xref: /openbmc/linux/drivers/block/null_blk/main.c (revision f7eeb00845934851b580b188f079545ab176fa5c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4  * Shaohua Li <shli@fb.com>
5  */
6 #include <linux/module.h>
7 
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13 
14 #undef pr_fmt
15 #define pr_fmt(fmt)	"null_blk: " fmt
16 
17 #define FREE_BATCH		16
18 
19 #define TICKS_PER_SEC		50ULL
20 #define TIMER_INTERVAL		(NSEC_PER_SEC / TICKS_PER_SEC)
21 
22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
23 static DECLARE_FAULT_ATTR(null_timeout_attr);
24 static DECLARE_FAULT_ATTR(null_requeue_attr);
25 static DECLARE_FAULT_ATTR(null_init_hctx_attr);
26 #endif
27 
28 static inline u64 mb_per_tick(int mbps)
29 {
30 	return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
31 }
32 
33 /*
34  * Status flags for nullb_device.
35  *
36  * CONFIGURED:	Device has been configured and turned on. Cannot reconfigure.
37  * UP:		Device is currently on and visible in userspace.
38  * THROTTLED:	Device is being throttled.
39  * CACHE:	Device is using a write-back cache.
40  */
41 enum nullb_device_flags {
42 	NULLB_DEV_FL_CONFIGURED	= 0,
43 	NULLB_DEV_FL_UP		= 1,
44 	NULLB_DEV_FL_THROTTLED	= 2,
45 	NULLB_DEV_FL_CACHE	= 3,
46 };
47 
48 #define MAP_SZ		((PAGE_SIZE >> SECTOR_SHIFT) + 2)
49 /*
50  * nullb_page is a page in memory for nullb devices.
51  *
52  * @page:	The page holding the data.
53  * @bitmap:	The bitmap represents which sector in the page has data.
54  *		Each bit represents one block size. For example, sector 8
55  *		will use the 7th bit
56  * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
57  * page is being flushing to storage. FREE means the cache page is freed and
58  * should be skipped from flushing to storage. Please see
59  * null_make_cache_space
60  */
61 struct nullb_page {
62 	struct page *page;
63 	DECLARE_BITMAP(bitmap, MAP_SZ);
64 };
65 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
66 #define NULLB_PAGE_FREE (MAP_SZ - 2)
67 
68 static LIST_HEAD(nullb_list);
69 static struct mutex lock;
70 static int null_major;
71 static DEFINE_IDA(nullb_indexes);
72 static struct blk_mq_tag_set tag_set;
73 
74 enum {
75 	NULL_IRQ_NONE		= 0,
76 	NULL_IRQ_SOFTIRQ	= 1,
77 	NULL_IRQ_TIMER		= 2,
78 };
79 
80 static bool g_virt_boundary = false;
81 module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
82 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
83 
84 static int g_no_sched;
85 module_param_named(no_sched, g_no_sched, int, 0444);
86 MODULE_PARM_DESC(no_sched, "No io scheduler");
87 
88 static int g_submit_queues = 1;
89 module_param_named(submit_queues, g_submit_queues, int, 0444);
90 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
91 
92 static int g_poll_queues = 1;
93 module_param_named(poll_queues, g_poll_queues, int, 0444);
94 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues");
95 
96 static int g_home_node = NUMA_NO_NODE;
97 module_param_named(home_node, g_home_node, int, 0444);
98 MODULE_PARM_DESC(home_node, "Home node for the device");
99 
100 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
101 /*
102  * For more details about fault injection, please refer to
103  * Documentation/fault-injection/fault-injection.rst.
104  */
105 static char g_timeout_str[80];
106 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
107 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
108 
109 static char g_requeue_str[80];
110 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
111 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
112 
113 static char g_init_hctx_str[80];
114 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
115 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
116 #endif
117 
118 static int g_queue_mode = NULL_Q_MQ;
119 
120 static int null_param_store_val(const char *str, int *val, int min, int max)
121 {
122 	int ret, new_val;
123 
124 	ret = kstrtoint(str, 10, &new_val);
125 	if (ret)
126 		return -EINVAL;
127 
128 	if (new_val < min || new_val > max)
129 		return -EINVAL;
130 
131 	*val = new_val;
132 	return 0;
133 }
134 
135 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
136 {
137 	return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
138 }
139 
140 static const struct kernel_param_ops null_queue_mode_param_ops = {
141 	.set	= null_set_queue_mode,
142 	.get	= param_get_int,
143 };
144 
145 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
146 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
147 
148 static int g_gb = 250;
149 module_param_named(gb, g_gb, int, 0444);
150 MODULE_PARM_DESC(gb, "Size in GB");
151 
152 static int g_bs = 512;
153 module_param_named(bs, g_bs, int, 0444);
154 MODULE_PARM_DESC(bs, "Block size (in bytes)");
155 
156 static int g_max_sectors;
157 module_param_named(max_sectors, g_max_sectors, int, 0444);
158 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
159 
160 static unsigned int nr_devices = 1;
161 module_param(nr_devices, uint, 0444);
162 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
163 
164 static bool g_blocking;
165 module_param_named(blocking, g_blocking, bool, 0444);
166 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
167 
168 static bool shared_tags;
169 module_param(shared_tags, bool, 0444);
170 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
171 
172 static bool g_shared_tag_bitmap;
173 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
174 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
175 
176 static int g_irqmode = NULL_IRQ_SOFTIRQ;
177 
178 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
179 {
180 	return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
181 					NULL_IRQ_TIMER);
182 }
183 
184 static const struct kernel_param_ops null_irqmode_param_ops = {
185 	.set	= null_set_irqmode,
186 	.get	= param_get_int,
187 };
188 
189 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
190 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
191 
192 static unsigned long g_completion_nsec = 10000;
193 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
194 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
195 
196 static int g_hw_queue_depth = 64;
197 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
198 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
199 
200 static bool g_use_per_node_hctx;
201 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
202 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
203 
204 static bool g_memory_backed;
205 module_param_named(memory_backed, g_memory_backed, bool, 0444);
206 MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false");
207 
208 static bool g_discard;
209 module_param_named(discard, g_discard, bool, 0444);
210 MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false");
211 
212 static unsigned long g_cache_size;
213 module_param_named(cache_size, g_cache_size, ulong, 0444);
214 MODULE_PARM_DESC(mbps, "Cache size in MiB for memory-backed device. Default: 0 (none)");
215 
216 static unsigned int g_mbps;
217 module_param_named(mbps, g_mbps, uint, 0444);
218 MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)");
219 
220 static bool g_zoned;
221 module_param_named(zoned, g_zoned, bool, S_IRUGO);
222 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
223 
224 static unsigned long g_zone_size = 256;
225 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
226 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
227 
228 static unsigned long g_zone_capacity;
229 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
230 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
231 
232 static unsigned int g_zone_nr_conv;
233 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
234 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
235 
236 static unsigned int g_zone_max_open;
237 module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
238 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
239 
240 static unsigned int g_zone_max_active;
241 module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
242 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
243 
244 static struct nullb_device *null_alloc_dev(void);
245 static void null_free_dev(struct nullb_device *dev);
246 static void null_del_dev(struct nullb *nullb);
247 static int null_add_dev(struct nullb_device *dev);
248 static struct nullb *null_find_dev_by_name(const char *name);
249 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
250 
251 static inline struct nullb_device *to_nullb_device(struct config_item *item)
252 {
253 	return item ? container_of(item, struct nullb_device, item) : NULL;
254 }
255 
256 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
257 {
258 	return snprintf(page, PAGE_SIZE, "%u\n", val);
259 }
260 
261 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
262 	char *page)
263 {
264 	return snprintf(page, PAGE_SIZE, "%lu\n", val);
265 }
266 
267 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
268 {
269 	return snprintf(page, PAGE_SIZE, "%u\n", val);
270 }
271 
272 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
273 	const char *page, size_t count)
274 {
275 	unsigned int tmp;
276 	int result;
277 
278 	result = kstrtouint(page, 0, &tmp);
279 	if (result < 0)
280 		return result;
281 
282 	*val = tmp;
283 	return count;
284 }
285 
286 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
287 	const char *page, size_t count)
288 {
289 	int result;
290 	unsigned long tmp;
291 
292 	result = kstrtoul(page, 0, &tmp);
293 	if (result < 0)
294 		return result;
295 
296 	*val = tmp;
297 	return count;
298 }
299 
300 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
301 	size_t count)
302 {
303 	bool tmp;
304 	int result;
305 
306 	result = kstrtobool(page,  &tmp);
307 	if (result < 0)
308 		return result;
309 
310 	*val = tmp;
311 	return count;
312 }
313 
314 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
315 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY)				\
316 static ssize_t								\
317 nullb_device_##NAME##_show(struct config_item *item, char *page)	\
318 {									\
319 	return nullb_device_##TYPE##_attr_show(				\
320 				to_nullb_device(item)->NAME, page);	\
321 }									\
322 static ssize_t								\
323 nullb_device_##NAME##_store(struct config_item *item, const char *page,	\
324 			    size_t count)				\
325 {									\
326 	int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
327 	struct nullb_device *dev = to_nullb_device(item);		\
328 	TYPE new_value = 0;						\
329 	int ret;							\
330 									\
331 	ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
332 	if (ret < 0)							\
333 		return ret;						\
334 	if (apply_fn)							\
335 		ret = apply_fn(dev, new_value);				\
336 	else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) 	\
337 		ret = -EBUSY;						\
338 	if (ret < 0)							\
339 		return ret;						\
340 	dev->NAME = new_value;						\
341 	return count;							\
342 }									\
343 CONFIGFS_ATTR(nullb_device_, NAME);
344 
345 static int nullb_update_nr_hw_queues(struct nullb_device *dev,
346 				     unsigned int submit_queues,
347 				     unsigned int poll_queues)
348 
349 {
350 	struct blk_mq_tag_set *set;
351 	int ret, nr_hw_queues;
352 
353 	if (!dev->nullb)
354 		return 0;
355 
356 	/*
357 	 * Make sure at least one submit queue exists.
