1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations prepare_write and/or commit_write are not available on the 44 * backing filesystem. 45 * Anton Altaparmakov, 16 Feb 2005 46 * 47 * Still To Fix: 48 * - Advisory locking is ignored here. 49 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 50 * 51 */ 52 53 #include <linux/module.h> 54 #include <linux/moduleparam.h> 55 #include <linux/sched.h> 56 #include <linux/fs.h> 57 #include <linux/file.h> 58 #include <linux/stat.h> 59 #include <linux/errno.h> 60 #include <linux/major.h> 61 #include <linux/wait.h> 62 #include <linux/blkdev.h> 63 #include <linux/blkpg.h> 64 #include <linux/init.h> 65 #include <linux/smp_lock.h> 66 #include <linux/swap.h> 67 #include <linux/slab.h> 68 #include <linux/loop.h> 69 #include <linux/compat.h> 70 #include <linux/suspend.h> 71 #include <linux/freezer.h> 72 #include <linux/writeback.h> 73 #include <linux/buffer_head.h> /* for invalidate_bdev() */ 74 #include <linux/completion.h> 75 #include <linux/highmem.h> 76 #include <linux/gfp.h> 77 #include <linux/kthread.h> 78 #include <linux/splice.h> 79 80 #include <asm/uaccess.h> 81 82 static LIST_HEAD(loop_devices); 83 static DEFINE_MUTEX(loop_devices_mutex); 84 85 static int max_part; 86 static int part_shift; 87 88 /* 89 * Transfer functions 90 */ 91 static int transfer_none(struct loop_device *lo, int cmd, 92 struct page *raw_page, unsigned raw_off, 93 struct page *loop_page, unsigned loop_off, 94 int size, sector_t real_block) 95 { 96 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 97 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 98 99 if (cmd == READ) 100 memcpy(loop_buf, raw_buf, size); 101 else 102 memcpy(raw_buf, loop_buf, size); 103 104 kunmap_atomic(raw_buf, KM_USER0); 105 kunmap_atomic(loop_buf, KM_USER1); 106 cond_resched(); 107 return 0; 108 } 109 110 static int transfer_xor(struct loop_device *lo, int cmd, 111 struct page *raw_page, unsigned raw_off, 112 struct page *loop_page, unsigned loop_off, 113 int size, sector_t real_block) 114 { 115 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 116 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 117 char *in, *out, *key; 118 int i, keysize; 119 120 if (cmd == READ) { 121 in = raw_buf; 122 out = loop_buf; 123 } else { 124 in = loop_buf; 125 out = raw_buf; 126 } 127 128 key = lo->lo_encrypt_key; 129 keysize = lo->lo_encrypt_key_size; 130 for (i = 0; i < size; i++) 131 *out++ = *in++ ^ key[(i & 511) % keysize]; 132 133 kunmap_atomic(raw_buf, KM_USER0); 134 kunmap_atomic(loop_buf, KM_USER1); 135 cond_resched(); 136 return 0; 137 } 138 139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 140 { 141 if (unlikely(info->lo_encrypt_key_size <= 0)) 142 return -EINVAL; 143 return 0; 144 } 145 146 static struct loop_func_table none_funcs = { 147 .number = LO_CRYPT_NONE, 148 .transfer = transfer_none, 149 }; 150 151 static struct loop_func_table xor_funcs = { 152 .number = LO_CRYPT_XOR, 153 .transfer = transfer_xor, 154 .init = xor_init 155 }; 156 157 /* xfer_funcs[0] is special - its release function is never called */ 158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 159 &none_funcs, 160 &xor_funcs 161 }; 162 163 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 164 { 165 loff_t size, offset, loopsize; 166 167 /* Compute loopsize in bytes */ 168 size = i_size_read(file->f_mapping->host); 169 offset = lo->lo_offset; 170 loopsize = size - offset; 171 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 172 loopsize = lo->lo_sizelimit; 173 174 /* 175 * Unfortunately, if we want to do I/O on the device, 176 * the number of 512-byte sectors has to fit into a sector_t. 177 */ 178 return loopsize >> 9; 179 } 180 181 static int 182 figure_loop_size(struct loop_device *lo) 183 { 184 loff_t size = get_loop_size(lo, lo->lo_backing_file); 185 sector_t x = (sector_t)size; 186 187 if (unlikely((loff_t)x != size)) 188 return -EFBIG; 189 190 set_capacity(lo->lo_disk, x); 191 return 0; 192 } 193 194 static inline int 195 lo_do_transfer(struct loop_device *lo, int cmd, 196 struct page *rpage, unsigned roffs, 197 struct page *lpage, unsigned loffs, 198 int size, sector_t rblock) 199 { 200 if (unlikely(!lo->transfer)) 201 return 0; 202 203 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 204 } 205 206 /** 207 * do_lo_send_aops - helper for writing data to a loop device 208 * 209 * This is the fast version for backing filesystems which implement the address 210 * space operations write_begin and write_end. 211 */ 212 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec, 213 int bsize, loff_t pos, struct page *unused) 214 { 215 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */ 216 struct address_space *mapping = file->f_mapping; 217 pgoff_t index; 218 unsigned offset, bv_offs; 219 int len, ret; 220 221 mutex_lock(&mapping->host->i_mutex); 222 index = pos >> PAGE_CACHE_SHIFT; 223 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1); 224 bv_offs = bvec->bv_offset; 225 len = bvec->bv_len; 226 while (len > 0) { 227 sector_t IV; 228 unsigned size, copied; 229 int transfer_result; 230 struct page *page; 231 void *fsdata; 232 233 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 234 size = PAGE_CACHE_SIZE - offset; 235 if (size > len) 236 size = len; 