1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/pagemap.h> 57 #include <linux/file.h> 58 #include <linux/stat.h> 59 #include <linux/errno.h> 60 #include <linux/major.h> 61 #include <linux/wait.h> 62 #include <linux/blkdev.h> 63 #include <linux/blkpg.h> 64 #include <linux/init.h> 65 #include <linux/swap.h> 66 #include <linux/slab.h> 67 #include <linux/compat.h> 68 #include <linux/suspend.h> 69 #include <linux/freezer.h> 70 #include <linux/mutex.h> 71 #include <linux/writeback.h> 72 #include <linux/completion.h> 73 #include <linux/highmem.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include <linux/ioprio.h> 80 #include <linux/blk-cgroup.h> 81 #include <linux/sched/mm.h> 82 83 #include "loop.h" 84 85 #include <linux/uaccess.h> 86 87 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 88 89 static DEFINE_IDR(loop_index_idr); 90 static DEFINE_MUTEX(loop_ctl_mutex); 91 92 static int max_part; 93 static int part_shift; 94 95 static int transfer_xor(struct loop_device *lo, int cmd, 96 struct page *raw_page, unsigned raw_off, 97 struct page *loop_page, unsigned loop_off, 98 int size, sector_t real_block) 99 { 100 char *raw_buf = kmap_atomic(raw_page) + raw_off; 101 char *loop_buf = kmap_atomic(loop_page) + loop_off; 102 char *in, *out, *key; 103 int i, keysize; 104 105 if (cmd == READ) { 106 in = raw_buf; 107 out = loop_buf; 108 } else { 109 in = loop_buf; 110 out = raw_buf; 111 } 112 113 key = lo->lo_encrypt_key; 114 keysize = lo->lo_encrypt_key_size; 115 for (i = 0; i < size; i++) 116 *out++ = *in++ ^ key[(i & 511) % keysize]; 117 118 kunmap_atomic(loop_buf); 119 kunmap_atomic(raw_buf); 120 cond_resched(); 121 return 0; 122 } 123 124 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 125 { 126 if (unlikely(info->lo_encrypt_key_size <= 0)) 127 return -EINVAL; 128 return 0; 129 } 130 131 static struct loop_func_table none_funcs = { 132 .number = LO_CRYPT_NONE, 133 }; 134 135 static struct loop_func_table xor_funcs = { 136 .number = LO_CRYPT_XOR, 137 .transfer = transfer_xor, 138 .init = xor_init 139 }; 140 141 /* xfer_funcs[0] is special - its release function is never called */ 142 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 143 &none_funcs, 144 &xor_funcs 145 }; 146 147 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 148 { 149 loff_t loopsize; 150 151 /* Compute loopsize in bytes */ 152 loopsize = i_size_read(file->f_mapping->host); 153 if (offset > 0) 154 loopsize -= offset; 155 /* offset is beyond i_size, weird but possible */ 156 if (loopsize < 0) 157 return 0; 158 159 if (sizelimit > 0 && sizelimit < loopsize) 160 loopsize = sizelimit; 161 /* 162 * Unfortunately, if we want to do I/O on the device, 163 * the number of 512-byte sectors has to fit into a sector_t. 164 */ 165 return loopsize >> 9; 166 } 167 168 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 169 { 170 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 171 } 172 173 static void __loop_update_dio(struct loop_device *lo, bool dio) 174 { 175 struct file *file = lo->lo_backing_file; 176 struct address_space *mapping = file->f_mapping; 177 struct inode *inode = mapping->host; 178 unsigned short sb_bsize = 0; 179 unsigned dio_align = 0; 180 bool use_dio; 181 182 if (inode->i_sb->s_bdev) { 183 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 184 dio_align = sb_bsize - 1; 185 } 186 187 /* 188 * We support direct I/O only if lo_offset is aligned with the 189 * logical I/O size of backing device, and the logical block 190 * size of loop is bigger than the backing device's and the loop 191 * needn't transform transfer. 192 * 193 * TODO: the above condition may be loosed in the future, and 194 * direct I/O may be switched runtime at that time because most 195 * of requests in sane applications should be PAGE_SIZE aligned 196 */ 197 if (dio) { 198 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 199 !(lo->lo_offset & dio_align) && 200 mapping->a_ops->direct_IO && 201 !lo->transfer) 202 use_dio = true; 203 else 204 use_dio = false; 205 } else { 206 use_dio = false; 207 } 208 209 if (lo->use_dio == use_dio) 210 return; 211 212 /* flush dirty pages before changing direct IO */ 213 vfs_fsync(file, 0); 214 215 /* 216 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 217 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 218 * will get updated by ioctl(LOOP_GET_STATUS) 219 */ 220 if (lo->lo_state == Lo_bound) 221 blk_mq_freeze_queue(lo->lo_queue); 222 lo->use_dio = use_dio; 223 if (use_dio) { 224 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 225 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 226 } else { 227 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 228 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 229 } 230 if (lo->lo_state == Lo_bound) 231 blk_mq_unfreeze_queue(lo->lo_queue); 232 } 233 234 /** 235 * loop_validate_block_size() - validates the passed in block size 236 * @bsize: size to validate 237 */ 238 static int 239 loop_validate_block_size(unsigned short bsize) 240 { 241 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 242 return -EINVAL; 243 244 return 0; 245 } 246 247 /** 248 * loop_set_size() - sets device size and notifies userspace 249 * @lo: struct loop_device to set the size for 250 * @size: new size of the loop device 251 * 252 * Callers must validate that the size passed into this function fits into 253 * a sector_t, eg using loop_validate_size() 254 */ 255 static void loop_set_size(struct loop_device *lo, loff_t size) 256 { 257 if (!set_capacity_and_notify(lo->lo_disk, size)) 258 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 259 } 260 261 static inline int 262 lo_do_transfer(struct loop_device *lo, int cmd, 263 struct page *rpage, unsigned roffs, 264 struct page *lpage, unsigned loffs, 265 int size, sector_t rblock) 266 { 267 int ret; 268 269 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 270 if (likely(!ret)) 271 return 0; 272 273 printk_ratelimited(KERN_ERR 274 "loop: Transfer error at byte offset %llu, length %i.\n", 275 (unsigned long long)rblock << 9, size); 276 return ret; 277 } 278 279 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 280 { 281 struct iov_iter i; 282 ssize_t bw; 283 284 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len); 285 286 file_start_write(file); 287 bw = vfs_iter_write(file, &i, ppos, 0); 288 file_end_write(file); 289 290 if (likely(bw == bvec->bv_len)) 291 return 0; 292 293 printk_ratelimited(KERN_ERR 294 "loop: Write error at byte offset %llu, length %i.\n", 295 (unsigned long long)*ppos, bvec->bv_len); 296 if (bw >= 0) 297 bw = -EIO; 298 return bw; 299 } 300 301 static int lo_write_simple(struct loop_device *lo, struct request *rq, 302 loff_t pos) 303 { 304 struct bio_vec bvec; 305 struct req_iterator iter; 306 int ret = 0; 307 308 rq_for_each_segment(bvec, rq, iter) { 309 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 310 if (ret < 0) 311 break; 312 cond_resched(); 313 } 314 315 return ret; 316 } 317 318 /* 319 * This is the slow, transforming version that needs to double buffer the 320 * data as it cannot do the transformations in place without having direct 321 * access to the destination pages of the backing file. 322 */ 323 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 324 loff_t pos) 325 { 326 struct bio_vec bvec, b; 327 struct req_iterator iter; 328 struct page *page; 329 int ret = 0; 330 331 page = alloc_page(GFP_NOIO); 332 if (unlikely(!page)) 333 return -ENOMEM; 334 335 rq_for_each_segment(bvec, rq, iter) { 336 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 337 bvec.bv_offset, bvec.bv_len, pos >> 9); 338 if (unlikely(ret)) 339 break; 340 341 b.bv_page = page; 342 b.bv_offset = 0; 343 b.bv_len = bvec.bv_len; 344 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 345 if (ret < 0) 346 break; 347 } 348 349 __free_page(page); 350 return ret; 351 } 352 353 static int lo_read_simple(struct loop_device *lo, struct request *rq, 354 loff_t pos) 355 { 356 struct bio_vec bvec; 357 struct req_iterator iter; 358 struct iov_iter i; 359 ssize_t len; 360 361 rq_for_each_segment(bvec, rq, iter) { 362 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len); 363 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 364 if (len < 0) 365 return len; 366 367 flush_dcache_page(bvec.bv_page); 368 369 if (len != bvec.bv_len) { 370 struct bio *bio; 371 372 __rq_for_each_bio(bio, rq) 373 zero_fill_bio(bio); 374 break; 375 } 376 cond_resched(); 377 } 378 379 return 0; 380 } 381 382 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 383 loff_t pos) 384 { 385 struct bio_vec bvec, b; 386 struct req_iterator iter; 387 struct iov_iter i; 388 struct page *page; 389 ssize_t len; 390 int ret = 0; 391 392 page = alloc_page(GFP_NOIO); 393 if (unlikely(!page)) 394 return -ENOMEM; 395 396 rq_for_each_segment(bvec, rq, iter) { 397 loff_t offset = pos; 398 399 b.bv_page = page; 400 b.bv_offset = 0; 401 b.bv_len = bvec.bv_len; 402 403 iov_iter_bvec(&i, READ, &b, 1, b.bv_len); 404 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 405 if (len < 0) { 406 ret = len; 407 goto out_free_page; 408 } 409 410 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 411 bvec.bv_offset, len, offset >> 9); 412 if (ret) 413 goto out_free_page; 414 415 flush_dcache_page(bvec.bv_page); 416 417 if (len != bvec.bv_len) { 418 struct bio *bio; 419 420 __rq_for_each_bio(bio, rq) 421 zero_fill_bio(bio); 422 break; 423 } 424 } 425 426 ret = 0; 427 out_free_page: 428 __free_page(page); 429 return ret; 430 } 431 432 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 433 int mode) 434 { 435 /* 436 * We use fallocate to manipulate the space mappings used by the image 437 * a.k.a. discard/zerorange. However we do not support this if 438 * encryption is enabled, because it may give an attacker useful 439 * information. 