xref: /openbmc/linux/drivers/block/loop.c (revision f46f2a31)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81 
82 #include "loop.h"
83 
84 #include <linux/uaccess.h>
85 
86 static DEFINE_IDR(loop_index_idr);
87 static DEFINE_MUTEX(loop_ctl_mutex);
88 
89 static int max_part;
90 static int part_shift;
91 
92 static int transfer_xor(struct loop_device *lo, int cmd,
93 			struct page *raw_page, unsigned raw_off,
94 			struct page *loop_page, unsigned loop_off,
95 			int size, sector_t real_block)
96 {
97 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 	char *in, *out, *key;
100 	int i, keysize;
101 
102 	if (cmd == READ) {
103 		in = raw_buf;
104 		out = loop_buf;
105 	} else {
106 		in = loop_buf;
107 		out = raw_buf;
108 	}
109 
110 	key = lo->lo_encrypt_key;
111 	keysize = lo->lo_encrypt_key_size;
112 	for (i = 0; i < size; i++)
113 		*out++ = *in++ ^ key[(i & 511) % keysize];
114 
115 	kunmap_atomic(loop_buf);
116 	kunmap_atomic(raw_buf);
117 	cond_resched();
118 	return 0;
119 }
120 
121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122 {
123 	if (unlikely(info->lo_encrypt_key_size <= 0))
124 		return -EINVAL;
125 	return 0;
126 }
127 
128 static struct loop_func_table none_funcs = {
129 	.number = LO_CRYPT_NONE,
130 };
131 
132 static struct loop_func_table xor_funcs = {
133 	.number = LO_CRYPT_XOR,
134 	.transfer = transfer_xor,
135 	.init = xor_init
136 };
137 
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
140 	&none_funcs,
141 	&xor_funcs
142 };
143 
144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145 {
146 	loff_t loopsize;
147 
148 	/* Compute loopsize in bytes */
149 	loopsize = i_size_read(file->f_mapping->host);
150 	if (offset > 0)
151 		loopsize -= offset;
152 	/* offset is beyond i_size, weird but possible */
153 	if (loopsize < 0)
154 		return 0;
155 
156 	if (sizelimit > 0 && sizelimit < loopsize)
157 		loopsize = sizelimit;
158 	/*
159 	 * Unfortunately, if we want to do I/O on the device,
160 	 * the number of 512-byte sectors has to fit into a sector_t.
161 	 */
162 	return loopsize >> 9;
163 }
164 
165 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166 {
167 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
168 }
169 
170 static void __loop_update_dio(struct loop_device *lo, bool dio)
171 {
172 	struct file *file = lo->lo_backing_file;
173 	struct address_space *mapping = file->f_mapping;
174 	struct inode *inode = mapping->host;
175 	unsigned short sb_bsize = 0;
176 	unsigned dio_align = 0;
177 	bool use_dio;
178 
179 	if (inode->i_sb->s_bdev) {
180 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 		dio_align = sb_bsize - 1;
182 	}
183 
184 	/*
185 	 * We support direct I/O only if lo_offset is aligned with the
186 	 * logical I/O size of backing device, and the logical block
187 	 * size of loop is bigger than the backing device's and the loop
188 	 * needn't transform transfer.
189 	 *
190 	 * TODO: the above condition may be loosed in the future, and
191 	 * direct I/O may be switched runtime at that time because most
192 	 * of requests in sane applications should be PAGE_SIZE aligned
193 	 */
194 	if (dio) {
195 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 				!(lo->lo_offset & dio_align) &&
197 				mapping->a_ops->direct_IO &&
198 				!lo->transfer)
199 			use_dio = true;
200 		else
201 			use_dio = false;
202 	} else {
203 		use_dio = false;
204 	}
205 
206 	if (lo->use_dio == use_dio)
207 		return;
208 
209 	/* flush dirty pages before changing direct IO */
210 	vfs_fsync(file, 0);
211 
212 	/*
213 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 	 * will get updated by ioctl(LOOP_GET_STATUS)
216 	 */
217 	if (lo->lo_state == Lo_bound)
218 		blk_mq_freeze_queue(lo->lo_queue);
219 	lo->use_dio = use_dio;
220 	if (use_dio) {
221 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
222 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
223 	} else {
224 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
225 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
226 	}
227 	if (lo->lo_state == Lo_bound)
228 		blk_mq_unfreeze_queue(lo->lo_queue);
229 }
230 
231 /**
232  * loop_validate_block_size() - validates the passed in block size
233  * @bsize: size to validate
234  */
235 static int
236 loop_validate_block_size(unsigned short bsize)
237 {
238 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
239 		return -EINVAL;
240 
241 	return 0;
242 }
243 
244 /**
245  * loop_set_size() - sets device size and notifies userspace
246  * @lo: struct loop_device to set the size for
247  * @size: new size of the loop device
248  *
249  * Callers must validate that the size passed into this function fits into
250  * a sector_t, eg using loop_validate_size()
251  */
252 static void loop_set_size(struct loop_device *lo, loff_t size)
253 {
254 	if (!set_capacity_and_notify(lo->lo_disk, size))
255 		kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
256 }
257 
258 static inline int
259 lo_do_transfer(struct loop_device *lo, int cmd,
260 	       struct page *rpage, unsigned roffs,
261 	       struct page *lpage, unsigned loffs,
262 	       int size, sector_t rblock)
263 {
264 	int ret;
265 
266 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
267 	if (likely(!ret))
268 		return 0;
269 
270 	printk_ratelimited(KERN_ERR
271 		"loop: Transfer error at byte offset %llu, length %i.\n",
272 		(unsigned long long)rblock << 9, size);
273 	return ret;
274 }
275 
276 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
277 {
278 	struct iov_iter i;
279 	ssize_t bw;
280 
281 	iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
282 
283 	file_start_write(file);
284 	bw = vfs_iter_write(file, &i, ppos, 0);
285 	file_end_write(file);
286 
287 	if (likely(bw ==  bvec->bv_len))
288 		return 0;
289 
290 	printk_ratelimited(KERN_ERR
291 		"loop: Write error at byte offset %llu, length %i.\n",
292 		(unsigned long long)*ppos, bvec->bv_len);
293 	if (bw >= 0)
294 		bw = -EIO;
295 	return bw;
296 }
297 
298 static int lo_write_simple(struct loop_device *lo, struct request *rq,
299 		loff_t pos)
300 {
301 	struct bio_vec bvec;
302 	struct req_iterator iter;
303 	int ret = 0;
304 
305 	rq_for_each_segment(bvec, rq, iter) {
306 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
307 		if (ret < 0)
308 			break;
309 		cond_resched();
310 	}
311 
312 	return ret;
313 }
314 
315 /*
316  * This is the slow, transforming version that needs to double buffer the
317  * data as it cannot do the transformations in place without having direct
318  * access to the destination pages of the backing file.
319  */
320 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
321 		loff_t pos)
322 {
323 	struct bio_vec bvec, b;
324 	struct req_iterator iter;
325 	struct page *page;
326 	int ret = 0;
327 
328 	page = alloc_page(GFP_NOIO);
329 	if (unlikely(!page))
330 		return -ENOMEM;
331 
332 	rq_for_each_segment(bvec, rq, iter) {
333 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
334 			bvec.bv_offset, bvec.bv_len, pos >> 9);
335 		if (unlikely(ret))
336 			break;
337 
338 		b.bv_page = page;
339 		b.bv_offset = 0;
340 		b.bv_len = bvec.bv_len;
341 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
342 		if (ret < 0)
343 			break;
344 	}
345 
346 	__free_page(page);
347 	return ret;
348 }
349 
350 static int lo_read_simple(struct loop_device *lo, struct request *rq,
351 		loff_t pos)
352 {
353 	struct bio_vec bvec;
354 	struct req_iterator iter;
355 	struct iov_iter i;
356 	ssize_t len;
357 
358 	rq_for_each_segment(bvec, rq, iter) {
359 		iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
360 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
361 		if (len < 0)
362 			return len;
363 
364 		flush_dcache_page(bvec.bv_page);
365 
366 		if (len != bvec.bv_len) {
367 			struct bio *bio;
368 
369 			__rq_for_each_bio(bio, rq)
370 				zero_fill_bio(bio);
371 			break;
372 		}
373 		cond_resched();
374 	}
375 
376 	return 0;
377 }
378 
379 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
380 		loff_t pos)
381 {
382 	struct bio_vec bvec, b;
383 	struct req_iterator iter;
384 	struct iov_iter i;
385 	struct page *page;
386 	ssize_t len;
387 	int ret = 0;
388 
389 	page = alloc_page(GFP_NOIO);
390 	if (unlikely(!page))
391 		return -ENOMEM;
392 
393 	rq_for_each_segment(bvec, rq, iter) {
394 		loff_t offset = pos;
395 
396 		b.bv_page = page;
397 		b.bv_offset = 0;
398 		b.bv_len = bvec.bv_len;
399 
400 		iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
401 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
402 		if (len < 0) {
403 			ret = len;
404 			goto out_free_page;
405 		}
406 
407 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
408 			bvec.bv_offset, len, offset >> 9);
409 		if (ret)
410 			goto out_free_page;
411 
412 		flush_dcache_page(bvec.bv_page);
413 
414 		if (len != bvec.bv_len) {
415 			struct bio *bio;
416 
417 			__rq_for_each_bio(bio, rq)
418 				zero_fill_bio(bio);
419 			break;
420 		}
421 	}
422 
423 	ret = 0;
424 out_free_page:
425 	__free_page(page);
426 	return ret;
427 }
428 
429 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
430 			int mode)
431 {
432 	/*
433 	 * We use fallocate to manipulate the space mappings used by the image
434 	 * a.k.a. discard/zerorange. However we do not support this if
435 	 * encryption is enabled, because it may give an attacker useful
436 	 * information.
