xref: /openbmc/linux/drivers/block/null_blk/main.c (revision 5e87622c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4  * Shaohua Li <shli@fb.com>
5  */
6 #include <linux/module.h>
7 
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13 
14 #define FREE_BATCH		16
15 
16 #define TICKS_PER_SEC		50ULL
17 #define TIMER_INTERVAL		(NSEC_PER_SEC / TICKS_PER_SEC)
18 
19 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
20 static DECLARE_FAULT_ATTR(null_timeout_attr);
21 static DECLARE_FAULT_ATTR(null_requeue_attr);
22 static DECLARE_FAULT_ATTR(null_init_hctx_attr);
23 #endif
24 
25 static inline u64 mb_per_tick(int mbps)
26 {
27 	return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
28 }
29 
30 /*
31  * Status flags for nullb_device.
32  *
33  * CONFIGURED:	Device has been configured and turned on. Cannot reconfigure.
34  * UP:		Device is currently on and visible in userspace.
35  * THROTTLED:	Device is being throttled.
36  * CACHE:	Device is using a write-back cache.
37  */
38 enum nullb_device_flags {
39 	NULLB_DEV_FL_CONFIGURED	= 0,
40 	NULLB_DEV_FL_UP		= 1,
41 	NULLB_DEV_FL_THROTTLED	= 2,
42 	NULLB_DEV_FL_CACHE	= 3,
43 };
44 
45 #define MAP_SZ		((PAGE_SIZE >> SECTOR_SHIFT) + 2)
46 /*
47  * nullb_page is a page in memory for nullb devices.
48  *
49  * @page:	The page holding the data.
50  * @bitmap:	The bitmap represents which sector in the page has data.
51  *		Each bit represents one block size. For example, sector 8
52  *		will use the 7th bit
53  * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
54  * page is being flushing to storage. FREE means the cache page is freed and
55  * should be skipped from flushing to storage. Please see
56  * null_make_cache_space
57  */
58 struct nullb_page {
59 	struct page *page;
60 	DECLARE_BITMAP(bitmap, MAP_SZ);
61 };
62 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
63 #define NULLB_PAGE_FREE (MAP_SZ - 2)
64 
65 static LIST_HEAD(nullb_list);
66 static struct mutex lock;
67 static int null_major;
68 static DEFINE_IDA(nullb_indexes);
69 static struct blk_mq_tag_set tag_set;
70 
71 enum {
72 	NULL_IRQ_NONE		= 0,
73 	NULL_IRQ_SOFTIRQ	= 1,
74 	NULL_IRQ_TIMER		= 2,
75 };
76 
77 enum {
78 	NULL_Q_BIO		= 0,
79 	NULL_Q_RQ		= 1,
80 	NULL_Q_MQ		= 2,
81 };
82 
83 static bool g_virt_boundary = false;
84 module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
85 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
86 
87 static int g_no_sched;
88 module_param_named(no_sched, g_no_sched, int, 0444);
89 MODULE_PARM_DESC(no_sched, "No io scheduler");
90 
91 static int g_submit_queues = 1;
92 module_param_named(submit_queues, g_submit_queues, int, 0444);
93 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
94 
95 static int g_home_node = NUMA_NO_NODE;
96 module_param_named(home_node, g_home_node, int, 0444);
97 MODULE_PARM_DESC(home_node, "Home node for the device");
98 
99 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
100 /*
101  * For more details about fault injection, please refer to
102  * Documentation/fault-injection/fault-injection.rst.
103  */
104 static char g_timeout_str[80];
105 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
106 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
107 
108 static char g_requeue_str[80];
109 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
110 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
111 
112 static char g_init_hctx_str[80];
113 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
114 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
115 #endif
116 
117 static int g_queue_mode = NULL_Q_MQ;
118 
119 static int null_param_store_val(const char *str, int *val, int min, int max)
120 {
121 	int ret, new_val;
122 
123 	ret = kstrtoint(str, 10, &new_val);
124 	if (ret)
125 		return -EINVAL;
126 
127 	if (new_val < min || new_val > max)
128 		return -EINVAL;
129 
130 	*val = new_val;
131 	return 0;
132 }
133 
134 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
135 {
136 	return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
137 }
138 
139 static const struct kernel_param_ops null_queue_mode_param_ops = {
140 	.set	= null_set_queue_mode,
141 	.get	= param_get_int,
142 };
143 
144 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
145 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
146 
147 static int g_gb = 250;
148 module_param_named(gb, g_gb, int, 0444);
149 MODULE_PARM_DESC(gb, "Size in GB");
150 
151 static int g_bs = 512;
152 module_param_named(bs, g_bs, int, 0444);
153 MODULE_PARM_DESC(bs, "Block size (in bytes)");
154 
155 static int g_max_sectors;
156 module_param_named(max_sectors, g_max_sectors, int, 0444);
157 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
158 
159 static unsigned int nr_devices = 1;
160 module_param(nr_devices, uint, 0444);
161 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
162 
163 static bool g_blocking;
164 module_param_named(blocking, g_blocking, bool, 0444);
165 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
166 
167 static bool shared_tags;
168 module_param(shared_tags, bool, 0444);
169 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
170 
171 static bool g_shared_tag_bitmap;
172 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
173 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
174 
175 static int g_irqmode = NULL_IRQ_SOFTIRQ;
176 
177 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
178 {
179 	return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
180 					NULL_IRQ_TIMER);
181 }
182 
183 static const struct kernel_param_ops null_irqmode_param_ops = {
184 	.set	= null_set_irqmode,
185 	.get	= param_get_int,
186 };
187 
188 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
189 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
190 
191 static unsigned long g_completion_nsec = 10000;
192 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
193 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
194 
195 static int g_hw_queue_depth = 64;
196 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
197 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
198 
199 static bool g_use_per_node_hctx;
200 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
201 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
202 
203 static bool g_zoned;
204 module_param_named(zoned, g_zoned, bool, S_IRUGO);
205 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
206 
207 static unsigned long g_zone_size = 256;
208 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
209 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
210 
211 static unsigned long g_zone_capacity;
212 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
213 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
214 
215 static unsigned int g_zone_nr_conv;
216 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
217 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
218 
219 static unsigned int g_zone_max_open;
220 module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
221 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
222 
223 static unsigned int g_zone_max_active;
224 module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
225 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
226 
227 static struct nullb_device *null_alloc_dev(void);
228 static void null_free_dev(struct nullb_device *dev);
229 static void null_del_dev(struct nullb *nullb);
230 static int null_add_dev(struct nullb_device *dev);
231 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
232 
233 static inline struct nullb_device *to_nullb_device(struct config_item *item)
234 {
235 	return item ? container_of(item, struct nullb_device, item) : NULL;
236 }
237 
238 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
239 {
240 	return snprintf(page, PAGE_SIZE, "%u\n", val);
241 }
242 
243 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
244 	char *page)
245 {
246 	return snprintf(page, PAGE_SIZE, "%lu\n", val);
247 }
248 
249 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
250 {
251 	return snprintf(page, PAGE_SIZE, "%u\n", val);
252 }
253 
254 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
255 	const char *page, size_t count)
256 {
257 	unsigned int tmp;
258 	int result;
259 
260 	result = kstrtouint(page, 0, &tmp);
261 	if (result < 0)
262 		return result;
263 
264 	*val = tmp;
265 	return count;
266 }
267 
268 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
269 	const char *page, size_t count)
270 {
271 	int result;
272 	unsigned long tmp;
273 
274 	result = kstrtoul(page, 0, &tmp);
275 	if (result < 0)
276 		return result;
277 
278 	*val = tmp;
279 	return count;
280 }
281 
282 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
283 	size_t count)
284 {
285 	bool tmp;
286 	int result;
287 
288 	result = kstrtobool(page,  &tmp);
289 	if (result < 0)
290 		return result;
291 
292 	*val = tmp;
293 	return count;
294 }
295 
296 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
297 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY)				\
298 static ssize_t								\
299 nullb_device_##NAME##_show(struct config_item *item, char *page)	\
300 {									\
301 	return nullb_device_##TYPE##_attr_show(				\
302 				to_nullb_device(item)->NAME, page);	\
303 }									\
304 static ssize_t								\
305 nullb_device_##NAME##_store(struct config_item *item, const char *page,	\
306 			    size_t count)				\
307 {									\
308 	int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
309 	struct nullb_device *dev = to_nullb_device(item);		\
310 	TYPE new_value = 0;						\
311 	int ret;							\
312 									\
313 	ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
314 	if (ret < 0)							\
315 		return ret;						\
316 	if (apply_fn)							\
317 		ret = apply_fn(dev, new_value);				\
318 	else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) 	\
319 		ret = -EBUSY;						\
320 	if (ret < 0)							\
321 		return ret;						\
322 	dev->NAME = new_value;						\
323 	return count;							\
324 }									\
325 CONFIGFS_ATTR(nullb_device_, NAME);
326 
327 static int nullb_apply_submit_queues(struct nullb_device *dev,
328 				     unsigned int submit_queues)
329 {
330 	struct nullb *nullb = dev->nullb;
331 	struct blk_mq_tag_set *set;
332 
333 	if (!nullb)
334 		return 0;
335 
336 	/*
337 	 * Make sure that null_init_hctx() does not access nullb->queues[] past
338 	 * the end of that array.
