xref: /openbmc/linux/drivers/block/null_blk/main.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4  * Shaohua Li <shli@fb.com>
5  */
6 #include <linux/module.h>
7 
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13 
14 #undef pr_fmt
15 #define pr_fmt(fmt)	"null_blk: " fmt
16 
17 #define FREE_BATCH		16
18 
19 #define TICKS_PER_SEC		50ULL
20 #define TIMER_INTERVAL		(NSEC_PER_SEC / TICKS_PER_SEC)
21 
22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
23 static DECLARE_FAULT_ATTR(null_timeout_attr);
24 static DECLARE_FAULT_ATTR(null_requeue_attr);
25 static DECLARE_FAULT_ATTR(null_init_hctx_attr);
26 #endif
27 
28 static inline u64 mb_per_tick(int mbps)
29 {
30 	return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
31 }
32 
33 /*
34  * Status flags for nullb_device.
35  *
36  * CONFIGURED:	Device has been configured and turned on. Cannot reconfigure.
37  * UP:		Device is currently on and visible in userspace.
38  * THROTTLED:	Device is being throttled.
39  * CACHE:	Device is using a write-back cache.
40  */
41 enum nullb_device_flags {
42 	NULLB_DEV_FL_CONFIGURED	= 0,
43 	NULLB_DEV_FL_UP		= 1,
44 	NULLB_DEV_FL_THROTTLED	= 2,
45 	NULLB_DEV_FL_CACHE	= 3,
46 };
47 
48 #define MAP_SZ		((PAGE_SIZE >> SECTOR_SHIFT) + 2)
49 /*
50  * nullb_page is a page in memory for nullb devices.
51  *
52  * @page:	The page holding the data.
53  * @bitmap:	The bitmap represents which sector in the page has data.
54  *		Each bit represents one block size. For example, sector 8
55  *		will use the 7th bit
56  * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
57  * page is being flushing to storage. FREE means the cache page is freed and
58  * should be skipped from flushing to storage. Please see
59  * null_make_cache_space
60  */
61 struct nullb_page {
62 	struct page *page;
63 	DECLARE_BITMAP(bitmap, MAP_SZ);
64 };
65 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
66 #define NULLB_PAGE_FREE (MAP_SZ - 2)
67 
68 static LIST_HEAD(nullb_list);
69 static struct mutex lock;
70 static int null_major;
71 static DEFINE_IDA(nullb_indexes);
72 static struct blk_mq_tag_set tag_set;
73 
74 enum {
75 	NULL_IRQ_NONE		= 0,
76 	NULL_IRQ_SOFTIRQ	= 1,
77 	NULL_IRQ_TIMER		= 2,
78 };
79 
80 enum {
81 	NULL_Q_BIO		= 0,
82 	NULL_Q_RQ		= 1,
83 	NULL_Q_MQ		= 2,
84 };
85 
86 static bool g_virt_boundary = false;
87 module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
88 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
89 
90 static int g_no_sched;
91 module_param_named(no_sched, g_no_sched, int, 0444);
92 MODULE_PARM_DESC(no_sched, "No io scheduler");
93 
94 static int g_submit_queues = 1;
95 module_param_named(submit_queues, g_submit_queues, int, 0444);
96 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
97 
98 static int g_poll_queues = 1;
99 module_param_named(poll_queues, g_poll_queues, int, 0444);
100 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues");
101 
102 static int g_home_node = NUMA_NO_NODE;
103 module_param_named(home_node, g_home_node, int, 0444);
104 MODULE_PARM_DESC(home_node, "Home node for the device");
105 
106 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
107 /*
108  * For more details about fault injection, please refer to
109  * Documentation/fault-injection/fault-injection.rst.
110  */
111 static char g_timeout_str[80];
112 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
113 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
114 
115 static char g_requeue_str[80];
116 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
117 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
118 
119 static char g_init_hctx_str[80];
120 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
121 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
122 #endif
123 
124 static int g_queue_mode = NULL_Q_MQ;
125 
126 static int null_param_store_val(const char *str, int *val, int min, int max)
127 {
128 	int ret, new_val;
129 
130 	ret = kstrtoint(str, 10, &new_val);
131 	if (ret)
132 		return -EINVAL;
133 
134 	if (new_val < min || new_val > max)
135 		return -EINVAL;
136 
137 	*val = new_val;
138 	return 0;
139 }
140 
141 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
142 {
143 	return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
144 }
145 
146 static const struct kernel_param_ops null_queue_mode_param_ops = {
147 	.set	= null_set_queue_mode,
148 	.get	= param_get_int,
149 };
150 
151 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
152 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
153 
154 static int g_gb = 250;
155 module_param_named(gb, g_gb, int, 0444);
156 MODULE_PARM_DESC(gb, "Size in GB");
157 
158 static int g_bs = 512;
159 module_param_named(bs, g_bs, int, 0444);
160 MODULE_PARM_DESC(bs, "Block size (in bytes)");
161 
162 static int g_max_sectors;
163 module_param_named(max_sectors, g_max_sectors, int, 0444);
164 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
165 
166 static unsigned int nr_devices = 1;
167 module_param(nr_devices, uint, 0444);
168 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
169 
170 static bool g_blocking;
171 module_param_named(blocking, g_blocking, bool, 0444);
172 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
173 
174 static bool shared_tags;
175 module_param(shared_tags, bool, 0444);
176 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
177 
178 static bool g_shared_tag_bitmap;
179 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
180 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
181 
182 static int g_irqmode = NULL_IRQ_SOFTIRQ;
183 
184 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
185 {
186 	return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
187 					NULL_IRQ_TIMER);
188 }
189 
190 static const struct kernel_param_ops null_irqmode_param_ops = {
191 	.set	= null_set_irqmode,
192 	.get	= param_get_int,
193 };
194 
195 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
196 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
197 
198 static unsigned long g_completion_nsec = 10000;
199 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
200 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
201 
202 static int g_hw_queue_depth = 64;
203 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
204 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
205 
206 static bool g_use_per_node_hctx;
207 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
208 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
209 
210 static bool g_zoned;
211 module_param_named(zoned, g_zoned, bool, S_IRUGO);
212 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
213 
214 static unsigned long g_zone_size = 256;
215 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
216 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
217 
218 static unsigned long g_zone_capacity;
219 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
220 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
221 
222 static unsigned int g_zone_nr_conv;
223 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
224 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
225 
226 static unsigned int g_zone_max_open;
227 module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
228 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
229 
230 static unsigned int g_zone_max_active;
231 module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
232 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
233 
234 static struct nullb_device *null_alloc_dev(void);
235 static void null_free_dev(struct nullb_device *dev);
236 static void null_del_dev(struct nullb *nullb);
237 static int null_add_dev(struct nullb_device *dev);
238 static struct nullb *null_find_dev_by_name(const char *name);
239 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
240 
241 static inline struct nullb_device *to_nullb_device(struct config_item *item)
242 {
243 	return item ? container_of(item, struct nullb_device, item) : NULL;
244 }
245 
246 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
247 {
248 	return snprintf(page, PAGE_SIZE, "%u\n", val);
249 }
250 
251 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
252 	char *page)
253 {
254 	return snprintf(page, PAGE_SIZE, "%lu\n", val);
255 }
256 
257 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
258 {
259 	return snprintf(page, PAGE_SIZE, "%u\n", val);
260 }
261 
262 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
263 	const char *page, size_t count)
264 {
265 	unsigned int tmp;
266 	int result;
267 
268 	result = kstrtouint(page, 0, &tmp);
269 	if (result < 0)
270 		return result;
271 
272 	*val = tmp;
273 	return count;
274 }
275 
276 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
277 	const char *page, size_t count)
278 {
279 	int result;
280 	unsigned long tmp;
281 
282 	result = kstrtoul(page, 0, &tmp);
283 	if (result < 0)
284 		return result;
285 
286 	*val = tmp;
287 	return count;
288 }
289 
290 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
291 	size_t count)
292 {
293 	bool tmp;
294 	int result;
295 
296 	result = kstrtobool(page,  &tmp);
297 	if (result < 0)
298 		return result;
299 
300 	*val = tmp;
301 	return count;
302 }
303 
304 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
305 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY)				\
306 static ssize_t								\
307 nullb_device_##NAME##_show(struct config_item *item, char *page)	\
308 {									\
309 	return nullb_device_##TYPE##_attr_show(				\
310 				to_nullb_device(item)->NAME, page);	\
311 }									\
312 static ssize_t								\
313 nullb_device_##NAME##_store(struct config_item *item, const char *page,	\
314 			    size_t count)				\
315 {									\
316 	int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
317 	struct nullb_device *dev = to_nullb_device(item);		\
318 	TYPE new_value = 0;						\
319 	int ret;							\
320 									\
321 	ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
322 	if (ret < 0)							\
323 		return ret;						\
324 	if (apply_fn)							\
325 		ret = apply_fn(dev, new_value);				\
326 	else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) 	\
327 		ret = -EBUSY;						\
328 	if (ret < 0)							\
329 		return ret;						\
330 	dev->NAME = new_value;						\
331 	return count;							\
332 }									\
333 CONFIGFS_ATTR(nullb_device_, NAME);
334 
335 static int nullb_update_nr_hw_queues(struct nullb_device *dev,
336 				     unsigned int submit_queues,
337 				     unsigned int poll_queues)
338 
339 {
340 	struct blk_mq_tag_set *set;
341 	int ret, nr_hw_queues;
342 
343 	if (!dev->nullb)
344 		return 0;
345 
346 	/*
347 	 * Make sure at least one submit queue exists.
