xref: /openbmc/linux/drivers/block/null_blk/main.c (revision c4f7ac64)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4  * Shaohua Li <shli@fb.com>
5  */
6 #include <linux/module.h>
7 
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13 
14 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
15 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
16 #define SECTOR_MASK		(PAGE_SECTORS - 1)
17 
18 #define FREE_BATCH		16
19 
20 #define TICKS_PER_SEC		50ULL
21 #define TIMER_INTERVAL		(NSEC_PER_SEC / TICKS_PER_SEC)
22 
23 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
24 static DECLARE_FAULT_ATTR(null_timeout_attr);
25 static DECLARE_FAULT_ATTR(null_requeue_attr);
26 static DECLARE_FAULT_ATTR(null_init_hctx_attr);
27 #endif
28 
29 static inline u64 mb_per_tick(int mbps)
30 {
31 	return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
32 }
33 
34 /*
35  * Status flags for nullb_device.
36  *
37  * CONFIGURED:	Device has been configured and turned on. Cannot reconfigure.
38  * UP:		Device is currently on and visible in userspace.
39  * THROTTLED:	Device is being throttled.
40  * CACHE:	Device is using a write-back cache.
41  */
42 enum nullb_device_flags {
43 	NULLB_DEV_FL_CONFIGURED	= 0,
44 	NULLB_DEV_FL_UP		= 1,
45 	NULLB_DEV_FL_THROTTLED	= 2,
46 	NULLB_DEV_FL_CACHE	= 3,
47 };
48 
49 #define MAP_SZ		((PAGE_SIZE >> SECTOR_SHIFT) + 2)
50 /*
51  * nullb_page is a page in memory for nullb devices.
52  *
53  * @page:	The page holding the data.
54  * @bitmap:	The bitmap represents which sector in the page has data.
55  *		Each bit represents one block size. For example, sector 8
56  *		will use the 7th bit
57  * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
58  * page is being flushing to storage. FREE means the cache page is freed and
59  * should be skipped from flushing to storage. Please see
60  * null_make_cache_space
61  */
62 struct nullb_page {
63 	struct page *page;
64 	DECLARE_BITMAP(bitmap, MAP_SZ);
65 };
66 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
67 #define NULLB_PAGE_FREE (MAP_SZ - 2)
68 
69 static LIST_HEAD(nullb_list);
70 static struct mutex lock;
71 static int null_major;
72 static DEFINE_IDA(nullb_indexes);
73 static struct blk_mq_tag_set tag_set;
74 
75 enum {
76 	NULL_IRQ_NONE		= 0,
77 	NULL_IRQ_SOFTIRQ	= 1,
78 	NULL_IRQ_TIMER		= 2,
79 };
80 
81 enum {
82 	NULL_Q_BIO		= 0,
83 	NULL_Q_RQ		= 1,
84 	NULL_Q_MQ		= 2,
85 };
86 
87 static bool g_virt_boundary = false;
88 module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
89 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
90 
91 static int g_no_sched;
92 module_param_named(no_sched, g_no_sched, int, 0444);
93 MODULE_PARM_DESC(no_sched, "No io scheduler");
94 
95 static int g_submit_queues = 1;
96 module_param_named(submit_queues, g_submit_queues, int, 0444);
97 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
98 
99 static int g_home_node = NUMA_NO_NODE;
100 module_param_named(home_node, g_home_node, int, 0444);
101 MODULE_PARM_DESC(home_node, "Home node for the device");
102 
103 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
104 /*
105  * For more details about fault injection, please refer to
106  * Documentation/fault-injection/fault-injection.rst.
107  */
108 static char g_timeout_str[80];
109 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
110 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
111 
112 static char g_requeue_str[80];
113 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
114 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
115 
116 static char g_init_hctx_str[80];
117 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
118 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
119 #endif
120 
121 static int g_queue_mode = NULL_Q_MQ;
122 
123 static int null_param_store_val(const char *str, int *val, int min, int max)
124 {
125 	int ret, new_val;
126 
127 	ret = kstrtoint(str, 10, &new_val);
128 	if (ret)
129 		return -EINVAL;
130 
131 	if (new_val < min || new_val > max)
132 		return -EINVAL;
133 
134 	*val = new_val;
135 	return 0;
136 }
137 
138 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
139 {
140 	return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
141 }
142 
143 static const struct kernel_param_ops null_queue_mode_param_ops = {
144 	.set	= null_set_queue_mode,
145 	.get	= param_get_int,
146 };
147 
148 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
149 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
150 
151 static int g_gb = 250;
152 module_param_named(gb, g_gb, int, 0444);
153 MODULE_PARM_DESC(gb, "Size in GB");
154 
155 static int g_bs = 512;
156 module_param_named(bs, g_bs, int, 0444);
157 MODULE_PARM_DESC(bs, "Block size (in bytes)");
158 
159 static int g_max_sectors;
160 module_param_named(max_sectors, g_max_sectors, int, 0444);
161 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
162 
163 static unsigned int nr_devices = 1;
164 module_param(nr_devices, uint, 0444);
165 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
166 
167 static bool g_blocking;
168 module_param_named(blocking, g_blocking, bool, 0444);
169 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
170 
171 static bool shared_tags;
172 module_param(shared_tags, bool, 0444);
173 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
174 
175 static bool g_shared_tag_bitmap;
176 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
177 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
178 
179 static int g_irqmode = NULL_IRQ_SOFTIRQ;
180 
181 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
182 {
183 	return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
184 					NULL_IRQ_TIMER);
185 }
186 
187 static const struct kernel_param_ops null_irqmode_param_ops = {
188 	.set	= null_set_irqmode,
189 	.get	= param_get_int,
190 };
191 
192 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
193 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
194 
195 static unsigned long g_completion_nsec = 10000;
196 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
197 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
198 
199 static int g_hw_queue_depth = 64;
200 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
201 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
202 
203 static bool g_use_per_node_hctx;
204 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
205 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
206 
207 static bool g_zoned;
208 module_param_named(zoned, g_zoned, bool, S_IRUGO);
209 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
210 
211 static unsigned long g_zone_size = 256;
212 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
213 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
214 
215 static unsigned long g_zone_capacity;
216 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
217 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
218 
219 static unsigned int g_zone_nr_conv;
220 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
221 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
222 
223 static unsigned int g_zone_max_open;
224 module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
225 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
226 
227 static unsigned int g_zone_max_active;
228 module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
229 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
230 
231 static struct nullb_device *null_alloc_dev(void);
232 static void null_free_dev(struct nullb_device *dev);
233 static void null_del_dev(struct nullb *nullb);
234 static int null_add_dev(struct nullb_device *dev);
235 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
236 
237 static inline struct nullb_device *to_nullb_device(struct config_item *item)
238 {
239 	return item ? container_of(item, struct nullb_device, item) : NULL;
240 }
241 
242 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
243 {
244 	return snprintf(page, PAGE_SIZE, "%u\n", val);
245 }
246 
247 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
248 	char *page)
249 {
250 	return snprintf(page, PAGE_SIZE, "%lu\n", val);
251 }
252 
253 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
254 {
255 	return snprintf(page, PAGE_SIZE, "%u\n", val);
256 }
257 
258 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
259 	const char *page, size_t count)
260 {
261 	unsigned int tmp;
262 	int result;
263 
264 	result = kstrtouint(page, 0, &tmp);
265 	if (result < 0)
266 		return result;
267 
268 	*val = tmp;
269 	return count;
270 }
271 
272 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
273 	const char *page, size_t count)
274 {
275 	int result;
276 	unsigned long tmp;
277 
278 	result = kstrtoul(page, 0, &tmp);
279 	if (result < 0)
280 		return result;
281 
282 	*val = tmp;
283 	return count;
284 }
285 
286 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
287 	size_t count)
288 {
289 	bool tmp;
290 	int result;
291 
292 	result = kstrtobool(page,  &tmp);
293 	if (result < 0)
294 		return result;
295 
296 	*val = tmp;
297 	return count;
298 }
299 
300 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
301 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY)				\
302 static ssize_t								\
303 nullb_device_##NAME##_show(struct config_item *item, char *page)	\
304 {									\
305 	return nullb_device_##TYPE##_attr_show(				\
306 				to_nullb_device(item)->NAME, page);	\
307 }									\
308 static ssize_t								\
309 nullb_device_##NAME##_store(struct config_item *item, const char *page,	\
310 			    size_t count)				\
311 {									\
312 	int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
313 	struct nullb_device *dev = to_nullb_device(item);		\
314 	TYPE new_value = 0;						\
315 	int ret;							\
316 									\
317 	ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
318 	if (ret < 0)							\
319 		return ret;						\
320 	if (apply_fn)							\
321 		ret = apply_fn(dev, new_value);				\
322 	else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) 	\
323 		ret = -EBUSY;						\
324 	if (ret < 0)							\
325 		return ret;						\
326 	dev->NAME = new_value;						\
327 	return count;							\
328 }									\
329 CONFIGFS_ATTR(nullb_device_, NAME);
330 
331 static int nullb_apply_submit_queues(struct nullb_device *dev,
332 				     unsigned int submit_queues)
333 {
334 	struct nullb *nullb = dev->nullb;
335 	struct blk_mq_tag_set *set;
336 
337 	if (!nullb)
338 		return 0;
339 
340 	/*
341 	 * Make sure that null_init_hctx() does not access nullb->queues[] past
342 	 * the end of that array.