437 	 */
438 	struct file *file = lo->lo_backing_file;
439 	struct request_queue *q = lo->lo_queue;
440 	int ret;
441 
442 	mode |= FALLOC_FL_KEEP_SIZE;
443 
444 	if (!blk_queue_discard(q)) {
445 		ret = -EOPNOTSUPP;
446 		goto out;
447 	}
448 
449 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
450 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
451 		ret = -EIO;
452  out:
453 	return ret;
454 }
455 
456 static int lo_req_flush(struct loop_device *lo, struct request *rq)
457 {
458 	struct file *file = lo->lo_backing_file;
459 	int ret = vfs_fsync(file, 0);
460 	if (unlikely(ret && ret != -EINVAL))
461 		ret = -EIO;
462 
463 	return ret;
464 }
465 
466 static void lo_complete_rq(struct request *rq)
467 {
468 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
469 	blk_status_t ret = BLK_STS_OK;
470 
471 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
472 	    req_op(rq) != REQ_OP_READ) {
473 		if (cmd->ret < 0)
474 			ret = errno_to_blk_status(cmd->ret);
475 		goto end_io;
476 	}
477 
478 	/*
479 	 * Short READ - if we got some data, advance our request and
480 	 * retry it. If we got no data, end the rest with EIO.
481 	 */
482 	if (cmd->ret) {
483 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
484 		cmd->ret = 0;
485 		blk_mq_requeue_request(rq, true);
486 	} else {
487 		if (cmd->use_aio) {
488 			struct bio *bio = rq->bio;
489 
490 			while (bio) {
491 				zero_fill_bio(bio);
492 				bio = bio->bi_next;
493 			}
494 		}
495 		ret = BLK_STS_IOERR;
496 end_io:
497 		blk_mq_end_request(rq, ret);
498 	}
499 }
500 
501 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
502 {
503 	struct request *rq = blk_mq_rq_from_pdu(cmd);
504 
505 	if (!atomic_dec_and_test(&cmd->ref))
506 		return;
507 	kfree(cmd->bvec);
508 	cmd->bvec = NULL;
509 	if (likely(!blk_should_fake_timeout(rq->q)))
510 		blk_mq_complete_request(rq);
511 }
512 
513 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
514 {
515 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
516 
517 	if (cmd->css)
518 		css_put(cmd->css);
519 	cmd->ret = ret;
520 	lo_rw_aio_do_completion(cmd);
521 }
522 
523 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
524 		     loff_t pos, bool rw)
525 {
526 	struct iov_iter iter;
527 	struct req_iterator rq_iter;
528 	struct bio_vec *bvec;
529 	struct request *rq = blk_mq_rq_from_pdu(cmd);
530 	struct bio *bio = rq->bio;
531 	struct file *file = lo->lo_backing_file;
532 	struct bio_vec tmp;
533 	unsigned int offset;
534 	int nr_bvec = 0;
535 	int ret;
536 
537 	rq_for_each_bvec(tmp, rq, rq_iter)
538 		nr_bvec++;
539 
540 	if (rq->bio != rq->biotail) {
541 
542 		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
543 				     GFP_NOIO);
544 		if (!bvec)
545 			return -EIO;
546 		cmd->bvec = bvec;
547 
548 		/*
549 		 * The bios of the request may be started from the middle of
550 		 * the 'bvec' because of bio splitting, so we can't directly
551 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
552 		 * API will take care of all details for us.
553 		 */
554 		rq_for_each_bvec(tmp, rq, rq_iter) {
555 			*bvec = tmp;
556 			bvec++;
557 		}
558 		bvec = cmd->bvec;
559 		offset = 0;
560 	} else {
561 		/*
562 		 * Same here, this bio may be started from the middle of the
563 		 * 'bvec' because of bio splitting, so offset from the bvec
564 		 * must be passed to iov iterator
565 		 */
566 		offset = bio->bi_iter.bi_bvec_done;
567 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
568 	}
569 	atomic_set(&cmd->ref, 2);
570 
571 	iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
572 	iter.iov_offset = offset;
573 
574 	cmd->iocb.ki_pos = pos;
575 	cmd->iocb.ki_filp = file;
576 	cmd->iocb.ki_complete = lo_rw_aio_complete;
577 	cmd->iocb.ki_flags = IOCB_DIRECT;
578 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
579 	if (cmd->css)
580 		kthread_associate_blkcg(cmd->css);
581 
582 	if (rw == WRITE)
583 		ret = call_write_iter(file, &cmd->iocb, &iter);
584 	else
585 		ret = call_read_iter(file, &cmd->iocb, &iter);
586 
587 	lo_rw_aio_do_completion(cmd);
588 	kthread_associate_blkcg(NULL);
589 
590 	if (ret != -EIOCBQUEUED)
591 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
592 	return 0;
593 }
594 
595 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
596 {
597 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
598 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
599 
600 	/*
601 	 * lo_write_simple and lo_read_simple should have been covered
602 	 * by io submit style function like lo_rw_aio(), one blocker
603 	 * is that lo_read_simple() need to call flush_dcache_page after
604 	 * the page is written from kernel, and it isn't easy to handle
605 	 * this in io submit style function which submits all segments
606 	 * of the req at one time. And direct read IO doesn't need to
607 	 * run flush_dcache_page().
608 	 */
609 	switch (req_op(rq)) {
610 	case REQ_OP_FLUSH:
611 		return lo_req_flush(lo, rq);
612 	case REQ_OP_WRITE_ZEROES:
613 		/*
614 		 * If the caller doesn't want deallocation, call zeroout to
615 		 * write zeroes the range.  Otherwise, punch them out.
616 		 */
617 		return lo_fallocate(lo, rq, pos,
618 			(rq->cmd_flags & REQ_NOUNMAP) ?
619 				FALLOC_FL_ZERO_RANGE :
620 				FALLOC_FL_PUNCH_HOLE);
621 	case REQ_OP_DISCARD:
622 		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
623 	case REQ_OP_WRITE:
624 		if (lo->transfer)
625 			return lo_write_transfer(lo, rq, pos);
626 		else if (cmd->use_aio)
627 			return lo_rw_aio(lo, cmd, pos, WRITE);
628 		else
629 			return lo_write_simple(lo, rq, pos);
630 	case REQ_OP_READ:
631 		if (lo->transfer)
632 			return lo_read_transfer(lo, rq, pos);
633 		else if (cmd->use_aio)
634 			return lo_rw_aio(lo, cmd, pos, READ);
635 		else
636 			return lo_read_simple(lo, rq, pos);
637 	default:
638 		WARN_ON_ONCE(1);
639 		return -EIO;
640 	}
641 }
642 
643 static inline void loop_update_dio(struct loop_device *lo)
644 {
645 	__loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
646 				lo->use_dio);
647 }
648 
649 static void loop_reread_partitions(struct loop_device *lo,
650 				   struct block_device *bdev)
651 {
652 	int rc;
653 
654 	mutex_lock(&bdev->bd_mutex);
655 	rc = bdev_disk_changed(bdev, false);
656 	mutex_unlock(&bdev->bd_mutex);
657 	if (rc)
658 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
659 			__func__, lo->lo_number, lo->lo_file_name, rc);
660 }
661 
662 static inline int is_loop_device(struct file *file)
663 {
664 	struct inode *i = file->f_mapping->host;
665 
666 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
667 }
668 
669 static int loop_validate_file(struct file *file, struct block_device *bdev)
670 {
671 	struct inode	*inode = file->f_mapping->host;
672 	struct file	*f = file;
673 
674 	/* Avoid recursion */
675 	while (is_loop_device(f)) {
676 		struct loop_device *l;
677 
678 		if (f->f_mapping->host->i_bdev == bdev)
679 			return -EBADF;
680 
681 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
682 		if (l->lo_state != Lo_bound) {
683 			return -EINVAL;
684 		}
685 		f = l->lo_backing_file;
686 	}
687 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
688 		return -EINVAL;
689 	return 0;
690 }
691 
692 /*
693  * loop_change_fd switched the backing store of a loopback device to
694  * a new file. This is useful for operating system installers to free up
695  * the original file and in High Availability environments to switch to
696  * an alternative location for the content in case of server meltdown.
697  * This can only work if the loop device is used read-only, and if the
698  * new backing store is the same size and type as the old backing store.