440 */ 441 struct file *file = lo->lo_backing_file; 442 struct request_queue *q = lo->lo_queue; 443 int ret; 444 445 mode |= FALLOC_FL_KEEP_SIZE; 446 447 if (!blk_queue_discard(q)) { 448 ret = -EOPNOTSUPP; 449 goto out; 450 } 451 452 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 453 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 454 ret = -EIO; 455 out: 456 return ret; 457 } 458 459 static int lo_req_flush(struct loop_device *lo, struct request *rq) 460 { 461 struct file *file = lo->lo_backing_file; 462 int ret = vfs_fsync(file, 0); 463 if (unlikely(ret && ret != -EINVAL)) 464 ret = -EIO; 465 466 return ret; 467 } 468 469 static void lo_complete_rq(struct request *rq) 470 { 471 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 472 blk_status_t ret = BLK_STS_OK; 473 474 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 475 req_op(rq) != REQ_OP_READ) { 476 if (cmd->ret < 0) 477 ret = errno_to_blk_status(cmd->ret); 478 goto end_io; 479 } 480 481 /* 482 * Short READ - if we got some data, advance our request and 483 * retry it. If we got no data, end the rest with EIO. 484 */ 485 if (cmd->ret) { 486 blk_update_request(rq, BLK_STS_OK, cmd->ret); 487 cmd->ret = 0; 488 blk_mq_requeue_request(rq, true); 489 } else { 490 if (cmd->use_aio) { 491 struct bio *bio = rq->bio; 492 493 while (bio) { 494 zero_fill_bio(bio); 495 bio = bio->bi_next; 496 } 497 } 498 ret = BLK_STS_IOERR; 499 end_io: 500 blk_mq_end_request(rq, ret); 501 } 502 } 503 504 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 505 { 506 struct request *rq = blk_mq_rq_from_pdu(cmd); 507 508 if (!atomic_dec_and_test(&cmd->ref)) 509 return; 510 kfree(cmd->bvec); 511 cmd->bvec = NULL; 512 if (likely(!blk_should_fake_timeout(rq->q))) 513 blk_mq_complete_request(rq); 514 } 515 516 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 517 { 518 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 519 520 cmd->ret = ret; 521 lo_rw_aio_do_completion(cmd); 522 } 523 524 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 525 loff_t pos, bool rw) 526 { 527 struct iov_iter iter; 528 struct req_iterator rq_iter; 529 struct bio_vec *bvec; 530 struct request *rq = blk_mq_rq_from_pdu(cmd); 531 struct bio *bio = rq->bio; 532 struct file *file = lo->lo_backing_file; 533 struct bio_vec tmp; 534 unsigned int offset; 535 int nr_bvec = 0; 536 int ret; 537 538 rq_for_each_bvec(tmp, rq, rq_iter) 539 nr_bvec++; 540 541 if (rq->bio != rq->biotail) { 542 543 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 544 GFP_NOIO); 545 if (!bvec) 546 return -EIO; 547 cmd->bvec = bvec; 548 549 /* 550 * The bios of the request may be started from the middle of 551 * the 'bvec' because of bio splitting, so we can't directly 552 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 553 * API will take care of all details for us. 554 */ 555 rq_for_each_bvec(tmp, rq, rq_iter) { 556 *bvec = tmp; 557 bvec++; 558 } 559 bvec = cmd->bvec; 560 offset = 0; 561 } else { 562 /* 563 * Same here, this bio may be started from the middle of the 564 * 'bvec' because of bio splitting, so offset from the bvec 565 * must be passed to iov iterator 566 */ 567 offset = bio->bi_iter.bi_bvec_done; 568 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 569 } 570 atomic_set(&cmd->ref, 2); 571 572 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 573 iter.iov_offset = offset; 574 575 cmd->iocb.ki_pos = pos; 576 cmd->iocb.ki_filp = file; 577 cmd->iocb.ki_complete = lo_rw_aio_complete; 578 cmd->iocb.ki_flags = IOCB_DIRECT; 579 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 580 581 if (rw == WRITE) 582 ret = call_write_iter(file, &cmd->iocb, &iter); 583 else 584 ret = call_read_iter(file, &cmd->iocb, &iter); 585 586 lo_rw_aio_do_completion(cmd); 587 588 if (ret != -EIOCBQUEUED) 589 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 590 return 0; 591 } 592 593 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 594 { 595 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 596 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 597 598 /* 599 * lo_write_simple and lo_read_simple should have been covered 600 * by io submit style function like lo_rw_aio(), one blocker 601 * is that lo_read_simple() need to call flush_dcache_page after 602 * the page is written from kernel, and it isn't easy to handle 603 * this in io submit style function which submits all segments 604 * of the req at one time. And direct read IO doesn't need to 605 * run flush_dcache_page(). 606 */ 607 switch (req_op(rq)) { 608 case REQ_OP_FLUSH: 609 return lo_req_flush(lo, rq); 610 case REQ_OP_WRITE_ZEROES: 611 /* 612 * If the caller doesn't want deallocation, call zeroout to 613 * write zeroes the range. Otherwise, punch them out. 614 */ 615 return lo_fallocate(lo, rq, pos, 616 (rq->cmd_flags & REQ_NOUNMAP) ? 617 FALLOC_FL_ZERO_RANGE : 618 FALLOC_FL_PUNCH_HOLE); 619 case REQ_OP_DISCARD: 620 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 621 case REQ_OP_WRITE: 622 if (lo->transfer) 623 return lo_write_transfer(lo, rq, pos); 624 else if (cmd->use_aio) 625 return lo_rw_aio(lo, cmd, pos, WRITE); 626 else 627 return lo_write_simple(lo, rq, pos); 628 case REQ_OP_READ: 629 if (lo->transfer) 630 return lo_read_transfer(lo, rq, pos); 631 else if (cmd->use_aio) 632 return lo_rw_aio(lo, cmd, pos, READ); 633 else 634 return lo_read_simple(lo, rq, pos); 635 default: 636 WARN_ON_ONCE(1); 637 return -EIO; 638 } 639 } 640 641 static inline void loop_update_dio(struct loop_device *lo) 642 { 643 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 644 lo->use_dio); 645 } 646 647 static void loop_reread_partitions(struct loop_device *lo) 648 { 649 int rc; 650 651 mutex_lock(&lo->lo_disk->open_mutex); 652 rc = bdev_disk_changed(lo->lo_disk, false); 653 mutex_unlock(&lo->lo_disk->open_mutex); 654 if (rc) 655 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 656 __func__, lo->lo_number, lo->lo_file_name, rc); 657 } 658 659 static inline int is_loop_device(struct file *file) 660 { 661 struct inode *i = file->f_mapping->host; 662 663 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 664 } 665 666 static int loop_validate_file(struct file *file, struct block_device *bdev) 667 { 668 struct inode *inode = file->f_mapping->host; 669 struct file *f = file; 670 671 /* Avoid recursion */ 672 while (is_loop_device(f)) { 673 struct loop_device *l; 674 675 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 676 return -EBADF; 677 678 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 679 if (l->lo_state != Lo_bound) { 680 return -EINVAL; 681 } 682 f = l->lo_backing_file; 683 } 684 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 685 return -EINVAL; 686 return 0; 687 } 688 689 /* 690 * loop_change_fd switched the backing store of a loopback device to 691 * a new file. This is useful for operating system installers to free up 692 * the original file and in High Availability environments to switch to 693 * an alternative location for the content in case of server meltdown. 694 * This can only work if the loop device is used read-only, and if the 695 * new backing store is the same size and type as the old backing store. 