348 	 */
349 	if (!submit_queues)
350 		return -EINVAL;
351 
352 	/*
353 	 * Make sure that null_init_hctx() does not access nullb->queues[] past
354 	 * the end of that array.
355 	 */
356 	if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues)
357 		return -EINVAL;
358 
359 	/*
360 	 * Keep previous and new queue numbers in nullb_device for reference in
361 	 * the call back function null_map_queues().
362 	 */
363 	dev->prev_submit_queues = dev->submit_queues;
364 	dev->prev_poll_queues = dev->poll_queues;
365 	dev->submit_queues = submit_queues;
366 	dev->poll_queues = poll_queues;
367 
368 	set = dev->nullb->tag_set;
369 	nr_hw_queues = submit_queues + poll_queues;
370 	blk_mq_update_nr_hw_queues(set, nr_hw_queues);
371 	ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM;
372 
373 	if (ret) {
374 		/* on error, revert the queue numbers */
375 		dev->submit_queues = dev->prev_submit_queues;
376 		dev->poll_queues = dev->prev_poll_queues;
377 	}
378 
379 	return ret;
380 }
381 
382 static int nullb_apply_submit_queues(struct nullb_device *dev,
383 				     unsigned int submit_queues)
384 {
385 	return nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues);
386 }
387 
388 static int nullb_apply_poll_queues(struct nullb_device *dev,
389 				   unsigned int poll_queues)
390 {
391 	return nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues);
392 }
393 
394 NULLB_DEVICE_ATTR(size, ulong, NULL);
395 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
396 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
397 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues);
398 NULLB_DEVICE_ATTR(home_node, uint, NULL);
399 NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
400 NULLB_DEVICE_ATTR(blocksize, uint, NULL);
401 NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
402 NULLB_DEVICE_ATTR(irqmode, uint, NULL);
403 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
404 NULLB_DEVICE_ATTR(index, uint, NULL);
405 NULLB_DEVICE_ATTR(blocking, bool, NULL);
406 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
407 NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
408 NULLB_DEVICE_ATTR(discard, bool, NULL);
409 NULLB_DEVICE_ATTR(mbps, uint, NULL);
410 NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
411 NULLB_DEVICE_ATTR(zoned, bool, NULL);
412 NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
413 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
414 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
415 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
416 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
417 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
418 
419 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
420 {
421 	return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
422 }
423 
424 static ssize_t nullb_device_power_store(struct config_item *item,
425 				     const char *page, size_t count)
426 {
427 	struct nullb_device *dev = to_nullb_device(item);
428 	bool newp = false;
429 	ssize_t ret;
430 
431 	ret = nullb_device_bool_attr_store(&newp, page, count);
432 	if (ret < 0)
433 		return ret;
434 
435 	if (!dev->power && newp) {
436 		if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
437 			return count;
438 		ret = null_add_dev(dev);
439 		if (ret) {
440 			clear_bit(NULLB_DEV_FL_UP, &dev->flags);
441 			return ret;
442 		}
443 
444 		set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
445 		dev->power = newp;
446 	} else if (dev->power && !newp) {
447 		if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
448 			mutex_lock(&lock);
449 			dev->power = newp;
450 			null_del_dev(dev->nullb);
451 			mutex_unlock(&lock);
452 		}
453 		clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
454 	}
455 
456 	return count;
457 }
458 
459 CONFIGFS_ATTR(nullb_device_, power);
460 
461 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
462 {
463 	struct nullb_device *t_dev = to_nullb_device(item);
464 
465 	return badblocks_show(&t_dev->badblocks, page, 0);
466 }
467 
468 static ssize_t nullb_device_badblocks_store(struct config_item *item,
469 				     const char *page, size_t count)
470 {
471 	struct nullb_device *t_dev = to_nullb_device(item);
472 	char *orig, *buf, *tmp;
473 	u64 start, end;
474 	int ret;
475 
476 	orig = kstrndup(page, count, GFP_KERNEL);
477 	if (!orig)
478 		return -ENOMEM;
479 
480 	buf = strstrip(orig);
481 
482 	ret = -EINVAL;
483 	if (buf[0] != '+' && buf[0] != '-')
484 		goto out;
485 	tmp = strchr(&buf[1], '-');
486 	if (!tmp)
487 		goto out;
488 	*tmp = '\0';
489 	ret = kstrtoull(buf + 1, 0, &start);
490 	if (ret)
491 		goto out;
492 	ret = kstrtoull(tmp + 1, 0, &end);
493 	if (ret)
494 		goto out;
495 	ret = -EINVAL;
496 	if (start > end)
497 		goto out;
498 	/* enable badblocks */
499 	cmpxchg(&t_dev->badblocks.shift, -1, 0);
500 	if (buf[0] == '+')
501 		ret = badblocks_set(&t_dev->badblocks, start,
502 			end - start + 1, 1);
503 	else
504 		ret = badblocks_clear(&t_dev->badblocks, start,
505 			end - start + 1);
506 	if (ret == 0)
507 		ret = count;
508 out:
509 	kfree(orig);
510 	return ret;
511 }
512 CONFIGFS_ATTR(nullb_device_, badblocks);
513 
514 static struct configfs_attribute *nullb_device_attrs[] = {
515 	&nullb_device_attr_size,
516 	&nullb_device_attr_completion_nsec,
517 	&nullb_device_attr_submit_queues,
518 	&nullb_device_attr_poll_queues,
519 	&nullb_device_attr_home_node,
520 	&nullb_device_attr_queue_mode,
521 	&nullb_device_attr_blocksize,
522 	&nullb_device_attr_max_sectors,
523 	&nullb_device_attr_irqmode,
524 	&nullb_device_attr_hw_queue_depth,
525 	&nullb_device_attr_index,
526 	&nullb_device_attr_blocking,
527 	&nullb_device_attr_use_per_node_hctx,
528 	&nullb_device_attr_power,
529 	&nullb_device_attr_memory_backed,
530 	&nullb_device_attr_discard,
531 	&nullb_device_attr_mbps,
532 	&nullb_device_attr_cache_size,
533 	&nullb_device_attr_badblocks,
534 	&nullb_device_attr_zoned,
535 	&nullb_device_attr_zone_size,
536 	&nullb_device_attr_zone_capacity,
537 	&nullb_device_attr_zone_nr_conv,
538 	&nullb_device_attr_zone_max_open,
539 	&nullb_device_attr_zone_max_active,
540 	&nullb_device_attr_virt_boundary,
541 	NULL,
542 };
543 
544 static void nullb_device_release(struct config_item *item)
545 {
546 	struct nullb_device *dev = to_nullb_device(item);
547 
548 	null_free_device_storage(dev, false);
549 	null_free_dev(dev);
550 }
551 
552 static struct configfs_item_operations nullb_device_ops = {
553 	.release	= nullb_device_release,
554 };
555 
556 static const struct config_item_type nullb_device_type = {
557 	.ct_item_ops	= &nullb_device_ops,
558 	.ct_attrs	= nullb_device_attrs,
559 	.ct_owner	= THIS_MODULE,
560 };
561 
562 static struct
563 config_item *nullb_group_make_item(struct config_group *group, const char *name)
564 {
565 	struct nullb_device *dev;
566 
567 	if (null_find_dev_by_name(name))
568 		return ERR_PTR(-EEXIST);
569 
570 	dev = null_alloc_dev();
571 	if (!dev)
572 		return ERR_PTR(-ENOMEM);
573 
574 	config_item_init_type_name(&dev->item, name, &nullb_device_type);
575 
576 	return &dev->item;
577 }
578 
579 static void
580 nullb_group_drop_item(struct config_group *group, struct config_item *item)
581 {
582 	struct nullb_device *dev = to_nullb_device(item);
583 
