xref: /openbmc/linux/drivers/block/loop.c (revision ee89bd6b)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/kthread.h>
75 #include <linux/splice.h>
76 #include <linux/sysfs.h>
77 #include <linux/miscdevice.h>
78 #include <linux/falloc.h>
79 
80 #include <asm/uaccess.h>
81 
82 static DEFINE_IDR(loop_index_idr);
83 static DEFINE_MUTEX(loop_index_mutex);
84 
85 static int max_part;
86 static int part_shift;
87 
88 /*
89  * Transfer functions
90  */
91 static int transfer_none(struct loop_device *lo, int cmd,
92 			 struct page *raw_page, unsigned raw_off,
93 			 struct page *loop_page, unsigned loop_off,
94 			 int size, sector_t real_block)
95 {
96 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
97 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
98 
99 	if (cmd == READ)
100 		memcpy(loop_buf, raw_buf, size);
101 	else
102 		memcpy(raw_buf, loop_buf, size);
103 
104 	kunmap_atomic(loop_buf);
105 	kunmap_atomic(raw_buf);
106 	cond_resched();
107 	return 0;
108 }
109 
110 static int transfer_xor(struct loop_device *lo, int cmd,
111 			struct page *raw_page, unsigned raw_off,
112 			struct page *loop_page, unsigned loop_off,
113 			int size, sector_t real_block)
114 {
115 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
116 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
117 	char *in, *out, *key;
118 	int i, keysize;
119 
120 	if (cmd == READ) {
121 		in = raw_buf;
122 		out = loop_buf;
123 	} else {
124 		in = loop_buf;
125 		out = raw_buf;
126 	}
127 
128 	key = lo->lo_encrypt_key;
129 	keysize = lo->lo_encrypt_key_size;
130 	for (i = 0; i < size; i++)
131 		*out++ = *in++ ^ key[(i & 511) % keysize];
132 
133 	kunmap_atomic(loop_buf);
134 	kunmap_atomic(raw_buf);
135 	cond_resched();
136 	return 0;
137 }
138 
139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140 {
141 	if (unlikely(info->lo_encrypt_key_size <= 0))
142 		return -EINVAL;
143 	return 0;
144 }
145 
146 static struct loop_func_table none_funcs = {
147 	.number = LO_CRYPT_NONE,
148 	.transfer = transfer_none,
149 };
150 
151 static struct loop_func_table xor_funcs = {
152 	.number = LO_CRYPT_XOR,
153 	.transfer = transfer_xor,
154 	.init = xor_init
155 };
156 
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159 	&none_funcs,
160 	&xor_funcs
161 };
162 
163 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
164 {
165 	loff_t loopsize;
166 
167 	/* Compute loopsize in bytes */
168 	loopsize = i_size_read(file->f_mapping->host);
169 	if (offset > 0)
170 		loopsize -= offset;
171 	/* offset is beyond i_size, weird but possible */
172 	if (loopsize < 0)
173 		return 0;
174 
175 	if (sizelimit > 0 && sizelimit < loopsize)
176 		loopsize = sizelimit;
177 	/*
178 	 * Unfortunately, if we want to do I/O on the device,
179 	 * the number of 512-byte sectors has to fit into a sector_t.
180 	 */
181 	return loopsize >> 9;
182 }
183 
184 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
185 {
186 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
187 }
188 
189 static int
190 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
191 {
192 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
193 	sector_t x = (sector_t)size;
194 	struct block_device *bdev = lo->lo_device;
195 
196 	if (unlikely((loff_t)x != size))
197 		return -EFBIG;
198 	if (lo->lo_offset != offset)
199 		lo->lo_offset = offset;
200 	if (lo->lo_sizelimit != sizelimit)
201 		lo->lo_sizelimit = sizelimit;
202 	set_capacity(lo->lo_disk, x);
203 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
204 	/* let user-space know about the new size */
205 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
206 	return 0;
207 }
208 
209 static inline int
210 lo_do_transfer(struct loop_device *lo, int cmd,
211 	       struct page *rpage, unsigned roffs,
212 	       struct page *lpage, unsigned loffs,
213 	       int size, sector_t rblock)
214 {
215 	if (unlikely(!lo->transfer))
216 		return 0;
217 
218 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
219 }
220 
221 /**
222  * __do_lo_send_write - helper for writing data to a loop device
223  *
224  * This helper just factors out common code between do_lo_send_direct_write()
225  * and do_lo_send_write().
226  */
227 static int __do_lo_send_write(struct file *file,
228 		u8 *buf, const int len, loff_t pos)
229 {
230 	ssize_t bw;
231 	mm_segment_t old_fs = get_fs();
232 
233 	file_start_write(file);
234 	set_fs(get_ds());
235 	bw = file->f_op->write(file, buf, len, &pos);
236 	set_fs(old_fs);
237 	file_end_write(file);
238 	if (likely(bw == len))
239 		return 0;
240 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
241 			(unsigned long long)pos, len);
242 	if (bw >= 0)
243 		bw = -EIO;
244 	return bw;
245 }
246 
247 /**
248  * do_lo_send_direct_write - helper for writing data to a loop device
249  *
250  * This is the fast, non-transforming version that does not need double
251  * buffering.
252  */
253 static int do_lo_send_direct_write(struct loop_device *lo,
254 		struct bio_vec *bvec, loff_t pos, struct page *page)
255 {
256 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
257 			kmap(bvec->bv_page) + bvec->bv_offset,
258 			bvec->bv_len, pos);
259 	kunmap(bvec->bv_page);
260 	cond_resched();
261 	return bw;
262 }
263 
264 /**
265  * do_lo_send_write - helper for writing data to a loop device
266  *
267  * This is the slow, transforming version that needs to double buffer the
268  * data as it cannot do the transformations in place without having direct
269  * access to the destination pages of the backing file.
