xref: /openbmc/linux/drivers/block/loop.c (revision f2c6df7d)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80 
81 #include <linux/uaccess.h>
82 
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85 
86 static int max_part;
87 static int part_shift;
88 
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 			struct page *raw_page, unsigned raw_off,
91 			struct page *loop_page, unsigned loop_off,
92 			int size, sector_t real_block)
93 {
94 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 	char *in, *out, *key;
97 	int i, keysize;
98 
99 	if (cmd == READ) {
100 		in = raw_buf;
101 		out = loop_buf;
102 	} else {
103 		in = loop_buf;
104 		out = raw_buf;
105 	}
106 
107 	key = lo->lo_encrypt_key;
108 	keysize = lo->lo_encrypt_key_size;
109 	for (i = 0; i < size; i++)
110 		*out++ = *in++ ^ key[(i & 511) % keysize];
111 
112 	kunmap_atomic(loop_buf);
113 	kunmap_atomic(raw_buf);
114 	cond_resched();
115 	return 0;
116 }
117 
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 	if (unlikely(info->lo_encrypt_key_size <= 0))
121 		return -EINVAL;
122 	return 0;
123 }
124 
125 static struct loop_func_table none_funcs = {
126 	.number = LO_CRYPT_NONE,
127 };
128 
129 static struct loop_func_table xor_funcs = {
130 	.number = LO_CRYPT_XOR,
131 	.transfer = transfer_xor,
132 	.init = xor_init
133 };
134 
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 	&none_funcs,
138 	&xor_funcs
139 };
140 
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 	loff_t loopsize;
144 
145 	/* Compute loopsize in bytes */
146 	loopsize = i_size_read(file->f_mapping->host);
147 	if (offset > 0)
148 		loopsize -= offset;
149 	/* offset is beyond i_size, weird but possible */
150 	if (loopsize < 0)
151 		return 0;
152 
153 	if (sizelimit > 0 && sizelimit < loopsize)
154 		loopsize = sizelimit;
155 	/*
156 	 * Unfortunately, if we want to do I/O on the device,
157 	 * the number of 512-byte sectors has to fit into a sector_t.
158 	 */
159 	return loopsize >> 9;
160 }
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166 
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 	struct file *file = lo->lo_backing_file;
170 	struct address_space *mapping = file->f_mapping;
171 	struct inode *inode = mapping->host;
172 	unsigned short sb_bsize = 0;
173 	unsigned dio_align = 0;
174 	bool use_dio;
175 
176 	if (inode->i_sb->s_bdev) {
177 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 		dio_align = sb_bsize - 1;
179 	}
180 
181 	/*
182 	 * We support direct I/O only if lo_offset is aligned with the
183 	 * logical I/O size of backing device, and the logical block
184 	 * size of loop is bigger than the backing device's and the loop
185 	 * needn't transform transfer.
186 	 *
187 	 * TODO: the above condition may be loosed in the future, and
188 	 * direct I/O may be switched runtime at that time because most
189 	 * of requests in sane applications should be PAGE_SIZE aligned
190 	 */
191 	if (dio) {
192 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 				!(lo->lo_offset & dio_align) &&
194 				mapping->a_ops->direct_IO &&
195 				!lo->transfer)
196 			use_dio = true;
197 		else
198 			use_dio = false;
199 	} else {
200 		use_dio = false;
201 	}
202 
203 	if (lo->use_dio == use_dio)
204 		return;
205 
206 	/* flush dirty pages before changing direct IO */
207 	vfs_fsync(file, 0);
208 
209 	/*
210 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 	 * will get updated by ioctl(LOOP_GET_STATUS)
213 	 */
214 	blk_mq_freeze_queue(lo->lo_queue);
215 	lo->use_dio = use_dio;
216 	if (use_dio)
217 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
218 	else
219 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
220 	blk_mq_unfreeze_queue(lo->lo_queue);
221 }
222 
223 static int
224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit,
225 		 loff_t logical_blocksize)
226 {
227 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
228 	sector_t x = (sector_t)size;
229 	struct block_device *bdev = lo->lo_device;
230 
231 	if (unlikely((loff_t)x != size))
232 		return -EFBIG;
233 	if (lo->lo_offset != offset)
234 		lo->lo_offset = offset;
235 	if (lo->lo_sizelimit != sizelimit)
236 		lo->lo_sizelimit = sizelimit;
237 	if (lo->lo_flags & LO_FLAGS_BLOCKSIZE) {
238 		lo->lo_logical_blocksize = logical_blocksize;
239 		blk_queue_physical_block_size(lo->lo_queue, lo->lo_blocksize);
240 		blk_queue_logical_block_size(lo->lo_queue,
241 					     lo->lo_logical_blocksize);
242 	}
243 	set_capacity(lo->lo_disk, x);
244 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
245 	/* let user-space know about the new size */
246 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
247 	return 0;
248 }
249 
250 static inline int
251 lo_do_transfer(struct loop_device *lo, int cmd,
252 	       struct page *rpage, unsigned roffs,
253 	       struct page *lpage, unsigned loffs,
254 	       int size, sector_t rblock)
255 {
256 	int ret;
257 
258 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
259 	if (likely(!ret))
260 		return 0;
261 
262 	printk_ratelimited(KERN_ERR
263 		"loop: Transfer error at byte offset %llu, length %i.\n",
264 		(unsigned long long)rblock << 9, size);
265 	return ret;
266 }
267 
268 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
269 {
270 	struct iov_iter i;
271 	ssize_t bw;
272 
273 	iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
274 
275 	file_start_write(file);
276 	bw = vfs_iter_write(file, &i, ppos);
277 	file_end_write(file);
278 
279 	if (likely(bw ==  bvec->bv_len))
280 		return 0;
281 
282 	printk_ratelimited(KERN_ERR
283 		"loop: Write error at byte offset %llu, length %i.\n",
284 		(unsigned long long)*ppos, bvec->bv_len);
285 	if (bw >= 0)
286 		bw = -EIO;
287 	return bw;
288 }
289 
290 static int lo_write_simple(struct loop_device *lo, struct request *rq,
291 		loff_t pos)
292 {
293 	struct bio_vec bvec;
294 	struct req_iterator iter;
295 	int ret = 0;
296 
297 	rq_for_each_segment(bvec, rq, iter) {
298 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
299 		if (ret < 0)
300 			break;
301 		cond_resched();
302 	}
303 
304 	return ret;
305 }
306 
307 /*
308  * This is the slow, transforming version that needs to double buffer the
309  * data as it cannot do the transformations in place without having direct
310  * access to the destination pages of the backing file.