343 	 */
344 	if (submit_queues > nr_cpu_ids)
345 		return -EINVAL;
346 	set = nullb->tag_set;
347 	blk_mq_update_nr_hw_queues(set, submit_queues);
348 	return set->nr_hw_queues == submit_queues ? 0 : -ENOMEM;
349 }
350 
351 NULLB_DEVICE_ATTR(size, ulong, NULL);
352 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
353 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
354 NULLB_DEVICE_ATTR(home_node, uint, NULL);
355 NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
356 NULLB_DEVICE_ATTR(blocksize, uint, NULL);
357 NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
358 NULLB_DEVICE_ATTR(irqmode, uint, NULL);
359 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
360 NULLB_DEVICE_ATTR(index, uint, NULL);
361 NULLB_DEVICE_ATTR(blocking, bool, NULL);
362 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
363 NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
364 NULLB_DEVICE_ATTR(discard, bool, NULL);
365 NULLB_DEVICE_ATTR(mbps, uint, NULL);
366 NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
367 NULLB_DEVICE_ATTR(zoned, bool, NULL);
368 NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
369 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
370 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
371 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
372 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
373 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
374 
375 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
376 {
377 	return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
378 }
379 
380 static ssize_t nullb_device_power_store(struct config_item *item,
381 				     const char *page, size_t count)
382 {
383 	struct nullb_device *dev = to_nullb_device(item);
384 	bool newp = false;
385 	ssize_t ret;
386 
387 	ret = nullb_device_bool_attr_store(&newp, page, count);
388 	if (ret < 0)
389 		return ret;
390 
391 	if (!dev->power && newp) {
392 		if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
393 			return count;
394 		if (null_add_dev(dev)) {
395 			clear_bit(NULLB_DEV_FL_UP, &dev->flags);
396 			return -ENOMEM;
397 		}
398 
399 		set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
400 		dev->power = newp;
401 	} else if (dev->power && !newp) {
402 		if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
403 			mutex_lock(&lock);
404 			dev->power = newp;
405 			null_del_dev(dev->nullb);
406 			mutex_unlock(&lock);
407 		}
408 		clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
409 	}
410 
411 	return count;
412 }
413 
414 CONFIGFS_ATTR(nullb_device_, power);
415 
416 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
417 {
418 	struct nullb_device *t_dev = to_nullb_device(item);
419 
420 	return badblocks_show(&t_dev->badblocks, page, 0);
421 }
422 
423 static ssize_t nullb_device_badblocks_store(struct config_item *item,
424 				     const char *page, size_t count)
425 {
426 	struct nullb_device *t_dev = to_nullb_device(item);
427 	char *orig, *buf, *tmp;
428 	u64 start, end;
429 	int ret;
430 
431 	orig = kstrndup(page, count, GFP_KERNEL);
432 	if (!orig)
433 		return -ENOMEM;
434 
435 	buf = strstrip(orig);
436 
437 	ret = -EINVAL;
438 	if (buf[0] != '+' && buf[0] != '-')
439 		goto out;
440 	tmp = strchr(&buf[1], '-');
441 	if (!tmp)
442 		goto out;
443 	*tmp = '\0';
444 	ret = kstrtoull(buf + 1, 0, &start);
445 	if (ret)
446 		goto out;
447 	ret = kstrtoull(tmp + 1, 0, &end);
448 	if (ret)
449 		goto out;
450 	ret = -EINVAL;
451 	if (start > end)
452 		goto out;
453 	/* enable badblocks */
454 	cmpxchg(&t_dev->badblocks.shift, -1, 0);
455 	if (buf[0] == '+')
456 		ret = badblocks_set(&t_dev->badblocks, start,
457 			end - start + 1, 1);
458 	else
459 		ret = badblocks_clear(&t_dev->badblocks, start,
460 			end - start + 1);
461 	if (ret == 0)
462 		ret = count;
463 out:
464 	kfree(orig);
465 	return ret;
466 }
467 CONFIGFS_ATTR(nullb_device_, badblocks);
468 
469 static struct configfs_attribute *nullb_device_attrs[] = {
470 	&nullb_device_attr_size,
471 	&nullb_device_attr_completion_nsec,
472 	&nullb_device_attr_submit_queues,
473 	&nullb_device_attr_home_node,
474 	&nullb_device_attr_queue_mode,
475 	&nullb_device_attr_blocksize,
476 	&nullb_device_attr_max_sectors,
477 	&nullb_device_attr_irqmode,
478 	&nullb_device_attr_hw_queue_depth,
479 	&nullb_device_attr_index,
480 	&nullb_device_attr_blocking,
481 	&nullb_device_attr_use_per_node_hctx,
482 	&nullb_device_attr_power,
483 	&nullb_device_attr_memory_backed,
484 	&nullb_device_attr_discard,
485 	&nullb_device_attr_mbps,
486 	&nullb_device_attr_cache_size,
487 	&nullb_device_attr_badblocks,
488 	&nullb_device_attr_zoned,
489 	&nullb_device_attr_zone_size,
490 	&nullb_device_attr_zone_capacity,
491 	&nullb_device_attr_zone_nr_conv,
492 	&nullb_device_attr_zone_max_open,
493 	&nullb_device_attr_zone_max_active,
494 	&nullb_device_attr_virt_boundary,
495 	NULL,
496 };
497 
498 static void nullb_device_release(struct config_item *item)
499 {
500 	struct nullb_device *dev = to_nullb_device(item);
501 
502 	null_free_device_storage(dev, false);
503 	null_free_dev(dev);
504 }
505 
506 static struct configfs_item_operations nullb_device_ops = {
507 	.release	= nullb_device_release,
508 };
509 
510 static const struct config_item_type nullb_device_type = {
511 	.ct_item_ops	= &nullb_device_ops,
512 	.ct_attrs	= nullb_device_attrs,
513 	.ct_owner	= THIS_MODULE,
514 };
515 
516 static struct
517 config_item *nullb_group_make_item(struct config_group *group, const char *name)
518 {
519 	struct nullb_device *dev;
520 
521 	dev = null_alloc_dev();
522 	if (!dev)
523 		return ERR_PTR(-ENOMEM);
524 
525 	config_item_init_type_name(&dev->item, name, &nullb_device_type);
526 
527 	return &dev->item;
528 }
529 
530 static void
531 nullb_group_drop_item(struct config_group *group, struct config_item *item)
532 {
533 	struct nullb_device *dev = to_nullb_device(item);
534 
535 	if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
536 		mutex_lock(&lock);
537 		dev->power = false;
538 		null_del_dev(dev->nullb);
539 		mutex_unlock(&lock);
540 	}
541 
542 	config_item_put(item);
543 }
544 
545 static ssize_t memb_group_features_show(struct config_item *item, char *page)
546 {
547 	return snprintf(page, PAGE_SIZE,
548 			"memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size,zone_capacity,zone_nr_conv,zone_max_open,zone_max_active,blocksize,max_sectors,virt_boundary\n");
549 }
550 
551 CONFIGFS_ATTR_RO(memb_group_, features);
552 
553 static struct configfs_attribute *nullb_group_attrs[] = {
554 	&memb_group_attr_features,
555 	NULL,
556 };
557 
558 static struct configfs_group_operations nullb_group_ops = {
559 	.make_item	= nullb_group_make_item,
560 	.drop_item	= nullb_group_drop_item,
561 };
562 
563 static const struct config_item_type nullb_group_type = {
564 	.ct_group_ops	= &nullb_group_ops,
565 	.ct_attrs	= nullb_group_attrs,
