2854 	}
2855 
2856 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2857 		return -EFAULT;
2858 	return ret;
2859 }
2860 
2861 #ifdef CONFIG_COMPAT
2862 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2863 {
2864 	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2865 }
2866 #endif
2867 
2868 static const struct file_operations pkt_ctl_fops = {
2869 	.open		= nonseekable_open,
2870 	.unlocked_ioctl	= pkt_ctl_ioctl,
2871 #ifdef CONFIG_COMPAT
2872 	.compat_ioctl	= pkt_ctl_compat_ioctl,
2873 #endif
2874 	.owner		= THIS_MODULE,
2875 	.llseek		= no_llseek,
2876 };
2877 
2878 static struct miscdevice pkt_misc = {
2879 	.minor 		= MISC_DYNAMIC_MINOR,
2880 	.name  		= DRIVER_NAME,
2881 	.nodename	= "pktcdvd/control",
2882 	.fops  		= &pkt_ctl_fops
2883 };
2884 
2885 static int __init pkt_init(void)
2886 {
2887 	int ret;
2888 
2889 	mutex_init(&ctl_mutex);
2890 
2891 	ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2892 				    sizeof(struct packet_stacked_data));
2893 	if (ret)
2894 		return ret;
2895 	ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2896 	if (ret) {
2897 		mempool_exit(&psd_pool);
2898 		return ret;
2899 	}
2900 
2901 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2902 	if (ret < 0) {
2903 		pr_err("unable to register block device\n");
2904 		goto out2;
2905 	}
2906 	if (!pktdev_major)
2907 		pktdev_major = ret;
2908 
2909 	ret = pkt_sysfs_init();
2910 	if (ret)
2911 		goto out;
2912 
2913 	pkt_debugfs_init();
2914 
2915 	ret = misc_register(&pkt_misc);
2916 	if (ret) {
2917 		pr_err("unable to register misc device\n");
2918 		goto out_misc;
2919 	}
2920 
2921 	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2922 
2923 	return 0;
2924 
2925 out_misc:
2926 	pkt_debugfs_cleanup();
2927 	pkt_sysfs_cleanup();
2928 out:
2929 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2930 out2:
2931 	mempool_exit(&psd_pool);
2932 	bioset_exit(&pkt_bio_set);
2933 	return ret;
2934 }
2935 
2936 static void __exit pkt_exit(void)
2937 {
2938 	remove_proc_entry("driver/"DRIVER_NAME, NULL);
2939 	misc_deregister(&pkt_misc);
2940 
2941 	pkt_debugfs_cleanup();
2942 	pkt_sysfs_cleanup();
2943 
2944 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2945 	mempool_exit(&psd_pool);
2946 	bioset_exit(&pkt_bio_set);
2947 }
2948 
2949 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2950 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2951 MODULE_LICENSE("GPL");
2952 
2953 module_init(pkt_init);
2954 module_exit(pkt_exit);
2955