311  */
312 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
313 		loff_t pos)
314 {
315 	struct bio_vec bvec, b;
316 	struct req_iterator iter;
317 	struct page *page;
318 	int ret = 0;
319 
320 	page = alloc_page(GFP_NOIO);
321 	if (unlikely(!page))
322 		return -ENOMEM;
323 
324 	rq_for_each_segment(bvec, rq, iter) {
325 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
326 			bvec.bv_offset, bvec.bv_len, pos >> 9);
327 		if (unlikely(ret))
328 			break;
329 
330 		b.bv_page = page;
331 		b.bv_offset = 0;
332 		b.bv_len = bvec.bv_len;
333 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
334 		if (ret < 0)
335 			break;
336 	}
337 
338 	__free_page(page);
339 	return ret;
340 }
341 
342 static int lo_read_simple(struct loop_device *lo, struct request *rq,
343 		loff_t pos)
344 {
345 	struct bio_vec bvec;
346 	struct req_iterator iter;
347 	struct iov_iter i;
348 	ssize_t len;
349 
350 	rq_for_each_segment(bvec, rq, iter) {
351 		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
352 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
353 		if (len < 0)
354 			return len;
355 
356 		flush_dcache_page(bvec.bv_page);
357 
358 		if (len != bvec.bv_len) {
359 			struct bio *bio;
360 
361 			__rq_for_each_bio(bio, rq)
362 				zero_fill_bio(bio);
363 			break;
364 		}
365 		cond_resched();
366 	}
367 
368 	return 0;
369 }
370 
371 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
372 		loff_t pos)
373 {
374 	struct bio_vec bvec, b;
375 	struct req_iterator iter;
376 	struct iov_iter i;
377 	struct page *page;
378 	ssize_t len;
379 	int ret = 0;
380 
381 	page = alloc_page(GFP_NOIO);
382 	if (unlikely(!page))
383 		return -ENOMEM;
384 
385 	rq_for_each_segment(bvec, rq, iter) {
386 		loff_t offset = pos;
387 
388 		b.bv_page = page;
389 		b.bv_offset = 0;
390 		b.bv_len = bvec.bv_len;
391 
392 		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
393 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
394 		if (len < 0) {
395 			ret = len;
396 			goto out_free_page;
397 		}
398 
399 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
400 			bvec.bv_offset, len, offset >> 9);
401 		if (ret)
402 			goto out_free_page;
403 
404 		flush_dcache_page(bvec.bv_page);
405 
406 		if (len != bvec.bv_len) {
407 			struct bio *bio;
408 
409 			__rq_for_each_bio(bio, rq)
410 				zero_fill_bio(bio);
411 			break;
412 		}
413 	}
414 
415 	ret = 0;
416 out_free_page:
417 	__free_page(page);
418 	return ret;
419 }
420 
421 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
422 {
423 	/*
424 	 * We use punch hole to reclaim the free space used by the
425 	 * image a.k.a. discard. However we do not support discard if
426 	 * encryption is enabled, because it may give an attacker
427 	 * useful information.
428 	 */
429 	struct file *file = lo->lo_backing_file;
430 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
431 	int ret;
432 
433 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
434 		ret = -EOPNOTSUPP;
435 		goto out;
436 	}
437 
438 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
439 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
440 		ret = -EIO;
441  out:
442 	return ret;
443 }
444 
445 static int lo_req_flush(struct loop_device *lo, struct request *rq)
446 {
447 	struct file *file = lo->lo_backing_file;
448 	int ret = vfs_fsync(file, 0);
449 	if (unlikely(ret && ret != -EINVAL))
450 		ret = -EIO;
451 
452 	return ret;
453 }
454 
455 static void lo_complete_rq(struct request *rq)
456 {
457 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
458 
459 	if (unlikely(req_op(cmd->rq) == REQ_OP_READ && cmd->use_aio &&
460 		     cmd->ret >= 0 && cmd->ret < blk_rq_bytes(cmd->rq))) {
461 		struct bio *bio = cmd->rq->bio;
462 
463 		bio_advance(bio, cmd->ret);
464 		zero_fill_bio(bio);
465 	}
466 
467 	blk_mq_end_request(rq, cmd->ret < 0 ? -EIO : 0);
468 }
469 
470 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
471 {
472 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
473 
474 	cmd->ret = ret;
475 	blk_mq_complete_request(cmd->rq);
476 }
477 
478 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
479 		     loff_t pos, bool rw)
480 {
481 	struct iov_iter iter;
482 	struct bio_vec *bvec;
483 	struct bio *bio = cmd->rq->bio;
484 	struct file *file = lo->lo_backing_file;
485 	int ret;
486 
487 	/* nomerge for loop request queue */
488 	WARN_ON(cmd->rq->bio != cmd->rq->biotail);
489 
490 	bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
491 	iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
492 		      bio_segments(bio), blk_rq_bytes(cmd->rq));
493 	/*
494 	 * This bio may be started from the middle of the 'bvec'
495 	 * because of bio splitting, so offset from the bvec must
496 	 * be passed to iov iterator
497 	 */
498 	iter.iov_offset = bio->bi_iter.bi_bvec_done;
499 
500 	cmd->iocb.ki_pos = pos;
501 	cmd->iocb.ki_filp = file;
502 	cmd->iocb.ki_complete = lo_rw_aio_complete;
503 	cmd->iocb.ki_flags = IOCB_DIRECT;
504 
505 	if (rw == WRITE)
506 		ret = call_write_iter(file, &cmd->iocb, &iter);
507 	else
508 		ret = call_read_iter(file, &cmd->iocb, &iter);
509 
510 	if (ret != -EIOCBQUEUED)
511 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
512 	return 0;
513 }
514 
515 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
516 {
517 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
518 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
519 
520 	/*
521 	 * lo_write_simple and lo_read_simple should have been covered
522 	 * by io submit style function like lo_rw_aio(), one blocker
523 	 * is that lo_read_simple() need to call flush_dcache_page after
524 	 * the page is written from kernel, and it isn't easy to handle
525 	 * this in io submit style function which submits all segments
526 	 * of the req at one time. And direct read IO doesn't need to
527 	 * run flush_dcache_page().
528 	 */
529 	switch (req_op(rq)) {
530 	case REQ_OP_FLUSH:
531 		return lo_req_flush(lo, rq);
532 	case REQ_OP_DISCARD:
533 	case REQ_OP_WRITE_ZEROES:
534 		return lo_discard(lo, rq, pos);
535 	case REQ_OP_WRITE:
536 		if (lo->transfer)
537 			return lo_write_transfer(lo, rq, pos);
538 		else if (cmd->use_aio)
539 			return lo_rw_aio(lo, cmd, pos, WRITE);
540 		else
541 			return lo_write_simple(lo, rq, pos);
542 	case REQ_OP_READ:
543 		if (lo->transfer)
544 			return lo_read_transfer(lo, rq, pos);
545 		else if (cmd->use_aio)
546 			return lo_rw_aio(lo, cmd, pos, READ);
547 		else
548 			return lo_read_simple(lo, rq, pos);
549 	default:
550 		WARN_ON_ONCE(1);
551 		return -EIO;
552 		break;
553 	}
554 }
555 
556 struct switch_request {
557 	struct file *file;
558 	struct completion wait;
559 };
560 
561 static inline void loop_update_dio(struct loop_device *lo)
562 {
563 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
564 			lo->use_dio);
565 }
566 
567 /*
568  * Do the actual switch; called from the BIO completion routine
569  */
570 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
571 {
572 	struct file *file = p->file;
573 	struct file *old_file = lo->lo_backing_file;
574 	struct address_space *mapping;
575 
576 	/* if no new file, only flush of queued bios requested */
577 	if (!file)
578 		return;
579 
580 	mapping = file->f_mapping;
581 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
582 	lo->lo_backing_file = file;
583 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
584 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
585 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
586 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
587 	loop_update_dio(lo);
588 }
589 
590 /*
591  * loop_switch performs the hard work of switching a backing store.
592  * First it needs to flush existing IO, it does this by sending a magic
593  * BIO down the pipe. The completion of this BIO does the actual switch.
594  */
595 static int loop_switch(struct loop_device *lo, struct file *file)
596 {
597 	struct switch_request w;
598 
599 	w.file = file;
600 
601 	/* freeze queue and wait for completion of scheduled requests */
602 	blk_mq_freeze_queue(lo->lo_queue);
603 
604 	/* do the switch action */
605 	do_loop_switch(lo, &w);
606 
607 	/* unfreeze */
608 	blk_mq_unfreeze_queue(lo->lo_queue);
609 
610 	return 0;
611 }
612 
613 /*
614  * Helper to flush the IOs in loop, but keeping loop thread running
615  */
616 static int loop_flush(struct loop_device *lo)
617 {
618 	return loop_switch(lo, NULL);
619 }
620 
621 static void loop_reread_partitions(struct loop_device *lo,
622 				   struct block_device *bdev)
623 {
624 	int rc;
625 
626 	/*
627 	 * bd_mutex has been held already in release path, so don't
628 	 * acquire it if this function is called in such case.