584 	if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
585 		mutex_lock(&lock);
586 		dev->power = false;
587 		null_del_dev(dev->nullb);
588 		mutex_unlock(&lock);
589 	}
590 
591 	config_item_put(item);
592 }
593 
594 static ssize_t memb_group_features_show(struct config_item *item, char *page)
595 {
596 	return snprintf(page, PAGE_SIZE,
597 			"memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size,zone_capacity,zone_nr_conv,zone_max_open,zone_max_active,blocksize,max_sectors,virt_boundary\n");
598 }
599 
600 CONFIGFS_ATTR_RO(memb_group_, features);
601 
602 static struct configfs_attribute *nullb_group_attrs[] = {
603 	&memb_group_attr_features,
604 	NULL,
605 };
606 
607 static struct configfs_group_operations nullb_group_ops = {
608 	.make_item	= nullb_group_make_item,
609 	.drop_item	= nullb_group_drop_item,
610 };
611 
612 static const struct config_item_type nullb_group_type = {
613 	.ct_group_ops	= &nullb_group_ops,
614 	.ct_attrs	= nullb_group_attrs,
615 	.ct_owner	= THIS_MODULE,
616 };
617 
618 static struct configfs_subsystem nullb_subsys = {
619 	.su_group = {
620 		.cg_item = {
621 			.ci_namebuf = "nullb",
622 			.ci_type = &nullb_group_type,
623 		},
624 	},
625 };
626 
627 static inline int null_cache_active(struct nullb *nullb)
628 {
629 	return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
630 }
631 
632 static struct nullb_device *null_alloc_dev(void)
633 {
634 	struct nullb_device *dev;
635 
636 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
637 	if (!dev)
638 		return NULL;
639 	INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
640 	INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
641 	if (badblocks_init(&dev->badblocks, 0)) {
642 		kfree(dev);
643 		return NULL;
644 	}
645 
646 	dev->size = g_gb * 1024;
647 	dev->completion_nsec = g_completion_nsec;
648 	dev->submit_queues = g_submit_queues;
649 	dev->prev_submit_queues = g_submit_queues;
650 	dev->poll_queues = g_poll_queues;
651 	dev->prev_poll_queues = g_poll_queues;
652 	dev->home_node = g_home_node;
653 	dev->queue_mode = g_queue_mode;
654 	dev->blocksize = g_bs;
655 	dev->max_sectors = g_max_sectors;
656 	dev->irqmode = g_irqmode;
657 	dev->hw_queue_depth = g_hw_queue_depth;
658 	dev->blocking = g_blocking;
659 	dev->use_per_node_hctx = g_use_per_node_hctx;
660 	dev->zoned = g_zoned;
661 	dev->zone_size = g_zone_size;
662 	dev->zone_capacity = g_zone_capacity;
663 	dev->zone_nr_conv = g_zone_nr_conv;
664 	dev->zone_max_open = g_zone_max_open;
665 	dev->zone_max_active = g_zone_max_active;
666 	dev->virt_boundary = g_virt_boundary;
667 	return dev;
668 }
669 
670 static void null_free_dev(struct nullb_device *dev)
671 {
672 	if (!dev)
673 		return;
674 
675 	null_free_zoned_dev(dev);
676 	badblocks_exit(&dev->badblocks);
677 	kfree(dev);
678 }
679 
680 static void put_tag(struct nullb_queue *nq, unsigned int tag)
681 {
682 	clear_bit_unlock(tag, nq->tag_map);
683 
684 	if (waitqueue_active(&nq->wait))
685 		wake_up(&nq->wait);
686 }
687 
688 static unsigned int get_tag(struct nullb_queue *nq)
689 {
690 	unsigned int tag;
691 
692 	do {
693 		tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
694 		if (tag >= nq->queue_depth)
695 			return -1U;
696 	} while (test_and_set_bit_lock(tag, nq->tag_map));
697 
698 	return tag;
699 }
700 
701 static void free_cmd(struct nullb_cmd *cmd)
702 {
703 	put_tag(cmd->nq, cmd->tag);
704 }
705 
706 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
707 
708 static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
709 {
710 	struct nullb_cmd *cmd;
711 	unsigned int tag;
712 
713 	tag = get_tag(nq);
714 	if (tag != -1U) {
715 		cmd = &nq->cmds[tag];
716 		cmd->tag = tag;
717 		cmd->error = BLK_STS_OK;
718 		cmd->nq = nq;
719 		if (nq->dev->irqmode == NULL_IRQ_TIMER) {
720 			hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
721 				     HRTIMER_MODE_REL);
722 			cmd->timer.function = null_cmd_timer_expired;
723 		}
724 		return cmd;
725 	}
726 
727 	return NULL;
728 }
729 
730 static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, struct bio *bio)
731 {
732 	struct nullb_cmd *cmd;
733 	DEFINE_WAIT(wait);
734 
735 	do {
736 		/*
737 		 * This avoids multiple return statements, multiple calls to
738 		 * __alloc_cmd() and a fast path call to prepare_to_wait().
739 		 */
740 		cmd = __alloc_cmd(nq);
741 		if (cmd) {
742 			cmd->bio = bio;
743 			return cmd;
744 		}
745 		prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
746 		io_schedule();
747 		finish_wait(&nq->wait, &wait);
748 	} while (1);
749 }
750 
751 static void end_cmd(struct nullb_cmd *cmd)
752 {
753 	int queue_mode = cmd->nq->dev->queue_mode;
754 
755 	switch (queue_mode)  {
756 	case NULL_Q_MQ:
757 		blk_mq_end_request(cmd->rq, cmd->error);
758 		return;
759 	case NULL_Q_BIO:
760 		cmd->bio->bi_status = cmd->error;
761 		bio_endio(cmd->bio);
762 		break;
763 	}
764 
765 	free_cmd(cmd);
766 }
767 
768 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
769 {
770 	end_cmd(container_of(timer, struct nullb_cmd, timer));
771 
772 	return HRTIMER_NORESTART;
773 }
774 
775 static void null_cmd_end_timer(struct nullb_cmd *cmd)
776 {
777 	ktime_t kt = cmd->nq->dev->completion_nsec;
778 
779 	hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
780 }
781 
782 static void null_complete_rq(struct request *rq)
783 {
784 	end_cmd(blk_mq_rq_to_pdu(rq));
785 }
786 
787 static struct nullb_page *null_alloc_page(void)
788 {
789 	struct nullb_page *t_page;
790 
791 	t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO);
792 	if (!t_page)
793 		return NULL;
794 
795 	t_page->page = alloc_pages(GFP_NOIO, 0);
796 	if (!t_page->page) {
797 		kfree(t_page);
798 		return NULL;
799 	}
800 
801 	memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
802 	return t_page;
803 }
804 
805 static void null_free_page(struct nullb_page *t_page)
806 {
807 	__set_bit(NULLB_PAGE_FREE, t_page->bitmap);
808 	if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
809 		return;
810 	__free_page(t_page->page);
811 	kfree(t_page);
812 }
813 
814 static bool null_page_empty(struct nullb_page *page)
815 {
816 	int size = MAP_SZ - 2;
817 
818 	return find_first_bit(page->bitmap, size) == size;
819 }
820 
821 static void null_free_sector(struct nullb *nullb, sector_t sector,
822 	bool is_cache)
823 {
824 	unsigned int sector_bit;
825 	u64 idx;
826 	struct nullb_page *t_page, *ret;
827 	struct radix_tree_root *root;
828 
829 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
830 	idx = sector >> PAGE_SECTORS_SHIFT;
831 	sector_bit = (sector & SECTOR_MASK);
832 
833 	t_page = radix_tree_lookup(root, idx);
834 	if (t_page) {
835 		__clear_bit(sector_bit, t_page->bitmap);
836 
837 		if (null_page_empty(t_page)) {
838 			ret = radix_tree_delete_item(root, idx, t_page);
839 			WARN_ON(ret != t_page);
840 			null_free_page(ret);
841 			if (is_cache)
842 				nullb->dev->curr_cache -= PAGE_SIZE;
843 		}
844 	}
845 }
846 
847 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
848 	struct nullb_page *t_page, bool is_cache)
849 {
850 	struct radix_tree_root *root;
851 
852 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
853 
854 	if (radix_tree_insert(root, idx, t_page)) {
855 		null_free_page(t_page);
856 		t_page = radix_tree_lookup(root, idx);