699  */
700 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
701 			  unsigned int arg)
702 {
703 	struct file	*file = NULL, *old_file;
704 	int		error;
705 	bool		partscan;
706 
707 	error = mutex_lock_killable(&loop_ctl_mutex);
708 	if (error)
709 		return error;
710 	error = -ENXIO;
711 	if (lo->lo_state != Lo_bound)
712 		goto out_err;
713 
714 	/* the loop device has to be read-only */
715 	error = -EINVAL;
716 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
717 		goto out_err;
718 
719 	error = -EBADF;
720 	file = fget(arg);
721 	if (!file)
722 		goto out_err;
723 
724 	error = loop_validate_file(file, bdev);
725 	if (error)
726 		goto out_err;
727 
728 	old_file = lo->lo_backing_file;
729 
730 	error = -EINVAL;
731 
732 	/* size of the new backing store needs to be the same */
733 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
734 		goto out_err;
735 
736 	/* and ... switch */
737 	blk_mq_freeze_queue(lo->lo_queue);
738 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
739 	lo->lo_backing_file = file;
740 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
741 	mapping_set_gfp_mask(file->f_mapping,
742 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
743 	loop_update_dio(lo);
744 	blk_mq_unfreeze_queue(lo->lo_queue);
745 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
746 	mutex_unlock(&loop_ctl_mutex);
747 	/*
748 	 * We must drop file reference outside of loop_ctl_mutex as dropping
749 	 * the file ref can take bd_mutex which creates circular locking
750 	 * dependency.
751 	 */
752 	fput(old_file);
753 	if (partscan)
754 		loop_reread_partitions(lo, bdev);
755 	return 0;
756 
757 out_err:
758 	mutex_unlock(&loop_ctl_mutex);
759 	if (file)
760 		fput(file);
761 	return error;
762 }
763 
764 /* loop sysfs attributes */
765 
766 static ssize_t loop_attr_show(struct device *dev, char *page,
767 			      ssize_t (*callback)(struct loop_device *, char *))
768 {
769 	struct gendisk *disk = dev_to_disk(dev);
770 	struct loop_device *lo = disk->private_data;
771 
772 	return callback(lo, page);
773 }
774 
775 #define LOOP_ATTR_RO(_name)						\
776 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
777 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
778 				struct device_attribute *attr, char *b)	\
779 {									\
780 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
781 }									\
782 static struct device_attribute loop_attr_##_name =			\
783 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
784 
785 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
786 {
787 	ssize_t ret;
788 	char *p = NULL;
789 
790 	spin_lock_irq(&lo->lo_lock);
791 	if (lo->lo_backing_file)
792 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
793 	spin_unlock_irq(&lo->lo_lock);
794 
795 	if (IS_ERR_OR_NULL(p))
796 		ret = PTR_ERR(p);
797 	else {
798 		ret = strlen(p);
799 		memmove(buf, p, ret);
800 		buf[ret++] = '\n';
801 		buf[ret] = 0;
802 	}
803 
804 	return ret;
805 }
806 
807 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
808 {
809 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
810 }
811 
812 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
813 {
814 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
815 }
816 
817 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
818 {
819 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
820 
821 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
822 }
823 
824 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
825 {
826 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
827 
828 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
829 }
830 
831 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
832 {
833 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
834 
835 	return sprintf(buf, "%s\n", dio ? "1" : "0");
836 }
837 
838 LOOP_ATTR_RO(backing_file);
839 LOOP_ATTR_RO(offset);
840 LOOP_ATTR_RO(sizelimit);
841 LOOP_ATTR_RO(autoclear);
842 LOOP_ATTR_RO(partscan);
843 LOOP_ATTR_RO(dio);
844 
845 static struct attribute *loop_attrs[] = {
846 	&loop_attr_backing_file.attr,
847 	&loop_attr_offset.attr,
848 	&loop_attr_sizelimit.attr,
849 	&loop_attr_autoclear.attr,
850 	&loop_attr_partscan.attr,
851 	&loop_attr_dio.attr,
852 	NULL,
853 };
854 
855 static struct attribute_group loop_attribute_group = {
856 	.name = "loop",
857 	.attrs= loop_attrs,
858 };
859 
860 static void loop_sysfs_init(struct loop_device *lo)
861 {
862 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
863 						&loop_attribute_group);
864 }
865 
866 static void loop_sysfs_exit(struct loop_device *lo)
867 {
868 	if (lo->sysfs_inited)
869 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
870 				   &loop_attribute_group);
871 }
872 
873 static void loop_config_discard(struct loop_device *lo)
874 {
875 	struct file *file = lo->lo_backing_file;
876 	struct inode *inode = file->f_mapping->host;
877 	struct request_queue *q = lo->lo_queue;
878 	u32 granularity, max_discard_sectors;
879 
880 	/*
881 	 * If the backing device is a block device, mirror its zeroing
882 	 * capability. Set the discard sectors to the block device's zeroing
883 	 * capabilities because loop discards result in blkdev_issue_zeroout(),
884 	 * not blkdev_issue_discard(). This maintains consistent behavior with
885 	 * file-backed loop devices: discarded regions read back as zero.
886 	 */
887 	if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
888 		struct request_queue *backingq;
889 
890 		backingq = bdev_get_queue(inode->i_bdev);
891 
892 		max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
893 		granularity = backingq->limits.discard_granularity ?:
894 			queue_physical_block_size(backingq);
895 
896 	/*
897 	 * We use punch hole to reclaim the free space used by the
898 	 * image a.k.a. discard. However we do not support discard if
899 	 * encryption is enabled, because it may give an attacker
900 	 * useful information.
901 	 */
902 	} else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
903 		max_discard_sectors = 0;
904 		granularity = 0;
905 
906 	} else {
907 		max_discard_sectors = UINT_MAX >> 9;
908 		granularity = inode->i_sb->s_blocksize;
909 	}
910 
911 	if (max_discard_sectors) {
912 		q->limits.discard_granularity = granularity;
913 		blk_queue_max_discard_sectors(q, max_discard_sectors);
914 		blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
915 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
916 	} else {
917 		q->limits.discard_granularity = 0;
918 		blk_queue_max_discard_sectors(q, 0);
919 		blk_queue_max_write_zeroes_sectors(q, 0);
920 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
921 	}
922 	q->limits.discard_alignment = 0;
923 }
924 
925 static void loop_unprepare_queue(struct loop_device *lo)
926 {
927 	kthread_flush_worker(&lo->worker);
928 	kthread_stop(lo->worker_task);
929 }
930 
931 static int loop_kthread_worker_fn(void *worker_ptr)
932 {
933 	current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
934 	return kthread_worker_fn(worker_ptr);
935 }
936 
937 static int loop_prepare_queue(struct loop_device *lo)
938 {
939 	kthread_init_worker(&lo->worker);
940 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
941 			&lo->worker, "loop%d", lo->lo_number);
942 	if (IS_ERR(lo->worker_task))
943 		return -ENOMEM;
944 	set_user_nice(lo->worker_task, MIN_NICE);
945 	return 0;
946 }
947 
948 static void loop_update_rotational(struct loop_device *lo)
949 {
950 	struct file *file = lo->lo_backing_file;
951 	struct inode *file_inode = file->f_mapping->host;
952 	struct block_device *file_bdev = file_inode->i_sb->s_bdev;
953 	struct request_queue *q = lo->lo_queue;
954 	bool nonrot = true;
955 
956 	/* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
957 	if (file_bdev)
958 		nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
959 
960 	if (nonrot)
961 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
962 	else
963 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
964 }
965 
966 static int
967 loop_release_xfer(struct loop_device *lo)
968 {
969 	int err = 0;
970 	struct loop_func_table *xfer = lo->lo_encryption;
971 
972 	if (xfer) {
973 		if (xfer->release)
974 			err = xfer->release(lo);
975 		lo->transfer = NULL;
976 		lo->lo_encryption = NULL;
977 		module_put(xfer->owner);
978 	}
979 	return err;
980 }
981 
982 static int
983 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
984 	       const struct loop_info64 *i)
985 {
986 	int err = 0;
987 
988 	if (xfer) {
989 		struct module *owner = xfer->owner;
990 
991 		if (!try_module_get(owner))
992 			return -EINVAL;
993 		if (xfer->init)
994 			err = xfer->init(lo, i);
995 		if (err)
996 			module_put(owner);
997 		else
998 			lo->lo_encryption = xfer;
999 	}
1000 	return err;
1001 }
1002 
1003 /**
1004  * loop_set_status_from_info - configure device from loop_info
1005  * @lo: struct loop_device to configure
1006  * @info: struct loop_info64 to configure the device with
1007  *
1008  * Configures the loop device parameters according to the passed
1009  * in loop_info64 configuration.