270  */
271 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
272 		loff_t pos, struct page *page)
273 {
274 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
275 			bvec->bv_offset, bvec->bv_len, pos >> 9);
276 	if (likely(!ret))
277 		return __do_lo_send_write(lo->lo_backing_file,
278 				page_address(page), bvec->bv_len,
279 				pos);
280 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
281 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
282 	if (ret > 0)
283 		ret = -EIO;
284 	return ret;
285 }
286 
287 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
288 {
289 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
290 			struct page *page);
291 	struct bio_vec *bvec;
292 	struct page *page = NULL;
293 	int i, ret = 0;
294 
295 	if (lo->transfer != transfer_none) {
296 		page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
297 		if (unlikely(!page))
298 			goto fail;
299 		kmap(page);
300 		do_lo_send = do_lo_send_write;
301 	} else {
302 		do_lo_send = do_lo_send_direct_write;
303 	}
304 
305 	bio_for_each_segment(bvec, bio, i) {
306 		ret = do_lo_send(lo, bvec, pos, page);
307 		if (ret < 0)
308 			break;
309 		pos += bvec->bv_len;
310 	}
311 	if (page) {
312 		kunmap(page);
313 		__free_page(page);
314 	}
315 out:
316 	return ret;
317 fail:
318 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
319 	ret = -ENOMEM;
320 	goto out;
321 }
322 
323 struct lo_read_data {
324 	struct loop_device *lo;
325 	struct page *page;
326 	unsigned offset;
327 	int bsize;
328 };
329 
330 static int
331 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
332 		struct splice_desc *sd)
333 {
334 	struct lo_read_data *p = sd->u.data;
335 	struct loop_device *lo = p->lo;
336 	struct page *page = buf->page;
337 	sector_t IV;
338 	int size;
339 
340 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
341 							(buf->offset >> 9);
342 	size = sd->len;
343 	if (size > p->bsize)
344 		size = p->bsize;
345 
346 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
347 		printk(KERN_ERR "loop: transfer error block %ld\n",
348 		       page->index);
349 		size = -EINVAL;
350 	}
351 
352 	flush_dcache_page(p->page);
353 
354 	if (size > 0)
355 		p->offset += size;
356 
357 	return size;
358 }
359 
360 static int
361 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
362 {
363 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
364 }
365 
366 static ssize_t
367 do_lo_receive(struct loop_device *lo,
368 	      struct bio_vec *bvec, int bsize, loff_t pos)
369 {
370 	struct lo_read_data cookie;
371 	struct splice_desc sd;
372 	struct file *file;
373 	ssize_t retval;
374 
375 	cookie.lo = lo;
376 	cookie.page = bvec->bv_page;
377 	cookie.offset = bvec->bv_offset;
378 	cookie.bsize = bsize;
379 
380 	sd.len = 0;
381 	sd.total_len = bvec->bv_len;
382 	sd.flags = 0;
383 	sd.pos = pos;
384 	sd.u.data = &cookie;
385 
386 	file = lo->lo_backing_file;
387 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
388 
389 	return retval;
390 }
391 
392 static int
393 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
394 {
395 	struct bio_vec *bvec;
396 	ssize_t s;
397 	int i;
398 
399 	bio_for_each_segment(bvec, bio, i) {
400 		s = do_lo_receive(lo, bvec, bsize, pos);
401 		if (s < 0)
402 			return s;
403 
404 		if (s != bvec->bv_len) {
405 			zero_fill_bio(bio);
406 			break;
407 		}
408 		pos += bvec->bv_len;
409 	}
410 	return 0;
411 }
412 
413 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
414 {
415 	loff_t pos;
416 	int ret;
417 
418 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
419 
420 	if (bio_rw(bio) == WRITE) {
421 		struct file *file = lo->lo_backing_file;
422 
423 		if (bio->bi_rw & REQ_FLUSH) {
424 			ret = vfs_fsync(file, 0);
425 			if (unlikely(ret && ret != -EINVAL)) {
426 				ret = -EIO;
427 				goto out;
428 			}
429 		}
430 
431 		/*
432 		 * We use punch hole to reclaim the free space used by the
433 		 * image a.k.a. discard. However we do not support discard if
434 		 * encryption is enabled, because it may give an attacker
435 		 * useful information.
436 		 */
437 		if (bio->bi_rw & REQ_DISCARD) {
438 			struct file *file = lo->lo_backing_file;
439 			int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
440 
441 			if ((!file->f_op->fallocate) ||
442 			    lo->lo_encrypt_key_size) {
443 				ret = -EOPNOTSUPP;
444 				goto out;
445 			}
446 			ret = file->f_op->fallocate(file, mode, pos,
447 						    bio->bi_size);
448 			if (unlikely(ret && ret != -EINVAL &&
449 				     ret != -EOPNOTSUPP))
450 				ret = -EIO;
451 			goto out;
452 		}
453 
454 		ret = lo_send(lo, bio, pos);
455 
456 		if ((bio->bi_rw & REQ_FUA) && !ret) {
457 			ret = vfs_fsync(file, 0);
458 			if (unlikely(ret && ret != -EINVAL))
459 				ret = -EIO;
460 		}
461 	} else
462 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
463 
464 out:
465 	return ret;
466 }
467 
468 /*
469  * Add bio to back of pending list
470  */
471 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
472 {
473 	lo->lo_bio_count++;
474 	bio_list_add(&lo->lo_bio_list, bio);
475 }
476 
477 /*
478  * Grab first pending buffer
479  */
480 static struct bio *loop_get_bio(struct loop_device *lo)
481 {
482 	lo->lo_bio_count--;
483 	return bio_list_pop(&lo->lo_bio_list);
484 }
485 
486 static void loop_make_request(struct request_queue *q, struct bio *old_bio)
487 {
488 	struct loop_device *lo = q->queuedata;
489 	int rw = bio_rw(old_bio);
490 
491 	if (rw == READA)
492 		rw = READ;
493 
494 	BUG_ON(!lo || (rw != READ && rw != WRITE));
495 
496 	spin_lock_irq(&lo->lo_lock);
497 	if (lo->lo_state != Lo_bound)
498 		goto out;
499 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
500 		goto out;
501 	if (lo->lo_bio_count >= q->nr_congestion_on)
502 		wait_event_lock_irq(lo->lo_req_wait,
503 				    lo->lo_bio_count < q->nr_congestion_off,
504 				    lo->lo_lock);
505 	loop_add_bio(lo, old_bio);
506 	wake_up(&lo->lo_event);
507 	spin_unlock_irq(&lo->lo_lock);
508 	return;
509 
510 out:
511 	spin_unlock_irq(&lo->lo_lock);
512 	bio_io_error(old_bio);
513 }
514 
515 struct switch_request {
516 	struct file *file;
517 	struct completion wait;
518 };
519 
520 static void do_loop_switch(struct loop_device *, struct switch_request *);
521 
522 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
523 {
524 	if (unlikely(!bio->bi_bdev)) {
525 		do_loop_switch(lo, bio->bi_private);
526 		bio_put(bio);
527 	} else {
528 		int ret = do_bio_filebacked(lo, bio);
529 		bio_endio(bio, ret);
530 	}
531 }
532 
533 /*
534  * worker thread that handles reads/writes to file backed loop devices,
535  * to avoid blocking in our make_request_fn. it also does loop decrypting
536  * on reads for block backed loop, as that is too heavy to do from
537  * b_end_io context where irqs may be disabled.
538  *
539  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
540  * calling kthread_stop().  Therefore once kthread_should_stop() is
541  * true, make_request will not place any more requests.  Therefore
542  * once kthread_should_stop() is true and lo_bio is NULL, we are
543  * done with the loop.