696 */ 697 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 698 unsigned int arg) 699 { 700 struct file *file = NULL, *old_file; 701 int error; 702 bool partscan; 703 704 error = mutex_lock_killable(&lo->lo_mutex); 705 if (error) 706 return error; 707 error = -ENXIO; 708 if (lo->lo_state != Lo_bound) 709 goto out_err; 710 711 /* the loop device has to be read-only */ 712 error = -EINVAL; 713 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 714 goto out_err; 715 716 error = -EBADF; 717 file = fget(arg); 718 if (!file) 719 goto out_err; 720 721 error = loop_validate_file(file, bdev); 722 if (error) 723 goto out_err; 724 725 old_file = lo->lo_backing_file; 726 727 error = -EINVAL; 728 729 /* size of the new backing store needs to be the same */ 730 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 731 goto out_err; 732 733 /* and ... switch */ 734 blk_mq_freeze_queue(lo->lo_queue); 735 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 736 lo->lo_backing_file = file; 737 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 738 mapping_set_gfp_mask(file->f_mapping, 739 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 740 loop_update_dio(lo); 741 blk_mq_unfreeze_queue(lo->lo_queue); 742 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 743 mutex_unlock(&lo->lo_mutex); 744 /* 745 * We must drop file reference outside of lo_mutex as dropping 746 * the file ref can take open_mutex which creates circular locking 747 * dependency. 748 */ 749 fput(old_file); 750 if (partscan) 751 loop_reread_partitions(lo); 752 return 0; 753 754 out_err: 755 mutex_unlock(&lo->lo_mutex); 756 if (file) 757 fput(file); 758 return error; 759 } 760 761 /* loop sysfs attributes */ 762 763 static ssize_t loop_attr_show(struct device *dev, char *page, 764 ssize_t (*callback)(struct loop_device *, char *)) 765 { 766 struct gendisk *disk = dev_to_disk(dev); 767 struct loop_device *lo = disk->private_data; 768 769 return callback(lo, page); 770 } 771 772 #define LOOP_ATTR_RO(_name) \ 773 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 774 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 775 struct device_attribute *attr, char *b) \ 776 { \ 777 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 778 } \ 779 static struct device_attribute loop_attr_##_name = \ 780 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 781 782 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 783 { 784 ssize_t ret; 785 char *p = NULL; 786 787 spin_lock_irq(&lo->lo_lock); 788 if (lo->lo_backing_file) 789 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 790 spin_unlock_irq(&lo->lo_lock); 791 792 if (IS_ERR_OR_NULL(p)) 793 ret = PTR_ERR(p); 794 else { 795 ret = strlen(p); 796 memmove(buf, p, ret); 797 buf[ret++] = '\n'; 798 buf[ret] = 0; 799 } 800 801 return ret; 802 } 803 804 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 805 { 806 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 807 } 808 809 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 810 { 811 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 812 } 813 814 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 815 { 816 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 817 818 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 819 } 820 821 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 822 { 823 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 824 825 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 826 } 827 828 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 829 { 830 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 831 832 return sprintf(buf, "%s\n", dio ? "1" : "0"); 833 } 834 835 LOOP_ATTR_RO(backing_file); 836 LOOP_ATTR_RO(offset); 837 LOOP_ATTR_RO(sizelimit); 838 LOOP_ATTR_RO(autoclear); 839 LOOP_ATTR_RO(partscan); 840 LOOP_ATTR_RO(dio); 841 842 static struct attribute *loop_attrs[] = { 843 &loop_attr_backing_file.attr, 844 &loop_attr_offset.attr, 845 &loop_attr_sizelimit.attr, 846 &loop_attr_autoclear.attr, 847 &loop_attr_partscan.attr, 848 &loop_attr_dio.attr, 849 NULL, 850 }; 851 852 static struct attribute_group loop_attribute_group = { 853 .name = "loop", 854 .attrs= loop_attrs, 855 }; 856 857 static void loop_sysfs_init(struct loop_device *lo) 858 { 859 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 860 &loop_attribute_group); 861 } 862 863 static void loop_sysfs_exit(struct loop_device *lo) 864 { 865 if (lo->sysfs_inited) 866 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 867 &loop_attribute_group); 868 } 869 870 static void loop_config_discard(struct loop_device *lo) 871 { 872 struct file *file = lo->lo_backing_file; 873 struct inode *inode = file->f_mapping->host; 874 struct request_queue *q = lo->lo_queue; 875 u32 granularity, max_discard_sectors; 876 877 /* 878 * If the backing device is a block device, mirror its zeroing 879 * capability. Set the discard sectors to the block device's zeroing 880 * capabilities because loop discards result in blkdev_issue_zeroout(), 881 * not blkdev_issue_discard(). This maintains consistent behavior with 882 * file-backed loop devices: discarded regions read back as zero. 883 */ 884 if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) { 885 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode)); 886 887 max_discard_sectors = backingq->limits.max_write_zeroes_sectors; 888 granularity = backingq->limits.discard_granularity ?: 889 queue_physical_block_size(backingq); 890 891 /* 892 * We use punch hole to reclaim the free space used by the 893 * image a.k.a. discard. However we do not support discard if 894 * encryption is enabled, because it may give an attacker 895 * useful information. 896 */ 897 } else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) { 898 max_discard_sectors = 0; 899 granularity = 0; 900 901 } else { 902 max_discard_sectors = UINT_MAX >> 9; 903 granularity = inode->i_sb->s_blocksize; 904 } 905 906 if (max_discard_sectors) { 907 q->limits.discard_granularity = granularity; 908 blk_queue_max_discard_sectors(q, max_discard_sectors); 909 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors); 910 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 911 } else { 912 q->limits.discard_granularity = 0; 913 blk_queue_max_discard_sectors(q, 0); 914 blk_queue_max_write_zeroes_sectors(q, 0); 915 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 916 } 917 q->limits.discard_alignment = 0; 918 } 919 920 struct loop_worker { 921 struct rb_node rb_node; 922 struct work_struct work; 923 struct list_head cmd_list; 924 struct list_head idle_list; 925 struct loop_device *lo; 926 struct cgroup_subsys_state *blkcg_css; 927 unsigned long last_ran_at; 928 }; 929 930 static void loop_workfn(struct work_struct *work); 931 static void loop_rootcg_workfn(struct work_struct *work); 932 static void loop_free_idle_workers(struct timer_list *timer); 933 934 #ifdef CONFIG_BLK_CGROUP 935 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 936 { 937 return !css || css == blkcg_root_css; 938 } 939 #else 940 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 941 { 942 return !css; 943 } 944 #endif 945 946 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 947 { 948 struct rb_node **node = &(lo->worker_tree.rb_node), *parent = NULL; 949 struct loop_worker *cur_worker, *worker = NULL; 950 struct work_struct *work; 951 struct list_head *cmd_list; 952 953 spin_lock_irq(&lo->lo_work_lock); 954 955 if (queue_on_root_worker(cmd->blkcg_css)) 956 goto queue_work; 957 958 node = &lo->worker_tree.rb_node; 959 960 while (*node) { 961 parent = *node; 962 cur_worker = container_of(*node, struct loop_worker, rb_node); 963 if (cur_worker->blkcg_css == cmd->blkcg_css) { 964 worker = cur_worker; 965 break; 966 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 967 node = &(*node)->rb_left; 968 } else { 969 node = &(*node)->rb_right; 970 } 971 } 972 if (worker) 973 goto queue_work; 974 975 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 976 /* 977 * In the event we cannot allocate a worker, just queue on the 978 * rootcg worker and issue the I/O as the rootcg 979 */ 980 if (!worker) { 981 cmd->blkcg_css = NULL; 982 if (cmd->memcg_css) 983 css_put(cmd->memcg_css); 984 cmd->memcg_css = NULL; 985 goto queue_work; 986 } 987 988 worker->blkcg_css = cmd->blkcg_css; 989 css_get(worker->blkcg_css); 990 INIT_WORK(&worker->work, loop_workfn); 991 INIT_LIST_HEAD(&worker->cmd_list); 992 INIT_LIST_HEAD(&worker->idle_list); 993 worker->lo = lo; 994 rb_link_node(&worker->rb_node, parent, node); 995 rb_insert_color(&worker->rb_node, &lo->worker_tree); 996 queue_work: 997 if (worker) { 998 /* 999 * We need to remove from the idle list here while 1000 * holding the lock so that the idle timer doesn't 1001 * free the worker 1002 */ 1003 if (!list_empty(&worker->idle_list)) 1004 list_del_init(&worker->idle_list); 1005 work = &worker->work; 1006 cmd_list = &worker->cmd_list; 1007 } else { 1008 work = &lo->rootcg_work; 1009 cmd_list = &lo->rootcg_cmd_list; 1010 } 1011 list_add_tail(&cmd->list_entry, cmd_list); 1012 queue_work(lo->workqueue, work); 1013 spin_unlock_irq(&lo->lo_work_lock); 1014 } 1015 1016 static void loop_update_rotational(struct loop_device *lo) 1017 { 1018 struct file *file = lo->lo_backing_file; 1019 