1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and 4 * Shaohua Li <shli@fb.com> 5 */ 6 #include <linux/module.h> 7 8 #include <linux/moduleparam.h> 9 #include <linux/sched.h> 10 #include <linux/fs.h> 11 #include <linux/init.h> 12 #include "null_blk.h" 13 14 #undef pr_fmt 15 #define pr_fmt(fmt) "null_blk: " fmt 16 17 #define FREE_BATCH 16 18 19 #define TICKS_PER_SEC 50ULL 20 #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC) 21 22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 23 static DECLARE_FAULT_ATTR(null_timeout_attr); 24 static DECLARE_FAULT_ATTR(null_requeue_attr); 25 static DECLARE_FAULT_ATTR(null_init_hctx_attr); 26 #endif 27 28 static inline u64 mb_per_tick(int mbps) 29 { 30 return (1 << 20) / TICKS_PER_SEC * ((u64) mbps); 31 } 32 33 /* 34 * Status flags for nullb_device. 35 * 36 * CONFIGURED: Device has been configured and turned on. Cannot reconfigure. 37 * UP: Device is currently on and visible in userspace. 38 * THROTTLED: Device is being throttled. 39 * CACHE: Device is using a write-back cache. 40 */ 41 enum nullb_device_flags { 42 NULLB_DEV_FL_CONFIGURED = 0, 43 NULLB_DEV_FL_UP = 1, 44 NULLB_DEV_FL_THROTTLED = 2, 45 NULLB_DEV_FL_CACHE = 3, 46 }; 47 48 #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2) 49 /* 50 * nullb_page is a page in memory for nullb devices. 51 * 52 * @page: The page holding the data. 53 * @bitmap: The bitmap represents which sector in the page has data. 54 * Each bit represents one block size. For example, sector 8 55 * will use the 7th bit 56 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache 57 * page is being flushing to storage. FREE means the cache page is freed and 58 * should be skipped from flushing to storage. Please see 59 * null_make_cache_space 60 */ 61 struct nullb_page { 62 struct page *page; 63 DECLARE_BITMAP(bitmap, MAP_SZ); 64 }; 65 #define NULLB_PAGE_LOCK (MAP_SZ - 1) 66 #define NULLB_PAGE_FREE (MAP_SZ - 2) 67 68 static LIST_HEAD(nullb_list); 69 static struct mutex lock; 70 static int null_major; 71 static DEFINE_IDA(nullb_indexes); 72 static struct blk_mq_tag_set tag_set; 73 74 enum { 75 NULL_IRQ_NONE = 0, 76 NULL_IRQ_SOFTIRQ = 1, 77 NULL_IRQ_TIMER = 2, 78 }; 79 80 static bool g_virt_boundary = false; 81 module_param_named(virt_boundary, g_virt_boundary, bool, 0444); 82 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False"); 83 84 static int g_no_sched; 85 module_param_named(no_sched, g_no_sched, int, 0444); 86 MODULE_PARM_DESC(no_sched, "No io scheduler"); 87 88 static int g_submit_queues = 1; 89 module_param_named(submit_queues, g_submit_queues, int, 0444); 90 MODULE_PARM_DESC(submit_queues, "Number of submission queues"); 91 92 static int g_poll_queues = 1; 93 module_param_named(poll_queues, g_poll_queues, int, 0444); 94 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues"); 95 96 static int g_home_node = NUMA_NO_NODE; 97 module_param_named(home_node, g_home_node, int, 0444); 98 MODULE_PARM_DESC(home_node, "Home node for the device"); 99 100 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 101 /* 102 * For more details about fault injection, please refer to 103 * Documentation/fault-injection/fault-injection.rst. 104 */ 105 static char g_timeout_str[80]; 106 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444); 107 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>"); 108 109 static char g_requeue_str[80]; 110 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444); 111 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>"); 112 113 static char g_init_hctx_str[80]; 114 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444); 115 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>"); 116 #endif 117 118 static int g_queue_mode = NULL_Q_MQ; 119 120 static int null_param_store_val(const char *str, int *val, int min, int max) 121 { 122 int ret, new_val; 123 124 ret = kstrtoint(str, 10, &new_val); 125 if (ret) 126 return -EINVAL; 127 128 if (new_val < min || new_val > max) 129 return -EINVAL; 130 131 *val = new_val; 132 return 0; 133 } 134 135 static int null_set_queue_mode(const char *str, const struct kernel_param *kp) 136 { 137 return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ); 138 } 139 140 static const struct kernel_param_ops null_queue_mode_param_ops = { 141 .set = null_set_queue_mode, 142 .get = param_get_int, 143 }; 144 145 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444); 146 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)"); 147 148 static int g_gb = 250; 149 module_param_named(gb, g_gb, int, 0444); 150 MODULE_PARM_DESC(gb, "Size in GB"); 151 152 static int g_bs = 512; 153 module_param_named(bs, g_bs, int, 0444); 154 MODULE_PARM_DESC(bs, "Block size (in bytes)"); 155 156 static int g_max_sectors; 157 module_param_named(max_sectors, g_max_sectors, int, 0444); 158 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)"); 159 160 static unsigned int nr_devices = 1; 161 module_param(nr_devices, uint, 0444); 162 MODULE_PARM_DESC(nr_devices, "Number of devices to register"); 163 164 static bool g_blocking; 165 module_param_named(blocking, g_blocking, bool, 0444); 166 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device"); 167 168 static bool shared_tags; 169 module_param(shared_tags, bool, 0444); 170 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq"); 171 172 static bool g_shared_tag_bitmap; 173 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444); 174 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq"); 175 176 static int g_irqmode = NULL_IRQ_SOFTIRQ; 177 178 static int null_set_irqmode(const char *str, const struct kernel_param *kp) 179 { 180 return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE, 181 NULL_IRQ_TIMER); 182 } 183 184 static const struct kernel_param_ops null_irqmode_param_ops = { 185 .set = null_set_irqmode, 186 .get = param_get_int, 187 }; 188 189 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444); 190 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer"); 191 192 static unsigned long g_completion_nsec = 10000; 193 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444); 194 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns"); 195 196 static int g_hw_queue_depth = 64; 197 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444); 198 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64"); 199 200 static bool g_use_per_node_hctx; 201 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444); 202 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false"); 203 204 static bool g_zoned; 205 module_param_named(zoned, g_zoned, bool, S_IRUGO); 206 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false"); 207 208 static unsigned long g_zone_size = 256; 209 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO); 210 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256"); 211 212 static unsigned long g_zone_capacity; 213 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444); 214 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size"); 215 216 static unsigned int g_zone_nr_conv; 217 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444); 218 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0"); 219 220 static unsigned int g_zone_max_open; 221 module_param_named(zone_max_open, g_zone_max_open, uint, 0444); 222 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)"); 223 224 static unsigned int g_zone_max_active; 225 module_param_named(zone_max_active, g_zone_max_active, uint, 0444); 226 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)"); 227 228 static struct nullb_device *null_alloc_dev(void); 229 static void null_free_dev(struct nullb_device *dev); 230 static void null_del_dev(struct nullb *nullb); 231 static int null_add_dev(struct nullb_device *dev); 232 static struct nullb *null_find_dev_by_name(const char *name); 233 