1010  */
1011 static int
1012 loop_set_status_from_info(struct loop_device *lo,
1013 			  const struct loop_info64 *info)
1014 {
1015 	int err;
1016 	struct loop_func_table *xfer;
1017 	kuid_t uid = current_uid();
1018 
1019 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1020 		return -EINVAL;
1021 
1022 	err = loop_release_xfer(lo);
1023 	if (err)
1024 		return err;
1025 
1026 	if (info->lo_encrypt_type) {
1027 		unsigned int type = info->lo_encrypt_type;
1028 
1029 		if (type >= MAX_LO_CRYPT)
1030 			return -EINVAL;
1031 		xfer = xfer_funcs[type];
1032 		if (xfer == NULL)
1033 			return -EINVAL;
1034 	} else
1035 		xfer = NULL;
1036 
1037 	err = loop_init_xfer(lo, xfer, info);
1038 	if (err)
1039 		return err;
1040 
1041 	lo->lo_offset = info->lo_offset;
1042 	lo->lo_sizelimit = info->lo_sizelimit;
1043 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1044 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1045 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1046 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1047 
1048 	if (!xfer)
1049 		xfer = &none_funcs;
1050 	lo->transfer = xfer->transfer;
1051 	lo->ioctl = xfer->ioctl;
1052 
1053 	lo->lo_flags = info->lo_flags;
1054 
1055 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1056 	lo->lo_init[0] = info->lo_init[0];
1057 	lo->lo_init[1] = info->lo_init[1];
1058 	if (info->lo_encrypt_key_size) {
1059 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1060 		       info->lo_encrypt_key_size);
1061 		lo->lo_key_owner = uid;
1062 	}
1063 
1064 	return 0;
1065 }
1066 
1067 static int loop_configure(struct loop_device *lo, fmode_t mode,
1068 			  struct block_device *bdev,
1069 			  const struct loop_config *config)
1070 {
1071 	struct file	*file;
1072 	struct inode	*inode;
1073 	struct address_space *mapping;
1074 	struct block_device *claimed_bdev = NULL;
1075 	int		error;
1076 	loff_t		size;
1077 	bool		partscan;
1078 	unsigned short  bsize;
1079 
1080 	/* This is safe, since we have a reference from open(). */
1081 	__module_get(THIS_MODULE);
1082 
1083 	error = -EBADF;
1084 	file = fget(config->fd);
1085 	if (!file)
1086 		goto out;
1087 
1088 	/*
1089 	 * If we don't hold exclusive handle for the device, upgrade to it
1090 	 * here to avoid changing device under exclusive owner.
1091 	 */
1092 	if (!(mode & FMODE_EXCL)) {
1093 		claimed_bdev = bdev->bd_contains;
1094 		error = bd_prepare_to_claim(bdev, claimed_bdev, loop_configure);
1095 		if (error)
1096 			goto out_putf;
1097 	}
1098 
1099 	error = mutex_lock_killable(&loop_ctl_mutex);
1100 	if (error)
1101 		goto out_bdev;
1102 
1103 	error = -EBUSY;
1104 	if (lo->lo_state != Lo_unbound)
1105 		goto out_unlock;
1106 
1107 	error = loop_validate_file(file, bdev);
1108 	if (error)
1109 		goto out_unlock;
1110 
1111 	mapping = file->f_mapping;
1112 	inode = mapping->host;
1113 
1114 	if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1115 		error = -EINVAL;
1116 		goto out_unlock;
1117 	}
1118 
1119 	if (config->block_size) {
1120 		error = loop_validate_block_size(config->block_size);
1121 		if (error)
1122 			goto out_unlock;
1123 	}
1124 
1125 	error = loop_set_status_from_info(lo, &config->info);
1126 	if (error)
1127 		goto out_unlock;
1128 
1129 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1130 	    !file->f_op->write_iter)
1131 		lo->lo_flags |= LO_FLAGS_READ_ONLY;
1132 
1133 	error = loop_prepare_queue(lo);
1134 	if (error)
1135 		goto out_unlock;
1136 
1137 	set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1138 
1139 	lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1140 	lo->lo_device = bdev;
1141 	lo->lo_backing_file = file;
1142 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
1143 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1144 
1145 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1146 		blk_queue_write_cache(lo->lo_queue, true, false);
1147 
1148 	if (config->block_size)
1149 		bsize = config->block_size;
1150 	else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1151 		/* In case of direct I/O, match underlying block size */
1152 		bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1153 	else
1154 		bsize = 512;
1155 
1156 	blk_queue_logical_block_size(lo->lo_queue, bsize);
1157 	blk_queue_physical_block_size(lo->lo_queue, bsize);
1158 	blk_queue_io_min(lo->lo_queue, bsize);
1159 
1160 	loop_update_rotational(lo);
1161 	loop_update_dio(lo);
1162 	loop_sysfs_init(lo);
1163 
1164 	size = get_loop_size(lo, file);
1165 	loop_set_size(lo, size);
1166 
1167 	lo->lo_state = Lo_bound;
1168 	if (part_shift)
1169 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1170 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1171 	if (partscan)
1172 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1173 
1174 	/* Grab the block_device to prevent its destruction after we
1175 	 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1176 	 */
1177 	bdgrab(bdev);
1178 	mutex_unlock(&loop_ctl_mutex);
1179 	if (partscan)
1180 		loop_reread_partitions(lo, bdev);
1181 	if (claimed_bdev)
1182 		bd_abort_claiming(bdev, claimed_bdev, loop_configure);
1183 	return 0;
1184 
1185 out_unlock:
1186 	mutex_unlock(&loop_ctl_mutex);
1187 out_bdev:
1188 	if (claimed_bdev)
1189 		bd_abort_claiming(bdev, claimed_bdev, loop_configure);
1190 out_putf:
1191 	fput(file);
1192 out:
1193 	/* This is safe: open() is still holding a reference. */
1194 	module_put(THIS_MODULE);
1195 	return error;
1196 }
1197 
1198 static int __loop_clr_fd(struct loop_device *lo, bool release)
1199 {
1200 	struct file *filp = NULL;
1201 	gfp_t gfp = lo->old_gfp_mask;
1202 	struct block_device *bdev = lo->lo_device;
1203 	int err = 0;
1204 	bool partscan = false;
1205 	int lo_number;
1206 
1207 	mutex_lock(&loop_ctl_mutex);
1208 	if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1209 		err = -ENXIO;
1210 		goto out_unlock;
1211 	}
1212 
1213 	filp = lo->lo_backing_file;
1214 	if (filp == NULL) {
1215 		err = -EINVAL;
1216 		goto out_unlock;
1217 	}
1218 
1219 	/* freeze request queue during the transition */
1220 	blk_mq_freeze_queue(lo->lo_queue);
1221 
1222 	spin_lock_irq(&lo->lo_lock);
1223 	lo->lo_backing_file = NULL;
1224 	spin_unlock_irq(&lo->lo_lock);
1225 
1226 	loop_release_xfer(lo);
1227 	lo->transfer = NULL;
1228 	lo->ioctl = NULL;
1229 	lo->lo_device = NULL;
1230 	lo->lo_encryption = NULL;
1231 	lo->lo_offset = 0;
1232 	lo->lo_sizelimit = 0;
1233 	lo->lo_encrypt_key_size = 0;
1234 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1235 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1236 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1237 	blk_queue_logical_block_size(lo->lo_queue, 512);
1238 	blk_queue_physical_block_size(lo->lo_queue, 512);
1239 	blk_queue_io_min(lo->lo_queue, 512);
1240 	if (bdev) {
1241 		bdput(bdev);
1242 		invalidate_bdev(bdev);
1243 		bdev->bd_inode->i_mapping->wb_err = 0;
1244 	}
1245 	set_capacity(lo->lo_disk, 0);
1246 	loop_sysfs_exit(lo);
1247 	if (bdev) {
1248 		bd_set_nr_sectors(bdev, 0);
1249 		/* let user-space know about this change */
1250 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1251 	}
1252 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1253 	/* This is safe: open() is still holding a reference. */
1254 	module_put(THIS_MODULE);
1255 	blk_mq_unfreeze_queue(lo->lo_queue);
1256 
1257 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1258 	lo_number = lo->lo_number;
1259 	loop_unprepare_queue(lo);
1260 out_unlock:
1261 	mutex_unlock(&loop_ctl_mutex);
1262 	if (partscan) {
1263 		/*
1264 		 * bd_mutex has been held already in release path, so don't
1265 		 * acquire it if this function is called in such case.
1266 		 *
1267 		 * If the reread partition isn't from release path, lo_refcnt
1268 		 * must be at least one and it can only become zero when the
1269 		 * current holder is released.
1270 		 */
1271 		if (!release)
1272 			mutex_lock(&bdev->bd_mutex);
1273 		err = bdev_disk_changed(bdev, false);
1274 		if (!release)
1275 			mutex_unlock(&bdev->bd_mutex);
1276 		if (err)
1277 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1278 				__func__, lo_number, err);
1279 		/* Device is gone, no point in returning error */
1280 		err = 0;
1281 	}
1282 
1283 	/*
1284 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1285 	 * finished.
1286 	 *
1287 	 * There cannot be anybody else entering __loop_clr_fd() as
1288 	 * lo->lo_backing_file is already cleared and Lo_rundown state
1289 	 * protects us from all the other places trying to change the 'lo'
1290 	 * device.
1291 	 */
1292 	mutex_lock(&loop_ctl_mutex);
1293 	lo->lo_flags = 0;
1294 	if (!part_shift)
1295 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1296 	lo->lo_state = Lo_unbound;
1297 	mutex_unlock(&loop_ctl_mutex);
1298 
1299 	/*
1300 	 * Need not hold loop_ctl_mutex to fput backing file.