566 	.ct_owner	= THIS_MODULE,
567 };
568 
569 static struct configfs_subsystem nullb_subsys = {
570 	.su_group = {
571 		.cg_item = {
572 			.ci_namebuf = "nullb",
573 			.ci_type = &nullb_group_type,
574 		},
575 	},
576 };
577 
578 static inline int null_cache_active(struct nullb *nullb)
579 {
580 	return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
581 }
582 
583 static struct nullb_device *null_alloc_dev(void)
584 {
585 	struct nullb_device *dev;
586 
587 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
588 	if (!dev)
589 		return NULL;
590 	INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
591 	INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
592 	if (badblocks_init(&dev->badblocks, 0)) {
593 		kfree(dev);
594 		return NULL;
595 	}
596 
597 	dev->size = g_gb * 1024;
598 	dev->completion_nsec = g_completion_nsec;
599 	dev->submit_queues = g_submit_queues;
600 	dev->home_node = g_home_node;
601 	dev->queue_mode = g_queue_mode;
602 	dev->blocksize = g_bs;
603 	dev->max_sectors = g_max_sectors;
604 	dev->irqmode = g_irqmode;
605 	dev->hw_queue_depth = g_hw_queue_depth;
606 	dev->blocking = g_blocking;
607 	dev->use_per_node_hctx = g_use_per_node_hctx;
608 	dev->zoned = g_zoned;
609 	dev->zone_size = g_zone_size;
610 	dev->zone_capacity = g_zone_capacity;
611 	dev->zone_nr_conv = g_zone_nr_conv;
612 	dev->zone_max_open = g_zone_max_open;
613 	dev->zone_max_active = g_zone_max_active;
614 	dev->virt_boundary = g_virt_boundary;
615 	return dev;
616 }
617 
618 static void null_free_dev(struct nullb_device *dev)
619 {
620 	if (!dev)
621 		return;
622 
623 	null_free_zoned_dev(dev);
624 	badblocks_exit(&dev->badblocks);
625 	kfree(dev);
626 }
627 
628 static void put_tag(struct nullb_queue *nq, unsigned int tag)
629 {
630 	clear_bit_unlock(tag, nq->tag_map);
631 
632 	if (waitqueue_active(&nq->wait))
633 		wake_up(&nq->wait);
634 }
635 
636 static unsigned int get_tag(struct nullb_queue *nq)
637 {
638 	unsigned int tag;
639 
640 	do {
641 		tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
642 		if (tag >= nq->queue_depth)
643 			return -1U;
644 	} while (test_and_set_bit_lock(tag, nq->tag_map));
645 
646 	return tag;
647 }
648 
649 static void free_cmd(struct nullb_cmd *cmd)
650 {
651 	put_tag(cmd->nq, cmd->tag);
652 }
653 
654 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
655 
656 static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
657 {
658 	struct nullb_cmd *cmd;
659 	unsigned int tag;
660 
661 	tag = get_tag(nq);
662 	if (tag != -1U) {
663 		cmd = &nq->cmds[tag];
664 		cmd->tag = tag;
665 		cmd->error = BLK_STS_OK;
666 		cmd->nq = nq;
667 		if (nq->dev->irqmode == NULL_IRQ_TIMER) {
668 			hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
669 				     HRTIMER_MODE_REL);
670 			cmd->timer.function = null_cmd_timer_expired;
671 		}
672 		return cmd;
673 	}
674 
675 	return NULL;
676 }
677 
678 static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait)
679 {
680 	struct nullb_cmd *cmd;
681 	DEFINE_WAIT(wait);
682 
683 	cmd = __alloc_cmd(nq);
684 	if (cmd || !can_wait)
685 		return cmd;
686 
687 	do {
688 		prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
689 		cmd = __alloc_cmd(nq);
690 		if (cmd)
691 			break;
692 
693 		io_schedule();
694 	} while (1);
695 
696 	finish_wait(&nq->wait, &wait);
697 	return cmd;
698 }
699 
700 static void end_cmd(struct nullb_cmd *cmd)
701 {
702 	int queue_mode = cmd->nq->dev->queue_mode;
703 
704 	switch (queue_mode)  {
705 	case NULL_Q_MQ:
706 		blk_mq_end_request(cmd->rq, cmd->error);
707 		return;
708 	case NULL_Q_BIO:
709 		cmd->bio->bi_status = cmd->error;
710 		bio_endio(cmd->bio);
711 		break;
712 	}
713 
714 	free_cmd(cmd);
715 }
716 
717 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
718 {
719 	end_cmd(container_of(timer, struct nullb_cmd, timer));
720 
721 	return HRTIMER_NORESTART;
722 }
723 
724 static void null_cmd_end_timer(struct nullb_cmd *cmd)
725 {
726 	ktime_t kt = cmd->nq->dev->completion_nsec;
727 
728 	hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
729 }
730 
731 static void null_complete_rq(struct request *rq)
732 {
733 	end_cmd(blk_mq_rq_to_pdu(rq));
734 }
735 
736 static struct nullb_page *null_alloc_page(gfp_t gfp_flags)
737 {
738 	struct nullb_page *t_page;
739 
740 	t_page = kmalloc(sizeof(struct nullb_page), gfp_flags);
741 	if (!t_page)
742 		goto out;
743 
744 	t_page->page = alloc_pages(gfp_flags, 0);
745 	if (!t_page->page)
746 		goto out_freepage;
747 
748 	memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
749 	return t_page;
750 out_freepage:
751 	kfree(t_page);
752 out:
753 	return NULL;
754 }
755 
756 static void null_free_page(struct nullb_page *t_page)
757 {
758 	__set_bit(NULLB_PAGE_FREE, t_page->bitmap);
759 	if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
760 		return;
761 	__free_page(t_page->page);
762 	kfree(t_page);
763 }
764 
765 static bool null_page_empty(struct nullb_page *page)
766 {
767 	int size = MAP_SZ - 2;
768 
769 	return find_first_bit(page->bitmap, size) == size;
770 }
771 
772 static void null_free_sector(struct nullb *nullb, sector_t sector,
773 	bool is_cache)
774 {
775 	unsigned int sector_bit;
776 	u64 idx;
777 	struct nullb_page *t_page, *ret;
778 	struct radix_tree_root *root;
779 
780 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
781 	idx = sector >> PAGE_SECTORS_SHIFT;
782 	sector_bit = (sector & SECTOR_MASK);
783 
784 	t_page = radix_tree_lookup(root, idx);
785 	if (t_page) {
786 		__clear_bit(sector_bit, t_page->bitmap);
787 
788 		if (null_page_empty(t_page)) {
789 			ret = radix_tree_delete_item(root, idx, t_page);
790 			WARN_ON(ret != t_page);
791 			null_free_page(ret);
792 			if (is_cache)
793 				nullb->dev->curr_cache -= PAGE_SIZE;
794 		}
795 	}
796 }
797 
798 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
799 	struct nullb_page *t_page, bool is_cache)
800 {
801 	struct radix_tree_root *root;
802 
803 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
804 
805 	if (radix_tree_insert(root, idx, t_page)) {
806 		null_free_page(t_page);
807 		t_page = radix_tree_lookup(root, idx);
808 		WARN_ON(!t_page || t_page->page->index != idx);
809 	} else if (is_cache)
810 		nullb->dev->curr_cache += PAGE_SIZE;
811 
812 	return t_page;
813 }
814 
815 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
816 {
817 	unsigned long pos = 0;
818 	int nr_pages;
819 	struct nullb_page *ret, *t_pages[FREE_BATCH];
820 	struct radix_tree_root *root;
821 
822 	root = is_cache ? &dev->cache : &dev->data;
823 
824 	do {
825 		int i;
826 
827 		nr_pages = radix_tree_gang_lookup(root,
828 				(void **)t_pages, pos, FREE_BATCH);
829 
830 		for (i = 0; i < nr_pages; i++) {
831 			pos = t_pages[i]->page->index;
832 			ret = radix_tree_delete_item(root, pos, t_pages[i]);
833 			WARN_ON(ret != t_pages[i]);
834 			null_free_page(ret);
835 		}
836 
