xref: /openbmc/linux/drivers/block/loop.c (revision f4aa4c7b)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80 
81 #include <asm/uaccess.h>
82 
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85 
86 static int max_part;
87 static int part_shift;
88 
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 			struct page *raw_page, unsigned raw_off,
91 			struct page *loop_page, unsigned loop_off,
92 			int size, sector_t real_block)
93 {
94 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 	char *in, *out, *key;
97 	int i, keysize;
98 
99 	if (cmd == READ) {
100 		in = raw_buf;
101 		out = loop_buf;
102 	} else {
103 		in = loop_buf;
104 		out = raw_buf;
105 	}
106 
107 	key = lo->lo_encrypt_key;
108 	keysize = lo->lo_encrypt_key_size;
109 	for (i = 0; i < size; i++)
110 		*out++ = *in++ ^ key[(i & 511) % keysize];
111 
112 	kunmap_atomic(loop_buf);
113 	kunmap_atomic(raw_buf);
114 	cond_resched();
115 	return 0;
116 }
117 
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 	if (unlikely(info->lo_encrypt_key_size <= 0))
121 		return -EINVAL;
122 	return 0;
123 }
124 
125 static struct loop_func_table none_funcs = {
126 	.number = LO_CRYPT_NONE,
127 };
128 
129 static struct loop_func_table xor_funcs = {
130 	.number = LO_CRYPT_XOR,
131 	.transfer = transfer_xor,
132 	.init = xor_init
133 };
134 
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 	&none_funcs,
138 	&xor_funcs
139 };
140 
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 	loff_t loopsize;
144 
145 	/* Compute loopsize in bytes */
146 	loopsize = i_size_read(file->f_mapping->host);
147 	if (offset > 0)
148 		loopsize -= offset;
149 	/* offset is beyond i_size, weird but possible */
150 	if (loopsize < 0)
151 		return 0;
152 
153 	if (sizelimit > 0 && sizelimit < loopsize)
154 		loopsize = sizelimit;
155 	/*
156 	 * Unfortunately, if we want to do I/O on the device,
157 	 * the number of 512-byte sectors has to fit into a sector_t.
158 	 */
159 	return loopsize >> 9;
160 }
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166 
167 static int
168 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
169 {
170 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
171 	sector_t x = (sector_t)size;
172 	struct block_device *bdev = lo->lo_device;
173 
174 	if (unlikely((loff_t)x != size))
175 		return -EFBIG;
176 	if (lo->lo_offset != offset)
177 		lo->lo_offset = offset;
178 	if (lo->lo_sizelimit != sizelimit)
179 		lo->lo_sizelimit = sizelimit;
180 	set_capacity(lo->lo_disk, x);
181 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
182 	/* let user-space know about the new size */
183 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
184 	return 0;
185 }
186 
187 static inline int
188 lo_do_transfer(struct loop_device *lo, int cmd,
189 	       struct page *rpage, unsigned roffs,
190 	       struct page *lpage, unsigned loffs,
191 	       int size, sector_t rblock)
192 {
193 	int ret;
194 
195 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
196 	if (likely(!ret))
197 		return 0;
198 
199 	printk_ratelimited(KERN_ERR
200 		"loop: Transfer error at byte offset %llu, length %i.\n",
201 		(unsigned long long)rblock << 9, size);
202 	return ret;
203 }
204 
205 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
206 {
207 	struct iov_iter i;
208 	ssize_t bw;
209 
210 	iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
211 
212 	file_start_write(file);
213 	bw = vfs_iter_write(file, &i, ppos);
214 	file_end_write(file);
215 
216 	if (likely(bw ==  bvec->bv_len))
217 		return 0;
218 
219 	printk_ratelimited(KERN_ERR
220 		"loop: Write error at byte offset %llu, length %i.\n",
221 		(unsigned long long)*ppos, bvec->bv_len);
222 	if (bw >= 0)
223 		bw = -EIO;
224 	return bw;
225 }
226 
227 static int lo_write_simple(struct loop_device *lo, struct request *rq,
228 		loff_t pos)
229 {
230 	struct bio_vec bvec;
231 	struct req_iterator iter;
232 	int ret = 0;
233 
234 	rq_for_each_segment(bvec, rq, iter) {
235 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
236 		if (ret < 0)
237 			break;
238 		cond_resched();
239 	}
240 
241 	return ret;
242 }
243 
244 /*
245  * This is the slow, transforming version that needs to double buffer the
246  * data as it cannot do the transformations in place without having direct
247  * access to the destination pages of the backing file.
248  */
249 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
250 		loff_t pos)
251 {
252 	struct bio_vec bvec, b;
253 	struct req_iterator iter;
254 	struct page *page;
255 	int ret = 0;
256 
257 	page = alloc_page(GFP_NOIO);
258 	if (unlikely(!page))
259 		return -ENOMEM;
260 
261 	rq_for_each_segment(bvec, rq, iter) {
262 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
263 			bvec.bv_offset, bvec.bv_len, pos >> 9);
264 		if (unlikely(ret))
265 			break;
266 
267 		b.bv_page = page;
268 		b.bv_offset = 0;
269 		b.bv_len = bvec.bv_len;
270 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
271 		if (ret < 0)
272 			break;
273 	}
274 
275 	__free_page(page);
276 	return ret;
277 }
278 
279 static int lo_read_simple(struct loop_device *lo, struct request *rq,
280 		loff_t pos)
281 {
282 	struct bio_vec bvec;
283 	struct req_iterator iter;
284 	struct iov_iter i;
285 	ssize_t len;
286 
287 	rq_for_each_segment(bvec, rq, iter) {
288 		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
289 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
290 		if (len < 0)
291 			return len;
292 
293 		flush_dcache_page(bvec.bv_page);
294 
295 		if (len != bvec.bv_len) {
296 			struct bio *bio;
297 
298 			__rq_for_each_bio(bio, rq)
299 				zero_fill_bio(bio);
300 			break;
301 		}
302 		cond_resched();
303 	}
304 
305 	return 0;
306 }
307 
308 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
309 		loff_t pos)
310 {
311 	struct bio_vec bvec, b;
312 	struct req_iterator iter;
313 	struct iov_iter i;
314 	struct page *page;
315 	ssize_t len;
316 	int ret = 0;
317 
318 	page = alloc_page(GFP_NOIO);
319 	if (unlikely(!page))
320 		return -ENOMEM;
321 
322 	rq_for_each_segment(bvec, rq, iter) {
323 		loff_t offset = pos;
324 
325 		b.bv_page = page;
326 		b.bv_offset = 0;
327 		b.bv_len = bvec.bv_len;
328 
329 		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
330 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
331 		if (len < 0) {
332 			ret = len;
333 			goto out_free_page;
334 		}
335 
336 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
337 			bvec.bv_offset, len, offset >> 9);
338 		if (ret)
339 			goto out_free_page;
340 
341 		flush_dcache_page(bvec.bv_page);
342 
343 		if (len != bvec.bv_len) {
344 			struct bio *bio;
345 
346 			__rq_for_each_bio(bio, rq)
347 				zero_fill_bio(bio);
348 			break;
349 		}
350 	}
351 
352 	ret = 0;
353 out_free_page:
354 	__free_page(page);
355 	return ret;
356 }
357 
358 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
359 {
360 	/*
361 	 * We use punch hole to reclaim the free space used by the
362 	 * image a.k.a. discard. However we do not support discard if
363 	 * encryption is enabled, because it may give an attacker
364 	 * useful information.
