1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and 4 * Shaohua Li <shli@fb.com> 5 */ 6 #include <linux/module.h> 7 8 #include <linux/moduleparam.h> 9 #include <linux/sched.h> 10 #include <linux/fs.h> 11 #include <linux/init.h> 12 #include "null_blk.h" 13 14 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 15 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 16 #define SECTOR_MASK (PAGE_SECTORS - 1) 17 18 #define FREE_BATCH 16 19 20 #define TICKS_PER_SEC 50ULL 21 #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC) 22 23 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 24 static DECLARE_FAULT_ATTR(null_timeout_attr); 25 static DECLARE_FAULT_ATTR(null_requeue_attr); 26 static DECLARE_FAULT_ATTR(null_init_hctx_attr); 27 #endif 28 29 static inline u64 mb_per_tick(int mbps) 30 { 31 return (1 << 20) / TICKS_PER_SEC * ((u64) mbps); 32 } 33 34 /* 35 * Status flags for nullb_device. 36 * 37 * CONFIGURED: Device has been configured and turned on. Cannot reconfigure. 38 * UP: Device is currently on and visible in userspace. 39 * THROTTLED: Device is being throttled. 40 * CACHE: Device is using a write-back cache. 41 */ 42 enum nullb_device_flags { 43 NULLB_DEV_FL_CONFIGURED = 0, 44 NULLB_DEV_FL_UP = 1, 45 NULLB_DEV_FL_THROTTLED = 2, 46 NULLB_DEV_FL_CACHE = 3, 47 }; 48 49 #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2) 50 /* 51 * nullb_page is a page in memory for nullb devices. 52 * 53 * @page: The page holding the data. 54 * @bitmap: The bitmap represents which sector in the page has data. 55 * Each bit represents one block size. For example, sector 8 56 * will use the 7th bit 57 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache 58 * page is being flushing to storage. FREE means the cache page is freed and 59 * should be skipped from flushing to storage. Please see 60 * null_make_cache_space 61 */ 62 struct nullb_page { 63 struct page *page; 64 DECLARE_BITMAP(bitmap, MAP_SZ); 65 }; 66 #define NULLB_PAGE_LOCK (MAP_SZ - 1) 67 #define NULLB_PAGE_FREE (MAP_SZ - 2) 68 69 static LIST_HEAD(nullb_list); 70 static struct mutex lock; 71 static int null_major; 72 static DEFINE_IDA(nullb_indexes); 73 static struct blk_mq_tag_set tag_set; 74 75 enum { 76 NULL_IRQ_NONE = 0, 77 NULL_IRQ_SOFTIRQ = 1, 78 NULL_IRQ_TIMER = 2, 79 }; 80 81 enum { 82 NULL_Q_BIO = 0, 83 NULL_Q_RQ = 1, 84 NULL_Q_MQ = 2, 85 }; 86 87 static bool g_virt_boundary = false; 88 module_param_named(virt_boundary, g_virt_boundary, bool, 0444); 89 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False"); 90 91 static int g_no_sched; 92 module_param_named(no_sched, g_no_sched, int, 0444); 93 MODULE_PARM_DESC(no_sched, "No io scheduler"); 94 95 static int g_submit_queues = 1; 96 module_param_named(submit_queues, g_submit_queues, int, 0444); 97 MODULE_PARM_DESC(submit_queues, "Number of submission queues"); 98 99 static int g_home_node = NUMA_NO_NODE; 100 module_param_named(home_node, g_home_node, int, 0444); 101 MODULE_PARM_DESC(home_node, "Home node for the device"); 102 103 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 104 /* 105 * For more details about fault injection, please refer to 106 * Documentation/fault-injection/fault-injection.rst. 107 */ 108 static char g_timeout_str[80]; 109 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444); 110 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>"); 111 112 static char g_requeue_str[80]; 113 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444); 114 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>"); 115 116 static char g_init_hctx_str[80]; 117 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444); 118 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>"); 119 #endif 120 121 static int g_queue_mode = NULL_Q_MQ; 122 123 static int null_param_store_val(const char *str, int *val, int min, int max) 124 { 125 int ret, new_val; 126 127 ret = kstrtoint(str, 10, &new_val); 128 if (ret) 129 return -EINVAL; 130 131 if (new_val < min || new_val > max) 132 return -EINVAL; 133 134 *val = new_val; 135 return 0; 136 } 137 138 static int null_set_queue_mode(const char *str, const struct kernel_param *kp) 139 { 140 return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ); 141 } 142 143 static const struct kernel_param_ops null_queue_mode_param_ops = { 144 .set = null_set_queue_mode, 145 .get = param_get_int, 146 }; 147 148 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444); 149 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)"); 150 151 static int g_gb = 250; 152 module_param_named(gb, g_gb, int, 0444); 153 MODULE_PARM_DESC(gb, "Size in GB"); 154 155 static int g_bs = 512; 156 module_param_named(bs, g_bs, int, 0444); 157 MODULE_PARM_DESC(bs, "Block size (in bytes)"); 158 159 static int g_max_sectors; 160 module_param_named(max_sectors, g_max_sectors, int, 0444); 161 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)"); 162 163 static unsigned int nr_devices = 1; 164 module_param(nr_devices, uint, 0444); 165 MODULE_PARM_DESC(nr_devices, "Number of devices to register"); 166 167 static bool g_blocking; 168 module_param_named(blocking, g_blocking, bool, 0444); 169 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device"); 170 171 static bool shared_tags; 172 module_param(shared_tags, bool, 0444); 173 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq"); 174 175 static bool g_shared_tag_bitmap; 176 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444); 177 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq"); 178 179 static int g_irqmode = NULL_IRQ_SOFTIRQ; 180 181 static int null_set_irqmode(const char *str, const struct kernel_param *kp) 182 { 183 return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE, 184 NULL_IRQ_TIMER); 185 } 186 187 static const struct kernel_param_ops null_irqmode_param_ops = { 188 .set = null_set_irqmode, 189 .get = param_get_int, 190 }; 191 192 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444); 193 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer"); 194 195 static unsigned long g_completion_nsec = 10000; 196 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444); 197 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns"); 198 199 static int g_hw_queue_depth = 64; 200 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444); 201 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64"); 202 203 static bool g_use_per_node_hctx; 204 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444); 205 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false"); 206 207 static bool g_zoned; 208 module_param_named(zoned, g_zoned, bool, S_IRUGO); 209 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false"); 210 211 static unsigned long g_zone_size = 256; 212 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO); 213 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256"); 214 215 static unsigned long g_zone_capacity; 216 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444); 217 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size"); 218 219 static unsigned int g_zone_nr_conv; 220 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444); 221 