1301 	 * Calling fput holding loop_ctl_mutex triggers a circular
1302 	 * lock dependency possibility warning as fput can take
1303 	 * bd_mutex which is usually taken before loop_ctl_mutex.
1304 	 */
1305 	if (filp)
1306 		fput(filp);
1307 	return err;
1308 }
1309 
1310 static int loop_clr_fd(struct loop_device *lo)
1311 {
1312 	int err;
1313 
1314 	err = mutex_lock_killable(&loop_ctl_mutex);
1315 	if (err)
1316 		return err;
1317 	if (lo->lo_state != Lo_bound) {
1318 		mutex_unlock(&loop_ctl_mutex);
1319 		return -ENXIO;
1320 	}
1321 	/*
1322 	 * If we've explicitly asked to tear down the loop device,
1323 	 * and it has an elevated reference count, set it for auto-teardown when
1324 	 * the last reference goes away. This stops $!~#$@ udev from
1325 	 * preventing teardown because it decided that it needs to run blkid on
1326 	 * the loopback device whenever they appear. xfstests is notorious for
1327 	 * failing tests because blkid via udev races with a losetup
1328 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1329 	 * command to fail with EBUSY.
1330 	 */
1331 	if (atomic_read(&lo->lo_refcnt) > 1) {
1332 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1333 		mutex_unlock(&loop_ctl_mutex);
1334 		return 0;
1335 	}
1336 	lo->lo_state = Lo_rundown;
1337 	mutex_unlock(&loop_ctl_mutex);
1338 
1339 	return __loop_clr_fd(lo, false);
1340 }
1341 
1342 static int
1343 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1344 {
1345 	int err;
1346 	struct block_device *bdev;
1347 	kuid_t uid = current_uid();
1348 	int prev_lo_flags;
1349 	bool partscan = false;
1350 	bool size_changed = false;
1351 
1352 	err = mutex_lock_killable(&loop_ctl_mutex);
1353 	if (err)
1354 		return err;
1355 	if (lo->lo_encrypt_key_size &&
1356 	    !uid_eq(lo->lo_key_owner, uid) &&
1357 	    !capable(CAP_SYS_ADMIN)) {
1358 		err = -EPERM;
1359 		goto out_unlock;
1360 	}
1361 	if (lo->lo_state != Lo_bound) {
1362 		err = -ENXIO;
1363 		goto out_unlock;
1364 	}
1365 
1366 	if (lo->lo_offset != info->lo_offset ||
1367 	    lo->lo_sizelimit != info->lo_sizelimit) {
1368 		size_changed = true;
1369 		sync_blockdev(lo->lo_device);
1370 		invalidate_bdev(lo->lo_device);
1371 	}
1372 
1373 	/* I/O need to be drained during transfer transition */
1374 	blk_mq_freeze_queue(lo->lo_queue);
1375 
1376 	if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) {
1377 		/* If any pages were dirtied after invalidate_bdev(), try again */
1378 		err = -EAGAIN;
1379 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1380 			__func__, lo->lo_number, lo->lo_file_name,
1381 			lo->lo_device->bd_inode->i_mapping->nrpages);
1382 		goto out_unfreeze;
1383 	}
1384 
1385 	prev_lo_flags = lo->lo_flags;
1386 
1387 	err = loop_set_status_from_info(lo, info);
1388 	if (err)
1389 		goto out_unfreeze;
1390 
1391 	/* Mask out flags that can't be set using LOOP_SET_STATUS. */
1392 	lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1393 	/* For those flags, use the previous values instead */
1394 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1395 	/* For flags that can't be cleared, use previous values too */
1396 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1397 
1398 	if (size_changed) {
1399 		loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1400 					   lo->lo_backing_file);
1401 		loop_set_size(lo, new_size);
1402 	}
1403 
1404 	loop_config_discard(lo);
1405 
1406 	/* update dio if lo_offset or transfer is changed */
1407 	__loop_update_dio(lo, lo->use_dio);
1408 
1409 out_unfreeze:
1410 	blk_mq_unfreeze_queue(lo->lo_queue);
1411 
1412 	if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1413 	     !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1414 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1415 		bdev = lo->lo_device;
1416 		partscan = true;
1417 	}
1418 out_unlock:
1419 	mutex_unlock(&loop_ctl_mutex);
1420 	if (partscan)
1421 		loop_reread_partitions(lo, bdev);
1422 
1423 	return err;
1424 }
1425 
1426 static int
1427 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1428 {
1429 	struct path path;
1430 	struct kstat stat;
1431 	int ret;
1432 
1433 	ret = mutex_lock_killable(&loop_ctl_mutex);
1434 	if (ret)
1435 		return ret;
1436 	if (lo->lo_state != Lo_bound) {
1437 		mutex_unlock(&loop_ctl_mutex);
1438 		return -ENXIO;
1439 	}
1440 
1441 	memset(info, 0, sizeof(*info));
1442 	info->lo_number = lo->lo_number;
1443 	info->lo_offset = lo->lo_offset;
1444 	info->lo_sizelimit = lo->lo_sizelimit;
1445 	info->lo_flags = lo->lo_flags;
1446 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1447 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1448 	info->lo_encrypt_type =
1449 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1450 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1451 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1452 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1453 		       lo->lo_encrypt_key_size);
1454 	}
1455 
1456 	/* Drop loop_ctl_mutex while we call into the filesystem. */
1457 	path = lo->lo_backing_file->f_path;
1458 	path_get(&path);
1459 	mutex_unlock(&loop_ctl_mutex);
1460 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1461 	if (!ret) {
1462 		info->lo_device = huge_encode_dev(stat.dev);
1463 		info->lo_inode = stat.ino;
1464 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1465 	}
1466 	path_put(&path);
1467 	return ret;
1468 }
1469 
1470 static void
1471 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1472 {
1473 	memset(info64, 0, sizeof(*info64));
1474 	info64->lo_number = info->lo_number;
1475 	info64->lo_device = info->lo_device;
1476 	info64->lo_inode = info->lo_inode;
1477 	info64->lo_rdevice = info->lo_rdevice;
1478 	info64->lo_offset = info->lo_offset;
1479 	info64->lo_sizelimit = 0;
1480 	info64->lo_encrypt_type = info->lo_encrypt_type;
1481 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1482 	info64->lo_flags = info->lo_flags;
1483 	info64->lo_init[0] = info->lo_init[0];
1484 	info64->lo_init[1] = info->lo_init[1];
1485 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1486 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1487 	else
1488 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1489 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1490 }
1491 
1492 static int
1493 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1494 {
1495 	memset(info, 0, sizeof(*info));
1496 	info->lo_number = info64->lo_number;
1497 	info->lo_device = info64->lo_device;
1498 	info->lo_inode = info64->lo_inode;
1499 	info->lo_rdevice = info64->lo_rdevice;
1500 	info->lo_offset = info64->lo_offset;
1501 	info->lo_encrypt_type = info64->lo_encrypt_type;
1502 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1503 	info->lo_flags = info64->lo_flags;
1504 	info->lo_init[0] = info64->lo_init[0];
1505 	info->lo_init[1] = info64->lo_init[1];
1506 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1507 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1508 	else
1509 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1510 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1511 
1512 	/* error in case values were truncated */
1513 	if (info->lo_device != info64->lo_device ||
1514 	    info->lo_rdevice != info64->lo_rdevice ||
1515 	    info->lo_inode != info64->lo_inode ||
1516 	    info->lo_offset != info64->lo_offset)
1517 		return -EOVERFLOW;
1518 
1519 	return 0;
1520 }
1521 
1522 static int
1523 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1524 {
1525 	struct loop_info info;
1526 	struct loop_info64 info64;
1527 
1528 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1529 		return -EFAULT;
1530 	loop_info64_from_old(&info, &info64);
1531 	return loop_set_status(lo, &info64);
1532 }
1533 
1534 static int
1535 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1536 {
1537 	struct loop_info64 info64;
1538 
1539 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1540 		return -EFAULT;
1541 	return loop_set_status(lo, &info64);
1542 }
1543 
1544 static int
1545 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1546 	struct loop_info info;
1547 	struct loop_info64 info64;
1548 	int err;
1549 
1550 	if (!arg)
1551 		return -EINVAL;
1552 	err = loop_get_status(lo, &info64);
1553 	if (!err)
1554 		err = loop_info64_to_old(&info64, &info);
1555 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1556 		err = -EFAULT;
1557 
1558 	return err;
1559 }
1560 
1561 static int
1562 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1563 	struct loop_info64 info64;
1564 	int err;
1565 
1566 	if (!arg)
1567 		return -EINVAL;
1568 	err = loop_get_status(lo, &info64);
1569 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1570 		err = -EFAULT;
1571 
1572 	return err;
1573 }
1574 
1575 static int loop_set_capacity(struct loop_device *lo)
1576 {
1577 	loff_t size;
1578 
1579 	if (unlikely(lo->lo_state != Lo_bound))
1580 		return -ENXIO;
1581 
1582 	size = get_loop_size(lo, lo->lo_backing_file);
1583 	loop_set_size(lo, size);
1584 
1585 	return 0;
1586 }
1587 
1588 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1589 {
1590 	int error = -ENXIO;
1591 	if (lo->lo_state != Lo_bound)
1592 		goto out;
1593 
1594 	__loop_update_dio(lo, !!arg);
1595 	if (lo->use_dio == !!arg)
1596 		return 0;
1597 	error = -EINVAL;
1598  out:
1599 	return error;
1600 }
1601 
1602 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1603 {
1604 	int err = 0;
1605 