365 	 */
366 	struct file *file = lo->lo_backing_file;
367 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
368 	int ret;
369 
370 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
371 		ret = -EOPNOTSUPP;
372 		goto out;
373 	}
374 
375 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
376 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
377 		ret = -EIO;
378  out:
379 	return ret;
380 }
381 
382 static int lo_req_flush(struct loop_device *lo, struct request *rq)
383 {
384 	struct file *file = lo->lo_backing_file;
385 	int ret = vfs_fsync(file, 0);
386 	if (unlikely(ret && ret != -EINVAL))
387 		ret = -EIO;
388 
389 	return ret;
390 }
391 
392 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
393 {
394 	loff_t pos;
395 	int ret;
396 
397 	pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
398 
399 	if (rq->cmd_flags & REQ_WRITE) {
400 		if (rq->cmd_flags & REQ_FLUSH)
401 			ret = lo_req_flush(lo, rq);
402 		else if (rq->cmd_flags & REQ_DISCARD)
403 			ret = lo_discard(lo, rq, pos);
404 		else if (lo->transfer)
405 			ret = lo_write_transfer(lo, rq, pos);
406 		else
407 			ret = lo_write_simple(lo, rq, pos);
408 
409 	} else {
410 		if (lo->transfer)
411 			ret = lo_read_transfer(lo, rq, pos);
412 		else
413 			ret = lo_read_simple(lo, rq, pos);
414 	}
415 
416 	return ret;
417 }
418 
419 struct switch_request {
420 	struct file *file;
421 	struct completion wait;
422 };
423 
424 /*
425  * Do the actual switch; called from the BIO completion routine
426  */
427 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
428 {
429 	struct file *file = p->file;
430 	struct file *old_file = lo->lo_backing_file;
431 	struct address_space *mapping;
432 
433 	/* if no new file, only flush of queued bios requested */
434 	if (!file)
435 		return;
436 
437 	mapping = file->f_mapping;
438 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
439 	lo->lo_backing_file = file;
440 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
441 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
442 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
443 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
444 }
445 
446 /*
447  * loop_switch performs the hard work of switching a backing store.
448  * First it needs to flush existing IO, it does this by sending a magic
449  * BIO down the pipe. The completion of this BIO does the actual switch.
450  */
451 static int loop_switch(struct loop_device *lo, struct file *file)
452 {
453 	struct switch_request w;
454 
455 	w.file = file;
456 
457 	/* freeze queue and wait for completion of scheduled requests */
458 	blk_mq_freeze_queue(lo->lo_queue);
459 
460 	/* do the switch action */
461 	do_loop_switch(lo, &w);
462 
463 	/* unfreeze */
464 	blk_mq_unfreeze_queue(lo->lo_queue);
465 
466 	return 0;
467 }
468 
469 /*
470  * Helper to flush the IOs in loop, but keeping loop thread running
471  */
472 static int loop_flush(struct loop_device *lo)
473 {
474 	return loop_switch(lo, NULL);
475 }
476 
477 /*
478  * loop_change_fd switched the backing store of a loopback device to
479  * a new file. This is useful for operating system installers to free up
480  * the original file and in High Availability environments to switch to
481  * an alternative location for the content in case of server meltdown.
482  * This can only work if the loop device is used read-only, and if the
483  * new backing store is the same size and type as the old backing store.
484  */
485 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
486 			  unsigned int arg)
487 {
488 	struct file	*file, *old_file;
489 	struct inode	*inode;
490 	int		error;
491 
492 	error = -ENXIO;
493 	if (lo->lo_state != Lo_bound)
494 		goto out;
495 
496 	/* the loop device has to be read-only */
497 	error = -EINVAL;
498 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
499 		goto out;
500 
501 	error = -EBADF;
502 	file = fget(arg);
503 	if (!file)
504 		goto out;
505 
506 	inode = file->f_mapping->host;
507 	old_file = lo->lo_backing_file;
508 
509 	error = -EINVAL;
510 
511 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
512 		goto out_putf;
513 
514 	/* size of the new backing store needs to be the same */
515 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
516 		goto out_putf;
517 
518 	/* and ... switch */
519 	error = loop_switch(lo, file);
520 	if (error)
521 		goto out_putf;
522 
523 	fput(old_file);
524 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
525 		ioctl_by_bdev(bdev, BLKRRPART, 0);
526 	return 0;
527 
528  out_putf:
529 	fput(file);
530  out:
531 	return error;
532 }
533 
534 static inline int is_loop_device(struct file *file)
535 {
536 	struct inode *i = file->f_mapping->host;
537 
538 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
539 }
540 
541 /* loop sysfs attributes */
542 
543 static ssize_t loop_attr_show(struct device *dev, char *page,
544 			      ssize_t (*callback)(struct loop_device *, char *))
545 {
546 	struct gendisk *disk = dev_to_disk(dev);
547 	struct loop_device *lo = disk->private_data;
548 
549 	return callback(lo, page);
550 }
551 
552 #define LOOP_ATTR_RO(_name)						\
553 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
554 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
555 				struct device_attribute *attr, char *b)	\
556 {									\
557 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
558 }									\
559 static struct device_attribute loop_attr_##_name =			\
560 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
561 
562 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
563 {
564 	ssize_t ret;
565 	char *p = NULL;
566 
567 	spin_lock_irq(&lo->lo_lock);
568 	if (lo->lo_backing_file)
569 		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
570 	spin_unlock_irq(&lo->lo_lock);
571 
572 	if (IS_ERR_OR_NULL(p))
573 		ret = PTR_ERR(p);
574 	else {
575 		ret = strlen(p);
576 		memmove(buf, p, ret);
577 		buf[ret++] = '\n';
578 		buf[ret] = 0;
579 	}
580 
581 	return ret;
582 }
583 
584 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
585 {
586 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
587 }
588 
589 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
590 {
591 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
592 }
593 
594 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
595 {
596 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
597 
598 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
599 }
600 
601 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
602 {
603 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
604 
605 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
606 }
607 
608 LOOP_ATTR_RO(backing_file);
609 LOOP_ATTR_RO(offset);
610 LOOP_ATTR_RO(sizelimit);
611 LOOP_ATTR_RO(autoclear);
612 LOOP_ATTR_RO(partscan);
613 
614 static struct attribute *loop_attrs[] = {
615 	&loop_attr_backing_file.attr,
616 	&loop_attr_offset.attr,
617 	&loop_attr_sizelimit.attr,
618 	&loop_attr_autoclear.attr,
619 	&loop_attr_partscan.attr,
620 	NULL,
621 };
622 
623 static struct attribute_group loop_attribute_group = {
624 	.name = "loop",
625 	.attrs= loop_attrs,
626 };
627 
628 static int loop_sysfs_init(struct loop_device *lo)
629 {
630 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
631 				  &loop_attribute_group);
632 }
633 
634 static void loop_sysfs_exit(struct loop_device *lo)
635 {
636 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
637 			   &loop_attribute_group);
638 }
639 
640 static void loop_config_discard(struct loop_device *lo)
641 {
642 	struct file *file = lo->lo_backing_file;
643 	struct inode *inode = file->f_mapping->host;
644 	struct request_queue *q = lo->lo_queue;
645 
646 	/*
647 	 * We use punch hole to reclaim the free space used by the
648 	 * image a.k.a. discard. However we do not support discard if
649 	 * encryption is enabled, because it may give an attacker
650 	 * useful information.