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0"); 222 223 static unsigned int g_zone_max_open; 224 module_param_named(zone_max_open, g_zone_max_open, uint, 0444); 225 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)"); 226 227 static unsigned int g_zone_max_active; 228 module_param_named(zone_max_active, g_zone_max_active, uint, 0444); 229 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)"); 230 231 static struct nullb_device *null_alloc_dev(void); 232 static void null_free_dev(struct nullb_device *dev); 233 static void null_del_dev(struct nullb *nullb); 234 static int null_add_dev(struct nullb_device *dev); 235 static void null_free_device_storage(struct nullb_device *dev, bool is_cache); 236 237 static inline struct nullb_device *to_nullb_device(struct config_item *item) 238 { 239 return item ? container_of(item, struct nullb_device, item) : NULL; 240 } 241 242 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page) 243 { 244 return snprintf(page, PAGE_SIZE, "%u\n", val); 245 } 246 247 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val, 248 char *page) 249 { 250 return snprintf(page, PAGE_SIZE, "%lu\n", val); 251 } 252 253 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page) 254 { 255 return snprintf(page, PAGE_SIZE, "%u\n", val); 256 } 257 258 static ssize_t nullb_device_uint_attr_store(unsigned int *val, 259 const char *page, size_t count) 260 { 261 unsigned int tmp; 262 int result; 263 264 result = kstrtouint(page, 0, &tmp); 265 if (result < 0) 266 return result; 267 268 *val = tmp; 269 return count; 270 } 271 272 static ssize_t nullb_device_ulong_attr_store(unsigned long *val, 273 const char *page, size_t count) 274 { 275 int result; 276 unsigned long tmp; 277 278 result = kstrtoul(page, 0, &tmp); 279 if (result < 0) 280 return result; 281 282 *val = tmp; 283 return count; 284 } 285 286 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page, 287 size_t count) 288 { 289 bool tmp; 290 int result; 291 292 result = kstrtobool(page, &tmp); 293 if (result < 0) 294 return result; 295 296 *val = tmp; 297 return count; 298 } 299 300 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */ 301 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY) \ 302 static ssize_t \ 303 nullb_device_##NAME##_show(struct config_item *item, char *page) \ 304 { \ 305 return nullb_device_##TYPE##_attr_show( \ 306 to_nullb_device(item)->NAME, page); \ 307 } \ 308 static ssize_t \ 309 nullb_device_##NAME##_store(struct config_item *item, const char *page, \ 310 size_t count) \ 311 { \ 312 int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\ 313 struct nullb_device *dev = to_nullb_device(item); \ 314 TYPE new_value = 0; \ 315 int ret; \ 316 \ 317 ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\ 318 if (ret < 0) \ 319 return ret; \ 320 if (apply_fn) \ 321 ret = apply_fn(dev, new_value); \ 322 else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) \ 323 ret = -EBUSY; \ 324 if (ret < 0) \ 325 return ret; \ 326 dev->NAME = new_value; \ 327 return count; \ 328 } \ 329 CONFIGFS_ATTR(nullb_device_, NAME); 330 331 static int nullb_apply_submit_queues(struct nullb_device *dev, 332 unsigned int submit_queues) 333 { 334 struct nullb *nullb = dev->nullb; 335 struct blk_mq_tag_set *set; 336 337 if (!nullb) 338 return 0; 339 340 /* 341 * Make sure that null_init_hctx() does not access nullb->queues[] past 342 * the end of that array. 343 */ 344 if (submit_queues > nr_cpu_ids) 345 return -EINVAL; 346 set = nullb->tag_set; 347 blk_mq_update_nr_hw_queues(set, submit_queues); 348 return set->nr_hw_queues == submit_queues ? 0 : -ENOMEM; 349 } 350 351 NULLB_DEVICE_ATTR(size, ulong, NULL); 352 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL); 353 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues); 354 NULLB_DEVICE_ATTR(home_node, uint, NULL); 355 NULLB_DEVICE_ATTR(queue_mode, uint, NULL); 356 NULLB_DEVICE_ATTR(blocksize, uint, NULL); 357 NULLB_DEVICE_ATTR(max_sectors, uint, NULL); 358 NULLB_DEVICE_ATTR(irqmode, uint, NULL); 359 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL); 360 NULLB_DEVICE_ATTR(index, uint, NULL); 361 NULLB_DEVICE_ATTR(blocking, bool, NULL); 362 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL); 363 NULLB_DEVICE_ATTR(memory_backed, bool, NULL); 364 NULLB_DEVICE_ATTR(discard, bool, NULL); 365 NULLB_DEVICE_ATTR(mbps, uint, NULL); 366 NULLB_DEVICE_ATTR(cache_size, ulong, NULL); 367 NULLB_DEVICE_ATTR(zoned, bool, NULL); 368 NULLB_DEVICE_ATTR(zone_size, ulong, NULL); 369 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL); 370 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL); 371 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL); 372 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL); 373 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL); 374 375 static ssize_t nullb_device_power_show(struct config_item *item, char *page) 376 { 377 return nullb_device_bool_attr_show(to_nullb_device(item)->power, page); 378 } 379 380 static ssize_t nullb_device_power_store(struct config_item *item, 381 const char *page, size_t count) 382 { 383 struct nullb_device *dev = to_nullb_device(item); 384 bool newp = false; 385 ssize_t ret; 386 387 ret = nullb_device_bool_attr_store(&newp, page, count); 388 if (ret < 0) 389 return ret; 390 391 if (!dev->power && newp) { 392 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags)) 393 return count; 394 if (null_add_dev(dev)) { 395 clear_bit(NULLB_DEV_FL_UP, &dev->flags); 396 return -ENOMEM; 397 } 398 399 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags); 400 dev->power = newp; 401 } else if (dev->power && !newp) { 402 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) { 403 mutex_lock(&lock); 404 dev->power = newp; 405 null_del_dev(dev->nullb); 406 mutex_unlock(&lock); 407 } 408 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags); 409 } 410 411 return count; 412 } 413 414 CONFIGFS_ATTR(nullb_device_, power); 415 416 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page) 417 { 418 struct nullb_device *t_dev = to_nullb_device(item); 419 420 return badblocks_show(&t_dev->badblocks, page, 0); 421 } 422 423 static ssize_t nullb_device_badblocks_store(struct config_item *item, 424 const char *page, size_t count) 425 { 426 struct nullb_device *t_dev = to_nullb_device(item); 427 char *orig, *buf, *tmp; 428 u64 start, end; 429 int ret; 430 431 orig = kstrndup(page, count, GFP_KERNEL); 432 if (!orig) 433 return -ENOMEM; 434 435 buf = strstrip(orig); 436 437 ret = -EINVAL; 438 if (buf[0] != '+' && buf[0] != '-') 439 goto out; 440 tmp = strchr(&buf[1], '-'); 441 if (!tmp) 442 goto out; 443 *tmp = '\0'; 444 ret = kstrtoull(buf + 1, 0, &start); 445 if (ret) 446 goto out; 447 ret = kstrtoull(tmp + 1, 0, &end); 448 if (ret) 449 goto out; 450 ret = -EINVAL; 451 if (start > end) 452 goto out; 453 /* enable badblocks */ 454 cmpxchg(&t_dev->badblocks.shift, -1, 0); 455 if (buf[0] == '+') 456 ret = badblocks_set(&t_dev->badblocks, start, 457 end - start + 1, 1); 458 else 459 ret = badblocks_clear(&t_dev->badblocks, start, 460 end - start + 1); 461 if (ret == 0) 462 ret = count; 463 