237 238 ret = pagecache_write_begin(file, mapping, pos, size, 0, 239 &page, &fsdata); 240 if (ret) 241 goto fail; 242 243 transfer_result = lo_do_transfer(lo, WRITE, page, offset, 244 bvec->bv_page, bv_offs, size, IV); 245 copied = size; 246 if (unlikely(transfer_result)) 247 copied = 0; 248 249 ret = pagecache_write_end(file, mapping, pos, size, copied, 250 page, fsdata); 251 if (ret < 0 || ret != copied) 252 goto fail; 253 254 if (unlikely(transfer_result)) 255 goto fail; 256 257 bv_offs += copied; 258 len -= copied; 259 offset = 0; 260 index++; 261 pos += copied; 262 } 263 ret = 0; 264 out: 265 mutex_unlock(&mapping->host->i_mutex); 266 return ret; 267 fail: 268 ret = -1; 269 goto out; 270 } 271 272 /** 273 * __do_lo_send_write - helper for writing data to a loop device 274 * 275 * This helper just factors out common code between do_lo_send_direct_write() 276 * and do_lo_send_write(). 277 */ 278 static int __do_lo_send_write(struct file *file, 279 u8 *buf, const int len, loff_t pos) 280 { 281 ssize_t bw; 282 mm_segment_t old_fs = get_fs(); 283 284 set_fs(get_ds()); 285 bw = file->f_op->write(file, buf, len, &pos); 286 set_fs(old_fs); 287 if (likely(bw == len)) 288 return 0; 289 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 290 (unsigned long long)pos, len); 291 if (bw >= 0) 292 bw = -EIO; 293 return bw; 294 } 295 296 /** 297 * do_lo_send_direct_write - helper for writing data to a loop device 298 * 299 * This is the fast, non-transforming version for backing filesystems which do 300 * not implement the address space operations write_begin and write_end. 301 * It uses the write file operation which should be present on all writeable 302 * filesystems. 303 */ 304 static int do_lo_send_direct_write(struct loop_device *lo, 305 struct bio_vec *bvec, int bsize, loff_t pos, struct page *page) 306 { 307 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 308 kmap(bvec->bv_page) + bvec->bv_offset, 309 bvec->bv_len, pos); 310 kunmap(bvec->bv_page); 311 cond_resched(); 312 return bw; 313 } 314 315 /** 316 * do_lo_send_write - helper for writing data to a loop device 317 * 318 * This is the slow, transforming version for filesystems which do not 319 * implement the address space operations write_begin and write_end. It 320 * uses the write file operation which should be present on all writeable 321 * filesystems. 322 * 323 * Using fops->write is slower than using aops->{prepare,commit}_write in the 324 * transforming case because we need to double buffer the data as we cannot do 325 * the transformations in place as we do not have direct access to the 326 * destination pages of the backing file. 327 */ 328 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 329 int bsize, loff_t pos, struct page *page) 330 { 331 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 332 bvec->bv_offset, bvec->bv_len, pos >> 9); 333 if (likely(!ret)) 334 return __do_lo_send_write(lo->lo_backing_file, 335 page_address(page), bvec->bv_len, 336 pos); 337 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 338 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 339 if (ret > 0) 340 ret = -EIO; 341 return ret; 342 } 343 344 static int lo_send(struct loop_device *lo, struct bio *bio, int bsize, 345 loff_t pos) 346 { 347 int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t, 348 struct page *page); 349 struct bio_vec *bvec; 350 struct page *page = NULL; 351 int i, ret = 0; 352 353 do_lo_send = do_lo_send_aops; 354 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) { 355 do_lo_send = do_lo_send_direct_write; 356 if (lo->transfer != transfer_none) { 357 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 358 if (unlikely(!page)) 359 goto fail; 360 kmap(page); 361 do_lo_send = do_lo_send_write; 362 } 363 } 364 bio_for_each_segment(bvec, bio, i) { 365 ret = do_lo_send(lo, bvec, bsize, pos, page); 366 if (ret < 0) 367 break; 368 pos += bvec->bv_len; 369 } 370 if (page) { 371 kunmap(page); 372 __free_page(page); 373 } 374 out: 375 return ret; 376 fail: 377 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 378 ret = -ENOMEM; 379 goto out; 380 } 381 382 struct lo_read_data { 383 struct loop_device *lo; 384 struct page *page; 385 unsigned offset; 386 int bsize; 387 }; 388 389 static int 390 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 391 struct splice_desc *sd) 392 { 393 struct lo_read_data *p = sd->u.data; 394 struct loop_device *lo = p->lo; 395 struct page *page = buf->page; 396 sector_t IV; 397 size_t size; 398 int ret; 399 400 ret = buf->ops->confirm(pipe, buf); 401 if (unlikely(ret)) 402 return ret; 403 404 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 405 (buf->offset >> 9); 406 size = sd->len; 407 if (size > p->bsize) 408 size = p->bsize; 409 410 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 411 printk(KERN_ERR "loop: transfer error block %ld\n", 412 page->index); 413 size = -EINVAL; 414 } 415 416 flush_dcache_page(p->page); 417 418 if (size > 0) 419 p->offset += size; 420 421 return size; 422 } 423 424 static int 425 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 426 { 427 return __splice_from_pipe(pipe, sd, lo_splice_actor); 428 } 429 430 static int 431 do_lo_receive(struct loop_device *lo, 432 struct bio_vec *bvec, int bsize, loff_t