1606 	if (lo->lo_state != Lo_bound)
1607 		return -ENXIO;
1608 
1609 	err = loop_validate_block_size(arg);
1610 	if (err)
1611 		return err;
1612 
1613 	if (lo->lo_queue->limits.logical_block_size == arg)
1614 		return 0;
1615 
1616 	sync_blockdev(lo->lo_device);
1617 	invalidate_bdev(lo->lo_device);
1618 
1619 	blk_mq_freeze_queue(lo->lo_queue);
1620 
1621 	/* invalidate_bdev should have truncated all the pages */
1622 	if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1623 		err = -EAGAIN;
1624 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1625 			__func__, lo->lo_number, lo->lo_file_name,
1626 			lo->lo_device->bd_inode->i_mapping->nrpages);
1627 		goto out_unfreeze;
1628 	}
1629 
1630 	blk_queue_logical_block_size(lo->lo_queue, arg);
1631 	blk_queue_physical_block_size(lo->lo_queue, arg);
1632 	blk_queue_io_min(lo->lo_queue, arg);
1633 	loop_update_dio(lo);
1634 out_unfreeze:
1635 	blk_mq_unfreeze_queue(lo->lo_queue);
1636 
1637 	return err;
1638 }
1639 
1640 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1641 			   unsigned long arg)
1642 {
1643 	int err;
1644 
1645 	err = mutex_lock_killable(&loop_ctl_mutex);
1646 	if (err)
1647 		return err;
1648 	switch (cmd) {
1649 	case LOOP_SET_CAPACITY:
1650 		err = loop_set_capacity(lo);
1651 		break;
1652 	case LOOP_SET_DIRECT_IO:
1653 		err = loop_set_dio(lo, arg);
1654 		break;
1655 	case LOOP_SET_BLOCK_SIZE:
1656 		err = loop_set_block_size(lo, arg);
1657 		break;
1658 	default:
1659 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1660 	}
1661 	mutex_unlock(&loop_ctl_mutex);
1662 	return err;
1663 }
1664 
1665 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1666 	unsigned int cmd, unsigned long arg)
1667 {
1668 	struct loop_device *lo = bdev->bd_disk->private_data;
1669 	void __user *argp = (void __user *) arg;
1670 	int err;
1671 
1672 	switch (cmd) {
1673 	case LOOP_SET_FD: {
1674 		/*
1675 		 * Legacy case - pass in a zeroed out struct loop_config with
1676 		 * only the file descriptor set , which corresponds with the
1677 		 * default parameters we'd have used otherwise.
1678 		 */
1679 		struct loop_config config;
1680 
1681 		memset(&config, 0, sizeof(config));
1682 		config.fd = arg;
1683 
1684 		return loop_configure(lo, mode, bdev, &config);
1685 	}
1686 	case LOOP_CONFIGURE: {
1687 		struct loop_config config;
1688 
1689 		if (copy_from_user(&config, argp, sizeof(config)))
1690 			return -EFAULT;
1691 
1692 		return loop_configure(lo, mode, bdev, &config);
1693 	}
1694 	case LOOP_CHANGE_FD:
1695 		return loop_change_fd(lo, bdev, arg);
1696 	case LOOP_CLR_FD:
1697 		return loop_clr_fd(lo);
1698 	case LOOP_SET_STATUS:
1699 		err = -EPERM;
1700 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1701 			err = loop_set_status_old(lo, argp);
1702 		}
1703 		break;
1704 	case LOOP_GET_STATUS:
1705 		return loop_get_status_old(lo, argp);
1706 	case LOOP_SET_STATUS64:
1707 		err = -EPERM;
1708 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1709 			err = loop_set_status64(lo, argp);
1710 		}
1711 		break;
1712 	case LOOP_GET_STATUS64:
1713 		return loop_get_status64(lo, argp);
1714 	case LOOP_SET_CAPACITY:
1715 	case LOOP_SET_DIRECT_IO:
1716 	case LOOP_SET_BLOCK_SIZE:
1717 		if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1718 			return -EPERM;
1719 		fallthrough;
1720 	default:
1721 		err = lo_simple_ioctl(lo, cmd, arg);
1722 		break;
1723 	}
1724 
1725 	return err;
1726 }
1727 
1728 #ifdef CONFIG_COMPAT
1729 struct compat_loop_info {
1730 	compat_int_t	lo_number;      /* ioctl r/o */
1731 	compat_dev_t	lo_device;      /* ioctl r/o */
1732 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1733 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1734 	compat_int_t	lo_offset;
1735 	compat_int_t	lo_encrypt_type;
1736 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1737 	compat_int_t	lo_flags;       /* ioctl r/o */
1738 	char		lo_name[LO_NAME_SIZE];
1739 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1740 	compat_ulong_t	lo_init[2];
1741 	char		reserved[4];
1742 };
1743 
1744 /*
1745  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1746  * - noinlined to reduce stack space usage in main part of driver
1747  */
1748 static noinline int
1749 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1750 			struct loop_info64 *info64)
1751 {
1752 	struct compat_loop_info info;
1753 
1754 	if (copy_from_user(&info, arg, sizeof(info)))
1755 		return -EFAULT;
1756 
1757 	memset(info64, 0, sizeof(*info64));
1758 	info64->lo_number = info.lo_number;
1759 	info64->lo_device = info.lo_device;
1760 	info64->lo_inode = info.lo_inode;
1761 	info64->lo_rdevice = info.lo_rdevice;
1762 	info64->lo_offset = info.lo_offset;
1763 	info64->lo_sizelimit = 0;
1764 	info64->lo_encrypt_type = info.lo_encrypt_type;
1765 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1766 	info64->lo_flags = info.lo_flags;
1767 	info64->lo_init[0] = info.lo_init[0];
1768 	info64->lo_init[1] = info.lo_init[1];
1769 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1770 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1771 	else
1772 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1773 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1774 	return 0;
1775 }
1776 
1777 /*
1778  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1779  * - noinlined to reduce stack space usage in main part of driver
1780  */
1781 static noinline int
1782 loop_info64_to_compat(const struct loop_info64 *info64,
1783 		      struct compat_loop_info __user *arg)
1784 {
1785 	struct compat_loop_info info;
1786 
1787 	memset(&info, 0, sizeof(info));
1788 	info.lo_number = info64->lo_number;
1789 	info.lo_device = info64->lo_device;
1790 	info.lo_inode = info64->lo_inode;
1791 	info.lo_rdevice = info64->lo_rdevice;
1792 	info.lo_offset = info64->lo_offset;
1793 	info.lo_encrypt_type = info64->lo_encrypt_type;
1794 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1795 	info.lo_flags = info64->lo_flags;
1796 	info.lo_init[0] = info64->lo_init[0];
1797 	info.lo_init[1] = info64->lo_init[1];
1798 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1799 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1800 	else
1801 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1802 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1803 
1804 	/* error in case values were truncated */
1805 	if (info.lo_device != info64->lo_device ||
1806 	    info.lo_rdevice != info64->lo_rdevice ||
1807 	    info.lo_inode != info64->lo_inode ||
1808 	    info.lo_offset != info64->lo_offset ||
1809 	    info.lo_init[0] != info64->lo_init[0] ||
1810 	    info.lo_init[1] != info64->lo_init[1])
1811 		return -EOVERFLOW;
1812 
1813 	if (copy_to_user(arg, &info, sizeof(info)))
1814 		return -EFAULT;
1815 	return 0;
1816 }
1817 
1818 static int
1819 loop_set_status_compat(struct loop_device *lo,
1820 		       const struct compat_loop_info __user *arg)
1821 {
1822 	struct loop_info64 info64;
1823 	int ret;
1824 
1825 	ret = loop_info64_from_compat(arg, &info64);
1826 	if (ret < 0)
1827 		return ret;
1828 	return loop_set_status(lo, &info64);
1829 }
1830 
1831 static int
1832 loop_get_status_compat(struct loop_device *lo,
1833 		       struct compat_loop_info __user *arg)
1834 {
1835 	struct loop_info64 info64;
1836 	int err;
1837 
1838 	if (!arg)
1839 		return -EINVAL;
1840 	err = loop_get_status(lo, &info64);
1841 	if (!err)
1842 		err = loop_info64_to_compat(&info64, arg);
1843 	return err;
1844 }
1845 
1846 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1847 			   unsigned int cmd, unsigned long arg)
1848 {
1849 	struct loop_device *lo = bdev->bd_disk->private_data;
1850 	int err;
1851 
1852 	switch(cmd) {
1853 	case LOOP_SET_STATUS:
1854 		err = loop_set_status_compat(lo,
1855 			     (const struct compat_loop_info __user *)arg);
1856 		break;
1857 	case LOOP_GET_STATUS:
1858 		err = loop_get_status_compat(lo,
1859 				     (struct compat_loop_info __user *)arg);
1860 		break;
1861 	case LOOP_SET_CAPACITY:
1862 	case LOOP_CLR_FD:
1863 	case LOOP_GET_STATUS64:
1864 	case LOOP_SET_STATUS64:
1865 	case LOOP_CONFIGURE:
1866 		arg = (unsigned long) compat_ptr(arg);
1867 		fallthrough;
1868 	case LOOP_SET_FD:
1869 	case LOOP_CHANGE_FD:
1870 	case LOOP_SET_BLOCK_SIZE:
1871 	case LOOP_SET_DIRECT_IO:
1872 		err = lo_ioctl(bdev, mode, cmd, arg);
1873 		break;
1874 	default:
1875 		err = -ENOIOCTLCMD;
1876 		break;
1877 	}
1878 	return err;
1879 }
1880 #endif
1881 
1882 static int lo_open(struct block_device *bdev, fmode_t mode)
1883 {
1884 	struct loop_device *lo;
1885 	int err;
1886 
1887 	err = mutex_lock_killable(&loop_ctl_mutex);
1888 	if (err)
1889 		return err;
1890 	lo = bdev->bd_disk->private_data;
1891 	if (!lo) {
1892 		err = -ENXIO;
1893 		goto out;
1894 	}
1895 
1896 	atomic_inc(&lo->lo_refcnt);
1897 out:
1898 	mutex_unlock(&loop_ctl_mutex);
1899 	return err;
1900 }
1901 
1902 static void lo_release(struct gendisk *disk, fmode_t mode)
1903 {
1904 	struct loop_device *lo;
1905 
1906 	mutex_lock(&loop_ctl_mutex);
1907 	lo = disk->private_data;
1908 	if (atomic_dec_return(&lo->lo_refcnt))
1909 		goto out_unlock;
1910 
1911 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1912 		if (lo->lo_state != Lo_bound)
1913 			goto out_unlock;
1914 		lo->lo_state = Lo_rundown;
1915 		mutex_unlock(&loop_ctl_mutex);
1916 		/*
1917 		 * In autoclear mode, stop the loop thread
1918 		 * and remove configuration after last close.