544  */
545 static int loop_thread(void *data)
546 {
547 	struct loop_device *lo = data;
548 	struct bio *bio;
549 
550 	set_user_nice(current, -20);
551 
552 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
553 
554 		wait_event_interruptible(lo->lo_event,
555 				!bio_list_empty(&lo->lo_bio_list) ||
556 				kthread_should_stop());
557 
558 		if (bio_list_empty(&lo->lo_bio_list))
559 			continue;
560 		spin_lock_irq(&lo->lo_lock);
561 		bio = loop_get_bio(lo);
562 		if (lo->lo_bio_count < lo->lo_queue->nr_congestion_off)
563 			wake_up(&lo->lo_req_wait);
564 		spin_unlock_irq(&lo->lo_lock);
565 
566 		BUG_ON(!bio);
567 		loop_handle_bio(lo, bio);
568 	}
569 
570 	return 0;
571 }
572 
573 /*
574  * loop_switch performs the hard work of switching a backing store.
575  * First it needs to flush existing IO, it does this by sending a magic
576  * BIO down the pipe. The completion of this BIO does the actual switch.
577  */
578 static int loop_switch(struct loop_device *lo, struct file *file)
579 {
580 	struct switch_request w;
581 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
582 	if (!bio)
583 		return -ENOMEM;
584 	init_completion(&w.wait);
585 	w.file = file;
586 	bio->bi_private = &w;
587 	bio->bi_bdev = NULL;
588 	loop_make_request(lo->lo_queue, bio);
589 	wait_for_completion(&w.wait);
590 	return 0;
591 }
592 
593 /*
594  * Helper to flush the IOs in loop, but keeping loop thread running
595  */
596 static int loop_flush(struct loop_device *lo)
597 {
598 	/* loop not yet configured, no running thread, nothing to flush */
599 	if (!lo->lo_thread)
600 		return 0;
601 
602 	return loop_switch(lo, NULL);
603 }
604 
605 /*
606  * Do the actual switch; called from the BIO completion routine
607  */
608 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
609 {
610 	struct file *file = p->file;
611 	struct file *old_file = lo->lo_backing_file;
612 	struct address_space *mapping;
613 
614 	/* if no new file, only flush of queued bios requested */
615 	if (!file)
616 		goto out;
617 
618 	mapping = file->f_mapping;
619 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
620 	lo->lo_backing_file = file;
621 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
622 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
623 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
624 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
625 out:
626 	complete(&p->wait);
627 }
628 
629 
630 /*
631  * loop_change_fd switched the backing store of a loopback device to
632  * a new file. This is useful for operating system installers to free up
633  * the original file and in High Availability environments to switch to
634  * an alternative location for the content in case of server meltdown.
635  * This can only work if the loop device is used read-only, and if the
636  * new backing store is the same size and type as the old backing store.
637  */
638 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
639 			  unsigned int arg)
640 {
641 	struct file	*file, *old_file;
642 	struct inode	*inode;
643 	int		error;
644 
645 	error = -ENXIO;
646 	if (lo->lo_state != Lo_bound)
647 		goto out;
648 
649 	/* the loop device has to be read-only */
650 	error = -EINVAL;
651 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
652 		goto out;
653 
654 	error = -EBADF;
655 	file = fget(arg);
656 	if (!file)
657 		goto out;
658 
659 	inode = file->f_mapping->host;
660 	old_file = lo->lo_backing_file;
661 
662 	error = -EINVAL;
663 
664 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
665 		goto out_putf;
666 
667 	/* size of the new backing store needs to be the same */
668 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
669 		goto out_putf;
670 
671 	/* and ... switch */
672 	error = loop_switch(lo, file);
673 	if (error)
674 		goto out_putf;
675 
676 	fput(old_file);
677 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
678 		ioctl_by_bdev(bdev, BLKRRPART, 0);
679 	return 0;
680 
681  out_putf:
682 	fput(file);
683  out:
684 	return error;
685 }
686 
687 static inline int is_loop_device(struct file *file)
688 {
689 	struct inode *i = file->f_mapping->host;
690 
691 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
692 }
693 
694 /* loop sysfs attributes */
695 
696 static ssize_t loop_attr_show(struct device *dev, char *page,
697 			      ssize_t (*callback)(struct loop_device *, char *))
698 {
699 	struct gendisk *disk = dev_to_disk(dev);
700 	struct loop_device *lo = disk->private_data;
701 
702 	return callback(lo, page);
703 }
704 
705 #define LOOP_ATTR_RO(_name)						\
706 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
707 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
708 				struct device_attribute *attr, char *b)	\
709 {									\
710 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
711 }									\
712 static struct device_attribute loop_attr_##_name =			\
713 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
714 
715 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
716 {
717 	ssize_t ret;
718 	char *p = NULL;
719 
720 	spin_lock_irq(&lo->lo_lock);
721 	if (lo->lo_backing_file)
722 		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
723 	spin_unlock_irq(&lo->lo_lock);
724 
725 	if (IS_ERR_OR_NULL(p))
726 		ret = PTR_ERR(p);
727 	else {
728 		ret = strlen(p);
729 		memmove(buf, p, ret);
730 		buf[ret++] = '\n';
731 		buf[ret] = 0;
732 	}
733 
734 	return ret;
735 }
736 
737 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
738 {
739 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
740 }
741 
742 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
743 {
744 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
745 }
746 
747 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
748 {
749 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
750 
751 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
752 }
753 
754 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
755 {
756 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
757 
758 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
759 }
760 
761 LOOP_ATTR_RO(backing_file);
762 LOOP_ATTR_RO(offset);
763 LOOP_ATTR_RO(sizelimit);
764 LOOP_ATTR_RO(autoclear);
765 LOOP_ATTR_RO(partscan);
766 
767 static struct attribute *loop_attrs[] = {
768 	&loop_attr_backing_file.attr,
769 	&loop_attr_offset.attr,
770 	&loop_attr_sizelimit.attr,
771 	&loop_attr_autoclear.attr,
772 	&loop_attr_partscan.attr,
773 	NULL,
774 };
775 
776 static struct attribute_group loop_attribute_group = {
777 	.name = "loop",
778 	.attrs= loop_attrs,
779 };
780 
781 static int loop_sysfs_init(struct loop_device *lo)
782 {
783 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
784 				  &loop_attribute_group);
785 }
786 
787 static void loop_sysfs_exit(struct loop_device *lo)
788 {
789 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
790 			   &loop_attribute_group);
791 }
792 
793 static void loop_config_discard(struct loop_device *lo)
794 {
795 	struct file *file = lo->lo_backing_file;
796 	struct inode *inode = file->f_mapping->host;
797 	struct request_queue *q = lo->lo_queue;
798 
799 	/*
800 	 * We use punch hole to reclaim the free space used by the
801 	 * image a.k.a. discard. However we do support discard if
802 	 * encryption is enabled, because it may give an attacker
803 	 * useful information.