out: 464 kfree(orig); 465 return ret; 466 } 467 CONFIGFS_ATTR(nullb_device_, badblocks); 468 469 static struct configfs_attribute *nullb_device_attrs[] = { 470 &nullb_device_attr_size, 471 &nullb_device_attr_completion_nsec, 472 &nullb_device_attr_submit_queues, 473 &nullb_device_attr_home_node, 474 &nullb_device_attr_queue_mode, 475 &nullb_device_attr_blocksize, 476 &nullb_device_attr_max_sectors, 477 &nullb_device_attr_irqmode, 478 &nullb_device_attr_hw_queue_depth, 479 &nullb_device_attr_index, 480 &nullb_device_attr_blocking, 481 &nullb_device_attr_use_per_node_hctx, 482 &nullb_device_attr_power, 483 &nullb_device_attr_memory_backed, 484 &nullb_device_attr_discard, 485 &nullb_device_attr_mbps, 486 &nullb_device_attr_cache_size, 487 &nullb_device_attr_badblocks, 488 &nullb_device_attr_zoned, 489 &nullb_device_attr_zone_size, 490 &nullb_device_attr_zone_capacity, 491 &nullb_device_attr_zone_nr_conv, 492 &nullb_device_attr_zone_max_open, 493 &nullb_device_attr_zone_max_active, 494 &nullb_device_attr_virt_boundary, 495 NULL, 496 }; 497 498 static void nullb_device_release(struct config_item *item) 499 { 500 struct nullb_device *dev = to_nullb_device(item); 501 502 null_free_device_storage(dev, false); 503 null_free_dev(dev); 504 } 505 506 static struct configfs_item_operations nullb_device_ops = { 507 .release = nullb_device_release, 508 }; 509 510 static const struct config_item_type nullb_device_type = { 511 .ct_item_ops = &nullb_device_ops, 512 .ct_attrs = nullb_device_attrs, 513 .ct_owner = THIS_MODULE, 514 }; 515 516 static struct 517 config_item *nullb_group_make_item(struct config_group *group, const char *name) 518 { 519 struct nullb_device *dev; 520 521 dev = null_alloc_dev(); 522 if (!dev) 523 return ERR_PTR(-ENOMEM); 524 525 config_item_init_type_name(&dev->item, name, &nullb_device_type); 526 527 return &dev->item; 528 } 529 530 static void 531 nullb_group_drop_item(struct config_group *group, struct config_item *item) 532 { 533 struct nullb_device *dev = to_nullb_device(item); 534 535 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) { 536 mutex_lock(&lock); 537 dev->power = false; 538 null_del_dev(dev->nullb); 539 mutex_unlock(&lock); 540 } 541 542 config_item_put(item); 543 } 544 545 static ssize_t memb_group_features_show(struct config_item *item, char *page) 546 { 547 return snprintf(page, PAGE_SIZE, 548 "memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size,zone_capacity,zone_nr_conv,zone_max_open,zone_max_active,blocksize,max_sectors,virt_boundary\n"); 549 } 550 551 CONFIGFS_ATTR_RO(memb_group_, features); 552 553 static struct configfs_attribute *nullb_group_attrs[] = { 554 &memb_group_attr_features, 555 NULL, 556 }; 557 558 static struct configfs_group_operations nullb_group_ops = { 559 .make_item = nullb_group_make_item, 560 .drop_item = nullb_group_drop_item, 561 }; 562 563 static const struct config_item_type nullb_group_type = { 564 .ct_group_ops = &nullb_group_ops, 565 .ct_attrs = nullb_group_attrs, 566 .ct_owner = THIS_MODULE, 567 }; 568 569 static struct configfs_subsystem nullb_subsys = { 570 .su_group = { 571 .cg_item = { 572 .ci_namebuf = "nullb", 573 .ci_type = &nullb_group_type, 574 }, 575 }, 576 }; 577 578 static inline int null_cache_active(struct nullb *nullb) 579 { 580 return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags); 581 } 582 583 static struct nullb_device *null_alloc_dev(void) 584 { 585 struct nullb_device *dev; 586 587 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 588 if (!dev) 589 return NULL; 590 INIT_RADIX_TREE(&dev->data, GFP_ATOMIC); 591 INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC); 592 if (badblocks_init(&dev->badblocks, 0)) { 593 kfree(dev); 594 return NULL; 595 } 596 597 dev->size = g_gb * 1024; 598 dev->completion_nsec = g_completion_nsec; 599 dev->submit_queues = g_submit_queues; 600 dev->home_node = g_home_node; 601 dev->queue_mode = g_queue_mode; 602 dev->blocksize = g_bs; 603 dev->max_sectors = g_max_sectors; 604 dev->irqmode = g_irqmode; 605 dev->hw_queue_depth = g_hw_queue_depth; 606 dev->blocking = g_blocking; 607 dev->use_per_node_hctx = g_use_per_node_hctx; 608 dev->zoned = g_zoned; 609 dev->zone_size = g_zone_size; 610 dev->zone_capacity = g_zone_capacity; 611 dev->zone_nr_conv = g_zone_nr_conv; 612 dev->zone_max_open = g_zone_max_open; 613 dev->zone_max_active = g_zone_max_active; 614 dev->virt_boundary = g_virt_boundary; 615 return dev; 616 } 617 618 static void null_free_dev(struct nullb_device *dev) 619 { 620 if (!dev) 621 return; 622 623 null_free_zoned_dev(dev); 624 badblocks_exit(&dev->badblocks); 625 kfree(dev); 626 } 627 628 static void put_tag(struct nullb_queue *nq, unsigned int tag) 629 { 630 clear_bit_unlock(tag, nq->tag_map); 631 632 if (waitqueue_active(&nq->wait)) 633 wake_up(&nq->wait); 634 } 635 636 static unsigned int get_tag(struct nullb_queue *nq) 637 { 638 unsigned int tag; 639 640 do { 641 tag = find_first_zero_bit(nq->tag_map, nq->queue_depth); 642 if (tag >= nq->queue_depth) 643 return -1U; 644 } while (test_and_set_bit_lock(tag, nq->tag_map)); 645 646 return tag; 647 } 648 649 static void free_cmd(struct nullb_cmd *cmd) 650 { 651 put_tag(cmd->nq, cmd->tag); 652 } 653 654 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer); 655 656 static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq) 657 { 658 struct nullb_cmd *cmd; 659 unsigned int tag; 660 661 tag = get_tag(nq); 662 if (tag != -1U) { 663 cmd = &nq->cmds[tag]; 664 cmd->tag = tag; 665 cmd->error = BLK_STS_OK; 666 cmd->nq = nq; 667 if (nq->dev->irqmode == NULL_IRQ_TIMER) { 668 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, 669 HRTIMER_MODE_REL); 670 cmd->timer.function = null_cmd_timer_expired; 671 } 672 return cmd; 673 } 674 675 return NULL; 676 } 677 678 static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait) 679 { 680 struct nullb_cmd *cmd; 681 DEFINE_WAIT(wait); 682 683 cmd = __alloc_cmd(nq); 684 if (cmd || !can_wait) 685 return cmd; 686 687 do { 688 prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE); 689 cmd = __alloc_cmd(nq); 690 if (cmd) 691 break; 692 693 io_schedule(); 694 } while (1); 695 696 finish_wait(&nq->wait, &wait); 697 return cmd; 698 } 699 700 static void end_cmd(struct nullb_cmd *cmd) 701 { 702 int queue_mode = cmd->nq->dev->queue_mode; 703 704 switch (queue_mode) { 705 case NULL_Q_MQ: 706 blk_mq_end_request(cmd->rq, cmd->error); 707 return; 708 case NULL_Q_BIO: 709 cmd->bio->bi_status = cmd->error; 710 bio_endio(cmd->bio); 711 break; 712 } 713 714 free_cmd(cmd); 715 } 716 717 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer) 718 { 719 end_cmd(container_of(timer, struct nullb_cmd, timer)); 720 721 return HRTIMER_NORESTART; 722 } 723 724 static void null_cmd_end_timer(struct nullb_cmd *cmd) 725 { 726 ktime_t kt = cmd->nq->dev->completion_nsec; 727 728 hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL); 729 } 730 731 static void null_complete_rq(struct request *rq) 732 { 733 end_cmd(blk_mq_rq_to_pdu(rq)); 734 } 735 736 static struct nullb_page *null_alloc_page(gfp_t gfp_flags) 737 { 738 struct nullb_page *t_page; 739 740 t_page = kmalloc(sizeof(struct nullb_page), gfp_flags); 741 if (!t_page) 742 goto out; 743 744 t_page->page = alloc_pages(gfp_flags, 0); 745 if (!t_page->page) 746 goto out_freepage; 747 748 memset(t_page->bitmap, 0, sizeof(t_page->bitmap)); 749 return t_page; 750 out_freepage: 751 kfree(t_page); 752 out: 753 return NULL; 754 } 755 756 static void null_free_page(struct nullb_page *t_page) 757 { 758 __set_bit(NULLB_PAGE_FREE, t_page->bitmap); 759 if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap)) 760 return; 761 __free_page(t_page->page); 762 kfree(t_page); 763 } 764 765 static bool null_page_empty(struct nullb_page *page) 766 { 767 int size = MAP_SZ - 2; 768 769 return find_first_bit(page->bitmap, size) == size; 770 } 771 772 static void null_free_sector(struct nullb *nullb, sector_t sector, 773 bool is_cache) 774 { 775 unsigned int sector_bit; 776 u64 idx; 777 struct nullb_page *t_page, *ret; 778 struct radix_tree_root *root; 779 780 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 781 idx = sector >> PAGE_SECTORS_SHIFT; 782 sector_bit = (sector & SECTOR_MASK); 783 784 t_page = radix_tree_lookup(root, idx); 785 if (t_page) { 786 __clear_bit(sector_bit, t_page->bitmap); 787 788 if (null_page_empty(t_page)) { 789 ret = radix_tree_delete_item(root, idx, t_page); 790 WARN_ON(ret != t_page); 791 null_free_page(ret); 792 if (is_cache) 793 nullb->dev->curr_cache -= PAGE_SIZE; 794 } 795 } 796 } 797 798 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx, 799 struct nullb_page *t_page, bool is_cache) 800 { 801 struct radix_tree_root *root; 802 803 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 804 805 if (radix_tree_insert(root, idx, t_page)) { 806 null_free_page(t_page); 807 t_page = radix_tree_lookup(root, idx); 808 WARN_ON(!t_page || t_page->page->index != idx); 809 } else if (is_cache) 810 nullb->dev->curr_cache += PAGE_SIZE; 811 812 return t_page; 813 } 814 815 static void null_free_device_storage(struct nullb_device *dev, bool is_cache) 816 { 817 unsigned long pos = 0; 818 int nr_pages; 819 struct nullb_page *ret, *t_pages[FREE_BATCH]; 820 struct radix_tree_root *root; 821 822 root = is_cache ? &dev->cache : &dev->data; 823 824 do { 825 int i; 826 827 nr_pages = radix_tree_gang_lookup(root, 828 (void **)t_pages, pos, FREE_BATCH); 829 830 for (i = 0; i < nr_pages; i++) { 831 pos = t_pages[i]->page->index; 832 ret = radix_tree_delete_item(root, pos, t_pages[i]); 833 WARN_ON(ret != t_pages[i]); 834 null_free_page(ret); 835 } 836 837 pos++; 838 } while (nr_pages == FREE_BATCH); 839 840 if (is_cache) 841 dev->curr_cache = 0; 842 } 843 844 static struct nullb_page *__null_lookup_page(struct nullb *nullb, 845 sector_t sector, bool for_write, bool is_cache) 846 { 847 unsigned int sector_bit; 848 u64 idx; 849 struct nullb_page *t_page; 850 struct radix_tree_root *root; 851 852 idx = sector >> PAGE_SECTORS_SHIFT; 853 sector_bit = (sector & SECTOR_MASK); 854 855 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 856 t_page = radix_tree_lookup(root, idx); 857 WARN_ON(t_page && t_page->page->index != idx); 858 859 if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap))) 860 return t_page; 861 862 return NULL; 863 } 864 865 static struct nullb_page *null_lookup_page(struct nullb *nullb, 866 sector_t sector, bool for_write, bool ignore_cache) 867 { 868 struct nullb_page *page = NULL; 869 870 if (!ignore_cache) 871 page = __null_lookup_page(nullb, sector, for_write, true); 872 if (page) 873 return page; 874 return __null_lookup_page(nullb, sector, for_write, false); 875 } 876 877 static struct nullb_page *null_insert_page(struct nullb *nullb, 878 sector_t sector, bool ignore_cache) 879 __releases(&nullb->lock) 880 __acquires(&nullb->lock) 881 { 882 u64 idx; 883 struct nullb_page *t_page; 884 885 t_page = null_lookup_page(nullb, sector, true, ignore_cache); 886 if (t_page) 887 return t_page; 888 889 spin_unlock_irq(&nullb->lock); 890 891 t_page = null_alloc_page(GFP_NOIO); 892 if (!t_page) 893 goto out_lock; 894 895 if (radix_tree_preload(GFP_NOIO)) 896 goto out_freepage; 897 898 spin_lock_irq(&nullb->lock); 899 idx = sector >> PAGE_SECTORS_SHIFT; 900 t_page->page->index = idx; 901 t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache); 902 radix_tree_preload_end(); 903 904 return t_page; 905 out_freepage: 906 null_free_page(t_page); 907 out_lock: 908 spin_lock_irq(&nullb->lock); 909 return null_lookup_page(nullb, sector, true, ignore_cache); 910 } 911 912 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page) 913 { 914 int i; 915 unsigned int offset; 916 u64 idx; 917 struct nullb_page *t_page, *ret; 918 void *dst, *src; 919 920 idx = c_page->page->index; 921 922 t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true); 923 924 __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap); 925 if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) { 926 null_free_page(c_page); 927 if (t_page && null_page_empty(t_page)) { 928 ret = radix_tree_delete_item(&nullb->dev->data, 929 idx, t_page); 930 null_free_page(t_page); 931 } 932 return 0; 933 } 934 935 if (!t_page) 936 return -ENOMEM; 937 938 src = kmap_atomic(c_page->page); 939 dst = kmap_atomic(t_page->page); 940 941 for (i = 0; i < PAGE_SECTORS; 942 i += (nullb->dev->blocksize >> SECTOR_SHIFT)) { 943 if (test_bit(i, c_page->bitmap)) { 944 offset = (i << SECTOR_SHIFT); 945 memcpy(dst + offset, src + offset, 946 nullb->dev->blocksize); 947 __set_bit(i, t_page->bitmap); 948 } 949 } 950 951 kunmap_atomic(dst); 952 kunmap_atomic(src); 953 954 ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page); 955 null_free_page(ret); 956 nullb->dev->curr_cache -= PAGE_SIZE; 957 958 return 0; 959 } 960 961 static int null_make_cache_space(struct nullb *nullb, unsigned long n) 962 { 963 int i, err, nr_pages; 964 struct nullb_page *c_pages[FREE_BATCH]; 965 unsigned long flushed = 0, one_round; 966 967 again: 968 if ((nullb->dev->cache_size * 1024 * 1024) > 969 nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0) 970 return 0; 971 972 nr_pages = radix_tree_gang_lookup(&nullb->dev->cache, 973 (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH); 974 /* 975 * nullb_flush_cache_page could unlock before using the c_pages. To 976 * avoid race, we don't allow page free 977 */ 978 for (i = 0; i < nr_pages; i++) { 979 nullb->cache_flush_pos = c_pages[i]->page->index; 980 /* 981 * We found the page which is being flushed to disk by other 982 * threads 983 */ 984 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap)) 985 c_pages[i] = NULL; 986 else 987 __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap); 988 } 989 990 one_round = 0; 991 for (i = 0; i < nr_pages; i++) { 992 if (c_pages[i] == NULL) 993 continue; 994 err = null_flush_cache_page(nullb, c_pages[i]); 995 if (err) 996 return err; 997 one_round++; 998 } 999 flushed += one_round << PAGE_SHIFT; 1000 1001 if (n > flushed) { 1002 if (nr_pages == 0) 1003 nullb->cache_flush_pos = 0; 1004 if (one_round == 0) { 1005 /* give other threads a chance */ 1006 spin_unlock_irq(&nullb->lock); 1007 spin_lock_irq(&nullb->lock); 1008 } 1009 goto again; 1010 } 1011 return 0; 1012 } 1013 1014 