339 	 */
340 	if (submit_queues > nr_cpu_ids)
341 		return -EINVAL;
342 	set = nullb->tag_set;
343 	blk_mq_update_nr_hw_queues(set, submit_queues);
344 	return set->nr_hw_queues == submit_queues ? 0 : -ENOMEM;
345 }
346 
347 NULLB_DEVICE_ATTR(size, ulong, NULL);
348 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
349 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
350 NULLB_DEVICE_ATTR(home_node, uint, NULL);
351 NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
352 NULLB_DEVICE_ATTR(blocksize, uint, NULL);
353 NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
354 NULLB_DEVICE_ATTR(irqmode, uint, NULL);
355 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
356 NULLB_DEVICE_ATTR(index, uint, NULL);
357 NULLB_DEVICE_ATTR(blocking, bool, NULL);
358 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
359 NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
360 NULLB_DEVICE_ATTR(discard, bool, NULL);
361 NULLB_DEVICE_ATTR(mbps, uint, NULL);
362 NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
363 NULLB_DEVICE_ATTR(zoned, bool, NULL);
364 NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
365 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
366 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
367 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
368 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
369 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
370 
371 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
372 {
373 	return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
374 }
375 
376 static ssize_t nullb_device_power_store(struct config_item *item,
377 				     const char *page, size_t count)
378 {
379 	struct nullb_device *dev = to_nullb_device(item);
380 	bool newp = false;
381 	ssize_t ret;
382 
383 	ret = nullb_device_bool_attr_store(&newp, page, count);
384 	if (ret < 0)
385 		return ret;
386 
387 	if (!dev->power && newp) {
388 		if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
389 			return count;
390 		if (null_add_dev(dev)) {
391 			clear_bit(NULLB_DEV_FL_UP, &dev->flags);
392 			return -ENOMEM;
393 		}
394 
395 		set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
396 		dev->power = newp;
397 	} else if (dev->power && !newp) {
398 		if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
399 			mutex_lock(&lock);
400 			dev->power = newp;
401 			null_del_dev(dev->nullb);
402 			mutex_unlock(&lock);
403 		}
404 		clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
405 	}
406 
407 	return count;
408 }
409 
410 CONFIGFS_ATTR(nullb_device_, power);
411 
412 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
413 {
414 	struct nullb_device *t_dev = to_nullb_device(item);
415 
416 	return badblocks_show(&t_dev->badblocks, page, 0);
417 }
418 
419 static ssize_t nullb_device_badblocks_store(struct config_item *item,
420 				     const char *page, size_t count)
421 {
422 	struct nullb_device *t_dev = to_nullb_device(item);
423 	char *orig, *buf, *tmp;
424 	u64 start, end;
425 	int ret;
426 
427 	orig = kstrndup(page, count, GFP_KERNEL);
428 	if (!orig)
429 		return -ENOMEM;
430 
431 	buf = strstrip(orig);
432 
433 	ret = -EINVAL;
434 	if (buf[0] != '+' && buf[0] != '-')
435 		goto out;
436 	tmp = strchr(&buf[1], '-');
437 	if (!tmp)
438 		goto out;
439 	*tmp = '\0';
440 	ret = kstrtoull(buf + 1, 0, &start);
441 	if (ret)
442 		goto out;
443 	ret = kstrtoull(tmp + 1, 0, &end);
444 	if (ret)
445 		goto out;
446 	ret = -EINVAL;
447 	if (start > end)
448 		goto out;
449 	/* enable badblocks */
450 	cmpxchg(&t_dev->badblocks.shift, -1, 0);
451 	if (buf[0] == '+')
452 		ret = badblocks_set(&t_dev->badblocks, start,
453 			end - start + 1, 1);
454 	else
455 		ret = badblocks_clear(&t_dev->badblocks, start,
456 			end - start + 1);
457 	if (ret == 0)
458 		ret = count;
459 out:
460 	kfree(orig);
461 	return ret;
462 }
463 CONFIGFS_ATTR(nullb_device_, badblocks);
464 
465 static struct configfs_attribute *nullb_device_attrs[] = {
466 	&nullb_device_attr_size,
467 	&nullb_device_attr_completion_nsec,
468 	&nullb_device_attr_submit_queues,
469 	&nullb_device_attr_home_node,
470 	&nullb_device_attr_queue_mode,
471 	&nullb_device_attr_blocksize,
472 	&nullb_device_attr_max_sectors,
473 	&nullb_device_attr_irqmode,
474 	&nullb_device_attr_hw_queue_depth,
475 	&nullb_device_attr_index,
476 	&nullb_device_attr_blocking,
477 	&nullb_device_attr_use_per_node_hctx,
478 	&nullb_device_attr_power,
479 	&nullb_device_attr_memory_backed,
480 	&nullb_device_attr_discard,
481 	&nullb_device_attr_mbps,
482 	&nullb_device_attr_cache_size,
483 	&nullb_device_attr_badblocks,
484 	&nullb_device_attr_zoned,
485 	&nullb_device_attr_zone_size,
486 	&nullb_device_attr_zone_capacity,
487 	&nullb_device_attr_zone_nr_conv,
488 	&nullb_device_attr_zone_max_open,
489 	&nullb_device_attr_zone_max_active,
490 	&nullb_device_attr_virt_boundary,
491 	NULL,
492 };
493 
494 static void nullb_device_release(struct config_item *item)
495 {
496 	struct nullb_device *dev = to_nullb_device(item);
497 
498 	null_free_device_storage(dev, false);
499 	null_free_dev(dev);
500 }
501 
502 static struct configfs_item_operations nullb_device_ops = {
503 	.release	= nullb_device_release,
504 };
505 
506 static const struct config_item_type nullb_device_type = {
507 	.ct_item_ops	= &nullb_device_ops,
508 	.ct_attrs	= nullb_device_attrs,
509 	.ct_owner	= THIS_MODULE,
510 };
511 
512 static struct
513 config_item *nullb_group_make_item(struct config_group *group, const char *name)
514 {
515 	struct nullb_device *dev;
516 
517 	dev = null_alloc_dev();
518 	if (!dev)
519 		return ERR_PTR(-ENOMEM);
520 
521 	config_item_init_type_name(&dev->item, name, &nullb_device_type);
522 
523 	return &dev->item;
524 }
525 
526 static void
527 nullb_group_drop_item(struct config_group *group, struct config_item *item)
528 {
529 	struct nullb_device *dev = to_nullb_device(item);
530 
531 	if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
532 		mutex_lock(&lock);
533 		dev->power = false;
534 		null_del_dev(dev->nullb);
535 		mutex_unlock(&lock);
536 	}
537 
538 	config_item_put(item);
539 }
540 
541 static ssize_t memb_group_features_show(struct config_item *item, char *page)
542 {
543 	return snprintf(page, PAGE_SIZE,
544 			"memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size,zone_capacity,zone_nr_conv,zone_max_open,zone_max_active,blocksize,max_sectors,virt_boundary\n");
545 }
546 
547 CONFIGFS_ATTR_RO(memb_group_, features);
548 
549 static struct configfs_attribute *nullb_group_attrs[] = {
550 	&memb_group_attr_features,
551 	NULL,
552 };
553 
554 static struct configfs_group_operations nullb_group_ops = {
555 	.make_item	= nullb_group_make_item,
556 	.drop_item	= nullb_group_drop_item,
557 };