629 	 *
630 	 * If the reread partition isn't from release path, lo_refcnt
631 	 * must be at least one and it can only become zero when the
632 	 * current holder is released.
633 	 */
634 	if (!atomic_read(&lo->lo_refcnt))
635 		rc = __blkdev_reread_part(bdev);
636 	else
637 		rc = blkdev_reread_part(bdev);
638 	if (rc)
639 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
640 			__func__, lo->lo_number, lo->lo_file_name, rc);
641 }
642 
643 /*
644  * loop_change_fd switched the backing store of a loopback device to
645  * a new file. This is useful for operating system installers to free up
646  * the original file and in High Availability environments to switch to
647  * an alternative location for the content in case of server meltdown.
648  * This can only work if the loop device is used read-only, and if the
649  * new backing store is the same size and type as the old backing store.
650  */
651 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
652 			  unsigned int arg)
653 {
654 	struct file	*file, *old_file;
655 	struct inode	*inode;
656 	int		error;
657 
658 	error = -ENXIO;
659 	if (lo->lo_state != Lo_bound)
660 		goto out;
661 
662 	/* the loop device has to be read-only */
663 	error = -EINVAL;
664 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
665 		goto out;
666 
667 	error = -EBADF;
668 	file = fget(arg);
669 	if (!file)
670 		goto out;
671 
672 	inode = file->f_mapping->host;
673 	old_file = lo->lo_backing_file;
674 
675 	error = -EINVAL;
676 
677 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
678 		goto out_putf;
679 
680 	/* size of the new backing store needs to be the same */
681 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
682 		goto out_putf;
683 
684 	/* and ... switch */
685 	error = loop_switch(lo, file);
686 	if (error)
687 		goto out_putf;
688 
689 	fput(old_file);
690 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
691 		loop_reread_partitions(lo, bdev);
692 	return 0;
693 
694  out_putf:
695 	fput(file);
696  out:
697 	return error;
698 }
699 
700 static inline int is_loop_device(struct file *file)
701 {
702 	struct inode *i = file->f_mapping->host;
703 
704 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
705 }
706 
707 /* loop sysfs attributes */
708 
709 static ssize_t loop_attr_show(struct device *dev, char *page,
710 			      ssize_t (*callback)(struct loop_device *, char *))
711 {
712 	struct gendisk *disk = dev_to_disk(dev);
713 	struct loop_device *lo = disk->private_data;
714 
715 	return callback(lo, page);
716 }
717 
718 #define LOOP_ATTR_RO(_name)						\
719 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
720 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
721 				struct device_attribute *attr, char *b)	\
722 {									\
723 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
724 }									\
725 static struct device_attribute loop_attr_##_name =			\
726 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
727 
728 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
729 {
730 	ssize_t ret;
731 	char *p = NULL;
732 
733 	spin_lock_irq(&lo->lo_lock);
734 	if (lo->lo_backing_file)
735 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
736 	spin_unlock_irq(&lo->lo_lock);
737 
738 	if (IS_ERR_OR_NULL(p))
739 		ret = PTR_ERR(p);
740 	else {
741 		ret = strlen(p);
742 		memmove(buf, p, ret);
743 		buf[ret++] = '\n';
744 		buf[ret] = 0;
745 	}
746 
747 	return ret;
748 }
749 
750 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
751 {
752 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
753 }
754 
755 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
756 {
757 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
758 }
759 
760 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
761 {
762 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
763 
764 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
765 }
766 
767 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
768 {
769 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
770 
771 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
772 }
773 
774 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
775 {
776 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
777 
778 	return sprintf(buf, "%s\n", dio ? "1" : "0");
779 }
780 
781 LOOP_ATTR_RO(backing_file);
782 LOOP_ATTR_RO(offset);
783 LOOP_ATTR_RO(sizelimit);
784 LOOP_ATTR_RO(autoclear);
785 LOOP_ATTR_RO(partscan);
786 LOOP_ATTR_RO(dio);
787 
788 static struct attribute *loop_attrs[] = {
789 	&loop_attr_backing_file.attr,
790 	&loop_attr_offset.attr,
791 	&loop_attr_sizelimit.attr,
792 	&loop_attr_autoclear.attr,
793 	&loop_attr_partscan.attr,
794 	&loop_attr_dio.attr,
795 	NULL,
796 };
797 
798 static struct attribute_group loop_attribute_group = {
799 	.name = "loop",
800 	.attrs= loop_attrs,
801 };
802 
803 static int loop_sysfs_init(struct loop_device *lo)
804 {
805 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
806 				  &loop_attribute_group);
807 }
808 
809 static void loop_sysfs_exit(struct loop_device *lo)
810 {
811 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
812 			   &loop_attribute_group);
813 }
814 
815 static void loop_config_discard(struct loop_device *lo)
816 {
817 	struct file *file = lo->lo_backing_file;
818 	struct inode *inode = file->f_mapping->host;
819 	struct request_queue *q = lo->lo_queue;
820 	int lo_bits = 9;
821 
822 	/*
823 	 * We use punch hole to reclaim the free space used by the
824 	 * image a.k.a. discard. However we do not support discard if
825 	 * encryption is enabled, because it may give an attacker
826 	 * useful information.
827 	 */
828 	if ((!file->f_op->fallocate) ||
829 	    lo->lo_encrypt_key_size) {
830 		q->limits.discard_granularity = 0;
831 		q->limits.discard_alignment = 0;
832 		blk_queue_max_discard_sectors(q, 0);
833 		blk_queue_max_write_zeroes_sectors(q, 0);
834 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
835 		return;
836 	}
837 
838 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
839 	q->limits.discard_alignment = 0;
840 	if (lo->lo_flags & LO_FLAGS_BLOCKSIZE)
841 		lo_bits = blksize_bits(lo->lo_logical_blocksize);
842 
843 	blk_queue_max_discard_sectors(q, UINT_MAX >> lo_bits);
844 	blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> lo_bits);
845 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
846 }
847 
848 static void loop_unprepare_queue(struct loop_device *lo)
849 {
850 	kthread_flush_worker(&lo->worker);
851 	kthread_stop(lo->worker_task);
852 }
853 
854 static int loop_prepare_queue(struct loop_device *lo)
855 {
856 	kthread_init_worker(&lo->worker);
857 	lo->worker_task = kthread_run(kthread_worker_fn,
858 			&lo->worker, "loop%d", lo->lo_number);
859 	if (IS_ERR(lo->worker_task))
860 		return -ENOMEM;
861 	set_user_nice(lo->worker_task, MIN_NICE);
862 	return 0;
863 }
864 
865 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
866 		       struct block_device *bdev, unsigned int arg)
867 {
868 	struct file	*file, *f;
869 	struct inode	*inode;
870 	struct address_space *mapping;
871 	unsigned lo_blocksize;
872 	int		lo_flags = 0;
873 	int		error;
874 	loff_t		size;
875 
876 	/* This is safe, since we have a reference from open(). */
877 	__module_get(THIS_MODULE);
878 
879 	error = -EBADF;
880 	file = fget(arg);
881 	if (!file)
882 		goto out;
883 
884 	error = -EBUSY;
885 	if (lo->lo_state != Lo_unbound)
886 		goto out_putf;
887 
888 	/* Avoid recursion */
889 	f = file;
890 	while (is_loop_device(f)) {
891 		struct loop_device *l;
892 
893 		if (f->f_mapping->host->i_bdev == bdev)
894 			goto out_putf;
895 
896 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
897 		if (l->lo_state == Lo_unbound) {
898 			error = -EINVAL;
899 			goto out_putf;
900 		}
901 		f = l->lo_backing_file;
902 	}
903 
904 	mapping = file->f_mapping;
905 	inode = mapping->host;
906 
907 	error = -EINVAL;
908 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
909 		goto out_putf;
910 
911 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
912 	    !file->f_op->write_iter)
913 		lo_flags |= LO_FLAGS_READ_ONLY;
914 
915 	lo_blocksize = S_ISBLK(inode->i_mode) ?