static int copy_to_nullb(struct nullb *nullb, struct page *source, 1015 unsigned int off, sector_t sector, size_t n, bool is_fua) 1016 { 1017 size_t temp, count = 0; 1018 unsigned int offset; 1019 struct nullb_page *t_page; 1020 void *dst, *src; 1021 1022 while (count < n) { 1023 temp = min_t(size_t, nullb->dev->blocksize, n - count); 1024 1025 if (null_cache_active(nullb) && !is_fua) 1026 null_make_cache_space(nullb, PAGE_SIZE); 1027 1028 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT; 1029 t_page = null_insert_page(nullb, sector, 1030 !null_cache_active(nullb) || is_fua); 1031 if (!t_page) 1032 return -ENOSPC; 1033 1034 src = kmap_atomic(source); 1035 dst = kmap_atomic(t_page->page); 1036 memcpy(dst + offset, src + off + count, temp); 1037 kunmap_atomic(dst); 1038 kunmap_atomic(src); 1039 1040 __set_bit(sector & SECTOR_MASK, t_page->bitmap); 1041 1042 if (is_fua) 1043 null_free_sector(nullb, sector, true); 1044 1045 count += temp; 1046 sector += temp >> SECTOR_SHIFT; 1047 } 1048 return 0; 1049 } 1050 1051 static int copy_from_nullb(struct nullb *nullb, struct page *dest, 1052 unsigned int off, sector_t sector, size_t n) 1053 { 1054 size_t temp, count = 0; 1055 unsigned int offset; 1056 struct nullb_page *t_page; 1057 void *dst, *src; 1058 1059 while (count < n) { 1060 temp = min_t(size_t, nullb->dev->blocksize, n - count); 1061 1062 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT; 1063 t_page = null_lookup_page(nullb, sector, false, 1064 !null_cache_active(nullb)); 1065 1066 dst = kmap_atomic(dest); 1067 if (!t_page) { 1068 memset(dst + off + count, 0, temp); 1069 goto next; 1070 } 1071 src = kmap_atomic(t_page->page); 1072 memcpy(dst + off + count, src + offset, temp); 1073 kunmap_atomic(src); 1074 next: 1075 kunmap_atomic(dst); 1076 1077 count += temp; 1078 sector += temp >> SECTOR_SHIFT; 1079 } 1080 return 0; 1081 } 1082 1083 static void nullb_fill_pattern(struct nullb *nullb, struct page *page, 1084 unsigned int len, unsigned int off) 1085 { 1086 void *dst; 1087 1088 dst = kmap_atomic(page); 1089 memset(dst + off, 0xFF, len); 1090 kunmap_atomic(dst); 1091 } 1092 1093 blk_status_t null_handle_discard(struct nullb_device *dev, 1094 sector_t sector, sector_t nr_sectors) 1095 { 1096 struct nullb *nullb = dev->nullb; 1097 size_t n = nr_sectors << SECTOR_SHIFT; 1098 size_t temp; 1099 1100 spin_lock_irq(&nullb->lock); 1101 while (n > 0) { 1102 temp = min_t(size_t, n, dev->blocksize); 1103 null_free_sector(nullb, sector, false); 1104 if (null_cache_active(nullb)) 1105 null_free_sector(nullb, sector, true); 1106 sector += temp >> SECTOR_SHIFT; 1107 n -= temp; 1108 } 1109 spin_unlock_irq(&nullb->lock); 1110 1111 return BLK_STS_OK; 1112 } 1113 1114 static int null_handle_flush(struct nullb *nullb) 1115 { 1116 int err; 1117 1118 if (!null_cache_active(nullb)) 1119 return 0; 1120 1121 spin_lock_irq(&nullb->lock); 1122 while (true) { 1123 err = null_make_cache_space(nullb, 1124 nullb->dev->cache_size * 1024 * 1024); 1125 if (err || nullb->dev->curr_cache == 0) 1126 break; 1127 } 1128 1129 WARN_ON(!radix_tree_empty(&nullb->dev->cache)); 1130 spin_unlock_irq(&nullb->lock); 1131 return err; 1132 } 1133 1134 static int null_transfer(struct nullb *nullb, struct page *page, 1135 unsigned int len, unsigned int off, bool is_write, sector_t sector, 1136 bool is_fua) 1137 { 1138 struct nullb_device *dev = nullb->dev; 1139 unsigned int valid_len = len; 1140 int err = 0; 1141 1142 if (!is_write) { 1143 if (dev->zoned) 1144 valid_len = null_zone_valid_read_len(nullb, 1145 sector, len); 1146 1147 if (valid_len) { 1148 err = copy_from_nullb(nullb, page, off, 1149 sector, valid_len); 1150 off += valid_len; 1151 len -= valid_len; 1152 } 1153 1154 if (len) 1155 nullb_fill_pattern(nullb, page, len, off); 1156 flush_dcache_page(page); 1157 } else { 1158 flush_dcache_page(page); 1159 err = copy_to_nullb(nullb, page, off, sector, len, is_fua); 1160 } 1161 1162 return err; 1163 } 1164 1165 static int null_handle_rq(struct nullb_cmd *cmd) 1166 { 1167 struct request *rq = cmd->rq; 1168 struct nullb *nullb = cmd->nq->dev->nullb; 1169 int err; 1170 unsigned int len; 1171 sector_t sector = blk_rq_pos(rq); 1172 struct req_iterator iter; 1173 struct bio_vec bvec; 1174 1175 spin_lock_irq(&nullb->lock); 1176 rq_for_each_segment(bvec, rq, iter) { 1177 len = bvec.bv_len; 1178 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset, 1179 op_is_write(req_op(rq)), sector, 1180 rq->cmd_flags & REQ_FUA); 1181 if (err) { 1182 spin_unlock_irq(&nullb->lock); 1183 return err; 1184 } 1185 sector += len >> SECTOR_SHIFT; 1186 } 1187 spin_unlock_irq(&nullb->lock); 1188 1189 return 0; 1190 } 1191 1192 static int null_handle_bio(struct nullb_cmd *cmd) 1193 { 1194 struct bio *bio = cmd->bio; 1195 struct nullb *nullb = cmd->nq->dev->nullb; 1196 int err; 1197 unsigned int len; 1198 sector_t sector = bio->bi_iter.bi_sector; 1199 struct bio_vec bvec; 1200 struct bvec_iter iter; 1201 1202 spin_lock_irq(&nullb->lock); 1203 bio_for_each_segment(bvec, bio, iter) { 1204 len = bvec.bv_len; 1205 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset, 1206 op_is_write(bio_op(bio)), sector, 1207 bio->bi_opf & REQ_FUA); 1208 if (err) { 1209 spin_unlock_irq(&nullb->lock); 1210 return err; 1211 } 1212 sector += len >> SECTOR_SHIFT; 1213 } 1214 spin_unlock_irq(&nullb->lock); 1215 return 0; 1216 } 1217 1218 static void null_stop_queue(struct nullb *nullb) 1219 { 1220 struct request_queue *q = nullb->q; 1221 1222 if (nullb->dev->queue_mode == NULL_Q_MQ) 1223 blk_mq_stop_hw_queues(q); 1224 } 1225 1226 static void null_restart_queue_async(struct nullb *nullb) 1227 { 1228 struct request_queue *q = nullb->q; 1229 1230 if (nullb->dev->queue_mode == NULL_Q_MQ) 1231 blk_mq_start_stopped_hw_queues(q, true); 1232 } 1233 1234 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd) 1235 { 1236 struct nullb_device *dev = cmd->nq->dev; 1237 struct nullb *nullb = dev->nullb; 1238 blk_status_t sts = BLK_STS_OK; 1239 struct request *rq = cmd->rq; 1240 1241 if (!hrtimer_active(&nullb->bw_timer)) 1242 hrtimer_restart(&nullb->bw_timer); 1243 1244 if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) { 1245 null_stop_queue(nullb); 1246 /* race with timer */ 1247 if (atomic_long_read(&nullb->cur_bytes) > 0) 1248 null_restart_queue_async(nullb); 1249 /* requeue request */ 1250 sts = BLK_STS_DEV_RESOURCE; 1251 } 1252 return sts; 1253 } 1254 1255 static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd, 1256 sector_t sector, 1257 sector_t nr_sectors) 1258 { 1259 struct badblocks *bb = &cmd->nq->dev->badblocks; 1260 sector_t first_bad; 1261 int bad_sectors; 1262 1263 if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors)) 1264 return BLK_STS_IOERR; 1265 1266 return BLK_STS_OK; 1267 } 1268 1269 static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd, 1270 enum req_opf op, 1271 sector_t sector, 1272 sector_t nr_sectors) 1273 { 1274 struct nullb_device *dev = cmd->nq->dev; 1275 int err; 1276 1277 if (op == REQ_OP_DISCARD) 1278 return null_handle_discard(dev, sector, nr_sectors); 1279 1280 if (dev->queue_mode == NULL_Q_BIO) 1281 err = null_handle_bio(cmd); 1282 else 1283 err = null_handle_rq(cmd); 1284 1285 return errno_to_blk_status(err); 1286 } 1287 1288 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd) 1289 { 1290 struct nullb_device *dev = cmd->nq->dev; 1291 struct bio *bio; 1292 1293 if (dev->memory_backed) 1294 return; 1295 1296 if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) == REQ_OP_READ) { 1297 zero_fill_bio(cmd->bio); 1298 } else if (req_op(cmd->rq) == REQ_OP_READ) { 1299 __rq_for_each_bio(bio, cmd->rq) 1300 zero_fill_bio(bio); 1301 } 1302 } 1303 1304 static inline void nullb_complete_cmd(struct nullb_cmd *cmd) 1305 { 1306 /* 1307 * Since root privileges are required to configure the null_blk 1308 * driver, it is fine that this driver does not initialize the 1309 * data buffers of read commands. Zero-initialize these buffers 1310 * anyway if KMSAN is enabled to prevent that KMSAN complains 1311 * about null_blk not initializing read data buffers. 