pos) 433 { 434 struct lo_read_data cookie; 435 struct splice_desc sd; 436 struct file *file; 437 long retval; 438 439 cookie.lo = lo; 440 cookie.page = bvec->bv_page; 441 cookie.offset = bvec->bv_offset; 442 cookie.bsize = bsize; 443 444 sd.len = 0; 445 sd.total_len = bvec->bv_len; 446 sd.flags = 0; 447 sd.pos = pos; 448 sd.u.data = &cookie; 449 450 file = lo->lo_backing_file; 451 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 452 453 if (retval < 0) 454 return retval; 455 456 return 0; 457 } 458 459 static int 460 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 461 { 462 struct bio_vec *bvec; 463 int i, ret = 0; 464 465 bio_for_each_segment(bvec, bio, i) { 466 ret = do_lo_receive(lo, bvec, bsize, pos); 467 if (ret < 0) 468 break; 469 pos += bvec->bv_len; 470 } 471 return ret; 472 } 473 474 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 475 { 476 loff_t pos; 477 int ret; 478 479 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 480 if (bio_rw(bio) == WRITE) 481 ret = lo_send(lo, bio, lo->lo_blocksize, pos); 482 else 483 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 484 return ret; 485 } 486 487 /* 488 * Add bio to back of pending list 489 */ 490 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 491 { 492 if (lo->lo_biotail) { 493 lo->lo_biotail->bi_next = bio; 494 lo->lo_biotail = bio; 495 } else 496 lo->lo_bio = lo->lo_biotail = bio; 497 } 498 499 /* 500 * Grab first pending buffer 501 */ 502 static struct bio *loop_get_bio(struct loop_device *lo) 503 { 504 struct bio *bio; 505 506 if ((bio = lo->lo_bio)) { 507 if (bio == lo->lo_biotail) 508 lo->lo_biotail = NULL; 509 lo->lo_bio = bio->bi_next; 510 bio->bi_next = NULL; 511 } 512 513 return bio; 514 } 515 516 static int loop_make_request(struct request_queue *q, struct bio *old_bio) 517 { 518 struct loop_device *lo = q->queuedata; 519 int rw = bio_rw(old_bio); 520 521 if (rw == READA) 522 rw = READ; 523 524 BUG_ON(!lo || (rw != READ && rw != WRITE)); 525 526 spin_lock_irq(&lo->lo_lock); 527 if (lo->lo_state != Lo_bound) 528 goto out; 529 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 530 goto out; 531 loop_add_bio(lo, old_bio); 532 wake_up(&lo->lo_event); 533 spin_unlock_irq(&lo->lo_lock); 534 return 0; 535 536 out: 537 spin_unlock_irq(&lo->lo_lock); 538 bio_io_error(old_bio); 539 return 0; 540 } 541 542 /* 543 * kick off io on the underlying address space 544 */ 545 static void loop_unplug(struct request_queue *q) 546 { 547 struct loop_device *lo = q->queuedata; 548 549 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q); 550 blk_run_address_space(lo->lo_backing_file->f_mapping); 551 } 552 553 struct switch_request { 554 struct file *file; 555 struct completion wait; 556 }; 557 558 static void do_loop_switch(struct loop_device *, struct switch_request *); 559 560 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 561 { 562 if (unlikely(!bio->bi_bdev)) { 563 do_loop_switch(lo, bio->bi_private); 564 bio_put(bio); 565 } else { 566 int ret = do_bio_filebacked(lo, bio); 567 bio_endio(bio, ret); 568 } 569 } 570 571 /* 572 * worker thread that handles reads/writes to file backed loop devices, 573 * to avoid blocking in our make_request_fn. it also does loop decrypting 574 * on reads for block backed loop, as that is too heavy to do from 575 * b_end_io context where irqs may be disabled. 576 * 577 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 578 * calling kthread_stop(). Therefore once kthread_should_stop() is 579 * true, make_request will not place any more requests. Therefore 580 * once kthread_should_stop() is true and lo_bio is NULL, we are 581 * done with the loop. 582 */ 583 static int loop_thread(void *data) 584 { 585 struct loop_device *lo = data; 586 struct bio *bio; 587 588 set_user_nice(current, -20); 589 590 while (!kthread_should_stop() || lo->lo_bio) { 591 592 wait_event_interruptible(lo->lo_event, 593 lo->lo_bio || kthread_should_stop()); 594 595 if (!lo->lo_bio) 596 continue; 597 spin_lock_irq(&lo->lo_lock); 598 bio = loop_get_bio(lo); 599 spin_unlock_irq(&lo->lo_lock); 600 601 BUG_ON(!bio); 602 loop_handle_bio(lo, bio); 603 } 604 605 return 0; 606 } 607 608 /* 609 * loop_switch performs the hard work of switching a backing store. 610 * First it needs to flush existing IO, it does this by sending a magic 611 * BIO down the pipe. The completion of this BIO does the actual switch. 612 */ 613 static int loop_switch(struct loop_device *lo, struct file *file) 614 { 615 struct switch_request w; 616 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 617 if (!bio) 618 return -ENOMEM; 619 init_completion(&w.wait); 620 w.file = file; 621 bio->bi_private = &w; 622 bio->bi_bdev = NULL; 623 loop_make_request(lo->lo_queue, bio); 624 wait_for_completion(&w.wait); 625 return 0; 626 } 627 628 /* 629 * Do the actual switch; called from the BIO completion routine 630 */ 631 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 632 { 633 struct file *file = p->file; 634 struct file *old_file = lo->lo_backing_file; 635 struct address_space *mapping = file->f_mapping; 636 637 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 638 lo->lo_backing_file = file; 639 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 640 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 641 lo->old_gfp_mask = mapping_gfp_mask(mapping); 642 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 643 complete(&p->wait); 644 } 645 646 647 /* 648 * loop_change_fd switched the backing store of a loopback device to 649 * a new file. This is useful for operating system installers to free up 650 * the original file and in High Availability environments to switch to 651 * an alternative location for the content in case of server meltdown. 