558 
559 static const struct config_item_type nullb_group_type = {
560 	.ct_group_ops	= &nullb_group_ops,
561 	.ct_attrs	= nullb_group_attrs,
562 	.ct_owner	= THIS_MODULE,
563 };
564 
565 static struct configfs_subsystem nullb_subsys = {
566 	.su_group = {
567 		.cg_item = {
568 			.ci_namebuf = "nullb",
569 			.ci_type = &nullb_group_type,
570 		},
571 	},
572 };
573 
574 static inline int null_cache_active(struct nullb *nullb)
575 {
576 	return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
577 }
578 
579 static struct nullb_device *null_alloc_dev(void)
580 {
581 	struct nullb_device *dev;
582 
583 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
584 	if (!dev)
585 		return NULL;
586 	INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
587 	INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
588 	if (badblocks_init(&dev->badblocks, 0)) {
589 		kfree(dev);
590 		return NULL;
591 	}
592 
593 	dev->size = g_gb * 1024;
594 	dev->completion_nsec = g_completion_nsec;
595 	dev->submit_queues = g_submit_queues;
596 	dev->home_node = g_home_node;
597 	dev->queue_mode = g_queue_mode;
598 	dev->blocksize = g_bs;
599 	dev->max_sectors = g_max_sectors;
600 	dev->irqmode = g_irqmode;
601 	dev->hw_queue_depth = g_hw_queue_depth;
602 	dev->blocking = g_blocking;
603 	dev->use_per_node_hctx = g_use_per_node_hctx;
604 	dev->zoned = g_zoned;
605 	dev->zone_size = g_zone_size;
606 	dev->zone_capacity = g_zone_capacity;
607 	dev->zone_nr_conv = g_zone_nr_conv;
608 	dev->zone_max_open = g_zone_max_open;
609 	dev->zone_max_active = g_zone_max_active;
610 	dev->virt_boundary = g_virt_boundary;
611 	return dev;
612 }
613 
614 static void null_free_dev(struct nullb_device *dev)
615 {
616 	if (!dev)
617 		return;
618 
619 	null_free_zoned_dev(dev);
620 	badblocks_exit(&dev->badblocks);
621 	kfree(dev);
622 }
623 
624 static void put_tag(struct nullb_queue *nq, unsigned int tag)
625 {
626 	clear_bit_unlock(tag, nq->tag_map);
627 
628 	if (waitqueue_active(&nq->wait))
629 		wake_up(&nq->wait);
630 }
631 
632 static unsigned int get_tag(struct nullb_queue *nq)
633 {
634 	unsigned int tag;
635 
636 	do {
637 		tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
638 		if (tag >= nq->queue_depth)
639 			return -1U;
640 	} while (test_and_set_bit_lock(tag, nq->tag_map));
641 
642 	return tag;
643 }
644 
645 static void free_cmd(struct nullb_cmd *cmd)
646 {
647 	put_tag(cmd->nq, cmd->tag);
648 }
649 
650 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
651 
652 static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
653 {
654 	struct nullb_cmd *cmd;
655 	unsigned int tag;
656 
657 	tag = get_tag(nq);
658 	if (tag != -1U) {
659 		cmd = &nq->cmds[tag];
660 		cmd->tag = tag;
661 		cmd->error = BLK_STS_OK;
662 		cmd->nq = nq;
663 		if (nq->dev->irqmode == NULL_IRQ_TIMER) {
664 			hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
665 				     HRTIMER_MODE_REL);
666 			cmd->timer.function = null_cmd_timer_expired;
667 		}
668 		return cmd;
669 	}
670 
671 	return NULL;
672 }
673 
674 static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait)
675 {
676 	struct nullb_cmd *cmd;
677 	DEFINE_WAIT(wait);
678 
679 	cmd = __alloc_cmd(nq);
680 	if (cmd || !can_wait)
681 		return cmd;
682 
683 	do {
684 		prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
685 		cmd = __alloc_cmd(nq);
686 		if (cmd)
687 			break;
688 
689 		io_schedule();
690 	} while (1);
691 
692 	finish_wait(&nq->wait, &wait);
693 	return cmd;
694 }
695 
696 static void end_cmd(struct nullb_cmd *cmd)
697 {
698 	int queue_mode = cmd->nq->dev->queue_mode;
699 
700 	switch (queue_mode)  {
701 	case NULL_Q_MQ:
702 		blk_mq_end_request(cmd->rq, cmd->error);
703 		return;
704 	case NULL_Q_BIO:
705 		cmd->bio->bi_status = cmd->error;
706 		bio_endio(cmd->bio);
707 		break;
708 	}
709 
710 	free_cmd(cmd);
711 }
712 
713 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
714 {
715 	end_cmd(container_of(timer, struct nullb_cmd, timer));
716 
717 	return HRTIMER_NORESTART;
718 }
719 
720 static void null_cmd_end_timer(struct nullb_cmd *cmd)
721 {
722 	ktime_t kt = cmd->nq->dev->completion_nsec;
723 
724 	hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
725 }
726 
727 static void null_complete_rq(struct request *rq)
728 {
729 	end_cmd(blk_mq_rq_to_pdu(rq));
730 }
731 
732 static struct nullb_page *null_alloc_page(gfp_t gfp_flags)
733 {
734 	struct nullb_page *t_page;
735 
736 	t_page = kmalloc(sizeof(struct nullb_page), gfp_flags);
737 	if (!t_page)
738 		goto out;
739 
740 	t_page->page = alloc_pages(gfp_flags, 0);
741 	if (!t_page->page)
742 		goto out_freepage;
743 
744 	memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
745 	return t_page;
746 out_freepage:
747 	kfree(t_page);
748 out:
749 	return NULL;
750 }
751 
752 static void null_free_page(struct nullb_page *t_page)
753 {
754 	__set_bit(NULLB_PAGE_FREE, t_page->bitmap);
755 	if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
756 		return;
757 	__free_page(t_page->page);
758 	kfree(t_page);
759 }
760 
761 static bool null_page_empty(struct nullb_page *page)
762 {
763 	int size = MAP_SZ - 2;
764 
765 	return find_first_bit(page->bitmap, size) == size;
766 }
767 
768 static void null_free_sector(struct nullb *nullb, sector_t sector,
769 	bool is_cache)
770 {
771 	unsigned int sector_bit;
772 	u64 idx;
773 	struct nullb_page *t_page, *ret;
774 	struct radix_tree_root *root;
775 
776 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
777 	idx = sector >> PAGE_SECTORS_SHIFT;
778 	sector_bit = (sector & SECTOR_MASK);
779 
780 	t_page = radix_tree_lookup(root, idx);
781 	if (t_page) {
782 		__clear_bit(sector_bit, t_page->bitmap);
783 
784 		if (null_page_empty(t_page)) {
785 			ret = radix_tree_delete_item(root, idx, t_page);
786 			WARN_ON(ret != t_page);
787 			null_free_page(ret);
788 			if (is_cache)
789 				nullb->dev->curr_cache -= PAGE_SIZE;
790 		}
791 	}
792 }
793 
794 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
795 	struct nullb_page *t_page, bool is_cache)
796 {
797 	struct radix_tree_root *root;
798 
799 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
800 
801 	if (radix_tree_insert(root, idx, t_page)) {
802 		null_free_page(t_page);
803 		t_page = radix_tree_lookup(root, idx);
804 		WARN_ON(!t_page || t_page->page->index != idx);
805 	} else if (is_cache)
806 		nullb->dev->curr_cache += PAGE_SIZE;
807 
808 	return t_page;
809 }
810 
811 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
812 {
813 	unsigned long pos = 0;
814 	int nr_pages;
815 	struct nullb_page *ret, *t_pages[FREE_BATCH];
816 	struct radix_tree_root *root;
817 
818 	root = is_cache ? &dev->cache : &dev->data;
819 
820 	do {
821 		int i;
822 
823 		nr_pages = radix_tree_gang_lookup(root,