837 		pos++;
838 	} while (nr_pages == FREE_BATCH);
839 
840 	if (is_cache)
841 		dev->curr_cache = 0;
842 }
843 
844 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
845 	sector_t sector, bool for_write, bool is_cache)
846 {
847 	unsigned int sector_bit;
848 	u64 idx;
849 	struct nullb_page *t_page;
850 	struct radix_tree_root *root;
851 
852 	idx = sector >> PAGE_SECTORS_SHIFT;
853 	sector_bit = (sector & SECTOR_MASK);
854 
855 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
856 	t_page = radix_tree_lookup(root, idx);
857 	WARN_ON(t_page && t_page->page->index != idx);
858 
859 	if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
860 		return t_page;
861 
862 	return NULL;
863 }
864 
865 static struct nullb_page *null_lookup_page(struct nullb *nullb,
866 	sector_t sector, bool for_write, bool ignore_cache)
867 {
868 	struct nullb_page *page = NULL;
869 
870 	if (!ignore_cache)
871 		page = __null_lookup_page(nullb, sector, for_write, true);
872 	if (page)
873 		return page;
874 	return __null_lookup_page(nullb, sector, for_write, false);
875 }
876 
877 static struct nullb_page *null_insert_page(struct nullb *nullb,
878 					   sector_t sector, bool ignore_cache)
879 	__releases(&nullb->lock)
880 	__acquires(&nullb->lock)
881 {
882 	u64 idx;
883 	struct nullb_page *t_page;
884 
885 	t_page = null_lookup_page(nullb, sector, true, ignore_cache);
886 	if (t_page)
887 		return t_page;
888 
889 	spin_unlock_irq(&nullb->lock);
890 
891 	t_page = null_alloc_page(GFP_NOIO);
892 	if (!t_page)
893 		goto out_lock;
894 
895 	if (radix_tree_preload(GFP_NOIO))
896 		goto out_freepage;
897 
898 	spin_lock_irq(&nullb->lock);
899 	idx = sector >> PAGE_SECTORS_SHIFT;
900 	t_page->page->index = idx;
901 	t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
902 	radix_tree_preload_end();
903 
904 	return t_page;
905 out_freepage:
906 	null_free_page(t_page);
907 out_lock:
908 	spin_lock_irq(&nullb->lock);
909 	return null_lookup_page(nullb, sector, true, ignore_cache);
910 }
911 
912 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
913 {
914 	int i;
915 	unsigned int offset;
916 	u64 idx;
917 	struct nullb_page *t_page, *ret;
918 	void *dst, *src;
919 
920 	idx = c_page->page->index;
921 
922 	t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
923 
924 	__clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
925 	if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
926 		null_free_page(c_page);
927 		if (t_page && null_page_empty(t_page)) {
928 			ret = radix_tree_delete_item(&nullb->dev->data,
929 				idx, t_page);
930 			null_free_page(t_page);
931 		}
932 		return 0;
933 	}
934 
935 	if (!t_page)
936 		return -ENOMEM;
937 
938 	src = kmap_atomic(c_page->page);
939 	dst = kmap_atomic(t_page->page);
940 
941 	for (i = 0; i < PAGE_SECTORS;
942 			i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
943 		if (test_bit(i, c_page->bitmap)) {
944 			offset = (i << SECTOR_SHIFT);
945 			memcpy(dst + offset, src + offset,
946 				nullb->dev->blocksize);
947 			__set_bit(i, t_page->bitmap);
948 		}
949 	}
950 
951 	kunmap_atomic(dst);
952 	kunmap_atomic(src);
953 
954 	ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
955 	null_free_page(ret);
956 	nullb->dev->curr_cache -= PAGE_SIZE;
957 
958 	return 0;
959 }
960 
961 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
962 {
963 	int i, err, nr_pages;
964 	struct nullb_page *c_pages[FREE_BATCH];
965 	unsigned long flushed = 0, one_round;
966 
967 again:
968 	if ((nullb->dev->cache_size * 1024 * 1024) >
969 	     nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
970 		return 0;
971 
972 	nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
973 			(void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
974 	/*
975 	 * nullb_flush_cache_page could unlock before using the c_pages. To
976 	 * avoid race, we don't allow page free
977 	 */
978 	for (i = 0; i < nr_pages; i++) {
979 		nullb->cache_flush_pos = c_pages[i]->page->index;
980 		/*
981 		 * We found the page which is being flushed to disk by other
982 		 * threads
983 		 */
984 		if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
985 			c_pages[i] = NULL;
986 		else
987 			__set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
988 	}
989 
990 	one_round = 0;
991 	for (i = 0; i < nr_pages; i++) {
992 		if (c_pages[i] == NULL)
993 			continue;
994 		err = null_flush_cache_page(nullb, c_pages[i]);
995 		if (err)
996 			return err;
997 		one_round++;
998 	}
999 	flushed += one_round << PAGE_SHIFT;
1000 
1001 	if (n > flushed) {
1002 		if (nr_pages == 0)
1003 			nullb->cache_flush_pos = 0;
1004 		if (one_round == 0) {
1005 			/* give other threads a chance */
1006 			spin_unlock_irq(&nullb->lock);
1007 			spin_lock_irq(&nullb->lock);
1008 		}
1009 		goto again;
1010 	}
1011 	return 0;
1012 }
1013 
1014 static int copy_to_nullb(struct nullb *nullb, struct page *source,
1015 	unsigned int off, sector_t sector, size_t n, bool is_fua)
1016 {
1017 	size_t temp, count = 0;
1018 	unsigned int offset;
1019 	struct nullb_page *t_page;
1020 	void *dst, *src;
1021 
1022 	while (count < n) {
1023 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1024 
1025 		if (null_cache_active(nullb) && !is_fua)
1026 			null_make_cache_space(nullb, PAGE_SIZE);
1027 
1028 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1029 		t_page = null_insert_page(nullb, sector,
1030 			!null_cache_active(nullb) || is_fua);
1031 		if (!t_page)
1032 			return -ENOSPC;
1033 
1034 		src = kmap_atomic(source);
1035 		dst = kmap_atomic(t_page->page);
1036 		memcpy(dst + offset, src + off + count, temp);
1037 		kunmap_atomic(dst);
1038 		kunmap_atomic(src);
1039 
1040 		__set_bit(sector & SECTOR_MASK, t_page->bitmap);
1041 
1042 		if (is_fua)
1043 			null_free_sector(nullb, sector, true);
1044 
1045 		count += temp;
1046 		sector += temp >> SECTOR_SHIFT;
1047 	}
1048 	return 0;
1049 }
1050 
1051 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1052 	unsigned int off, sector_t sector, size_t n)
1053 {
1054 	size_t temp, count = 0;
1055 	unsigned int offset;
1056 	struct nullb_page *t_page;
1057 	void *dst, *src;
1058 
1059 	while (count < n) {
1060 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1061 
1062 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1063 		t_page = null_lookup_page(nullb, sector, false,
1064 			!null_cache_active(nullb));
1065 
1066 		dst = kmap_atomic(dest);
1067 		if (!t_page) {
1068 			memset(dst + off + count, 0, temp);
1069 			goto next;
1070 		}
1071 		src = kmap_atomic(t_page->page);
1072 		memcpy(dst + off + count, src + offset, temp);
1073 		kunmap_atomic(src);
1074 next:
1075 		kunmap_atomic(dst);
1076 
1077 		count += temp;
1078 		sector += temp >> SECTOR_SHIFT;
1079 	}
1080 	return 0;
1081 }
1082 
1083 static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1084 			       unsigned int len, unsigned int off)