1919 		 */
1920 		__loop_clr_fd(lo, true);
1921 		return;
1922 	} else if (lo->lo_state == Lo_bound) {
1923 		/*
1924 		 * Otherwise keep thread (if running) and config,
1925 		 * but flush possible ongoing bios in thread.
1926 		 */
1927 		blk_mq_freeze_queue(lo->lo_queue);
1928 		blk_mq_unfreeze_queue(lo->lo_queue);
1929 	}
1930 
1931 out_unlock:
1932 	mutex_unlock(&loop_ctl_mutex);
1933 }
1934 
1935 static const struct block_device_operations lo_fops = {
1936 	.owner =	THIS_MODULE,
1937 	.open =		lo_open,
1938 	.release =	lo_release,
1939 	.ioctl =	lo_ioctl,
1940 #ifdef CONFIG_COMPAT
1941 	.compat_ioctl =	lo_compat_ioctl,
1942 #endif
1943 };
1944 
1945 /*
1946  * And now the modules code and kernel interface.
1947  */
1948 static int max_loop;
1949 module_param(max_loop, int, 0444);
1950 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1951 module_param(max_part, int, 0444);
1952 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1953 MODULE_LICENSE("GPL");
1954 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1955 
1956 int loop_register_transfer(struct loop_func_table *funcs)
1957 {
1958 	unsigned int n = funcs->number;
1959 
1960 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1961 		return -EINVAL;
1962 	xfer_funcs[n] = funcs;
1963 	return 0;
1964 }
1965 
1966 static int unregister_transfer_cb(int id, void *ptr, void *data)
1967 {
1968 	struct loop_device *lo = ptr;
1969 	struct loop_func_table *xfer = data;
1970 
1971 	mutex_lock(&loop_ctl_mutex);
1972 	if (lo->lo_encryption == xfer)
1973 		loop_release_xfer(lo);
1974 	mutex_unlock(&loop_ctl_mutex);
1975 	return 0;
1976 }
1977 
1978 int loop_unregister_transfer(int number)
1979 {
1980 	unsigned int n = number;
1981 	struct loop_func_table *xfer;
1982 
1983 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1984 		return -EINVAL;
1985 
1986 	xfer_funcs[n] = NULL;
1987 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1988 	return 0;
1989 }
1990 
1991 EXPORT_SYMBOL(loop_register_transfer);
1992 EXPORT_SYMBOL(loop_unregister_transfer);
1993 
1994 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1995 		const struct blk_mq_queue_data *bd)
1996 {
1997 	struct request *rq = bd->rq;
1998 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1999 	struct loop_device *lo = rq->q->queuedata;
2000 
2001 	blk_mq_start_request(rq);
2002 
2003 	if (lo->lo_state != Lo_bound)
2004 		return BLK_STS_IOERR;
2005 
2006 	switch (req_op(rq)) {
2007 	case REQ_OP_FLUSH:
2008 	case REQ_OP_DISCARD:
2009 	case REQ_OP_WRITE_ZEROES:
2010 		cmd->use_aio = false;
2011 		break;
2012 	default:
2013 		cmd->use_aio = lo->use_dio;
2014 		break;
2015 	}
2016 
2017 	/* always use the first bio's css */
2018 #ifdef CONFIG_BLK_CGROUP
2019 	if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
2020 		cmd->css = &bio_blkcg(rq->bio)->css;
2021 		css_get(cmd->css);
2022 	} else
2023 #endif
2024 		cmd->css = NULL;
2025 	kthread_queue_work(&lo->worker, &cmd->work);
2026 
2027 	return BLK_STS_OK;
2028 }
2029 
2030 static void loop_handle_cmd(struct loop_cmd *cmd)
2031 {
2032 	struct request *rq = blk_mq_rq_from_pdu(cmd);
2033 	const bool write = op_is_write(req_op(rq));
2034 	struct loop_device *lo = rq->q->queuedata;
2035 	int ret = 0;
2036 
2037 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
2038 		ret = -EIO;
2039 		goto failed;
2040 	}
2041 
2042 	ret = do_req_filebacked(lo, rq);
2043  failed:
2044 	/* complete non-aio request */
2045 	if (!cmd->use_aio || ret) {
2046 		if (ret == -EOPNOTSUPP)
2047 			cmd->ret = ret;
2048 		else
2049 			cmd->ret = ret ? -EIO : 0;
2050 		if (likely(!blk_should_fake_timeout(rq->q)))
2051 			blk_mq_complete_request(rq);
2052 	}
2053 }
2054 
2055 static void loop_queue_work(struct kthread_work *work)
2056 {
2057 	struct loop_cmd *cmd =
2058 		container_of(work, struct loop_cmd, work);
2059 
2060 	loop_handle_cmd(cmd);
2061 }
2062 
2063 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
2064 		unsigned int hctx_idx, unsigned int numa_node)
2065 {
2066 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2067 
2068 	kthread_init_work(&cmd->work, loop_queue_work);
2069 	return 0;
2070 }
2071 
2072 static const struct blk_mq_ops loop_mq_ops = {
2073 	.queue_rq       = loop_queue_rq,
2074 	.init_request	= loop_init_request,
2075 	.complete	= lo_complete_rq,
2076 };
2077 
2078 static int loop_add(struct loop_device **l, int i)
2079 {
2080 	struct loop_device *lo;
2081 	struct gendisk *disk;
2082 	int err;
2083 
2084 	err = -ENOMEM;
2085 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2086 	if (!lo)
2087 		goto out;
2088 
2089 	lo->lo_state = Lo_unbound;
2090 
2091 	/* allocate id, if @id >= 0, we're requesting that specific id */
2092 	if (i >= 0) {
2093 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2094 		if (err == -ENOSPC)
2095 			err = -EEXIST;
2096 	} else {
2097 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2098 	}
2099 	if (err < 0)
2100 		goto out_free_dev;
2101 	i = err;
2102 
2103 	err = -ENOMEM;
2104 	lo->tag_set.ops = &loop_mq_ops;
2105 	lo->tag_set.nr_hw_queues = 1;
2106 	lo->tag_set.queue_depth = 128;
2107 	lo->tag_set.numa_node = NUMA_NO_NODE;
2108 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2109 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING;
2110 	lo->tag_set.driver_data = lo;
2111 
2112 	err = blk_mq_alloc_tag_set(&lo->tag_set);
2113 	if (err)
2114 		goto out_free_idr;
2115 
2116 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
2117 	if (IS_ERR(lo->lo_queue)) {
2118 		err = PTR_ERR(lo->lo_queue);
2119 		goto out_cleanup_tags;
2120 	}
2121 	lo->lo_queue->queuedata = lo;
2122 
2123 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2124 
2125 	/*
2126 	 * By default, we do buffer IO, so it doesn't make sense to enable
2127 	 * merge because the I/O submitted to backing file is handled page by
2128 	 * page. For directio mode, merge does help to dispatch bigger request
2129 	 * to underlayer disk. We will enable merge once directio is enabled.