824 				(void **)t_pages, pos, FREE_BATCH);
825 
826 		for (i = 0; i < nr_pages; i++) {
827 			pos = t_pages[i]->page->index;
828 			ret = radix_tree_delete_item(root, pos, t_pages[i]);
829 			WARN_ON(ret != t_pages[i]);
830 			null_free_page(ret);
831 		}
832 
833 		pos++;
834 	} while (nr_pages == FREE_BATCH);
835 
836 	if (is_cache)
837 		dev->curr_cache = 0;
838 }
839 
840 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
841 	sector_t sector, bool for_write, bool is_cache)
842 {
843 	unsigned int sector_bit;
844 	u64 idx;
845 	struct nullb_page *t_page;
846 	struct radix_tree_root *root;
847 
848 	idx = sector >> PAGE_SECTORS_SHIFT;
849 	sector_bit = (sector & SECTOR_MASK);
850 
851 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
852 	t_page = radix_tree_lookup(root, idx);
853 	WARN_ON(t_page && t_page->page->index != idx);
854 
855 	if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
856 		return t_page;
857 
858 	return NULL;
859 }
860 
861 static struct nullb_page *null_lookup_page(struct nullb *nullb,
862 	sector_t sector, bool for_write, bool ignore_cache)
863 {
864 	struct nullb_page *page = NULL;
865 
866 	if (!ignore_cache)
867 		page = __null_lookup_page(nullb, sector, for_write, true);
868 	if (page)
869 		return page;
870 	return __null_lookup_page(nullb, sector, for_write, false);
871 }
872 
873 static struct nullb_page *null_insert_page(struct nullb *nullb,
874 					   sector_t sector, bool ignore_cache)
875 	__releases(&nullb->lock)
876 	__acquires(&nullb->lock)
877 {
878 	u64 idx;
879 	struct nullb_page *t_page;
880 
881 	t_page = null_lookup_page(nullb, sector, true, ignore_cache);
882 	if (t_page)
883 		return t_page;
884 
885 	spin_unlock_irq(&nullb->lock);
886 
887 	t_page = null_alloc_page(GFP_NOIO);
888 	if (!t_page)
889 		goto out_lock;
890 
891 	if (radix_tree_preload(GFP_NOIO))
892 		goto out_freepage;
893 
894 	spin_lock_irq(&nullb->lock);
895 	idx = sector >> PAGE_SECTORS_SHIFT;
896 	t_page->page->index = idx;
897 	t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
898 	radix_tree_preload_end();
899 
900 	return t_page;
901 out_freepage:
902 	null_free_page(t_page);
903 out_lock:
904 	spin_lock_irq(&nullb->lock);
905 	return null_lookup_page(nullb, sector, true, ignore_cache);
906 }
907 
908 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
909 {
910 	int i;
911 	unsigned int offset;
912 	u64 idx;
913 	struct nullb_page *t_page, *ret;
914 	void *dst, *src;
915 
916 	idx = c_page->page->index;
917 
918 	t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
919 
920 	__clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
921 	if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
922 		null_free_page(c_page);
923 		if (t_page && null_page_empty(t_page)) {
924 			ret = radix_tree_delete_item(&nullb->dev->data,
925 				idx, t_page);
926 			null_free_page(t_page);
927 		}
928 		return 0;
929 	}
930 
931 	if (!t_page)
932 		return -ENOMEM;
933 
934 	src = kmap_atomic(c_page->page);
935 	dst = kmap_atomic(t_page->page);
936 
937 	for (i = 0; i < PAGE_SECTORS;
938 			i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
939 		if (test_bit(i, c_page->bitmap)) {
940 			offset = (i << SECTOR_SHIFT);
941 			memcpy(dst + offset, src + offset,
942 				nullb->dev->blocksize);
943 			__set_bit(i, t_page->bitmap);
944 		}
945 	}
946 
947 	kunmap_atomic(dst);
948 	kunmap_atomic(src);
949 
950 	ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
951 	null_free_page(ret);
952 	nullb->dev->curr_cache -= PAGE_SIZE;
953 
954 	return 0;
955 }
956 
957 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
958 {
959 	int i, err, nr_pages;
960 	struct nullb_page *c_pages[FREE_BATCH];
961 	unsigned long flushed = 0, one_round;
962 
963 again:
964 	if ((nullb->dev->cache_size * 1024 * 1024) >
965 	     nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
966 		return 0;
967 
968 	nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
969 			(void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
970 	/*
971 	 * nullb_flush_cache_page could unlock before using the c_pages. To
972 	 * avoid race, we don't allow page free
973 	 */
974 	for (i = 0; i < nr_pages; i++) {
975 		nullb->cache_flush_pos = c_pages[i]->page->index;
976 		/*
977 		 * We found the page which is being flushed to disk by other
978 		 * threads
979 		 */
980 		if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
981 			c_pages[i] = NULL;
982 		else
983 			__set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
984 	}
985 
986 	one_round = 0;
987 	for (i = 0; i < nr_pages; i++) {
988 		if (c_pages[i] == NULL)
989 			continue;
990 		err = null_flush_cache_page(nullb, c_pages[i]);
991 		if (err)
992 			return err;
993 		one_round++;
994 	}
995 	flushed += one_round << PAGE_SHIFT;
996 
997 	if (n > flushed) {
998 		if (nr_pages == 0)
999 			nullb->cache_flush_pos = 0;
1000 		if (one_round == 0) {
1001 			/* give other threads a chance */
1002 			spin_unlock_irq(&nullb->lock);
1003 			spin_lock_irq(&nullb->lock);
1004 		}
1005 		goto again;
1006 	}
1007 	return 0;
1008 }
1009 
1010 static int copy_to_nullb(struct nullb *nullb, struct page *source,
1011 	unsigned int off, sector_t sector, size_t n, bool is_fua)
1012 {
1013 	size_t temp, count = 0;
1014 	unsigned int offset;
1015 	struct nullb_page *t_page;
1016 	void *dst, *src;
1017 
1018 	while (count < n) {
1019 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1020 
1021 		if (null_cache_active(nullb) && !is_fua)
1022 			null_make_cache_space(nullb, PAGE_SIZE);
1023 
1024 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1025 		t_page = null_insert_page(nullb, sector,
1026 			!null_cache_active(nullb) || is_fua);
1027 		if (!t_page)
1028 			return -ENOSPC;
1029 
1030 		src = kmap_atomic(source);
1031 		dst = kmap_atomic(t_page->page);
1032 		memcpy(dst + offset, src + off + count, temp);
1033 		kunmap_atomic(dst);
1034 		kunmap_atomic(src);
1035 
1036 		__set_bit(sector & SECTOR_MASK, t_page->bitmap);
1037 
1038 		if (is_fua)
1039 			null_free_sector(nullb, sector, true);
1040 
1041 		count += temp;
1042 		sector += temp >> SECTOR_SHIFT;
1043 	}
1044 	return 0;
1045 }
1046 
1047 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1048 	unsigned int off, sector_t sector, size_t n)
1049 {
1050 	size_t temp, count = 0;
1051 	unsigned int offset;
1052 	struct nullb_page *t_page;
1053 	void *dst, *src;
1054 
1055 	while (count < n) {
1056 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1057 
1058 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1059 		t_page = null_lookup_page(nullb, sector, false,
1060 			!null_cache_active(nullb));
1061 
1062 		dst = kmap_atomic(dest);
1063 		if (!t_page) {
1064 			memset(dst + off + count, 0, temp);
1065 			goto next;
1066 		}