static void null_free_device_storage(struct nullb_device *dev, bool is_cache); 234 235 static inline struct nullb_device *to_nullb_device(struct config_item *item) 236 { 237 return item ? container_of(item, struct nullb_device, item) : NULL; 238 } 239 240 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page) 241 { 242 return snprintf(page, PAGE_SIZE, "%u\n", val); 243 } 244 245 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val, 246 char *page) 247 { 248 return snprintf(page, PAGE_SIZE, "%lu\n", val); 249 } 250 251 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page) 252 { 253 return snprintf(page, PAGE_SIZE, "%u\n", val); 254 } 255 256 static ssize_t nullb_device_uint_attr_store(unsigned int *val, 257 const char *page, size_t count) 258 { 259 unsigned int tmp; 260 int result; 261 262 result = kstrtouint(page, 0, &tmp); 263 if (result < 0) 264 return result; 265 266 *val = tmp; 267 return count; 268 } 269 270 static ssize_t nullb_device_ulong_attr_store(unsigned long *val, 271 const char *page, size_t count) 272 { 273 int result; 274 unsigned long tmp; 275 276 result = kstrtoul(page, 0, &tmp); 277 if (result < 0) 278 return result; 279 280 *val = tmp; 281 return count; 282 } 283 284 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page, 285 size_t count) 286 { 287 bool tmp; 288 int result; 289 290 result = kstrtobool(page, &tmp); 291 if (result < 0) 292 return result; 293 294 *val = tmp; 295 return count; 296 } 297 298 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */ 299 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY) \ 300 static ssize_t \ 301 nullb_device_##NAME##_show(struct config_item *item, char *page) \ 302 { \ 303 return nullb_device_##TYPE##_attr_show( \ 304 to_nullb_device(item)->NAME, page); \ 305 } \ 306 static ssize_t \ 307 nullb_device_##NAME##_store(struct config_item *item, const char *page, \ 308 size_t count) \ 309 { \ 310 int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\ 311 struct nullb_device *dev = to_nullb_device(item); \ 312 TYPE new_value = 0; \ 313 int ret; \ 314 \ 315 ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\ 316 if (ret < 0) \ 317 return ret; \ 318 if (apply_fn) \ 319 ret = apply_fn(dev, new_value); \ 320 else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) \ 321 ret = -EBUSY; \ 322 if (ret < 0) \ 323 return ret; \ 324 dev->NAME = new_value; \ 325 return count; \ 326 } \ 327 CONFIGFS_ATTR(nullb_device_, NAME); 328 329 static int nullb_update_nr_hw_queues(struct nullb_device *dev, 330 unsigned int submit_queues, 331 unsigned int poll_queues) 332 333 { 334 struct blk_mq_tag_set *set; 335 int ret, nr_hw_queues; 336 337 if (!dev->nullb) 338 return 0; 339 340 /* 341 * Make sure at least one submit queue exists. 342 */ 343 if (!submit_queues) 344 return -EINVAL; 345 346 /* 347 * Make sure that null_init_hctx() does not access nullb->queues[] past 348 * the end of that array. 349 */ 350 if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues) 351 return -EINVAL; 352 353 /* 354 * Keep previous and new queue numbers in nullb_device for reference in 355 * the call back function null_map_queues(). 356 */ 357 dev->prev_submit_queues = dev->submit_queues; 358 dev->prev_poll_queues = dev->poll_queues; 359 dev->submit_queues = submit_queues; 360 dev->poll_queues = poll_queues; 361 362 set = dev->nullb->tag_set; 363 nr_hw_queues = submit_queues + poll_queues; 364 blk_mq_update_nr_hw_queues(set, nr_hw_queues); 365 ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM; 366 367 if (ret) { 368 /* on error, revert the queue numbers */ 369 dev->submit_queues = dev->prev_submit_queues; 370 dev->poll_queues = dev->prev_poll_queues; 371 } 372 373 return ret; 374 } 375 376 static int nullb_apply_submit_queues(struct nullb_device *dev, 377 unsigned int submit_queues) 378 { 379 return nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues); 380 } 381 382 static int nullb_apply_poll_queues(struct nullb_device *dev, 383 unsigned int poll_queues) 384 { 385 return nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues); 386 } 387 388 NULLB_DEVICE_ATTR(size, ulong, NULL); 389 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL); 390 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues); 391 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues); 392 NULLB_DEVICE_ATTR(home_node, uint, NULL); 393 NULLB_DEVICE_ATTR(queue_mode, uint, NULL); 394 NULLB_DEVICE_ATTR(blocksize, uint, NULL); 395 NULLB_DEVICE_ATTR(max_sectors, uint, NULL); 396 NULLB_DEVICE_ATTR(irqmode, uint, NULL); 397 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL); 398 NULLB_DEVICE_ATTR(index, uint, NULL); 399 NULLB_DEVICE_ATTR(blocking, bool, NULL); 400 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL); 401 NULLB_DEVICE_ATTR(memory_backed, bool, NULL); 402 NULLB_DEVICE_ATTR(discard, bool, NULL); 403 NULLB_DEVICE_ATTR(mbps, uint, NULL); 404 NULLB_DEVICE_ATTR(cache_size, ulong, NULL); 405 NULLB_DEVICE_ATTR(zoned, bool, NULL); 406 NULLB_DEVICE_ATTR(zone_size, ulong, NULL); 407 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL); 408 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL); 409 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL); 410 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL); 411 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL); 412 413 static ssize_t nullb_device_power_show(struct config_item *item, char *page) 414 { 415 return nullb_device_bool_attr_show(to_nullb_device(item)->power, page); 416 } 417 418 static ssize_t nullb_device_power_store(struct config_item *item, 419 const char *page, size_t count) 420 { 421 struct nullb_device *dev = to_nullb_device(item); 422 bool newp = false; 423 ssize_t ret; 424 425 ret = nullb_device_bool_attr_store(&newp, page, count); 426 if (ret < 0) 427 return ret; 428 429 if (!dev->power && newp) { 430 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags)) 431 return count; 432 ret = null_add_dev(dev); 433 if (ret) { 434 clear_bit(NULLB_DEV_FL_UP, &dev->flags); 435 return ret; 436 } 437 438 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags); 439 dev->power = newp; 440 } else if (dev->power && !newp) { 441 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) { 442 mutex_lock(&lock); 443 dev->power = newp; 444 null_del_dev(dev->nullb); 445 mutex_unlock(&lock); 446 } 447 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags); 448 } 449 450 return count; 451 } 452 453 CONFIGFS_ATTR(nullb_device_, power); 454 455 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page) 456 { 457 struct nullb_device *t_dev = to_nullb_device(item); 458 459 return badblocks_show(&t_dev->badblocks, page, 0); 460 } 461 462 static ssize_t nullb_device_badblocks_store(struct config_item *item, 463 const char *page, size_t count) 464 { 465 struct nullb_device *t_dev = to_nullb_device(item); 466 char *orig, *buf, *tmp; 467 u64 start, end; 468 int ret; 469 470 orig = kstrndup(page, count, GFP_KERNEL); 471 if (!orig) 472 return -ENOMEM; 473 474 buf = strstrip(orig); 475 476 ret = -EINVAL; 477 if (buf[0] != '+' && buf[0] != '-') 478 goto out; 479 tmp = strchr(&buf[1], '-'); 480 if (!tmp) 481 goto out; 482 *tmp = '\0'; 483 ret = kstrtoull(buf + 1, 0, &start); 484 if (ret) 485 goto out; 486 ret = kstrtoull(tmp + 1, 0, &end); 487 if (ret) 488 goto out; 489 ret = -EINVAL; 490 if (start > end) 491 goto out; 492 /* enable badblocks */ 493 cmpxchg(&t_dev->badblocks.shift, -1, 0); 494 if (buf[0] == '+') 495 ret = badblocks_set(&t_dev->badblocks, start, 496 end - start + 1, 1); 497 else 498 ret = badblocks_clear(&t_dev->badblocks, start, 499 end - start + 1); 500 if (ret == 0) 501 ret = count; 502 out: 503 kfree(orig); 504 return ret; 505 } 506 CONFIGFS_ATTR(nullb_device_, badblocks); 507 508 static struct configfs_attribute *nullb_device_attrs[] = { 509 &nullb_device_attr_size, 510 &nullb_device_attr_completion_nsec, 511 &nullb_device_attr_submit_queues, 512 &nullb_device_attr_poll_queues, 513 &nullb_device_attr_home_node, 514 &nullb_device_attr_queue_mode, 515 &nullb_device_attr_blocksize, 516 &nullb_device_attr_max_sectors, 517 &nullb_device_attr_irqmode, 518 &nullb_device_attr_hw_queue_depth, 519 &nullb_device_attr_index, 520 &nullb_device_attr_blocking, 521 &nullb_device_attr_use_per_node_hctx, 522 &nullb_device_attr_power, 523 &nullb_device_attr_memory_backed, 524 &nullb_device_attr_discard, 525 &nullb_device_attr_mbps, 526 &nullb_device_attr_cache_size, 527 &nullb_device_attr_badblocks, 528 &nullb_device_attr_zoned, 529 &nullb_device_attr_zone_size, 530 &nullb_device_attr_zone_capacity, 531 &nullb_device_attr_zone_nr_conv, 532 &nullb_device_attr_zone_max_open, 533 &nullb_device_attr_zone_max_active, 534 &nullb_device_attr_virt_boundary, 535 NULL, 536 }; 537 538 static void nullb_device_release(struct config_item *item) 539 { 540 struct nullb_device *dev = to_nullb_device(item); 541 542 null_free_device_storage(dev, false); 543 null_free_dev(dev); 544 } 545 546 static struct configfs_item_operations nullb_device_ops = { 547 .release = nullb_device_release, 548 }; 549 550 static const struct config_item_type nullb_device_type = { 551 .ct_item_ops = &nullb_device_ops, 552 .ct_attrs = nullb_device_attrs, 553 .ct_owner = THIS_MODULE, 554 }; 555 556 static struct 557 config_item *nullb_group_make_item(struct config_group *group, const char *name) 558 { 559 struct nullb_device *dev; 560 561 if (null_find_dev_by_name(name)) 562 return ERR_PTR(-EEXIST); 563 564 dev = null_alloc_dev(); 565 if (!dev) 566 return ERR_PTR(-ENOMEM); 567 568 config_item_init_type_name(&dev->item, name, &nullb_device_type); 569 570 return &dev->item; 571 } 572 573 static void 574 nullb_group_drop_item(struct config_group *group, struct config_item *item) 575 { 576 struct nullb_device *dev = to_nullb_device(item); 577 578 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) { 579 mutex_lock(&lock); 580 dev->power = false; 581 null_del_dev(dev->nullb); 582 mutex_unlock(&lock); 583 } 584 585 config_item_put(item); 586 } 587 588 static ssize_t memb_group_features_show(struct config_item *item, char *page) 589 { 590 return snprintf(page, PAGE_SIZE, 591 "memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size,zone_capacity,zone_nr_conv,zone_max_open,zone_max_active,blocksize,max_sectors,virt_boundary\n"); 592 } 593 594 CONFIGFS_ATTR_RO(memb_group_, features); 595 596 static struct configfs_attribute *nullb_group_attrs[] = { 597 &memb_group_attr_features, 598 NULL, 599 }; 600 601 static struct configfs_group_operations nullb_group_ops = { 602 .make_item = nullb_group_make_item, 603 .drop_item = nullb_group_drop_item, 604 }; 605 606 static const struct config_item_type nullb_group_type = { 607 .ct_group_ops = &nullb_group_ops, 608 .ct_attrs = nullb_group_attrs, 609 .ct_owner = THIS_MODULE, 610 }; 611 612 static struct configfs_subsystem nullb_subsys = { 613 .su_group = { 614 .cg_item = { 615 .ci_namebuf = "nullb", 616 .ci_type = &nullb_group_type, 617 }, 618 }, 619 }; 620 621 static inline int null_cache_active(struct nullb *nullb) 622 { 623 return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags); 624 } 625 626 static struct nullb_device *null_alloc_dev(void) 627 { 628 struct nullb_device *dev; 629 630 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 631 if (!dev) 632 return NULL; 633 INIT_RADIX_TREE(&dev->data, GFP_ATOMIC); 634 INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC); 635 if (badblocks_init(&dev->badblocks, 0)) { 636 kfree(dev); 637 return NULL; 638 } 639 640 dev->size = g_gb * 1024; 641 dev->completion_nsec = g_completion_nsec; 642 dev->submit_queues = g_submit_queues; 643 dev->prev_submit_queues = g_submit_queues; 644 dev->poll_queues = g_poll_queues; 645 dev->prev_poll_queues = g_poll_queues; 646 dev->home_node = g_home_node; 647 dev->queue_mode = g_queue_mode; 648 dev->blocksize = g_bs; 649 dev->max_sectors = g_max_sectors; 650 dev->irqmode = g_irqmode; 651 dev->hw_queue_depth = g_hw_queue_depth; 652 dev->blocking = g_blocking; 653 dev->use_per_node_hctx = g_use_per_node_hctx; 654 dev->zoned = g_zoned; 655 dev->zone_size = g_zone_size; 656 dev->zone_capacity = g_zone_capacity; 657 dev->zone_nr_conv = g_zone_nr_conv; 658 dev->zone_max_open = g_zone_max_open; 659 dev->zone_max_active = g_zone_max_active; 660 dev->virt_boundary = g_virt_boundary; 661 return dev; 662 } 663 664 static void null_free_dev(struct nullb_device *dev) 665 { 666 if (!dev) 667 return; 668 669 null_free_zoned_dev(dev); 670 badblocks_exit(&dev->badblocks); 671 kfree(dev); 672 } 673 674 static void put_tag(struct nullb_queue *nq, unsigned int tag) 675 { 676 clear_bit_unlock(tag, nq->tag_map); 677 678 if (waitqueue_active(&nq->wait)) 679 wake_up(&nq->wait); 680 } 681 682 static unsigned int get_tag(struct nullb_queue *nq) 683 { 684 unsigned int tag; 685 686 do { 687 tag = find_first_zero_bit(nq->tag_map, nq->queue_depth); 688 if (tag >= nq->queue_depth) 689 return -1U; 690 } while (test_and_set_bit_lock(tag, nq->tag_map)); 691 692 return tag; 693 } 694 695 static void free_cmd(struct nullb_cmd *cmd) 696 { 697 put_tag(cmd->nq, cmd->tag); 698 } 699 700 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer); 701 702 static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq) 703 { 704 struct nullb_cmd *cmd; 705 unsigned int tag; 706 707 tag = get_tag(nq); 708 if (tag != -1U) { 709 cmd = &nq->cmds[tag]; 710 cmd->tag = tag; 711 cmd->error = BLK_STS_OK; 712 cmd->nq = nq; 713 if (nq->dev->irqmode == NULL_IRQ_TIMER) { 714 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, 715 HRTIMER_MODE_REL); 716 cmd->timer.function = null_cmd_timer_expired; 717 } 718 return cmd; 719 } 720 721 return NULL; 722 } 723 724 static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, struct bio *bio) 725 { 726 struct nullb_cmd *cmd; 727 DEFINE_WAIT(wait); 728 729 do { 730 /* 731 * This avoids multiple return statements, multiple calls to 732 * __alloc_cmd() and a fast path call to prepare_to_wait(). 733 */ 734 cmd = __alloc_cmd(nq); 735 if (cmd) { 736 cmd->bio = bio; 737 return cmd; 738 } 739 prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE); 740 io_schedule(); 741 finish_wait(&nq->wait, &wait); 742 } while (1); 743 } 744 745 static void end_cmd(struct nullb_cmd *cmd) 746 { 747 int queue_mode = cmd->nq->dev->queue_mode; 748 749 switch (queue_mode) { 750 case NULL_Q_MQ: 751 blk_mq_end_request(cmd->rq, cmd->error); 752 return; 753 case NULL_Q_BIO: 754 cmd->bio->bi_status = cmd->error; 755 bio_endio(cmd->bio); 756 break; 757 } 758 759 free_cmd(cmd); 760 } 761 762 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer) 763 { 764 end_cmd(container_of(timer, struct nullb_cmd, timer)); 765 766 return HRTIMER_NORESTART; 767 } 768 769 static void null_cmd_end_timer(struct nullb_cmd *cmd) 770 { 771 ktime_t kt = cmd->nq->dev->completion_nsec; 772 773 hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL); 774 } 775 776 static void null_complete_rq(struct request *rq) 777 { 778 end_cmd(blk_mq_rq_to_pdu(rq)); 779 } 780 781 static struct nullb_page *null_alloc_page(void) 782 { 783 struct nullb_page *t_page; 784 785 t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO); 786 if (!t_page) 787 return NULL; 788 789 t_page->page = alloc_pages(GFP_NOIO, 0); 790 if (!t_page->page) { 791 kfree(t_page); 792 return NULL; 793 } 794 795 memset(t_page->bitmap, 0, sizeof(t_page->bitmap)); 796 return t_page; 797 } 798 799 static void null_free_page(struct nullb_page *t_page) 800 { 801 __set_bit(NULLB_PAGE_FREE, t_page->bitmap); 802 if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap)) 803 return; 804 __free_page(t_page->page); 805 kfree(t_page); 806 } 807 808 static