651 	 */
652 	if ((!file->f_op->fallocate) ||
653 	    lo->lo_encrypt_key_size) {
654 		q->limits.discard_granularity = 0;
655 		q->limits.discard_alignment = 0;
656 		q->limits.max_discard_sectors = 0;
657 		q->limits.discard_zeroes_data = 0;
658 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
659 		return;
660 	}
661 
662 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
663 	q->limits.discard_alignment = 0;
664 	q->limits.max_discard_sectors = UINT_MAX >> 9;
665 	q->limits.discard_zeroes_data = 1;
666 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
667 }
668 
669 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
670 		       struct block_device *bdev, unsigned int arg)
671 {
672 	struct file	*file, *f;
673 	struct inode	*inode;
674 	struct address_space *mapping;
675 	unsigned lo_blocksize;
676 	int		lo_flags = 0;
677 	int		error;
678 	loff_t		size;
679 
680 	/* This is safe, since we have a reference from open(). */
681 	__module_get(THIS_MODULE);
682 
683 	error = -EBADF;
684 	file = fget(arg);
685 	if (!file)
686 		goto out;
687 
688 	error = -EBUSY;
689 	if (lo->lo_state != Lo_unbound)
690 		goto out_putf;
691 
692 	/* Avoid recursion */
693 	f = file;
694 	while (is_loop_device(f)) {
695 		struct loop_device *l;
696 
697 		if (f->f_mapping->host->i_bdev == bdev)
698 			goto out_putf;
699 
700 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
701 		if (l->lo_state == Lo_unbound) {
702 			error = -EINVAL;
703 			goto out_putf;
704 		}
705 		f = l->lo_backing_file;
706 	}
707 
708 	mapping = file->f_mapping;
709 	inode = mapping->host;
710 
711 	error = -EINVAL;
712 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
713 		goto out_putf;
714 
715 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
716 	    !file->f_op->write_iter)
717 		lo_flags |= LO_FLAGS_READ_ONLY;
718 
719 	lo_blocksize = S_ISBLK(inode->i_mode) ?
720 		inode->i_bdev->bd_block_size : PAGE_SIZE;
721 
722 	error = -EFBIG;
723 	size = get_loop_size(lo, file);
724 	if ((loff_t)(sector_t)size != size)
725 		goto out_putf;
726 	error = -ENOMEM;
727 	lo->wq = alloc_workqueue("kloopd%d",
728 			WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_UNBOUND, 0,
729 			lo->lo_number);
730 	if (!lo->wq)
731 		goto out_putf;
732 
733 	error = 0;
734 
735 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
736 
737 	lo->lo_blocksize = lo_blocksize;
738 	lo->lo_device = bdev;
739 	lo->lo_flags = lo_flags;
740 	lo->lo_backing_file = file;
741 	lo->transfer = NULL;
742 	lo->ioctl = NULL;
743 	lo->lo_sizelimit = 0;
744 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
745 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
746 
747 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
748 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
749 
750 	set_capacity(lo->lo_disk, size);
751 	bd_set_size(bdev, size << 9);
752 	loop_sysfs_init(lo);
753 	/* let user-space know about the new size */
754 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
755 
756 	set_blocksize(bdev, lo_blocksize);
757 
758 	lo->lo_state = Lo_bound;
759 	if (part_shift)
760 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
761 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
762 		ioctl_by_bdev(bdev, BLKRRPART, 0);
763 
764 	/* Grab the block_device to prevent its destruction after we
765 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
766 	 */
767 	bdgrab(bdev);
768 	return 0;
769 
770  out_putf:
771 	fput(file);
772  out:
773 	/* This is safe: open() is still holding a reference. */
774 	module_put(THIS_MODULE);
775 	return error;
776 }
777 
778 static int
779 loop_release_xfer(struct loop_device *lo)
780 {
781 	int err = 0;
782 	struct loop_func_table *xfer = lo->lo_encryption;
783 
784 	if (xfer) {
785 		if (xfer->release)
786 			err = xfer->release(lo);
787 		lo->transfer = NULL;
788 		lo->lo_encryption = NULL;
789 		module_put(xfer->owner);
790 	}
791 	return err;
792 }
793 
794 static int
795 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
796 	       const struct loop_info64 *i)
797 {
798 	int err = 0;
799 
800 	if (xfer) {
801 		struct module *owner = xfer->owner;
802 
803 		if (!try_module_get(owner))
804 			return -EINVAL;
805 		if (xfer->init)
806 			err = xfer->init(lo, i);
807 		if (err)
808 			module_put(owner);
809 		else
810 			lo->lo_encryption = xfer;
811 	}
812 	return err;
813 }
814 
815 static int loop_clr_fd(struct loop_device *lo)
816 {
817 	struct file *filp = lo->lo_backing_file;
818 	gfp_t gfp = lo->old_gfp_mask;
819 	struct block_device *bdev = lo->lo_device;
820 
821 	if (lo->lo_state != Lo_bound)
822 		return -ENXIO;
823 
824 	/*
825 	 * If we've explicitly asked to tear down the loop device,
826 	 * and it has an elevated reference count, set it for auto-teardown when
827 	 * the last reference goes away. This stops $!~#$@ udev from
828 	 * preventing teardown because it decided that it needs to run blkid on
829 	 * the loopback device whenever they appear. xfstests is notorious for
830 	 * failing tests because blkid via udev races with a losetup
831 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
832 	 * command to fail with EBUSY.