1067 		src = kmap_atomic(t_page->page);
1068 		memcpy(dst + off + count, src + offset, temp);
1069 		kunmap_atomic(src);
1070 next:
1071 		kunmap_atomic(dst);
1072 
1073 		count += temp;
1074 		sector += temp >> SECTOR_SHIFT;
1075 	}
1076 	return 0;
1077 }
1078 
1079 static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1080 			       unsigned int len, unsigned int off)
1081 {
1082 	void *dst;
1083 
1084 	dst = kmap_atomic(page);
1085 	memset(dst + off, 0xFF, len);
1086 	kunmap_atomic(dst);
1087 }
1088 
1089 blk_status_t null_handle_discard(struct nullb_device *dev,
1090 				 sector_t sector, sector_t nr_sectors)
1091 {
1092 	struct nullb *nullb = dev->nullb;
1093 	size_t n = nr_sectors << SECTOR_SHIFT;
1094 	size_t temp;
1095 
1096 	spin_lock_irq(&nullb->lock);
1097 	while (n > 0) {
1098 		temp = min_t(size_t, n, dev->blocksize);
1099 		null_free_sector(nullb, sector, false);
1100 		if (null_cache_active(nullb))
1101 			null_free_sector(nullb, sector, true);
1102 		sector += temp >> SECTOR_SHIFT;
1103 		n -= temp;
1104 	}
1105 	spin_unlock_irq(&nullb->lock);
1106 
1107 	return BLK_STS_OK;
1108 }
1109 
1110 static int null_handle_flush(struct nullb *nullb)
1111 {
1112 	int err;
1113 
1114 	if (!null_cache_active(nullb))
1115 		return 0;
1116 
1117 	spin_lock_irq(&nullb->lock);
1118 	while (true) {
1119 		err = null_make_cache_space(nullb,
1120 			nullb->dev->cache_size * 1024 * 1024);
1121 		if (err || nullb->dev->curr_cache == 0)
1122 			break;
1123 	}
1124 
1125 	WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1126 	spin_unlock_irq(&nullb->lock);
1127 	return err;
1128 }
1129 
1130 static int null_transfer(struct nullb *nullb, struct page *page,
1131 	unsigned int len, unsigned int off, bool is_write, sector_t sector,
1132 	bool is_fua)
1133 {
1134 	struct nullb_device *dev = nullb->dev;
1135 	unsigned int valid_len = len;
1136 	int err = 0;
1137 
1138 	if (!is_write) {
1139 		if (dev->zoned)
1140 			valid_len = null_zone_valid_read_len(nullb,
1141 				sector, len);
1142 
1143 		if (valid_len) {
1144 			err = copy_from_nullb(nullb, page, off,
1145 				sector, valid_len);
1146 			off += valid_len;
1147 			len -= valid_len;
1148 		}
1149 
1150 		if (len)
1151 			nullb_fill_pattern(nullb, page, len, off);
1152 		flush_dcache_page(page);
1153 	} else {
1154 		flush_dcache_page(page);
1155 		err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1156 	}
1157 
1158 	return err;
1159 }
1160 
1161 static int null_handle_rq(struct nullb_cmd *cmd)
1162 {
1163 	struct request *rq = cmd->rq;
1164 	struct nullb *nullb = cmd->nq->dev->nullb;
1165 	int err;
1166 	unsigned int len;
1167 	sector_t sector = blk_rq_pos(rq);
1168 	struct req_iterator iter;
1169 	struct bio_vec bvec;
1170 
1171 	spin_lock_irq(&nullb->lock);
1172 	rq_for_each_segment(bvec, rq, iter) {
1173 		len = bvec.bv_len;
1174 		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1175 				     op_is_write(req_op(rq)), sector,
1176 				     rq->cmd_flags & REQ_FUA);
1177 		if (err) {
1178 			spin_unlock_irq(&nullb->lock);
1179 			return err;
1180 		}
1181 		sector += len >> SECTOR_SHIFT;
1182 	}
1183 	spin_unlock_irq(&nullb->lock);
1184 
1185 	return 0;
1186 }
1187 
1188 static int null_handle_bio(struct nullb_cmd *cmd)
1189 {
1190 	struct bio *bio = cmd->bio;
1191 	struct nullb *nullb = cmd->nq->dev->nullb;
1192 	int err;
1193 	unsigned int len;
1194 	sector_t sector = bio->bi_iter.bi_sector;
1195 	struct bio_vec bvec;
1196 	struct bvec_iter iter;
1197 
1198 	spin_lock_irq(&nullb->lock);
1199 	bio_for_each_segment(bvec, bio, iter) {
1200 		len = bvec.bv_len;
1201 		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1202 				     op_is_write(bio_op(bio)), sector,
1203 				     bio->bi_opf & REQ_FUA);
1204 		if (err) {
1205 			spin_unlock_irq(&nullb->lock);
1206 			return err;
1207 		}
1208 		sector += len >> SECTOR_SHIFT;
1209 	}
1210 	spin_unlock_irq(&nullb->lock);
1211 	return 0;
1212 }
1213 
1214 static void null_stop_queue(struct nullb *nullb)
1215 {
1216 	struct request_queue *q = nullb->q;
1217 
1218 	if (nullb->dev->queue_mode == NULL_Q_MQ)
1219 		blk_mq_stop_hw_queues(q);
1220 }
1221 
1222 static void null_restart_queue_async(struct nullb *nullb)
1223 {
1224 	struct request_queue *q = nullb->q;
1225 
1226 	if (nullb->dev->queue_mode == NULL_Q_MQ)
1227 		blk_mq_start_stopped_hw_queues(q, true);
1228 }
1229 
1230 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1231 {
1232 	struct nullb_device *dev = cmd->nq->dev;
1233 	struct nullb *nullb = dev->nullb;
1234 	blk_status_t sts = BLK_STS_OK;
1235 	struct request *rq = cmd->rq;
1236 
1237 	if (!hrtimer_active(&nullb->bw_timer))
1238 		hrtimer_restart(&nullb->bw_timer);
1239 
1240 	if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1241 		null_stop_queue(nullb);
1242 		/* race with timer */
1243 		if (atomic_long_read(&nullb->cur_bytes) > 0)
1244 			null_restart_queue_async(nullb);
1245 		/* requeue request */
1246 		sts = BLK_STS_DEV_RESOURCE;
1247 	}
1248 	return sts;
1249 }
1250 
1251 static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
1252 						 sector_t sector,
1253 						 sector_t nr_sectors)
1254 {
1255 	struct badblocks *bb = &cmd->nq->dev->badblocks;
1256 	sector_t first_bad;
1257 	int bad_sectors;
1258 
1259 	if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
1260 		return BLK_STS_IOERR;
1261 
1262 	return BLK_STS_OK;
1263 }
1264 
1265 static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
1266 						     enum req_opf op,
1267 						     sector_t sector,
1268 						     sector_t nr_sectors)
1269 {
1270 	struct nullb_device *dev = cmd->nq->dev;
1271 	int err;
1272 
1273 	if (op == REQ_OP_DISCARD)
1274 		return null_handle_discard(dev, sector, nr_sectors);
1275 
1276 	if (dev->queue_mode == NULL_Q_BIO)
1277 		err = null_handle_bio(cmd);
1278 	else
1279 		err = null_handle_rq(cmd);
1280 
1281 	return errno_to_blk_status(err);
1282 }
1283 
1284 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1285 {
1286 	struct nullb_device *dev = cmd->nq->dev;
1287 	struct bio *bio;
1288 
1289 	if (dev->memory_backed)
1290 		return;
1291 
1292 	if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) == REQ_OP_READ) {
1293 		zero_fill_bio(cmd->bio);
1294 	} else if (req_op(cmd->rq) == REQ_OP_READ) {
1295 		__rq_for_each_bio(bio, cmd->rq)
1296 			zero_fill_bio(bio);
1297 	}
1298 }
1299 
1300 static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1301 {
1302 	/*
1303 	 * Since root privileges are required to configure the null_blk
1304 	 * driver, it is fine that this driver does not initialize the
1305 	 * data buffers of read commands. Zero-initialize these buffers
1306 	 * anyway if KMSAN is enabled to prevent that KMSAN complains
1307 	 * about null_blk not initializing read data buffers.