857 		WARN_ON(!t_page || t_page->page->index != idx);
858 	} else if (is_cache)
859 		nullb->dev->curr_cache += PAGE_SIZE;
860 
861 	return t_page;
862 }
863 
864 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
865 {
866 	unsigned long pos = 0;
867 	int nr_pages;
868 	struct nullb_page *ret, *t_pages[FREE_BATCH];
869 	struct radix_tree_root *root;
870 
871 	root = is_cache ? &dev->cache : &dev->data;
872 
873 	do {
874 		int i;
875 
876 		nr_pages = radix_tree_gang_lookup(root,
877 				(void **)t_pages, pos, FREE_BATCH);
878 
879 		for (i = 0; i < nr_pages; i++) {
880 			pos = t_pages[i]->page->index;
881 			ret = radix_tree_delete_item(root, pos, t_pages[i]);
882 			WARN_ON(ret != t_pages[i]);
883 			null_free_page(ret);
884 		}
885 
886 		pos++;
887 	} while (nr_pages == FREE_BATCH);
888 
889 	if (is_cache)
890 		dev->curr_cache = 0;
891 }
892 
893 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
894 	sector_t sector, bool for_write, bool is_cache)
895 {
896 	unsigned int sector_bit;
897 	u64 idx;
898 	struct nullb_page *t_page;
899 	struct radix_tree_root *root;
900 
901 	idx = sector >> PAGE_SECTORS_SHIFT;
902 	sector_bit = (sector & SECTOR_MASK);
903 
904 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
905 	t_page = radix_tree_lookup(root, idx);
906 	WARN_ON(t_page && t_page->page->index != idx);
907 
908 	if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
909 		return t_page;
910 
911 	return NULL;
912 }
913 
914 static struct nullb_page *null_lookup_page(struct nullb *nullb,
915 	sector_t sector, bool for_write, bool ignore_cache)
916 {
917 	struct nullb_page *page = NULL;
918 
919 	if (!ignore_cache)
920 		page = __null_lookup_page(nullb, sector, for_write, true);
921 	if (page)
922 		return page;
923 	return __null_lookup_page(nullb, sector, for_write, false);
924 }
925 
926 static struct nullb_page *null_insert_page(struct nullb *nullb,
927 					   sector_t sector, bool ignore_cache)
928 	__releases(&nullb->lock)
929 	__acquires(&nullb->lock)
930 {
931 	u64 idx;
932 	struct nullb_page *t_page;
933 
934 	t_page = null_lookup_page(nullb, sector, true, ignore_cache);
935 	if (t_page)
936 		return t_page;
937 
938 	spin_unlock_irq(&nullb->lock);
939 
940 	t_page = null_alloc_page();
941 	if (!t_page)
942 		goto out_lock;
943 
944 	if (radix_tree_preload(GFP_NOIO))
945 		goto out_freepage;
946 
947 	spin_lock_irq(&nullb->lock);
948 	idx = sector >> PAGE_SECTORS_SHIFT;
949 	t_page->page->index = idx;
950 	t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
951 	radix_tree_preload_end();
952 
953 	return t_page;
954 out_freepage:
955 	null_free_page(t_page);
956 out_lock:
957 	spin_lock_irq(&nullb->lock);
958 	return null_lookup_page(nullb, sector, true, ignore_cache);
959 }
960 
961 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
962 {
963 	int i;
964 	unsigned int offset;
965 	u64 idx;
966 	struct nullb_page *t_page, *ret;
967 	void *dst, *src;
968 
969 	idx = c_page->page->index;
970 
971 	t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
972 
973 	__clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
974 	if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
975 		null_free_page(c_page);
976 		if (t_page && null_page_empty(t_page)) {
977 			ret = radix_tree_delete_item(&nullb->dev->data,
978 				idx, t_page);
979 			null_free_page(t_page);
980 		}
981 		return 0;
982 	}
983 
984 	if (!t_page)
985 		return -ENOMEM;
986 
987 	src = kmap_atomic(c_page->page);
988 	dst = kmap_atomic(t_page->page);
989 
990 	for (i = 0; i < PAGE_SECTORS;
991 			i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
992 		if (test_bit(i, c_page->bitmap)) {
993 			offset = (i << SECTOR_SHIFT);
994 			memcpy(dst + offset, src + offset,
995 				nullb->dev->blocksize);
996 			__set_bit(i, t_page->bitmap);
997 		}
998 	}
999 
1000 	kunmap_atomic(dst);
1001 	kunmap_atomic(src);
1002 
1003 	ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
1004 	null_free_page(ret);
1005 	nullb->dev->curr_cache -= PAGE_SIZE;
1006 
1007 	return 0;
1008 }
1009 
1010 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
1011 {
1012 	int i, err, nr_pages;
1013 	struct nullb_page *c_pages[FREE_BATCH];
1014 	unsigned long flushed = 0, one_round;
1015 
1016 again:
1017 	if ((nullb->dev->cache_size * 1024 * 1024) >
1018 	     nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
1019 		return 0;
1020 
1021 	nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
1022 			(void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
1023 	/*
1024 	 * nullb_flush_cache_page could unlock before using the c_pages. To
1025 	 * avoid race, we don't allow page free
1026 	 */
1027 	for (i = 0; i < nr_pages; i++) {
1028 		nullb->cache_flush_pos = c_pages[i]->page->index;
1029 		/*
1030 		 * We found the page which is being flushed to disk by other
1031 		 * threads
1032 		 */
1033 		if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
1034 			c_pages[i] = NULL;
1035 		else
1036 			__set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
1037 	}
1038 
1039 	one_round = 0;
1040 	for (i = 0; i < nr_pages; i++) {
1041 		if (c_pages[i] == NULL)
1042 			continue;
1043 		err = null_flush_cache_page(nullb, c_pages[i]);
1044 		if (err)
1045 			return err;
1046 		one_round++;
1047 	}
1048 	flushed += one_round << PAGE_SHIFT;
1049 
1050 	if (n > flushed) {
1051 		if (nr_pages == 0)
1052 			nullb->cache_flush_pos = 0;
1053 		if (one_round == 0) {
1054 			/* give other threads a chance */
1055 			spin_unlock_irq(&nullb->lock);
1056 			spin_lock_irq(&nullb->lock);
1057 		}
1058 		goto again;
1059 	}
1060 	return 0;
1061 }
1062 
1063 static int copy_to_nullb(struct nullb *nullb, struct page *source,
1064 	unsigned int off, sector_t sector, size_t n, bool is_fua)
1065 {
1066 	size_t temp, count = 0;
1067 	unsigned int offset;
1068 	struct nullb_page *t_page;
1069 	void *dst, *src;
1070 
1071 	while (count < n) {
1072 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1073 
1074 		if (null_cache_active(nullb) && !is_fua)
1075 			null_make_cache_space(nullb, PAGE_SIZE);
1076 
1077 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1078 		t_page = null_insert_page(nullb, sector,
1079 			!null_cache_active(nullb) || is_fua);
1080 		if (!t_page)
1081 			return -ENOSPC;
1082 
1083 		src = kmap_atomic(source);
1084 		dst = kmap_atomic(t_page->page);
1085 		memcpy(dst + offset, src + off + count, temp);
1086 		kunmap_atomic(dst);
1087 		kunmap_atomic(src);
1088 
1089 		__set_bit(sector & SECTOR_MASK, t_page->bitmap);
1090 
1091 		if (is_fua)
1092 			null_free_sector(nullb, sector, true);
1093 
1094 		count += temp;
1095 		sector += temp >> SECTOR_SHIFT;
1096 	}
1097 	return 0;
1098 }
1099 
1100 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1101 	unsigned int off, sector_t sector, size_t n)
1102 {
1103 	size_t temp, count = 0;
1104 	unsigned int offset;
1105 	struct nullb_page *t_page;
1106 	void *dst, *src;
1107 
1108 	while (count < n) {
1109 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1110 
1111 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1112 		t_page = null_lookup_page(nullb, sector, false,
1113 			!null_cache_active(nullb));
1114 
1115 		dst = kmap_atomic(dest);
1116 		if (!t_page) {
1117 			memset(dst + off + count, 0, temp);