804 	 */
805 	if ((!file->f_op->fallocate) ||
806 	    lo->lo_encrypt_key_size) {
807 		q->limits.discard_granularity = 0;
808 		q->limits.discard_alignment = 0;
809 		q->limits.max_discard_sectors = 0;
810 		q->limits.discard_zeroes_data = 0;
811 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
812 		return;
813 	}
814 
815 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
816 	q->limits.discard_alignment = 0;
817 	q->limits.max_discard_sectors = UINT_MAX >> 9;
818 	q->limits.discard_zeroes_data = 1;
819 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
820 }
821 
822 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
823 		       struct block_device *bdev, unsigned int arg)
824 {
825 	struct file	*file, *f;
826 	struct inode	*inode;
827 	struct address_space *mapping;
828 	unsigned lo_blocksize;
829 	int		lo_flags = 0;
830 	int		error;
831 	loff_t		size;
832 
833 	/* This is safe, since we have a reference from open(). */
834 	__module_get(THIS_MODULE);
835 
836 	error = -EBADF;
837 	file = fget(arg);
838 	if (!file)
839 		goto out;
840 
841 	error = -EBUSY;
842 	if (lo->lo_state != Lo_unbound)
843 		goto out_putf;
844 
845 	/* Avoid recursion */
846 	f = file;
847 	while (is_loop_device(f)) {
848 		struct loop_device *l;
849 
850 		if (f->f_mapping->host->i_bdev == bdev)
851 			goto out_putf;
852 
853 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
854 		if (l->lo_state == Lo_unbound) {
855 			error = -EINVAL;
856 			goto out_putf;
857 		}
858 		f = l->lo_backing_file;
859 	}
860 
861 	mapping = file->f_mapping;
862 	inode = mapping->host;
863 
864 	error = -EINVAL;
865 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
866 		goto out_putf;
867 
868 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
869 	    !file->f_op->write)
870 		lo_flags |= LO_FLAGS_READ_ONLY;
871 
872 	lo_blocksize = S_ISBLK(inode->i_mode) ?
873 		inode->i_bdev->bd_block_size : PAGE_SIZE;
874 
875 	error = -EFBIG;
876 	size = get_loop_size(lo, file);
877 	if ((loff_t)(sector_t)size != size)
878 		goto out_putf;
879 
880 	error = 0;
881 
882 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
883 
884 	lo->lo_blocksize = lo_blocksize;
885 	lo->lo_device = bdev;
886 	lo->lo_flags = lo_flags;
887 	lo->lo_backing_file = file;
888 	lo->transfer = transfer_none;
889 	lo->ioctl = NULL;
890 	lo->lo_sizelimit = 0;
891 	lo->lo_bio_count = 0;
892 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
893 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
894 
895 	bio_list_init(&lo->lo_bio_list);
896 
897 	/*
898 	 * set queue make_request_fn, and add limits based on lower level
899 	 * device
900 	 */
901 	blk_queue_make_request(lo->lo_queue, loop_make_request);
902 	lo->lo_queue->queuedata = lo;
903 
904 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
905 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
906 
907 	set_capacity(lo->lo_disk, size);
908 	bd_set_size(bdev, size << 9);
909 	loop_sysfs_init(lo);
910 	/* let user-space know about the new size */
911 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
912 
913 	set_blocksize(bdev, lo_blocksize);
914 
915 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
916 						lo->lo_number);
917 	if (IS_ERR(lo->lo_thread)) {
918 		error = PTR_ERR(lo->lo_thread);
919 		goto out_clr;
920 	}
921 	lo->lo_state = Lo_bound;
922 	wake_up_process(lo->lo_thread);
923 	if (part_shift)
924 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
925 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
926 		ioctl_by_bdev(bdev, BLKRRPART, 0);
927 
928 	/* Grab the block_device to prevent its destruction after we
929 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
930 	 */
931 	bdgrab(bdev);
932 	return 0;
933 
934 out_clr:
935 	loop_sysfs_exit(lo);
936 	lo->lo_thread = NULL;
937 	lo->lo_device = NULL;
938 	lo->lo_backing_file = NULL;
939 	lo->lo_flags = 0;
940 	set_capacity(lo->lo_disk, 0);
941 	invalidate_bdev(bdev);
942 	bd_set_size(bdev, 0);
943 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
944 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
945 	lo->lo_state = Lo_unbound;
946  out_putf:
947 	fput(file);
948  out:
949 	/* This is safe: open() is still holding a reference. */
950 	module_put(THIS_MODULE);
951 	return error;
952 }
953 
954 static int
955 loop_release_xfer(struct loop_device *lo)
956 {
957 	int err = 0;
958 	struct loop_func_table *xfer = lo->lo_encryption;
959 
960 	if (xfer) {
961 		if (xfer->release)
962 			err = xfer->release(lo);
963 		lo->transfer = NULL;
964 		lo->lo_encryption = NULL;
965 		module_put(xfer->owner);
966 	}
967 	return err;
968 }
969 
970 static int
971 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
972 	       const struct loop_info64 *i)
973 {
974 	int err = 0;
975 
976 	if (xfer) {
977 		struct module *owner = xfer->owner;
978 
979 		if (!try_module_get(owner))
980 			return -EINVAL;
981 		if (xfer->init)
982 			err = xfer->init(lo, i);
983 		if (err)
984 			module_put(owner);
985 		else
986 			lo->lo_encryption = xfer;
987 	}
988 	return err;
989 }
990 
991 static int loop_clr_fd(struct loop_device *lo)
992 {
993 	struct file *filp = lo->lo_backing_file;
994 	gfp_t gfp = lo->old_gfp_mask;
995 	struct block_device *bdev = lo->lo_device;
996 
997 	if (lo->lo_state != Lo_bound)
998 		return -ENXIO;
999 
1000 	/*
1001 	 * If we've explicitly asked to tear down the loop device,
1002 	 * and it has an elevated reference count, set it for auto-teardown when
1003 	 * the last reference goes away. This stops $!~#$@ udev from
1004 	 * preventing teardown because it decided that it needs to run blkid on
1005 	 * the loopback device whenever they appear. xfstests is notorious for
1006 	 * failing tests because blkid via udev races with a losetup
1007 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1008 	 * command to fail with EBUSY.
1009 	 */
1010 	if (lo->lo_refcnt > 1) {
1011 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1012 		mutex_unlock(&lo->lo_ctl_mutex);
1013 		return 0;
1014 	}
1015 
1016 	if (filp == NULL)
1017 		return -EINVAL;
1018 
1019 	spin_lock_irq(&lo->lo_lock);
1020 	lo->lo_state = Lo_rundown;
1021 	spin_unlock_irq(&lo->lo_lock);
1022 
1023 	kthread_stop(lo->lo_thread);
1024 
1025 	spin_lock_irq(&lo->lo_lock);
1026 	lo->lo_backing_file = NULL;
1027 	spin_unlock_irq(&lo->lo_lock);
1028 
1029 	loop_release_xfer(lo);
1030 	lo->transfer = NULL;
1031 	lo->ioctl = NULL;
1032 	lo->lo_device = NULL;
1033 	lo->lo_encryption = NULL;
1034 	lo->lo_offset = 0;
1035 	lo->lo_sizelimit = 0;
1036 	lo->lo_encrypt_key_size = 0;
1037 	lo->lo_thread = NULL;
1038 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1039 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1040 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1041 	if (bdev) {
1042 		bdput(bdev);
1043 		invalidate_bdev(bdev);
1044 	}
1045 	set_capacity(lo->lo_disk, 0);
1046 	loop_sysfs_exit(lo);
1047 	if (bdev) {
1048 		bd_set_size(bdev, 0);
1049 		/* let user-space know about this change */
1050 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1051 	}
1052 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1053 	lo->lo_state = Lo_unbound;
1054 	/* This is safe: open() is still holding a reference. */
1055 	module_put(THIS_MODULE);
1056 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1057 		ioctl_by_bdev(bdev, BLKRRPART, 0);
1058 	lo->lo_flags = 0;
1059 	if (!part_shift)
1060 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1061 	mutex_unlock(&lo->lo_ctl_mutex);
1062 	/*
1063 	 * Need not hold lo_ctl_mutex to fput backing file.