struct inode *file_inode = file->f_mapping->host; 1020 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 1021 struct request_queue *q = lo->lo_queue; 1022 bool nonrot = true; 1023 1024 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 1025 if (file_bdev) 1026 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev)); 1027 1028 if (nonrot) 1029 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 1030 else 1031 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 1032 } 1033 1034 static int 1035 loop_release_xfer(struct loop_device *lo) 1036 { 1037 int err = 0; 1038 struct loop_func_table *xfer = lo->lo_encryption; 1039 1040 if (xfer) { 1041 if (xfer->release) 1042 err = xfer->release(lo); 1043 lo->transfer = NULL; 1044 lo->lo_encryption = NULL; 1045 module_put(xfer->owner); 1046 } 1047 return err; 1048 } 1049 1050 static int 1051 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 1052 const struct loop_info64 *i) 1053 { 1054 int err = 0; 1055 1056 if (xfer) { 1057 struct module *owner = xfer->owner; 1058 1059 if (!try_module_get(owner)) 1060 return -EINVAL; 1061 if (xfer->init) 1062 err = xfer->init(lo, i); 1063 if (err) 1064 module_put(owner); 1065 else 1066 lo->lo_encryption = xfer; 1067 } 1068 return err; 1069 } 1070 1071 /** 1072 * loop_set_status_from_info - configure device from loop_info 1073 * @lo: struct loop_device to configure 1074 * @info: struct loop_info64 to configure the device with 1075 * 1076 * Configures the loop device parameters according to the passed 1077 * in loop_info64 configuration. 1078 */ 1079 static int 1080 loop_set_status_from_info(struct loop_device *lo, 1081 const struct loop_info64 *info) 1082 { 1083 int err; 1084 struct loop_func_table *xfer; 1085 kuid_t uid = current_uid(); 1086 1087 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1088 return -EINVAL; 1089 1090 err = loop_release_xfer(lo); 1091 if (err) 1092 return err; 1093 1094 if (info->lo_encrypt_type) { 1095 unsigned int type = info->lo_encrypt_type; 1096 1097 if (type >= MAX_LO_CRYPT) 1098 return -EINVAL; 1099 xfer = xfer_funcs[type]; 1100 if (xfer == NULL) 1101 return -EINVAL; 1102 } else 1103 xfer = NULL; 1104 1105 err = loop_init_xfer(lo, xfer, info); 1106 if (err) 1107 return err; 1108 1109 lo->lo_offset = info->lo_offset; 1110 lo->lo_sizelimit = info->lo_sizelimit; 1111 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1112 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1113 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1114 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1115 1116 if (!xfer) 1117 xfer = &none_funcs; 1118 lo->transfer = xfer->transfer; 1119 lo->ioctl = xfer->ioctl; 1120 1121 lo->lo_flags = info->lo_flags; 1122 1123 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1124 lo->lo_init[0] = info->lo_init[0]; 1125 lo->lo_init[1] = info->lo_init[1]; 1126 if (info->lo_encrypt_key_size) { 1127 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1128 info->lo_encrypt_key_size); 1129 lo->lo_key_owner = uid; 1130 } 1131 1132 return 0; 1133 } 1134 1135 static int loop_configure(struct loop_device *lo, fmode_t mode, 1136 struct block_device *bdev, 1137 const struct loop_config *config) 1138 { 1139 struct file *file; 1140 struct inode *inode; 1141 struct address_space *mapping; 1142 int error; 1143 loff_t size; 1144 bool partscan; 1145 unsigned short bsize; 1146 1147 /* This is safe, since we have a reference from open(). */ 1148 __module_get(THIS_MODULE); 1149 1150 error = -EBADF; 1151 file = fget(config->fd); 1152 if (!file) 1153 goto out; 1154 1155 /* 1156 * If we don't hold exclusive handle for the device, upgrade to it 1157 * here to avoid changing device under exclusive owner. 1158 */ 1159 if (!(mode & FMODE_EXCL)) { 1160 error = bd_prepare_to_claim(bdev, loop_configure); 1161 if (error) 1162 goto out_putf; 1163 } 1164 1165 error = mutex_lock_killable(&lo->lo_mutex); 1166 if (error) 1167 goto out_bdev; 1168 1169 error = -EBUSY; 1170 if (lo->lo_state != Lo_unbound) 1171 goto out_unlock; 1172 1173 error = loop_validate_file(file, bdev); 1174 if (error) 1175 goto out_unlock; 1176 1177 mapping = file->f_mapping; 1178 inode = mapping->host; 1179 1180 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1181 error = -EINVAL; 1182 goto out_unlock; 1183 } 1184 1185 if (config->block_size) { 1186 error = loop_validate_block_size(config->block_size); 1187 if (error) 1188 goto out_unlock; 1189 } 1190 1191 error = loop_set_status_from_info(lo, &config->info); 1192 if (error) 1193 goto out_unlock; 1194 1195 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 1196 !file->f_op->write_iter) 1197 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1198 1199 lo->workqueue = alloc_workqueue("loop%d", 1200 WQ_UNBOUND | WQ_FREEZABLE, 1201 0, 1202 lo->lo_number); 1203 if (!lo->workqueue) { 1204 error = -ENOMEM; 1205 goto out_unlock; 1206 } 1207 1208 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1209 1210 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 1211 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 1212 INIT_LIST_HEAD(&lo->idle_worker_list); 1213 lo->worker_tree = RB_ROOT; 1214 timer_setup(&lo->timer, loop_free_idle_workers, 1215 TIMER_DEFERRABLE); 1216 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1217 lo->lo_device = bdev; 1218 lo->lo_backing_file = file; 1219 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1220 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1221 1222 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 1223 blk_queue_write_cache(lo->lo_queue, true, false); 1224 1225 if (config->block_size) 1226 bsize = config->block_size; 1227 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev) 1228 /* In case of direct I/O, match underlying block size */ 1229 bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 1230 else 1231 bsize = 512; 1232 1233 blk_queue_logical_block_size(lo->lo_queue, bsize); 1234 blk_queue_physical_block_size(lo->lo_queue, bsize); 1235 blk_queue_io_min(lo->lo_queue, bsize); 1236 1237 loop_config_discard(lo); 1238 loop_update_rotational(lo); 1239 loop_update_dio(lo); 1240 loop_sysfs_init(lo); 1241 1242 size = get_loop_size(lo, file); 1243 loop_set_size(lo, size); 1244 1245 lo->lo_state = Lo_bound; 1246 if (part_shift) 1247 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1248 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1249 if (partscan) 1250 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1251 1252 /* Grab the block_device to prevent its destruction after we 1253 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev). 1254 */ 1255 bdgrab(bdev); 1256 mutex_unlock(&lo->lo_mutex); 1257 if (partscan) 1258 loop_reread_partitions(lo); 1259 if (!(mode & FMODE_EXCL)) 1260 bd_abort_claiming(bdev, loop_configure); 1261 return 0; 1262 1263 out_unlock: 1264 mutex_unlock(&lo->lo_mutex); 1265 out_bdev: 1266 if (!(mode & FMODE_EXCL)) 1267 bd_abort_claiming(bdev, loop_configure); 1268 out_putf: 1269 fput(file); 1270 out: 1271 /* This is safe: open() is still holding a reference. */ 1272 module_put(THIS_MODULE); 1273 return error; 1274 } 1275 1276 static int __loop_clr_fd(struct loop_device *lo, bool release) 1277 { 1278 struct file *filp = NULL; 1279 gfp_t gfp = lo->old_gfp_mask; 1280 struct block_device *bdev = lo->lo_device; 1281 int err = 0; 1282 bool partscan = false; 1283 int lo_number; 1284 struct loop_worker *pos, *worker; 1285 1286 mutex_lock(&lo->lo_mutex); 1287 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) { 1288 err = -ENXIO; 1289 goto out_unlock; 1290 } 1291 1292 filp = lo->lo_backing_file; 1293 if (filp == NULL) { 1294 err = -EINVAL; 1295 goto out_unlock; 1296 } 1297 1298 if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags)) 1299 blk_queue_write_cache(lo->lo_queue, false, false); 1300 1301 /* freeze request queue during the transition */ 1302 blk_mq_freeze_queue(lo->lo_queue); 1303 1304 destroy_workqueue(lo->workqueue); 1305 spin_lock_irq(&lo->lo_work_lock); 1306 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 1307 idle_list) { 1308 list_del(&worker->idle_list); 1309 rb_erase(&worker->rb_node, &lo->worker_tree); 1310 css_put(worker->blkcg_css); 1311 kfree(worker); 1312 } 1313 spin_unlock_irq(&lo->lo_work_lock); 1314 del_timer_sync(&lo->timer); 1315 1316 spin_lock_irq(&lo->lo_lock); 1317 lo->lo_backing_file = NULL; 1318 spin_unlock_irq(&lo->lo_lock); 1319 1320 loop_release_xfer(lo); 1321 lo->transfer = NULL; 1322 lo->ioctl = NULL; 1323 lo->lo_device = NULL; 1324 lo->lo_encryption = NULL; 1325 lo->lo_offset = 0; 1326 lo->lo_sizelimit = 0; 1327 lo->lo_encrypt_key_size = 0; 1328 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1329 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1330 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1331 blk_queue_logical_block_size(lo->lo_queue, 512); 1332 blk_queue_physical_block_size(lo->lo_queue, 512); 1333 blk_queue_io_min(lo->lo_queue, 512); 1334 if (bdev) { 1335 bdput(bdev); 1336 invalidate_bdev(bdev); 1337 bdev->bd_inode->i_mapping->wb_err = 0; 1338 } 1339 set_capacity(lo->lo_disk, 0); 1340 loop_sysfs_exit(lo); 1341 if (bdev) { 1342 /* let user-space know about this change */ 1343 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1344 } 1345 mapping_set_gfp_mask(filp->f_mapping, gfp); 1346 /* This is safe: open() is still holding a reference. */ 1347 module_put(THIS_MODULE); 1348 blk_mq_unfreeze_queue(lo->lo_queue); 1349 1350 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev; 1351 lo_number = lo->lo_number; 1352 out_unlock: 1353 mutex_unlock(&lo->lo_mutex); 1354 if (partscan) { 1355 /* 1356 * open_mutex has been held already in release path, so don't 1357 * acquire it if this function is called in such case. 1358 * 1359 * If the reread partition isn't from release path, lo_refcnt 1360 * must be at least one and it can only become zero when the 1361 * current holder is released. 