833 	 */
834 	if (lo->lo_refcnt > 1) {
835 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
836 		mutex_unlock(&lo->lo_ctl_mutex);
837 		return 0;
838 	}
839 
840 	if (filp == NULL)
841 		return -EINVAL;
842 
843 	spin_lock_irq(&lo->lo_lock);
844 	lo->lo_state = Lo_rundown;
845 	lo->lo_backing_file = NULL;
846 	spin_unlock_irq(&lo->lo_lock);
847 
848 	loop_release_xfer(lo);
849 	lo->transfer = NULL;
850 	lo->ioctl = NULL;
851 	lo->lo_device = NULL;
852 	lo->lo_encryption = NULL;
853 	lo->lo_offset = 0;
854 	lo->lo_sizelimit = 0;
855 	lo->lo_encrypt_key_size = 0;
856 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
857 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
858 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
859 	if (bdev) {
860 		bdput(bdev);
861 		invalidate_bdev(bdev);
862 	}
863 	set_capacity(lo->lo_disk, 0);
864 	loop_sysfs_exit(lo);
865 	if (bdev) {
866 		bd_set_size(bdev, 0);
867 		/* let user-space know about this change */
868 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
869 	}
870 	mapping_set_gfp_mask(filp->f_mapping, gfp);
871 	lo->lo_state = Lo_unbound;
872 	/* This is safe: open() is still holding a reference. */
873 	module_put(THIS_MODULE);
874 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
875 		ioctl_by_bdev(bdev, BLKRRPART, 0);
876 	lo->lo_flags = 0;
877 	if (!part_shift)
878 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
879 	destroy_workqueue(lo->wq);
880 	lo->wq = NULL;
881 	mutex_unlock(&lo->lo_ctl_mutex);
882 	/*
883 	 * Need not hold lo_ctl_mutex to fput backing file.
884 	 * Calling fput holding lo_ctl_mutex triggers a circular
885 	 * lock dependency possibility warning as fput can take
886 	 * bd_mutex which is usually taken before lo_ctl_mutex.
887 	 */
888 	fput(filp);
889 	return 0;
890 }
891 
892 static int
893 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
894 {
895 	int err;
896 	struct loop_func_table *xfer;
897 	kuid_t uid = current_uid();
898 
899 	if (lo->lo_encrypt_key_size &&
900 	    !uid_eq(lo->lo_key_owner, uid) &&
901 	    !capable(CAP_SYS_ADMIN))
902 		return -EPERM;
903 	if (lo->lo_state != Lo_bound)
904 		return -ENXIO;
905 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
906 		return -EINVAL;
907 
908 	err = loop_release_xfer(lo);
909 	if (err)
910 		return err;
911 
912 	if (info->lo_encrypt_type) {
913 		unsigned int type = info->lo_encrypt_type;
914 
915 		if (type >= MAX_LO_CRYPT)
916 			return -EINVAL;
917 		xfer = xfer_funcs[type];
918 		if (xfer == NULL)
919 			return -EINVAL;
920 	} else
921 		xfer = NULL;
922 
923 	err = loop_init_xfer(lo, xfer, info);
924 	if (err)
925 		return err;
926 
927 	if (lo->lo_offset != info->lo_offset ||
928 	    lo->lo_sizelimit != info->lo_sizelimit)
929 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
930 			return -EFBIG;
931 
932 	loop_config_discard(lo);
933 
934 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
935 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
936 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
937 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
938 
939 	if (!xfer)
940 		xfer = &none_funcs;
941 	lo->transfer = xfer->transfer;
942 	lo->ioctl = xfer->ioctl;
943 
944 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
945 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
946 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
947 
948 	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
949 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
950 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
951 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
952 		ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
953 	}
954 
955 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
956 	lo->lo_init[0] = info->lo_init[0];
957 	lo->lo_init[1] = info->lo_init[1];
958 	if (info->lo_encrypt_key_size) {
959 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
960 		       info->lo_encrypt_key_size);
961 		lo->lo_key_owner = uid;
962 	}
963 
964 	return 0;
965 }
966 
967 static int
968 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
969 {
970 	struct file *file = lo->lo_backing_file;
971 	struct kstat stat;
972 	int error;
973 
974 	if (lo->lo_state != Lo_bound)
975 		return -ENXIO;
976 	error = vfs_getattr(&file->f_path, &stat);
977 	if (error)
978 		return error;
979 	memset(info, 0, sizeof(*info));
980 	info->lo_number = lo->lo_number;
981 	info->lo_device = huge_encode_dev(stat.dev);
982 	info->lo_inode = stat.ino;
983 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
984 	info->lo_offset = lo->lo_offset;
985 	info->lo_sizelimit = lo->lo_sizelimit;
986 	info->lo_flags = lo->lo_flags;
987 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
988 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
989 	info->lo_encrypt_type =
990 		lo->lo_encryption ? lo->lo_encryption->number : 0;
991 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
992 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
993 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
994 		       lo->lo_encrypt_key_size);
995 	}
996 	return 0;
997 }
998 
999 static void
1000 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1001 {
1002 	memset(info64, 0, sizeof(*info64));
1003 	info64->lo_number = info->lo_number;
1004 	info64->lo_device = info->lo_device;
1005 	info64->lo_inode = info->lo_inode;
1006 	info64->lo_rdevice = info->lo_rdevice;
1007 	info64->lo_offset = info->lo_offset;
1008 	info64->lo_sizelimit = 0;
1009 	info64->lo_encrypt_type = info->lo_encrypt_type;
1010 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1011 	info64->lo_flags = info->lo_flags;
1012 	info64->lo_init[0] = info->lo_init[0];
1013 	info64->lo_init[1] = info->lo_init[1];
1014 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1015 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1016 	else
