xref: /openbmc/linux/drivers/block/loop.c (revision e03a3d7a)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80 
81 #include <asm/uaccess.h>
82 
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85 
86 static int max_part;
87 static int part_shift;
88 
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 			struct page *raw_page, unsigned raw_off,
91 			struct page *loop_page, unsigned loop_off,
92 			int size, sector_t real_block)
93 {
94 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 	char *in, *out, *key;
97 	int i, keysize;
98 
99 	if (cmd == READ) {
100 		in = raw_buf;
101 		out = loop_buf;
102 	} else {
103 		in = loop_buf;
104 		out = raw_buf;
105 	}
106 
107 	key = lo->lo_encrypt_key;
108 	keysize = lo->lo_encrypt_key_size;
109 	for (i = 0; i < size; i++)
110 		*out++ = *in++ ^ key[(i & 511) % keysize];
111 
112 	kunmap_atomic(loop_buf);
113 	kunmap_atomic(raw_buf);
114 	cond_resched();
115 	return 0;
116 }
117 
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 	if (unlikely(info->lo_encrypt_key_size <= 0))
121 		return -EINVAL;
122 	return 0;
123 }
124 
125 static struct loop_func_table none_funcs = {
126 	.number = LO_CRYPT_NONE,
127 };
128 
129 static struct loop_func_table xor_funcs = {
130 	.number = LO_CRYPT_XOR,
131 	.transfer = transfer_xor,
132 	.init = xor_init
133 };
134 
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 	&none_funcs,
138 	&xor_funcs
139 };
140 
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 	loff_t loopsize;
144 
145 	/* Compute loopsize in bytes */
146 	loopsize = i_size_read(file->f_mapping->host);
147 	if (offset > 0)
148 		loopsize -= offset;
149 	/* offset is beyond i_size, weird but possible */
150 	if (loopsize < 0)
151 		return 0;
152 
153 	if (sizelimit > 0 && sizelimit < loopsize)
154 		loopsize = sizelimit;
155 	/*
156 	 * Unfortunately, if we want to do I/O on the device,
157 	 * the number of 512-byte sectors has to fit into a sector_t.
158 	 */
159 	return loopsize >> 9;
160 }
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166 
167 static int
168 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
169 {
170 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
171 	sector_t x = (sector_t)size;
172 	struct block_device *bdev = lo->lo_device;
173 
174 	if (unlikely((loff_t)x != size))
175 		return -EFBIG;
176 	if (lo->lo_offset != offset)
177 		lo->lo_offset = offset;
178 	if (lo->lo_sizelimit != sizelimit)
179 		lo->lo_sizelimit = sizelimit;
180 	set_capacity(lo->lo_disk, x);
181 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
182 	/* let user-space know about the new size */
183 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
184 	return 0;
185 }
186 
187 static inline int
188 lo_do_transfer(struct loop_device *lo, int cmd,
189 	       struct page *rpage, unsigned roffs,
190 	       struct page *lpage, unsigned loffs,
191 	       int size, sector_t rblock)
192 {
193 	int ret;
194 
195 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
196 	if (likely(!ret))
197 		return 0;
198 
199 	printk_ratelimited(KERN_ERR
200 		"loop: Transfer error at byte offset %llu, length %i.\n",
201 		(unsigned long long)rblock << 9, size);
202 	return ret;
203 }
204 
205 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
206 {
207 	struct iov_iter i;
208 	ssize_t bw;
209 
210 	iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
211 
212 	file_start_write(file);
213 	bw = vfs_iter_write(file, &i, ppos);
214 	file_end_write(file);
215 
216 	if (likely(bw ==  bvec->bv_len))
217 		return 0;
218 
219 	printk_ratelimited(KERN_ERR
220 		"loop: Write error at byte offset %llu, length %i.\n",
221 		(unsigned long long)*ppos, bvec->bv_len);
222 	if (bw >= 0)
223 		bw = -EIO;
224 	return bw;
225 }
226 
227 static int lo_write_simple(struct loop_device *lo, struct request *rq,
228 		loff_t pos)
229 {
230 	struct bio_vec bvec;
231 	struct req_iterator iter;
232 	int ret = 0;
233 
234 	rq_for_each_segment(bvec, rq, iter) {
235 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
236 		if (ret < 0)
237 			break;
238 		cond_resched();
239 	}
240 
241 	return ret;
242 }
243 
244 /*
245  * This is the slow, transforming version that needs to double buffer the
246  * data as it cannot do the transformations in place without having direct
247  * access to the destination pages of the backing file.