1118 			goto next;
1119 		}
1120 		src = kmap_atomic(t_page->page);
1121 		memcpy(dst + off + count, src + offset, temp);
1122 		kunmap_atomic(src);
1123 next:
1124 		kunmap_atomic(dst);
1125 
1126 		count += temp;
1127 		sector += temp >> SECTOR_SHIFT;
1128 	}
1129 	return 0;
1130 }
1131 
1132 static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1133 			       unsigned int len, unsigned int off)
1134 {
1135 	void *dst;
1136 
1137 	dst = kmap_atomic(page);
1138 	memset(dst + off, 0xFF, len);
1139 	kunmap_atomic(dst);
1140 }
1141 
1142 blk_status_t null_handle_discard(struct nullb_device *dev,
1143 				 sector_t sector, sector_t nr_sectors)
1144 {
1145 	struct nullb *nullb = dev->nullb;
1146 	size_t n = nr_sectors << SECTOR_SHIFT;
1147 	size_t temp;
1148 
1149 	spin_lock_irq(&nullb->lock);
1150 	while (n > 0) {
1151 		temp = min_t(size_t, n, dev->blocksize);
1152 		null_free_sector(nullb, sector, false);
1153 		if (null_cache_active(nullb))
1154 			null_free_sector(nullb, sector, true);
1155 		sector += temp >> SECTOR_SHIFT;
1156 		n -= temp;
1157 	}
1158 	spin_unlock_irq(&nullb->lock);
1159 
1160 	return BLK_STS_OK;
1161 }
1162 
1163 static int null_handle_flush(struct nullb *nullb)
1164 {
1165 	int err;
1166 
1167 	if (!null_cache_active(nullb))
1168 		return 0;
1169 
1170 	spin_lock_irq(&nullb->lock);
1171 	while (true) {
1172 		err = null_make_cache_space(nullb,
1173 			nullb->dev->cache_size * 1024 * 1024);
1174 		if (err || nullb->dev->curr_cache == 0)
1175 			break;
1176 	}
1177 
1178 	WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1179 	spin_unlock_irq(&nullb->lock);
1180 	return err;
1181 }
1182 
1183 static int null_transfer(struct nullb *nullb, struct page *page,
1184 	unsigned int len, unsigned int off, bool is_write, sector_t sector,
1185 	bool is_fua)
1186 {
1187 	struct nullb_device *dev = nullb->dev;
1188 	unsigned int valid_len = len;
1189 	int err = 0;
1190 
1191 	if (!is_write) {
1192 		if (dev->zoned)
1193 			valid_len = null_zone_valid_read_len(nullb,
1194 				sector, len);
1195 
1196 		if (valid_len) {
1197 			err = copy_from_nullb(nullb, page, off,
1198 				sector, valid_len);
1199 			off += valid_len;
1200 			len -= valid_len;
1201 		}
1202 
1203 		if (len)
1204 			nullb_fill_pattern(nullb, page, len, off);
1205 		flush_dcache_page(page);
1206 	} else {
1207 		flush_dcache_page(page);
1208 		err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1209 	}
1210 
1211 	return err;
1212 }
1213 
1214 static int null_handle_rq(struct nullb_cmd *cmd)
1215 {
1216 	struct request *rq = cmd->rq;
1217 	struct nullb *nullb = cmd->nq->dev->nullb;
1218 	int err;
1219 	unsigned int len;
1220 	sector_t sector = blk_rq_pos(rq);
1221 	struct req_iterator iter;
1222 	struct bio_vec bvec;
1223 
1224 	spin_lock_irq(&nullb->lock);
1225 	rq_for_each_segment(bvec, rq, iter) {
1226 		len = bvec.bv_len;
1227 		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1228 				     op_is_write(req_op(rq)), sector,
1229 				     rq->cmd_flags & REQ_FUA);
1230 		if (err) {
1231 			spin_unlock_irq(&nullb->lock);
1232 			return err;
1233 		}
1234 		sector += len >> SECTOR_SHIFT;
1235 	}
1236 	spin_unlock_irq(&nullb->lock);
1237 
1238 	return 0;
1239 }
1240 
1241 static int null_handle_bio(struct nullb_cmd *cmd)
1242 {
1243 	struct bio *bio = cmd->bio;
1244 	struct nullb *nullb = cmd->nq->dev->nullb;
1245 	int err;
1246 	unsigned int len;
1247 	sector_t sector = bio->bi_iter.bi_sector;
1248 	struct bio_vec bvec;
1249 	struct bvec_iter iter;
1250 
1251 	spin_lock_irq(&nullb->lock);
1252 	bio_for_each_segment(bvec, bio, iter) {
1253 		len = bvec.bv_len;
1254 		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1255 				     op_is_write(bio_op(bio)), sector,
1256 				     bio->bi_opf & REQ_FUA);
1257 		if (err) {
1258 			spin_unlock_irq(&nullb->lock);
1259 			return err;
1260 		}
1261 		sector += len >> SECTOR_SHIFT;
1262 	}
1263 	spin_unlock_irq(&nullb->lock);
1264 	return 0;
1265 }
1266 
1267 static void null_stop_queue(struct nullb *nullb)
1268 {
1269 	struct request_queue *q = nullb->q;
1270 
1271 	if (nullb->dev->queue_mode == NULL_Q_MQ)
1272 		blk_mq_stop_hw_queues(q);
1273 }
1274 
1275 static void null_restart_queue_async(struct nullb *nullb)
1276 {
1277 	struct request_queue *q = nullb->q;
1278 
1279 	if (nullb->dev->queue_mode == NULL_Q_MQ)
1280 		blk_mq_start_stopped_hw_queues(q, true);
1281 }
1282 
1283 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1284 {
1285 	struct nullb_device *dev = cmd->nq->dev;
1286 	struct nullb *nullb = dev->nullb;
1287 	blk_status_t sts = BLK_STS_OK;
1288 	struct request *rq = cmd->rq;
1289 
1290 	if (!hrtimer_active(&nullb->bw_timer))
1291 		hrtimer_restart(&nullb->bw_timer);
1292 
1293 	if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1294 		null_stop_queue(nullb);
1295 		/* race with timer */
1296 		if (atomic_long_read(&nullb->cur_bytes) > 0)
1297 			null_restart_queue_async(nullb);
1298 		/* requeue request */
1299 		sts = BLK_STS_DEV_RESOURCE;
1300 	}
1301 	return sts;
1302 }
1303 
1304 static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
1305 						 sector_t sector,
1306 						 sector_t nr_sectors)
1307 {
1308 	struct badblocks *bb = &cmd->nq->dev->badblocks;
1309 	sector_t first_bad;
1310 	int bad_sectors;
1311 
1312 	if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
1313 		return BLK_STS_IOERR;
1314 
1315 	return BLK_STS_OK;
1316 }
1317 
1318 static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
1319 						     enum req_opf op,
1320 						     sector_t sector,
1321 						     sector_t nr_sectors)
1322 {
1323 	struct nullb_device *dev = cmd->nq->dev;
1324 	int err;
1325 
1326 	if (op == REQ_OP_DISCARD)
1327 		return null_handle_discard(dev, sector, nr_sectors);
1328 
1329 	if (dev->queue_mode == NULL_Q_BIO)
1330 		err = null_handle_bio(cmd);
1331 	else
1332 		err = null_handle_rq(cmd);
1333 
1334 	return errno_to_blk_status(err);
1335 }
1336 
1337 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1338 {
1339 	struct nullb_device *dev = cmd->nq->dev;
1340 	struct bio *bio;
1341 
1342 	if (dev->memory_backed)
1343 		return;
1344 
1345 	if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) == REQ_OP_READ) {
1346 		zero_fill_bio(cmd->bio);
1347 	} else if (req_op(cmd->rq) == REQ_OP_READ) {
1348 		__rq_for_each_bio(bio, cmd->rq)
1349 			zero_fill_bio(bio);
1350 	}
1351 }
1352 
1353 static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1354 {
1355 	/*
1356 	 * Since root privileges are required to configure the null_blk
1357 	 * driver, it is fine that this driver does not initialize the
1358 	 * data buffers of read commands. Zero-initialize these buffers
1359 	 * anyway if KMSAN is enabled to prevent that KMSAN complains
1360 	 * about null_blk not initializing read data buffers.
1361 	 */
1362 	if (IS_ENABLED(CONFIG_KMSAN))
1363 		nullb_zero_read_cmd_buffer(cmd);
1364 
1365 	/* Complete IO by inline, softirq or timer */
1366 	switch (cmd->nq->dev->irqmode) {
1367 	case NULL_IRQ_SOFTIRQ:
1368 		switch (cmd->nq->dev->queue_mode) {
1369 		case NULL_Q_MQ:
1370 			if (likely(!blk_should_fake_timeout(cmd->rq->q)))
1371 				blk_mq_complete_request(cmd->rq);
1372 			break;
1373 		case NULL_Q_BIO:
1374 			/*
1375 			 * XXX: no proper submitting cpu information available.