1085 {
1086 	void *dst;
1087 
1088 	dst = kmap_atomic(page);
1089 	memset(dst + off, 0xFF, len);
1090 	kunmap_atomic(dst);
1091 }
1092 
1093 blk_status_t null_handle_discard(struct nullb_device *dev,
1094 				 sector_t sector, sector_t nr_sectors)
1095 {
1096 	struct nullb *nullb = dev->nullb;
1097 	size_t n = nr_sectors << SECTOR_SHIFT;
1098 	size_t temp;
1099 
1100 	spin_lock_irq(&nullb->lock);
1101 	while (n > 0) {
1102 		temp = min_t(size_t, n, dev->blocksize);
1103 		null_free_sector(nullb, sector, false);
1104 		if (null_cache_active(nullb))
1105 			null_free_sector(nullb, sector, true);
1106 		sector += temp >> SECTOR_SHIFT;
1107 		n -= temp;
1108 	}
1109 	spin_unlock_irq(&nullb->lock);
1110 
1111 	return BLK_STS_OK;
1112 }
1113 
1114 static int null_handle_flush(struct nullb *nullb)
1115 {
1116 	int err;
1117 
1118 	if (!null_cache_active(nullb))
1119 		return 0;
1120 
1121 	spin_lock_irq(&nullb->lock);
1122 	while (true) {
1123 		err = null_make_cache_space(nullb,
1124 			nullb->dev->cache_size * 1024 * 1024);
1125 		if (err || nullb->dev->curr_cache == 0)
1126 			break;
1127 	}
1128 
1129 	WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1130 	spin_unlock_irq(&nullb->lock);
1131 	return err;
1132 }
1133 
1134 static int null_transfer(struct nullb *nullb, struct page *page,
1135 	unsigned int len, unsigned int off, bool is_write, sector_t sector,
1136 	bool is_fua)
1137 {
1138 	struct nullb_device *dev = nullb->dev;
1139 	unsigned int valid_len = len;
1140 	int err = 0;
1141 
1142 	if (!is_write) {
1143 		if (dev->zoned)
1144 			valid_len = null_zone_valid_read_len(nullb,
1145 				sector, len);
1146 
1147 		if (valid_len) {
1148 			err = copy_from_nullb(nullb, page, off,
1149 				sector, valid_len);
1150 			off += valid_len;
1151 			len -= valid_len;
1152 		}
1153 
1154 		if (len)
1155 			nullb_fill_pattern(nullb, page, len, off);
1156 		flush_dcache_page(page);
1157 	} else {
1158 		flush_dcache_page(page);
1159 		err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1160 	}
1161 
1162 	return err;
1163 }
1164 
1165 static int null_handle_rq(struct nullb_cmd *cmd)
1166 {
1167 	struct request *rq = cmd->rq;
1168 	struct nullb *nullb = cmd->nq->dev->nullb;
1169 	int err;
1170 	unsigned int len;
1171 	sector_t sector = blk_rq_pos(rq);
1172 	struct req_iterator iter;
1173 	struct bio_vec bvec;
1174 
1175 	spin_lock_irq(&nullb->lock);
1176 	rq_for_each_segment(bvec, rq, iter) {
1177 		len = bvec.bv_len;
1178 		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1179 				     op_is_write(req_op(rq)), sector,
1180 				     rq->cmd_flags & REQ_FUA);
1181 		if (err) {
1182 			spin_unlock_irq(&nullb->lock);
1183 			return err;
1184 		}
1185 		sector += len >> SECTOR_SHIFT;
1186 	}
1187 	spin_unlock_irq(&nullb->lock);
1188 
1189 	return 0;
1190 }
1191 
1192 static int null_handle_bio(struct nullb_cmd *cmd)
1193 {
1194 	struct bio *bio = cmd->bio;
1195 	struct nullb *nullb = cmd->nq->dev->nullb;
1196 	int err;
1197 	unsigned int len;
1198 	sector_t sector = bio->bi_iter.bi_sector;
1199 	struct bio_vec bvec;
1200 	struct bvec_iter iter;
1201 
1202 	spin_lock_irq(&nullb->lock);
1203 	bio_for_each_segment(bvec, bio, iter) {
1204 		len = bvec.bv_len;
1205 		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1206 				     op_is_write(bio_op(bio)), sector,
1207 				     bio->bi_opf & REQ_FUA);
1208 		if (err) {
1209 			spin_unlock_irq(&nullb->lock);
1210 			return err;
1211 		}
1212 		sector += len >> SECTOR_SHIFT;
1213 	}
1214 	spin_unlock_irq(&nullb->lock);
1215 	return 0;
1216 }
1217 
1218 static void null_stop_queue(struct nullb *nullb)
1219 {
1220 	struct request_queue *q = nullb->q;
1221 
1222 	if (nullb->dev->queue_mode == NULL_Q_MQ)
1223 		blk_mq_stop_hw_queues(q);
1224 }
1225 
1226 static void null_restart_queue_async(struct nullb *nullb)
1227 {
1228 	struct request_queue *q = nullb->q;
1229 
1230 	if (nullb->dev->queue_mode == NULL_Q_MQ)
1231 		blk_mq_start_stopped_hw_queues(q, true);
1232 }
1233 
1234 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1235 {
1236 	struct nullb_device *dev = cmd->nq->dev;
1237 	struct nullb *nullb = dev->nullb;
1238 	blk_status_t sts = BLK_STS_OK;
1239 	struct request *rq = cmd->rq;
1240 
1241 	if (!hrtimer_active(&nullb->bw_timer))
1242 		hrtimer_restart(&nullb->bw_timer);
1243 
1244 	if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1245 		null_stop_queue(nullb);
1246 		/* race with timer */
1247 		if (atomic_long_read(&nullb->cur_bytes) > 0)
1248 			null_restart_queue_async(nullb);
1249 		/* requeue request */
1250 		sts = BLK_STS_DEV_RESOURCE;
1251 	}
1252 	return sts;
1253 }
1254 
1255 static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
1256 						 sector_t sector,
1257 						 sector_t nr_sectors)
1258 {
1259 	struct badblocks *bb = &cmd->nq->dev->badblocks;
1260 	sector_t first_bad;
1261 	int bad_sectors;
1262 
1263 	if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
1264 		return BLK_STS_IOERR;
1265 
1266 	return BLK_STS_OK;
1267 }
1268 
1269 static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
1270 						     enum req_opf op,
1271 						     sector_t sector,
1272 						     sector_t nr_sectors)
1273 {
1274 	struct nullb_device *dev = cmd->nq->dev;
1275 	int err;
1276 
1277 	if (op == REQ_OP_DISCARD)
1278 		return null_handle_discard(dev, sector, nr_sectors);
1279 
1280 	if (dev->queue_mode == NULL_Q_BIO)
1281 		err = null_handle_bio(cmd);
1282 	else
1283 		err = null_handle_rq(cmd);
1284 
1285 	return errno_to_blk_status(err);
1286 }
1287 
1288 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1289 {
1290 	struct nullb_device *dev = cmd->nq->dev;
1291 	struct bio *bio;
1292 
1293 	if (dev->memory_backed)
1294 		return;
1295 
1296 	if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) == REQ_OP_READ) {
1297 		zero_fill_bio(cmd->bio);
1298 	} else if (req_op(cmd->rq) == REQ_OP_READ) {
1299 		__rq_for_each_bio(bio, cmd->rq)
1300 			zero_fill_bio(bio);
1301 	}
1302 }
1303 
1304 static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1305 {
1306 	/*
1307 	 * Since root privileges are required to configure the null_blk
1308 	 * driver, it is fine that this driver does not initialize the
1309 	 * data buffers of read commands. Zero-initialize these buffers
1310 	 * anyway if KMSAN is enabled to prevent that KMSAN complains
1311 	 * about null_blk not initializing read data buffers.
1312 	 */
1313 	if (IS_ENABLED(CONFIG_KMSAN))
1314 		nullb_zero_read_cmd_buffer(cmd);
1315 
1316 	/* Complete IO by inline, softirq or timer */
1317 	switch (cmd->nq->dev->irqmode) {
1318 	case NULL_IRQ_SOFTIRQ:
1319 		switch (cmd->nq->dev->queue_mode) {
1320 		case NULL_Q_MQ:
1321 			if (likely(!blk_should_fake_timeout(cmd->rq->q)))
1322 				blk_mq_complete_request(cmd->rq);
1323 			break;
1324 		case NULL_Q_BIO:
1325 			/*
1326 			 * XXX: no proper submitting cpu information available.