bool null_page_empty(struct nullb_page *page) 809 { 810 int size = MAP_SZ - 2; 811 812 return find_first_bit(page->bitmap, size) == size; 813 } 814 815 static void null_free_sector(struct nullb *nullb, sector_t sector, 816 bool is_cache) 817 { 818 unsigned int sector_bit; 819 u64 idx; 820 struct nullb_page *t_page, *ret; 821 struct radix_tree_root *root; 822 823 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 824 idx = sector >> PAGE_SECTORS_SHIFT; 825 sector_bit = (sector & SECTOR_MASK); 826 827 t_page = radix_tree_lookup(root, idx); 828 if (t_page) { 829 __clear_bit(sector_bit, t_page->bitmap); 830 831 if (null_page_empty(t_page)) { 832 ret = radix_tree_delete_item(root, idx, t_page); 833 WARN_ON(ret != t_page); 834 null_free_page(ret); 835 if (is_cache) 836 nullb->dev->curr_cache -= PAGE_SIZE; 837 } 838 } 839 } 840 841 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx, 842 struct nullb_page *t_page, bool is_cache) 843 { 844 struct radix_tree_root *root; 845 846 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 847 848 if (radix_tree_insert(root, idx, t_page)) { 849 null_free_page(t_page); 850 t_page = radix_tree_lookup(root, idx); 851 WARN_ON(!t_page || t_page->page->index != idx); 852 } else if (is_cache) 853 nullb->dev->curr_cache += PAGE_SIZE; 854 855 return t_page; 856 } 857 858 static void null_free_device_storage(struct nullb_device *dev, bool is_cache) 859 { 860 unsigned long pos = 0; 861 int nr_pages; 862 struct nullb_page *ret, *t_pages[FREE_BATCH]; 863 struct radix_tree_root *root; 864 865 root = is_cache ? &dev->cache : &dev->data; 866 867 do { 868 int i; 869 870 nr_pages = radix_tree_gang_lookup(root, 871 (void **)t_pages, pos, FREE_BATCH); 872 873 for (i = 0; i < nr_pages; i++) { 874 pos = t_pages[i]->page->index; 875 ret = radix_tree_delete_item(root, pos, t_pages[i]); 876 WARN_ON(ret != t_pages[i]); 877 null_free_page(ret); 878 } 879 880 pos++; 881 } while (nr_pages == FREE_BATCH); 882 883 if (is_cache) 884 dev->curr_cache = 0; 885 } 886 887 static struct nullb_page *__null_lookup_page(struct nullb *nullb, 888 sector_t sector, bool for_write, bool is_cache) 889 { 890 unsigned int sector_bit; 891 u64 idx; 892 struct nullb_page *t_page; 893 struct radix_tree_root *root; 894 895 idx = sector >> PAGE_SECTORS_SHIFT; 896 sector_bit = (sector & SECTOR_MASK); 897 898 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 899 t_page = radix_tree_lookup(root, idx); 900 WARN_ON(t_page && t_page->page->index != idx); 901 902 if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap))) 903 return t_page; 904 905 return NULL; 906 } 907 908 static struct nullb_page *null_lookup_page(struct nullb *nullb, 909 sector_t sector, bool for_write, bool ignore_cache) 910 { 911 struct nullb_page *page = NULL; 912 913 if (!ignore_cache) 914 page = __null_lookup_page(nullb, sector, for_write, true); 915 if (page) 916 return page; 917 return __null_lookup_page(nullb, sector, for_write, false); 918 } 919 920 static struct nullb_page *null_insert_page(struct nullb *nullb, 921 sector_t sector, bool ignore_cache) 922 __releases(&nullb->lock) 923 __acquires(&nullb->lock) 924 { 925 u64 idx; 926 struct nullb_page *t_page; 927 928 t_page = null_lookup_page(nullb, sector, true, ignore_cache); 929 if (t_page) 930 return t_page; 931 932 spin_unlock_irq(&nullb->lock); 933 934 t_page = null_alloc_page(); 935 if (!t_page) 936 goto out_lock; 937 938 if (radix_tree_preload(GFP_NOIO)) 939 goto out_freepage; 940 941 spin_lock_irq(&nullb->lock); 942 idx = sector >> PAGE_SECTORS_SHIFT; 943 t_page->page->index = idx; 944 t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache); 945 radix_tree_preload_end(); 946 947 return t_page; 948 out_freepage: 949 null_free_page(t_page); 950 out_lock: 951 spin_lock_irq(&nullb->lock); 952 return null_lookup_page(nullb, sector, true, ignore_cache); 953 } 954 955 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page) 956 { 957 int i; 958 unsigned int offset; 959 u64 idx; 960 struct nullb_page *t_page, *ret; 961 void *dst, *src; 962 963 idx = c_page->page->index; 964 965 t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true); 966 967 __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap); 968 if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) { 969 null_free_page(c_page); 970 if (t_page && null_page_empty(t_page)) { 971 ret = radix_tree_delete_item(&nullb->dev->data, 972 idx, t_page); 973 null_free_page(t_page); 974 } 975 return 0; 976 } 977 978 if (!t_page) 979 return -ENOMEM; 980 981 src = kmap_atomic(c_page->page); 982 dst = kmap_atomic(t_page->page); 983 984 for (i = 0; i < PAGE_SECTORS; 985 i += (nullb->dev->blocksize >> SECTOR_SHIFT)) { 986 if (test_bit(i, c_page->bitmap)) { 987 offset = (i << SECTOR_SHIFT); 988 memcpy(dst + offset, src + offset, 989 nullb->dev->blocksize); 990 __set_bit(i, t_page->bitmap); 991 } 992 } 993 994 kunmap_atomic(dst); 995 kunmap_atomic(src); 996 997 ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page); 998 null_free_page(ret); 999 nullb->dev->curr_cache -= PAGE_SIZE; 1000 1001 return 0; 1002 } 1003 1004 static int null_make_cache_space(struct nullb *nullb, unsigned long n) 1005 { 1006 int i, err, nr_pages; 1007 struct nullb_page *c_pages[FREE_BATCH]; 1008 unsigned long flushed = 0, one_round; 1009 1010 again: 1011 if ((nullb->dev->cache_size * 1024 * 1024) > 1012 nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0) 1013 return 0; 1014 1015 nr_pages = radix_tree_gang_lookup(&nullb->dev->cache, 1016 (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH); 1017 /* 1018 * nullb_flush_cache_page could unlock before using the c_pages. To 1019 * avoid race, we don't allow page free 1020 */ 1021 for (i = 0; i < nr_pages; i++) { 1022 nullb->cache_flush_pos = c_pages[i]->page->index; 1023 /* 1024 * We found the page which is being flushed to disk by other 1025 * threads 1026 */ 1027 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap)) 1028 c_pages[i] = NULL; 1029 else 1030 __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap); 1031 } 1032 1033 one_round = 0; 1034 for (i = 0; i < nr_pages; i++) { 1035 if (c_pages[i] == NULL) 1036 continue; 1037 err = null_flush_cache_page(nullb, c_pages[i]); 1038 if (err) 1039 return err; 1040 one_round++; 1041 } 1042 flushed += one_round << PAGE_SHIFT; 1043 1044 if (n > flushed) { 1045 if (nr_pages == 0) 1046 nullb->cache_flush_pos = 0; 1047 if (one_round == 0) { 1048 /* give other threads a chance */ 1049 spin_unlock_irq(&nullb->lock); 1050 spin_lock_irq(&nullb->lock); 1051 } 1052 goto again; 1053 } 1054 return 0; 1055 } 1056 1057 static int copy_to_nullb(struct nullb *nullb, struct page *source, 1058 unsigned int off, sector_t sector, size_t n, bool is_fua) 1059 { 1060 size_t temp, count = 0; 1061 unsigned int offset; 1062 struct nullb_page *t_page; 1063 void *dst, *src; 1064 1065 while (count < n) { 1066 temp = min_t(size_t, nullb->dev->blocksize, n - count); 1067 1068 if (null_cache_active(nullb) && !is_fua) 1069 null_make_cache_space(nullb, PAGE_SIZE); 1070 1071 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT; 1072 t_page = null_insert_page(nullb, sector, 1073 !null_cache_active(nullb) || is_fua); 1074 if (!t_page) 1075 return -ENOSPC; 1076 1077 src = kmap_atomic(source); 1078 dst = kmap_atomic(t_page->page); 1079 memcpy(dst + offset, src + off + count, temp); 1080 kunmap_atomic(dst); 1081 kunmap_atomic(src); 1082 1083 __set_bit(sector & SECTOR_MASK, t_page->bitmap); 1084 1085 if (is_fua) 1086 null_free_sector(nullb, sector, true); 1087 1088 count += temp; 1089 sector += temp >> SECTOR_SHIFT; 1090 } 1091 return 0; 1092 } 1093 1094 static int copy_from_nullb(struct nullb *nullb, struct page *dest, 1095 unsigned int off, sector_t sector, size_t n) 1096 { 1097 size_t temp, count = 0; 1098 unsigned int offset; 1099 struct nullb_page *t_page; 1100 void *dst, *src; 1101 1102 while (count < n) { 1103 temp = min_t(size_t, nullb->dev->blocksize, n - count); 1104 1105 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT; 1106 t_page = null_lookup_page(nullb, sector, false, 1107 !null_cache_active(nullb)); 1108 1109 dst = kmap_atomic(dest); 1110 if (!t_page) { 1111 memset(dst + off + count, 0, temp); 1112 goto next; 1113 } 1114 src = kmap_atomic(t_page->page); 1115 memcpy(dst + off + count, src + offset, temp); 1116 kunmap_atomic(src); 1117 next: 1118 kunmap_atomic(dst); 1119 1120 count += temp; 1121 sector += temp >> SECTOR_SHIFT; 1122 } 1123 return 0; 1124 } 1125 1126 static void nullb_fill_pattern(struct nullb *nullb, struct page *page, 1127 unsigned int len, unsigned int off) 1128 { 1129 void *dst; 1130 1131 dst = kmap_atomic(page); 1132 memset(dst + off, 0xFF, len); 1133 kunmap_atomic(dst); 1134 } 1135 1136 blk_status_t null_handle_discard(struct nullb_device *dev, 1137 sector_t sector, sector_t nr_sectors) 1138 { 1139 struct nullb *nullb = dev->nullb; 1140 size_t n = nr_sectors << SECTOR_SHIFT; 1141 size_t temp; 1142 1143 spin_lock_irq(&nullb->lock); 1144 while (n > 0) { 1145 temp = min_t(size_t, n, dev->blocksize); 1146 null_free_sector(nullb, sector, false); 1147 if (null_cache_active(nullb)) 1148 null_free_sector(nullb, sector, true); 1149 sector += temp >> SECTOR_SHIFT; 1150 n -= temp; 1151 } 1152 spin_unlock_irq(&nullb->lock); 1153 1154 return BLK_STS_OK; 1155 } 1156 1157 static int null_handle_flush(struct nullb *nullb) 1158 { 1159 int err; 1160 1161 if (!null_cache_active(nullb)) 1162 return 0; 1163 1164 spin_lock_irq(&nullb->lock); 1165 while (true) { 1166 err = null_make_cache_space(nullb, 1167 nullb->dev->cache_size * 1024 * 1024); 1168 if (err || nullb->dev->curr_cache == 0) 1169 break; 1170 } 1171 1172 WARN_ON(!radix_tree_empty(&nullb->dev->cache)); 1173 spin_unlock_irq(&nullb->lock); 1174 return err; 1175 } 1176 1177 static int null_transfer(struct nullb *nullb, struct page *page, 1178 unsigned int len, unsigned int off, bool is_write, sector_t sector, 1179 bool is_fua) 1180 { 1181 struct nullb_device *dev = nullb->dev; 1182 unsigned int valid_len = len; 1183 int err = 0; 1184 1185 if (!is_write) { 1186 if (dev->zoned) 1187 valid_len = null_zone_valid_read_len(nullb, 1188 sector, len); 1189 1190 if (valid_len) { 1191 err = copy_from_nullb(nullb, page, off, 1192 sector, valid_len); 1193 off += valid_len; 1194 len -= valid_len; 1195 } 1196 1197 if (len) 1198 nullb_fill_pattern(nullb, page, len, off); 1199 flush_dcache_page(page); 1200 } else { 1201 flush_dcache_page(page); 1202 err = copy_to_nullb(nullb, page, off, sector, len, is_fua); 1203 } 1204 1205 return err; 1206 } 1207 1208 static int null_handle_rq(struct nullb_cmd *cmd) 1209 { 1210 struct request *rq = cmd->rq; 1211 struct nullb *nullb = cmd->nq->dev->nullb; 1212 int err; 1213 unsigned int len; 1214 sector_t sector = blk_rq_pos(rq); 1215 struct req_iterator iter; 1216 struct bio_vec bvec; 1217 1218 spin_lock_irq(&nullb->lock); 1219 rq_for_each_segment(bvec, rq, iter) { 1220 len = bvec.bv_len; 1221 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset, 1222 op_is_write(req_op(rq)), sector, 1223 rq->cmd_flags & REQ_FUA); 1224 if (err) { 1225 spin_unlock_irq(&nullb->lock); 1226 return err; 1227 } 1228 sector += len >> SECTOR_SHIFT; 1229 } 1230 spin_unlock_irq(&nullb->lock); 1231 1232 return 0; 1233 } 1234 1235 static int null_handle_bio(struct nullb_cmd *cmd) 1236 { 1237 struct bio *bio = cmd->bio; 1238 struct nullb *nullb = cmd->nq->dev->nullb; 1239 int err; 1240 unsigned int len; 1241 sector_t sector = bio->bi_iter.bi_sector; 1242 struct bio_vec bvec; 1243 struct bvec_iter iter; 1244 1245 spin_lock_irq(&nullb->lock); 1246 bio_for_each_segment(bvec, bio, iter) { 1247 len = bvec.bv_len; 1248 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset, 1249 op_is_write(bio_op(bio)), sector, 1250 bio->bi_opf & REQ_FUA); 1251 if (err) { 1252 spin_unlock_irq(&nullb->lock); 1253 return err; 1254 } 1255 sector += len >> SECTOR_SHIFT; 1256 } 1257 spin_unlock_irq(&nullb->lock); 1258 return 0; 1259 } 1260 1261 static void null_stop_queue(struct nullb *nullb) 1262 { 1263 struct request_queue *q = nullb->q; 1264 1265 if (nullb->dev->queue_mode == NULL_Q_MQ) 1266 blk_mq_stop_hw_queues(q); 1267 } 1268 1269 static void null_restart_queue_async(struct nullb *nullb) 1270 { 1271 struct request_queue *q = nullb->q; 1272 1273 if (nullb->dev->queue_mode == NULL_Q_MQ) 1274 blk_mq_start_stopped_hw_queues(q, true); 1275 } 1276 1277 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd) 1278 { 1279 struct nullb_device *dev = cmd->nq->dev; 1280 struct nullb *nullb = dev->nullb; 1281 blk_status_t sts = BLK_STS_OK; 1282 struct request *rq = cmd->rq; 1283 1284 if (!hrtimer_active(&nullb->bw_timer)) 1285 hrtimer_restart(&nullb->bw_timer); 1286 1287 if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) { 1288 null_stop_queue(nullb); 1289 /* race with timer */ 1290 if (atomic_long_read(&nullb->cur_bytes) > 0) 1291 null_restart_queue_async(nullb); 1292 /* requeue request */ 1293 sts = BLK_STS_DEV_RESOURCE; 1294 } 1295 return sts; 1296 } 1297 1298 static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd, 1299 sector_t sector, 1300 sector_t nr_sectors) 1301 { 1302 struct badblocks *bb = &cmd->nq->dev->badblocks; 1303 sector_t first_bad; 1304 int bad_sectors; 1305 1306 if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors)) 1307 return BLK_STS_IOERR; 1308 1309 return BLK_STS_OK; 1310 } 1311 1312 static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd, 1313 enum req_opf op, 1314 sector_t sector, 1315 sector_t nr_sectors) 1316 { 1317 struct nullb_device *dev = cmd->nq->dev; 1318 int err; 1319 1320 if (op == REQ_OP_DISCARD) 1321 return null_handle_discard(dev, sector, nr_sectors); 1322 1323 if (dev->queue_mode == NULL_Q_BIO) 1324 err = null_handle_bio(cmd); 1325 else 1326 err = null_handle_rq(cmd); 1327 1328 return errno_to_blk_status(err); 1329 } 1330 1331 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd) 1332 { 1333 struct nullb_device *dev = cmd->nq->dev; 1334 struct bio *bio; 1335 1336 if (dev->memory_backed) 1337 return; 1338 1339 if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) == REQ_OP_READ) { 1340 zero_fill_bio(cmd->bio); 1341 } else if (req_op(cmd->rq) == REQ_OP_READ) { 1342 __rq_for_each_bio(bio, cmd->rq) 1343 zero_fill_bio(bio); 1344 } 1345 } 1346 1347 static inline void nullb_complete_cmd(struct nullb_cmd *cmd) 1348 { 1349 /* 1350 * Since root privileges are required to configure the null_blk 1351 * driver, it is fine that this driver does not initialize the 1352 * data buffers of read commands. Zero-initialize these buffers 1353 * anyway if KMSAN is enabled to prevent that KMSAN complains 1354 * about null_blk not initializing read data buffers. 1355 */ 1356 if (IS_ENABLED(CONFIG_KMSAN)) 1357 nullb_zero_read_cmd_buffer(cmd); 1358 1359 /* Complete IO by inline, softirq or timer */ 1360 switch (cmd->nq->dev->irqmode) { 1361 case NULL_IRQ_SOFTIRQ: 1362 switch (cmd->nq->dev->queue_mode) { 1363 case NULL_Q_MQ: 1364 if (likely(!blk_should_fake_timeout(cmd->rq->q))) 1365 blk_mq_complete_request(cmd->rq); 1366 break; 1367 case NULL_Q_BIO: 1368 /* 1369 * XXX: no proper submitting cpu information available. 