1376 			 */
1377 			end_cmd(cmd);
1378 			break;
1379 		}
1380 		break;
1381 	case NULL_IRQ_NONE:
1382 		end_cmd(cmd);
1383 		break;
1384 	case NULL_IRQ_TIMER:
1385 		null_cmd_end_timer(cmd);
1386 		break;
1387 	}
1388 }
1389 
1390 blk_status_t null_process_cmd(struct nullb_cmd *cmd,
1391 			      enum req_opf op, sector_t sector,
1392 			      unsigned int nr_sectors)
1393 {
1394 	struct nullb_device *dev = cmd->nq->dev;
1395 	blk_status_t ret;
1396 
1397 	if (dev->badblocks.shift != -1) {
1398 		ret = null_handle_badblocks(cmd, sector, nr_sectors);
1399 		if (ret != BLK_STS_OK)
1400 			return ret;
1401 	}
1402 
1403 	if (dev->memory_backed)
1404 		return null_handle_memory_backed(cmd, op, sector, nr_sectors);
1405 
1406 	return BLK_STS_OK;
1407 }
1408 
1409 static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1410 				    sector_t nr_sectors, enum req_opf op)
1411 {
1412 	struct nullb_device *dev = cmd->nq->dev;
1413 	struct nullb *nullb = dev->nullb;
1414 	blk_status_t sts;
1415 
1416 	if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1417 		sts = null_handle_throttled(cmd);
1418 		if (sts != BLK_STS_OK)
1419 			return sts;
1420 	}
1421 
1422 	if (op == REQ_OP_FLUSH) {
1423 		cmd->error = errno_to_blk_status(null_handle_flush(nullb));
1424 		goto out;
1425 	}
1426 
1427 	if (dev->zoned)
1428 		sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1429 	else
1430 		sts = null_process_cmd(cmd, op, sector, nr_sectors);
1431 
1432 	/* Do not overwrite errors (e.g. timeout errors) */
1433 	if (cmd->error == BLK_STS_OK)
1434 		cmd->error = sts;
1435 
1436 out:
1437 	nullb_complete_cmd(cmd);
1438 	return BLK_STS_OK;
1439 }
1440 
1441 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1442 {
1443 	struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1444 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1445 	unsigned int mbps = nullb->dev->mbps;
1446 
1447 	if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1448 		return HRTIMER_NORESTART;
1449 
1450 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1451 	null_restart_queue_async(nullb);
1452 
1453 	hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1454 
1455 	return HRTIMER_RESTART;
1456 }
1457 
1458 static void nullb_setup_bwtimer(struct nullb *nullb)
1459 {
1460 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1461 
1462 	hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1463 	nullb->bw_timer.function = nullb_bwtimer_fn;
1464 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1465 	hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1466 }
1467 
1468 static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1469 {
1470 	int index = 0;
1471 
1472 	if (nullb->nr_queues != 1)
1473 		index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1474 
1475 	return &nullb->queues[index];
1476 }
1477 
1478 static void null_submit_bio(struct bio *bio)
1479 {
1480 	sector_t sector = bio->bi_iter.bi_sector;
1481 	sector_t nr_sectors = bio_sectors(bio);
1482 	struct nullb *nullb = bio->bi_bdev->bd_disk->private_data;
1483 	struct nullb_queue *nq = nullb_to_queue(nullb);
1484 
1485 	null_handle_cmd(alloc_cmd(nq, bio), sector, nr_sectors, bio_op(bio));
1486 }
1487 
1488 static bool should_timeout_request(struct request *rq)
1489 {
1490 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1491 	if (g_timeout_str[0])
1492 		return should_fail(&null_timeout_attr, 1);
1493 #endif
1494 	return false;
1495 }
1496 
1497 static bool should_requeue_request(struct request *rq)
1498 {
1499 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1500 	if (g_requeue_str[0])
1501 		return should_fail(&null_requeue_attr, 1);
1502 #endif
1503 	return false;
1504 }
1505 
1506 static int null_map_queues(struct blk_mq_tag_set *set)
1507 {
1508 	struct nullb *nullb = set->driver_data;
1509 	int i, qoff;
1510 	unsigned int submit_queues = g_submit_queues;
1511 	unsigned int poll_queues = g_poll_queues;
1512 
1513 	if (nullb) {
1514 		struct nullb_device *dev = nullb->dev;
1515 
1516 		/*
1517 		 * Refer nr_hw_queues of the tag set to check if the expected
1518 		 * number of hardware queues are prepared. If block layer failed
1519 		 * to prepare them, use previous numbers of submit queues and
1520 		 * poll queues to map queues.
1521 		 */
1522 		if (set->nr_hw_queues ==
1523 		    dev->submit_queues + dev->poll_queues) {
1524 			submit_queues = dev->submit_queues;
1525 			poll_queues = dev->poll_queues;
1526 		} else if (set->nr_hw_queues ==
1527 			   dev->prev_submit_queues + dev->prev_poll_queues) {
1528 			submit_queues = dev->prev_submit_queues;
1529 			poll_queues = dev->prev_poll_queues;
1530 		} else {
1531 			pr_warn("tag set has unexpected nr_hw_queues: %d\n",
1532 				set->nr_hw_queues);
1533 			return -EINVAL;
1534 		}
1535 	}
1536 
1537 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
1538 		struct blk_mq_queue_map *map = &set->map[i];
1539 
1540 		switch (i) {
1541 		case HCTX_TYPE_DEFAULT:
1542 			map->nr_queues = submit_queues;
1543 			break;
1544 		case HCTX_TYPE_READ:
1545 			map->nr_queues = 0;
1546 			continue;
1547 		case HCTX_TYPE_POLL:
1548 			map->nr_queues = poll_queues;
1549 			break;
1550 		}
1551 		map->queue_offset = qoff;
1552 		qoff += map->nr_queues;
1553 		blk_mq_map_queues(map);
1554 	}
1555 
1556 	return 0;
1557 }
1558 
1559 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1560 {
1561 	struct nullb_queue *nq = hctx->driver_data;
1562 	LIST_HEAD(list);
1563 	int nr = 0;
1564 
1565 	spin_lock(&nq->poll_lock);
1566 	list_splice_init(&nq->poll_list, &list);
1567 	spin_unlock(&nq->poll_lock);
1568 
1569 	while (!list_empty(&list)) {
1570 		struct nullb_cmd *cmd;
1571 		struct request *req;
1572 
1573 		req = list_first_entry(&list, struct request, queuelist);
1574 		list_del_init(&req->queuelist);
1575 		cmd = blk_mq_rq_to_pdu(req);
1576 		cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req),
1577 						blk_rq_sectors(req));
1578 		if (!blk_mq_add_to_batch(req, iob, (__force int) cmd->error,
1579 					blk_mq_end_request_batch))
1580 			end_cmd(cmd);
1581 		nr++;
1582 	}
1583 
1584 	return nr;
1585 }
1586 
1587 static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
1588 {
1589 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1590 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1591 
1592 	pr_info("rq %p timed out\n", rq);
1593 
1594 	if (hctx->type == HCTX_TYPE_POLL) {
1595 		struct nullb_queue *nq = hctx->driver_data;
1596 
1597 		spin_lock(&nq->poll_lock);
1598 		list_del_init(&rq->queuelist);
1599 		spin_unlock(&nq->poll_lock);
1600 	}
1601 
1602 	/*
1603 	 * If the device is marked as blocking (i.e. memory backed or zoned
1604 	 * device), the submission path may be blocked waiting for resources
1605 	 * and cause real timeouts. For these real timeouts, the submission
1606 	 * path will complete the request using blk_mq_complete_request().
1607 	 * Only fake timeouts need to execute blk_mq_complete_request() here.
1608 	 */
1609 	cmd->error = BLK_STS_TIMEOUT;
1610 	if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL)
1611 		blk_mq_complete_request(rq);
1612 	return BLK_EH_DONE;
1613 }
1614 
1615 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1616 			 const struct blk_mq_queue_data *bd)
1617 {
1618 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1619 	struct nullb_queue *nq = hctx->driver_data;
1620 	sector_t nr_sectors = blk_rq_sectors(bd->rq);
1621 	sector_t sector = blk_rq_pos(bd->rq);
1622 	const bool is_poll = hctx->type == HCTX_TYPE_POLL;
1623 
1624 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1625 
1626 	if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) {
1627 		hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1628 		cmd->timer.function = null_cmd_timer_expired;
1629 	}
1630 	cmd->rq = bd->rq;
1631 	cmd->error = BLK_STS_OK;
1632 	cmd->nq = nq;
1633 	cmd->fake_timeout = should_timeout_request(bd->rq);
1634 
1635 	blk_mq_start_request(bd->rq);
1636 
1637 	if (should_requeue_request(bd->rq)) {
1638 		/*
1639 		 * Alternate between hitting the core BUSY path, and the
1640 		 * driver driven requeue path
1641 		 */
1642 		nq->requeue_selection++;
1643 		if (nq->requeue_selection & 1)
1644 			return BLK_STS_RESOURCE;
1645 		else {
1646 			blk_mq_requeue_request(bd->rq, true);