1362 */ 1363 if (!release) 1364 mutex_lock(&lo->lo_disk->open_mutex); 1365 err = bdev_disk_changed(lo->lo_disk, false); 1366 if (!release) 1367 mutex_unlock(&lo->lo_disk->open_mutex); 1368 if (err) 1369 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1370 __func__, lo_number, err); 1371 /* Device is gone, no point in returning error */ 1372 err = 0; 1373 } 1374 1375 /* 1376 * lo->lo_state is set to Lo_unbound here after above partscan has 1377 * finished. 1378 * 1379 * There cannot be anybody else entering __loop_clr_fd() as 1380 * lo->lo_backing_file is already cleared and Lo_rundown state 1381 * protects us from all the other places trying to change the 'lo' 1382 * device. 1383 */ 1384 mutex_lock(&lo->lo_mutex); 1385 lo->lo_flags = 0; 1386 if (!part_shift) 1387 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1388 lo->lo_state = Lo_unbound; 1389 mutex_unlock(&lo->lo_mutex); 1390 1391 /* 1392 * Need not hold lo_mutex to fput backing file. Calling fput holding 1393 * lo_mutex triggers a circular lock dependency possibility warning as 1394 * fput can take open_mutex which is usually taken before lo_mutex. 1395 */ 1396 if (filp) 1397 fput(filp); 1398 return err; 1399 } 1400 1401 static int loop_clr_fd(struct loop_device *lo) 1402 { 1403 int err; 1404 1405 err = mutex_lock_killable(&lo->lo_mutex); 1406 if (err) 1407 return err; 1408 if (lo->lo_state != Lo_bound) { 1409 mutex_unlock(&lo->lo_mutex); 1410 return -ENXIO; 1411 } 1412 /* 1413 * If we've explicitly asked to tear down the loop device, 1414 * and it has an elevated reference count, set it for auto-teardown when 1415 * the last reference goes away. This stops $!~#$@ udev from 1416 * preventing teardown because it decided that it needs to run blkid on 1417 * the loopback device whenever they appear. xfstests is notorious for 1418 * failing tests because blkid via udev races with a losetup 1419 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1420 * command to fail with EBUSY. 1421 */ 1422 if (atomic_read(&lo->lo_refcnt) > 1) { 1423 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1424 mutex_unlock(&lo->lo_mutex); 1425 return 0; 1426 } 1427 lo->lo_state = Lo_rundown; 1428 mutex_unlock(&lo->lo_mutex); 1429 1430 return __loop_clr_fd(lo, false); 1431 } 1432 1433 static int 1434 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1435 { 1436 int err; 1437 kuid_t uid = current_uid(); 1438 int prev_lo_flags; 1439 bool partscan = false; 1440 bool size_changed = false; 1441 1442 err = mutex_lock_killable(&lo->lo_mutex); 1443 if (err) 1444 return err; 1445 if (lo->lo_encrypt_key_size && 1446 !uid_eq(lo->lo_key_owner, uid) && 1447 !capable(CAP_SYS_ADMIN)) { 1448 err = -EPERM; 1449 goto out_unlock; 1450 } 1451 if (lo->lo_state != Lo_bound) { 1452 err = -ENXIO; 1453 goto out_unlock; 1454 } 1455 1456 if (lo->lo_offset != info->lo_offset || 1457 lo->lo_sizelimit != info->lo_sizelimit) { 1458 size_changed = true; 1459 sync_blockdev(lo->lo_device); 1460 invalidate_bdev(lo->lo_device); 1461 } 1462 1463 /* I/O need to be drained during transfer transition */ 1464 blk_mq_freeze_queue(lo->lo_queue); 1465 1466 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) { 1467 /* If any pages were dirtied after invalidate_bdev(), try again */ 1468 err = -EAGAIN; 1469 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1470 __func__, lo->lo_number, lo->lo_file_name, 1471 lo->lo_device->bd_inode->i_mapping->nrpages); 1472 goto out_unfreeze; 1473 } 1474 1475 prev_lo_flags = lo->lo_flags; 1476 1477 err = loop_set_status_from_info(lo, info); 1478 if (err) 1479 goto out_unfreeze; 1480 1481 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1482 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1483 /* For those flags, use the previous values instead */ 1484 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1485 /* For flags that can't be cleared, use previous values too */ 1486 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1487 1488 if (size_changed) { 1489 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1490 lo->lo_backing_file); 1491 loop_set_size(lo, new_size); 1492 } 1493 1494 loop_config_discard(lo); 1495 1496 /* update dio if lo_offset or transfer is changed */ 1497 __loop_update_dio(lo, lo->use_dio); 1498 1499 out_unfreeze: 1500 blk_mq_unfreeze_queue(lo->lo_queue); 1501 1502 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1503 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1504 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1505 partscan = true; 1506 } 1507 out_unlock: 1508 mutex_unlock(&lo->lo_mutex); 1509 if (partscan) 1510 loop_reread_partitions(lo); 1511 1512 return err; 1513 } 1514 1515 static int 1516 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1517 { 1518 struct path path; 1519 struct kstat stat; 1520 int ret; 1521 1522 ret = mutex_lock_killable(&lo->lo_mutex); 1523 if (ret) 1524 return ret; 1525 if (lo->lo_state != Lo_bound) { 1526 mutex_unlock(&lo->lo_mutex); 1527 return -ENXIO; 1528 } 1529 1530 memset(info, 0, sizeof(*info)); 1531 info->lo_number = lo->lo_number; 1532 info->lo_offset = lo->lo_offset; 1533 info->lo_sizelimit = lo->lo_sizelimit; 1534 info->lo_flags = lo->lo_flags; 1535 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1536 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1537 info->lo_encrypt_type = 1538 lo->lo_encryption ? lo->lo_encryption->number : 0; 1539 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1540 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1541 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1542 lo->lo_encrypt_key_size); 1543 } 1544 1545 /* Drop lo_mutex while we call into the filesystem. */ 1546 path = lo->lo_backing_file->f_path; 1547 path_get(&path); 1548 mutex_unlock(&lo->lo_mutex); 1549 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1550 if (!ret) { 1551 info->lo_device = huge_encode_dev(stat.dev); 1552 info->lo_inode = stat.ino; 1553 info->lo_rdevice = huge_encode_dev(stat.rdev); 1554 } 1555 path_put(&path); 1556 return ret; 1557 } 1558 1559 static void 1560 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1561 { 1562 memset(info64, 0, sizeof(*info64)); 1563 info64->lo_number = info->lo_number; 1564 info64->lo_device = info->lo_device; 1565 info64->lo_inode = info->lo_inode; 1566 info64->lo_rdevice = info->lo_rdevice; 1567 info64->lo_offset = info->lo_offset; 1568 info64->lo_sizelimit = 0; 1569 info64->lo_encrypt_type = info->lo_encrypt_type; 1570 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1571 info64->lo_flags = info->lo_flags; 1572 info64->lo_init[0] = info->lo_init[0]; 1573 info64->lo_init[1] = info->lo_init[1]; 1574 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1575 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1576 else 1577 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1578 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1579 } 1580 1581 static int 1582 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1583 { 1584 memset(info, 0, sizeof(*info)); 1585 info->lo_number = info64->lo_number; 1586 info->lo_device = info64->lo_device; 1587 info->lo_inode = info64->lo_inode; 1588 info->lo_rdevice = info64->lo_rdevice; 1589 info->lo_offset = info64->lo_offset; 1590 info->lo_encrypt_type = info64->lo_encrypt_type; 1591 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1592 info->lo_flags = info64->lo_flags; 1593 info->lo_init[0] = info64->lo_init[0]; 1594 info->lo_init[1] = info64->lo_init[1]; 1595 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1596 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1597 else 1598 