916 		inode->i_bdev->bd_block_size : PAGE_SIZE;
917 
918 	error = -EFBIG;
919 	size = get_loop_size(lo, file);
920 	if ((loff_t)(sector_t)size != size)
921 		goto out_putf;
922 	error = loop_prepare_queue(lo);
923 	if (error)
924 		goto out_putf;
925 
926 	error = 0;
927 
928 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
929 
930 	lo->use_dio = false;
931 	lo->lo_blocksize = lo_blocksize;
932 	lo->lo_logical_blocksize = 512;
933 	lo->lo_device = bdev;
934 	lo->lo_flags = lo_flags;
935 	lo->lo_backing_file = file;
936 	lo->transfer = NULL;
937 	lo->ioctl = NULL;
938 	lo->lo_sizelimit = 0;
939 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
940 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
941 
942 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
943 		blk_queue_write_cache(lo->lo_queue, true, false);
944 
945 	loop_update_dio(lo);
946 	set_capacity(lo->lo_disk, size);
947 	bd_set_size(bdev, size << 9);
948 	loop_sysfs_init(lo);
949 	/* let user-space know about the new size */
950 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
951 
952 	set_blocksize(bdev, lo_blocksize);
953 
954 	lo->lo_state = Lo_bound;
955 	if (part_shift)
956 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
957 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
958 		loop_reread_partitions(lo, bdev);
959 
960 	/* Grab the block_device to prevent its destruction after we
961 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
962 	 */
963 	bdgrab(bdev);
964 	return 0;
965 
966  out_putf:
967 	fput(file);
968  out:
969 	/* This is safe: open() is still holding a reference. */
970 	module_put(THIS_MODULE);
971 	return error;
972 }
973 
974 static int
975 loop_release_xfer(struct loop_device *lo)
976 {
977 	int err = 0;
978 	struct loop_func_table *xfer = lo->lo_encryption;
979 
980 	if (xfer) {
981 		if (xfer->release)
982 			err = xfer->release(lo);
983 		lo->transfer = NULL;
984 		lo->lo_encryption = NULL;
985 		module_put(xfer->owner);
986 	}
987 	return err;
988 }
989 
990 static int
991 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
992 	       const struct loop_info64 *i)
993 {
994 	int err = 0;
995 
996 	if (xfer) {
997 		struct module *owner = xfer->owner;
998 
999 		if (!try_module_get(owner))
1000 			return -EINVAL;
1001 		if (xfer->init)
1002 			err = xfer->init(lo, i);
1003 		if (err)
1004 			module_put(owner);
1005 		else
1006 			lo->lo_encryption = xfer;
1007 	}
1008 	return err;
1009 }
1010 
1011 static int loop_clr_fd(struct loop_device *lo)
1012 {
1013 	struct file *filp = lo->lo_backing_file;
1014 	gfp_t gfp = lo->old_gfp_mask;
1015 	struct block_device *bdev = lo->lo_device;
1016 
1017 	if (lo->lo_state != Lo_bound)
1018 		return -ENXIO;
1019 
1020 	/*
1021 	 * If we've explicitly asked to tear down the loop device,
1022 	 * and it has an elevated reference count, set it for auto-teardown when
1023 	 * the last reference goes away. This stops $!~#$@ udev from
1024 	 * preventing teardown because it decided that it needs to run blkid on
1025 	 * the loopback device whenever they appear. xfstests is notorious for
1026 	 * failing tests because blkid via udev races with a losetup
1027 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1028 	 * command to fail with EBUSY.
1029 	 */
1030 	if (atomic_read(&lo->lo_refcnt) > 1) {
1031 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1032 		mutex_unlock(&lo->lo_ctl_mutex);
1033 		return 0;
1034 	}
1035 
1036 	if (filp == NULL)
1037 		return -EINVAL;
1038 
1039 	/* freeze request queue during the transition */
1040 	blk_mq_freeze_queue(lo->lo_queue);
1041 
1042 	spin_lock_irq(&lo->lo_lock);
1043 	lo->lo_state = Lo_rundown;
1044 	lo->lo_backing_file = NULL;
1045 	spin_unlock_irq(&lo->lo_lock);
1046 
1047 	loop_release_xfer(lo);
1048 	lo->transfer = NULL;
1049 	lo->ioctl = NULL;
1050 	lo->lo_device = NULL;
1051 	lo->lo_encryption = NULL;
1052 	lo->lo_offset = 0;
1053 	lo->lo_sizelimit = 0;
1054 	lo->lo_encrypt_key_size = 0;
1055 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1056 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1057 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1058 	if (bdev) {
1059 		bdput(bdev);
1060 		invalidate_bdev(bdev);
1061 	}
1062 	set_capacity(lo->lo_disk, 0);
1063 	loop_sysfs_exit(lo);
1064 	if (bdev) {
1065 		bd_set_size(bdev, 0);
1066 		/* let user-space know about this change */
1067 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1068 	}
1069 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1070 	lo->lo_state = Lo_unbound;
1071 	/* This is safe: open() is still holding a reference. */
1072 	module_put(THIS_MODULE);
1073 	blk_mq_unfreeze_queue(lo->lo_queue);
1074 
1075 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1076 		loop_reread_partitions(lo, bdev);
1077 	lo->lo_flags = 0;
1078 	if (!part_shift)
1079 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1080 	loop_unprepare_queue(lo);
1081 	mutex_unlock(&lo->lo_ctl_mutex);
1082 	/*
1083 	 * Need not hold lo_ctl_mutex to fput backing file.