358 	 */
359 	if (!submit_queues)
360 		return -EINVAL;
361 
362 	/*
363 	 * Make sure that null_init_hctx() does not access nullb->queues[] past
364 	 * the end of that array.
365 	 */
366 	if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues)
367 		return -EINVAL;
368 
369 	/*
370 	 * Keep previous and new queue numbers in nullb_device for reference in
371 	 * the call back function null_map_queues().
372 	 */
373 	dev->prev_submit_queues = dev->submit_queues;
374 	dev->prev_poll_queues = dev->poll_queues;
375 	dev->submit_queues = submit_queues;
376 	dev->poll_queues = poll_queues;
377 
378 	set = dev->nullb->tag_set;
379 	nr_hw_queues = submit_queues + poll_queues;
380 	blk_mq_update_nr_hw_queues(set, nr_hw_queues);
381 	ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM;
382 
383 	if (ret) {
384 		/* on error, revert the queue numbers */
385 		dev->submit_queues = dev->prev_submit_queues;
386 		dev->poll_queues = dev->prev_poll_queues;
387 	}
388 
389 	return ret;
390 }
391 
392 static int nullb_apply_submit_queues(struct nullb_device *dev,
393 				     unsigned int submit_queues)
394 {
395 	return nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues);
396 }
397 
398 static int nullb_apply_poll_queues(struct nullb_device *dev,
399 				   unsigned int poll_queues)
400 {
401 	return nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues);
402 }
403 
404 NULLB_DEVICE_ATTR(size, ulong, NULL);
405 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
406 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
407 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues);
408 NULLB_DEVICE_ATTR(home_node, uint, NULL);
409 NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
410 NULLB_DEVICE_ATTR(blocksize, uint, NULL);
411 NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
412 NULLB_DEVICE_ATTR(irqmode, uint, NULL);
413 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
414 NULLB_DEVICE_ATTR(index, uint, NULL);
415 NULLB_DEVICE_ATTR(blocking, bool, NULL);
416 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
417 NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
418 NULLB_DEVICE_ATTR(discard, bool, NULL);
419 NULLB_DEVICE_ATTR(mbps, uint, NULL);
420 NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
421 NULLB_DEVICE_ATTR(zoned, bool, NULL);
422 NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
423 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
424 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
425 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
426 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
427 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
428 NULLB_DEVICE_ATTR(no_sched, bool, NULL);
429 NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL);
430 
431 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
432 {
433 	return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
434 }
435 
436 static ssize_t nullb_device_power_store(struct config_item *item,
437 				     const char *page, size_t count)
438 {
439 	struct nullb_device *dev = to_nullb_device(item);
440 	bool newp = false;
441 	ssize_t ret;
442 
443 	ret = nullb_device_bool_attr_store(&newp, page, count);
444 	if (ret < 0)
445 		return ret;
446 
447 	if (!dev->power && newp) {
448 		if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
449 			return count;
450 		ret = null_add_dev(dev);
451 		if (ret) {
452 			clear_bit(NULLB_DEV_FL_UP, &dev->flags);
453 			return ret;
454 		}
455 
456 		set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
457 		dev->power = newp;
458 	} else if (dev->power && !newp) {
459 		if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
460 			mutex_lock(&lock);
461 			dev->power = newp;
462 			null_del_dev(dev->nullb);
463 			mutex_unlock(&lock);
464 		}
465 		clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
466 	}
467 
468 	return count;
469 }
470 
471 CONFIGFS_ATTR(nullb_device_, power);
472 
473 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
474 {
475 	struct nullb_device *t_dev = to_nullb_device(item);
476 
477 	return badblocks_show(&t_dev->badblocks, page, 0);
478 }
479 
480 static ssize_t nullb_device_badblocks_store(struct config_item *item,
481 				     const char *page, size_t count)
482 {
483 	struct nullb_device *t_dev = to_nullb_device(item);
484 	char *orig, *buf, *tmp;
485 	u64 start, end;
486 	int ret;
487 
488 	orig = kstrndup(page, count, GFP_KERNEL);
489 	if (!orig)
490 		return -ENOMEM;
491 
492 	buf = strstrip(orig);
493 
494 	ret = -EINVAL;
495 	if (buf[0] != '+' && buf[0] != '-')
496 		goto out;
497 	tmp = strchr(&buf[1], '-');
498 	if (!tmp)
499 		goto out;
500 	*tmp = '\0';
501 	ret = kstrtoull(buf + 1, 0, &start);
502 	if (ret)
503 		goto out;
504 	ret = kstrtoull(tmp + 1, 0, &end);
505 	if (ret)
506 		goto out;
507 	ret = -EINVAL;
508 	if (start > end)
509 		goto out;
510 	/* enable badblocks */
511 	cmpxchg(&t_dev->badblocks.shift, -1, 0);
512 	if (buf[0] == '+')
513 		ret = badblocks_set(&t_dev->badblocks, start,
514 			end - start + 1, 1);
515 	else
516 		ret = badblocks_clear(&t_dev->badblocks, start,
517 			end - start + 1);
518 	if (ret == 0)
519 		ret = count;
520 out:
521 	kfree(orig);
522 	return ret;
523 }
524 CONFIGFS_ATTR(nullb_device_, badblocks);
525 
526 static struct configfs_attribute *nullb_device_attrs[] = {
527 	&nullb_device_attr_size,
528 	&nullb_device_attr_completion_nsec,
529 	&nullb_device_attr_submit_queues,
530 	&nullb_device_attr_poll_queues,
531 	&nullb_device_attr_home_node,
532 	&nullb_device_attr_queue_mode,
533 	&nullb_device_attr_blocksize,
534 	&nullb_device_attr_max_sectors,
535 	&nullb_device_attr_irqmode,
536 	&nullb_device_attr_hw_queue_depth,
537 	&nullb_device_attr_index,
538 	&nullb_device_attr_blocking,
539 	&nullb_device_attr_use_per_node_hctx,
540 	&nullb_device_attr_power,
541 	&nullb_device_attr_memory_backed,
542 	&nullb_device_attr_discard,
543 	&nullb_device_attr_mbps,
544 	&nullb_device_attr_cache_size,
545 	&nullb_device_attr_badblocks,
546 	&nullb_device_attr_zoned,
547 	&nullb_device_attr_zone_size,
548 	&nullb_device_attr_zone_capacity,
549 	&nullb_device_attr_zone_nr_conv,
550 	&nullb_device_attr_zone_max_open,
551 	&nullb_device_attr_zone_max_active,
552 	&nullb_device_attr_virt_boundary,
553 	&nullb_device_attr_no_sched,
554 	&nullb_device_attr_shared_tag_bitmap,
555 	NULL,
556 };
557 
558 static void nullb_device_release(struct config_item *item)
559 {
560 	struct nullb_device *dev = to_nullb_device(item);
561 
562 	null_free_device_storage(dev, false);
563 	null_free_dev(dev);
564 }
565 
566 static struct configfs_item_operations nullb_device_ops = {
567 	.release	= nullb_device_release,
568 };
569 
570 static const struct config_item_type nullb_device_type = {
571 	.ct_item_ops	= &nullb_device_ops,
572 	.ct_attrs	= nullb_device_attrs,
573 	.ct_owner	= THIS_MODULE,
574 };
575 
576 static struct
577 config_item *nullb_group_make_item(struct config_group *group, const char *name)
578 {
579 	struct nullb_device *dev;
580 
581 	if (null_find_dev_by_name(name))
582 		return ERR_PTR(-EEXIST);
583 
584 	dev = null_alloc_dev();
585 	if (!dev)
586 		return ERR_PTR(-ENOMEM);
587 
588 	config_item_init_type_name(&dev->item, name, &nullb_device_type);
589 
590 	return &dev->item;
591 }
592 
593 static void
594 nullb_group_drop_item(struct config_group *group, struct config_item *item)
595 {
596 	struct nullb_device *dev = to_nullb_device(item);
597 
598 	if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
599 		mutex_lock(&lock);
600 		dev->power = false;
601 		null_del_dev(dev->nullb);
602 		mutex_unlock(&lock);
603 	}
604 
605 	config_item_put(item);
606 }
607 
608 static ssize_t memb_group_features_show(struct config_item *item, char *page)
609 {
610 	return snprintf(page, PAGE_SIZE,
611 			"badblocks,blocking,blocksize,cache_size,"
612 			"completion_nsec,discard,home_node,hw_queue_depth,"
613 			"irqmode,max_sectors,mbps,memory_backed,no_sched,"
614 			"poll_queues,power,queue_mode,shared_tag_bitmap,size,"
615 			"submit_queues,use_per_node_hctx,virt_boundary,zoned,"
616 			"zone_capacity,zone_max_active,zone_max_open,"
617 			"zone_nr_conv,zone_size\n");
618 }
619 
620 CONFIGFS_ATTR_RO(memb_group_, features);
621 
622 static struct configfs_attribute *nullb_group_attrs[] = {
623 	&memb_group_attr_features,
624 	NULL,
625 };
626 
627 static struct configfs_group_operations nullb_group_ops = {
628 	.make_item	= nullb_group_make_item,
629 	.drop_item	= nullb_group_drop_item,