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1599 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1600 1601 /* error in case values were truncated */ 1602 if (info->lo_device != info64->lo_device || 1603 info->lo_rdevice != info64->lo_rdevice || 1604 info->lo_inode != info64->lo_inode || 1605 info->lo_offset != info64->lo_offset) 1606 return -EOVERFLOW; 1607 1608 return 0; 1609 } 1610 1611 static int 1612 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1613 { 1614 struct loop_info info; 1615 struct loop_info64 info64; 1616 1617 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1618 return -EFAULT; 1619 loop_info64_from_old(&info, &info64); 1620 return loop_set_status(lo, &info64); 1621 } 1622 1623 static int 1624 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1625 { 1626 struct loop_info64 info64; 1627 1628 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1629 return -EFAULT; 1630 return loop_set_status(lo, &info64); 1631 } 1632 1633 static int 1634 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1635 struct loop_info info; 1636 struct loop_info64 info64; 1637 int err; 1638 1639 if (!arg) 1640 return -EINVAL; 1641 err = loop_get_status(lo, &info64); 1642 if (!err) 1643 err = loop_info64_to_old(&info64, &info); 1644 if (!err && copy_to_user(arg, &info, sizeof(info))) 1645 err = -EFAULT; 1646 1647 return err; 1648 } 1649 1650 static int 1651 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1652 struct loop_info64 info64; 1653 int err; 1654 1655 if (!arg) 1656 return -EINVAL; 1657 err = loop_get_status(lo, &info64); 1658 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1659 err = -EFAULT; 1660 1661 return err; 1662 } 1663 1664 static int loop_set_capacity(struct loop_device *lo) 1665 { 1666 loff_t size; 1667 1668 if (unlikely(lo->lo_state != Lo_bound)) 1669 return -ENXIO; 1670 1671 size = get_loop_size(lo, lo->lo_backing_file); 1672 loop_set_size(lo, size); 1673 1674 return 0; 1675 } 1676 1677 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1678 { 1679 int error = -ENXIO; 1680 if (lo->lo_state != Lo_bound) 1681 goto out; 1682 1683 __loop_update_dio(lo, !!arg); 1684 if (lo->use_dio == !!arg) 1685 return 0; 1686 error = -EINVAL; 1687 out: 1688 return error; 1689 } 1690 1691 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1692 { 1693 int err = 0; 1694 1695 if (lo->lo_state != Lo_bound) 1696 return -ENXIO; 1697 1698 err = loop_validate_block_size(arg); 1699 if (err) 1700 return err; 1701 1702 if (lo->lo_queue->limits.logical_block_size == arg) 1703 return 0; 1704 1705 sync_blockdev(lo->lo_device); 1706 invalidate_bdev(lo->lo_device); 1707 1708 blk_mq_freeze_queue(lo->lo_queue); 1709 1710 /* invalidate_bdev should have truncated all the pages */ 1711 if (lo->lo_device->bd_inode->i_mapping->nrpages) { 1712 err = -EAGAIN; 1713 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1714 __func__, lo->lo_number, lo->lo_file_name, 1715 lo->lo_device->bd_inode->i_mapping->nrpages); 1716 goto out_unfreeze; 1717 } 1718 1719 blk_queue_logical_block_size(lo->lo_queue, arg); 1720 blk_queue_physical_block_size(lo->lo_queue, arg); 1721 blk_queue_io_min(lo->lo_queue, arg); 1722 loop_update_dio(lo); 1723 out_unfreeze: 1724 blk_mq_unfreeze_queue(lo->lo_queue); 1725 1726 return err; 1727 } 1728 1729 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1730 unsigned long arg) 1731 { 1732 int err; 1733 1734 err = mutex_lock_killable(&lo->lo_mutex); 1735 if (err) 1736 return err; 1737 switch (cmd) { 1738 case LOOP_SET_CAPACITY: 1739 err = loop_set_capacity(lo); 1740 break; 1741 case LOOP_SET_DIRECT_IO: 1742 err = loop_set_dio(lo, arg); 1743 break; 1744 case LOOP_SET_BLOCK_SIZE: 1745 err = loop_set_block_size(lo, arg); 1746 break; 1747 default: 1748 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1749 } 1750 mutex_unlock(&lo->lo_mutex); 1751 return err; 1752 } 1753 1754 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1755 unsigned int cmd, unsigned long arg) 1756 { 1757 struct loop_device *lo = bdev->bd_disk->private_data; 1758 void __user *argp = (void __user *) arg; 1759 int err; 1760 1761 switch (cmd) { 1762 case LOOP_SET_FD: { 1763 /* 1764 * Legacy case - pass in a zeroed out struct loop_config with 1765 * only the file descriptor set , which corresponds with the 1766 * default parameters we'd have used otherwise. 1767 */ 1768 struct loop_config config; 1769 1770 memset(&config, 0, sizeof(config)); 1771 config.fd = arg; 1772 1773 return loop_configure(lo, mode, bdev, &config); 1774 } 1775 case LOOP_CONFIGURE: { 1776 struct loop_config config; 1777 1778 if (copy_from_user(&config, argp, sizeof(config))) 1779 return -EFAULT; 1780 1781 return loop_configure(lo, mode, bdev, &config); 1782 } 1783 case LOOP_CHANGE_FD: 1784 return loop_change_fd(lo, bdev, arg); 1785 case LOOP_CLR_FD: 1786 return loop_clr_fd(lo); 1787 case LOOP_SET_STATUS: 1788 err = -EPERM; 1789 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1790 err = loop_set_status_old(lo, argp); 1791 } 1792 break; 1793 case LOOP_GET_STATUS: 1794 return loop_get_status_old(lo, argp); 1795 case LOOP_SET_STATUS64: 1796 err = -EPERM; 1797 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1798 err = loop_set_status64(lo, argp); 1799 } 1800 break; 1801 case LOOP_GET_STATUS64: 1802 return loop_get_status64(lo, argp); 1803 case LOOP_SET_CAPACITY: 1804 case LOOP_SET_DIRECT_IO: 1805 case LOOP_SET_BLOCK_SIZE: 1806 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN)) 1807 return -EPERM; 1808 fallthrough; 1809 default: 1810 err = lo_simple_ioctl(lo, cmd, arg); 1811 break; 1812 } 1813 1814 return err; 1815 } 1816 1817 #ifdef CONFIG_COMPAT 1818 struct compat_loop_info { 1819 compat_int_t lo_number; /* ioctl r/o */ 1820 compat_dev_t lo_device; /* ioctl r/o */ 1821 compat_ulong_t lo_inode; /* ioctl r/o */ 1822 compat_dev_t lo_rdevice; /* ioctl r/o */ 1823 compat_int_t lo_offset; 1824 compat_int_t lo_encrypt_type; 1825 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1826 compat_int_t lo_flags; /* ioctl r/o */ 1827 char lo_name[LO_NAME_SIZE]; 1828 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1829 compat_ulong_t lo_init[2]; 1830 char reserved[4]; 1831 }; 1832 1833 /* 1834 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1835 * - noinlined to reduce stack space usage in main part of driver 1836 */ 1837 static noinline int 1838 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1839 struct loop_info64 *info64) 1840 { 1841 struct compat_loop_info info; 1842 1843 if (copy_from_user(&info, arg, sizeof(info))) 1844 return -EFAULT; 1845 1846 memset(info64, 0, sizeof(*info64)); 1847 info64->lo_number = info.lo_number; 1848 info64->lo_device = info.lo_device; 1849 info64->lo_inode = info.lo_inode; 1850 info64->lo_rdevice = info.lo_rdevice; 1851 info64->lo_offset = info.lo_offset; 1852 info64->lo_sizelimit = 0; 1853 info64->lo_encrypt_type = info.lo_encrypt_type; 1854 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1855 info64->lo_flags = info.lo_flags; 1856 info64->lo_init[0] = info.lo_init[0]; 1857 info64->lo_init[1] = info.lo_init[1]; 1858 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1859 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1860 else 1861 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1862 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1863 return 0; 1864 } 1865 1866 /* 1867 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1868 * - noinlined to reduce stack space usage in main part of driver 1869 */ 1870 static noinline int 1871 loop_info64_to_compat(const struct loop_info64 *info64, 1872 struct compat_loop_info __user *arg) 1873 { 1874 struct compat_loop_info info; 1875 1876 memset(&info, 0, sizeof(info)); 1877 info.lo_number = info64->lo_number; 1878 info.lo_device = info64->lo_device; 1879 info.lo_inode = info64->lo_inode; 1880 info.lo_rdevice = info64->lo_rdevice; 1881 info.lo_offset = info64->lo_offset; 1882 info.lo_encrypt_type = info64->lo_encrypt_type; 1883 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1884 info.lo_flags = info64->lo_flags; 1885 info.lo_init[0] = info64->lo_init[0]; 1886 info.lo_init[1] = info64->lo_init[1]; 1887 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1888 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1889 else 1890 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1891 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1892 1893 /* error in case values were truncated */ 1894 if (info.lo_device != info64->lo_device || 1895 info.lo_rdevice != info64->lo_rdevice || 1896 info.lo_inode != info64->lo_inode || 1897 info.lo_offset != info64->lo_offset || 1898 info.lo_init[0] != info64->lo_init[0] || 1899 info.lo_init[1] != info64->lo_init[1]) 1900 return -EOVERFLOW; 1901 1902 if (copy_to_user(arg, &info, sizeof(info))) 1903 return -EFAULT; 1904 return 0; 1905 } 1906 1907 static int 1908 loop_set_status_compat(struct loop_device *lo, 1909 const struct compat_loop_info __user *arg) 1910 { 1911 struct loop_info64 info64; 1912 int ret; 1913 1914 ret = loop_info64_from_compat(arg, &info64); 1915 if (ret < 0) 1916 return ret; 1917 return loop_set_status(lo, &info64); 1918 } 1919 1920 static int 1921 loop_get_status_compat(struct loop_device *lo, 1922 struct compat_loop_info __user *arg) 1923 { 1924 struct loop_info64 info64; 1925 int err; 1926 1927 if (!arg) 1928 return -EINVAL; 1929 err = loop_get_status(lo, &info64); 1930 if (!err) 1931 err = loop_info64_to_compat(&info64, arg); 1932 return err; 1933 } 1934 1935 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1936 unsigned int cmd, unsigned long arg) 1937 { 1938 struct loop_device *lo = bdev->bd_disk->private_data; 1939 int err; 1940 1941 switch(cmd) { 1942 case LOOP_SET_STATUS: 1943 err = loop_set_status_compat(lo, 1944 (const struct compat_loop_info __user *)arg); 1945 break; 1946 case LOOP_GET_STATUS: 1947 err = loop_get_status_compat(lo, 1948 (struct compat_loop_info __user *)arg); 1949 break; 1950 case LOOP_SET_CAPACITY: 1951 case LOOP_CLR_FD: 1952 case LOOP_GET_STATUS64: 1953 case LOOP_SET_STATUS64: 1954 case LOOP_CONFIGURE: 1955 arg = (unsigned long) compat_ptr(arg); 1956 fallthrough; 1957 case LOOP_SET_FD: 1958 case LOOP_CHANGE_FD: 1959 case LOOP_SET_BLOCK_SIZE: 1960 case LOOP_SET_DIRECT_IO: 1961 err = lo_ioctl(bdev, mode, cmd, arg); 1962 break; 1963 default: 1964 err = -ENOIOCTLCMD; 1965 break; 1966 } 1967 return err; 1968 } 1969 #endif 1970 1971 static int lo_open(struct block_device *bdev, fmode_t mode) 1972 { 1973 struct loop_device *lo = bdev->bd_disk->private_data; 1974 int err; 1975 1976 err = mutex_lock_killable(&lo->lo_mutex); 1977 if (err) 1978 return err; 1979 if (lo->lo_state == Lo_deleting) 1980 err = -ENXIO; 1981 else 1982 atomic_inc(&lo->lo_refcnt); 1983 mutex_unlock(&lo->lo_mutex); 1984 return err; 1985 } 1986 1987 static void lo_release(struct gendisk *disk, fmode_t mode) 1988 { 1989 struct loop_device *lo = disk->private_data; 1990 1991 mutex_lock(&lo->lo_mutex); 1992 if (atomic_dec_return(&lo->lo_refcnt)) 1993 goto out_unlock; 1994 1995 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1996 if (lo->lo_state != Lo_bound) 1997 goto out_unlock; 1998 lo->lo_state = Lo_rundown; 1999 mutex_unlock(&lo->lo_mutex); 2000 /* 2001 * In autoclear mode, stop the loop thread 2002 * and remove configuration after last close. 2003 */ 2004 __loop_clr_fd(lo, true); 2005 return; 2006 } else if (lo->lo_state == Lo_bound) { 2007 /* 2008 * Otherwise keep thread (if running) and config, 2009 * but flush possible ongoing bios in thread. 2010 */ 2011 blk_mq_freeze_queue(lo->lo_queue); 2012 blk_mq_unfreeze_queue(lo->lo_queue); 2013 } 2014 2015 out_unlock: 2016 mutex_unlock(&lo->lo_mutex); 2017 } 2018 2019 static const struct block_device_operations lo_fops = { 2020 .owner = THIS_MODULE, 2021 .open = lo_open, 2022 .release = lo_release, 2023 .ioctl = lo_ioctl, 2024 #ifdef CONFIG_COMPAT 2025 .compat_ioctl = lo_compat_ioctl, 2026 #endif 2027 }; 2028 2029 /* 2030 * And now the modules code and kernel interface. 2031 */ 2032 static int max_loop; 2033 module_param(max_loop, int, 0444); 2034 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 2035 module_param(max_part, int, 0444); 2036 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 2037 MODULE_LICENSE("GPL"); 2038 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 2039 2040 int loop_register_transfer(struct loop_func_table *funcs) 2041 { 2042 unsigned int n = funcs->number; 2043 2044 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 2045 return -EINVAL; 2046 xfer_funcs[n] = funcs; 2047 return 0; 2048 } 2049 2050 static int unregister_transfer_cb(int id, void *ptr, void *data) 2051 { 2052 struct loop_device *lo = ptr; 2053 struct loop_func_table *xfer = data; 2054 2055 mutex_lock(&lo->lo_mutex); 2056 if (lo->lo_encryption == xfer) 2057 loop_release_xfer(lo); 2058 mutex_unlock(&lo->lo_mutex); 2059 return 0; 2060 } 2061 2062 int loop_unregister_transfer(int number) 2063 { 2064 unsigned int n = number; 2065 struct loop_func_table *xfer; 2066 2067 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 2068 return -EINVAL; 2069 2070 xfer_funcs[n] = NULL; 2071 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 2072 return 0; 2073 } 2074 2075 EXPORT_SYMBOL(loop_register_transfer); 2076 EXPORT_SYMBOL(loop_unregister_transfer); 2077 2078 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 2079 const struct blk_mq_queue_data *bd) 2080 { 2081 struct request *rq = bd->rq; 2082 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 2083 struct loop_device *lo = rq->q->queuedata; 2084 2085 blk_mq_start_request(rq); 2086 2087 if (lo->lo_state != Lo_bound) 2088 return BLK_STS_IOERR; 2089 2090 switch (req_op(rq)) { 2091 case REQ_OP_FLUSH: 2092 case REQ_OP_DISCARD: 2093 case REQ_OP_WRITE_ZEROES: 2094 cmd->use_aio = false; 2095 break; 2096 default: 2097 cmd->use_aio = lo->use_dio; 2098 break; 2099 } 2100 2101 /* always use the first bio's css */ 2102 cmd->blkcg_css = NULL; 2103 cmd->memcg_css = NULL; 2104 #ifdef CONFIG_BLK_CGROUP 2105 if (rq->bio && rq->bio->bi_blkg) { 2106 cmd->blkcg_css = &bio_blkcg(rq->bio)->css; 2107 #ifdef CONFIG_MEMCG 2108 cmd->memcg_css = 2109 cgroup_get_e_css(cmd->blkcg_css->cgroup, 2110 &memory_cgrp_subsys); 2111 #endif 2112 } 2113 #endif 2114 loop_queue_work(lo, cmd); 2115 2116 return BLK_STS_OK; 2117 } 2118 2119 static void loop_handle_cmd(struct loop_cmd *cmd) 2120 { 2121 struct request *rq = blk_mq_rq_from_pdu(cmd); 2122 const bool write = op_is_write(req_op(rq)); 2123 struct loop_device *lo = rq->q->queuedata; 2124 int ret = 0; 2125 struct mem_cgroup *old_memcg = NULL; 2126 2127 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 2128 ret = -EIO; 2129 goto failed; 2130 } 2131 2132 if (cmd->blkcg_css) 2133 kthread_associate_blkcg(cmd->blkcg_css); 2134 if (cmd->memcg_css) 2135 old_memcg = set_active_memcg( 2136 mem_cgroup_from_css(cmd->memcg_css)); 2137 2138 ret = do_req_filebacked(lo, rq); 2139 2140 if (cmd->blkcg_css) 2141 kthread_associate_blkcg(NULL); 2142 2143 if (cmd->memcg_css) { 2144 set_active_memcg(old_memcg); 2145 css_put(cmd->memcg_css); 2146 } 2147 failed: 2148 /* complete non-aio request */ 2149 if (!cmd->use_aio || ret) { 2150 if (ret == -EOPNOTSUPP) 2151 cmd->ret = ret; 2152 else 2153 cmd->ret = ret ? -EIO : 0; 2154 if (likely(!blk_should_fake_timeout(rq->q))) 2155 blk_mq_complete_request(rq); 2156 } 2157 } 2158 2159 static void loop_set_timer(struct loop_device *lo) 2160 { 2161 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 2162 } 2163 2164 static void loop_process_work(struct loop_worker *worker, 2165 struct list_head *cmd_list, struct loop_device *lo) 2166 { 2167 int orig_flags = current->flags; 2168 struct loop_cmd *cmd; 2169 2170 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 2171 spin_lock_irq(&lo->lo_work_lock); 2172 while (!list_empty(cmd_list)) { 2173 cmd = container_of( 2174 cmd_list->next, struct loop_cmd, list_entry); 2175 list_del(cmd_list->next); 2176 spin_unlock_irq(&lo->lo_work_lock); 2177 2178 loop_handle_cmd(cmd); 2179 cond_resched(); 2180 2181 spin_lock_irq(&lo->lo_work_lock); 2182 } 2183 2184 /* 2185 * We only add to the idle list if there are no pending cmds 2186 * *and* the worker will not run again which ensures that it 2187 * is safe to free any worker on the idle list 2188 */ 2189 if (worker && !work_pending(&worker->work)) { 2190 worker->last_ran_at = jiffies; 2191 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 2192 loop_set_timer(lo); 2193 } 2194 spin_unlock_irq(&lo->lo_work_lock); 2195 current->flags = orig_flags; 2196 } 2197 2198 static void loop_workfn(struct work_struct *work) 2199 { 2200 struct loop_worker *worker = 2201 container_of(work, struct loop_worker, work); 2202 loop_process_work(worker, &worker->cmd_list, worker->lo); 2203 } 2204 2205 static void loop_rootcg_workfn(struct work_struct *work) 2206 { 2207 struct loop_device *lo = 2208 container_of(work, struct loop_device, rootcg_work); 2209 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 2210 } 2211 2212 static void loop_free_idle_workers(struct timer_list *timer) 2213 { 2214 struct loop_device *lo = container_of(timer, struct loop_device, timer); 2215 struct loop_worker *pos, *worker; 2216 2217 spin_lock_irq(&lo->lo_work_lock); 2218 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 2219 idle_list) { 2220 if (time_is_after_jiffies(worker->last_ran_at + 2221 LOOP_IDLE_WORKER_TIMEOUT)) 2222 break; 2223 list_del(&worker->idle_list); 2224 rb_erase(&worker->rb_node, &lo->worker_tree); 2225 