1017 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1018 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1019 }
1020 
1021 static int
1022 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1023 {
1024 	memset(info, 0, sizeof(*info));
1025 	info->lo_number = info64->lo_number;
1026 	info->lo_device = info64->lo_device;
1027 	info->lo_inode = info64->lo_inode;
1028 	info->lo_rdevice = info64->lo_rdevice;
1029 	info->lo_offset = info64->lo_offset;
1030 	info->lo_encrypt_type = info64->lo_encrypt_type;
1031 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1032 	info->lo_flags = info64->lo_flags;
1033 	info->lo_init[0] = info64->lo_init[0];
1034 	info->lo_init[1] = info64->lo_init[1];
1035 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1036 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1037 	else
1038 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1039 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1040 
1041 	/* error in case values were truncated */
1042 	if (info->lo_device != info64->lo_device ||
1043 	    info->lo_rdevice != info64->lo_rdevice ||
1044 	    info->lo_inode != info64->lo_inode ||
1045 	    info->lo_offset != info64->lo_offset)
1046 		return -EOVERFLOW;
1047 
1048 	return 0;
1049 }
1050 
1051 static int
1052 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1053 {
1054 	struct loop_info info;
1055 	struct loop_info64 info64;
1056 
1057 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1058 		return -EFAULT;
1059 	loop_info64_from_old(&info, &info64);
1060 	return loop_set_status(lo, &info64);
1061 }
1062 
1063 static int
1064 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1065 {
1066 	struct loop_info64 info64;
1067 
1068 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1069 		return -EFAULT;
1070 	return loop_set_status(lo, &info64);
1071 }
1072 
1073 static int
1074 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1075 	struct loop_info info;
1076 	struct loop_info64 info64;
1077 	int err = 0;
1078 
1079 	if (!arg)
1080 		err = -EINVAL;
1081 	if (!err)
1082 		err = loop_get_status(lo, &info64);
1083 	if (!err)
1084 		err = loop_info64_to_old(&info64, &info);
1085 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1086 		err = -EFAULT;
1087 
1088 	return err;
1089 }
1090 
1091 static int
1092 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1093 	struct loop_info64 info64;
1094 	int err = 0;
1095 
1096 	if (!arg)
1097 		err = -EINVAL;
1098 	if (!err)
1099 		err = loop_get_status(lo, &info64);
1100 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1101 		err = -EFAULT;
1102 
1103 	return err;
1104 }
1105 
1106 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1107 {
1108 	if (unlikely(lo->lo_state != Lo_bound))
1109 		return -ENXIO;
1110 
1111 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1112 }
1113 
1114 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1115 	unsigned int cmd, unsigned long arg)
1116 {
1117 	struct loop_device *lo = bdev->bd_disk->private_data;
1118 	int err;
1119 
1120 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1121 	switch (cmd) {
1122 	case LOOP_SET_FD:
1123 		err = loop_set_fd(lo, mode, bdev, arg);
1124 		break;
1125 	case LOOP_CHANGE_FD:
1126 		err = loop_change_fd(lo, bdev, arg);
1127 		break;
1128 	case LOOP_CLR_FD:
1129 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1130 		err = loop_clr_fd(lo);
1131 		if (!err)
1132 			goto out_unlocked;
1133 		break;
1134 	case LOOP_SET_STATUS:
1135 		err = -EPERM;
1136 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1137 			err = loop_set_status_old(lo,
1138 					(struct loop_info __user *)arg);
1139 		break;
1140 	case LOOP_GET_STATUS:
1141 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1142 		break;
1143 	case LOOP_SET_STATUS64:
1144 		err = -EPERM;
1145 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1146 			err = loop_set_status64(lo,
1147 					(struct loop_info64 __user *) arg);
1148 		break;
1149 	case LOOP_GET_STATUS64:
1150 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1151 		break;
1152 	case LOOP_SET_CAPACITY:
1153 		err = -EPERM;
1154 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1155 			err = loop_set_capacity(lo, bdev);
1156 		break;
1157 	default:
1158 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1159 	}
1160 	mutex_unlock(&lo->lo_ctl_mutex);
1161 
1162 out_unlocked:
1163 	return err;
1164 }
1165 
1166 #ifdef CONFIG_COMPAT
1167 struct compat_loop_info {
1168 	compat_int_t	lo_number;      /* ioctl r/o */
1169 	compat_dev_t	lo_device;      /* ioctl r/o */
1170 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1171 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1172 	compat_int_t	lo_offset;
1173 	compat_int_t	lo_encrypt_type;
1174 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1175 	compat_int_t	lo_flags;       /* ioctl r/o */
1176 	char		lo_name[LO_NAME_SIZE];
1177 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1178 	compat_ulong_t	lo_init[2];
1179 	char		reserved[4];
1180 };
1181 
1182 /*
1183  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1184  * - noinlined to reduce stack space usage in main part of driver
1185  */
1186 static noinline int
1187 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1188 			struct loop_info64 *info64)
1189 {
1190 	struct compat_loop_info info;
1191 
1192 	if (copy_from_user(&info, arg, sizeof(info)))
1193 		return -EFAULT;
1194 
1195 	memset(info64, 0, sizeof(*info64));
1196 	info64->lo_number = info.lo_number;
1197 	info64->lo_device = info.lo_device;
1198 	info64->lo_inode = info.lo_inode;
1199 	info64->lo_rdevice = info.lo_rdevice;
1200 	info64->lo_offset = info.lo_offset;
1201 	info64->lo_sizelimit = 0;
1202 	info64->lo_encrypt_type = info.lo_encrypt_type;
1203 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1204 	info64->lo_flags = info.lo_flags;