1327 			 */
1328 			end_cmd(cmd);
1329 			break;
1330 		}
1331 		break;
1332 	case NULL_IRQ_NONE:
1333 		end_cmd(cmd);
1334 		break;
1335 	case NULL_IRQ_TIMER:
1336 		null_cmd_end_timer(cmd);
1337 		break;
1338 	}
1339 }
1340 
1341 blk_status_t null_process_cmd(struct nullb_cmd *cmd,
1342 			      enum req_opf op, sector_t sector,
1343 			      unsigned int nr_sectors)
1344 {
1345 	struct nullb_device *dev = cmd->nq->dev;
1346 	blk_status_t ret;
1347 
1348 	if (dev->badblocks.shift != -1) {
1349 		ret = null_handle_badblocks(cmd, sector, nr_sectors);
1350 		if (ret != BLK_STS_OK)
1351 			return ret;
1352 	}
1353 
1354 	if (dev->memory_backed)
1355 		return null_handle_memory_backed(cmd, op, sector, nr_sectors);
1356 
1357 	return BLK_STS_OK;
1358 }
1359 
1360 static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1361 				    sector_t nr_sectors, enum req_opf op)
1362 {
1363 	struct nullb_device *dev = cmd->nq->dev;
1364 	struct nullb *nullb = dev->nullb;
1365 	blk_status_t sts;
1366 
1367 	if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1368 		sts = null_handle_throttled(cmd);
1369 		if (sts != BLK_STS_OK)
1370 			return sts;
1371 	}
1372 
1373 	if (op == REQ_OP_FLUSH) {
1374 		cmd->error = errno_to_blk_status(null_handle_flush(nullb));
1375 		goto out;
1376 	}
1377 
1378 	if (dev->zoned)
1379 		sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1380 	else
1381 		sts = null_process_cmd(cmd, op, sector, nr_sectors);
1382 
1383 	/* Do not overwrite errors (e.g. timeout errors) */
1384 	if (cmd->error == BLK_STS_OK)
1385 		cmd->error = sts;
1386 
1387 out:
1388 	nullb_complete_cmd(cmd);
1389 	return BLK_STS_OK;
1390 }
1391 
1392 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1393 {
1394 	struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1395 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1396 	unsigned int mbps = nullb->dev->mbps;
1397 
1398 	if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1399 		return HRTIMER_NORESTART;
1400 
1401 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1402 	null_restart_queue_async(nullb);
1403 
1404 	hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1405 
1406 	return HRTIMER_RESTART;
1407 }
1408 
1409 static void nullb_setup_bwtimer(struct nullb *nullb)
1410 {
1411 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1412 
1413 	hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1414 	nullb->bw_timer.function = nullb_bwtimer_fn;
1415 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1416 	hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1417 }
1418 
1419 static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1420 {
1421 	int index = 0;
1422 
1423 	if (nullb->nr_queues != 1)
1424 		index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1425 
1426 	return &nullb->queues[index];
1427 }
1428 
1429 static blk_qc_t null_submit_bio(struct bio *bio)
1430 {
1431 	sector_t sector = bio->bi_iter.bi_sector;
1432 	sector_t nr_sectors = bio_sectors(bio);
1433 	struct nullb *nullb = bio->bi_bdev->bd_disk->private_data;
1434 	struct nullb_queue *nq = nullb_to_queue(nullb);
1435 	struct nullb_cmd *cmd;
1436 
1437 	cmd = alloc_cmd(nq, 1);
1438 	cmd->bio = bio;
1439 
1440 	null_handle_cmd(cmd, sector, nr_sectors, bio_op(bio));
1441 	return BLK_QC_T_NONE;
1442 }
1443 
1444 static bool should_timeout_request(struct request *rq)
1445 {
1446 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1447 	if (g_timeout_str[0])
1448 		return should_fail(&null_timeout_attr, 1);
1449 #endif
1450 	return false;
1451 }
1452 
1453 static bool should_requeue_request(struct request *rq)
1454 {
1455 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1456 	if (g_requeue_str[0])
1457 		return should_fail(&null_requeue_attr, 1);
1458 #endif
1459 	return false;
1460 }
1461 
1462 static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
1463 {
1464 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1465 
1466 	pr_info("rq %p timed out\n", rq);
1467 
1468 	/*
1469 	 * If the device is marked as blocking (i.e. memory backed or zoned
1470 	 * device), the submission path may be blocked waiting for resources
1471 	 * and cause real timeouts. For these real timeouts, the submission
1472 	 * path will complete the request using blk_mq_complete_request().
1473 	 * Only fake timeouts need to execute blk_mq_complete_request() here.
1474 	 */
1475 	cmd->error = BLK_STS_TIMEOUT;
1476 	if (cmd->fake_timeout)
1477 		blk_mq_complete_request(rq);
1478 	return BLK_EH_DONE;
1479 }
1480 
1481 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1482 			 const struct blk_mq_queue_data *bd)
1483 {
1484 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1485 	struct nullb_queue *nq = hctx->driver_data;
1486 	sector_t nr_sectors = blk_rq_sectors(bd->rq);
1487 	sector_t sector = blk_rq_pos(bd->rq);
1488 
1489 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1490 
1491 	if (nq->dev->irqmode == NULL_IRQ_TIMER) {
1492 		hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1493 		cmd->timer.function = null_cmd_timer_expired;
1494 	}
1495 	cmd->rq = bd->rq;
1496 	cmd->error = BLK_STS_OK;
1497 	cmd->nq = nq;
1498 	cmd->fake_timeout = should_timeout_request(bd->rq);
1499 
1500 	blk_mq_start_request(bd->rq);
1501 
1502 	if (should_requeue_request(bd->rq)) {
1503 		/*
1504 		 * Alternate between hitting the core BUSY path, and the
1505 		 * driver driven requeue path
1506 		 */
1507 		nq->requeue_selection++;
1508 		if (nq->requeue_selection & 1)
1509 			return BLK_STS_RESOURCE;
1510 		else {
1511 			blk_mq_requeue_request(bd->rq, true);
1512 			return BLK_STS_OK;
1513 		}
1514 	}
1515 	if (cmd->fake_timeout)
1516 		return BLK_STS_OK;
1517 
1518 	return null_handle_cmd(cmd, sector, nr_sectors, req_op(bd->rq));
1519 }
1520 
1521 static void cleanup_queue(struct nullb_queue *nq)
1522 {
1523 	kfree(nq->tag_map);
1524 	kfree(nq->cmds);
1525 }
1526 
1527 static void cleanup_queues(struct nullb *nullb)
1528 {
1529 	int i;
1530 
1531 	for (i = 0; i < nullb->nr_queues; i++)
1532 		cleanup_queue(&nullb->queues[i]);
1533 
1534 	kfree(nullb->queues);
1535 }
1536 
1537 static void null_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1538 {
1539 	struct nullb_queue *nq = hctx->driver_data;
1540 	struct nullb *nullb = nq->dev->nullb;
1541 
1542 	nullb->nr_queues--;
1543 }
1544 
1545 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1546 {
1547 	init_waitqueue_head(&nq->wait);
1548 	nq->queue_depth = nullb->queue_depth;
1549 	nq->dev = nullb->dev;
1550 }
1551 
1552 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1553 			  unsigned int hctx_idx)
1554 {
1555 	struct nullb *nullb = hctx->queue->queuedata;
1556 	struct nullb_queue *nq;
1557 
1558 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1559 	if (g_init_hctx_str[0] && should_fail(&null_init_hctx_attr, 1))
1560 		return -EFAULT;
1561 #endif
1562 
1563 	nq = &nullb->queues[hctx_idx];