1308 	 */
1309 	if (IS_ENABLED(CONFIG_KMSAN))
1310 		nullb_zero_read_cmd_buffer(cmd);
1311 
1312 	/* Complete IO by inline, softirq or timer */
1313 	switch (cmd->nq->dev->irqmode) {
1314 	case NULL_IRQ_SOFTIRQ:
1315 		switch (cmd->nq->dev->queue_mode) {
1316 		case NULL_Q_MQ:
1317 			if (likely(!blk_should_fake_timeout(cmd->rq->q)))
1318 				blk_mq_complete_request(cmd->rq);
1319 			break;
1320 		case NULL_Q_BIO:
1321 			/*
1322 			 * XXX: no proper submitting cpu information available.
1323 			 */
1324 			end_cmd(cmd);
1325 			break;
1326 		}
1327 		break;
1328 	case NULL_IRQ_NONE:
1329 		end_cmd(cmd);
1330 		break;
1331 	case NULL_IRQ_TIMER:
1332 		null_cmd_end_timer(cmd);
1333 		break;
1334 	}
1335 }
1336 
1337 blk_status_t null_process_cmd(struct nullb_cmd *cmd,
1338 			      enum req_opf op, sector_t sector,
1339 			      unsigned int nr_sectors)
1340 {
1341 	struct nullb_device *dev = cmd->nq->dev;
1342 	blk_status_t ret;
1343 
1344 	if (dev->badblocks.shift != -1) {
1345 		ret = null_handle_badblocks(cmd, sector, nr_sectors);
1346 		if (ret != BLK_STS_OK)
1347 			return ret;
1348 	}
1349 
1350 	if (dev->memory_backed)
1351 		return null_handle_memory_backed(cmd, op, sector, nr_sectors);
1352 
1353 	return BLK_STS_OK;
1354 }
1355 
1356 static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1357 				    sector_t nr_sectors, enum req_opf op)
1358 {
1359 	struct nullb_device *dev = cmd->nq->dev;
1360 	struct nullb *nullb = dev->nullb;
1361 	blk_status_t sts;
1362 
1363 	if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1364 		sts = null_handle_throttled(cmd);
1365 		if (sts != BLK_STS_OK)
1366 			return sts;
1367 	}
1368 
1369 	if (op == REQ_OP_FLUSH) {
1370 		cmd->error = errno_to_blk_status(null_handle_flush(nullb));
1371 		goto out;
1372 	}
1373 
1374 	if (dev->zoned)
1375 		sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1376 	else
1377 		sts = null_process_cmd(cmd, op, sector, nr_sectors);
1378 
1379 	/* Do not overwrite errors (e.g. timeout errors) */
1380 	if (cmd->error == BLK_STS_OK)
1381 		cmd->error = sts;
1382 
1383 out:
1384 	nullb_complete_cmd(cmd);
1385 	return BLK_STS_OK;
1386 }
1387 
1388 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1389 {
1390 	struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1391 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1392 	unsigned int mbps = nullb->dev->mbps;
1393 
1394 	if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1395 		return HRTIMER_NORESTART;
1396 
1397 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1398 	null_restart_queue_async(nullb);
1399 
1400 	hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1401 
1402 	return HRTIMER_RESTART;
1403 }
1404 
1405 static void nullb_setup_bwtimer(struct nullb *nullb)
1406 {
1407 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1408 
1409 	hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1410 	nullb->bw_timer.function = nullb_bwtimer_fn;
1411 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1412 	hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1413 }
1414 
1415 static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1416 {
1417 	int index = 0;
1418 
1419 	if (nullb->nr_queues != 1)
1420 		index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1421 
1422 	return &nullb->queues[index];
1423 }
1424 
1425 static blk_qc_t null_submit_bio(struct bio *bio)
1426 {
1427 	sector_t sector = bio->bi_iter.bi_sector;
1428 	sector_t nr_sectors = bio_sectors(bio);
1429 	struct nullb *nullb = bio->bi_bdev->bd_disk->private_data;
1430 	struct nullb_queue *nq = nullb_to_queue(nullb);
1431 	struct nullb_cmd *cmd;
1432 
1433 	cmd = alloc_cmd(nq, 1);
1434 	cmd->bio = bio;
1435 
1436 	null_handle_cmd(cmd, sector, nr_sectors, bio_op(bio));
1437 	return BLK_QC_T_NONE;
1438 }
1439 
1440 static bool should_timeout_request(struct request *rq)
1441 {
1442 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1443 	if (g_timeout_str[0])
1444 		return should_fail(&null_timeout_attr, 1);
1445 #endif
1446 	return false;
1447 }
1448 
1449 static bool should_requeue_request(struct request *rq)
1450 {
1451 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1452 	if (g_requeue_str[0])
1453 		return should_fail(&null_requeue_attr, 1);
1454 #endif
1455 	return false;
1456 }
1457 
1458 static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
1459 {
1460 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1461 
1462 	pr_info("rq %p timed out\n", rq);
1463 
1464 	/*
1465 	 * If the device is marked as blocking (i.e. memory backed or zoned
1466 	 * device), the submission path may be blocked waiting for resources
1467 	 * and cause real timeouts. For these real timeouts, the submission
1468 	 * path will complete the request using blk_mq_complete_request().
1469 	 * Only fake timeouts need to execute blk_mq_complete_request() here.
1470 	 */
1471 	cmd->error = BLK_STS_TIMEOUT;
1472 	if (cmd->fake_timeout)
1473 		blk_mq_complete_request(rq);
1474 	return BLK_EH_DONE;
1475 }
1476 
1477 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1478 			 const struct blk_mq_queue_data *bd)
1479 {
1480 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1481 	struct nullb_queue *nq = hctx->driver_data;
1482 	sector_t nr_sectors = blk_rq_sectors(bd->rq);
1483 	sector_t sector = blk_rq_pos(bd->rq);
1484 
1485 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1486 
1487 	if (nq->dev->irqmode == NULL_IRQ_TIMER) {
1488 		hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1489 		cmd->timer.function = null_cmd_timer_expired;
1490 	}
1491 	cmd->rq = bd->rq;
1492 	cmd->error = BLK_STS_OK;
1493 	cmd->nq = nq;
1494 	cmd->fake_timeout = should_timeout_request(bd->rq);
1495 
1496 	blk_mq_start_request(bd->rq);
1497 
1498 	if (should_requeue_request(bd->rq)) {
1499 		/*
1500 		 * Alternate between hitting the core BUSY path, and the
1501 		 * driver driven requeue path
1502 		 */
1503 		nq->requeue_selection++;
1504 		if (nq->requeue_selection & 1)
1505 			return BLK_STS_RESOURCE;
1506 		else {
1507 			blk_mq_requeue_request(bd->rq, true);
1508 			return BLK_STS_OK;
1509 		}
1510 	}
1511 	if (cmd->fake_timeout)
1512 		return BLK_STS_OK;
1513 
1514 	return null_handle_cmd(cmd, sector, nr_sectors, req_op(bd->rq));
1515 }
1516 
1517 static void cleanup_queue(struct nullb_queue *nq)
1518 {
1519 	kfree(nq->tag_map);
1520 	kfree(nq->cmds);
1521 }
1522 
1523 static void cleanup_queues(struct nullb *nullb)
1524 {
1525 	int i;
1526 
1527 	for (i = 0; i < nullb->nr_queues; i++)
1528 		cleanup_queue(&nullb->queues[i]);
1529 
1530 	kfree(nullb->queues);
1531 }
1532 
1533 static void null_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1534 {
1535 	struct nullb_queue *nq = hctx->driver_data;
1536 	struct nullb *nullb = nq->dev->nullb;
1537 
1538 	nullb->nr_queues--;
1539 }
1540 
1541 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1542 {
1543 	init_waitqueue_head(&nq->wait);
1544 	nq->queue_depth = nullb->queue_depth;
1545 	nq->dev = nullb->dev;
1546 }
1547 