630 };
631 
632 static const struct config_item_type nullb_group_type = {
633 	.ct_group_ops	= &nullb_group_ops,
634 	.ct_attrs	= nullb_group_attrs,
635 	.ct_owner	= THIS_MODULE,
636 };
637 
638 static struct configfs_subsystem nullb_subsys = {
639 	.su_group = {
640 		.cg_item = {
641 			.ci_namebuf = "nullb",
642 			.ci_type = &nullb_group_type,
643 		},
644 	},
645 };
646 
647 static inline int null_cache_active(struct nullb *nullb)
648 {
649 	return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
650 }
651 
652 static struct nullb_device *null_alloc_dev(void)
653 {
654 	struct nullb_device *dev;
655 
656 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
657 	if (!dev)
658 		return NULL;
659 	INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
660 	INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
661 	if (badblocks_init(&dev->badblocks, 0)) {
662 		kfree(dev);
663 		return NULL;
664 	}
665 
666 	dev->size = g_gb * 1024;
667 	dev->completion_nsec = g_completion_nsec;
668 	dev->submit_queues = g_submit_queues;
669 	dev->prev_submit_queues = g_submit_queues;
670 	dev->poll_queues = g_poll_queues;
671 	dev->prev_poll_queues = g_poll_queues;
672 	dev->home_node = g_home_node;
673 	dev->queue_mode = g_queue_mode;
674 	dev->blocksize = g_bs;
675 	dev->max_sectors = g_max_sectors;
676 	dev->irqmode = g_irqmode;
677 	dev->hw_queue_depth = g_hw_queue_depth;
678 	dev->blocking = g_blocking;
679 	dev->memory_backed = g_memory_backed;
680 	dev->discard = g_discard;
681 	dev->cache_size = g_cache_size;
682 	dev->mbps = g_mbps;
683 	dev->use_per_node_hctx = g_use_per_node_hctx;
684 	dev->zoned = g_zoned;
685 	dev->zone_size = g_zone_size;
686 	dev->zone_capacity = g_zone_capacity;
687 	dev->zone_nr_conv = g_zone_nr_conv;
688 	dev->zone_max_open = g_zone_max_open;
689 	dev->zone_max_active = g_zone_max_active;
690 	dev->virt_boundary = g_virt_boundary;
691 	dev->no_sched = g_no_sched;
692 	dev->shared_tag_bitmap = g_shared_tag_bitmap;
693 	return dev;
694 }
695 
696 static void null_free_dev(struct nullb_device *dev)
697 {
698 	if (!dev)
699 		return;
700 
701 	null_free_zoned_dev(dev);
702 	badblocks_exit(&dev->badblocks);
703 	kfree(dev);
704 }
705 
706 static void put_tag(struct nullb_queue *nq, unsigned int tag)
707 {
708 	clear_bit_unlock(tag, nq->tag_map);
709 
710 	if (waitqueue_active(&nq->wait))
711 		wake_up(&nq->wait);
712 }
713 
714 static unsigned int get_tag(struct nullb_queue *nq)
715 {
716 	unsigned int tag;
717 
718 	do {
719 		tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
720 		if (tag >= nq->queue_depth)
721 			return -1U;
722 	} while (test_and_set_bit_lock(tag, nq->tag_map));
723 
724 	return tag;
725 }
726 
727 static void free_cmd(struct nullb_cmd *cmd)
728 {
729 	put_tag(cmd->nq, cmd->tag);
730 }
731 
732 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
733 
734 static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
735 {
736 	struct nullb_cmd *cmd;
737 	unsigned int tag;
738 
739 	tag = get_tag(nq);
740 	if (tag != -1U) {
741 		cmd = &nq->cmds[tag];
742 		cmd->tag = tag;
743 		cmd->error = BLK_STS_OK;
744 		cmd->nq = nq;
745 		if (nq->dev->irqmode == NULL_IRQ_TIMER) {
746 			hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
747 				     HRTIMER_MODE_REL);
748 			cmd->timer.function = null_cmd_timer_expired;
749 		}
750 		return cmd;
751 	}
752 
753 	return NULL;
754 }
755 
756 static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, struct bio *bio)
757 {
758 	struct nullb_cmd *cmd;
759 	DEFINE_WAIT(wait);
760 
761 	do {
762 		/*
763 		 * This avoids multiple return statements, multiple calls to
764 		 * __alloc_cmd() and a fast path call to prepare_to_wait().
765 		 */
766 		cmd = __alloc_cmd(nq);
767 		if (cmd) {
768 			cmd->bio = bio;
769 			return cmd;
770 		}
771 		prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
772 		io_schedule();
773 		finish_wait(&nq->wait, &wait);
774 	} while (1);
775 }
776 
777 static void end_cmd(struct nullb_cmd *cmd)
778 {
779 	int queue_mode = cmd->nq->dev->queue_mode;
780 
781 	switch (queue_mode)  {
782 	case NULL_Q_MQ:
783 		blk_mq_end_request(cmd->rq, cmd->error);
784 		return;
785 	case NULL_Q_BIO:
786 		cmd->bio->bi_status = cmd->error;
787 		bio_endio(cmd->bio);
788 		break;
789 	}
790 
791 	free_cmd(cmd);
792 }
793 
794 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
795 {
796 	end_cmd(container_of(timer, struct nullb_cmd, timer));
797 
798 	return HRTIMER_NORESTART;
799 }
800 
801 static void null_cmd_end_timer(struct nullb_cmd *cmd)
802 {
803 	ktime_t kt = cmd->nq->dev->completion_nsec;
804 
805 	hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
806 }
807 
808 static void null_complete_rq(struct request *rq)
809 {
810 	end_cmd(blk_mq_rq_to_pdu(rq));
811 }
812 
813 static struct nullb_page *null_alloc_page(void)
814 {
815 	struct nullb_page *t_page;
816 
817 	t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO);
818 	if (!t_page)
819 		return NULL;
820 
821 	t_page->page = alloc_pages(GFP_NOIO, 0);
822 	if (!t_page->page) {
823 		kfree(t_page);
824 		return NULL;
825 	}
826 
827 	memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
828 	return t_page;
829 }
830 
831 static void null_free_page(struct nullb_page *t_page)
832 {
833 	__set_bit(NULLB_PAGE_FREE, t_page->bitmap);
834 	if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
835 		return;
836 	__free_page(t_page->page);
837 	kfree(t_page);
838 }
839 
840 static bool null_page_empty(struct nullb_page *page)
841 {
842 	int size = MAP_SZ - 2;
843 
844 	return find_first_bit(page->bitmap, size) == size;
845 }
846 
847 static void null_free_sector(struct nullb *nullb, sector_t sector,
848 	bool is_cache)
849 {
850 	unsigned int sector_bit;
851 	u64 idx;
852 	struct nullb_page *t_page, *ret;
853 	struct radix_tree_root *root;
854 
855 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
856 	idx = sector >> PAGE_SECTORS_SHIFT;
857 	sector_bit = (sector & SECTOR_MASK);
858 
859 	t_page = radix_tree_lookup(root, idx);
860 	if (t_page) {
861 		__clear_bit(sector_bit, t_page->bitmap);
862 
863 		if (null_page_empty(t_page)) {
864 			ret = radix_tree_delete_item(root, idx, t_page);
865 			WARN_ON(ret != t_page);
866 			null_free_page(ret);
867 			if (is_cache)
868 				nullb->dev->curr_cache -= PAGE_SIZE;
869 		}
870 	}
871 }
872 
873 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
874 	struct nullb_page *t_page, bool is_cache)
875 {
876 	struct radix_tree_root *root;
877 
878 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
879 
880 	if (radix_tree_insert(root, idx, t_page)) {
881 		null_free_page(t_page);
882 		t_page = radix_tree_lookup(root, idx);
883 		WARN_ON(!t_page || t_page->page->index != idx);
884 	} else if (is_cache)
885 		nullb->dev->curr_cache += PAGE_SIZE;
886 
887 	return t_page;
888 }
889 
890 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
891 {
892 	unsigned long pos = 0;
893 	int nr_pages;
894 	struct nullb_page *ret, *t_pages[FREE_BATCH];
895 	struct radix_tree_root *root;
896 
897 	root = is_cache ? &dev->cache : &dev->data;
898 
899 	do {
900 		int i;
901 
902 		nr_pages = radix_tree_gang_lookup(root,
903 				(void **)t_pages, pos, FREE_BATCH);
904 
905 		for (i = 0; i < nr_pages; i++) {
906 			pos = t_pages[i]->page->index;
907 			ret = radix_tree_delete_item(root, pos, t_pages[i]);
908 			WARN_ON(ret != t_pages[i]);
909 			null_free_page(ret);
910 		}
911 
912 		pos++;
913 	} while (nr_pages == FREE_BATCH);
914 
915 	if (is_cache)
916 		dev->curr_cache = 0;
917 }
918 
919 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
920 	sector_t sector, bool for_write, bool is_cache)
921 {
922 	unsigned int sector_bit;
923 	u64 idx;
924 	struct nullb_page *t_page;
925 	struct radix_tree_root *root;
926 
927 	idx = sector >> PAGE_SECTORS_SHIFT;
928 	sector_bit = (sector & SECTOR_MASK);
929 
930 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
931 	t_page = radix_tree_lookup(root, idx);
932 	WARN_ON(t_page && t_page->page->index != idx);
933 
934 	if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
935 		return t_page;
936 
937 	return NULL;
938 }
939 
940 static struct nullb_page *null_lookup_page(struct nullb *nullb,
941 	sector_t sector, bool for_write, bool ignore_cache)
942 {
943 	struct nullb_page *page = NULL;
944 
945 	if (!ignore_cache)
946 		page = __null_lookup_page(nullb, sector, for_write, true);
947 	if (page)
948 		return page;
949 	return __null_lookup_page(nullb, sector, for_write, false);