1205 	info64->lo_init[0] = info.lo_init[0];
1206 	info64->lo_init[1] = info.lo_init[1];
1207 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1208 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1209 	else
1210 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1211 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1212 	return 0;
1213 }
1214 
1215 /*
1216  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1217  * - noinlined to reduce stack space usage in main part of driver
1218  */
1219 static noinline int
1220 loop_info64_to_compat(const struct loop_info64 *info64,
1221 		      struct compat_loop_info __user *arg)
1222 {
1223 	struct compat_loop_info info;
1224 
1225 	memset(&info, 0, sizeof(info));
1226 	info.lo_number = info64->lo_number;
1227 	info.lo_device = info64->lo_device;
1228 	info.lo_inode = info64->lo_inode;
1229 	info.lo_rdevice = info64->lo_rdevice;
1230 	info.lo_offset = info64->lo_offset;
1231 	info.lo_encrypt_type = info64->lo_encrypt_type;
1232 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1233 	info.lo_flags = info64->lo_flags;
1234 	info.lo_init[0] = info64->lo_init[0];
1235 	info.lo_init[1] = info64->lo_init[1];
1236 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1237 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1238 	else
1239 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1240 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1241 
1242 	/* error in case values were truncated */
1243 	if (info.lo_device != info64->lo_device ||
1244 	    info.lo_rdevice != info64->lo_rdevice ||
1245 	    info.lo_inode != info64->lo_inode ||
1246 	    info.lo_offset != info64->lo_offset ||
1247 	    info.lo_init[0] != info64->lo_init[0] ||
1248 	    info.lo_init[1] != info64->lo_init[1])
1249 		return -EOVERFLOW;
1250 
1251 	if (copy_to_user(arg, &info, sizeof(info)))
1252 		return -EFAULT;
1253 	return 0;
1254 }
1255 
1256 static int
1257 loop_set_status_compat(struct loop_device *lo,
1258 		       const struct compat_loop_info __user *arg)
1259 {
1260 	struct loop_info64 info64;
1261 	int ret;
1262 
1263 	ret = loop_info64_from_compat(arg, &info64);
1264 	if (ret < 0)
1265 		return ret;
1266 	return loop_set_status(lo, &info64);
1267 }
1268 
1269 static int
1270 loop_get_status_compat(struct loop_device *lo,
1271 		       struct compat_loop_info __user *arg)
1272 {
1273 	struct loop_info64 info64;
1274 	int err = 0;
1275 
1276 	if (!arg)
1277 		err = -EINVAL;
1278 	if (!err)
1279 		err = loop_get_status(lo, &info64);
1280 	if (!err)
1281 		err = loop_info64_to_compat(&info64, arg);
1282 	return err;
1283 }
1284 
1285 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1286 			   unsigned int cmd, unsigned long arg)
1287 {
1288 	struct loop_device *lo = bdev->bd_disk->private_data;
1289 	int err;
1290 
1291 	switch(cmd) {
1292 	case LOOP_SET_STATUS:
1293 		mutex_lock(&lo->lo_ctl_mutex);
1294 		err = loop_set_status_compat(
1295 			lo, (const struct compat_loop_info __user *) arg);
1296 		mutex_unlock(&lo->lo_ctl_mutex);
1297 		break;
1298 	case LOOP_GET_STATUS:
1299 		mutex_lock(&lo->lo_ctl_mutex);
1300 		err = loop_get_status_compat(
1301 			lo, (struct compat_loop_info __user *) arg);
1302 		mutex_unlock(&lo->lo_ctl_mutex);
1303 		break;
1304 	case LOOP_SET_CAPACITY:
1305 	case LOOP_CLR_FD:
1306 	case LOOP_GET_STATUS64:
1307 	case LOOP_SET_STATUS64:
1308 		arg = (unsigned long) compat_ptr(arg);
1309 	case LOOP_SET_FD:
1310 	case LOOP_CHANGE_FD:
1311 		err = lo_ioctl(bdev, mode, cmd, arg);
1312 		break;
1313 	default:
1314 		err = -ENOIOCTLCMD;
1315 		break;
1316 	}
1317 	return err;
1318 }
1319 #endif
1320 
1321 static int lo_open(struct block_device *bdev, fmode_t mode)
1322 {
1323 	struct loop_device *lo;
1324 	int err = 0;
1325 
1326 	mutex_lock(&loop_index_mutex);
1327 	lo = bdev->bd_disk->private_data;
1328 	if (!lo) {
1329 		err = -ENXIO;
1330 		goto out;
1331 	}
1332 
1333 	mutex_lock(&lo->lo_ctl_mutex);
1334 	lo->lo_refcnt++;
1335 	mutex_unlock(&lo->lo_ctl_mutex);
1336 out:
1337 	mutex_unlock(&loop_index_mutex);
1338 	return err;
1339 }
1340 
1341 static void lo_release(struct gendisk *disk, fmode_t mode)
1342 {
1343 	struct loop_device *lo = disk->private_data;
1344 	int err;
1345 
1346 	mutex_lock(&lo->lo_ctl_mutex);
1347 
1348 	if (--lo->lo_refcnt)
1349 		goto out;
1350 
1351 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1352 		/*
1353 		 * In autoclear mode, stop the loop thread
1354 		 * and remove configuration after last close.
1355 		 */
1356 		err = loop_clr_fd(lo);
1357 		if (!err)
1358 			return;
1359 	} else {
1360 		/*
1361 		 * Otherwise keep thread (if running) and config,
1362 		 * but flush possible ongoing bios in thread.
1363 		 */
1364 		loop_flush(lo);
1365 	}
1366 
1367 out:
1368 	mutex_unlock(&lo->lo_ctl_mutex);
1369 }
1370 
1371 static const struct block_device_operations lo_fops = {
1372 	.owner =	THIS_MODULE,
1373 	.open =		lo_open,
1374 	.release =	lo_release,
1375 	.ioctl =	lo_ioctl,
1376 #ifdef CONFIG_COMPAT
1377 	.compat_ioctl =	lo_compat_ioctl,
1378 #endif
1379 };
1380 
1381 /*
1382  * And now the modules code and kernel interface.
1383  */
1384 static int max_loop;
1385 module_param(max_loop, int, S_IRUGO);
1386 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1387 module_param(max_part, int, S_IRUGO);
1388 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1389 MODULE_LICENSE("GPL");
1390 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1391 
1392 int loop_register_transfer(struct loop_func_table *funcs)
1393 {
1394 	unsigned int n = funcs->number;
1395 
1396 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1397 		return -EINVAL;
1398 	xfer_funcs[n] = funcs;
1399 	return 0;
1400 }
1401 
1402 static int unregister_transfer_cb(int id, void *ptr, void *data)
1403 {
1404 	struct loop_device *lo = ptr;