1548 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1549 			  unsigned int hctx_idx)
1550 {
1551 	struct nullb *nullb = hctx->queue->queuedata;
1552 	struct nullb_queue *nq;
1553 
1554 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1555 	if (g_init_hctx_str[0] && should_fail(&null_init_hctx_attr, 1))
1556 		return -EFAULT;
1557 #endif
1558 
1559 	nq = &nullb->queues[hctx_idx];
1560 	hctx->driver_data = nq;
1561 	null_init_queue(nullb, nq);
1562 	nullb->nr_queues++;
1563 
1564 	return 0;
1565 }
1566 
1567 static const struct blk_mq_ops null_mq_ops = {
1568 	.queue_rq       = null_queue_rq,
1569 	.complete	= null_complete_rq,
1570 	.timeout	= null_timeout_rq,
1571 	.init_hctx	= null_init_hctx,
1572 	.exit_hctx	= null_exit_hctx,
1573 };
1574 
1575 static void null_del_dev(struct nullb *nullb)
1576 {
1577 	struct nullb_device *dev;
1578 
1579 	if (!nullb)
1580 		return;
1581 
1582 	dev = nullb->dev;
1583 
1584 	ida_simple_remove(&nullb_indexes, nullb->index);
1585 
1586 	list_del_init(&nullb->list);
1587 
1588 	del_gendisk(nullb->disk);
1589 
1590 	if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1591 		hrtimer_cancel(&nullb->bw_timer);
1592 		atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1593 		null_restart_queue_async(nullb);
1594 	}
1595 
1596 	blk_cleanup_disk(nullb->disk);
1597 	if (dev->queue_mode == NULL_Q_MQ &&
1598 	    nullb->tag_set == &nullb->__tag_set)
1599 		blk_mq_free_tag_set(nullb->tag_set);
1600 	cleanup_queues(nullb);
1601 	if (null_cache_active(nullb))
1602 		null_free_device_storage(nullb->dev, true);
1603 	kfree(nullb);
1604 	dev->nullb = NULL;
1605 }
1606 
1607 static void null_config_discard(struct nullb *nullb)
1608 {
1609 	if (nullb->dev->discard == false)
1610 		return;
1611 
1612 	if (!nullb->dev->memory_backed) {
1613 		nullb->dev->discard = false;
1614 		pr_info("discard option is ignored without memory backing\n");
1615 		return;
1616 	}
1617 
1618 	if (nullb->dev->zoned) {
1619 		nullb->dev->discard = false;
1620 		pr_info("discard option is ignored in zoned mode\n");
1621 		return;
1622 	}
1623 
1624 	nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1625 	nullb->q->limits.discard_alignment = nullb->dev->blocksize;
1626 	blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1627 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, nullb->q);
1628 }
1629 
1630 static const struct block_device_operations null_bio_ops = {
1631 	.owner		= THIS_MODULE,
1632 	.submit_bio	= null_submit_bio,
1633 	.report_zones	= null_report_zones,
1634 };
1635 
1636 static const struct block_device_operations null_rq_ops = {
1637 	.owner		= THIS_MODULE,
1638 	.report_zones	= null_report_zones,
1639 };
1640 
1641 static int setup_commands(struct nullb_queue *nq)
1642 {
1643 	struct nullb_cmd *cmd;
1644 	int i, tag_size;
1645 
1646 	nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1647 	if (!nq->cmds)
1648 		return -ENOMEM;
1649 
1650 	tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
1651 	nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
1652 	if (!nq->tag_map) {
1653 		kfree(nq->cmds);
1654 		return -ENOMEM;
1655 	}
1656 
1657 	for (i = 0; i < nq->queue_depth; i++) {
1658 		cmd = &nq->cmds[i];
1659 		cmd->tag = -1U;
1660 	}
1661 
1662 	return 0;
1663 }
1664 
1665 static int setup_queues(struct nullb *nullb)
1666 {
1667 	nullb->queues = kcalloc(nr_cpu_ids, sizeof(struct nullb_queue),
1668 				GFP_KERNEL);
1669 	if (!nullb->queues)
1670 		return -ENOMEM;
1671 
1672 	nullb->queue_depth = nullb->dev->hw_queue_depth;
1673 
1674 	return 0;
1675 }
1676 
1677 static int init_driver_queues(struct nullb *nullb)
1678 {
1679 	struct nullb_queue *nq;
1680 	int i, ret = 0;
1681 
1682 	for (i = 0; i < nullb->dev->submit_queues; i++) {
1683 		nq = &nullb->queues[i];
1684 
1685 		null_init_queue(nullb, nq);
1686 
1687 		ret = setup_commands(nq);
1688 		if (ret)
1689 			return ret;
1690 		nullb->nr_queues++;
1691 	}
1692 	return 0;
1693 }
1694 
1695 static int null_gendisk_register(struct nullb *nullb)
1696 {
1697 	sector_t size = ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT;
1698 	struct gendisk *disk = nullb->disk;
1699 
1700 	set_capacity(disk, size);
1701 
1702 	disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
1703 	disk->major		= null_major;
1704 	disk->first_minor	= nullb->index;
1705 	disk->minors		= 1;
1706 	if (queue_is_mq(nullb->q))
1707 		disk->fops		= &null_rq_ops;
1708 	else
1709 		disk->fops		= &null_bio_ops;
1710 	disk->private_data	= nullb;
1711 	strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1712 
1713 	if (nullb->dev->zoned) {
1714 		int ret = null_register_zoned_dev(nullb);
1715 
1716 		if (ret)
1717 			return ret;
1718 	}
1719 
1720 	return add_disk(disk);
1721 }
1722 
1723 static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1724 {
1725 	set->ops = &null_mq_ops;
1726 	set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
1727 						g_submit_queues;
1728 	set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
1729 						g_hw_queue_depth;
1730 	set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
1731 	set->cmd_size	= sizeof(struct nullb_cmd);
1732 	set->flags = BLK_MQ_F_SHOULD_MERGE;
1733 	if (g_no_sched)
1734 		set->flags |= BLK_MQ_F_NO_SCHED;
1735 	if (g_shared_tag_bitmap)
1736 		set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1737 	set->driver_data = NULL;
1738 
1739 	if ((nullb && nullb->dev->blocking) || g_blocking)
1740 		set->flags |= BLK_MQ_F_BLOCKING;
1741 
1742 	return blk_mq_alloc_tag_set(set);
1743 }
1744 
1745 static int null_validate_conf(struct nullb_device *dev)
1746 {
1747 	dev->blocksize = round_down(dev->blocksize, 512);
1748 	dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
1749 
1750 	if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
1751 		if (dev->submit_queues != nr_online_nodes)
1752 			dev->submit_queues = nr_online_nodes;
1753 	} else if (dev->submit_queues > nr_cpu_ids)
1754 		dev->submit_queues = nr_cpu_ids;
1755 	else if (dev->submit_queues == 0)
1756 		dev->submit_queues = 1;
1757 
1758 	dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
1759 	dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1760 
1761 	/* Do memory allocation, so set blocking */
1762 	if (dev->memory_backed)
1763 		dev->blocking = true;
1764 	else /* cache is meaningless */
1765 		dev->cache_size = 0;
1766 	dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1767 						dev->cache_size);
1768 	dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1769 	/* can not stop a queue */
1770 	if (dev->queue_mode == NULL_Q_BIO)
1771 		dev->mbps = 0;
1772 
1773 	if (dev->zoned &&
1774 	    (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1775 		pr_err("zone_size must be power-of-two\n");
1776 		return -EINVAL;
1777 	}
1778 
1779 	return 0;
1780 }
1781 
1782 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1783 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1784 {
1785 	if (!str[0])
1786 		return true;
1787 
1788 	if (!setup_fault_attr(attr, str))
1789 		return false;
1790 
1791 	attr->verbose = 0;
1792 	return true;
1793 }