1084 	 * Calling fput holding lo_ctl_mutex triggers a circular
1085 	 * lock dependency possibility warning as fput can take
1086 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1087 	 */
1088 	fput(filp);
1089 	return 0;
1090 }
1091 
1092 static int
1093 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1094 {
1095 	int err;
1096 	struct loop_func_table *xfer;
1097 	kuid_t uid = current_uid();
1098 	int lo_flags = lo->lo_flags;
1099 
1100 	if (lo->lo_encrypt_key_size &&
1101 	    !uid_eq(lo->lo_key_owner, uid) &&
1102 	    !capable(CAP_SYS_ADMIN))
1103 		return -EPERM;
1104 	if (lo->lo_state != Lo_bound)
1105 		return -ENXIO;
1106 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1107 		return -EINVAL;
1108 
1109 	/* I/O need to be drained during transfer transition */
1110 	blk_mq_freeze_queue(lo->lo_queue);
1111 
1112 	err = loop_release_xfer(lo);
1113 	if (err)
1114 		goto exit;
1115 
1116 	if (info->lo_encrypt_type) {
1117 		unsigned int type = info->lo_encrypt_type;
1118 
1119 		if (type >= MAX_LO_CRYPT)
1120 			return -EINVAL;
1121 		xfer = xfer_funcs[type];
1122 		if (xfer == NULL)
1123 			return -EINVAL;
1124 	} else
1125 		xfer = NULL;
1126 
1127 	err = loop_init_xfer(lo, xfer, info);
1128 	if (err)
1129 		goto exit;
1130 
1131 	if (info->lo_flags & LO_FLAGS_BLOCKSIZE) {
1132 		if (!(lo->lo_flags & LO_FLAGS_BLOCKSIZE))
1133 			lo->lo_logical_blocksize = 512;
1134 		lo->lo_flags |= LO_FLAGS_BLOCKSIZE;
1135 		if (LO_INFO_BLOCKSIZE(info) != 512 &&
1136 		    LO_INFO_BLOCKSIZE(info) != 1024 &&
1137 		    LO_INFO_BLOCKSIZE(info) != 2048 &&
1138 		    LO_INFO_BLOCKSIZE(info) != 4096)
1139 			return -EINVAL;
1140 		if (LO_INFO_BLOCKSIZE(info) > lo->lo_blocksize)
1141 			return -EINVAL;
1142 	}
1143 
1144 	if (lo->lo_offset != info->lo_offset ||
1145 	    lo->lo_sizelimit != info->lo_sizelimit ||
1146 	    lo->lo_flags != lo_flags ||
1147 	    ((lo->lo_flags & LO_FLAGS_BLOCKSIZE) &&
1148 	     lo->lo_logical_blocksize != LO_INFO_BLOCKSIZE(info))) {
1149 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit,
1150 				     LO_INFO_BLOCKSIZE(info)))
1151 			err = -EFBIG;
1152 			goto exit;
1153 		}
1154 
1155 	loop_config_discard(lo);
1156 
1157 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1158 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1159 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1160 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1161 
1162 	if (!xfer)
1163 		xfer = &none_funcs;
1164 	lo->transfer = xfer->transfer;
1165 	lo->ioctl = xfer->ioctl;
1166 
1167 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1168 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1169 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1170 
1171 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1172 	lo->lo_init[0] = info->lo_init[0];
1173 	lo->lo_init[1] = info->lo_init[1];
1174 	if (info->lo_encrypt_key_size) {
1175 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1176 		       info->lo_encrypt_key_size);
1177 		lo->lo_key_owner = uid;
1178 	}
1179 
1180 	/* update dio if lo_offset or transfer is changed */
1181 	__loop_update_dio(lo, lo->use_dio);
1182 
1183  exit:
1184 	blk_mq_unfreeze_queue(lo->lo_queue);
1185 
1186 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1187 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1188 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1189 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1190 		loop_reread_partitions(lo, lo->lo_device);
1191 	}
1192 
1193 	return err;
1194 }
1195 
1196 static int
1197 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1198 {
1199 	struct file *file = lo->lo_backing_file;
1200 	struct kstat stat;
1201 	int error;
1202 
1203 	if (lo->lo_state != Lo_bound)
1204 		return -ENXIO;
1205 	error = vfs_getattr(&file->f_path, &stat,
1206 			    STATX_INO, AT_STATX_SYNC_AS_STAT);
1207 	if (error)
1208 		return error;
1209 	memset(info, 0, sizeof(*info));
1210 	info->lo_number = lo->lo_number;
1211 	info->lo_device = huge_encode_dev(stat.dev);
1212 	info->lo_inode = stat.ino;
1213 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1214 	info->lo_offset = lo->lo_offset;
1215 	info->lo_sizelimit = lo->lo_sizelimit;
1216 	info->lo_flags = lo->lo_flags;
1217 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1218 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1219 	info->lo_encrypt_type =
1220 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1221 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1222 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1223 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1224 		       lo->lo_encrypt_key_size);
1225 	}
1226 	return 0;
1227 }
1228 
1229 static void
1230 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1231 {
1232 	memset(info64, 0, sizeof(*info64));
1233 	info64->lo_number = info->lo_number;
1234 	info64->lo_device = info->lo_device;
1235 	info64->lo_inode = info->lo_inode;
1236 	info64->lo_rdevice = info->lo_rdevice;
1237 	info64->lo_offset = info->lo_offset;
1238 	info64->lo_sizelimit = 0;
1239 	info64->lo_encrypt_type = info->lo_encrypt_type;
1240 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1241 	info64->lo_flags = info->lo_flags;
1242 	info64->lo_init[0] = info->lo_init[0];
1243 	info64->lo_init[1] = info->lo_init[1];
1244 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1245 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1246 	else
1247 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1248 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1249 }
1250 
1251 static int
1252 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1253 {
1254 	memset(info, 0, sizeof(*info));
1255 	info->lo_number = info64->lo_number;
1256 	info->lo_device = info64->lo_device;
1257 	info->lo_inode = info64->lo_inode;
1258 	info->lo_rdevice = info64->lo_rdevice;
1259 	info->lo_offset = info64->lo_offset;
1260 	info->lo_encrypt_type = info64->lo_encrypt_type;
1261 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1262 	info->lo_flags = info64->lo_flags;
1263 	info->lo_init[0] = info64->lo_init[0];
1264 	info->lo_init[1] = info64->lo_init[1];
1265 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1266 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1267 	else
1268 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1269 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1270 
1271 	/* error in case values were truncated */
1272 	if (info->lo_device != info64->lo_device ||
1273 	    info->lo_rdevice != info64->lo_rdevice ||
1274 	    info->lo_inode != info64->lo_inode ||
1275 	    info->lo_offset != info64->lo_offset)
1276 		return -EOVERFLOW;
1277 
1278 	return 0;
1279 }
1280 
1281 static int
1282 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1283 {
1284 	struct loop_info info;
1285 	struct loop_info64 info64;
1286 
1287 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1288 		return -EFAULT;
1289 	loop_info64_from_old(&info, &info64);
1290 	return loop_set_status(lo, &info64);
1291 }
1292 
1293 static int
1294 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1295 {
1296 	struct loop_info64 info64;
1297 
1298 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1299 		return -EFAULT;
1300 	return loop_set_status(lo, &info64);
1301 }
1302 
1303 static int
1304 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1305 	struct loop_info info;
1306 	struct loop_info64 info64;
1307 	int err = 0;
1308 
1309 	if (!arg)
1310 		err = -EINVAL;
1311 	if (!err)
1312 		err = loop_get_status(lo, &info64);
1313 	if (!err)
1314 		err = loop_info64_to_old(&info64, &info);
1315 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1316 		err = -EFAULT;
1317 
1318 	return err;
1319 }
1320 
1321 static int
1322 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1323 	struct loop_info64 info64;
1324 	int err = 0;
1325 
1326 	if (!arg)
1327 		err = -EINVAL;
1328 	if (!err)
1329 		err = loop_get_status(lo, &info64);
1330 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1331 		err = -EFAULT;
1332 
1333 	return err;
1334 }
1335 
1336 static int loop_set_capacity(struct loop_device *lo)