1564 	hctx->driver_data = nq;
1565 	null_init_queue(nullb, nq);
1566 	nullb->nr_queues++;
1567 
1568 	return 0;
1569 }
1570 
1571 static const struct blk_mq_ops null_mq_ops = {
1572 	.queue_rq       = null_queue_rq,
1573 	.complete	= null_complete_rq,
1574 	.timeout	= null_timeout_rq,
1575 	.init_hctx	= null_init_hctx,
1576 	.exit_hctx	= null_exit_hctx,
1577 };
1578 
1579 static void null_del_dev(struct nullb *nullb)
1580 {
1581 	struct nullb_device *dev;
1582 
1583 	if (!nullb)
1584 		return;
1585 
1586 	dev = nullb->dev;
1587 
1588 	ida_simple_remove(&nullb_indexes, nullb->index);
1589 
1590 	list_del_init(&nullb->list);
1591 
1592 	del_gendisk(nullb->disk);
1593 
1594 	if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1595 		hrtimer_cancel(&nullb->bw_timer);
1596 		atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1597 		null_restart_queue_async(nullb);
1598 	}
1599 
1600 	blk_cleanup_queue(nullb->q);
1601 	if (dev->queue_mode == NULL_Q_MQ &&
1602 	    nullb->tag_set == &nullb->__tag_set)
1603 		blk_mq_free_tag_set(nullb->tag_set);
1604 	put_disk(nullb->disk);
1605 	cleanup_queues(nullb);
1606 	if (null_cache_active(nullb))
1607 		null_free_device_storage(nullb->dev, true);
1608 	kfree(nullb);
1609 	dev->nullb = NULL;
1610 }
1611 
1612 static void null_config_discard(struct nullb *nullb)
1613 {
1614 	if (nullb->dev->discard == false)
1615 		return;
1616 
1617 	if (!nullb->dev->memory_backed) {
1618 		nullb->dev->discard = false;
1619 		pr_info("discard option is ignored without memory backing\n");
1620 		return;
1621 	}
1622 
1623 	if (nullb->dev->zoned) {
1624 		nullb->dev->discard = false;
1625 		pr_info("discard option is ignored in zoned mode\n");
1626 		return;
1627 	}
1628 
1629 	nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1630 	nullb->q->limits.discard_alignment = nullb->dev->blocksize;
1631 	blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1632 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, nullb->q);
1633 }
1634 
1635 static const struct block_device_operations null_bio_ops = {
1636 	.owner		= THIS_MODULE,
1637 	.submit_bio	= null_submit_bio,
1638 	.report_zones	= null_report_zones,
1639 };
1640 
1641 static const struct block_device_operations null_rq_ops = {
1642 	.owner		= THIS_MODULE,
1643 	.report_zones	= null_report_zones,
1644 };
1645 
1646 static int setup_commands(struct nullb_queue *nq)
1647 {
1648 	struct nullb_cmd *cmd;
1649 	int i, tag_size;
1650 
1651 	nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1652 	if (!nq->cmds)
1653 		return -ENOMEM;
1654 
1655 	tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
1656 	nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
1657 	if (!nq->tag_map) {
1658 		kfree(nq->cmds);
1659 		return -ENOMEM;
1660 	}
1661 
1662 	for (i = 0; i < nq->queue_depth; i++) {
1663 		cmd = &nq->cmds[i];
1664 		cmd->tag = -1U;
1665 	}
1666 
1667 	return 0;
1668 }
1669 
1670 static int setup_queues(struct nullb *nullb)
1671 {
1672 	nullb->queues = kcalloc(nr_cpu_ids, sizeof(struct nullb_queue),
1673 				GFP_KERNEL);
1674 	if (!nullb->queues)
1675 		return -ENOMEM;
1676 
1677 	nullb->queue_depth = nullb->dev->hw_queue_depth;
1678 
1679 	return 0;
1680 }
1681 
1682 static int init_driver_queues(struct nullb *nullb)
1683 {
1684 	struct nullb_queue *nq;
1685 	int i, ret = 0;
1686 
1687 	for (i = 0; i < nullb->dev->submit_queues; i++) {
1688 		nq = &nullb->queues[i];
1689 
1690 		null_init_queue(nullb, nq);
1691 
1692 		ret = setup_commands(nq);
1693 		if (ret)
1694 			return ret;
1695 		nullb->nr_queues++;
1696 	}
1697 	return 0;
1698 }
1699 
1700 static int null_gendisk_register(struct nullb *nullb)
1701 {
1702 	sector_t size = ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT;
1703 	struct gendisk *disk;
1704 
1705 	disk = nullb->disk = alloc_disk_node(1, nullb->dev->home_node);
1706 	if (!disk)
1707 		return -ENOMEM;
1708 	set_capacity(disk, size);
1709 
1710 	disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
1711 	disk->major		= null_major;
1712 	disk->first_minor	= nullb->index;
1713 	if (queue_is_mq(nullb->q))
1714 		disk->fops		= &null_rq_ops;
1715 	else
1716 		disk->fops		= &null_bio_ops;
1717 	disk->private_data	= nullb;
1718 	disk->queue		= nullb->q;
1719 	strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1720 
1721 	if (nullb->dev->zoned) {
1722 		int ret = null_register_zoned_dev(nullb);
1723 
1724 		if (ret)
1725 			return ret;
1726 	}
1727 
1728 	add_disk(disk);
1729 	return 0;
1730 }
1731 
1732 static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1733 {
1734 	set->ops = &null_mq_ops;
1735 	set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
1736 						g_submit_queues;
1737 	set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
1738 						g_hw_queue_depth;
1739 	set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
1740 	set->cmd_size	= sizeof(struct nullb_cmd);
1741 	set->flags = BLK_MQ_F_SHOULD_MERGE;
1742 	if (g_no_sched)
1743 		set->flags |= BLK_MQ_F_NO_SCHED;
1744 	if (g_shared_tag_bitmap)
1745 		set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1746 	set->driver_data = NULL;
1747 
1748 	if ((nullb && nullb->dev->blocking) || g_blocking)
1749 		set->flags |= BLK_MQ_F_BLOCKING;
1750 
1751 	return blk_mq_alloc_tag_set(set);
1752 }
1753 
1754 static int null_validate_conf(struct nullb_device *dev)
1755 {
1756 	dev->blocksize = round_down(dev->blocksize, 512);
1757 	dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
1758 
1759 	if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
1760 		if (dev->submit_queues != nr_online_nodes)
1761 			dev->submit_queues = nr_online_nodes;
1762 	} else if (dev->submit_queues > nr_cpu_ids)
1763 		dev->submit_queues = nr_cpu_ids;
1764 	else if (dev->submit_queues == 0)
1765 		dev->submit_queues = 1;
1766 
1767 	dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
1768 	dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1769 
1770 	/* Do memory allocation, so set blocking */
1771 	if (dev->memory_backed)
1772 		dev->blocking = true;
1773 	else /* cache is meaningless */
1774 		dev->cache_size = 0;
1775 	dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1776 						dev->cache_size);
1777 	dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1778 	/* can not stop a queue */
1779 	if (dev->queue_mode == NULL_Q_BIO)
1780 		dev->mbps = 0;
1781 
1782 	if (dev->zoned &&
1783 	    (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1784 		pr_err("zone_size must be power-of-two\n");
1785 		return -EINVAL;
1786 	}
1787 
1788 	return 0;
1789 }
1790 
1791 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1792 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1793 {
1794 	if (!str[0])
1795 		return true;
1796 
1797 	if (!setup_fault_attr(attr, str))
1798 		return false;
1799 
1800 	attr->verbose = 0;
1801 	return true;
1802 }
1803 #endif
1804 
1805 static bool null_setup_fault(void)
1806 {