248  */
249 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
250 		loff_t pos)
251 {
252 	struct bio_vec bvec, b;
253 	struct req_iterator iter;
254 	struct page *page;
255 	int ret = 0;
256 
257 	page = alloc_page(GFP_NOIO);
258 	if (unlikely(!page))
259 		return -ENOMEM;
260 
261 	rq_for_each_segment(bvec, rq, iter) {
262 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
263 			bvec.bv_offset, bvec.bv_len, pos >> 9);
264 		if (unlikely(ret))
265 			break;
266 
267 		b.bv_page = page;
268 		b.bv_offset = 0;
269 		b.bv_len = bvec.bv_len;
270 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
271 		if (ret < 0)
272 			break;
273 	}
274 
275 	__free_page(page);
276 	return ret;
277 }
278 
279 static int lo_read_simple(struct loop_device *lo, struct request *rq,
280 		loff_t pos)
281 {
282 	struct bio_vec bvec;
283 	struct req_iterator iter;
284 	struct iov_iter i;
285 	ssize_t len;
286 
287 	rq_for_each_segment(bvec, rq, iter) {
288 		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
289 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
290 		if (len < 0)
291 			return len;
292 
293 		flush_dcache_page(bvec.bv_page);
294 
295 		if (len != bvec.bv_len) {
296 			struct bio *bio;
297 
298 			__rq_for_each_bio(bio, rq)
299 				zero_fill_bio(bio);
300 			break;
301 		}
302 		cond_resched();
303 	}
304 
305 	return 0;
306 }
307 
308 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
309 		loff_t pos)
310 {
311 	struct bio_vec bvec, b;
312 	struct req_iterator iter;
313 	struct iov_iter i;
314 	struct page *page;
315 	ssize_t len;
316 	int ret = 0;
317 
318 	page = alloc_page(GFP_NOIO);
319 	if (unlikely(!page))
320 		return -ENOMEM;
321 
322 	rq_for_each_segment(bvec, rq, iter) {
323 		loff_t offset = pos;
324 
325 		b.bv_page = page;
326 		b.bv_offset = 0;
327 		b.bv_len = bvec.bv_len;
328 
329 		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
330 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
331 		if (len < 0) {
332 			ret = len;
333 			goto out_free_page;
334 		}
335 
336 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
337 			bvec.bv_offset, len, offset >> 9);
338 		if (ret)
339 			goto out_free_page;
340 
341 		flush_dcache_page(bvec.bv_page);
342 
343 		if (len != bvec.bv_len) {
344 			struct bio *bio;
345 
346 			__rq_for_each_bio(bio, rq)
347 				zero_fill_bio(bio);
348 			break;
349 		}
350 	}
351 
352 	ret = 0;
353 out_free_page:
354 	__free_page(page);
355 	return ret;
356 }
357 
358 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
359 {
360 	/*
361 	 * We use punch hole to reclaim the free space used by the
362 	 * image a.k.a. discard. However we do not support discard if
363 	 * encryption is enabled, because it may give an attacker
364 	 * useful information.