1370 */ 1371 end_cmd(cmd); 1372 break; 1373 } 1374 break; 1375 case NULL_IRQ_NONE: 1376 end_cmd(cmd); 1377 break; 1378 case NULL_IRQ_TIMER: 1379 null_cmd_end_timer(cmd); 1380 break; 1381 } 1382 } 1383 1384 blk_status_t null_process_cmd(struct nullb_cmd *cmd, 1385 enum req_opf op, sector_t sector, 1386 unsigned int nr_sectors) 1387 { 1388 struct nullb_device *dev = cmd->nq->dev; 1389 blk_status_t ret; 1390 1391 if (dev->badblocks.shift != -1) { 1392 ret = null_handle_badblocks(cmd, sector, nr_sectors); 1393 if (ret != BLK_STS_OK) 1394 return ret; 1395 } 1396 1397 if (dev->memory_backed) 1398 return null_handle_memory_backed(cmd, op, sector, nr_sectors); 1399 1400 return BLK_STS_OK; 1401 } 1402 1403 static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector, 1404 sector_t nr_sectors, enum req_opf op) 1405 { 1406 struct nullb_device *dev = cmd->nq->dev; 1407 struct nullb *nullb = dev->nullb; 1408 blk_status_t sts; 1409 1410 if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) { 1411 sts = null_handle_throttled(cmd); 1412 if (sts != BLK_STS_OK) 1413 return sts; 1414 } 1415 1416 if (op == REQ_OP_FLUSH) { 1417 cmd->error = errno_to_blk_status(null_handle_flush(nullb)); 1418 goto out; 1419 } 1420 1421 if (dev->zoned) 1422 sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors); 1423 else 1424 sts = null_process_cmd(cmd, op, sector, nr_sectors); 1425 1426 /* Do not overwrite errors (e.g. timeout errors) */ 1427 if (cmd->error == BLK_STS_OK) 1428 cmd->error = sts; 1429 1430 out: 1431 nullb_complete_cmd(cmd); 1432 return BLK_STS_OK; 1433 } 1434 1435 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer) 1436 { 1437 struct nullb *nullb = container_of(timer, struct nullb, bw_timer); 1438 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL); 1439 unsigned int mbps = nullb->dev->mbps; 1440 1441 if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps)) 1442 return HRTIMER_NORESTART; 1443 1444 atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps)); 1445 null_restart_queue_async(nullb); 1446 1447 hrtimer_forward_now(&nullb->bw_timer, timer_interval); 1448 1449 return HRTIMER_RESTART; 1450 } 1451 1452 static void nullb_setup_bwtimer(struct nullb *nullb) 1453 { 1454 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL); 1455 1456 hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1457 nullb->bw_timer.function = nullb_bwtimer_fn; 1458 atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps)); 1459 hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL); 1460 } 1461 1462 static struct nullb_queue *nullb_to_queue(struct nullb *nullb) 1463 { 1464 int index = 0; 1465 1466 if (nullb->nr_queues != 1) 1467 index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues); 1468 1469 return &nullb->queues[index]; 1470 } 1471 1472 static void null_submit_bio(struct bio *bio) 1473 { 1474 sector_t sector = bio->bi_iter.bi_sector; 1475 sector_t nr_sectors = bio_sectors(bio); 1476 struct nullb *nullb = bio->bi_bdev->bd_disk->private_data; 1477 struct nullb_queue *nq = nullb_to_queue(nullb); 1478 1479 null_handle_cmd(alloc_cmd(nq, bio), sector, nr_sectors, bio_op(bio)); 1480 } 1481 1482 static bool should_timeout_request(struct request *rq) 1483 { 1484 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1485 if (g_timeout_str[0]) 1486 return should_fail(&null_timeout_attr, 1); 1487 #endif 1488 return false; 1489 } 1490 1491 static bool should_requeue_request(struct request *rq) 1492 { 1493 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1494 if (g_requeue_str[0]) 1495 return should_fail(&null_requeue_attr, 1); 1496 #endif 1497 return false; 1498 } 1499 1500 static int null_map_queues(struct blk_mq_tag_set *set) 1501 { 1502 struct nullb *nullb = set->driver_data; 1503 int i, qoff; 1504 unsigned int submit_queues = g_submit_queues; 1505 unsigned int poll_queues = g_poll_queues; 1506 1507 if (nullb) { 1508 struct nullb_device *dev = nullb->dev; 1509 1510 /* 1511 * Refer nr_hw_queues of the tag set to check if the expected 1512 * number of hardware queues are prepared. If block layer failed 1513 * to prepare them, use previous numbers of submit queues and 1514 * poll queues to map queues. 1515 */ 1516 if (set->nr_hw_queues == 1517 dev->submit_queues + dev->poll_queues) { 1518 submit_queues = dev->submit_queues; 1519 poll_queues = dev->poll_queues; 1520 } else if (set->nr_hw_queues == 1521 dev->prev_submit_queues + dev->prev_poll_queues) { 1522 submit_queues = dev->prev_submit_queues; 1523 poll_queues = dev->prev_poll_queues; 1524 } else { 1525 pr_warn("tag set has unexpected nr_hw_queues: %d\n", 1526 set->nr_hw_queues); 1527 return -EINVAL; 1528 } 1529 } 1530 1531 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 1532 struct blk_mq_queue_map *map = &set->map[i]; 1533 1534 switch (i) { 1535 case HCTX_TYPE_DEFAULT: 1536 map->nr_queues = submit_queues; 1537 break; 1538 case HCTX_TYPE_READ: 1539 map->nr_queues = 0; 1540 continue; 1541 case HCTX_TYPE_POLL: 1542 map->nr_queues = poll_queues; 1543 break; 1544 } 1545 map->queue_offset = qoff; 1546 qoff += map->nr_queues; 1547 blk_mq_map_queues(map); 1548 } 1549 1550 return 0; 1551 } 1552 1553 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1554 { 1555 struct nullb_queue *nq = hctx->driver_data; 1556 LIST_HEAD(list); 1557 int nr = 0; 1558 1559 spin_lock(&nq->poll_lock); 1560 list_splice_init(&nq->poll_list, &list); 1561 spin_unlock(&nq->poll_lock); 1562 1563 while (!list_empty(&list)) { 1564 struct nullb_cmd *cmd; 1565 struct request *req; 1566 1567 req = list_first_entry(&list, struct request, queuelist); 1568 list_del_init(&req->queuelist); 1569 cmd = blk_mq_rq_to_pdu(req); 1570 cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req), 1571 blk_rq_sectors(req)); 1572 if (!blk_mq_add_to_batch(req, iob, (__force int) cmd->error, 1573 blk_mq_end_request_batch)) 1574 end_cmd(cmd); 1575 nr++; 1576 } 1577 1578 return nr; 1579 } 1580 1581 static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res) 1582 { 1583 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1584 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1585 1586 pr_info("rq %p timed out\n", rq); 1587 1588 if (hctx->type == HCTX_TYPE_POLL) { 1589 struct nullb_queue *nq = hctx->driver_data; 1590 1591 spin_lock(&nq->poll_lock); 1592 list_del_init(&rq->queuelist); 1593 spin_unlock(&nq->poll_lock); 1594 } 1595 1596 /* 1597 * If the device is marked as blocking (i.e. memory backed or zoned 1598 * device), the submission path may be blocked waiting for resources 1599 * and cause real timeouts. For these real timeouts, the submission 1600 * path will complete the request using blk_mq_complete_request(). 1601 * Only fake timeouts need to execute blk_mq_complete_request() here. 1602 */ 1603 cmd->error = BLK_STS_TIMEOUT; 1604 if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL) 1605 blk_mq_complete_request(rq); 1606 return BLK_EH_DONE; 1607 } 1608 1609 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx, 1610 const struct blk_mq_queue_data *bd) 1611 { 1612 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq); 1613 struct nullb_queue *nq = hctx->driver_data; 1614 sector_t nr_sectors = blk_rq_sectors(bd->rq); 1615 sector_t sector = blk_rq_pos(bd->rq); 1616 const bool is_poll = hctx->type == HCTX_TYPE_POLL; 1617 1618 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1619 1620 if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) { 1621 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1622 cmd->timer.function = null_cmd_timer_expired; 1623 } 1624 cmd->rq = bd->rq; 1625 cmd->error = BLK_STS_OK; 1626 cmd->nq = nq; 1627 cmd->fake_timeout = should_timeout_request(bd->rq); 1628 1629 blk_mq_start_request(bd->rq); 1630 1631 if (should_requeue_request(bd->rq)) { 1632 /* 1633 * Alternate between hitting the core BUSY path, and the 1634 * driver driven requeue path 1635 */ 1636 nq->requeue_selection++; 1637 if (nq->requeue_selection & 1) 1638 return BLK_STS_RESOURCE; 1639 else { 1640 blk_mq_requeue_request(bd->rq, true); 1641 return BLK_STS_OK; 1642 } 1643 } 1644 1645 if (is_poll) { 1646 spin_lock(&nq->poll_lock); 1647 list_add_tail(&bd->rq->queuelist, &nq->poll_list); 1648 spin_unlock(&nq->poll_lock); 1649 return BLK_STS_OK; 1650 } 1651 if (cmd->fake_timeout) 1652 return BLK_STS_OK; 1653 1654 return null_handle_cmd(cmd, sector, nr_sectors, req_op(bd->rq)); 1655 } 1656 1657 static void cleanup_queue(struct nullb_queue *nq) 1658 { 1659 kfree(nq->tag_map); 1660 kfree(nq->cmds); 1661 } 1662 1663 static void cleanup_queues(struct nullb *nullb) 1664 { 1665 int i; 1666 1667 for (i = 0; i < nullb->nr_queues; i++) 1668 cleanup_queue(&nullb->queues[i]); 1669 1670 kfree(nullb->queues); 1671 } 1672 1673 static void null_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1674 { 1675 struct nullb_queue *nq = hctx->driver_data; 1676 struct nullb *nullb = nq->dev->nullb; 1677 1678 nullb->nr_queues--; 1679 } 1680 1681 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq) 1682 { 1683 init_waitqueue_head(&nq->wait); 1684 nq->queue_depth = nullb->queue_depth; 1685 nq->dev = nullb->dev; 1686 INIT_LIST_HEAD(&nq->poll_list); 1687 spin_lock_init(&nq->poll_lock); 1688 } 1689 1690 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data, 1691 unsigned int hctx_idx) 1692 { 1693 struct nullb *nullb = hctx->queue->queuedata; 1694 struct nullb_queue *nq; 1695 1696 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1697 if (g_init_hctx_str[0] && should_fail(&null_init_hctx_attr, 1)) 1698 return -EFAULT; 1699 #endif 1700 1701 nq = &nullb->queues[hctx_idx]; 1702 hctx->driver_data = nq; 1703 null_init_queue(nullb, nq); 1704 nullb->nr_queues++; 1705 1706 return 0; 1707 } 1708 1709 static const struct blk_mq_ops null_mq_ops = { 1710 .queue_rq = null_queue_rq, 1711 .complete = null_complete_rq, 1712 .timeout = null_timeout_rq, 1713 .poll = null_poll, 1714 .map_queues = null_map_queues, 1715 .init_hctx = null_init_hctx, 1716 .exit_hctx = null_exit_hctx, 1717 }; 1718 1719 static void null_del_dev(struct nullb *nullb) 1720 { 1721 struct nullb_device *dev; 1722 1723 if (!nullb) 1724 return; 1725 1726 dev = nullb->dev; 1727 1728 ida_simple_remove(&nullb_indexes, nullb->index); 1729 1730 list_del_init(&nullb->list); 1731 1732 del_gendisk(nullb->disk); 1733 1734 if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) { 1735 hrtimer_cancel(&nullb->bw_timer); 1736 atomic_long_set(&nullb->cur_bytes, LONG_MAX); 1737 null_restart_queue_async(nullb); 1738 } 1739 1740 blk_cleanup_disk(nullb->disk); 1741 if (dev->queue_mode == NULL_Q_MQ && 1742 nullb->tag_set == &nullb->__tag_set) 1743 blk_mq_free_tag_set(nullb->tag_set); 1744 cleanup_queues(nullb); 1745 if (null_cache_active(nullb)) 1746 null_free_device_storage(nullb->dev, true); 1747 kfree(nullb); 1748 dev->nullb = NULL; 1749 } 1750 1751 static void null_config_discard(struct nullb *nullb) 1752 { 1753 if (nullb->dev->discard == false) 1754 return; 1755 1756 if (!nullb->dev->memory_backed) { 1757 nullb->dev->discard = false; 1758 pr_info("discard option is ignored without memory backing\n"); 1759 return; 1760 } 1761 1762 if (nullb->dev->zoned) { 1763 nullb->dev->discard = false; 1764 pr_info("discard option is ignored in zoned mode\n"); 1765 return; 1766 } 1767 1768 nullb->q->limits.discard_granularity = nullb->dev->blocksize; 1769 blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9); 1770 } 1771 1772 static const struct block_device_operations null_bio_ops = { 1773 .owner = THIS_MODULE, 1774 .submit_bio = null_submit_bio, 1775 .report_zones = null_report_zones, 1776 }; 1777 1778 static const struct block_device_operations null_rq_ops = { 1779 .owner = THIS_MODULE, 1780 .report_zones = null_report_zones, 1781 }; 1782 1783 static int setup_commands(struct nullb_queue *nq) 1784 { 1785 struct nullb_cmd *cmd; 1786 int i, tag_size; 1787 1788 nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL); 1789 if (!nq->cmds) 1790 return -ENOMEM; 1791 1792 tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG; 1793 nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL); 1794 if (!nq->tag_map) { 1795 kfree(nq->cmds); 1796 return -ENOMEM; 1797 } 1798 1799 for (i = 0; i < nq->queue_depth; i++) { 1800 cmd = &nq->cmds[i]; 1801 cmd->tag = -1U; 1802 } 1803 1804 return 0; 1805 } 1806 1807 static int setup_queues(struct nullb *nullb) 1808 { 1809 int nqueues = nr_cpu_ids; 1810 1811 if (g_poll_queues) 1812 nqueues += g_poll_queues; 1813 1814 nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue), 1815 GFP_KERNEL); 1816 if (!nullb->queues) 1817 return -ENOMEM; 1818 1819 nullb->queue_depth = nullb->dev->hw_queue_depth; 1820 return 0; 1821 } 1822 1823 static int init_driver_queues(struct nullb *nullb) 1824 { 1825 struct nullb_queue *nq; 1826 int i, ret = 0; 1827 1828 for (i = 0; i < nullb->dev->submit_queues; i++) { 1829 nq = &nullb->queues[i]; 1830 1831 null_init_queue(nullb, nq); 1832 1833 ret = setup_commands(nq); 1834 if (ret) 1835 return ret; 1836 nullb->nr_queues++; 1837 } 1838 return 0; 1839 } 1840 1841 static int null_gendisk_register(struct nullb *nullb) 1842 { 1843 sector_t size = ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT; 1844 struct gendisk *disk = nullb->disk; 1845 1846 set_capacity(disk, size); 1847 1848 disk->major = null_major; 1849 disk->first_minor = nullb->index; 1850 disk->minors = 1; 1851 if (queue_is_mq(nullb->q)) 1852 disk->fops = &null_rq_ops; 1853 else 1854 disk->fops = &null_bio_ops; 1855 disk->private_data = nullb; 1856 strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN); 1857 1858 if (nullb->dev->zoned) { 1859 int ret = null_register_zoned_dev(nullb); 1860 1861 if (ret) 1862 return ret; 1863 } 1864 1865 return add_disk(disk); 1866 } 1867 1868 static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set) 1869 { 1870 int poll_queues; 1871 1872 set->ops = &null_mq_ops; 1873 set->nr_hw_queues = nullb ? nullb->dev->submit_queues : 1874 g_submit_queues; 1875 poll_queues = nullb ? nullb->dev->poll_queues : g_poll_queues; 1876 if (poll_queues) 1877 set->nr_hw_queues += poll_queues; 1878 set->queue_depth = nullb ? nullb->dev->hw_queue_depth : 1879 g_hw_queue_depth; 1880 set->numa_node = nullb ? nullb->dev->home_node : g_home_node; 1881 set->cmd_size = sizeof(struct nullb_cmd); 1882 set->flags = BLK_MQ_F_SHOULD_MERGE; 1883 if (g_no_sched) 1884 set->flags |= BLK_MQ_F_NO_SCHED; 1885 if (g_shared_tag_bitmap) 1886 set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1887 set->driver_data = nullb; 1888 if (poll_queues) 1889 set->nr_maps = 3; 1890 else 1891 set->nr_maps = 1; 1892 1893 if ((nullb && nullb->dev->blocking) || g_blocking) 1894 set->flags |= BLK_MQ_F_BLOCKING; 1895 1896 return blk_mq_alloc_tag_set(set); 1897 } 1898 1899 static int null_validate_conf(struct nullb_device *dev) 1900 { 1901 dev->blocksize = round_down(dev->blocksize, 512); 1902 dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096); 1903 1904 if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) { 1905 if (dev->submit_queues != nr_online_nodes) 1906 dev->submit_queues = nr_online_nodes; 1907 } else if (dev->submit_queues > nr_cpu_ids) 1908 dev->submit_queues = nr_cpu_ids; 1909 else if (dev->submit_queues == 0) 1910 dev->submit_queues = 1; 1911 dev->prev_submit_queues = dev->submit_queues; 1912 1913 if (dev->poll_queues > g_poll_queues) 1914 dev->poll_queues = g_poll_queues; 1915 dev->prev_poll_queues = dev->poll_queues; 1916 1917 dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ); 1918 dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER); 1919 1920 /* Do memory allocation, so set blocking */ 1921 if (dev->memory_backed) 1922 dev->blocking = true; 1923 else /* cache is meaningless */ 1924 dev->cache_size = 0; 1925 dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024, 1926 dev->cache_size); 1927 dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps); 1928 /* can not stop a queue */ 1929 if (dev->queue_mode == NULL_Q_BIO) 1930 dev->mbps = 0; 1931 1932 if (dev->zoned && 1933 (!dev->zone_size || !is_power_of_2(dev->zone_size))) { 1934 pr_err("zone_size must be power-of-two\n"); 1935 return -EINVAL; 1936 } 1937 1938 return 0; 1939 } 1940 1941 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1942 static bool __null_setup_fault(struct fault_attr *attr, char *str) 1943 { 1944 if (!str[0]) 1945 return true; 1946 1947 if (!setup_fault_attr(attr, str)) 1948 return false; 1949 1950 attr->verbose = 0; 1951 return true; 1952 } 1953 #endif 1954 1955 static bool null_setup_fault(void) 1956 { 1957 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1958 if (!