1064 	 * Calling fput holding lo_ctl_mutex triggers a circular
1065 	 * lock dependency possibility warning as fput can take
1066 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1067 	 */
1068 	fput(filp);
1069 	return 0;
1070 }
1071 
1072 static int
1073 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1074 {
1075 	int err;
1076 	struct loop_func_table *xfer;
1077 	kuid_t uid = current_uid();
1078 
1079 	if (lo->lo_encrypt_key_size &&
1080 	    !uid_eq(lo->lo_key_owner, uid) &&
1081 	    !capable(CAP_SYS_ADMIN))
1082 		return -EPERM;
1083 	if (lo->lo_state != Lo_bound)
1084 		return -ENXIO;
1085 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1086 		return -EINVAL;
1087 
1088 	err = loop_release_xfer(lo);
1089 	if (err)
1090 		return err;
1091 
1092 	if (info->lo_encrypt_type) {
1093 		unsigned int type = info->lo_encrypt_type;
1094 
1095 		if (type >= MAX_LO_CRYPT)
1096 			return -EINVAL;
1097 		xfer = xfer_funcs[type];
1098 		if (xfer == NULL)
1099 			return -EINVAL;
1100 	} else
1101 		xfer = NULL;
1102 
1103 	err = loop_init_xfer(lo, xfer, info);
1104 	if (err)
1105 		return err;
1106 
1107 	if (lo->lo_offset != info->lo_offset ||
1108 	    lo->lo_sizelimit != info->lo_sizelimit)
1109 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1110 			return -EFBIG;
1111 
1112 	loop_config_discard(lo);
1113 
1114 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1115 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1116 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1117 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1118 
1119 	if (!xfer)
1120 		xfer = &none_funcs;
1121 	lo->transfer = xfer->transfer;
1122 	lo->ioctl = xfer->ioctl;
1123 
1124 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1125 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1126 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1127 
1128 	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1129 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1130 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1131 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1132 		ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1133 	}
1134 
1135 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1136 	lo->lo_init[0] = info->lo_init[0];
1137 	lo->lo_init[1] = info->lo_init[1];
1138 	if (info->lo_encrypt_key_size) {
1139 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1140 		       info->lo_encrypt_key_size);
1141 		lo->lo_key_owner = uid;
1142 	}
1143 
1144 	return 0;
1145 }
1146 
1147 static int
1148 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1149 {
1150 	struct file *file = lo->lo_backing_file;
1151 	struct kstat stat;
1152 	int error;
1153 
1154 	if (lo->lo_state != Lo_bound)
1155 		return -ENXIO;
1156 	error = vfs_getattr(&file->f_path, &stat);
1157 	if (error)
1158 		return error;
1159 	memset(info, 0, sizeof(*info));
1160 	info->lo_number = lo->lo_number;
1161 	info->lo_device = huge_encode_dev(stat.dev);
1162 	info->lo_inode = stat.ino;
1163 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1164 	info->lo_offset = lo->lo_offset;
1165 	info->lo_sizelimit = lo->lo_sizelimit;
1166 	info->lo_flags = lo->lo_flags;
1167 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1168 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1169 	info->lo_encrypt_type =
1170 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1171 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1172 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1173 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1174 		       lo->lo_encrypt_key_size);
1175 	}
1176 	return 0;
1177 }
1178 
1179 static void
1180 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1181 {
1182 	memset(info64, 0, sizeof(*info64));
1183 	info64->lo_number = info->lo_number;
1184 	info64->lo_device = info->lo_device;
1185 	info64->lo_inode = info->lo_inode;
1186 	info64->lo_rdevice = info->lo_rdevice;
1187 	info64->lo_offset = info->lo_offset;
1188 	info64->lo_sizelimit = 0;
1189 	info64->lo_encrypt_type = info->lo_encrypt_type;
1190 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1191 	info64->lo_flags = info->lo_flags;
1192 	info64->lo_init[0] = info->lo_init[0];
1193 	info64->lo_init[1] = info->lo_init[1];
1194 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1195 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1196 	else
1197 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1198 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1199 }
1200 
1201 static int
1202 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1203 {
1204 	memset(info, 0, sizeof(*info));
1205 	info->lo_number = info64->lo_number;
1206 	info->lo_device = info64->lo_device;
1207 	info->lo_inode = info64->lo_inode;
1208 	info->lo_rdevice = info64->lo_rdevice;
1209 	info->lo_offset = info64->lo_offset;
1210 	info->lo_encrypt_type = info64->lo_encrypt_type;
1211 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1212 	info->lo_flags = info64->lo_flags;
1213 	info->lo_init[0] = info64->lo_init[0];
1214 	info->lo_init[1] = info64->lo_init[1];
1215 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1216 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1217 	else
1218 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1219 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1220 
1221 	/* error in case values were truncated */
1222 	if (info->lo_device != info64->lo_device ||
1223 	    info->lo_rdevice != info64->lo_rdevice ||
1224 	    info->lo_inode != info64->lo_inode ||
1225 	    info->lo_offset != info64->lo_offset)
1226 		return -EOVERFLOW;
1227 
1228 	return 0;
1229 }
1230 
1231 static int
1232 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1233 {
1234 	struct loop_info info;
1235 	struct loop_info64 info64;
1236 
1237 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1238 		return -EFAULT;
1239 	loop_info64_from_old(&info, &info64);
1240 	return loop_set_status(lo, &info64);
1241 }
1242 
1243 static int
1244 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1245 {
1246 	struct loop_info64 info64;
1247 
1248 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1249 		return -EFAULT;
1250 	return loop_set_status(lo, &info64);
1251 }
1252 
1253 static int
1254 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1255 	struct loop_info info;
1256 	struct loop_info64 info64;
1257 	int err = 0;
1258 
1259 	if (!arg)
1260 		err = -EINVAL;
1261 	if (!err)
1262 		err = loop_get_status(lo, &info64);
1263 	if (!err)
1264 		err = loop_info64_to_old(&info64, &info);
1265 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1266 		err = -EFAULT;
1267 
1268 	return err;
1269 }
1270 
1271 static int
1272 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1273 	struct loop_info64 info64;
1274 	int err = 0;
1275 
1276 	if (!arg)
1277 		err = -EINVAL;
1278 	if (!err)
1279 		err = loop_get_status(lo, &info64);
1280 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1281 		err = -EFAULT;
1282 
1283 	return err;
1284 }
1285 
1286 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1287 {
1288 	if (unlikely(lo->lo_state != Lo_bound))
1289 		return -ENXIO;
1290 
1291 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1292 }
1293 
1294 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1295 	unsigned int cmd, unsigned long arg)
1296 {