365 	 */
366 	struct file *file = lo->lo_backing_file;
367 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
368 	int ret;
369 
370 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
371 		ret = -EOPNOTSUPP;
372 		goto out;
373 	}
374 
375 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
376 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
377 		ret = -EIO;
378  out:
379 	return ret;
380 }
381 
382 static int lo_req_flush(struct loop_device *lo, struct request *rq)
383 {
384 	struct file *file = lo->lo_backing_file;
385 	int ret = vfs_fsync(file, 0);
386 	if (unlikely(ret && ret != -EINVAL))
387 		ret = -EIO;
388 
389 	return ret;
390 }
391 
392 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
393 {
394 	loff_t pos;
395 	int ret;
396 
397 	pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
398 
399 	if (rq->cmd_flags & REQ_WRITE) {
400 		if (rq->cmd_flags & REQ_FLUSH)
401 			ret = lo_req_flush(lo, rq);
402 		else if (rq->cmd_flags & REQ_DISCARD)
403 			ret = lo_discard(lo, rq, pos);
404 		else if (lo->transfer)
405 			ret = lo_write_transfer(lo, rq, pos);
406 		else
407 			ret = lo_write_simple(lo, rq, pos);
408 
409 	} else {
410 		if (lo->transfer)
411 			ret = lo_read_transfer(lo, rq, pos);
412 		else
413 			ret = lo_read_simple(lo, rq, pos);
414 	}
415 
416 	return ret;
417 }
418 
419 struct switch_request {
420 	struct file *file;
421 	struct completion wait;
422 };
423 
424 /*
425  * Do the actual switch; called from the BIO completion routine
426  */
427 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
428 {
429 	struct file *file = p->file;
430 	struct file *old_file = lo->lo_backing_file;
431 	struct address_space *mapping;
432 
433 	/* if no new file, only flush of queued bios requested */
434 	if (!file)
435 		return;
436 
437 	mapping = file->f_mapping;
438 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
439 	lo->lo_backing_file = file;
440 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
441 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
442 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
443 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
444 }
445 
446 /*
447  * loop_switch performs the hard work of switching a backing store.
448  * First it needs to flush existing IO, it does this by sending a magic
449  * BIO down the pipe. The completion of this BIO does the actual switch.
450  */
451 static int loop_switch(struct loop_device *lo, struct file *file)
452 {
453 	struct switch_request w;
454 
455 	w.file = file;
456 
457 	/* freeze queue and wait for completion of scheduled requests */
458 	blk_mq_freeze_queue(lo->lo_queue);
459 
460 	/* do the switch action */
461 	do_loop_switch(lo, &w);
462 
463 	/* unfreeze */
464 	blk_mq_unfreeze_queue(lo->lo_queue);
465 
466 	return 0;
467 }
468 
469 /*
470  * Helper to flush the IOs in loop, but keeping loop thread running
471  */
472 static int loop_flush(struct loop_device *lo)
473 {
474 	return loop_switch(lo, NULL);
475 }
476 
477 static void loop_reread_partitions(struct loop_device *lo,
478 				   struct block_device *bdev)
479 {
480 	int rc;
481 
482 	/*
483 	 * bd_mutex has been held already in release path, so don't
484 	 * acquire it if this function is called in such case.
485 	 *
486 	 * If the reread partition isn't from release path, lo_refcnt
487 	 * must be at least one and it can only become zero when the
488 	 * current holder is released.
489 	 */
490 	if (!atomic_read(&lo->lo_refcnt))
491 		rc = __blkdev_reread_part(bdev);
492 	else
493 		rc = blkdev_reread_part(bdev);
494 	if (rc)
495 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
496 			__func__, lo->lo_number, lo->lo_file_name, rc);
497 }
498 
499 /*
500  * loop_change_fd switched the backing store of a loopback device to
501  * a new file. This is useful for operating system installers to free up
502  * the original file and in High Availability environments to switch to
503  * an alternative location for the content in case of server meltdown.
504  * This can only work if the loop device is used read-only, and if the
505  * new backing store is the same size and type as the old backing store.