1312 */ 1313 if (IS_ENABLED(CONFIG_KMSAN)) 1314 nullb_zero_read_cmd_buffer(cmd); 1315 1316 /* Complete IO by inline, softirq or timer */ 1317 switch (cmd->nq->dev->irqmode) { 1318 case NULL_IRQ_SOFTIRQ: 1319 switch (cmd->nq->dev->queue_mode) { 1320 case NULL_Q_MQ: 1321 if (likely(!blk_should_fake_timeout(cmd->rq->q))) 1322 blk_mq_complete_request(cmd->rq); 1323 break; 1324 case NULL_Q_BIO: 1325 /* 1326 * XXX: no proper submitting cpu information available. 1327 */ 1328 end_cmd(cmd); 1329 break; 1330 } 1331 break; 1332 case NULL_IRQ_NONE: 1333 end_cmd(cmd); 1334 break; 1335 case NULL_IRQ_TIMER: 1336 null_cmd_end_timer(cmd); 1337 break; 1338 } 1339 } 1340 1341 blk_status_t null_process_cmd(struct nullb_cmd *cmd, 1342 enum req_opf op, sector_t sector, 1343 unsigned int nr_sectors) 1344 { 1345 struct nullb_device *dev = cmd->nq->dev; 1346 blk_status_t ret; 1347 1348 if (dev->badblocks.shift != -1) { 1349 ret = null_handle_badblocks(cmd, sector, nr_sectors); 1350 if (ret != BLK_STS_OK) 1351 return ret; 1352 } 1353 1354 if (dev->memory_backed) 1355 return null_handle_memory_backed(cmd, op, sector, nr_sectors); 1356 1357 return BLK_STS_OK; 1358 } 1359 1360 static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector, 1361 sector_t nr_sectors, enum req_opf op) 1362 { 1363 struct nullb_device *dev = cmd->nq->dev; 1364 struct nullb *nullb = dev->nullb; 1365 blk_status_t sts; 1366 1367 if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) { 1368 sts = null_handle_throttled(cmd); 1369 if (sts != BLK_STS_OK) 1370 return sts; 1371 } 1372 1373 if (op == REQ_OP_FLUSH) { 1374 cmd->error = errno_to_blk_status(null_handle_flush(nullb)); 1375 goto out; 1376 } 1377 1378 if (dev->zoned) 1379 sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors); 1380 else 1381 sts = null_process_cmd(cmd, op, sector, nr_sectors); 1382 1383 /* Do not overwrite errors (e.g. timeout errors) */ 1384 if (cmd->error == BLK_STS_OK) 1385 cmd->error = sts; 1386 1387 out: 1388 nullb_complete_cmd(cmd); 1389 return BLK_STS_OK; 1390 } 1391 1392 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer) 1393 { 1394 struct nullb *nullb = container_of(timer, struct nullb, bw_timer); 1395 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL); 1396 unsigned int mbps = nullb->dev->mbps; 1397 1398 if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps)) 1399 return HRTIMER_NORESTART; 1400 1401 atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps)); 1402 null_restart_queue_async(nullb); 1403 1404 hrtimer_forward_now(&nullb->bw_timer, timer_interval); 1405 1406 return HRTIMER_RESTART; 1407 } 1408 1409 static void nullb_setup_bwtimer(struct nullb *nullb) 1410 { 1411 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL); 1412 1413 hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1414 nullb->bw_timer.function = nullb_bwtimer_fn; 1415 atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps)); 1416 hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL); 1417 } 1418 1419 static struct nullb_queue *nullb_to_queue(struct nullb *nullb) 1420 { 1421 int index = 0; 1422 1423 if (nullb->nr_queues != 1) 1424 index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues); 1425 1426 return &nullb->queues[index]; 1427 } 1428 1429 static blk_qc_t null_submit_bio(struct bio *bio) 1430 { 1431 sector_t sector = bio->bi_iter.bi_sector; 1432 sector_t nr_sectors = bio_sectors(bio); 1433 struct nullb *nullb = bio->bi_bdev->bd_disk->private_data; 1434 struct nullb_queue *nq = nullb_to_queue(nullb); 1435 struct nullb_cmd *cmd; 1436 1437 cmd = alloc_cmd(nq, 1); 1438 cmd->bio = bio; 1439 1440 null_handle_cmd(cmd, sector, nr_sectors, bio_op(bio)); 1441 return BLK_QC_T_NONE; 1442 } 1443 1444 static bool should_timeout_request(struct request *rq) 1445 { 1446 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1447 if (g_timeout_str[0]) 1448 return should_fail(&null_timeout_attr, 1); 1449 #endif 1450 return false; 1451 } 1452 1453 static bool should_requeue_request(struct request *rq) 1454 { 1455 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1456 if (g_requeue_str[0]) 1457 return should_fail(&null_requeue_attr, 1); 1458 #endif 1459 return false; 1460 } 1461 1462 static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res) 1463 { 1464 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1465 1466 pr_info("rq %p timed out\n", rq); 1467 1468 /* 1469 * If the device is marked as blocking (i.e. memory backed or zoned 1470 * device), the submission path may be blocked waiting for resources 1471 * and cause real timeouts. For these real timeouts, the submission 1472 * path will complete the request using blk_mq_complete_request(). 1473 * Only fake timeouts need to execute blk_mq_complete_request() here. 1474 */ 1475 cmd->error = BLK_STS_TIMEOUT; 1476 if (cmd->fake_timeout) 1477 blk_mq_complete_request(rq); 1478 return BLK_EH_DONE; 1479 } 1480 1481 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx, 1482 const struct blk_mq_queue_data *bd) 1483 { 1484 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq); 1485 struct nullb_queue *nq = hctx->driver_data; 1486 sector_t nr_sectors = blk_rq_sectors(bd->rq); 1487 sector_t sector = blk_rq_pos(bd->rq); 1488 1489 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1490 1491 if (nq->dev->irqmode == NULL_IRQ_TIMER) { 1492 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1493 cmd->timer.function = null_cmd_timer_expired; 1494 } 1495 cmd->rq = bd->rq; 1496 cmd->error = BLK_STS_OK; 1497 cmd->nq = nq; 1498 cmd->fake_timeout = should_timeout_request(bd->rq); 1499 1500 blk_mq_start_request(bd->rq); 1501 1502 if (should_requeue_request(bd->rq)) { 1503 /* 1504 * Alternate between hitting the core BUSY path, and the 1505 * driver driven requeue path 1506 */ 1507 nq->requeue_selection++; 1508 if (nq->requeue_selection & 1) 1509 return BLK_STS_RESOURCE; 1510 else { 1511 blk_mq_requeue_request(bd->rq, true); 1512 return BLK_STS_OK; 1513 } 1514 } 1515 if (cmd->fake_timeout) 1516 return BLK_STS_OK; 1517 1518 return null_handle_cmd(cmd, sector, nr_sectors, req_op(bd->rq)); 1519 } 1520 1521 static void cleanup_queue(struct nullb_queue *nq) 1522 { 1523 kfree(nq->tag_map); 1524 kfree(nq->cmds); 