1297 	struct loop_device *lo = bdev->bd_disk->private_data;
1298 	int err;
1299 
1300 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1301 	switch (cmd) {
1302 	case LOOP_SET_FD:
1303 		err = loop_set_fd(lo, mode, bdev, arg);
1304 		break;
1305 	case LOOP_CHANGE_FD:
1306 		err = loop_change_fd(lo, bdev, arg);
1307 		break;
1308 	case LOOP_CLR_FD:
1309 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1310 		err = loop_clr_fd(lo);
1311 		if (!err)
1312 			goto out_unlocked;
1313 		break;
1314 	case LOOP_SET_STATUS:
1315 		err = -EPERM;
1316 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1317 			err = loop_set_status_old(lo,
1318 					(struct loop_info __user *)arg);
1319 		break;
1320 	case LOOP_GET_STATUS:
1321 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1322 		break;
1323 	case LOOP_SET_STATUS64:
1324 		err = -EPERM;
1325 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1326 			err = loop_set_status64(lo,
1327 					(struct loop_info64 __user *) arg);
1328 		break;
1329 	case LOOP_GET_STATUS64:
1330 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1331 		break;
1332 	case LOOP_SET_CAPACITY:
1333 		err = -EPERM;
1334 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1335 			err = loop_set_capacity(lo, bdev);
1336 		break;
1337 	default:
1338 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1339 	}
1340 	mutex_unlock(&lo->lo_ctl_mutex);
1341 
1342 out_unlocked:
1343 	return err;
1344 }
1345 
1346 #ifdef CONFIG_COMPAT
1347 struct compat_loop_info {
1348 	compat_int_t	lo_number;      /* ioctl r/o */
1349 	compat_dev_t	lo_device;      /* ioctl r/o */
1350 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1351 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1352 	compat_int_t	lo_offset;
1353 	compat_int_t	lo_encrypt_type;
1354 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1355 	compat_int_t	lo_flags;       /* ioctl r/o */
1356 	char		lo_name[LO_NAME_SIZE];
1357 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1358 	compat_ulong_t	lo_init[2];
1359 	char		reserved[4];
1360 };
1361 
1362 /*
1363  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1364  * - noinlined to reduce stack space usage in main part of driver
1365  */
1366 static noinline int
1367 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1368 			struct loop_info64 *info64)
1369 {
1370 	struct compat_loop_info info;
1371 
1372 	if (copy_from_user(&info, arg, sizeof(info)))
1373 		return -EFAULT;
1374 
1375 	memset(info64, 0, sizeof(*info64));
1376 	info64->lo_number = info.lo_number;
1377 	info64->lo_device = info.lo_device;
1378 	info64->lo_inode = info.lo_inode;
1379 	info64->lo_rdevice = info.lo_rdevice;
1380 	info64->lo_offset = info.lo_offset;
1381 	info64->lo_sizelimit = 0;
1382 	info64->lo_encrypt_type = info.lo_encrypt_type;
1383 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1384 	info64->lo_flags = info.lo_flags;
1385 	info64->lo_init[0] = info.lo_init[0];
1386 	info64->lo_init[1] = info.lo_init[1];
1387 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1388 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1389 	else
1390 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1391 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1392 	return 0;
1393 }
1394 
1395 /*
1396  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1397  * - noinlined to reduce stack space usage in main part of driver
1398  */
1399 static noinline int
1400 loop_info64_to_compat(const struct loop_info64 *info64,
1401 		      struct compat_loop_info __user *arg)
1402 {
1403 	struct compat_loop_info info;
1404 
1405 	memset(&info, 0, sizeof(info));
1406 	info.lo_number = info64->lo_number;
1407 	info.lo_device = info64->lo_device;
1408 	info.lo_inode = info64->lo_inode;
1409 	info.lo_rdevice = info64->lo_rdevice;
1410 	info.lo_offset = info64->lo_offset;
1411 	info.lo_encrypt_type = info64->lo_encrypt_type;
1412 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1413 	info.lo_flags = info64->lo_flags;
1414 	info.lo_init[0] = info64->lo_init[0];
1415 	info.lo_init[1] = info64->lo_init[1];
1416 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1417 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1418 	else
1419 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1420 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1421 
1422 	/* error in case values were truncated */
1423 	if (info.lo_device != info64->lo_device ||
1424 	    info.lo_rdevice != info64->lo_rdevice ||
1425 	    info.lo_inode != info64->lo_inode ||
1426 	    info.lo_offset != info64->lo_offset ||
1427 	    info.lo_init[0] != info64->lo_init[0] ||
1428 	    info.lo_init[1] != info64->lo_init[1])
1429 		return -EOVERFLOW;
1430 
1431 	if (copy_to_user(arg, &info, sizeof(info)))
1432 		return -EFAULT;
1433 	return 0;
1434 }
1435 
1436 static int
1437 loop_set_status_compat(struct loop_device *lo,
1438 		       const struct compat_loop_info __user *arg)
1439 {
1440 	struct loop_info64 info64;
1441 	int ret;
1442 
1443 	ret = loop_info64_from_compat(arg, &info64);
1444 	if (ret < 0)
1445 		return ret;
1446 	return loop_set_status(lo, &info64);
1447 }
1448 
1449 static int
1450 loop_get_status_compat(struct loop_device *lo,
1451 		       struct compat_loop_info __user *arg)
1452 {
1453 	struct loop_info64 info64;
1454 	int err = 0;
1455 
1456 	if (!arg)
1457 		err = -EINVAL;
1458 	if (!err)
1459 		err = loop_get_status(lo, &info64);
1460 	if (!err)
1461 		err = loop_info64_to_compat(&info64, arg);
1462 	return err;
1463 }
1464 
1465 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1466 			   unsigned int cmd, unsigned long arg)
1467 {
1468 	struct loop_device *lo = bdev->bd_disk->private_data;
1469 	int err;
1470 
1471 	switch(cmd) {
1472 	case LOOP_SET_STATUS:
1473 		mutex_lock(&lo->lo_ctl_mutex);
1474 		err = loop_set_status_compat(
1475 			lo, (const struct compat_loop_info __user *) arg);
1476 		mutex_unlock(&lo->lo_ctl_mutex);
1477 		break;
1478 	case LOOP_GET_STATUS:
1479 		mutex_lock(&lo->lo_ctl_mutex);
1480 		err = loop_get_status_compat(
1481 			lo, (struct compat_loop_info __user *) arg);
1482 		mutex_unlock(&lo->lo_ctl_mutex);
1483 		break;
1484 	case LOOP_SET_CAPACITY:
1485 	case LOOP_CLR_FD:
1486 	case LOOP_GET_STATUS64:
1487 	case LOOP_SET_STATUS64:
1488 		arg = (unsigned long) compat_ptr(arg);
1489 	case LOOP_SET_FD:
1490 	case LOOP_CHANGE_FD:
1491 		err = lo_ioctl(bdev, mode, cmd, arg);
1492 		break;
1493 	default:
1494 		err = -ENOIOCTLCMD;
1495 		break;
1496 	}
1497 	return err;
1498 }
1499 #endif
1500 
1501 static int lo_open(struct block_device *bdev, fmode_t mode)
1502 {
1503 	struct loop_device *lo;
1504 	int err = 0;
1505 
1506 	mutex_lock(&loop_index_mutex);
1507 	lo = bdev->bd_disk->private_data;
1508 	if (!lo) {
1509 		err = -ENXIO;
1510 		goto out;
1511 	}
1512 
1513 	mutex_lock(&lo->lo_ctl_mutex);
1514 	lo->lo_refcnt++;
1515 	mutex_unlock(&lo->lo_ctl_mutex);
1516 out:
1517 	mutex_unlock(&loop_index_mutex);
1518 	return err;
1519 }
1520 
1521 static void lo_release(struct gendisk *disk, fmode_t mode)
1522 {
1523 	struct loop_device *lo = disk->private_data;
1524 	int err;
1525 
1526 	mutex_lock(&lo->lo_ctl_mutex);
1527 
1528 	if (--lo->lo_refcnt)
1529 		goto out;
1530 
1531 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1532 		/*
1533 		 * In autoclear mode, stop the loop thread
1534 		 * and remove configuration after last close.