css_put(worker->blkcg_css); 2226 kfree(worker); 2227 } 2228 if (!list_empty(&lo->idle_worker_list)) 2229 loop_set_timer(lo); 2230 spin_unlock_irq(&lo->lo_work_lock); 2231 } 2232 2233 static const struct blk_mq_ops loop_mq_ops = { 2234 .queue_rq = loop_queue_rq, 2235 .complete = lo_complete_rq, 2236 }; 2237 2238 static int loop_add(int i) 2239 { 2240 struct loop_device *lo; 2241 struct gendisk *disk; 2242 int err; 2243 2244 err = -ENOMEM; 2245 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2246 if (!lo) 2247 goto out; 2248 lo->lo_state = Lo_unbound; 2249 2250 err = mutex_lock_killable(&loop_ctl_mutex); 2251 if (err) 2252 goto out_free_dev; 2253 2254 /* allocate id, if @id >= 0, we're requesting that specific id */ 2255 if (i >= 0) { 2256 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2257 if (err == -ENOSPC) 2258 err = -EEXIST; 2259 } else { 2260 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2261 } 2262 if (err < 0) 2263 goto out_unlock; 2264 i = err; 2265 2266 err = -ENOMEM; 2267 lo->tag_set.ops = &loop_mq_ops; 2268 lo->tag_set.nr_hw_queues = 1; 2269 lo->tag_set.queue_depth = 128; 2270 lo->tag_set.numa_node = NUMA_NO_NODE; 2271 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2272 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING; 2273 lo->tag_set.driver_data = lo; 2274 2275 err = blk_mq_alloc_tag_set(&lo->tag_set); 2276 if (err) 2277 goto out_free_idr; 2278 2279 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, lo); 2280 if (IS_ERR(disk)) { 2281 err = PTR_ERR(disk); 2282 goto out_cleanup_tags; 2283 } 2284 lo->lo_queue = lo->lo_disk->queue; 2285 2286 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 2287 2288 /* 2289 * By default, we do buffer IO, so it doesn't make sense to enable 2290 * merge because the I/O submitted to backing file is handled page by 2291 * page. For directio mode, merge does help to dispatch bigger request 2292 * to underlayer disk. We will enable merge once directio is enabled. 2293 */ 2294 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2295 2296 /* 2297 * Disable partition scanning by default. The in-kernel partition 2298 * scanning can be requested individually per-device during its 2299 * setup. Userspace can always add and remove partitions from all 2300 * devices. The needed partition minors are allocated from the 2301 * extended minor space, the main loop device numbers will continue 2302 * to match the loop minors, regardless of the number of partitions 2303 * used. 2304 * 2305 * If max_part is given, partition scanning is globally enabled for 2306 * all loop devices. The minors for the main loop devices will be 2307 * multiples of max_part. 2308 * 2309 * Note: Global-for-all-devices, set-only-at-init, read-only module 2310 * parameteters like 'max_loop' and 'max_part' make things needlessly 2311 * complicated, are too static, inflexible and may surprise 2312 * userspace tools. Parameters like this in general should be avoided. 2313 */ 2314 if (!part_shift) 2315 disk->flags |= GENHD_FL_NO_PART_SCAN; 2316 disk->flags |= GENHD_FL_EXT_DEVT; 2317 atomic_set(&lo->lo_refcnt, 0); 2318 mutex_init(&lo->lo_mutex); 2319 lo->lo_number = i; 2320 spin_lock_init(&lo->lo_lock); 2321 spin_lock_init(&lo->lo_work_lock); 2322 disk->major = LOOP_MAJOR; 2323 disk->first_minor = i << part_shift; 2324 disk->minors = 1 << part_shift; 2325 disk->fops = &lo_fops; 2326 disk->private_data = lo; 2327 disk->queue = lo->lo_queue; 2328 sprintf(disk->disk_name, "loop%d", i); 2329 add_disk(disk); 2330 mutex_unlock(&loop_ctl_mutex); 2331 return i; 2332 2333 out_cleanup_tags: 2334 blk_mq_free_tag_set(&lo->tag_set); 2335 out_free_idr: 2336 idr_remove(&loop_index_idr, i); 2337 out_unlock: 2338 mutex_unlock(&loop_ctl_mutex); 2339 out_free_dev: 2340 kfree(lo); 2341 out: 2342 return err; 2343 } 2344 2345 static void loop_remove(struct loop_device *lo) 2346 { 2347 del_gendisk(lo->lo_disk); 2348 blk_cleanup_disk(lo->lo_disk); 2349 blk_mq_free_tag_set(&lo->tag_set); 2350 mutex_destroy(&lo->lo_mutex); 2351 kfree(lo); 2352 } 2353 2354 static void loop_probe(dev_t dev) 2355 { 2356 int idx = MINOR(dev) >> part_shift; 2357 2358 if (max_loop && idx >= max_loop) 2359 return; 2360 loop_add(idx); 2361 } 2362 2363 static int loop_control_remove(int idx) 2364 { 2365 struct loop_device *lo; 2366 int ret; 2367 2368 if (idx < 0) { 2369 pr_warn("deleting an unspecified loop device is not supported.\n"); 2370 return -EINVAL; 2371 } 2372 2373 ret = mutex_lock_killable(&loop_ctl_mutex); 2374 if (ret) 2375 return ret; 2376 2377 lo = idr_find(&loop_index_idr, idx); 2378 if (!lo) { 2379 ret = -ENODEV; 2380 goto out_unlock_ctrl; 2381 } 2382 2383 ret = mutex_lock_killable(&lo->lo_mutex); 2384 if (ret) 2385 goto out_unlock_ctrl; 2386 if (lo->lo_state != Lo_unbound || 2387 atomic_read(&lo->lo_refcnt) > 0) { 2388 mutex_unlock(&lo->lo_mutex); 2389 ret = -EBUSY; 2390 goto out_unlock_ctrl; 2391 } 2392 lo->lo_state = Lo_deleting; 2393 mutex_unlock(&lo->lo_mutex); 2394 2395 idr_remove(&loop_index_idr, lo->lo_number); 2396 loop_remove(lo); 2397 out_unlock_ctrl: 2398 mutex_unlock(&loop_ctl_mutex); 2399 return ret; 2400 } 2401 2402 static int loop_control_get_free(int idx) 2403 { 2404 struct loop_device *lo; 2405 int id, ret; 2406 2407 ret = mutex_lock_killable(&loop_ctl_mutex); 2408 if (ret) 2409 return ret; 2410 idr_for_each_entry(&loop_index_idr, lo, id) { 2411 if (lo->lo_state == Lo_unbound) 2412 goto found; 2413 } 2414 mutex_unlock(&loop_ctl_mutex); 2415 return loop_add(-1); 2416 found: 2417 mutex_unlock(&loop_ctl_mutex); 2418 return id; 2419 } 2420 2421 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2422 unsigned long parm) 2423 { 2424 switch (cmd) { 2425 case LOOP_CTL_ADD: 2426 return loop_add(parm); 2427 case LOOP_CTL_REMOVE: 2428 return loop_control_remove(parm); 2429 case LOOP_CTL_GET_FREE: 2430 return loop_control_get_free(parm); 2431 default: 2432 return -ENOSYS; 2433 } 2434 } 2435 2436 static const struct file_operations loop_ctl_fops = { 2437 .open = nonseekable_open, 2438 .unlocked_ioctl = loop_control_ioctl, 2439 .compat_ioctl = loop_control_ioctl, 2440 .owner = THIS_MODULE, 2441 .llseek = noop_llseek, 2442 }; 2443 2444 static struct miscdevice loop_misc = { 2445 .minor = LOOP_CTRL_MINOR, 2446 .name = "loop-control", 2447 .fops = &loop_ctl_fops, 2448 }; 2449 2450 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2451 MODULE_ALIAS("devname:loop-control"); 2452 2453 static int __init loop_init(void) 2454 { 2455 int i, nr; 2456 int err; 2457 2458 part_shift = 0; 2459 if (max_part > 0) { 2460 part_shift = fls(max_part); 2461 2462 /* 2463 * Adjust max_part according to part_shift as it is exported 2464 * to user space so that user can decide correct minor number 2465 * if [s]he want to create more devices. 2466 * 2467 * Note that -1 is required because partition 0 is reserved 2468 * for the whole disk. 2469 */ 2470 max_part = (1UL << part_shift) - 1; 2471 } 2472 2473 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2474 err = -EINVAL; 2475 goto err_out; 2476 } 2477 2478 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2479 err = -EINVAL; 2480 goto err_out; 2481 } 2482 2483 /* 2484 * If max_loop is specified, create that many devices upfront. 2485 * This also becomes a hard limit. If max_loop is not specified, 2486 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2487 * init time. Loop devices can be requested on-demand with the 2488 * /dev/loop-control interface, or be instantiated by accessing 2489 * a 'dead' device node. 2490 */ 2491 if (max_loop) 2492 nr = max_loop; 2493 else 2494 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2495 2496 err = misc_register(&loop_misc); 2497 if (err < 0) 2498 goto err_out; 2499 2500 2501 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2502 err = -EIO; 2503 goto misc_out; 2504 } 2505 2506 /* pre-create number of devices given by config or max_loop */ 2507 for (i = 0; i < nr; i++) 2508 loop_add(i); 2509 2510 printk(KERN_INFO "loop: module loaded\n"); 2511 return 0; 2512 2513 misc_out: 2514 misc_deregister(&loop_misc); 2515 err_out: 2516 return err; 2517 } 2518 2519 static void __exit loop_exit(void) 2520 { 2521 struct loop_device *lo; 2522 int id; 2523 2524 unregister_blkdev(LOOP_MAJOR, "loop"); 2525 misc_deregister(&loop_misc); 2526 2527 mutex_lock(&loop_ctl_mutex); 2528 idr_for_each_entry(&loop_index_idr, lo, id) 2529 loop_remove(lo); 2530 mutex_unlock(&loop_ctl_mutex); 2531 2532 idr_destroy(&loop_index_idr); 2533 } 2534 2535 module_init(loop_init); 2536 module_exit(loop_exit); 2537 2538 #ifndef MODULE 2539 static int __init max_loop_setup(char *str) 2540 { 2541 max_loop = simple_strtol(str, NULL, 0); 2542 return 1; 2543 } 2544 2545 __setup("max_loop=", max_loop_setup); 2546 #endif 2547