506  */
507 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
508 			  unsigned int arg)
509 {
510 	struct file	*file, *old_file;
511 	struct inode	*inode;
512 	int		error;
513 
514 	error = -ENXIO;
515 	if (lo->lo_state != Lo_bound)
516 		goto out;
517 
518 	/* the loop device has to be read-only */
519 	error = -EINVAL;
520 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
521 		goto out;
522 
523 	error = -EBADF;
524 	file = fget(arg);
525 	if (!file)
526 		goto out;
527 
528 	inode = file->f_mapping->host;
529 	old_file = lo->lo_backing_file;
530 
531 	error = -EINVAL;
532 
533 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
534 		goto out_putf;
535 
536 	/* size of the new backing store needs to be the same */
537 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
538 		goto out_putf;
539 
540 	/* and ... switch */
541 	error = loop_switch(lo, file);
542 	if (error)
543 		goto out_putf;
544 
545 	fput(old_file);
546 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
547 		loop_reread_partitions(lo, bdev);
548 	return 0;
549 
550  out_putf:
551 	fput(file);
552  out:
553 	return error;
554 }
555 
556 static inline int is_loop_device(struct file *file)
557 {
558 	struct inode *i = file->f_mapping->host;
559 
560 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
561 }
562 
563 /* loop sysfs attributes */
564 
565 static ssize_t loop_attr_show(struct device *dev, char *page,
566 			      ssize_t (*callback)(struct loop_device *, char *))
567 {
568 	struct gendisk *disk = dev_to_disk(dev);
569 	struct loop_device *lo = disk->private_data;
570 
571 	return callback(lo, page);
572 }
573 
574 #define LOOP_ATTR_RO(_name)						\
575 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
576 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
577 				struct device_attribute *attr, char *b)	\
578 {									\
579 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
580 }									\
581 static struct device_attribute loop_attr_##_name =			\
582 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
583 
584 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
585 {
586 	ssize_t ret;
587 	char *p = NULL;
588 
589 	spin_lock_irq(&lo->lo_lock);
590 	if (lo->lo_backing_file)
591 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
592 	spin_unlock_irq(&lo->lo_lock);
593 
594 	if (IS_ERR_OR_NULL(p))
595 		ret = PTR_ERR(p);
596 	else {
597 		ret = strlen(p);
598 		memmove(buf, p, ret);
599 		buf[ret++] = '\n';
600 		buf[ret] = 0;
601 	}
602 
603 	return ret;
604 }
605 
606 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
607 {
608 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
609 }
610 
611 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
612 {
613 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
614 }
615 
616 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
617 {
618 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
619 
620 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
621 }
622 
623 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
624 {
625 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
626 
627 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
628 }
629 
630 LOOP_ATTR_RO(backing_file);
631 LOOP_ATTR_RO(offset);
632 LOOP_ATTR_RO(sizelimit);
633 LOOP_ATTR_RO(autoclear);
634 LOOP_ATTR_RO(partscan);
635 
636 static struct attribute *loop_attrs[] = {
637 	&loop_attr_backing_file.attr,
638 	&loop_attr_offset.attr,
639 	&loop_attr_sizelimit.attr,
640 	&loop_attr_autoclear.attr,
641 	&loop_attr_partscan.attr,
642 	NULL,
643 };
644 
645 static struct attribute_group loop_attribute_group = {
646 	.name = "loop",
647 	.attrs= loop_attrs,
648 };
649 
650 static int loop_sysfs_init(struct loop_device *lo)
651 {
652 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
653 				  &loop_attribute_group);
654 }
655 
656 static void loop_sysfs_exit(struct loop_device *lo)
657 {
658 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
659 			   &loop_attribute_group);
660 }
661 
662 static void loop_config_discard(struct loop_device *lo)
663 {
664 	struct file *file = lo->lo_backing_file;
665 	struct inode *inode = file->f_mapping->host;
666 	struct request_queue *q = lo->lo_queue;
667 
668 	/*
669 	 * We use punch hole to reclaim the free space used by the
670 	 * image a.k.a. discard. However we do not support discard if
671 	 * encryption is enabled, because it may give an attacker
672 	 * useful information.