1535 		 */
1536 		err = loop_clr_fd(lo);
1537 		if (!err)
1538 			return;
1539 	} else {
1540 		/*
1541 		 * Otherwise keep thread (if running) and config,
1542 		 * but flush possible ongoing bios in thread.
1543 		 */
1544 		loop_flush(lo);
1545 	}
1546 
1547 out:
1548 	mutex_unlock(&lo->lo_ctl_mutex);
1549 }
1550 
1551 static const struct block_device_operations lo_fops = {
1552 	.owner =	THIS_MODULE,
1553 	.open =		lo_open,
1554 	.release =	lo_release,
1555 	.ioctl =	lo_ioctl,
1556 #ifdef CONFIG_COMPAT
1557 	.compat_ioctl =	lo_compat_ioctl,
1558 #endif
1559 };
1560 
1561 /*
1562  * And now the modules code and kernel interface.
1563  */
1564 static int max_loop;
1565 module_param(max_loop, int, S_IRUGO);
1566 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1567 module_param(max_part, int, S_IRUGO);
1568 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1569 MODULE_LICENSE("GPL");
1570 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1571 
1572 int loop_register_transfer(struct loop_func_table *funcs)
1573 {
1574 	unsigned int n = funcs->number;
1575 
1576 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1577 		return -EINVAL;
1578 	xfer_funcs[n] = funcs;
1579 	return 0;
1580 }
1581 
1582 static int unregister_transfer_cb(int id, void *ptr, void *data)
1583 {
1584 	struct loop_device *lo = ptr;
1585 	struct loop_func_table *xfer = data;
1586 
1587 	mutex_lock(&lo->lo_ctl_mutex);
1588 	if (lo->lo_encryption == xfer)
1589 		loop_release_xfer(lo);
1590 	mutex_unlock(&lo->lo_ctl_mutex);
1591 	return 0;
1592 }
1593 
1594 int loop_unregister_transfer(int number)
1595 {
1596 	unsigned int n = number;
1597 	struct loop_func_table *xfer;
1598 
1599 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1600 		return -EINVAL;
1601 
1602 	xfer_funcs[n] = NULL;
1603 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1604 	return 0;
1605 }
1606 
1607 EXPORT_SYMBOL(loop_register_transfer);
1608 EXPORT_SYMBOL(loop_unregister_transfer);
1609 
1610 static int loop_add(struct loop_device **l, int i)
1611 {
1612 	struct loop_device *lo;
1613 	struct gendisk *disk;
1614 	int err;
1615 
1616 	err = -ENOMEM;
1617 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1618 	if (!lo)
1619 		goto out;
1620 
1621 	/* allocate id, if @id >= 0, we're requesting that specific id */
1622 	if (i >= 0) {
1623 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1624 		if (err == -ENOSPC)
1625 			err = -EEXIST;
1626 	} else {
1627 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1628 	}
1629 	if (err < 0)
1630 		goto out_free_dev;
1631 	i = err;
1632 
1633 	err = -ENOMEM;
1634 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1635 	if (!lo->lo_queue)
1636 		goto out_free_dev;
1637 
1638 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1639 	if (!disk)
1640 		goto out_free_queue;
1641 
1642 	/*
1643 	 * Disable partition scanning by default. The in-kernel partition
1644 	 * scanning can be requested individually per-device during its
1645 	 * setup. Userspace can always add and remove partitions from all
1646 	 * devices. The needed partition minors are allocated from the
1647 	 * extended minor space, the main loop device numbers will continue
1648 	 * to match the loop minors, regardless of the number of partitions
1649 	 * used.
1650 	 *
1651 	 * If max_part is given, partition scanning is globally enabled for
1652 	 * all loop devices. The minors for the main loop devices will be
1653 	 * multiples of max_part.
1654 	 *
1655 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1656 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1657 	 * complicated, are too static, inflexible and may surprise
1658 	 * userspace tools. Parameters like this in general should be avoided.