1405 	struct loop_func_table *xfer = data;
1406 
1407 	mutex_lock(&lo->lo_ctl_mutex);
1408 	if (lo->lo_encryption == xfer)
1409 		loop_release_xfer(lo);
1410 	mutex_unlock(&lo->lo_ctl_mutex);
1411 	return 0;
1412 }
1413 
1414 int loop_unregister_transfer(int number)
1415 {
1416 	unsigned int n = number;
1417 	struct loop_func_table *xfer;
1418 
1419 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1420 		return -EINVAL;
1421 
1422 	xfer_funcs[n] = NULL;
1423 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1424 	return 0;
1425 }
1426 
1427 EXPORT_SYMBOL(loop_register_transfer);
1428 EXPORT_SYMBOL(loop_unregister_transfer);
1429 
1430 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1431 		const struct blk_mq_queue_data *bd)
1432 {
1433 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1434 	struct loop_device *lo = cmd->rq->q->queuedata;
1435 
1436 	blk_mq_start_request(bd->rq);
1437 
1438 	if (lo->lo_state != Lo_bound)
1439 		return -EIO;
1440 
1441 	if (cmd->rq->cmd_flags & REQ_WRITE) {
1442 		struct loop_device *lo = cmd->rq->q->queuedata;
1443 		bool need_sched = true;
1444 
1445 		spin_lock_irq(&lo->lo_lock);
1446 		if (lo->write_started)
1447 			need_sched = false;
1448 		else
1449 			lo->write_started = true;
1450 		list_add_tail(&cmd->list, &lo->write_cmd_head);
1451 		spin_unlock_irq(&lo->lo_lock);
1452 
1453 		if (need_sched)
1454 			queue_work(lo->wq, &lo->write_work);
1455 	} else {
1456 		queue_work(lo->wq, &cmd->read_work);
1457 	}
1458 
1459 	return BLK_MQ_RQ_QUEUE_OK;
1460 }
1461 
1462 static void loop_handle_cmd(struct loop_cmd *cmd)
1463 {
1464 	const bool write = cmd->rq->cmd_flags & REQ_WRITE;
1465 	struct loop_device *lo = cmd->rq->q->queuedata;
1466 	int ret = -EIO;
1467 
1468 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY))
1469 		goto failed;
1470 
1471 	ret = do_req_filebacked(lo, cmd->rq);
1472 
1473  failed:
1474 	if (ret)
1475 		cmd->rq->errors = -EIO;
1476 	blk_mq_complete_request(cmd->rq);
1477 }
1478 
1479 static void loop_queue_write_work(struct work_struct *work)
1480 {
1481 	struct loop_device *lo =
1482 		container_of(work, struct loop_device, write_work);
1483 	LIST_HEAD(cmd_list);
1484 
1485 	spin_lock_irq(&lo->lo_lock);
1486  repeat:
1487 	list_splice_init(&lo->write_cmd_head, &cmd_list);
1488 	spin_unlock_irq(&lo->lo_lock);
1489 
1490 	while (!list_empty(&cmd_list)) {
1491 		struct loop_cmd *cmd = list_first_entry(&cmd_list,
1492 				struct loop_cmd, list);
1493 		list_del_init(&cmd->list);
1494 		loop_handle_cmd(cmd);
1495 	}
1496 
1497 	spin_lock_irq(&lo->lo_lock);
1498 	if (!list_empty(&lo->write_cmd_head))
1499 		goto repeat;
1500 	lo->write_started = false;
1501 	spin_unlock_irq(&lo->lo_lock);
1502 }
1503 
1504 static void loop_queue_read_work(struct work_struct *work)
1505 {
1506 	struct loop_cmd *cmd =
1507 		container_of(work, struct loop_cmd, read_work);
1508 
1509 	loop_handle_cmd(cmd);
1510 }
1511 
1512 static int loop_init_request(void *data, struct request *rq,
1513 		unsigned int hctx_idx, unsigned int request_idx,
1514 		unsigned int numa_node)
1515 {
1516 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1517 
1518 	cmd->rq = rq;
1519 	INIT_WORK(&cmd->read_work, loop_queue_read_work);
1520 
1521 	return 0;
1522 }
1523 
1524 static struct blk_mq_ops loop_mq_ops = {
1525 	.queue_rq       = loop_queue_rq,
1526 	.map_queue      = blk_mq_map_queue,
1527 	.init_request	= loop_init_request,
1528 };
1529 
1530 static int loop_add(struct loop_device **l, int i)
1531 {
1532 	struct loop_device *lo;
1533 	struct gendisk *disk;
1534 	int err;
1535 
1536 	err = -ENOMEM;
1537 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1538 	if (!lo)
1539 		goto out;
1540 
1541 	lo->lo_state = Lo_unbound;
1542 
1543 	/* allocate id, if @id >= 0, we're requesting that specific id */
1544 	if (i >= 0) {
1545 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1546 		if (err == -ENOSPC)
1547 			err = -EEXIST;
1548 	} else {
1549 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1550 	}
1551 	if (err < 0)
1552 		goto out_free_dev;
1553 	i = err;
1554 
1555 	err = -ENOMEM;
1556 	lo->tag_set.ops = &loop_mq_ops;
1557 	lo->tag_set.nr_hw_queues = 1;
1558 	lo->tag_set.queue_depth = 128;
1559 	lo->tag_set.numa_node = NUMA_NO_NODE;
1560 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1561 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1562 	lo->tag_set.driver_data = lo;
1563 
1564 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1565 	if (err)
1566 		goto out_free_idr;
1567 
1568 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1569 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1570 		err = PTR_ERR(lo->lo_queue);
1571 		goto out_cleanup_tags;
1572 	}
1573 	lo->lo_queue->queuedata = lo;
1574 
1575 	INIT_LIST_HEAD(&lo->write_cmd_head);
1576 	INIT_WORK(&lo->write_work, loop_queue_write_work);
1577 
1578 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1579 	if (!disk)
1580 		goto out_free_queue;
1581 
1582 	/*
1583 	 * Disable partition scanning by default. The in-kernel partition
1584 	 * scanning can be requested individually per-device during its
1585 	 * setup. Userspace can always add and remove partitions from all
1586 	 * devices. The needed partition minors are allocated from the
1587 	 * extended minor space, the main loop device numbers will continue
1588 	 * to match the loop minors, regardless of the number of partitions
1589 	 * used.
1590 	 *
1591 	 * If max_part is given, partition scanning is globally enabled for
1592 	 * all loop devices. The minors for the main loop devices will be
1593 	 * multiples of max_part.
1594 	 *
1595 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1596 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1597 	 * complicated, are too static, inflexible and may surprise
1598 	 * userspace tools. Parameters like this in general should be avoided.