1807 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1808 	if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1809 		return false;
1810 	if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1811 		return false;
1812 	if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
1813 		return false;
1814 #endif
1815 	return true;
1816 }
1817 
1818 static int null_add_dev(struct nullb_device *dev)
1819 {
1820 	struct nullb *nullb;
1821 	int rv;
1822 
1823 	rv = null_validate_conf(dev);
1824 	if (rv)
1825 		return rv;
1826 
1827 	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1828 	if (!nullb) {
1829 		rv = -ENOMEM;
1830 		goto out;
1831 	}
1832 	nullb->dev = dev;
1833 	dev->nullb = nullb;
1834 
1835 	spin_lock_init(&nullb->lock);
1836 
1837 	rv = setup_queues(nullb);
1838 	if (rv)
1839 		goto out_free_nullb;
1840 
1841 	if (dev->queue_mode == NULL_Q_MQ) {
1842 		if (shared_tags) {
1843 			nullb->tag_set = &tag_set;
1844 			rv = 0;
1845 		} else {
1846 			nullb->tag_set = &nullb->__tag_set;
1847 			rv = null_init_tag_set(nullb, nullb->tag_set);
1848 		}
1849 
1850 		if (rv)
1851 			goto out_cleanup_queues;
1852 
1853 		if (!null_setup_fault())
1854 			goto out_cleanup_queues;
1855 
1856 		nullb->tag_set->timeout = 5 * HZ;
1857 		nullb->q = blk_mq_init_queue_data(nullb->tag_set, nullb);
1858 		if (IS_ERR(nullb->q)) {
1859 			rv = -ENOMEM;
1860 			goto out_cleanup_tags;
1861 		}
1862 	} else if (dev->queue_mode == NULL_Q_BIO) {
1863 		nullb->q = blk_alloc_queue(dev->home_node);
1864 		if (!nullb->q) {
1865 			rv = -ENOMEM;
1866 			goto out_cleanup_queues;
1867 		}
1868 		rv = init_driver_queues(nullb);
1869 		if (rv)
1870 			goto out_cleanup_blk_queue;
1871 	}
1872 
1873 	if (dev->mbps) {
1874 		set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
1875 		nullb_setup_bwtimer(nullb);
1876 	}
1877 
1878 	if (dev->cache_size > 0) {
1879 		set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1880 		blk_queue_write_cache(nullb->q, true, true);
1881 	}
1882 
1883 	if (dev->zoned) {
1884 		rv = null_init_zoned_dev(dev, nullb->q);
1885 		if (rv)
1886 			goto out_cleanup_blk_queue;
1887 	}
1888 
1889 	nullb->q->queuedata = nullb;
1890 	blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
1891 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
1892 
1893 	mutex_lock(&lock);
1894 	nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
1895 	dev->index = nullb->index;
1896 	mutex_unlock(&lock);
1897 
1898 	blk_queue_logical_block_size(nullb->q, dev->blocksize);
1899 	blk_queue_physical_block_size(nullb->q, dev->blocksize);
1900 	if (!dev->max_sectors)
1901 		dev->max_sectors = queue_max_hw_sectors(nullb->q);
1902 	dev->max_sectors = min_t(unsigned int, dev->max_sectors,
1903 				 BLK_DEF_MAX_SECTORS);
1904 	blk_queue_max_hw_sectors(nullb->q, dev->max_sectors);
1905 
1906 	if (dev->virt_boundary)
1907 		blk_queue_virt_boundary(nullb->q, PAGE_SIZE - 1);
1908 
1909 	null_config_discard(nullb);
1910 
1911 	sprintf(nullb->disk_name, "nullb%d", nullb->index);
1912 
1913 	rv = null_gendisk_register(nullb);
1914 	if (rv)
1915 		goto out_cleanup_zone;
1916 
1917 	mutex_lock(&lock);
1918 	list_add_tail(&nullb->list, &nullb_list);
1919 	mutex_unlock(&lock);
1920 
1921 	return 0;
1922 out_cleanup_zone:
1923 	null_free_zoned_dev(dev);
1924 out_cleanup_blk_queue:
1925 	blk_cleanup_queue(nullb->q);
1926 out_cleanup_tags:
1927 	if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
1928 		blk_mq_free_tag_set(nullb->tag_set);
1929 out_cleanup_queues:
1930 	cleanup_queues(nullb);
1931 out_free_nullb:
1932 	kfree(nullb);
1933 	dev->nullb = NULL;
1934 out:
1935 	return rv;
1936 }
1937 
1938 static int __init null_init(void)
1939 {
1940 	int ret = 0;
1941 	unsigned int i;
1942 	struct nullb *nullb;
1943 	struct nullb_device *dev;
1944 
1945 	if (g_bs > PAGE_SIZE) {
1946 		pr_warn("invalid block size\n");
1947 		pr_warn("defaults block size to %lu\n", PAGE_SIZE);
1948 		g_bs = PAGE_SIZE;
1949 	}
1950 
1951 	if (g_max_sectors > BLK_DEF_MAX_SECTORS) {
1952 		pr_warn("invalid max sectors\n");
1953 		pr_warn("defaults max sectors to %u\n", BLK_DEF_MAX_SECTORS);
1954 		g_max_sectors = BLK_DEF_MAX_SECTORS;
1955 	}
1956 
1957 	if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
1958 		pr_err("invalid home_node value\n");
1959 		g_home_node = NUMA_NO_NODE;
1960 	}
1961 
1962 	if (g_queue_mode == NULL_Q_RQ) {
1963 		pr_err("legacy IO path no longer available\n");
1964 		return -EINVAL;
1965 	}
1966 	if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
1967 		if (g_submit_queues != nr_online_nodes) {
1968 			pr_warn("submit_queues param is set to %u.\n",
1969 							nr_online_nodes);
1970 			g_submit_queues = nr_online_nodes;
1971 		}
1972 	} else if (g_submit_queues > nr_cpu_ids)
1973 		g_submit_queues = nr_cpu_ids;
1974 	else if (g_submit_queues <= 0)
1975 		g_submit_queues = 1;
1976 
1977 	if (g_queue_mode == NULL_Q_MQ && shared_tags) {
1978 		ret = null_init_tag_set(NULL, &tag_set);
1979 		if (ret)
1980 			return ret;
1981 	}
1982 
1983 	config_group_init(&nullb_subsys.su_group);
1984 	mutex_init(&nullb_subsys.su_mutex);
1985 
1986 	ret = configfs_register_subsystem(&nullb_subsys);
1987 	if (ret)
1988 		goto err_tagset;
1989 
1990 	mutex_init(&lock);
1991 
1992 	null_major = register_blkdev(0, "nullb");
1993 	if (null_major < 0) {
1994 		ret = null_major;
1995 		goto err_conf;
1996 	}
1997 
1998 	for (i = 0; i < nr_devices; i++) {
1999 		dev = null_alloc_dev();
2000 		if (!dev) {
2001 			ret = -ENOMEM;
2002 			goto err_dev;
2003 		}
2004 		ret = null_add_dev(dev);
2005 		if (ret) {
2006 			null_free_dev(dev);
2007 			goto err_dev;
2008 		}
2009 	}
2010 
2011 	pr_info("module loaded\n");
2012 	return 0;
2013 
2014 err_dev:
2015 	while (!list_empty(&nullb_list)) {
2016 		nullb = list_entry(nullb_list.next, struct nullb, list);
2017 		dev = nullb->dev;
2018 		null_del_dev(nullb);
2019 		null_free_dev(dev);
2020 	}
2021 	unregister_blkdev(null_major, "nullb");
2022 err_conf:
2023 	configfs_unregister_subsystem(&nullb_subsys);
2024 err_tagset:
2025 	if (g_queue_mode == NULL_Q_MQ && shared_tags)
2026 		blk_mq_free_tag_set(&tag_set);
2027 	return ret;
2028 }
2029 
2030 static void __exit null_exit(void)
2031 {
2032 	struct nullb *nullb;
2033 
2034 	configfs_unregister_subsystem(&nullb_subsys);
2035 
2036 	unregister_blkdev(null_major, "nullb");
2037 
2038 	mutex_lock(&lock);
2039 	while (!list_empty(&nullb_list)) {
2040 		struct nullb_device *dev;
2041 
2042 		nullb = list_entry(nullb_list.next, struct nullb, list);
2043 		dev = nullb->dev;
2044 		null_del_dev(nullb);
2045 		null_free_dev(dev);
2046 	}
2047 	mutex_unlock(&lock);
2048 
2049 	if (g_queue_mode == NULL_Q_MQ && shared_tags)
2050 		blk_mq_free_tag_set(&tag_set);
2051 }
2052 
2053 module_init(null_init);
2054 module_exit(null_exit);
2055 
2056 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2057 MODULE_LICENSE("GPL");
2058