1647 			return BLK_STS_OK;
1648 		}
1649 	}
1650 
1651 	if (is_poll) {
1652 		spin_lock(&nq->poll_lock);
1653 		list_add_tail(&bd->rq->queuelist, &nq->poll_list);
1654 		spin_unlock(&nq->poll_lock);
1655 		return BLK_STS_OK;
1656 	}
1657 	if (cmd->fake_timeout)
1658 		return BLK_STS_OK;
1659 
1660 	return null_handle_cmd(cmd, sector, nr_sectors, req_op(bd->rq));
1661 }
1662 
1663 static void cleanup_queue(struct nullb_queue *nq)
1664 {
1665 	kfree(nq->tag_map);
1666 	kfree(nq->cmds);
1667 }
1668 
1669 static void cleanup_queues(struct nullb *nullb)
1670 {
1671 	int i;
1672 
1673 	for (i = 0; i < nullb->nr_queues; i++)
1674 		cleanup_queue(&nullb->queues[i]);
1675 
1676 	kfree(nullb->queues);
1677 }
1678 
1679 static void null_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1680 {
1681 	struct nullb_queue *nq = hctx->driver_data;
1682 	struct nullb *nullb = nq->dev->nullb;
1683 
1684 	nullb->nr_queues--;
1685 }
1686 
1687 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1688 {
1689 	init_waitqueue_head(&nq->wait);
1690 	nq->queue_depth = nullb->queue_depth;
1691 	nq->dev = nullb->dev;
1692 	INIT_LIST_HEAD(&nq->poll_list);
1693 	spin_lock_init(&nq->poll_lock);
1694 }
1695 
1696 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1697 			  unsigned int hctx_idx)
1698 {
1699 	struct nullb *nullb = hctx->queue->queuedata;
1700 	struct nullb_queue *nq;
1701 
1702 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1703 	if (g_init_hctx_str[0] && should_fail(&null_init_hctx_attr, 1))
1704 		return -EFAULT;
1705 #endif
1706 
1707 	nq = &nullb->queues[hctx_idx];
1708 	hctx->driver_data = nq;
1709 	null_init_queue(nullb, nq);
1710 	nullb->nr_queues++;
1711 
1712 	return 0;
1713 }
1714 
1715 static const struct blk_mq_ops null_mq_ops = {
1716 	.queue_rq       = null_queue_rq,
1717 	.complete	= null_complete_rq,
1718 	.timeout	= null_timeout_rq,
1719 	.poll		= null_poll,
1720 	.map_queues	= null_map_queues,
1721 	.init_hctx	= null_init_hctx,
1722 	.exit_hctx	= null_exit_hctx,
1723 };
1724 
1725 static void null_del_dev(struct nullb *nullb)
1726 {
1727 	struct nullb_device *dev;
1728 
1729 	if (!nullb)
1730 		return;
1731 
1732 	dev = nullb->dev;
1733 
1734 	ida_simple_remove(&nullb_indexes, nullb->index);
1735 
1736 	list_del_init(&nullb->list);
1737 
1738 	del_gendisk(nullb->disk);
1739 
1740 	if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1741 		hrtimer_cancel(&nullb->bw_timer);
1742 		atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1743 		null_restart_queue_async(nullb);
1744 	}
1745 
1746 	blk_cleanup_disk(nullb->disk);
1747 	if (dev->queue_mode == NULL_Q_MQ &&
1748 	    nullb->tag_set == &nullb->__tag_set)
1749 		blk_mq_free_tag_set(nullb->tag_set);
1750 	cleanup_queues(nullb);
1751 	if (null_cache_active(nullb))
1752 		null_free_device_storage(nullb->dev, true);
1753 	kfree(nullb);
1754 	dev->nullb = NULL;
1755 }
1756 
1757 static void null_config_discard(struct nullb *nullb)
1758 {
1759 	if (nullb->dev->discard == false)
1760 		return;
1761 
1762 	if (!nullb->dev->memory_backed) {
1763 		nullb->dev->discard = false;
1764 		pr_info("discard option is ignored without memory backing\n");
1765 		return;
1766 	}
1767 
1768 	if (nullb->dev->zoned) {
1769 		nullb->dev->discard = false;
1770 		pr_info("discard option is ignored in zoned mode\n");
1771 		return;
1772 	}
1773 
1774 	nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1775 	blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1776 }
1777 
1778 static const struct block_device_operations null_bio_ops = {
1779 	.owner		= THIS_MODULE,
1780 	.submit_bio	= null_submit_bio,
1781 	.report_zones	= null_report_zones,
1782 };
1783 
1784 static const struct block_device_operations null_rq_ops = {
1785 	.owner		= THIS_MODULE,
1786 	.report_zones	= null_report_zones,
1787 };
1788 
1789 static int setup_commands(struct nullb_queue *nq)
1790 {
1791 	struct nullb_cmd *cmd;
1792 	int i, tag_size;
1793 
1794 	nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1795 	if (!nq->cmds)
1796 		return -ENOMEM;
1797 
1798 	tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
1799 	nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
1800 	if (!nq->tag_map) {
1801 		kfree(nq->cmds);
1802 		return -ENOMEM;
1803 	}
1804 
1805 	for (i = 0; i < nq->queue_depth; i++) {
1806 		cmd = &nq->cmds[i];
1807 		cmd->tag = -1U;
1808 	}
1809 
1810 	return 0;
1811 }
1812 
1813 static int setup_queues(struct nullb *nullb)
1814 {
1815 	int nqueues = nr_cpu_ids;
1816 
1817 	if (g_poll_queues)
1818 		nqueues += g_poll_queues;
1819 
1820 	nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue),
1821 				GFP_KERNEL);
1822 	if (!nullb->queues)
1823 		return -ENOMEM;
1824 
1825 	nullb->queue_depth = nullb->dev->hw_queue_depth;
1826 	return 0;
1827 }
1828 
1829 static int init_driver_queues(struct nullb *nullb)
1830 {
1831 	struct nullb_queue *nq;
1832 	int i, ret = 0;
1833 
1834 	for (i = 0; i < nullb->dev->submit_queues; i++) {
1835 		nq = &nullb->queues[i];
1836 
1837 		null_init_queue(nullb, nq);
1838 
1839 		ret = setup_commands(nq);
1840 		if (ret)
1841 			return ret;
1842 		nullb->nr_queues++;
1843 	}
1844 	return 0;
1845 }
1846 
1847 static int null_gendisk_register(struct nullb *nullb)
1848 {
1849 	sector_t size = ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT;
1850 	struct gendisk *disk = nullb->disk;
1851 
1852 	set_capacity(disk, size);
1853 
1854 	disk->major		= null_major;
1855 	disk->first_minor	= nullb->index;
1856 	disk->minors		= 1;
1857 	if (queue_is_mq(nullb->q))
1858 		disk->fops		= &null_rq_ops;
1859 	else
1860 		disk->fops		= &null_bio_ops;
1861 	disk->private_data	= nullb;
1862 	strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1863 
1864 	if (nullb->dev->zoned) {
1865 		int ret = null_register_zoned_dev(nullb);
1866 
1867 		if (ret)
1868 			return ret;
1869 	}
1870 
1871 	return add_disk(disk);
1872 }
1873 
1874 static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1875 {
1876 	int poll_queues;
1877 
1878 	set->ops = &null_mq_ops;
1879 	set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
1880 						g_submit_queues;
1881 	poll_queues = nullb ? nullb->dev->poll_queues : g_poll_queues;
1882 	if (poll_queues)
1883 		set->nr_hw_queues += poll_queues;
1884 	set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
1885 						g_hw_queue_depth;
1886 	set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
1887 	set->cmd_size	= sizeof(struct nullb_cmd);
1888 	set->flags = BLK_MQ_F_SHOULD_MERGE;
1889 	if (g_no_sched)
1890 		set->flags |= BLK_MQ_F_NO_SCHED;
1891 	if (g_shared_tag_bitmap)
1892 		set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1893 	set->driver_data = nullb;
1894 	if (poll_queues)
1895 		set->nr_maps = 3;
1896 	else
1897 		set->nr_maps = 1;
1898 
1899 	if ((nullb && nullb->dev->blocking) || g_blocking)
1900 		set->flags |= BLK_MQ_F_BLOCKING;
1901 
1902 	return blk_mq_alloc_tag_set(set);
1903 }
1904 
1905 static int null_validate_conf(struct nullb_device *dev)
1906 {
1907 	dev->blocksize = round_down(dev->blocksize, 512);
1908 	dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
1909 
1910 	if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
1911 		if (dev->submit_queues != nr_online_nodes)
1912 			dev->submit_queues = nr_online_nodes;
1913 	} else if (dev->submit_queues > nr_cpu_ids)
1914 		dev->submit_queues = nr_cpu_ids;
1915 	else if (dev->submit_queues == 0)
1916 		dev->submit_queues = 1;
1917 	dev->prev_submit_queues = dev->submit_queues;
1918 
1919 	if (dev->poll_queues > g_poll_queues)
1920 		dev->poll_queues = g_poll_queues;
1921 	dev->prev_poll_queues = dev->poll_queues;
1922 
1923 	dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
1924 	dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1925 
1926 	/* Do memory allocation, so set blocking */
1927 	if (dev->memory_backed)
1928 		dev->blocking = true;
1929 	else /* cache is meaningless */
1930 		dev->cache_size = 0;
1931 	dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1932 						dev->cache_size);
1933 	dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1934 	/* can not stop a queue */
1935 	if (dev->queue_mode == NULL_Q_BIO)
1936 		dev->mbps = 0;
1937 
1938 	if (dev->zoned &&
1939 	    (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1940 		pr_err("zone_size must be power-of-two\n");