652 * This can only work if the loop device is used read-only, and if the 653 * new backing store is the same size and type as the old backing store. 654 */ 655 static int loop_change_fd(struct loop_device *lo, struct file *lo_file, 656 struct block_device *bdev, unsigned int arg) 657 { 658 struct file *file, *old_file; 659 struct inode *inode; 660 int error; 661 662 error = -ENXIO; 663 if (lo->lo_state != Lo_bound) 664 goto out; 665 666 /* the loop device has to be read-only */ 667 error = -EINVAL; 668 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 669 goto out; 670 671 error = -EBADF; 672 file = fget(arg); 673 if (!file) 674 goto out; 675 676 inode = file->f_mapping->host; 677 old_file = lo->lo_backing_file; 678 679 error = -EINVAL; 680 681 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 682 goto out_putf; 683 684 /* new backing store needs to support loop (eg splice_read) */ 685 if (!inode->i_fop->splice_read) 686 goto out_putf; 687 688 /* size of the new backing store needs to be the same */ 689 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 690 goto out_putf; 691 692 /* and ... switch */ 693 error = loop_switch(lo, file); 694 if (error) 695 goto out_putf; 696 697 fput(old_file); 698 if (max_part > 0) 699 ioctl_by_bdev(bdev, BLKRRPART, 0); 700 return 0; 701 702 out_putf: 703 fput(file); 704 out: 705 return error; 706 } 707 708 static inline int is_loop_device(struct file *file) 709 { 710 struct inode *i = file->f_mapping->host; 711 712 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 713 } 714 715 static int loop_set_fd(struct loop_device *lo, struct file *lo_file, 716 struct block_device *bdev, unsigned int arg) 717 { 718 struct file *file, *f; 719 struct inode *inode; 720 struct address_space *mapping; 721 unsigned lo_blocksize; 722 int lo_flags = 0; 723 int error; 724 loff_t size; 725 726 /* This is safe, since we have a reference from open(). */ 727 __module_get(THIS_MODULE); 728 729 error = -EBADF; 730 file = fget(arg); 731 if (!file) 732 goto out; 733 734 error = -EBUSY; 735 if (lo->lo_state != Lo_unbound) 736 goto out_putf; 737 738 /* Avoid recursion */ 739 f = file; 740 while (is_loop_device(f)) { 741 struct loop_device *l; 742 743 if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev) 744 goto out_putf; 745 746 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 747 if (l->lo_state == Lo_unbound) { 748 error = -EINVAL; 749 goto out_putf; 750 } 751 f = l->lo_backing_file; 752 } 753 754 mapping = file->f_mapping; 755 inode = mapping->host; 756 757 if (!(file->f_mode & FMODE_WRITE)) 758 lo_flags |= LO_FLAGS_READ_ONLY; 759 760 error = -EINVAL; 761 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) { 762 const struct address_space_operations *aops = mapping->a_ops; 763 /* 764 * If we can't read - sorry. If we only can't write - well, 765 * it's going to be read-only. 766 */ 767 if (!file->f_op->splice_read) 768 goto out_putf; 769 if (aops->prepare_write || aops->write_begin) 770 lo_flags |= LO_FLAGS_USE_AOPS; 771 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write) 772 lo_flags |= LO_FLAGS_READ_ONLY; 773 774 lo_blocksize = S_ISBLK(inode->i_mode) ? 775 inode->i_bdev->bd_block_size : PAGE_SIZE; 776 777 error = 0; 778 } else { 779 goto out_putf; 780 } 781 782 size = get_loop_size(lo, file); 783 784 if ((loff_t)(sector_t)size != size) { 785 error = -EFBIG; 786 goto out_putf; 787 } 788 789 if (!(lo_file->f_mode & FMODE_WRITE)) 790 lo_flags |= LO_FLAGS_READ_ONLY; 791 792 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 793 794 lo->lo_blocksize = lo_blocksize; 795 lo->lo_device = bdev; 796 lo->lo_flags = lo_flags; 797 lo->lo_backing_file = file; 798 lo->transfer = transfer_none; 799 lo->ioctl = NULL; 800 lo->lo_sizelimit = 0; 801 lo->old_gfp_mask = mapping_gfp_mask(mapping); 802 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 803 804 lo->lo_bio = lo->lo_biotail = NULL; 805 806 /* 807 * set queue make_request_fn, and add limits based on lower level 808 * device 809 */ 810 blk_queue_make_request(lo->lo_queue, loop_make_request); 811 lo->lo_queue->queuedata = lo; 812 lo->lo_queue->unplug_fn = loop_unplug; 813 814 set_capacity(lo->lo_disk, size); 815 bd_set_size(bdev, size << 9); 816 817 set_blocksize(bdev, lo_blocksize); 818 819 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 820 lo->lo_number); 821 if (IS_ERR(lo->lo_thread)) { 822 error = PTR_ERR(lo->lo_thread); 823 goto out_clr; 824 } 825 lo->lo_state = Lo_bound; 826 wake_up_process(lo->lo_thread); 827 if (max_part > 0) 828 ioctl_by_bdev(bdev, BLKRRPART, 0); 829 return 0; 830 831 out_clr: 832 lo->lo_thread = NULL; 833 lo->lo_device = NULL; 834 lo->lo_backing_file = NULL; 835 lo->lo_flags = 0; 836 set_capacity(lo->lo_disk, 0); 837 invalidate_bdev(bdev); 838 bd_set_size(bdev, 0); 839 