__null_setup_fault(&null_timeout_attr, g_timeout_str)) 1959 return false; 1960 if (!__null_setup_fault(&null_requeue_attr, g_requeue_str)) 1961 return false; 1962 if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str)) 1963 return false; 1964 #endif 1965 return true; 1966 } 1967 1968 static int null_add_dev(struct nullb_device *dev) 1969 { 1970 struct nullb *nullb; 1971 int rv; 1972 1973 rv = null_validate_conf(dev); 1974 if (rv) 1975 return rv; 1976 1977 nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node); 1978 if (!nullb) { 1979 rv = -ENOMEM; 1980 goto out; 1981 } 1982 nullb->dev = dev; 1983 dev->nullb = nullb; 1984 1985 spin_lock_init(&nullb->lock); 1986 1987 rv = setup_queues(nullb); 1988 if (rv) 1989 goto out_free_nullb; 1990 1991 if (dev->queue_mode == NULL_Q_MQ) { 1992 if (shared_tags) { 1993 nullb->tag_set = &tag_set; 1994 rv = 0; 1995 } else { 1996 nullb->tag_set = &nullb->__tag_set; 1997 rv = null_init_tag_set(nullb, nullb->tag_set); 1998 } 1999 2000 if (rv) 2001 goto out_cleanup_queues; 2002 2003 if (!null_setup_fault()) 2004 goto out_cleanup_tags; 2005 2006 nullb->tag_set->timeout = 5 * HZ; 2007 nullb->disk = blk_mq_alloc_disk(nullb->tag_set, nullb); 2008 if (IS_ERR(nullb->disk)) { 2009 rv = PTR_ERR(nullb->disk); 2010 goto out_cleanup_tags; 2011 } 2012 nullb->q = nullb->disk->queue; 2013 } else if (dev->queue_mode == NULL_Q_BIO) { 2014 rv = -ENOMEM; 2015 nullb->disk = blk_alloc_disk(nullb->dev->home_node); 2016 if (!nullb->disk) 2017 goto out_cleanup_queues; 2018 2019 nullb->q = nullb->disk->queue; 2020 rv = init_driver_queues(nullb); 2021 if (rv) 2022 goto out_cleanup_disk; 2023 } 2024 2025 if (dev->mbps) { 2026 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags); 2027 nullb_setup_bwtimer(nullb); 2028 } 2029 2030 if (dev->cache_size > 0) { 2031 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags); 2032 blk_queue_write_cache(nullb->q, true, true); 2033 } 2034 2035 if (dev->zoned) { 2036 rv = null_init_zoned_dev(dev, nullb->q); 2037 if (rv) 2038 goto out_cleanup_disk; 2039 } 2040 2041 nullb->q->queuedata = nullb; 2042 blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q); 2043 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q); 2044 2045 mutex_lock(&lock); 2046 nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL); 2047 dev->index = nullb->index; 2048 mutex_unlock(&lock); 2049 2050 blk_queue_logical_block_size(nullb->q, dev->blocksize); 2051 blk_queue_physical_block_size(nullb->q, dev->blocksize); 2052 if (!dev->max_sectors) 2053 dev->max_sectors = queue_max_hw_sectors(nullb->q); 2054 dev->max_sectors = min_t(unsigned int, dev->max_sectors, 2055 BLK_DEF_MAX_SECTORS); 2056 blk_queue_max_hw_sectors(nullb->q, dev->max_sectors); 2057 2058 if (dev->virt_boundary) 2059 blk_queue_virt_boundary(nullb->q, PAGE_SIZE - 1); 2060 2061 null_config_discard(nullb); 2062 2063 if (config_item_name(&dev->item)) { 2064 /* Use configfs dir name as the device name */ 2065 snprintf(nullb->disk_name, sizeof(nullb->disk_name), 2066 "%s", config_item_name(&dev->item)); 2067 } else { 2068 sprintf(nullb->disk_name, "nullb%d", nullb->index); 2069 } 2070 2071 rv = null_gendisk_register(nullb); 2072 if (rv) 2073 goto out_cleanup_zone; 2074 2075 mutex_lock(&lock); 2076 list_add_tail(&nullb->list, &nullb_list); 2077 mutex_unlock(&lock); 2078 2079 pr_info("disk %s created\n", nullb->disk_name); 2080 2081 return 0; 2082 out_cleanup_zone: 2083 null_free_zoned_dev(dev); 2084 out_cleanup_disk: 2085 blk_cleanup_disk(nullb->disk); 2086 out_cleanup_tags: 2087 if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set) 2088 blk_mq_free_tag_set(nullb->tag_set); 2089 out_cleanup_queues: 2090 cleanup_queues(nullb); 2091 out_free_nullb: 2092 kfree(nullb); 2093 dev->nullb = NULL; 2094 out: 2095 return rv; 2096 } 2097 2098 static struct nullb *null_find_dev_by_name(const char *name) 2099 { 2100 struct nullb *nullb = NULL, *nb; 2101 2102 mutex_lock(&lock); 2103 list_for_each_entry(nb, &nullb_list, list) { 2104 if (strcmp(nb->disk_name, name) == 0) { 2105 nullb = nb; 2106 break; 2107 } 2108 } 2109 mutex_unlock(&lock); 2110 2111 return nullb; 2112 } 2113 2114 static int null_create_dev(void) 2115 { 2116 struct nullb_device *dev; 2117 int ret; 2118 2119 dev = null_alloc_dev(); 2120 if (!dev) 2121 return -ENOMEM; 2122 2123 ret = null_add_dev(dev); 2124 if (ret) { 2125 null_free_dev(dev); 2126 return ret; 2127 } 2128 2129 return 0; 2130 } 2131 2132 static void null_destroy_dev(struct nullb *nullb) 2133 { 2134 struct nullb_device *dev = nullb->dev; 2135 2136 null_del_dev(nullb); 2137 null_free_dev(dev); 2138 } 2139 2140 static int __init null_init(void) 2141 { 2142 int ret = 0; 2143 unsigned int i; 2144 struct nullb *nullb; 2145 2146 if (g_bs > PAGE_SIZE) { 2147 pr_warn("invalid block size\n"); 2148 pr_warn("defaults block size to %lu\n", PAGE_SIZE); 2149 g_bs = PAGE_SIZE; 2150 } 2151 2152 if (g_max_sectors > BLK_DEF_MAX_SECTORS) { 2153 pr_warn("invalid max sectors\n"); 2154 pr_warn("defaults max sectors to %u\n", BLK_DEF_MAX_SECTORS); 2155 g_max_sectors = BLK_DEF_MAX_SECTORS; 2156 } 2157 2158 if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) { 2159 pr_err("invalid home_node value\n"); 2160 g_home_node = NUMA_NO_NODE; 2161 } 2162 2163 if (g_queue_mode == NULL_Q_RQ) { 2164 pr_err("legacy IO path is no longer available\n"); 2165 return -EINVAL; 2166 } 2167 2168 if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) { 2169 if (g_submit_queues != nr_online_nodes) { 2170 pr_warn("submit_queues param is set to %u.\n", 2171 nr_online_nodes); 2172 g_submit_queues = nr_online_nodes; 2173 } 2174 } else if (g_submit_queues > nr_cpu_ids) { 2175 g_submit_queues = nr_cpu_ids; 2176 } else if (g_submit_queues <= 0) { 2177 g_submit_queues = 1; 2178 } 2179 2180 if (g_queue_mode == NULL_Q_MQ && shared_tags) { 2181 ret = null_init_tag_set(NULL, &tag_set); 2182 if (ret) 2183 return ret; 2184 } 2185 2186 config_group_init(&nullb_subsys.su_group); 2187 mutex_init(&nullb_subsys.su_mutex); 2188 2189 ret = configfs_register_subsystem(&nullb_subsys); 2190 if (ret) 2191 goto err_tagset; 2192 2193 mutex_init(&lock); 2194 2195 null_major = register_blkdev(0, "nullb"); 2196 if (null_major < 0) { 2197 ret = null_major; 2198 goto err_conf; 2199 } 2200 2201 for (i = 0; i < nr_devices; i++) { 2202 ret = null_create_dev(); 2203 if (ret) 2204 goto err_dev; 2205 } 2206 2207 pr_info("module loaded\n"); 2208 return 0; 2209 2210 err_dev: 2211 while (!list_empty(&nullb_list)) { 2212 nullb = list_entry(nullb_list.next, struct nullb, list); 2213 null_destroy_dev(nullb); 2214 } 2215 unregister_blkdev(null_major, "nullb"); 2216 err_conf: 2217 configfs_unregister_subsystem(&nullb_subsys); 2218 err_tagset: 2219 if (g_queue_mode == NULL_Q_MQ && shared_tags) 2220 blk_mq_free_tag_set(&tag_set); 2221 return ret; 2222 } 2223 2224 static void __exit null_exit(void) 2225 { 2226 struct nullb *nullb; 2227 2228 configfs_unregister_subsystem(&nullb_subsys); 2229 2230 unregister_blkdev(null_major, "nullb"); 2231 2232 mutex_lock(&lock); 2233 while (!list_empty(&nullb_list)) { 2234 nullb = list_entry(nullb_list.next, struct nullb, list); 2235 null_destroy_dev(nullb); 2236 } 2237 mutex_unlock(&lock); 2238 2239 if (g_queue_mode == NULL_Q_MQ && shared_tags) 2240 blk_mq_free_tag_set(&tag_set); 2241 } 2242 2243 module_init(null_init); 2244 module_exit(null_exit); 2245 2246 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>"); 2247 MODULE_LICENSE("GPL"); 2248