1941 		return -EINVAL;
1942 	}
1943 
1944 	return 0;
1945 }
1946 
1947 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1948 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1949 {
1950 	if (!str[0])
1951 		return true;
1952 
1953 	if (!setup_fault_attr(attr, str))
1954 		return false;
1955 
1956 	attr->verbose = 0;
1957 	return true;
1958 }
1959 #endif
1960 
1961 static bool null_setup_fault(void)
1962 {
1963 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1964 	if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1965 		return false;
1966 	if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1967 		return false;
1968 	if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
1969 		return false;
1970 #endif
1971 	return true;
1972 }
1973 
1974 static int null_add_dev(struct nullb_device *dev)
1975 {
1976 	struct nullb *nullb;
1977 	int rv;
1978 
1979 	rv = null_validate_conf(dev);
1980 	if (rv)
1981 		return rv;
1982 
1983 	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1984 	if (!nullb) {
1985 		rv = -ENOMEM;
1986 		goto out;
1987 	}
1988 	nullb->dev = dev;
1989 	dev->nullb = nullb;
1990 
1991 	spin_lock_init(&nullb->lock);
1992 
1993 	rv = setup_queues(nullb);
1994 	if (rv)
1995 		goto out_free_nullb;
1996 
1997 	if (dev->queue_mode == NULL_Q_MQ) {
1998 		if (shared_tags) {
1999 			nullb->tag_set = &tag_set;
2000 			rv = 0;
2001 		} else {
2002 			nullb->tag_set = &nullb->__tag_set;
2003 			rv = null_init_tag_set(nullb, nullb->tag_set);
2004 		}
2005 
2006 		if (rv)
2007 			goto out_cleanup_queues;
2008 
2009 		if (!null_setup_fault())
2010 			goto out_cleanup_tags;
2011 
2012 		nullb->tag_set->timeout = 5 * HZ;
2013 		nullb->disk = blk_mq_alloc_disk(nullb->tag_set, nullb);
2014 		if (IS_ERR(nullb->disk)) {
2015 			rv = PTR_ERR(nullb->disk);
2016 			goto out_cleanup_tags;
2017 		}
2018 		nullb->q = nullb->disk->queue;
2019 	} else if (dev->queue_mode == NULL_Q_BIO) {
2020 		rv = -ENOMEM;
2021 		nullb->disk = blk_alloc_disk(nullb->dev->home_node);
2022 		if (!nullb->disk)
2023 			goto out_cleanup_queues;
2024 
2025 		nullb->q = nullb->disk->queue;
2026 		rv = init_driver_queues(nullb);
2027 		if (rv)
2028 			goto out_cleanup_disk;
2029 	}
2030 
2031 	if (dev->mbps) {
2032 		set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
2033 		nullb_setup_bwtimer(nullb);
2034 	}
2035 
2036 	if (dev->cache_size > 0) {
2037 		set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
2038 		blk_queue_write_cache(nullb->q, true, true);
2039 	}
2040 
2041 	if (dev->zoned) {
2042 		rv = null_init_zoned_dev(dev, nullb->q);
2043 		if (rv)
2044 			goto out_cleanup_disk;
2045 	}
2046 
2047 	nullb->q->queuedata = nullb;
2048 	blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
2049 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
2050 
2051 	mutex_lock(&lock);
2052 	nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
2053 	dev->index = nullb->index;
2054 	mutex_unlock(&lock);
2055 
2056 	blk_queue_logical_block_size(nullb->q, dev->blocksize);
2057 	blk_queue_physical_block_size(nullb->q, dev->blocksize);
2058 	if (!dev->max_sectors)
2059 		dev->max_sectors = queue_max_hw_sectors(nullb->q);
2060 	dev->max_sectors = min_t(unsigned int, dev->max_sectors,
2061 				 BLK_DEF_MAX_SECTORS);
2062 	blk_queue_max_hw_sectors(nullb->q, dev->max_sectors);
2063 
2064 	if (dev->virt_boundary)
2065 		blk_queue_virt_boundary(nullb->q, PAGE_SIZE - 1);
2066 
2067 	null_config_discard(nullb);
2068 
2069 	if (config_item_name(&dev->item)) {
2070 		/* Use configfs dir name as the device name */
2071 		snprintf(nullb->disk_name, sizeof(nullb->disk_name),
2072 			 "%s", config_item_name(&dev->item));
2073 	} else {
2074 		sprintf(nullb->disk_name, "nullb%d", nullb->index);
2075 	}
2076 
2077 	rv = null_gendisk_register(nullb);
2078 	if (rv)
2079 		goto out_cleanup_zone;
2080 
2081 	mutex_lock(&lock);
2082 	list_add_tail(&nullb->list, &nullb_list);
2083 	mutex_unlock(&lock);
2084 
2085 	pr_info("disk %s created\n", nullb->disk_name);
2086 
2087 	return 0;
2088 out_cleanup_zone:
2089 	null_free_zoned_dev(dev);
2090 out_cleanup_disk:
2091 	blk_cleanup_disk(nullb->disk);
2092 out_cleanup_tags:
2093 	if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
2094 		blk_mq_free_tag_set(nullb->tag_set);
2095 out_cleanup_queues:
2096 	cleanup_queues(nullb);
2097 out_free_nullb:
2098 	kfree(nullb);
2099 	dev->nullb = NULL;
2100 out:
2101 	return rv;
2102 }
2103 
2104 static struct nullb *null_find_dev_by_name(const char *name)
2105 {
2106 	struct nullb *nullb = NULL, *nb;
2107 
2108 	mutex_lock(&lock);
2109 	list_for_each_entry(nb, &nullb_list, list) {
2110 		if (strcmp(nb->disk_name, name) == 0) {
2111 			nullb = nb;
2112 			break;
2113 		}
2114 	}
2115 	mutex_unlock(&lock);
2116 
2117 	return nullb;
2118 }
2119 
2120 static int null_create_dev(void)
2121 {
2122 	struct nullb_device *dev;
2123 	int ret;
2124 
2125 	dev = null_alloc_dev();
2126 	if (!dev)
2127 		return -ENOMEM;
2128 
2129 	ret = null_add_dev(dev);
2130 	if (ret) {
2131 		null_free_dev(dev);
2132 		return ret;
2133 	}
2134 
2135 	return 0;
2136 }
2137 
2138 static void null_destroy_dev(struct nullb *nullb)
2139 {
2140 	struct nullb_device *dev = nullb->dev;
2141 
2142 	null_del_dev(nullb);
2143 	null_free_dev(dev);
2144 }
2145 
2146 static int __init null_init(void)
2147 {
2148 	int ret = 0;
2149 	unsigned int i;
2150 	struct nullb *nullb;
2151 
2152 	if (g_bs > PAGE_SIZE) {
2153 		pr_warn("invalid block size\n");
2154 		pr_warn("defaults block size to %lu\n", PAGE_SIZE);
2155 		g_bs = PAGE_SIZE;
2156 	}
2157 
2158 	if (g_max_sectors > BLK_DEF_MAX_SECTORS) {
2159 		pr_warn("invalid max sectors\n");
2160 		pr_warn("defaults max sectors to %u\n", BLK_DEF_MAX_SECTORS);
2161 		g_max_sectors = BLK_DEF_MAX_SECTORS;
2162 	}
2163 
2164 	if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
2165 		pr_err("invalid home_node value\n");
2166 		g_home_node = NUMA_NO_NODE;
2167 	}
2168 
2169 	if (g_queue_mode == NULL_Q_RQ) {
2170 		pr_err("legacy IO path is no longer available\n");
2171 		return -EINVAL;
2172 	}
2173 
2174 	if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
2175 		if (g_submit_queues != nr_online_nodes) {
2176 			pr_warn("submit_queues param is set to %u.\n",
2177 				nr_online_nodes);
2178 			g_submit_queues = nr_online_nodes;
2179 		}
2180 	} else if (g_submit_queues > nr_cpu_ids) {
2181 		g_submit_queues = nr_cpu_ids;
2182 	} else if (g_submit_queues <= 0) {
2183 		g_submit_queues = 1;
2184 	}
2185 
2186 	if (g_queue_mode == NULL_Q_MQ && shared_tags) {
2187 		ret = null_init_tag_set(NULL, &tag_set);
2188 		if (ret)
2189 			return ret;
2190 	}
2191 
2192 	config_group_init(&nullb_subsys.su_group);
2193 	mutex_init(&nullb_subsys.su_mutex);
2194 
2195 	ret = configfs_register_subsystem(&nullb_subsys);
2196 	if (ret)
2197 		goto err_tagset;
2198 
2199 	mutex_init(&lock);
2200 
2201 	null_major = register_blkdev(0, "nullb");
2202 	if (null_major < 0) {
2203 		ret = null_major;
2204 		goto err_conf;
2205 	}
2206 
2207 	for (i = 0; i < nr_devices; i++) {
2208 		ret = null_create_dev();
2209 		if (ret)
2210 			goto err_dev;
2211 	}
2212 
2213 	pr_info("module loaded\n");
2214 	return 0;
2215 
2216 err_dev:
2217 	while (!list_empty(&nullb_list)) {
2218 		nullb = list_entry(nullb_list.next, struct nullb, list);
2219 		null_destroy_dev(nullb);
2220 	}
2221 	unregister_blkdev(null_major, "nullb");
2222 err_conf:
2223 	configfs_unregister_subsystem(&nullb_subsys);
2224 err_tagset:
2225 	if (g_queue_mode == NULL_Q_MQ && shared_tags)
2226 		blk_mq_free_tag_set(&tag_set);
2227 	return ret;
2228 }
2229 
2230 static void __exit null_exit(void)
2231 {
2232 	struct nullb *nullb;
2233 
2234 	configfs_unregister_subsystem(&nullb_subsys);
2235 
2236 	unregister_blkdev(null_major, "nullb");
2237 
2238 	mutex_lock(&lock);
2239 	while (!list_empty(&nullb_list)) {
2240 		nullb = list_entry(nullb_list.next, struct nullb, list);
2241 		null_destroy_dev(nullb);
2242 	}
2243 	mutex_unlock(&lock);
2244 
2245 	if (g_queue_mode == NULL_Q_MQ && shared_tags)
2246 		blk_mq_free_tag_set(&tag_set);
2247 }
2248 
2249 module_init(null_init);
2250 module_exit(null_exit);
2251 
2252 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2253 MODULE_LICENSE("GPL");
2254