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 840 lo->lo_state = Lo_unbound; 841 out_putf: 842 fput(file); 843 out: 844 /* This is safe: open() is still holding a reference. */ 845 module_put(THIS_MODULE); 846 return error; 847 } 848 849 static int 850 loop_release_xfer(struct loop_device *lo) 851 { 852 int err = 0; 853 struct loop_func_table *xfer = lo->lo_encryption; 854 855 if (xfer) { 856 if (xfer->release) 857 err = xfer->release(lo); 858 lo->transfer = NULL; 859 lo->lo_encryption = NULL; 860 module_put(xfer->owner); 861 } 862 return err; 863 } 864 865 static int 866 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 867 const struct loop_info64 *i) 868 { 869 int err = 0; 870 871 if (xfer) { 872 struct module *owner = xfer->owner; 873 874 if (!try_module_get(owner)) 875 return -EINVAL; 876 if (xfer->init) 877 err = xfer->init(lo, i); 878 if (err) 879 module_put(owner); 880 else 881 lo->lo_encryption = xfer; 882 } 883 return err; 884 } 885 886 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev) 887 { 888 struct file *filp = lo->lo_backing_file; 889 gfp_t gfp = lo->old_gfp_mask; 890 891 if (lo->lo_state != Lo_bound) 892 return -ENXIO; 893 894 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ 895 return -EBUSY; 896 897 if (filp == NULL) 898 return -EINVAL; 899 900 spin_lock_irq(&lo->lo_lock); 901 lo->lo_state = Lo_rundown; 902 spin_unlock_irq(&lo->lo_lock); 903 904 kthread_stop(lo->lo_thread); 905 906 lo->lo_backing_file = NULL; 907 908 loop_release_xfer(lo); 909 lo->transfer = NULL; 910 lo->ioctl = NULL; 911 lo->lo_device = NULL; 912 lo->lo_encryption = NULL; 913 lo->lo_offset = 0; 914 lo->lo_sizelimit = 0; 915 lo->lo_encrypt_key_size = 0; 916 lo->lo_flags = 0; 917 lo->lo_thread = NULL; 918 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 919 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 920 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 921 invalidate_bdev(bdev); 922 set_capacity(lo->lo_disk, 0); 923 bd_set_size(bdev, 0); 924 mapping_set_gfp_mask(filp->f_mapping, gfp); 925 lo->lo_state = Lo_unbound; 926 fput(filp); 927 /* This is safe: open() is still holding a reference. */ 928 module_put(THIS_MODULE); 929 if (max_part > 0) 930 ioctl_by_bdev(bdev, BLKRRPART, 0); 931 return 0; 932 } 933 934 static int 935 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 936 { 937 int err; 938 struct loop_func_table *xfer; 939 940 if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid && 941 !capable(CAP_SYS_ADMIN)) 942 return -EPERM; 943 if (lo->lo_state != Lo_bound) 944 return -ENXIO; 945 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 946 return -EINVAL; 947 948 err = loop_release_xfer(lo); 949 if (err) 950 return err; 951 952 if (info->lo_encrypt_type) { 953 unsigned int type = info->lo_encrypt_type; 954 955 if (type >= MAX_LO_CRYPT) 956 return -EINVAL; 957 xfer = xfer_funcs[type]; 958 if (xfer == NULL) 959 return -EINVAL; 960 } else 961 xfer = NULL; 962 963 err = loop_init_xfer(lo, xfer, info); 964 if (err) 965 return err; 966 967 if (lo->lo_offset != info->lo_offset || 968 lo->lo_sizelimit != info->lo_sizelimit) { 969 lo->lo_offset = info->lo_offset; 970 lo->lo_sizelimit = info->lo_sizelimit; 971 if (figure_loop_size(lo)) 972 return -EFBIG; 973 } 974 975 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 976 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 977 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 978 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 979 980 if (!xfer) 981 xfer = &none_funcs; 982 lo->transfer = xfer->transfer; 983 lo->ioctl = xfer->ioctl; 984 985 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 986 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 987 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 988 989 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 990 lo->lo_init[0] = info->lo_init[0]; 991 lo->lo_init[1] = info->lo_init[1]; 992 if (info->lo_encrypt_key_size) { 993 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 994 info->lo_encrypt_key_size); 995 lo->lo_key_owner = current->uid; 996 } 997 998 return 0; 999 } 1000 1001 static int 1002 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1003 { 1004 struct file *file = lo->lo_backing_file; 1005 struct kstat stat; 1006 int error; 1007 1008 if (lo->lo_state != Lo_bound) 1009 return -ENXIO; 1010 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat); 1011 if (error) 1012 return error; 1013 memset(info, 0, sizeof(*info)); 1014 info->lo_number = lo->lo_number; 1015 info->lo_device = huge_encode_dev(stat.dev); 1016 info->lo_inode = stat.ino; 1017 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1018 info->lo_offset = lo->lo_offset; 1019 info->lo_sizelimit = lo->lo_sizelimit; 1020 info->lo_flags = lo->lo_flags; 1021 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1022 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1023 info->lo_encrypt_type = 1024 lo->lo_encryption ? lo->lo_encryption->number : 0; 1025 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1026 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1027 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1028 lo->lo_encrypt_key_size); 1029 } 1030 return 0; 1031 } 1032 1033 static void 1034 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1035 { 1036 memset(info64, 0, sizeof(*info64)); 1037 info64->lo_number = info->lo_number; 1038 info64->lo_device = info->lo_device; 1039 info64->lo_inode = info->lo_inode; 1040 info64->lo_rdevice = info->lo_rdevice; 1041 info64->lo_offset = info->lo_offset; 1042 info64->lo_sizelimit = 0; 1043 info64->lo_encrypt_type = info->lo_encrypt_type; 1044 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1045 info64->lo_flags = info->lo_flags; 1046 info64->lo_init[0] = info->lo_init[0]; 1047 info64->lo_init[1] = info->lo_init[1]; 1048 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1049 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1050 else 1051 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1052 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1053 } 1054 1055 static int 1056 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1057 { 1058 memset(info, 0, sizeof(*info)); 1059 info->lo_number = info64->lo_number; 1060 info->lo_device = info64->lo_device; 1061 info->lo_inode = info64->lo_inode; 1062 info->lo_rdevice = info64->lo_rdevice; 1063 info->lo_offset = info64->lo_offset; 1064 info->lo_encrypt_type = info64->lo_encrypt_type; 1065 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1066 info->lo_flags = info64->lo_flags; 1067 info->lo_init[0] = info64->lo_init[0]; 1068 info->lo_init[1] = info64->lo_init[1]; 1069 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1070 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1071 else 1072 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1073 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1074 1075 /* error in case values were truncated */ 1076 if (info->lo_device != info64->lo_device || 1077 info->lo_rdevice != info64->lo_rdevice || 1078 info->lo_inode != info64->lo_inode || 1079 info->lo_offset != info64->lo_offset) 1080 return -EOVERFLOW; 1081 1082 return 0; 1083 } 1084 1085 static int 1086 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1087 { 1088 struct loop_info info; 1089 struct loop_info64 info64; 1090 1091 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1092 return -EFAULT; 1093 loop_info64_from_old(&info, &info64); 1094 return loop_set_status(lo, &info64); 1095 } 1096 1097 static int 1098 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1099 { 1100 struct loop_info64 info64; 1101 1102 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1103 return -EFAULT; 1104 return loop_set_status(lo, &info64); 1105 } 1106 1107 static int 1108 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1109 struct loop_info info; 1110 struct loop_info64 info64; 1111 int err = 0; 1112 1113 if (!arg) 1114 err = -EINVAL; 1115 if (!err) 1116 err = loop_get_status(lo, &info64); 1117 if (!err) 1118 err = loop_info64_to_old(&info64, &info); 1119 if (!err && copy_to_user(arg, &info, sizeof(info))) 1120 err = -EFAULT; 1121 1122 return err; 1123 } 1124 1125 static int 1126 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1127 struct loop_info64 info64; 1128 int err = 0; 1129 1130 if (!arg) 1131 err = -EINVAL; 1132 if (!err) 1133 err = loop_get_status(lo, &info64); 1134 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1135 err = -EFAULT; 1136 1137 return err; 1138 } 1139 1140 static int lo_ioctl(struct inode * inode, struct file * file, 1141 unsigned int cmd, unsigned long arg) 1142 { 1143 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1144 int err; 1145 1146 mutex_lock(&lo->lo_ctl_mutex); 1147 switch (cmd) { 1148 case LOOP_SET_FD: 1149 err = loop_set_fd(lo, file, inode->i_bdev, arg); 1150 break; 1151 case LOOP_CHANGE_FD: 1152 err = loop_change_fd(lo, file, inode->i_bdev, arg); 1153 break; 1154 case LOOP_CLR_FD: 1155 err = loop_clr_fd(lo, inode->i_bdev); 1156 break; 1157 case LOOP_SET_STATUS: 1158 err = loop_set_status_old(lo, (struct loop_info __user *) arg); 1159 break; 1160 case LOOP_GET_STATUS: 1161 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1162 break; 1163 case LOOP_SET_STATUS64: 1164 err = loop_set_status64(lo, (struct loop_info64 __user *) arg); 1165 break; 1166 case LOOP_GET_STATUS64: 1167 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1168 break; 1169 default: 1170 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1171 } 1172 mutex_unlock(&lo->lo_ctl_mutex); 1173 return err; 1174 } 1175 1176 #ifdef CONFIG_COMPAT 1177 struct compat_loop_info { 1178 compat_int_t lo_number; /* ioctl r/o */ 1179 compat_dev_t lo_device; /* ioctl r/o */ 1180 compat_ulong_t lo_inode; /* ioctl r/o */ 1181 compat_dev_t lo_rdevice; /* ioctl r/o */ 1182 compat_int_t lo_offset; 1183 compat_int_t lo_encrypt_type; 1184 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1185 compat_int_t lo_flags; /* ioctl r/o */ 1186 char lo_name[LO_NAME_SIZE]; 1187 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1188 compat_ulong_t lo_init[2]; 1189 char reserved[4]; 1190 }; 1191 1192 /* 1193 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1194 * - noinlined to reduce stack space usage in main part of driver 1195 */ 1196 static noinline int 1197 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1198 struct loop_info64 *info64) 1199 { 1200 struct compat_loop_info info; 1201 1202 if (copy_from_user(&info, arg, sizeof(info))) 1203 return -EFAULT; 1204 1205 