1525 } 1526 1527 static void cleanup_queues(struct nullb *nullb) 1528 { 1529 int i; 1530 1531 for (i = 0; i < nullb->nr_queues; i++) 1532 cleanup_queue(&nullb->queues[i]); 1533 1534 kfree(nullb->queues); 1535 } 1536 1537 static void null_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1538 { 1539 struct nullb_queue *nq = hctx->driver_data; 1540 struct nullb *nullb = nq->dev->nullb; 1541 1542 nullb->nr_queues--; 1543 } 1544 1545 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq) 1546 { 1547 init_waitqueue_head(&nq->wait); 1548 nq->queue_depth = nullb->queue_depth; 1549 nq->dev = nullb->dev; 1550 } 1551 1552 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data, 1553 unsigned int hctx_idx) 1554 { 1555 struct nullb *nullb = hctx->queue->queuedata; 1556 struct nullb_queue *nq; 1557 1558 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1559 if (g_init_hctx_str[0] && should_fail(&null_init_hctx_attr, 1)) 1560 return -EFAULT; 1561 #endif 1562 1563 nq = &nullb->queues[hctx_idx]; 1564 hctx->driver_data = nq; 1565 null_init_queue(nullb, nq); 1566 nullb->nr_queues++; 1567 1568 return 0; 1569 } 1570 1571 static const struct blk_mq_ops null_mq_ops = { 1572 .queue_rq = null_queue_rq, 1573 .complete = null_complete_rq, 1574 .timeout = null_timeout_rq, 1575 .init_hctx = null_init_hctx, 1576 .exit_hctx = null_exit_hctx, 1577 }; 1578 1579 static void null_del_dev(struct nullb *nullb) 1580 { 1581 struct nullb_device *dev; 1582 1583 if (!nullb) 1584 return; 1585 1586 dev = nullb->dev; 1587 1588 ida_simple_remove(&nullb_indexes, nullb->index); 1589 1590 list_del_init(&nullb->list); 1591 1592 del_gendisk(nullb->disk); 1593 1594 if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) { 1595 hrtimer_cancel(&nullb->bw_timer); 1596 atomic_long_set(&nullb->cur_bytes, LONG_MAX); 1597 null_restart_queue_async(nullb); 1598 } 1599 1600 blk_cleanup_disk(nullb->disk); 1601 if (dev->queue_mode == NULL_Q_MQ && 1602 nullb->tag_set == &nullb->__tag_set) 1603 blk_mq_free_tag_set(nullb->tag_set); 1604 cleanup_queues(nullb); 1605 if (null_cache_active(nullb)) 1606 null_free_device_storage(nullb->dev, true); 1607 kfree(nullb); 1608 dev->nullb = NULL; 1609 } 1610 1611 static void null_config_discard(struct nullb *nullb) 1612 { 1613 if (nullb->dev->discard == false) 1614 return; 1615 1616 if (!nullb->dev->memory_backed) { 1617 nullb->dev->discard = false; 1618 pr_info("discard option is ignored without memory backing\n"); 1619 return; 1620 } 1621 1622 if (nullb->dev->zoned) { 1623 nullb->dev->discard = false; 1624 pr_info("discard option is ignored in zoned mode\n"); 1625 return; 1626 } 1627 1628 nullb->q->limits.discard_granularity = nullb->dev->blocksize; 1629 nullb->q->limits.discard_alignment = nullb->dev->blocksize; 1630 blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9); 1631 blk_queue_flag_set(QUEUE_FLAG_DISCARD, nullb->q); 1632 } 1633 1634 static const struct block_device_operations null_bio_ops = { 1635 .owner = THIS_MODULE, 1636 .submit_bio = null_submit_bio, 1637 .report_zones = null_report_zones, 1638 }; 1639 1640 static const struct block_device_operations null_rq_ops = { 1641 .owner = THIS_MODULE, 1642 .report_zones = null_report_zones, 1643 }; 1644 1645 static int setup_commands(struct nullb_queue *nq) 1646 { 1647 struct nullb_cmd *cmd; 1648 int i, tag_size; 1649 1650 nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL); 1651 if (!nq->cmds) 1652 return -ENOMEM; 1653 1654 tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG; 1655 nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL); 1656 if (!nq->tag_map) { 1657 kfree(nq->cmds); 1658 return -ENOMEM; 1659 } 1660 1661 for (i = 0; i < nq->queue_depth; i++) { 1662 cmd = &nq->cmds[i]; 1663 cmd->tag = -1U; 1664 } 1665 1666 return 0; 1667 } 1668 1669 static int setup_queues(struct nullb *nullb) 1670 { 1671 nullb->queues = kcalloc(nr_cpu_ids, sizeof(struct nullb_queue), 1672 GFP_KERNEL); 1673 if (!nullb->queues) 1674 return -ENOMEM; 1675 1676 nullb->queue_depth = nullb->dev->hw_queue_depth; 1677 1678 return 0; 1679 } 1680 1681 static int init_driver_queues(struct nullb *nullb) 1682 { 1683 struct nullb_queue *nq; 1684 int i, ret = 0; 1685 1686 for (i = 0; i < nullb->dev->submit_queues; i++) { 1687 nq = &nullb->queues[i]; 1688 1689 null_init_queue(nullb, nq); 1690 1691 ret = setup_commands(nq); 1692 if (ret) 1693 return ret; 1694 nullb->nr_queues++; 1695 } 1696 return 0; 1697 } 1698 1699 static int null_gendisk_register(struct nullb *nullb) 1700 { 1701 sector_t size = ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT; 1702 struct gendisk *disk = nullb->disk; 1703 1704 set_capacity(disk, size); 1705 1706 disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO; 1707 disk->major = null_major; 1708 disk->first_minor = nullb->index; 1709 disk->minors = 1; 1710 if (queue_is_mq(nullb->q)) 1711 disk->fops = &null_rq_ops; 1712 else 1713 disk->fops = &null_bio_ops; 1714 disk->private_data = nullb; 1715 strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN); 1716 1717 if (nullb->dev->zoned) { 1718 int ret = null_register_zoned_dev(nullb); 1719 1720 if (ret) 1721 return ret; 1722 } 1723 1724 add_disk(disk); 1725 return 0; 1726 } 1727 1728 static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set) 1729 { 1730 set->ops = &null_mq_ops; 1731 set->nr_hw_queues = nullb ? nullb->dev->submit_queues : 1732 g_submit_queues; 1733 set->queue_depth = nullb ? nullb->dev->hw_queue_depth : 1734 g_hw_queue_depth; 1735 set->numa_node = nullb ? nullb->dev->home_node : g_home_node; 1736 set->cmd_size = sizeof(struct nullb_cmd); 1737 set->flags = BLK_MQ_F_SHOULD_MERGE; 1738 if (g_no_sched) 1739 set->flags |= BLK_MQ_F_NO_SCHED; 1740 if (g_shared_tag_bitmap) 1741 set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1742 set->driver_data = NULL; 1743 1744 if ((nullb && nullb->dev->blocking) || g_blocking) 1745 set->flags |= BLK_MQ_F_BLOCKING; 1746 1747 return blk_mq_alloc_tag_set(set); 1748 } 1749 1750 static int null_validate_conf(struct nullb_device *dev) 1751 { 1752 dev->blocksize = round_down(dev->blocksize, 512); 1753 dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096); 1754 1755 if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) { 1756 if (dev->submit_queues != nr_online_nodes) 1757 dev->submit_queues = nr_online_nodes; 1758 } else if (dev->submit_queues > nr_cpu_ids) 1759 dev->submit_queues = nr_cpu_ids; 1760 else if (dev->submit_queues == 0) 1761 dev->submit_queues = 1; 1762 1763 dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ); 1764 dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER); 1765 1766 /* Do memory allocation, so set blocking */ 1767 if (dev->memory_backed) 1768 dev->blocking = true; 1769 else /* cache is meaningless */ 1770 dev->cache_size = 0; 1771 dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024, 1772 dev->cache_size); 1773 dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps); 1774 /* can not stop a queue */ 1775 if (dev->queue_mode == NULL_Q_BIO) 1776 dev->mbps = 0; 1777 1778 if (dev->zoned && 1779 (!dev->zone_size || !is_power_of_2(dev->zone_size))) { 1780 pr_err("zone_size must be power-of-two\n"); 1781 return -EINVAL; 1782 } 1783 1784 return 0; 1785 } 1786 1787 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1788 static bool __null_setup_fault(struct fault_attr *attr, char *str) 1789 { 1790 if (!str[0]) 1791 return true; 1792 1793 if (!setup_fault_attr(attr, str)) 1794 return false; 1795 1796 attr->verbose = 0; 1797 return true; 1798 } 1799 #endif 1800 1801 static bool null_setup_fault(void) 1802 { 1803 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1804 if (!