1794 #endif
1795 
1796 static bool null_setup_fault(void)
1797 {
1798 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1799 	if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1800 		return false;
1801 	if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1802 		return false;
1803 	if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
1804 		return false;
1805 #endif
1806 	return true;
1807 }
1808 
1809 static int null_add_dev(struct nullb_device *dev)
1810 {
1811 	struct nullb *nullb;
1812 	int rv;
1813 
1814 	rv = null_validate_conf(dev);
1815 	if (rv)
1816 		return rv;
1817 
1818 	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1819 	if (!nullb) {
1820 		rv = -ENOMEM;
1821 		goto out;
1822 	}
1823 	nullb->dev = dev;
1824 	dev->nullb = nullb;
1825 
1826 	spin_lock_init(&nullb->lock);
1827 
1828 	rv = setup_queues(nullb);
1829 	if (rv)
1830 		goto out_free_nullb;
1831 
1832 	if (dev->queue_mode == NULL_Q_MQ) {
1833 		if (shared_tags) {
1834 			nullb->tag_set = &tag_set;
1835 			rv = 0;
1836 		} else {
1837 			nullb->tag_set = &nullb->__tag_set;
1838 			rv = null_init_tag_set(nullb, nullb->tag_set);
1839 		}
1840 
1841 		if (rv)
1842 			goto out_cleanup_queues;
1843 
1844 		if (!null_setup_fault())
1845 			goto out_cleanup_tags;
1846 
1847 		nullb->tag_set->timeout = 5 * HZ;
1848 		nullb->disk = blk_mq_alloc_disk(nullb->tag_set, nullb);
1849 		if (IS_ERR(nullb->disk)) {
1850 			rv = PTR_ERR(nullb->disk);
1851 			goto out_cleanup_tags;
1852 		}
1853 		nullb->q = nullb->disk->queue;
1854 	} else if (dev->queue_mode == NULL_Q_BIO) {
1855 		rv = -ENOMEM;
1856 		nullb->disk = blk_alloc_disk(nullb->dev->home_node);
1857 		if (!nullb->disk)
1858 			goto out_cleanup_queues;
1859 
1860 		nullb->q = nullb->disk->queue;
1861 		rv = init_driver_queues(nullb);
1862 		if (rv)
1863 			goto out_cleanup_disk;
1864 	}
1865 
1866 	if (dev->mbps) {
1867 		set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
1868 		nullb_setup_bwtimer(nullb);
1869 	}
1870 
1871 	if (dev->cache_size > 0) {
1872 		set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1873 		blk_queue_write_cache(nullb->q, true, true);
1874 	}
1875 
1876 	if (dev->zoned) {
1877 		rv = null_init_zoned_dev(dev, nullb->q);
1878 		if (rv)
1879 			goto out_cleanup_disk;
1880 	}
1881 
1882 	nullb->q->queuedata = nullb;
1883 	blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
1884 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
1885 
1886 	mutex_lock(&lock);
1887 	nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
1888 	dev->index = nullb->index;
1889 	mutex_unlock(&lock);
1890 
1891 	blk_queue_logical_block_size(nullb->q, dev->blocksize);
1892 	blk_queue_physical_block_size(nullb->q, dev->blocksize);
1893 	if (!dev->max_sectors)
1894 		dev->max_sectors = queue_max_hw_sectors(nullb->q);
1895 	dev->max_sectors = min_t(unsigned int, dev->max_sectors,
1896 				 BLK_DEF_MAX_SECTORS);
1897 	blk_queue_max_hw_sectors(nullb->q, dev->max_sectors);
1898 
1899 	if (dev->virt_boundary)
1900 		blk_queue_virt_boundary(nullb->q, PAGE_SIZE - 1);
1901 
1902 	null_config_discard(nullb);
1903 
1904 	sprintf(nullb->disk_name, "nullb%d", nullb->index);
1905 
1906 	rv = null_gendisk_register(nullb);
1907 	if (rv)
1908 		goto out_cleanup_zone;
1909 
1910 	mutex_lock(&lock);
1911 	list_add_tail(&nullb->list, &nullb_list);
1912 	mutex_unlock(&lock);
1913 
1914 	return 0;
1915 out_cleanup_zone:
1916 	null_free_zoned_dev(dev);
1917 out_cleanup_disk:
1918 	blk_cleanup_disk(nullb->disk);
1919 out_cleanup_tags:
1920 	if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
1921 		blk_mq_free_tag_set(nullb->tag_set);
1922 out_cleanup_queues:
1923 	cleanup_queues(nullb);
1924 out_free_nullb:
1925 	kfree(nullb);
1926 	dev->nullb = NULL;
1927 out:
1928 	return rv;
1929 }
1930 
1931 static int __init null_init(void)
1932 {
1933 	int ret = 0;
1934 	unsigned int i;
1935 	struct nullb *nullb;
1936 	struct nullb_device *dev;
1937 
1938 	if (g_bs > PAGE_SIZE) {
1939 		pr_warn("invalid block size\n");
1940 		pr_warn("defaults block size to %lu\n", PAGE_SIZE);
1941 		g_bs = PAGE_SIZE;
1942 	}
1943 
1944 	if (g_max_sectors > BLK_DEF_MAX_SECTORS) {
1945 		pr_warn("invalid max sectors\n");
1946 		pr_warn("defaults max sectors to %u\n", BLK_DEF_MAX_SECTORS);
1947 		g_max_sectors = BLK_DEF_MAX_SECTORS;
1948 	}
1949 
1950 	if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
1951 		pr_err("invalid home_node value\n");
1952 		g_home_node = NUMA_NO_NODE;
1953 	}
1954 
1955 	if (g_queue_mode == NULL_Q_RQ) {
1956 		pr_err("legacy IO path no longer available\n");
1957 		return -EINVAL;
1958 	}
1959 	if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
1960 		if (g_submit_queues != nr_online_nodes) {
1961 			pr_warn("submit_queues param is set to %u.\n",
1962 							nr_online_nodes);
1963 			g_submit_queues = nr_online_nodes;
1964 		}
1965 	} else if (g_submit_queues > nr_cpu_ids)
1966 		g_submit_queues = nr_cpu_ids;
1967 	else if (g_submit_queues <= 0)
1968 		g_submit_queues = 1;
1969 
1970 	if (g_queue_mode == NULL_Q_MQ && shared_tags) {
1971 		ret = null_init_tag_set(NULL, &tag_set);
1972 		if (ret)
1973 			return ret;
1974 	}
1975 
1976 	config_group_init(&nullb_subsys.su_group);
1977 	mutex_init(&nullb_subsys.su_mutex);
1978 
1979 	ret = configfs_register_subsystem(&nullb_subsys);
1980 	if (ret)
1981 		goto err_tagset;
1982 
1983 	mutex_init(&lock);
1984 
1985 	null_major = register_blkdev(0, "nullb");
1986 	if (null_major < 0) {
1987 		ret = null_major;
1988 		goto err_conf;
1989 	}
1990 
1991 	for (i = 0; i < nr_devices; i++) {
1992 		dev = null_alloc_dev();
1993 		if (!dev) {
1994 			ret = -ENOMEM;
1995 			goto err_dev;
1996 		}
1997 		ret = null_add_dev(dev);
1998 		if (ret) {
1999 			null_free_dev(dev);
2000 			goto err_dev;
2001 		}
2002 	}
2003 
2004 	pr_info("module loaded\n");
2005 	return 0;
2006 
2007 err_dev:
2008 	while (!list_empty(&nullb_list)) {
2009 		nullb = list_entry(nullb_list.next, struct nullb, list);
2010 		dev = nullb->dev;
2011 		null_del_dev(nullb);
2012 		null_free_dev(dev);
2013 	}
2014 	unregister_blkdev(null_major, "nullb");
2015 err_conf:
2016 	configfs_unregister_subsystem(&nullb_subsys);
2017 err_tagset:
2018 	if (g_queue_mode == NULL_Q_MQ && shared_tags)
2019 		blk_mq_free_tag_set(&tag_set);
2020 	return ret;
2021 }
2022 
2023 static void __exit null_exit(void)
2024 {
2025 	struct nullb *nullb;
2026 
2027 	configfs_unregister_subsystem(&nullb_subsys);
2028 
2029 	unregister_blkdev(null_major, "nullb");
2030 
2031 	mutex_lock(&lock);
2032 	while (!list_empty(&nullb_list)) {
2033 		struct nullb_device *dev;
2034 
2035 		nullb = list_entry(nullb_list.next, struct nullb, list);
2036 		dev = nullb->dev;
2037 		null_del_dev(nullb);
2038 		null_free_dev(dev);
2039 	}
2040 	mutex_unlock(&lock);
2041 
2042 	if (g_queue_mode == NULL_Q_MQ && shared_tags)
2043 		blk_mq_free_tag_set(&tag_set);
2044 }
2045 
2046 module_init(null_init);
2047 module_exit(null_exit);
2048 
2049 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2050 MODULE_LICENSE("GPL");
2051