memset(info64, 0, sizeof(*info64)); 1206 info64->lo_number = info.lo_number; 1207 info64->lo_device = info.lo_device; 1208 info64->lo_inode = info.lo_inode; 1209 info64->lo_rdevice = info.lo_rdevice; 1210 info64->lo_offset = info.lo_offset; 1211 info64->lo_sizelimit = 0; 1212 info64->lo_encrypt_type = info.lo_encrypt_type; 1213 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1214 info64->lo_flags = info.lo_flags; 1215 info64->lo_init[0] = info.lo_init[0]; 1216 info64->lo_init[1] = info.lo_init[1]; 1217 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1218 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1219 else 1220 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1221 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1222 return 0; 1223 } 1224 1225 /* 1226 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1227 * - noinlined to reduce stack space usage in main part of driver 1228 */ 1229 static noinline int 1230 loop_info64_to_compat(const struct loop_info64 *info64, 1231 struct compat_loop_info __user *arg) 1232 { 1233 struct compat_loop_info info; 1234 1235 memset(&info, 0, sizeof(info)); 1236 info.lo_number = info64->lo_number; 1237 info.lo_device = info64->lo_device; 1238 info.lo_inode = info64->lo_inode; 1239 info.lo_rdevice = info64->lo_rdevice; 1240 info.lo_offset = info64->lo_offset; 1241 info.lo_encrypt_type = info64->lo_encrypt_type; 1242 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1243 info.lo_flags = info64->lo_flags; 1244 info.lo_init[0] = info64->lo_init[0]; 1245 info.lo_init[1] = info64->lo_init[1]; 1246 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1247 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1248 else 1249 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1250 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1251 1252 /* error in case values were truncated */ 1253 if (info.lo_device != info64->lo_device || 1254 info.lo_rdevice != info64->lo_rdevice || 1255 info.lo_inode != info64->lo_inode || 1256 info.lo_offset != info64->lo_offset || 1257 info.lo_init[0] != info64->lo_init[0] || 1258 info.lo_init[1] != info64->lo_init[1]) 1259 return -EOVERFLOW; 1260 1261 if (copy_to_user(arg, &info, sizeof(info))) 1262 return -EFAULT; 1263 return 0; 1264 } 1265 1266 static int 1267 loop_set_status_compat(struct loop_device *lo, 1268 const struct compat_loop_info __user *arg) 1269 { 1270 struct loop_info64 info64; 1271 int ret; 1272 1273 ret = loop_info64_from_compat(arg, &info64); 1274 if (ret < 0) 1275 return ret; 1276 return loop_set_status(lo, &info64); 1277 } 1278 1279 static int 1280 loop_get_status_compat(struct loop_device *lo, 1281 struct compat_loop_info __user *arg) 1282 { 1283 struct loop_info64 info64; 1284 int err = 0; 1285 1286 if (!arg) 1287 err = -EINVAL; 1288 if (!err) 1289 err = loop_get_status(lo, &info64); 1290 if (!err) 1291 err = loop_info64_to_compat(&info64, arg); 1292 return err; 1293 } 1294 1295 static long lo_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1296 { 1297 struct inode *inode = file->f_path.dentry->d_inode; 1298 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1299 int err; 1300 1301 switch(cmd) { 1302 case LOOP_SET_STATUS: 1303 mutex_lock(&lo->lo_ctl_mutex); 1304 err = loop_set_status_compat( 1305 lo, (const struct compat_loop_info __user *) arg); 1306 mutex_unlock(&lo->lo_ctl_mutex); 1307 break; 1308 case LOOP_GET_STATUS: 1309 mutex_lock(&lo->lo_ctl_mutex); 1310 err = loop_get_status_compat( 1311 lo, (struct compat_loop_info __user *) arg); 1312 mutex_unlock(&lo->lo_ctl_mutex); 1313 break; 1314 case LOOP_CLR_FD: 1315 case LOOP_GET_STATUS64: 1316 case LOOP_SET_STATUS64: 1317 arg = (unsigned long) compat_ptr(arg); 1318 case LOOP_SET_FD: 1319 case LOOP_CHANGE_FD: 1320 err = lo_ioctl(inode, file, cmd, arg); 1321 break; 1322 default: 1323 err = -ENOIOCTLCMD; 1324 break; 1325 } 1326 return err; 1327 } 1328 #endif 1329 1330 static int lo_open(struct inode *inode, struct file *file) 1331 { 1332 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1333 1334 mutex_lock(&lo->lo_ctl_mutex); 1335 lo->lo_refcnt++; 1336 mutex_unlock(&lo->lo_ctl_mutex); 1337 1338 return 0; 1339 } 1340 1341 static int lo_release(struct inode *inode, struct file *file) 1342 { 1343 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1344 1345 mutex_lock(&lo->lo_ctl_mutex); 1346 --lo->lo_refcnt; 1347 1348 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) && !lo->lo_refcnt) 1349 loop_clr_fd(lo, inode->i_bdev); 1350 1351 mutex_unlock(&lo->lo_ctl_mutex); 1352 1353 return 0; 1354 } 1355 1356 static struct block_device_operations lo_fops = { 1357 .owner = THIS_MODULE, 1358 .open = lo_open, 1359 .release = lo_release, 1360 .ioctl = lo_ioctl, 1361 #ifdef CONFIG_COMPAT 1362 .compat_ioctl = lo_compat_ioctl, 1363 #endif 1364 }; 1365 1366 /* 1367 * And now the modules code and kernel interface. 