1599 	 */
1600 	if (!part_shift)
1601 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1602 	disk->flags |= GENHD_FL_EXT_DEVT;
1603 	mutex_init(&lo->lo_ctl_mutex);
1604 	lo->lo_number		= i;
1605 	spin_lock_init(&lo->lo_lock);
1606 	disk->major		= LOOP_MAJOR;
1607 	disk->first_minor	= i << part_shift;
1608 	disk->fops		= &lo_fops;
1609 	disk->private_data	= lo;
1610 	disk->queue		= lo->lo_queue;
1611 	sprintf(disk->disk_name, "loop%d", i);
1612 	add_disk(disk);
1613 	*l = lo;
1614 	return lo->lo_number;
1615 
1616 out_free_queue:
1617 	blk_cleanup_queue(lo->lo_queue);
1618 out_cleanup_tags:
1619 	blk_mq_free_tag_set(&lo->tag_set);
1620 out_free_idr:
1621 	idr_remove(&loop_index_idr, i);
1622 out_free_dev:
1623 	kfree(lo);
1624 out:
1625 	return err;
1626 }
1627 
1628 static void loop_remove(struct loop_device *lo)
1629 {
1630 	del_gendisk(lo->lo_disk);
1631 	blk_cleanup_queue(lo->lo_queue);
1632 	blk_mq_free_tag_set(&lo->tag_set);
1633 	put_disk(lo->lo_disk);
1634 	kfree(lo);
1635 }
1636 
1637 static int find_free_cb(int id, void *ptr, void *data)
1638 {
1639 	struct loop_device *lo = ptr;
1640 	struct loop_device **l = data;
1641 
1642 	if (lo->lo_state == Lo_unbound) {
1643 		*l = lo;
1644 		return 1;
1645 	}
1646 	return 0;
1647 }
1648 
1649 static int loop_lookup(struct loop_device **l, int i)
1650 {
1651 	struct loop_device *lo;
1652 	int ret = -ENODEV;
1653 
1654 	if (i < 0) {
1655 		int err;
1656 
1657 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1658 		if (err == 1) {
1659 			*l = lo;
1660 			ret = lo->lo_number;
1661 		}
1662 		goto out;
1663 	}
1664 
1665 	/* lookup and return a specific i */
1666 	lo = idr_find(&loop_index_idr, i);
1667 	if (lo) {
1668 		*l = lo;
1669 		ret = lo->lo_number;
1670 	}
1671 out:
1672 	return ret;
1673 }
1674 
1675 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1676 {
1677 	struct loop_device *lo;
1678 	struct kobject *kobj;
1679 	int err;
1680 
1681 	mutex_lock(&loop_index_mutex);
1682 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1683 	if (err < 0)
1684 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1685 	if (err < 0)
1686 		kobj = NULL;
1687 	else
1688 		kobj = get_disk(lo->lo_disk);
1689 	mutex_unlock(&loop_index_mutex);
1690 
1691 	*part = 0;
1692 	return kobj;
1693 }
1694 
1695 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1696 			       unsigned long parm)
1697 {
1698 	struct loop_device *lo;
1699 	int ret = -ENOSYS;
1700 
1701 	mutex_lock(&loop_index_mutex);
1702 	switch (cmd) {
1703 	case LOOP_CTL_ADD:
1704 		ret = loop_lookup(&lo, parm);
1705 		if (ret >= 0) {
1706 			ret = -EEXIST;
1707 			break;
1708 		}
1709 		ret = loop_add(&lo, parm);
1710 		break;
1711 	case LOOP_CTL_REMOVE:
1712 		ret = loop_lookup(&lo, parm);
1713 		if (ret < 0)
1714 			break;
1715 		mutex_lock(&lo->lo_ctl_mutex);
1716 		if (lo->lo_state != Lo_unbound) {
1717 			ret = -EBUSY;
1718 			mutex_unlock(&lo->lo_ctl_mutex);
1719 			break;
1720 		}
1721 		if (lo->lo_refcnt > 0) {
1722 			ret = -EBUSY;
1723 			mutex_unlock(&lo->lo_ctl_mutex);
1724 			break;
1725 		}
1726 		lo->lo_disk->private_data = NULL;
1727 		mutex_unlock(&lo->lo_ctl_mutex);
1728 		idr_remove(&loop_index_idr, lo->lo_number);
1729 		loop_remove(lo);
1730 		break;
1731 	case LOOP_CTL_GET_FREE:
1732 		ret = loop_lookup(&lo, -1);
1733 		if (ret >= 0)
1734 			break;
1735 		ret = loop_add(&lo, -1);
1736 	}
1737 	mutex_unlock(&loop_index_mutex);
1738 
1739 	return ret;
1740 }
1741 
1742 static const struct file_operations loop_ctl_fops = {
1743 	.open		= nonseekable_open,
1744 	.unlocked_ioctl	= loop_control_ioctl,
1745 	.compat_ioctl	= loop_control_ioctl,
1746 	.owner		= THIS_MODULE,
1747 	.llseek		= noop_llseek,
1748 };
1749 
1750 static struct miscdevice loop_misc = {
1751 	.minor		= LOOP_CTRL_MINOR,
1752 	.name		= "loop-control",
1753 	.fops		= &loop_ctl_fops,
1754 };
1755 
1756 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1757 MODULE_ALIAS("devname:loop-control");
1758 
1759 static int __init loop_init(void)
1760 {
1761 	int i, nr;
1762 	unsigned long range;
1763 	struct loop_device *lo;
1764 	int err;
1765 
1766 	err = misc_register(&loop_misc);
1767 	if (err < 0)
1768 		return err;
1769 
1770 	part_shift = 0;
1771 	if (max_part > 0) {
1772 		part_shift = fls(max_part);
1773 
1774 		/*
1775 		 * Adjust max_part according to part_shift as it is exported
1776 		 * to user space so that user can decide correct minor number
1777 		 * if [s]he want to create more devices.
1778 		 *
1779 		 * Note that -1 is required because partition 0 is reserved
1780 		 * for the whole disk.
1781 		 */
1782 		max_part = (1UL << part_shift) - 1;
1783 	}
1784 
1785 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1786 		err = -EINVAL;
1787 		goto misc_out;
1788 	}
1789 
1790 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1791 		err = -EINVAL;
1792 		goto misc_out;
1793 	}
1794 
1795 	/*
1796 	 * If max_loop is specified, create that many devices upfront.
1797 	 * This also becomes a hard limit. If max_loop is not specified,
1798 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1799 	 * init time. Loop devices can be requested on-demand with the
1800 	 * /dev/loop-control interface, or be instantiated by accessing
1801 	 * a 'dead' device node.
1802 	 */
1803 	if (max_loop) {
1804 		nr = max_loop;
1805 		range = max_loop << part_shift;
1806 	} else {
1807 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1808 		range = 1UL << MINORBITS;
1809 	}
1810 
1811 	if (register_blkdev(LOOP_MAJOR, "loop")) {
1812 		err = -EIO;
1813 		goto misc_out;
1814 	}
1815 
1816 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1817 				  THIS_MODULE, loop_probe, NULL, NULL);
1818 
1819 	/* pre-create number of devices given by config or max_loop */
1820 	mutex_lock(&loop_index_mutex);
1821 	for (i = 0; i < nr; i++)
1822 		loop_add(&lo, i);
1823 	mutex_unlock(&loop_index_mutex);
1824 
1825 	printk(KERN_INFO "loop: module loaded\n");
1826 	return 0;
1827 
1828 misc_out:
1829 	misc_deregister(&loop_misc);
1830 	return err;
1831 }
1832 
1833 static int loop_exit_cb(int id, void *ptr, void *data)
1834 {
1835 	struct loop_device *lo = ptr;
1836 
1837 	loop_remove(lo);
1838 	return 0;
1839 }
1840 
1841 static void __exit loop_exit(void)
1842 {
1843 	unsigned long range;
1844 
1845 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1846 
1847 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1848 	idr_destroy(&loop_index_idr);
1849 
1850 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1851 	unregister_blkdev(LOOP_MAJOR, "loop");
1852 
1853 	misc_deregister(&loop_misc);
1854 }
1855 
1856 module_init(loop_init);
1857 module_exit(loop_exit);
1858 
1859 #ifndef MODULE
1860 static int __init max_loop_setup(char *str)
1861 {
1862 	max_loop = simple_strtol(str, NULL, 0);
1863 	return 1;
1864 }
1865 
1866 __setup("max_loop=", max_loop_setup);
1867 #endif
1868