950 }
951 
952 static struct nullb_page *null_insert_page(struct nullb *nullb,
953 					   sector_t sector, bool ignore_cache)
954 	__releases(&nullb->lock)
955 	__acquires(&nullb->lock)
956 {
957 	u64 idx;
958 	struct nullb_page *t_page;
959 
960 	t_page = null_lookup_page(nullb, sector, true, ignore_cache);
961 	if (t_page)
962 		return t_page;
963 
964 	spin_unlock_irq(&nullb->lock);
965 
966 	t_page = null_alloc_page();
967 	if (!t_page)
968 		goto out_lock;
969 
970 	if (radix_tree_preload(GFP_NOIO))
971 		goto out_freepage;
972 
973 	spin_lock_irq(&nullb->lock);
974 	idx = sector >> PAGE_SECTORS_SHIFT;
975 	t_page->page->index = idx;
976 	t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
977 	radix_tree_preload_end();
978 
979 	return t_page;
980 out_freepage:
981 	null_free_page(t_page);
982 out_lock:
983 	spin_lock_irq(&nullb->lock);
984 	return null_lookup_page(nullb, sector, true, ignore_cache);
985 }
986 
987 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
988 {
989 	int i;
990 	unsigned int offset;
991 	u64 idx;
992 	struct nullb_page *t_page, *ret;
993 	void *dst, *src;
994 
995 	idx = c_page->page->index;
996 
997 	t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
998 
999 	__clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
1000 	if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
1001 		null_free_page(c_page);
1002 		if (t_page && null_page_empty(t_page)) {
1003 			ret = radix_tree_delete_item(&nullb->dev->data,
1004 				idx, t_page);
1005 			null_free_page(t_page);
1006 		}
1007 		return 0;
1008 	}
1009 
1010 	if (!t_page)
1011 		return -ENOMEM;
1012 
1013 	src = kmap_atomic(c_page->page);
1014 	dst = kmap_atomic(t_page->page);
1015 
1016 	for (i = 0; i < PAGE_SECTORS;
1017 			i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
1018 		if (test_bit(i, c_page->bitmap)) {
1019 			offset = (i << SECTOR_SHIFT);
1020 			memcpy(dst + offset, src + offset,
1021 				nullb->dev->blocksize);
1022 			__set_bit(i, t_page->bitmap);
1023 		}
1024 	}
1025 
1026 	kunmap_atomic(dst);
1027 	kunmap_atomic(src);
1028 
1029 	ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
1030 	null_free_page(ret);
1031 	nullb->dev->curr_cache -= PAGE_SIZE;
1032 
1033 	return 0;
1034 }
1035 
1036 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
1037 {
1038 	int i, err, nr_pages;
1039 	struct nullb_page *c_pages[FREE_BATCH];
1040 	unsigned long flushed = 0, one_round;
1041 
1042 again:
1043 	if ((nullb->dev->cache_size * 1024 * 1024) >
1044 	     nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
1045 		return 0;
1046 
1047 	nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
1048 			(void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
1049 	/*
1050 	 * nullb_flush_cache_page could unlock before using the c_pages. To
1051 	 * avoid race, we don't allow page free
1052 	 */
1053 	for (i = 0; i < nr_pages; i++) {
1054 		nullb->cache_flush_pos = c_pages[i]->page->index;
1055 		/*
1056 		 * We found the page which is being flushed to disk by other
1057 		 * threads
1058 		 */
1059 		if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
1060 			c_pages[i] = NULL;
1061 		else
1062 			__set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
1063 	}
1064 
1065 	one_round = 0;
1066 	for (i = 0; i < nr_pages; i++) {
1067 		if (c_pages[i] == NULL)
1068 			continue;
1069 		err = null_flush_cache_page(nullb, c_pages[i]);
1070 		if (err)
1071 			return err;
1072 		one_round++;
1073 	}
1074 	flushed += one_round << PAGE_SHIFT;
1075 
1076 	if (n > flushed) {
1077 		if (nr_pages == 0)
1078 			nullb->cache_flush_pos = 0;
1079 		if (one_round == 0) {
1080 			/* give other threads a chance */
1081 			spin_unlock_irq(&nullb->lock);
1082 			spin_lock_irq(&nullb->lock);
1083 		}
1084 		goto again;
1085 	}
1086 	return 0;
1087 }
1088 
1089 static int copy_to_nullb(struct nullb *nullb, struct page *source,
1090 	unsigned int off, sector_t sector, size_t n, bool is_fua)
1091 {
1092 	size_t temp, count = 0;
1093 	unsigned int offset;
1094 	struct nullb_page *t_page;
1095 	void *dst, *src;
1096 
1097 	while (count < n) {
1098 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1099 
1100 		if (null_cache_active(nullb) && !is_fua)
1101 			null_make_cache_space(nullb, PAGE_SIZE);
1102 
1103 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1104 		t_page = null_insert_page(nullb, sector,
1105 			!null_cache_active(nullb) || is_fua);
1106 		if (!t_page)
1107 			return -ENOSPC;
1108 
1109 		src = kmap_atomic(source);
1110 		dst = kmap_atomic(t_page->page);
1111 		memcpy(dst + offset, src + off + count, temp);
1112 		kunmap_atomic(dst);
1113 		kunmap_atomic(src);
1114 
1115 		__set_bit(sector & SECTOR_MASK, t_page->bitmap);
1116 
1117 		if (is_fua)
1118 			null_free_sector(nullb, sector, true);
1119 
1120 		count += temp;
1121 		sector += temp >> SECTOR_SHIFT;
1122 	}
1123 	return 0;
1124 }
1125 
1126 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1127 	unsigned int off, sector_t sector, size_t n)
1128 {
1129 	size_t temp, count = 0;
1130 	unsigned int offset;
1131 	struct nullb_page *t_page;
1132 	void *dst, *src;
1133 
1134 	while (count < n) {
1135 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1136 
1137 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1138 		t_page = null_lookup_page(nullb, sector, false,
1139 			!null_cache_active(nullb));
1140 
1141 		dst = kmap_atomic(dest);
1142 		if (!t_page) {
1143 			memset(dst + off + count, 0, temp);
1144 			goto next;
1145 		}
1146 		src = kmap_atomic(t_page->page);
1147 		memcpy(dst + off + count, src + offset, temp);
1148 		kunmap_atomic(src);
1149 next:
1150 		kunmap_atomic(dst);
1151 
1152 		count += temp;
1153 		sector += temp >> SECTOR_SHIFT;
1154 	}
1155 	return 0;
1156 }
1157 
1158 static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1159 			       unsigned int len, unsigned int off)
1160 {
1161 	void *dst;
1162 
1163 	dst = kmap_atomic(page);
1164 	memset(dst + off, 0xFF, len);
1165 	kunmap_atomic(dst);
1166 }
1167 
1168 blk_status_t null_handle_discard(struct nullb_device *dev,
1169 				 sector_t sector, sector_t nr_sectors)
1170 {
1171 	struct nullb *nullb = dev->nullb;
1172 	size_t n = nr_sectors << SECTOR_SHIFT;
1173 	size_t temp;
1174 
1175 	spin_lock_irq(&nullb->lock);
1176 	while (n > 0) {
1177 		temp = min_t(size_t, n, dev->blocksize);
1178 		null_free_sector(nullb, sector, false);
1179 		if (null_cache_active(nullb))
1180 			null_free_sector(nullb, sector, true);
1181 		sector += temp >> SECTOR_SHIFT;
1182 		n -= temp;
1183 	}
1184 	spin_unlock_irq(&nullb->lock);
1185 
1186 	return BLK_STS_OK;
1187 }
1188 
1189 static int null_handle_flush(struct nullb *nullb)
1190 {
1191 	int err;
1192 
1193 	if (!null_cache_active(nullb))
1194 		return 0;
1195 
1196 	spin_lock_irq(&nullb->lock);
1197 	while (true) {
1198 		err = null_make_cache_space(nullb,
1199 			nullb->dev->cache_size * 1024 * 1024);
1200 		if (err || nullb->dev->curr_cache == 0)
1201 			break;
1202 	}
1203 
1204 	WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1205 	spin_unlock_irq(&nullb->lock);
1206 	return err;
1207 }
1208 
1209 static int null_transfer(struct nullb *nullb, struct page *page,
1210 	unsigned int len, unsigned int off, bool is_write, sector_t sector,
1211 	bool is_fua)
1212 {
1213 	struct nullb_device *dev = nullb->dev;
1214 	unsigned int valid_len = len;
1215 	int err = 0;
1216 
1217 	if (!is_write) {
1218 		if (dev->zoned)
1219 			valid_len = null_zone_valid_read_len(nullb,
1220 				sector, len);
1221 
1222 		if (valid_len) {
1223 			err = copy_from_nullb(nullb, page, off,
1224 				sector, valid_len);
1225 			off += valid_len;
1226 			len -= valid_len;
1227 		}
1228 
1229 		if (len)
1230 			nullb_fill_pattern(nullb, page, len, off);
1231 		flush_dcache_page(page);
1232 	} else {
1233 		flush_dcache_page(page);
1234 		err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1235 	}
1236 
1237 	return err;
1238 }
1239 
1240 static int null_handle_rq(struct nullb_cmd *cmd)
1241 {
1242 	struct request *rq = cmd->rq;
1243 	struct nullb *nullb = cmd->nq->dev->nullb;
1244 	int err;
1245 	unsigned int len;
1246 	sector_t sector = blk_rq_pos(rq);
1247 	struct req_iterator iter;
1248 	struct bio_vec bvec;
1249 
1250 	spin_lock_irq(&nullb->lock);
1251 	rq_for_each_segment(bvec, rq, iter) {
1252 		len = bvec.bv_len;
1253 		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1254 				     op_is_write(req_op(rq)), sector,
1255 				     rq->cmd_flags & REQ_FUA);
1256 		if (err) {