2130 	 */
2131 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2132 
2133 	err = -ENOMEM;
2134 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
2135 	if (!disk)
2136 		goto out_free_queue;
2137 
2138 	/*
2139 	 * Disable partition scanning by default. The in-kernel partition
2140 	 * scanning can be requested individually per-device during its
2141 	 * setup. Userspace can always add and remove partitions from all
2142 	 * devices. The needed partition minors are allocated from the
2143 	 * extended minor space, the main loop device numbers will continue
2144 	 * to match the loop minors, regardless of the number of partitions
2145 	 * used.
2146 	 *
2147 	 * If max_part is given, partition scanning is globally enabled for
2148 	 * all loop devices. The minors for the main loop devices will be
2149 	 * multiples of max_part.
2150 	 *
2151 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2152 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2153 	 * complicated, are too static, inflexible and may surprise
2154 	 * userspace tools. Parameters like this in general should be avoided.
2155 	 */
2156 	if (!part_shift)
2157 		disk->flags |= GENHD_FL_NO_PART_SCAN;
2158 	disk->flags |= GENHD_FL_EXT_DEVT;
2159 	atomic_set(&lo->lo_refcnt, 0);
2160 	lo->lo_number		= i;
2161 	spin_lock_init(&lo->lo_lock);
2162 	disk->major		= LOOP_MAJOR;
2163 	disk->first_minor	= i << part_shift;
2164 	disk->fops		= &lo_fops;
2165 	disk->private_data	= lo;
2166 	disk->queue		= lo->lo_queue;
2167 	sprintf(disk->disk_name, "loop%d", i);
2168 	add_disk(disk);
2169 	*l = lo;
2170 	return lo->lo_number;
2171 
2172 out_free_queue:
2173 	blk_cleanup_queue(lo->lo_queue);
2174 out_cleanup_tags:
2175 	blk_mq_free_tag_set(&lo->tag_set);
2176 out_free_idr:
2177 	idr_remove(&loop_index_idr, i);
2178 out_free_dev:
2179 	kfree(lo);
2180 out:
2181 	return err;
2182 }
2183 
2184 static void loop_remove(struct loop_device *lo)
2185 {
2186 	del_gendisk(lo->lo_disk);
2187 	blk_cleanup_queue(lo->lo_queue);
2188 	blk_mq_free_tag_set(&lo->tag_set);
2189 	put_disk(lo->lo_disk);
2190 	kfree(lo);
2191 }
2192 
2193 static int find_free_cb(int id, void *ptr, void *data)
2194 {
2195 	struct loop_device *lo = ptr;
2196 	struct loop_device **l = data;
2197 
2198 	if (lo->lo_state == Lo_unbound) {
2199 		*l = lo;
2200 		return 1;
2201 	}
2202 	return 0;
2203 }
2204 
2205 static int loop_lookup(struct loop_device **l, int i)
2206 {
2207 	struct loop_device *lo;
2208 	int ret = -ENODEV;
2209 
2210 	if (i < 0) {
2211 		int err;
2212 
2213 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2214 		if (err == 1) {
2215 			*l = lo;
2216 			ret = lo->lo_number;
2217 		}
2218 		goto out;
2219 	}
2220 
2221 	/* lookup and return a specific i */
2222 	lo = idr_find(&loop_index_idr, i);
2223 	if (lo) {
2224 		*l = lo;
2225 		ret = lo->lo_number;
2226 	}
2227 out:
2228 	return ret;
2229 }
2230 
2231 static void loop_probe(dev_t dev)
2232 {
2233 	int idx = MINOR(dev) >> part_shift;
2234 	struct loop_device *lo;
2235 
2236 	if (max_loop && idx >= max_loop)
2237 		return;
2238 
2239 	mutex_lock(&loop_ctl_mutex);
2240 	if (loop_lookup(&lo, idx) < 0)
2241 		loop_add(&lo, idx);
2242 	mutex_unlock(&loop_ctl_mutex);
2243 }
2244 
2245 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2246 			       unsigned long parm)
2247 {
2248 	struct loop_device *lo;
2249 	int ret;
2250 
2251 	ret = mutex_lock_killable(&loop_ctl_mutex);
2252 	if (ret)
2253 		return ret;
2254 
2255 	ret = -ENOSYS;
2256 	switch (cmd) {
2257 	case LOOP_CTL_ADD:
2258 		ret = loop_lookup(&lo, parm);
2259 		if (ret >= 0) {
2260 			ret = -EEXIST;
2261 			break;
2262 		}
2263 		ret = loop_add(&lo, parm);
2264 		break;
2265 	case LOOP_CTL_REMOVE:
2266 		ret = loop_lookup(&lo, parm);
2267 		if (ret < 0)
2268 			break;
2269 		if (lo->lo_state != Lo_unbound) {
2270 			ret = -EBUSY;
2271 			break;
2272 		}
2273 		if (atomic_read(&lo->lo_refcnt) > 0) {
2274 			ret = -EBUSY;
2275 			break;
2276 		}
2277 		lo->lo_disk->private_data = NULL;
2278 		idr_remove(&loop_index_idr, lo->lo_number);
2279 		loop_remove(lo);
2280 		break;
2281 	case LOOP_CTL_GET_FREE:
2282 		ret = loop_lookup(&lo, -1);
2283 		if (ret >= 0)
2284 			break;
2285 		ret = loop_add(&lo, -1);
2286 	}
2287 	mutex_unlock(&loop_ctl_mutex);
2288 
2289 	return ret;
2290 }
2291 
2292 static const struct file_operations loop_ctl_fops = {
2293 	.open		= nonseekable_open,
2294 	.unlocked_ioctl	= loop_control_ioctl,
2295 	.compat_ioctl	= loop_control_ioctl,
2296 	.owner		= THIS_MODULE,
2297 	.llseek		= noop_llseek,
2298 };
2299 
2300 static struct miscdevice loop_misc = {
2301 	.minor		= LOOP_CTRL_MINOR,
2302 	.name		= "loop-control",
2303 	.fops		= &loop_ctl_fops,
2304 };
2305 
2306 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2307 MODULE_ALIAS("devname:loop-control");
2308 
2309 static int __init loop_init(void)
2310 {
2311 	int i, nr;
2312 	unsigned long range;
2313 	struct loop_device *lo;
2314 	int err;
2315 
2316 	part_shift = 0;
2317 	if (max_part > 0) {
2318 		part_shift = fls(max_part);
2319 
2320 		/*
2321 		 * Adjust max_part according to part_shift as it is exported
2322 		 * to user space so that user can decide correct minor number
2323 		 * if [s]he want to create more devices.
2324 		 *
2325 		 * Note that -1 is required because partition 0 is reserved
2326 		 * for the whole disk.
2327 		 */
2328 		max_part = (1UL << part_shift) - 1;
2329 	}
2330 
2331 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2332 		err = -EINVAL;
2333 		goto err_out;
2334 	}
2335 
2336 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2337 		err = -EINVAL;
2338 		goto err_out;
2339 	}
2340 
2341 	/*
2342 	 * If max_loop is specified, create that many devices upfront.
2343 	 * This also becomes a hard limit. If max_loop is not specified,
2344 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2345 	 * init time. Loop devices can be requested on-demand with the
2346 	 * /dev/loop-control interface, or be instantiated by accessing
2347 	 * a 'dead' device node.
2348 	 */
2349 	if (max_loop) {
2350 		nr = max_loop;
2351 		range = max_loop << part_shift;
2352 	} else {
2353 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2354 		range = 1UL << MINORBITS;
2355 	}
2356 
2357 	err = misc_register(&loop_misc);
2358 	if (err < 0)
2359 		goto err_out;
2360 
2361 
2362 	if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2363 		err = -EIO;
2364 		goto misc_out;
2365 	}
2366 
2367 	/* pre-create number of devices given by config or max_loop */
2368 	mutex_lock(&loop_ctl_mutex);
2369 	for (i = 0; i < nr; i++)
2370 		loop_add(&lo, i);
2371 	mutex_unlock(&loop_ctl_mutex);
2372 
2373 	printk(KERN_INFO "loop: module loaded\n");
2374 	return 0;
2375 
2376 misc_out:
2377 	misc_deregister(&loop_misc);
2378 err_out:
2379 	return err;
2380 }
2381 
2382 static int loop_exit_cb(int id, void *ptr, void *data)
2383 {
2384 	struct loop_device *lo = ptr;
2385 
2386 	loop_remove(lo);
2387 	return 0;
2388 }
2389 
2390 static void __exit loop_exit(void)
2391 {
2392 	mutex_lock(&loop_ctl_mutex);
2393 
2394 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2395 	idr_destroy(&loop_index_idr);
2396 
2397 	unregister_blkdev(LOOP_MAJOR, "loop");
2398 
2399 	misc_deregister(&loop_misc);
2400 
2401 	mutex_unlock(&loop_ctl_mutex);
2402 }
2403 
2404 module_init(loop_init);
2405 module_exit(loop_exit);
2406 
2407 #ifndef MODULE
2408 static int __init max_loop_setup(char *str)
2409 {
2410 	max_loop = simple_strtol(str, NULL, 0);
2411 	return 1;
2412 }
2413 
2414 __setup("max_loop=", max_loop_setup);
2415 #endif
2416