1337 {
1338 	if (unlikely(lo->lo_state != Lo_bound))
1339 		return -ENXIO;
1340 
1341 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit,
1342 				lo->lo_logical_blocksize);
1343 }
1344 
1345 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1346 {
1347 	int error = -ENXIO;
1348 	if (lo->lo_state != Lo_bound)
1349 		goto out;
1350 
1351 	__loop_update_dio(lo, !!arg);
1352 	if (lo->use_dio == !!arg)
1353 		return 0;
1354 	error = -EINVAL;
1355  out:
1356 	return error;
1357 }
1358 
1359 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1360 	unsigned int cmd, unsigned long arg)
1361 {
1362 	struct loop_device *lo = bdev->bd_disk->private_data;
1363 	int err;
1364 
1365 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1366 	switch (cmd) {
1367 	case LOOP_SET_FD:
1368 		err = loop_set_fd(lo, mode, bdev, arg);
1369 		break;
1370 	case LOOP_CHANGE_FD:
1371 		err = loop_change_fd(lo, bdev, arg);
1372 		break;
1373 	case LOOP_CLR_FD:
1374 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1375 		err = loop_clr_fd(lo);
1376 		if (!err)
1377 			goto out_unlocked;
1378 		break;
1379 	case LOOP_SET_STATUS:
1380 		err = -EPERM;
1381 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1382 			err = loop_set_status_old(lo,
1383 					(struct loop_info __user *)arg);
1384 		break;
1385 	case LOOP_GET_STATUS:
1386 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1387 		break;
1388 	case LOOP_SET_STATUS64:
1389 		err = -EPERM;
1390 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1391 			err = loop_set_status64(lo,
1392 					(struct loop_info64 __user *) arg);
1393 		break;
1394 	case LOOP_GET_STATUS64:
1395 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1396 		break;
1397 	case LOOP_SET_CAPACITY:
1398 		err = -EPERM;
1399 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1400 			err = loop_set_capacity(lo);
1401 		break;
1402 	case LOOP_SET_DIRECT_IO:
1403 		err = -EPERM;
1404 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1405 			err = loop_set_dio(lo, arg);
1406 		break;
1407 	default:
1408 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1409 	}
1410 	mutex_unlock(&lo->lo_ctl_mutex);
1411 
1412 out_unlocked:
1413 	return err;
1414 }
1415 
1416 #ifdef CONFIG_COMPAT
1417 struct compat_loop_info {
1418 	compat_int_t	lo_number;      /* ioctl r/o */
1419 	compat_dev_t	lo_device;      /* ioctl r/o */
1420 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1421 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1422 	compat_int_t	lo_offset;
1423 	compat_int_t	lo_encrypt_type;
1424 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1425 	compat_int_t	lo_flags;       /* ioctl r/o */
1426 	char		lo_name[LO_NAME_SIZE];
1427 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1428 	compat_ulong_t	lo_init[2];
1429 	char		reserved[4];
1430 };
1431 
1432 /*
1433  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1434  * - noinlined to reduce stack space usage in main part of driver
1435  */
1436 static noinline int
1437 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1438 			struct loop_info64 *info64)
1439 {
1440 	struct compat_loop_info info;
1441 
1442 	if (copy_from_user(&info, arg, sizeof(info)))
1443 		return -EFAULT;
1444 
1445 	memset(info64, 0, sizeof(*info64));
1446 	info64->lo_number = info.lo_number;
1447 	info64->lo_device = info.lo_device;
1448 	info64->lo_inode = info.lo_inode;
1449 	info64->lo_rdevice = info.lo_rdevice;
1450 	info64->lo_offset = info.lo_offset;
1451 	info64->lo_sizelimit = 0;
1452 	info64->lo_encrypt_type = info.lo_encrypt_type;
1453 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1454 	info64->lo_flags = info.lo_flags;
1455 	info64->lo_init[0] = info.lo_init[0];
1456 	info64->lo_init[1] = info.lo_init[1];
1457 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1458 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1459 	else
1460 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1461 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1462 	return 0;
1463 }
1464 
1465 /*
1466  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1467  * - noinlined to reduce stack space usage in main part of driver
1468  */
1469 static noinline int
1470 loop_info64_to_compat(const struct loop_info64 *info64,
1471 		      struct compat_loop_info __user *arg)
1472 {
1473 	struct compat_loop_info info;
1474 
1475 	memset(&info, 0, sizeof(info));
1476 	info.lo_number = info64->lo_number;
1477 	info.lo_device = info64->lo_device;
1478 	info.lo_inode = info64->lo_inode;
1479 	info.lo_rdevice = info64->lo_rdevice;
1480 	info.lo_offset = info64->lo_offset;
1481 	info.lo_encrypt_type = info64->lo_encrypt_type;
1482 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1483 	info.lo_flags = info64->lo_flags;
1484 	info.lo_init[0] = info64->lo_init[0];
1485 	info.lo_init[1] = info64->lo_init[1];
1486 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1487 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1488 	else
1489 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1490 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1491 
1492 	/* error in case values were truncated */
1493 	if (info.lo_device != info64->lo_device ||
1494 	    info.lo_rdevice != info64->lo_rdevice ||
1495 	    info.lo_inode != info64->lo_inode ||
1496 	    info.lo_offset != info64->lo_offset ||
1497 	    info.lo_init[0] != info64->lo_init[0] ||
1498 	    info.lo_init[1] != info64->lo_init[1])
1499 		return -EOVERFLOW;
1500 
1501 	if (copy_to_user(arg, &info, sizeof(info)))
1502 		return -EFAULT;
1503 	return 0;
1504 }
1505 
1506 static int
1507 loop_set_status_compat(struct loop_device *lo,
1508 		       const struct compat_loop_info __user *arg)
1509 {
1510 	struct loop_info64 info64;
1511 	int ret;
1512 
1513 	ret = loop_info64_from_compat(arg, &info64);
1514 	if (ret < 0)
1515 		return ret;
1516 	return loop_set_status(lo, &info64);
1517 }
1518 
1519 static int
1520 loop_get_status_compat(struct loop_device *lo,
1521 		       struct compat_loop_info __user *arg)
1522 {
1523 	struct loop_info64 info64;
1524 	int err = 0;
1525 
1526 	if (!arg)
1527 		err = -EINVAL;
1528 	if (!err)
1529 		err = loop_get_status(lo, &info64);
1530 	if (!err)
1531 		err = loop_info64_to_compat(&info64, arg);
1532 	return err;
1533 }
1534 
1535 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1536 			   unsigned int cmd, unsigned long arg)
1537 {
1538 	struct loop_device *lo = bdev->bd_disk->private_data;
1539 	int err;
1540 
1541 	switch(cmd) {
1542 	case LOOP_SET_STATUS:
1543 		mutex_lock(&lo->lo_ctl_mutex);
1544 		err = loop_set_status_compat(
1545 			lo, (const struct compat_loop_info __user *) arg);
1546 		mutex_unlock(&lo->lo_ctl_mutex);
1547 		break;
1548 	case LOOP_GET_STATUS:
1549 		mutex_lock(&lo->lo_ctl_mutex);
1550 		err = loop_get_status_compat(
1551 			lo, (struct compat_loop_info __user *) arg);
1552 		mutex_unlock(&lo->lo_ctl_mutex);
1553 		break;
1554 	case LOOP_SET_CAPACITY:
1555 	case LOOP_CLR_FD:
1556 	case LOOP_GET_STATUS64:
1557 	case LOOP_SET_STATUS64:
1558 		arg = (unsigned long) compat_ptr(arg);
1559 	case LOOP_SET_FD:
1560 	case LOOP_CHANGE_FD:
1561 		err = lo_ioctl(bdev, mode, cmd, arg);
1562 		break;
1563 	default:
1564 		err = -ENOIOCTLCMD;
1565 		break;
1566 	}
1567 	return err;
1568 }
1569 #endif
1570 
1571 static int lo_open(struct block_device *bdev, fmode_t mode)
1572 {
1573 	struct loop_device *lo;
1574 	int err = 0;
1575 
1576 	mutex_lock(&loop_index_mutex);
1577 	lo = bdev->bd_disk->private_data;
1578 	if (!lo) {
1579 		err = -ENXIO;
1580 		goto out;
1581 	}
1582 
1583 	atomic_inc(&lo->lo_refcnt);
1584 out:
1585 	mutex_unlock(&loop_index_mutex);
1586 	return err;
1587 }
1588 
1589 static void lo_release(struct gendisk *disk, fmode_t mode)
1590 {
1591 	struct loop_device *lo = disk->private_data;
1592 	int err;
1593 
1594 	if (atomic_dec_return(&lo->lo_refcnt))
1595 		return;
1596 
1597 	mutex_lock(&lo->lo_ctl_mutex);
1598 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1599 		/*
1600 		 * In autoclear mode, stop the loop thread
1601 		 * and remove configuration after last close.