1257 			spin_unlock_irq(&nullb->lock);
1258 			return err;
1259 		}
1260 		sector += len >> SECTOR_SHIFT;
1261 	}
1262 	spin_unlock_irq(&nullb->lock);
1263 
1264 	return 0;
1265 }
1266 
1267 static int null_handle_bio(struct nullb_cmd *cmd)
1268 {
1269 	struct bio *bio = cmd->bio;
1270 	struct nullb *nullb = cmd->nq->dev->nullb;
1271 	int err;
1272 	unsigned int len;
1273 	sector_t sector = bio->bi_iter.bi_sector;
1274 	struct bio_vec bvec;
1275 	struct bvec_iter iter;
1276 
1277 	spin_lock_irq(&nullb->lock);
1278 	bio_for_each_segment(bvec, bio, iter) {
1279 		len = bvec.bv_len;
1280 		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1281 				     op_is_write(bio_op(bio)), sector,
1282 				     bio->bi_opf & REQ_FUA);
1283 		if (err) {
1284 			spin_unlock_irq(&nullb->lock);
1285 			return err;
1286 		}
1287 		sector += len >> SECTOR_SHIFT;
1288 	}
1289 	spin_unlock_irq(&nullb->lock);
1290 	return 0;
1291 }
1292 
1293 static void null_stop_queue(struct nullb *nullb)
1294 {
1295 	struct request_queue *q = nullb->q;
1296 
1297 	if (nullb->dev->queue_mode == NULL_Q_MQ)
1298 		blk_mq_stop_hw_queues(q);
1299 }
1300 
1301 static void null_restart_queue_async(struct nullb *nullb)
1302 {
1303 	struct request_queue *q = nullb->q;
1304 
1305 	if (nullb->dev->queue_mode == NULL_Q_MQ)
1306 		blk_mq_start_stopped_hw_queues(q, true);
1307 }
1308 
1309 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1310 {
1311 	struct nullb_device *dev = cmd->nq->dev;
1312 	struct nullb *nullb = dev->nullb;
1313 	blk_status_t sts = BLK_STS_OK;
1314 	struct request *rq = cmd->rq;
1315 
1316 	if (!hrtimer_active(&nullb->bw_timer))
1317 		hrtimer_restart(&nullb->bw_timer);
1318 
1319 	if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1320 		null_stop_queue(nullb);
1321 		/* race with timer */
1322 		if (atomic_long_read(&nullb->cur_bytes) > 0)
1323 			null_restart_queue_async(nullb);
1324 		/* requeue request */
1325 		sts = BLK_STS_DEV_RESOURCE;
1326 	}
1327 	return sts;
1328 }
1329 
1330 static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
1331 						 sector_t sector,
1332 						 sector_t nr_sectors)
1333 {
1334 	struct badblocks *bb = &cmd->nq->dev->badblocks;
1335 	sector_t first_bad;
1336 	int bad_sectors;
1337 
1338 	if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
1339 		return BLK_STS_IOERR;
1340 
1341 	return BLK_STS_OK;
1342 }
1343 
1344 static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
1345 						     enum req_op op,
1346 						     sector_t sector,
1347 						     sector_t nr_sectors)
1348 {
1349 	struct nullb_device *dev = cmd->nq->dev;
1350 	int err;
1351 
1352 	if (op == REQ_OP_DISCARD)
1353 		return null_handle_discard(dev, sector, nr_sectors);
1354 
1355 	if (dev->queue_mode == NULL_Q_BIO)
1356 		err = null_handle_bio(cmd);
1357 	else
1358 		err = null_handle_rq(cmd);
1359 
1360 	return errno_to_blk_status(err);
1361 }
1362 
1363 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1364 {
1365 	struct nullb_device *dev = cmd->nq->dev;
1366 	struct bio *bio;
1367 
1368 	if (dev->memory_backed)
1369 		return;
1370 
1371 	if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) == REQ_OP_READ) {
1372 		zero_fill_bio(cmd->bio);
1373 	} else if (req_op(cmd->rq) == REQ_OP_READ) {
1374 		__rq_for_each_bio(bio, cmd->rq)
1375 			zero_fill_bio(bio);
1376 	}
1377 }
1378 
1379 static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1380 {
1381 	/*
1382 	 * Since root privileges are required to configure the null_blk
1383 	 * driver, it is fine that this driver does not initialize the
1384 	 * data buffers of read commands. Zero-initialize these buffers
1385 	 * anyway if KMSAN is enabled to prevent that KMSAN complains
1386 	 * about null_blk not initializing read data buffers.
1387 	 */
1388 	if (IS_ENABLED(CONFIG_KMSAN))
1389 		nullb_zero_read_cmd_buffer(cmd);
1390 
1391 	/* Complete IO by inline, softirq or timer */
1392 	switch (cmd->nq->dev->irqmode) {
1393 	case NULL_IRQ_SOFTIRQ:
1394 		switch (cmd->nq->dev->queue_mode) {
1395 		case NULL_Q_MQ:
1396 			if (likely(!blk_should_fake_timeout(cmd->rq->q)))
1397 				blk_mq_complete_request(cmd->rq);
1398 			break;
1399 		case NULL_Q_BIO:
1400 			/*
1401 			 * XXX: no proper submitting cpu information available.
1402 			 */
1403 			end_cmd(cmd);
1404 			break;
1405 		}
1406 		break;
1407 	case NULL_IRQ_NONE:
1408 		end_cmd(cmd);
1409 		break;
1410 	case NULL_IRQ_TIMER:
1411 		null_cmd_end_timer(cmd);
1412 		break;
1413 	}
1414 }
1415 
1416 blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op,
1417 			      sector_t sector, unsigned int nr_sectors)
1418 {
1419 	struct nullb_device *dev = cmd->nq->dev;
1420 	blk_status_t ret;
1421 
1422 	if (dev->badblocks.shift != -1) {
1423 		ret = null_handle_badblocks(cmd, sector, nr_sectors);
1424 		if (ret != BLK_STS_OK)
1425 			return ret;
1426 	}
1427 
1428 	if (dev->memory_backed)
1429 		return null_handle_memory_backed(cmd, op, sector, nr_sectors);
1430 
1431 	return BLK_STS_OK;
1432 }
1433 
1434 static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1435 				    sector_t nr_sectors, enum req_op op)
1436 {
1437 	struct nullb_device *dev = cmd->nq->dev;
1438 	struct nullb *nullb = dev->nullb;
1439 	blk_status_t sts;
1440 
1441 	if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1442 		sts = null_handle_throttled(cmd);
1443 		if (sts != BLK_STS_OK)
1444 			return sts;
1445 	}
1446 
1447 	if (op == REQ_OP_FLUSH) {
1448 		cmd->error = errno_to_blk_status(null_handle_flush(nullb));
1449 		goto out;
1450 	}
1451 
1452 	if (dev->zoned)
1453 		sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1454 	else
1455 		sts = null_process_cmd(cmd, op, sector, nr_sectors);
1456 
1457 	/* Do not overwrite errors (e.g. timeout errors) */
1458 	if (cmd->error == BLK_STS_OK)
1459 		cmd->error = sts;
1460 
1461 out:
1462 	nullb_complete_cmd(cmd);
1463 	return BLK_STS_OK;
1464 }
1465 
1466 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1467 {
1468 	struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1469 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1470 	unsigned int mbps = nullb->dev->mbps;
1471 
1472 	if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1473 		return HRTIMER_NORESTART;
1474 
1475 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1476 	null_restart_queue_async(nullb);
1477 
1478 	hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1479 
1480 	return HRTIMER_RESTART;
1481 }
1482 
1483 static void nullb_setup_bwtimer(struct nullb *nullb)
1484 {
1485 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1486 
1487 	hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1488 	nullb->bw_timer.function = nullb_bwtimer_fn;
1489 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1490 	hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1491 }
1492 
1493 static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1494 {
1495 	int index = 0;
1496 
1497 	if (nullb->nr_queues != 1)
1498 		index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1499 
1500 	return &nullb->queues[index];
1501 }
1502 
1503 static void null_submit_bio(struct bio *bio)
1504 {
1505 	sector_t sector = bio->bi_iter.bi_sector;
1506 	sector_t nr_sectors = bio_sectors(bio);
1507 	struct nullb *nullb = bio->bi_bdev->bd_disk->private_data;
1508 	struct nullb_queue *nq = nullb_to_queue(nullb);
1509 
1510 	null_handle_cmd(alloc_cmd(nq, bio), sector, nr_sectors, bio_op(bio));
1511 }
1512 
1513 static bool should_timeout_request(struct request *rq)
1514 {
1515 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1516 	if (g_timeout_str[0])
1517 		return should_fail(&null_timeout_attr, 1);
1518 #endif
1519 	return false;
1520 }
1521 
1522 static bool should_requeue_request(struct request *rq)
1523 {
1524 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1525 	if (g_requeue_str[0])
1526 		return should_fail(&null_requeue_attr, 1);
1527 #endif
1528 	return false;
1529 }
1530 
1531 static void null_map_queues(struct blk_mq_tag_set *set)
1532 {
1533 	struct nullb *nullb = set->driver_data;
1534 	int i, qoff;
1535 	unsigned int submit_queues = g_submit_queues;
1536 	unsigned int poll_queues = g_poll_queues;
1537 
1538 	if (nullb) {
1539 		struct nullb_device *dev = nullb->dev;
1540 
1541 		/*
1542 		 * Refer nr_hw_queues of the tag set to check if the expected
1543 		 * number of hardware queues are prepared. If block layer failed
1544 		 * to prepare them, use previous numbers of submit queues and
1545 		 * poll queues to map queues.