1659 	 */
1660 	if (!part_shift)
1661 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1662 	disk->flags |= GENHD_FL_EXT_DEVT;
1663 	mutex_init(&lo->lo_ctl_mutex);
1664 	lo->lo_number		= i;
1665 	lo->lo_thread		= NULL;
1666 	init_waitqueue_head(&lo->lo_event);
1667 	init_waitqueue_head(&lo->lo_req_wait);
1668 	spin_lock_init(&lo->lo_lock);
1669 	disk->major		= LOOP_MAJOR;
1670 	disk->first_minor	= i << part_shift;
1671 	disk->fops		= &lo_fops;
1672 	disk->private_data	= lo;
1673 	disk->queue		= lo->lo_queue;
1674 	sprintf(disk->disk_name, "loop%d", i);
1675 	add_disk(disk);
1676 	*l = lo;
1677 	return lo->lo_number;
1678 
1679 out_free_queue:
1680 	blk_cleanup_queue(lo->lo_queue);
1681 out_free_dev:
1682 	kfree(lo);
1683 out:
1684 	return err;
1685 }
1686 
1687 static void loop_remove(struct loop_device *lo)
1688 {
1689 	del_gendisk(lo->lo_disk);
1690 	blk_cleanup_queue(lo->lo_queue);
1691 	put_disk(lo->lo_disk);
1692 	kfree(lo);
1693 }
1694 
1695 static int find_free_cb(int id, void *ptr, void *data)
1696 {
1697 	struct loop_device *lo = ptr;
1698 	struct loop_device **l = data;
1699 
1700 	if (lo->lo_state == Lo_unbound) {
1701 		*l = lo;
1702 		return 1;
1703 	}
1704 	return 0;
1705 }
1706 
1707 static int loop_lookup(struct loop_device **l, int i)
1708 {
1709 	struct loop_device *lo;
1710 	int ret = -ENODEV;
1711 
1712 	if (i < 0) {
1713 		int err;
1714 
1715 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1716 		if (err == 1) {
1717 			*l = lo;
1718 			ret = lo->lo_number;
1719 		}
1720 		goto out;
1721 	}
1722 
1723 	/* lookup and return a specific i */
1724 	lo = idr_find(&loop_index_idr, i);
1725 	if (lo) {
1726 		*l = lo;
1727 		ret = lo->lo_number;
1728 	}
1729 out:
1730 	return ret;
1731 }
1732 
1733 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1734 {
1735 	struct loop_device *lo;
1736 	struct kobject *kobj;
1737 	int err;
1738 
1739 	mutex_lock(&loop_index_mutex);
1740 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1741 	if (err < 0)
1742 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1743 	if (err < 0)
1744 		kobj = ERR_PTR(err);
1745 	else
1746 		kobj = get_disk(lo->lo_disk);
1747 	mutex_unlock(&loop_index_mutex);
1748 
1749 	*part = 0;
1750 	return kobj;
1751 }
1752 
1753 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1754 			       unsigned long parm)
1755 {
1756 	struct loop_device *lo;
1757 	int ret = -ENOSYS;
1758 
1759 	mutex_lock(&loop_index_mutex);
1760 	switch (cmd) {
1761 	case LOOP_CTL_ADD:
1762 		ret = loop_lookup(&lo, parm);
1763 		if (ret >= 0) {
1764 			ret = -EEXIST;
1765 			break;
1766 		}
1767 		ret = loop_add(&lo, parm);
1768 		break;
1769 	case LOOP_CTL_REMOVE:
1770 		ret = loop_lookup(&lo, parm);
1771 		if (ret < 0)
1772 			break;
1773 		mutex_lock(&lo->lo_ctl_mutex);
1774 		if (lo->lo_state != Lo_unbound) {
1775 			ret = -EBUSY;
1776 			mutex_unlock(&lo->lo_ctl_mutex);
1777 			break;
1778 		}
1779 		if (lo->lo_refcnt > 0) {
1780 			ret = -EBUSY;
1781 			mutex_unlock(&lo->lo_ctl_mutex);
1782 			break;
1783 		}
1784 		lo->lo_disk->private_data = NULL;
1785 		mutex_unlock(&lo->lo_ctl_mutex);
1786 		idr_remove(&loop_index_idr, lo->lo_number);
1787 		loop_remove(lo);
1788 		break;
1789 	case LOOP_CTL_GET_FREE:
1790 		ret = loop_lookup(&lo, -1);
1791 		if (ret >= 0)
1792 			break;
1793 		ret = loop_add(&lo, -1);
1794 	}
1795 	mutex_unlock(&loop_index_mutex);
1796 
1797 	return ret;
1798 }
1799 
1800 static const struct file_operations loop_ctl_fops = {
1801 	.open		= nonseekable_open,
1802 	.unlocked_ioctl	= loop_control_ioctl,
1803 	.compat_ioctl	= loop_control_ioctl,
1804 	.owner		= THIS_MODULE,
1805 	.llseek		= noop_llseek,
1806 };
1807 
1808 static struct miscdevice loop_misc = {
1809 	.minor		= LOOP_CTRL_MINOR,
1810 	.name		= "loop-control",
1811 	.fops		= &loop_ctl_fops,
1812 };
1813 
1814 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1815 MODULE_ALIAS("devname:loop-control");
1816 
1817 static int __init loop_init(void)
1818 {
1819 	int i, nr;
1820 	unsigned long range;
1821 	struct loop_device *lo;
1822 	int err;
1823 
1824 	err = misc_register(&loop_misc);
1825 	if (err < 0)
1826 		return err;
1827 
1828 	part_shift = 0;
1829 	if (max_part > 0) {
1830 		part_shift = fls(max_part);
1831 
1832 		/*
1833 		 * Adjust max_part according to part_shift as it is exported
1834 		 * to user space so that user can decide correct minor number
1835 		 * if [s]he want to create more devices.
1836 		 *
1837 		 * Note that -1 is required because partition 0 is reserved
1838 		 * for the whole disk.
1839 		 */
1840 		max_part = (1UL << part_shift) - 1;
1841 	}
1842 
1843 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1844 		err = -EINVAL;
1845 		goto misc_out;
1846 	}
1847 
1848 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1849 		err = -EINVAL;
1850 		goto misc_out;
1851 	}
1852 
1853 	/*
1854 	 * If max_loop is specified, create that many devices upfront.
1855 	 * This also becomes a hard limit. If max_loop is not specified,
1856 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1857 	 * init time. Loop devices can be requested on-demand with the
1858 	 * /dev/loop-control interface, or be instantiated by accessing
1859 	 * a 'dead' device node.
1860 	 */
1861 	if (max_loop) {
1862 		nr = max_loop;
1863 		range = max_loop << part_shift;
1864 	} else {
1865 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1866 		range = 1UL << MINORBITS;
1867 	}
1868 
1869 	if (register_blkdev(LOOP_MAJOR, "loop")) {
1870 		err = -EIO;
1871 		goto misc_out;
1872 	}
1873 
1874 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1875 				  THIS_MODULE, loop_probe, NULL, NULL);
1876 
1877 	/* pre-create number of devices given by config or max_loop */
1878 	mutex_lock(&loop_index_mutex);
1879 	for (i = 0; i < nr; i++)
1880 		loop_add(&lo, i);
1881 	mutex_unlock(&loop_index_mutex);
1882 
1883 	printk(KERN_INFO "loop: module loaded\n");
1884 	return 0;
1885 
1886 misc_out:
1887 	misc_deregister(&loop_misc);
1888 	return err;
1889 }
1890 
1891 static int loop_exit_cb(int id, void *ptr, void *data)
1892 {
1893 	struct loop_device *lo = ptr;
1894 
1895 	loop_remove(lo);
1896 	return 0;
1897 }
1898 
1899 static void __exit loop_exit(void)
1900 {
1901 	unsigned long range;
1902 
1903 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1904 
1905 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1906 	idr_destroy(&loop_index_idr);
1907 
1908 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1909 	unregister_blkdev(LOOP_MAJOR, "loop");
1910 
1911 	misc_deregister(&loop_misc);
1912 }
1913 
1914 module_init(loop_init);
1915 module_exit(loop_exit);
1916 
1917 #ifndef MODULE
1918 static int __init max_loop_setup(char *str)
1919 {
1920 	max_loop = simple_strtol(str, NULL, 0);
1921 	return 1;
1922 }
1923 
1924 __setup("max_loop=", max_loop_setup);
1925 #endif
1926