1602 		 */
1603 		err = loop_clr_fd(lo);
1604 		if (!err)
1605 			return;
1606 	} else {
1607 		/*
1608 		 * Otherwise keep thread (if running) and config,
1609 		 * but flush possible ongoing bios in thread.
1610 		 */
1611 		loop_flush(lo);
1612 	}
1613 
1614 	mutex_unlock(&lo->lo_ctl_mutex);
1615 }
1616 
1617 static const struct block_device_operations lo_fops = {
1618 	.owner =	THIS_MODULE,
1619 	.open =		lo_open,
1620 	.release =	lo_release,
1621 	.ioctl =	lo_ioctl,
1622 #ifdef CONFIG_COMPAT
1623 	.compat_ioctl =	lo_compat_ioctl,
1624 #endif
1625 };
1626 
1627 /*
1628  * And now the modules code and kernel interface.
1629  */
1630 static int max_loop;
1631 module_param(max_loop, int, S_IRUGO);
1632 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1633 module_param(max_part, int, S_IRUGO);
1634 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1635 MODULE_LICENSE("GPL");
1636 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1637 
1638 int loop_register_transfer(struct loop_func_table *funcs)
1639 {
1640 	unsigned int n = funcs->number;
1641 
1642 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1643 		return -EINVAL;
1644 	xfer_funcs[n] = funcs;
1645 	return 0;
1646 }
1647 
1648 static int unregister_transfer_cb(int id, void *ptr, void *data)
1649 {
1650 	struct loop_device *lo = ptr;
1651 	struct loop_func_table *xfer = data;
1652 
1653 	mutex_lock(&lo->lo_ctl_mutex);
1654 	if (lo->lo_encryption == xfer)
1655 		loop_release_xfer(lo);
1656 	mutex_unlock(&lo->lo_ctl_mutex);
1657 	return 0;
1658 }
1659 
1660 int loop_unregister_transfer(int number)
1661 {
1662 	unsigned int n = number;
1663 	struct loop_func_table *xfer;
1664 
1665 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1666 		return -EINVAL;
1667 
1668 	xfer_funcs[n] = NULL;
1669 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1670 	return 0;
1671 }
1672 
1673 EXPORT_SYMBOL(loop_register_transfer);
1674 EXPORT_SYMBOL(loop_unregister_transfer);
1675 
1676 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1677 		const struct blk_mq_queue_data *bd)
1678 {
1679 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1680 	struct loop_device *lo = cmd->rq->q->queuedata;
1681 
1682 	blk_mq_start_request(bd->rq);
1683 
1684 	if (lo->lo_state != Lo_bound)
1685 		return BLK_MQ_RQ_QUEUE_ERROR;
1686 
1687 	switch (req_op(cmd->rq)) {
1688 	case REQ_OP_FLUSH:
1689 	case REQ_OP_DISCARD:
1690 	case REQ_OP_WRITE_ZEROES:
1691 		cmd->use_aio = false;
1692 		break;
1693 	default:
1694 		cmd->use_aio = lo->use_dio;
1695 		break;
1696 	}
1697 
1698 	kthread_queue_work(&lo->worker, &cmd->work);
1699 
1700 	return BLK_MQ_RQ_QUEUE_OK;
1701 }
1702 
1703 static void loop_handle_cmd(struct loop_cmd *cmd)
1704 {
1705 	const bool write = op_is_write(req_op(cmd->rq));
1706 	struct loop_device *lo = cmd->rq->q->queuedata;
1707 	int ret = 0;
1708 
1709 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1710 		ret = -EIO;
1711 		goto failed;
1712 	}
1713 
1714 	ret = do_req_filebacked(lo, cmd->rq);
1715  failed:
1716 	/* complete non-aio request */
1717 	if (!cmd->use_aio || ret) {
1718 		cmd->ret = ret ? -EIO : 0;
1719 		blk_mq_complete_request(cmd->rq);
1720 	}
1721 }
1722 
1723 static void loop_queue_work(struct kthread_work *work)
1724 {
1725 	struct loop_cmd *cmd =
1726 		container_of(work, struct loop_cmd, work);
1727 
1728 	loop_handle_cmd(cmd);
1729 }
1730 
1731 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1732 		unsigned int hctx_idx, unsigned int numa_node)
1733 {
1734 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1735 
1736 	cmd->rq = rq;
1737 	kthread_init_work(&cmd->work, loop_queue_work);
1738 
1739 	return 0;
1740 }
1741 
1742 static const struct blk_mq_ops loop_mq_ops = {
1743 	.queue_rq       = loop_queue_rq,
1744 	.init_request	= loop_init_request,
1745 	.complete	= lo_complete_rq,
1746 };
1747 
1748 static int loop_add(struct loop_device **l, int i)
1749 {
1750 	struct loop_device *lo;
1751 	struct gendisk *disk;
1752 	int err;
1753 
1754 	err = -ENOMEM;
1755 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1756 	if (!lo)
1757 		goto out;
1758 
1759 	lo->lo_state = Lo_unbound;
1760 
1761 	/* allocate id, if @id >= 0, we're requesting that specific id */
1762 	if (i >= 0) {
1763 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1764 		if (err == -ENOSPC)
1765 			err = -EEXIST;
1766 	} else {
1767 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1768 	}
1769 	if (err < 0)
1770 		goto out_free_dev;
1771 	i = err;
1772 
1773 	err = -ENOMEM;
1774 	lo->tag_set.ops = &loop_mq_ops;
1775 	lo->tag_set.nr_hw_queues = 1;
1776 	lo->tag_set.queue_depth = 128;
1777 	lo->tag_set.numa_node = NUMA_NO_NODE;
1778 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1779 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1780 	lo->tag_set.driver_data = lo;
1781 
1782 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1783 	if (err)
1784 		goto out_free_idr;
1785 
1786 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1787 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1788 		err = PTR_ERR(lo->lo_queue);
1789 		goto out_cleanup_tags;
1790 	}
1791 	lo->lo_queue->queuedata = lo;
1792 
1793 	/*
1794 	 * It doesn't make sense to enable merge because the I/O
1795 	 * submitted to backing file is handled page by page.
1796 	 */
1797 	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1798 
1799 	err = -ENOMEM;
1800 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1801 	if (!disk)
1802 		goto out_free_queue;
1803 
1804 	/*
1805 	 * Disable partition scanning by default. The in-kernel partition
1806 	 * scanning can be requested individually per-device during its
1807 	 * setup. Userspace can always add and remove partitions from all
1808 	 * devices. The needed partition minors are allocated from the
1809 	 * extended minor space, the main loop device numbers will continue
1810 	 * to match the loop minors, regardless of the number of partitions
1811 	 * used.
1812 	 *
1813 	 * If max_part is given, partition scanning is globally enabled for
1814 	 * all loop devices. The minors for the main loop devices will be
1815 	 * multiples of max_part.
1816 	 *
1817 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1818 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1819 	 * complicated, are too static, inflexible and may surprise
1820 	 * userspace tools. Parameters like this in general should be avoided.