1546 		 */
1547 		if (set->nr_hw_queues ==
1548 		    dev->submit_queues + dev->poll_queues) {
1549 			submit_queues = dev->submit_queues;
1550 			poll_queues = dev->poll_queues;
1551 		} else if (set->nr_hw_queues ==
1552 			   dev->prev_submit_queues + dev->prev_poll_queues) {
1553 			submit_queues = dev->prev_submit_queues;
1554 			poll_queues = dev->prev_poll_queues;
1555 		} else {
1556 			pr_warn("tag set has unexpected nr_hw_queues: %d\n",
1557 				set->nr_hw_queues);
1558 			WARN_ON_ONCE(true);
1559 			submit_queues = 1;
1560 			poll_queues = 0;
1561 		}
1562 	}
1563 
1564 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
1565 		struct blk_mq_queue_map *map = &set->map[i];
1566 
1567 		switch (i) {
1568 		case HCTX_TYPE_DEFAULT:
1569 			map->nr_queues = submit_queues;
1570 			break;
1571 		case HCTX_TYPE_READ:
1572 			map->nr_queues = 0;
1573 			continue;
1574 		case HCTX_TYPE_POLL:
1575 			map->nr_queues = poll_queues;
1576 			break;
1577 		}
1578 		map->queue_offset = qoff;
1579 		qoff += map->nr_queues;
1580 		blk_mq_map_queues(map);
1581 	}
1582 }
1583 
1584 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1585 {
1586 	struct nullb_queue *nq = hctx->driver_data;
1587 	LIST_HEAD(list);
1588 	int nr = 0;
1589 
1590 	spin_lock(&nq->poll_lock);
1591 	list_splice_init(&nq->poll_list, &list);
1592 	spin_unlock(&nq->poll_lock);
1593 
1594 	while (!list_empty(&list)) {
1595 		struct nullb_cmd *cmd;
1596 		struct request *req;
1597 
1598 		req = list_first_entry(&list, struct request, queuelist);
1599 		list_del_init(&req->queuelist);
1600 		cmd = blk_mq_rq_to_pdu(req);
1601 		cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req),
1602 						blk_rq_sectors(req));
1603 		if (!blk_mq_add_to_batch(req, iob, (__force int) cmd->error,
1604 					blk_mq_end_request_batch))
1605 			end_cmd(cmd);
1606 		nr++;
1607 	}
1608 
1609 	return nr;
1610 }
1611 
1612 static enum blk_eh_timer_return null_timeout_rq(struct request *rq)
1613 {
1614 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1615 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1616 
1617 	pr_info("rq %p timed out\n", rq);
1618 
1619 	if (hctx->type == HCTX_TYPE_POLL) {
1620 		struct nullb_queue *nq = hctx->driver_data;
1621 
1622 		spin_lock(&nq->poll_lock);
1623 		list_del_init(&rq->queuelist);
1624 		spin_unlock(&nq->poll_lock);
1625 	}
1626 
1627 	/*
1628 	 * If the device is marked as blocking (i.e. memory backed or zoned
1629 	 * device), the submission path may be blocked waiting for resources
1630 	 * and cause real timeouts. For these real timeouts, the submission
1631 	 * path will complete the request using blk_mq_complete_request().
1632 	 * Only fake timeouts need to execute blk_mq_complete_request() here.
1633 	 */
1634 	cmd->error = BLK_STS_TIMEOUT;
1635 	if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL)
1636 		blk_mq_complete_request(rq);
1637 	return BLK_EH_DONE;
1638 }
1639 
1640 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1641 			 const struct blk_mq_queue_data *bd)
1642 {
1643 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1644 	struct nullb_queue *nq = hctx->driver_data;
1645 	sector_t nr_sectors = blk_rq_sectors(bd->rq);
1646 	sector_t sector = blk_rq_pos(bd->rq);
1647 	const bool is_poll = hctx->type == HCTX_TYPE_POLL;
1648 
1649 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1650 
1651 	if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) {
1652 		hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1653 		cmd->timer.function = null_cmd_timer_expired;
1654 	}
1655 	cmd->rq = bd->rq;
1656 	cmd->error = BLK_STS_OK;
1657 	cmd->nq = nq;
1658 	cmd->fake_timeout = should_timeout_request(bd->rq);
1659 
1660 	blk_mq_start_request(bd->rq);
1661 
1662 	if (should_requeue_request(bd->rq)) {
1663 		/*
1664 		 * Alternate between hitting the core BUSY path, and the
1665 		 * driver driven requeue path
1666 		 */
1667 		nq->requeue_selection++;
1668 		if (nq->requeue_selection & 1)
1669 			return BLK_STS_RESOURCE;
1670 		else {
1671 			blk_mq_requeue_request(bd->rq, true);
1672 			return BLK_STS_OK;
1673 		}
1674 	}
1675 
1676 	if (is_poll) {
1677 		spin_lock(&nq->poll_lock);
1678 		list_add_tail(&bd->rq->queuelist, &nq->poll_list);
1679 		spin_unlock(&nq->poll_lock);
1680 		return BLK_STS_OK;
1681 	}
1682 	if (cmd->fake_timeout)
1683 		return BLK_STS_OK;
1684 
1685 	return null_handle_cmd(cmd, sector, nr_sectors, req_op(bd->rq));
1686 }
1687 
1688 static void cleanup_queue(struct nullb_queue *nq)
1689 {
1690 	bitmap_free(nq->tag_map);
1691 	kfree(nq->cmds);
1692 }
1693 
1694 static void cleanup_queues(struct nullb *nullb)
1695 {
1696 	int i;
1697 
1698 	for (i = 0; i < nullb->nr_queues; i++)
1699 		cleanup_queue(&nullb->queues[i]);
1700 
1701 	kfree(nullb->queues);
1702 }
1703 
1704 static void null_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1705 {
1706 	struct nullb_queue *nq = hctx->driver_data;
1707 	struct nullb *nullb = nq->dev->nullb;
1708 
1709 	nullb->nr_queues--;
1710 }
1711 
1712 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1713 {
1714 	init_waitqueue_head(&nq->wait);
1715 	nq->queue_depth = nullb->queue_depth;
1716 	nq->dev = nullb->dev;
1717 	INIT_LIST_HEAD(&nq->poll_list);
1718 	spin_lock_init(&nq->poll_lock);
1719 }
1720 
1721 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1722 			  unsigned int hctx_idx)
1723 {
1724 	struct nullb *nullb = hctx->queue->queuedata;
1725 	struct nullb_queue *nq;
1726 
1727 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1728 	if (g_init_hctx_str[0] && should_fail(&null_init_hctx_attr, 1))
1729 		return -EFAULT;
1730 #endif
1731 
1732 	nq = &nullb->queues[hctx_idx];
1733 	hctx->driver_data = nq;
1734 	null_init_queue(nullb, nq);
1735 	nullb->nr_queues++;
1736 
1737 	return 0;
1738 }
1739 
1740 static const struct blk_mq_ops null_mq_ops = {
1741 	.queue_rq       = null_queue_rq,
1742 	.complete	= null_complete_rq,
1743 	.timeout	= null_timeout_rq,
1744 	.poll		= null_poll,
1745 	.map_queues	= null_map_queues,
1746 	.init_hctx	= null_init_hctx,
1747 	.exit_hctx	= null_exit_hctx,
1748 };
1749 
1750 static void null_del_dev(struct nullb *nullb)
1751 {
1752 	struct nullb_device *dev;
1753 
1754 	if (!nullb)
1755 		return;
1756 
1757 	dev = nullb->dev;
1758 
1759 	ida_simple_remove(&nullb_indexes, nullb->index);
1760 
1761 	list_del_init(&nullb->list);
1762 
1763 	del_gendisk(nullb->disk);
1764 
1765 	if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1766 		hrtimer_cancel(&nullb->bw_timer);
1767 		atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1768 		null_restart_queue_async(nullb);
1769 	}
1770 
1771 	put_disk(nullb->disk);
1772 	if (dev->queue_mode == NULL_Q_MQ &&
1773 	    nullb->tag_set == &nullb->__tag_set)
1774 		blk_mq_free_tag_set(nullb->tag_set);
1775 	cleanup_queues(nullb);
1776 	if (null_cache_active(nullb))
1777 		null_free_device_storage(nullb->dev, true);
1778 	kfree(nullb);
1779 	dev->nullb = NULL;
1780 }
1781 
1782 static void null_config_discard(struct nullb *nullb)
1783 {
1784 	if (nullb->dev->discard == false)