1368 */ 1369 static int max_loop; 1370 module_param(max_loop, int, 0); 1371 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1372 module_param(max_part, int, 0); 1373 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1374 MODULE_LICENSE("GPL"); 1375 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1376 1377 int loop_register_transfer(struct loop_func_table *funcs) 1378 { 1379 unsigned int n = funcs->number; 1380 1381 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1382 return -EINVAL; 1383 xfer_funcs[n] = funcs; 1384 return 0; 1385 } 1386 1387 int loop_unregister_transfer(int number) 1388 { 1389 unsigned int n = number; 1390 struct loop_device *lo; 1391 struct loop_func_table *xfer; 1392 1393 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1394 return -EINVAL; 1395 1396 xfer_funcs[n] = NULL; 1397 1398 list_for_each_entry(lo, &loop_devices, lo_list) { 1399 mutex_lock(&lo->lo_ctl_mutex); 1400 1401 if (lo->lo_encryption == xfer) 1402 loop_release_xfer(lo); 1403 1404 mutex_unlock(&lo->lo_ctl_mutex); 1405 } 1406 1407 return 0; 1408 } 1409 1410 EXPORT_SYMBOL(loop_register_transfer); 1411 EXPORT_SYMBOL(loop_unregister_transfer); 1412 1413 static struct loop_device *loop_alloc(int i) 1414 { 1415 struct loop_device *lo; 1416 struct gendisk *disk; 1417 1418 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1419 if (!lo) 1420 goto out; 1421 1422 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1423 if (!lo->lo_queue) 1424 goto out_free_dev; 1425 1426 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1427 if (!disk) 1428 goto out_free_queue; 1429 1430 mutex_init(&lo->lo_ctl_mutex); 1431 lo->lo_number = i; 1432 lo->lo_thread = NULL; 1433 init_waitqueue_head(&lo->lo_event); 1434 spin_lock_init(&lo->lo_lock); 1435 disk->major = LOOP_MAJOR; 1436 disk->first_minor = i << part_shift; 1437 disk->fops = &lo_fops; 1438 disk->private_data = lo; 1439 disk->queue = lo->lo_queue; 1440 sprintf(disk->disk_name, "loop%d", i); 1441 return lo; 1442 1443 out_free_queue: 1444 blk_cleanup_queue(lo->lo_queue); 1445 out_free_dev: 1446 kfree(lo); 1447 out: 1448 return NULL; 1449 } 1450 1451 static void loop_free(struct loop_device *lo) 1452 { 1453 blk_cleanup_queue(lo->lo_queue); 1454 put_disk(lo->lo_disk); 1455 list_del(&lo->lo_list); 1456 kfree(lo); 1457 } 1458 1459 static struct loop_device *loop_init_one(int i) 1460 { 1461 struct loop_device *lo; 1462 1463 list_for_each_entry(lo, &loop_devices, lo_list) { 1464 if (lo->lo_number == i) 1465 return lo; 1466 } 1467 1468 lo = loop_alloc(i); 1469 if (lo) { 1470 add_disk(lo->lo_disk); 1471 list_add_tail(&lo->lo_list, &loop_devices); 1472 } 1473 return lo; 1474 } 1475 1476 static void loop_del_one(struct loop_device *lo) 1477 { 1478 del_gendisk(lo->lo_disk); 1479 loop_free(lo); 1480 } 1481 1482 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1483 { 1484 struct loop_device *lo; 1485 struct kobject *kobj; 1486 1487 mutex_lock(&loop_devices_mutex); 1488 lo = loop_init_one(dev & MINORMASK); 1489 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM); 1490 mutex_unlock(&loop_devices_mutex); 1491 1492 *part = 0; 1493 return kobj; 1494 } 1495 1496 static int __init loop_init(void) 1497 { 1498 int i, nr; 1499 unsigned long range; 1500 struct loop_device *lo, *next; 1501 1502 /* 1503 * loop module now has a feature to instantiate underlying device 1504 * structure on-demand, provided that there is an access dev node. 1505 * However, this will not work well with user space tool that doesn't 1506 * know about such "feature". In order to not break any existing 1507 * tool, we do the following: 1508 * 1509 * (1) if max_loop is specified, create that many upfront, and this 1510 * also becomes a hard limit. 1511 * (2) if max_loop is not specified, create 8 loop device on module 1512 * load, user can further extend loop device by create dev node 1513 * themselves and have kernel automatically instantiate actual 1514 * device on-demand. 1515 */ 1516 1517 part_shift = 0; 1518 if (max_part > 0) 1519 part_shift = fls(max_part); 1520 1521 if (max_loop > 1UL << (MINORBITS - part_shift)) 1522 return -EINVAL; 1523 1524 if (max_loop) { 1525 nr = max_loop; 1526 range = max_loop; 1527 } else { 1528 nr = 8; 1529 range = 1UL << (MINORBITS - part_shift); 1530 } 1531 1532 if (register_blkdev(LOOP_MAJOR, "loop")) 1533 return -EIO; 1534 1535 for (i = 0; i < nr; i++) { 1536 lo = loop_alloc(i); 1537 if (!lo) 1538 goto Enomem; 1539 list_add_tail(&lo->lo_list, &loop_devices); 1540 } 1541 1542 /* point of no return */ 1543 1544 list_for_each_entry(lo, &loop_devices, lo_list) 1545 add_disk(lo->lo_disk); 1546 1547 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1548 THIS_MODULE, loop_probe, NULL, NULL); 1549 1550 printk(KERN_INFO "loop: module loaded\n"); 1551 return 0; 1552 1553 Enomem: 1554 printk(KERN_INFO "loop: out of memory\n"); 1555 1556 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1557 loop_free(lo); 1558 1559 unregister_blkdev(LOOP_MAJOR, "loop"); 1560 return -ENOMEM; 1561 } 1562 1563 static void __exit loop_exit(void) 1564 { 1565 unsigned long range; 1566 struct loop_device *lo, *next; 1567 1568 range = max_loop ? max_loop : 1UL << (MINORBITS - part_shift); 1569 1570 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1571 loop_del_one(lo); 1572 1573 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1574 unregister_blkdev(LOOP_MAJOR, "loop"); 1575 } 1576 1577 module_init(loop_init); 1578 module_exit(loop_exit); 1579 1580 #ifndef MODULE 1581 static int __init max_loop_setup(char *str) 1582 { 1583 max_loop = simple_strtol(str, NULL, 0); 1584 return 1; 1585 } 1586 1587 __setup("max_loop=", max_loop_setup); 1588 #endif 1589