__null_setup_fault(&null_timeout_attr, g_timeout_str)) 1805 return false; 1806 if (!__null_setup_fault(&null_requeue_attr, g_requeue_str)) 1807 return false; 1808 if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str)) 1809 return false; 1810 #endif 1811 return true; 1812 } 1813 1814 static int null_add_dev(struct nullb_device *dev) 1815 { 1816 struct nullb *nullb; 1817 int rv; 1818 1819 rv = null_validate_conf(dev); 1820 if (rv) 1821 return rv; 1822 1823 nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node); 1824 if (!nullb) { 1825 rv = -ENOMEM; 1826 goto out; 1827 } 1828 nullb->dev = dev; 1829 dev->nullb = nullb; 1830 1831 spin_lock_init(&nullb->lock); 1832 1833 rv = setup_queues(nullb); 1834 if (rv) 1835 goto out_free_nullb; 1836 1837 if (dev->queue_mode == NULL_Q_MQ) { 1838 if (shared_tags) { 1839 nullb->tag_set = &tag_set; 1840 rv = 0; 1841 } else { 1842 nullb->tag_set = &nullb->__tag_set; 1843 rv = null_init_tag_set(nullb, nullb->tag_set); 1844 } 1845 1846 if (rv) 1847 goto out_cleanup_queues; 1848 1849 if (!null_setup_fault()) 1850 goto out_cleanup_tags; 1851 1852 nullb->tag_set->timeout = 5 * HZ; 1853 nullb->disk = blk_mq_alloc_disk(nullb->tag_set, nullb); 1854 if (IS_ERR(nullb->disk)) { 1855 rv = PTR_ERR(nullb->disk); 1856 goto out_cleanup_tags; 1857 } 1858 nullb->q = nullb->disk->queue; 1859 } else if (dev->queue_mode == NULL_Q_BIO) { 1860 rv = -ENOMEM; 1861 nullb->disk = blk_alloc_disk(nullb->dev->home_node); 1862 if (!nullb->disk) 1863 goto out_cleanup_queues; 1864 1865 nullb->q = nullb->disk->queue; 1866 rv = init_driver_queues(nullb); 1867 if (rv) 1868 goto out_cleanup_disk; 1869 } 1870 1871 if (dev->mbps) { 1872 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags); 1873 nullb_setup_bwtimer(nullb); 1874 } 1875 1876 if (dev->cache_size > 0) { 1877 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags); 1878 blk_queue_write_cache(nullb->q, true, true); 1879 } 1880 1881 if (dev->zoned) { 1882 rv = null_init_zoned_dev(dev, nullb->q); 1883 if (rv) 1884 goto out_cleanup_disk; 1885 } 1886 1887 nullb->q->queuedata = nullb; 1888 blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q); 1889 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q); 1890 1891 mutex_lock(&lock); 1892 nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL); 1893 dev->index = nullb->index; 1894 mutex_unlock(&lock); 1895 1896 blk_queue_logical_block_size(nullb->q, dev->blocksize); 1897 blk_queue_physical_block_size(nullb->q, dev->blocksize); 1898 if (!dev->max_sectors) 1899 dev->max_sectors = queue_max_hw_sectors(nullb->q); 1900 dev->max_sectors = min_t(unsigned int, dev->max_sectors, 1901 BLK_DEF_MAX_SECTORS); 1902 blk_queue_max_hw_sectors(nullb->q, dev->max_sectors); 1903 1904 if (dev->virt_boundary) 1905 blk_queue_virt_boundary(nullb->q, PAGE_SIZE - 1); 1906 1907 null_config_discard(nullb); 1908 1909 sprintf(nullb->disk_name, "nullb%d", nullb->index); 1910 1911 rv = null_gendisk_register(nullb); 1912 if (rv) 1913 goto out_cleanup_zone; 1914 1915 mutex_lock(&lock); 1916 list_add_tail(&nullb->list, &nullb_list); 1917 mutex_unlock(&lock); 1918 1919 return 0; 1920 out_cleanup_zone: 1921 null_free_zoned_dev(dev); 1922 out_cleanup_disk: 1923 blk_cleanup_disk(nullb->disk); 1924 out_cleanup_tags: 1925 if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set) 1926 blk_mq_free_tag_set(nullb->tag_set); 1927 out_cleanup_queues: 1928 cleanup_queues(nullb); 1929 out_free_nullb: 1930 kfree(nullb); 1931 dev->nullb = NULL; 1932 out: 1933 return rv; 1934 } 1935 1936 static int __init null_init(void) 1937 { 1938 int ret = 0; 1939 unsigned int i; 1940 struct nullb *nullb; 1941 struct nullb_device *dev; 1942 1943 if (g_bs > PAGE_SIZE) { 1944 pr_warn("invalid block size\n"); 1945 pr_warn("defaults block size to %lu\n", PAGE_SIZE); 1946 g_bs = PAGE_SIZE; 1947 } 1948 1949 if (g_max_sectors > BLK_DEF_MAX_SECTORS) { 1950 pr_warn("invalid max sectors\n"); 1951 pr_warn("defaults max sectors to %u\n", BLK_DEF_MAX_SECTORS); 1952 g_max_sectors = BLK_DEF_MAX_SECTORS; 1953 } 1954 1955 if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) { 1956 pr_err("invalid home_node value\n"); 1957 g_home_node = NUMA_NO_NODE; 1958 } 1959 1960 if (g_queue_mode == NULL_Q_RQ) { 1961 pr_err("legacy IO path no longer available\n"); 1962 return -EINVAL; 1963 } 1964 if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) { 1965 if (g_submit_queues != nr_online_nodes) { 1966 pr_warn("submit_queues param is set to %u.\n", 1967 nr_online_nodes); 1968 g_submit_queues = nr_online_nodes; 1969 } 1970 } else if (g_submit_queues > nr_cpu_ids) 1971 g_submit_queues = nr_cpu_ids; 1972 else if (g_submit_queues <= 0) 1973 g_submit_queues = 1; 1974 1975 if (g_queue_mode == NULL_Q_MQ && shared_tags) { 1976 ret = null_init_tag_set(NULL, &tag_set); 1977 if (ret) 1978 return ret; 1979 } 1980 1981 config_group_init(&nullb_subsys.su_group); 1982 mutex_init(&nullb_subsys.su_mutex); 1983 1984 ret = configfs_register_subsystem(&nullb_subsys); 1985 if (ret) 1986 goto err_tagset; 1987 1988 mutex_init(&lock); 1989 1990 null_major = register_blkdev(0, "nullb"); 1991 if (null_major < 0) { 1992 ret = null_major; 1993 goto err_conf; 1994 } 1995 1996 for (i = 0; i < nr_devices; i++) { 1997 dev = null_alloc_dev(); 1998 if (!dev) { 1999 ret = -ENOMEM; 2000 goto err_dev; 2001 } 2002 ret = null_add_dev(dev); 2003 if (ret) { 2004 null_free_dev(dev); 2005 goto err_dev; 2006 } 2007 } 2008 2009 pr_info("module loaded\n"); 2010 return 0; 2011 2012 err_dev: 2013 while (!list_empty(&nullb_list)) { 2014 nullb = list_entry(nullb_list.next, struct nullb, list); 2015 dev = nullb->dev; 2016 null_del_dev(nullb); 2017 null_free_dev(dev); 2018 } 2019 unregister_blkdev(null_major, "nullb"); 2020 err_conf: 2021 configfs_unregister_subsystem(&nullb_subsys); 2022 err_tagset: 2023 if (g_queue_mode == NULL_Q_MQ && shared_tags) 2024 blk_mq_free_tag_set(&tag_set); 2025 return ret; 2026 } 2027 2028 static void __exit null_exit(void) 2029 { 2030 struct nullb *nullb; 2031 2032 configfs_unregister_subsystem(&nullb_subsys); 2033 2034 unregister_blkdev(null_major, "nullb"); 2035 2036 mutex_lock(&lock); 2037 while (!list_empty(&nullb_list)) { 2038 struct nullb_device *dev; 2039 2040 nullb = list_entry(nullb_list.next, struct nullb, list); 2041 dev = nullb->dev; 2042 null_del_dev(nullb); 2043 null_free_dev(dev); 2044 } 2045 mutex_unlock(&lock); 2046 2047 if (g_queue_mode == NULL_Q_MQ && shared_tags) 2048 blk_mq_free_tag_set(&tag_set); 2049 } 2050 2051 module_init(null_init); 2052 module_exit(null_exit); 2053 2054 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>"); 2055 MODULE_LICENSE("GPL"); 2056