1785 		return;
1786 
1787 	if (!nullb->dev->memory_backed) {
1788 		nullb->dev->discard = false;
1789 		pr_info("discard option is ignored without memory backing\n");
1790 		return;
1791 	}
1792 
1793 	if (nullb->dev->zoned) {
1794 		nullb->dev->discard = false;
1795 		pr_info("discard option is ignored in zoned mode\n");
1796 		return;
1797 	}
1798 
1799 	nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1800 	blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1801 }
1802 
1803 static const struct block_device_operations null_bio_ops = {
1804 	.owner		= THIS_MODULE,
1805 	.submit_bio	= null_submit_bio,
1806 	.report_zones	= null_report_zones,
1807 };
1808 
1809 static const struct block_device_operations null_rq_ops = {
1810 	.owner		= THIS_MODULE,
1811 	.report_zones	= null_report_zones,
1812 };
1813 
1814 static int setup_commands(struct nullb_queue *nq)
1815 {
1816 	struct nullb_cmd *cmd;
1817 	int i;
1818 
1819 	nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1820 	if (!nq->cmds)
1821 		return -ENOMEM;
1822 
1823 	nq->tag_map = bitmap_zalloc(nq->queue_depth, GFP_KERNEL);
1824 	if (!nq->tag_map) {
1825 		kfree(nq->cmds);
1826 		return -ENOMEM;
1827 	}
1828 
1829 	for (i = 0; i < nq->queue_depth; i++) {
1830 		cmd = &nq->cmds[i];
1831 		cmd->tag = -1U;
1832 	}
1833 
1834 	return 0;
1835 }
1836 
1837 static int setup_queues(struct nullb *nullb)
1838 {
1839 	int nqueues = nr_cpu_ids;
1840 
1841 	if (g_poll_queues)
1842 		nqueues += g_poll_queues;
1843 
1844 	nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue),
1845 				GFP_KERNEL);
1846 	if (!nullb->queues)
1847 		return -ENOMEM;
1848 
1849 	nullb->queue_depth = nullb->dev->hw_queue_depth;
1850 	return 0;
1851 }
1852 
1853 static int init_driver_queues(struct nullb *nullb)
1854 {
1855 	struct nullb_queue *nq;
1856 	int i, ret = 0;
1857 
1858 	for (i = 0; i < nullb->dev->submit_queues; i++) {
1859 		nq = &nullb->queues[i];
1860 
1861 		null_init_queue(nullb, nq);
1862 
1863 		ret = setup_commands(nq);
1864 		if (ret)
1865 			return ret;
1866 		nullb->nr_queues++;
1867 	}
1868 	return 0;
1869 }
1870 
1871 static int null_gendisk_register(struct nullb *nullb)
1872 {
1873 	sector_t size = ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT;
1874 	struct gendisk *disk = nullb->disk;
1875 
1876 	set_capacity(disk, size);
1877 
1878 	disk->major		= null_major;
1879 	disk->first_minor	= nullb->index;
1880 	disk->minors		= 1;
1881 	if (queue_is_mq(nullb->q))
1882 		disk->fops		= &null_rq_ops;
1883 	else
1884 		disk->fops		= &null_bio_ops;
1885 	disk->private_data	= nullb;
1886 	strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1887 
1888 	if (nullb->dev->zoned) {
1889 		int ret = null_register_zoned_dev(nullb);
1890 
1891 		if (ret)
1892 			return ret;
1893 	}
1894 
1895 	return add_disk(disk);
1896 }
1897 
1898 static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1899 {
1900 	unsigned int flags = BLK_MQ_F_SHOULD_MERGE;
1901 	int hw_queues, numa_node;
1902 	unsigned int queue_depth;
1903 	int poll_queues;
1904 
1905 	if (nullb) {
1906 		hw_queues = nullb->dev->submit_queues;
1907 		poll_queues = nullb->dev->poll_queues;
1908 		queue_depth = nullb->dev->hw_queue_depth;
1909 		numa_node = nullb->dev->home_node;
1910 		if (nullb->dev->no_sched)
1911 			flags |= BLK_MQ_F_NO_SCHED;
1912 		if (nullb->dev->shared_tag_bitmap)
1913 			flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1914 		if (nullb->dev->blocking)
1915 			flags |= BLK_MQ_F_BLOCKING;
1916 	} else {
1917 		hw_queues = g_submit_queues;
1918 		poll_queues = g_poll_queues;
1919 		queue_depth = g_hw_queue_depth;
1920 		numa_node = g_home_node;
1921 		if (g_no_sched)
1922 			flags |= BLK_MQ_F_NO_SCHED;
1923 		if (g_shared_tag_bitmap)
1924 			flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1925 		if (g_blocking)
1926 			flags |= BLK_MQ_F_BLOCKING;
1927 	}
1928 
1929 	set->ops = &null_mq_ops;
1930 	set->cmd_size	= sizeof(struct nullb_cmd);
1931 	set->flags = flags;
1932 	set->driver_data = nullb;
1933 	set->nr_hw_queues = hw_queues;
1934 	set->queue_depth = queue_depth;
1935 	set->numa_node = numa_node;
1936 	if (poll_queues) {
1937 		set->nr_hw_queues += poll_queues;
1938 		set->nr_maps = 3;
1939 	} else {
1940 		set->nr_maps = 1;
1941 	}
1942 
1943 	return blk_mq_alloc_tag_set(set);
1944 }
1945 
1946 static int null_validate_conf(struct nullb_device *dev)
1947 {
1948 	dev->blocksize = round_down(dev->blocksize, 512);
1949 	dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
1950 
1951 	if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
1952 		if (dev->submit_queues != nr_online_nodes)
1953 			dev->submit_queues = nr_online_nodes;
1954 	} else if (dev->submit_queues > nr_cpu_ids)
1955 		dev->submit_queues = nr_cpu_ids;
1956 	else if (dev->submit_queues == 0)
1957 		dev->submit_queues = 1;
1958 	dev->prev_submit_queues = dev->submit_queues;
1959 
1960 	if (dev->poll_queues > g_poll_queues)
1961 		dev->poll_queues = g_poll_queues;
1962 	dev->prev_poll_queues = dev->poll_queues;
1963 
1964 	dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
1965 	dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1966 
1967 	/* Do memory allocation, so set blocking */
1968 	if (dev->memory_backed)
1969 		dev->blocking = true;
1970 	else /* cache is meaningless */
1971 		dev->cache_size = 0;
1972 	dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1973 						dev->cache_size);
1974 	dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1975 	/* can not stop a queue */
1976 	if (dev->queue_mode == NULL_Q_BIO)
1977 		dev->mbps = 0;
1978 
1979 	if (dev->zoned &&
1980 	    (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1981 		pr_err("zone_size must be power-of-two\n");
1982 		return -EINVAL;
1983 	}
1984 
1985 	return 0;
1986 }
1987 
1988 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1989 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1990 {
1991 	if (!str[0])
1992 		return true;
1993 
1994 	if (!setup_fault_attr(attr, str))
1995 		return false;
1996 
1997 	attr->verbose = 0;
1998 	return true;
1999 }
2000 #endif
2001 
2002 static bool null_setup_fault(void)
2003 {
2004 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
2005 	if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
2006 		return false;
2007 	if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
2008 		return false;
2009 	if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
2010 		return false;
2011 #endif
2012 	return true;
2013 }
2014 
2015 static int null_add_dev(struct nullb_device *dev)
2016 {
2017 	struct nullb *nullb;
2018 	int rv;
2019 
2020 	rv = null_validate_conf(dev);
2021 	if (rv)
2022 		return rv;
2023 
2024 	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
2025 	if (!nullb) {
2026 		rv = -ENOMEM;
2027 		goto out;
2028 	}
2029 	nullb->dev = dev;
2030 	dev->nullb = nullb;
2031 
2032 	spin_lock_init(&nullb->lock);
2033 
2034 	rv = setup_queues(nullb);
2035 	if (rv)
2036 		goto out_free_nullb;
2037 
2038 	if (dev->queue_mode == NULL_Q_MQ) {
2039 		if (shared_tags) {
2040 			nullb->tag_set = &tag_set;