1821 	 */
1822 	if (!part_shift)
1823 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1824 	disk->flags |= GENHD_FL_EXT_DEVT;
1825 	mutex_init(&lo->lo_ctl_mutex);
1826 	atomic_set(&lo->lo_refcnt, 0);
1827 	lo->lo_number		= i;
1828 	spin_lock_init(&lo->lo_lock);
1829 	disk->major		= LOOP_MAJOR;
1830 	disk->first_minor	= i << part_shift;
1831 	disk->fops		= &lo_fops;
1832 	disk->private_data	= lo;
1833 	disk->queue		= lo->lo_queue;
1834 	sprintf(disk->disk_name, "loop%d", i);
1835 	add_disk(disk);
1836 	*l = lo;
1837 	return lo->lo_number;
1838 
1839 out_free_queue:
1840 	blk_cleanup_queue(lo->lo_queue);
1841 out_cleanup_tags:
1842 	blk_mq_free_tag_set(&lo->tag_set);
1843 out_free_idr:
1844 	idr_remove(&loop_index_idr, i);
1845 out_free_dev:
1846 	kfree(lo);
1847 out:
1848 	return err;
1849 }
1850 
1851 static void loop_remove(struct loop_device *lo)
1852 {
1853 	blk_cleanup_queue(lo->lo_queue);
1854 	del_gendisk(lo->lo_disk);
1855 	blk_mq_free_tag_set(&lo->tag_set);
1856 	put_disk(lo->lo_disk);
1857 	kfree(lo);
1858 }
1859 
1860 static int find_free_cb(int id, void *ptr, void *data)
1861 {
1862 	struct loop_device *lo = ptr;
1863 	struct loop_device **l = data;
1864 
1865 	if (lo->lo_state == Lo_unbound) {
1866 		*l = lo;
1867 		return 1;
1868 	}
1869 	return 0;
1870 }
1871 
1872 static int loop_lookup(struct loop_device **l, int i)
1873 {
1874 	struct loop_device *lo;
1875 	int ret = -ENODEV;
1876 
1877 	if (i < 0) {
1878 		int err;
1879 
1880 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1881 		if (err == 1) {
1882 			*l = lo;
1883 			ret = lo->lo_number;
1884 		}
1885 		goto out;
1886 	}
1887 
1888 	/* lookup and return a specific i */
1889 	lo = idr_find(&loop_index_idr, i);
1890 	if (lo) {
1891 		*l = lo;
1892 		ret = lo->lo_number;
1893 	}
1894 out:
1895 	return ret;
1896 }
1897 
1898 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1899 {
1900 	struct loop_device *lo;
1901 	struct kobject *kobj;
1902 	int err;
1903 
1904 	mutex_lock(&loop_index_mutex);
1905 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1906 	if (err < 0)
1907 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1908 	if (err < 0)
1909 		kobj = NULL;
1910 	else
1911 		kobj = get_disk(lo->lo_disk);
1912 	mutex_unlock(&loop_index_mutex);
1913 
1914 	*part = 0;
1915 	return kobj;
1916 }
1917 
1918 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1919 			       unsigned long parm)
1920 {
1921 	struct loop_device *lo;
1922 	int ret = -ENOSYS;
1923 
1924 	mutex_lock(&loop_index_mutex);
1925 	switch (cmd) {
1926 	case LOOP_CTL_ADD:
1927 		ret = loop_lookup(&lo, parm);
1928 		if (ret >= 0) {
1929 			ret = -EEXIST;
1930 			break;
1931 		}
1932 		ret = loop_add(&lo, parm);
1933 		break;
1934 	case LOOP_CTL_REMOVE:
1935 		ret = loop_lookup(&lo, parm);
1936 		if (ret < 0)
1937 			break;
1938 		mutex_lock(&lo->lo_ctl_mutex);
1939 		if (lo->lo_state != Lo_unbound) {
1940 			ret = -EBUSY;
1941 			mutex_unlock(&lo->lo_ctl_mutex);
1942 			break;
1943 		}
1944 		if (atomic_read(&lo->lo_refcnt) > 0) {
1945 			ret = -EBUSY;
1946 			mutex_unlock(&lo->lo_ctl_mutex);
1947 			break;
1948 		}
1949 		lo->lo_disk->private_data = NULL;
1950 		mutex_unlock(&lo->lo_ctl_mutex);
1951 		idr_remove(&loop_index_idr, lo->lo_number);
1952 		loop_remove(lo);
1953 		break;
1954 	case LOOP_CTL_GET_FREE:
1955 		ret = loop_lookup(&lo, -1);
1956 		if (ret >= 0)
1957 			break;
1958 		ret = loop_add(&lo, -1);
1959 	}
1960 	mutex_unlock(&loop_index_mutex);
1961 
1962 	return ret;
1963 }
1964 
1965 static const struct file_operations loop_ctl_fops = {
1966 	.open		= nonseekable_open,
1967 	.unlocked_ioctl	= loop_control_ioctl,
1968 	.compat_ioctl	= loop_control_ioctl,
1969 	.owner		= THIS_MODULE,
1970 	.llseek		= noop_llseek,
1971 };
1972 
1973 static struct miscdevice loop_misc = {
1974 	.minor		= LOOP_CTRL_MINOR,
1975 	.name		= "loop-control",
1976 	.fops		= &loop_ctl_fops,
1977 };
1978 
1979 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1980 MODULE_ALIAS("devname:loop-control");
1981 
1982 static int __init loop_init(void)
1983 {
1984 	int i, nr;
1985 	unsigned long range;
1986 	struct loop_device *lo;
1987 	int err;
1988 
1989 	err = misc_register(&loop_misc);
1990 	if (err < 0)
1991 		return err;
1992 
1993 	part_shift = 0;
1994 	if (max_part > 0) {
1995 		part_shift = fls(max_part);
1996 
1997 		/*
1998 		 * Adjust max_part according to part_shift as it is exported
1999 		 * to user space so that user can decide correct minor number
2000 		 * if [s]he want to create more devices.
2001 		 *
2002 		 * Note that -1 is required because partition 0 is reserved
2003 		 * for the whole disk.
2004 		 */
2005 		max_part = (1UL << part_shift) - 1;
2006 	}
2007 
2008 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2009 		err = -EINVAL;
2010 		goto misc_out;
2011 	}
2012 
2013 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2014 		err = -EINVAL;
2015 		goto misc_out;
2016 	}
2017 
2018 	/*
2019 	 * If max_loop is specified, create that many devices upfront.
2020 	 * This also becomes a hard limit. If max_loop is not specified,
2021 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2022 	 * init time. Loop devices can be requested on-demand with the
2023 	 * /dev/loop-control interface, or be instantiated by accessing
2024 	 * a 'dead' device node.
2025 	 */
2026 	if (max_loop) {
2027 		nr = max_loop;
2028 		range = max_loop << part_shift;
2029 	} else {
2030 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2031 		range = 1UL << MINORBITS;
2032 	}
2033 
2034 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2035 		err = -EIO;
2036 		goto misc_out;
2037 	}
2038 
2039 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2040 				  THIS_MODULE, loop_probe, NULL, NULL);
2041 
2042 	/* pre-create number of devices given by config or max_loop */
2043 	mutex_lock(&loop_index_mutex);
2044 	for (i = 0; i < nr; i++)
2045 		loop_add(&lo, i);
2046 	mutex_unlock(&loop_index_mutex);
2047 
2048 	printk(KERN_INFO "loop: module loaded\n");
2049 	return 0;
2050 
2051 misc_out:
2052 	misc_deregister(&loop_misc);
2053 	return err;
2054 }
2055 
2056 static int loop_exit_cb(int id, void *ptr, void *data)
2057 {
2058 	struct loop_device *lo = ptr;
2059 
2060 	loop_remove(lo);
2061 	return 0;
2062 }
2063 
2064 static void __exit loop_exit(void)
2065 {
2066 	unsigned long range;
2067 
2068 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2069 
2070 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2071 	idr_destroy(&loop_index_idr);
2072 
2073 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2074 	unregister_blkdev(LOOP_MAJOR, "loop");
2075 
2076 	misc_deregister(&loop_misc);
2077 }
2078 
2079 module_init(loop_init);
2080 module_exit(loop_exit);
2081 
2082 #ifndef MODULE
2083 static int __init max_loop_setup(char *str)
2084 {
2085 	max_loop = simple_strtol(str, NULL, 0);
2086 	return 1;
2087 }
2088 
2089 __setup("max_loop=", max_loop_setup);
2090 #endif
2091