2041 			rv = 0;
2042 		} else {
2043 			nullb->tag_set = &nullb->__tag_set;
2044 			rv = null_init_tag_set(nullb, nullb->tag_set);
2045 		}
2046 
2047 		if (rv)
2048 			goto out_cleanup_queues;
2049 
2050 		if (!null_setup_fault())
2051 			goto out_cleanup_tags;
2052 
2053 		nullb->tag_set->timeout = 5 * HZ;
2054 		nullb->disk = blk_mq_alloc_disk(nullb->tag_set, nullb);
2055 		if (IS_ERR(nullb->disk)) {
2056 			rv = PTR_ERR(nullb->disk);
2057 			goto out_cleanup_tags;
2058 		}
2059 		nullb->q = nullb->disk->queue;
2060 	} else if (dev->queue_mode == NULL_Q_BIO) {
2061 		rv = -ENOMEM;
2062 		nullb->disk = blk_alloc_disk(nullb->dev->home_node);
2063 		if (!nullb->disk)
2064 			goto out_cleanup_queues;
2065 
2066 		nullb->q = nullb->disk->queue;
2067 		rv = init_driver_queues(nullb);
2068 		if (rv)
2069 			goto out_cleanup_disk;
2070 	}
2071 
2072 	if (dev->mbps) {
2073 		set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
2074 		nullb_setup_bwtimer(nullb);
2075 	}
2076 
2077 	if (dev->cache_size > 0) {
2078 		set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
2079 		blk_queue_write_cache(nullb->q, true, true);
2080 	}
2081 
2082 	if (dev->zoned) {
2083 		rv = null_init_zoned_dev(dev, nullb->q);
2084 		if (rv)
2085 			goto out_cleanup_disk;
2086 	}
2087 
2088 	nullb->q->queuedata = nullb;
2089 	blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
2090 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
2091 
2092 	mutex_lock(&lock);
2093 	rv = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
2094 	if (rv < 0) {
2095 		mutex_unlock(&lock);
2096 		goto out_cleanup_zone;
2097 	}
2098 	nullb->index = rv;
2099 	dev->index = rv;
2100 	mutex_unlock(&lock);
2101 
2102 	blk_queue_logical_block_size(nullb->q, dev->blocksize);
2103 	blk_queue_physical_block_size(nullb->q, dev->blocksize);
2104 	if (!dev->max_sectors)
2105 		dev->max_sectors = queue_max_hw_sectors(nullb->q);
2106 	dev->max_sectors = min_t(unsigned int, dev->max_sectors,
2107 				 BLK_DEF_MAX_SECTORS);
2108 	blk_queue_max_hw_sectors(nullb->q, dev->max_sectors);
2109 
2110 	if (dev->virt_boundary)
2111 		blk_queue_virt_boundary(nullb->q, PAGE_SIZE - 1);
2112 
2113 	null_config_discard(nullb);
2114 
2115 	if (config_item_name(&dev->item)) {
2116 		/* Use configfs dir name as the device name */
2117 		snprintf(nullb->disk_name, sizeof(nullb->disk_name),
2118 			 "%s", config_item_name(&dev->item));
2119 	} else {
2120 		sprintf(nullb->disk_name, "nullb%d", nullb->index);
2121 	}
2122 
2123 	rv = null_gendisk_register(nullb);
2124 	if (rv)
2125 		goto out_ida_free;
2126 
2127 	mutex_lock(&lock);
2128 	list_add_tail(&nullb->list, &nullb_list);
2129 	mutex_unlock(&lock);
2130 
2131 	pr_info("disk %s created\n", nullb->disk_name);
2132 
2133 	return 0;
2134 
2135 out_ida_free:
2136 	ida_free(&nullb_indexes, nullb->index);
2137 out_cleanup_zone:
2138 	null_free_zoned_dev(dev);
2139 out_cleanup_disk:
2140 	put_disk(nullb->disk);
2141 out_cleanup_tags:
2142 	if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
2143 		blk_mq_free_tag_set(nullb->tag_set);
2144 out_cleanup_queues:
2145 	cleanup_queues(nullb);
2146 out_free_nullb:
2147 	kfree(nullb);
2148 	dev->nullb = NULL;
2149 out:
2150 	return rv;
2151 }
2152 
2153 static struct nullb *null_find_dev_by_name(const char *name)
2154 {
2155 	struct nullb *nullb = NULL, *nb;
2156 
2157 	mutex_lock(&lock);
2158 	list_for_each_entry(nb, &nullb_list, list) {
2159 		if (strcmp(nb->disk_name, name) == 0) {
2160 			nullb = nb;
2161 			break;
2162 		}
2163 	}
2164 	mutex_unlock(&lock);
2165 
2166 	return nullb;
2167 }
2168 
2169 static int null_create_dev(void)
2170 {
2171 	struct nullb_device *dev;
2172 	int ret;
2173 
2174 	dev = null_alloc_dev();
2175 	if (!dev)
2176 		return -ENOMEM;
2177 
2178 	ret = null_add_dev(dev);
2179 	if (ret) {
2180 		null_free_dev(dev);
2181 		return ret;
2182 	}
2183 
2184 	return 0;
2185 }
2186 
2187 static void null_destroy_dev(struct nullb *nullb)
2188 {
2189 	struct nullb_device *dev = nullb->dev;
2190 
2191 	null_del_dev(nullb);
2192 	null_free_dev(dev);
2193 }
2194 
2195 static int __init null_init(void)
2196 {
2197 	int ret = 0;
2198 	unsigned int i;
2199 	struct nullb *nullb;
2200 
2201 	if (g_bs > PAGE_SIZE) {
2202 		pr_warn("invalid block size\n");
2203 		pr_warn("defaults block size to %lu\n", PAGE_SIZE);
2204 		g_bs = PAGE_SIZE;
2205 	}
2206 
2207 	if (g_max_sectors > BLK_DEF_MAX_SECTORS) {
2208 		pr_warn("invalid max sectors\n");
2209 		pr_warn("defaults max sectors to %u\n", BLK_DEF_MAX_SECTORS);
2210 		g_max_sectors = BLK_DEF_MAX_SECTORS;
2211 	}
2212 
2213 	if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
2214 		pr_err("invalid home_node value\n");
2215 		g_home_node = NUMA_NO_NODE;
2216 	}
2217 
2218 	if (g_queue_mode == NULL_Q_RQ) {
2219 		pr_err("legacy IO path is no longer available\n");
2220 		return -EINVAL;
2221 	}
2222 
2223 	if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
2224 		if (g_submit_queues != nr_online_nodes) {
2225 			pr_warn("submit_queues param is set to %u.\n",
2226 				nr_online_nodes);
2227 			g_submit_queues = nr_online_nodes;
2228 		}
2229 	} else if (g_submit_queues > nr_cpu_ids) {
2230 		g_submit_queues = nr_cpu_ids;
2231 	} else if (g_submit_queues <= 0) {
2232 		g_submit_queues = 1;
2233 	}
2234 
2235 	if (g_queue_mode == NULL_Q_MQ && shared_tags) {
2236 		ret = null_init_tag_set(NULL, &tag_set);
2237 		if (ret)
2238 			return ret;
2239 	}
2240 
2241 	config_group_init(&nullb_subsys.su_group);
2242 	mutex_init(&nullb_subsys.su_mutex);
2243 
2244 	ret = configfs_register_subsystem(&nullb_subsys);
2245 	if (ret)
2246 		goto err_tagset;
2247 
2248 	mutex_init(&lock);
2249 
2250 	null_major = register_blkdev(0, "nullb");
2251 	if (null_major < 0) {
2252 		ret = null_major;
2253 		goto err_conf;
2254 	}
2255 
2256 	for (i = 0; i < nr_devices; i++) {
2257 		ret = null_create_dev();
2258 		if (ret)
2259 			goto err_dev;
2260 	}
2261 
2262 	pr_info("module loaded\n");
2263 	return 0;
2264 
2265 err_dev:
2266 	while (!list_empty(&nullb_list)) {
2267 		nullb = list_entry(nullb_list.next, struct nullb, list);
2268 		null_destroy_dev(nullb);
2269 	}
2270 	unregister_blkdev(null_major, "nullb");
2271 err_conf:
2272 	configfs_unregister_subsystem(&nullb_subsys);
2273 err_tagset:
2274 	if (g_queue_mode == NULL_Q_MQ && shared_tags)
2275 		blk_mq_free_tag_set(&tag_set);
2276 	return ret;
2277 }
2278 
2279 static void __exit null_exit(void)
2280 {
2281 	struct nullb *nullb;
2282 
2283 	configfs_unregister_subsystem(&nullb_subsys);
2284 
2285 	unregister_blkdev(null_major, "nullb");
2286 
2287 	mutex_lock(&lock);
2288 	while (!list_empty(&nullb_list)) {
2289 		nullb = list_entry(nullb_list.next, struct nullb, list);
2290 		null_destroy_dev(nullb);
2291 	}
2292 	mutex_unlock(&lock);
2293 
2294 	if (g_queue_mode == NULL_Q_MQ && shared_tags)
2295 		blk_mq_free_tag_set(&tag_set);
2296 }
2297 
2298 module_init(null_init);
2299 module_exit(null_exit);
2300 
2301 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2302 MODULE_LICENSE("GPL");
2303