673 	 */
674 	if ((!file->f_op->fallocate) ||
675 	    lo->lo_encrypt_key_size) {
676 		q->limits.discard_granularity = 0;
677 		q->limits.discard_alignment = 0;
678 		blk_queue_max_discard_sectors(q, 0);
679 		q->limits.discard_zeroes_data = 0;
680 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
681 		return;
682 	}
683 
684 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
685 	q->limits.discard_alignment = 0;
686 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
687 	q->limits.discard_zeroes_data = 1;
688 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
689 }
690 
691 static void loop_unprepare_queue(struct loop_device *lo)
692 {
693 	flush_kthread_worker(&lo->worker);
694 	kthread_stop(lo->worker_task);
695 }
696 
697 static int loop_prepare_queue(struct loop_device *lo)
698 {
699 	init_kthread_worker(&lo->worker);
700 	lo->worker_task = kthread_run(kthread_worker_fn,
701 			&lo->worker, "loop%d", lo->lo_number);
702 	if (IS_ERR(lo->worker_task))
703 		return -ENOMEM;
704 	set_user_nice(lo->worker_task, MIN_NICE);
705 	return 0;
706 }
707 
708 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
709 		       struct block_device *bdev, unsigned int arg)
710 {
711 	struct file	*file, *f;
712 	struct inode	*inode;
713 	struct address_space *mapping;
714 	unsigned lo_blocksize;
715 	int		lo_flags = 0;
716 	int		error;
717 	loff_t		size;
718 
719 	/* This is safe, since we have a reference from open(). */
720 	__module_get(THIS_MODULE);
721 
722 	error = -EBADF;
723 	file = fget(arg);
724 	if (!file)
725 		goto out;
726 
727 	error = -EBUSY;
728 	if (lo->lo_state != Lo_unbound)
729 		goto out_putf;
730 
731 	/* Avoid recursion */
732 	f = file;
733 	while (is_loop_device(f)) {
734 		struct loop_device *l;
735 
736 		if (f->f_mapping->host->i_bdev == bdev)
737 			goto out_putf;
738 
739 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
740 		if (l->lo_state == Lo_unbound) {
741 			error = -EINVAL;
742 			goto out_putf;
743 		}
744 		f = l->lo_backing_file;
745 	}
746 
747 	mapping = file->f_mapping;
748 	inode = mapping->host;
749 
750 	error = -EINVAL;
751 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
752 		goto out_putf;
753 
754 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
755 	    !file->f_op->write_iter)
756 		lo_flags |= LO_FLAGS_READ_ONLY;
757 
758 	lo_blocksize = S_ISBLK(inode->i_mode) ?
759 		inode->i_bdev->bd_block_size : PAGE_SIZE;
760 
761 	error = -EFBIG;
762 	size = get_loop_size(lo, file);
763 	if ((loff_t)(sector_t)size != size)
764 		goto out_putf;
765 	error = loop_prepare_queue(lo);
766 	if (error)
767 		goto out_putf;
768 
769 	error = 0;
770 
771 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
772 
773 	lo->lo_blocksize = lo_blocksize;
774 	lo->lo_device = bdev;
775 	lo->lo_flags = lo_flags;
776 	lo->lo_backing_file = file;
777 	lo->transfer = NULL;
778 	lo->ioctl = NULL;
779 	lo->lo_sizelimit = 0;
780 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
781 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
782 
783 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
784 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
785 
786 	set_capacity(lo->lo_disk, size);
787 	bd_set_size(bdev, size << 9);
788 	loop_sysfs_init(lo);
789 	/* let user-space know about the new size */
790 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
791 
792 	set_blocksize(bdev, lo_blocksize);
793 
794 	lo->lo_state = Lo_bound;
795 	if (part_shift)
796 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
797 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
798 		loop_reread_partitions(lo, bdev);
799 
800 	/* Grab the block_device to prevent its destruction after we
801 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
802 	 */
803 	bdgrab(bdev);
804 	return 0;
805 
806  out_putf:
807 	fput(file);
808  out:
809 	/* This is safe: open() is still holding a reference. */
810 	module_put(THIS_MODULE);
811 	return error;
812 }
813 
814 static int
815 loop_release_xfer(struct loop_device *lo)
816 {
817 	int err = 0;
818 	struct loop_func_table *xfer = lo->lo_encryption;
819 
820 	if (xfer) {
821 		if (xfer->release)
822 			err = xfer->release(lo);
823 		lo->transfer = NULL;
824 		lo->lo_encryption = NULL;
825 		module_put(xfer->owner);
826 	}
827 	return err;
828 }
829 
830 static int
831 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
832 	       const struct loop_info64 *i)
833 {
834 	int err = 0;
835 
836 	if (xfer) {
837 		struct module *owner = xfer->owner;
838 
839 		if (!try_module_get(owner))
840 			return -EINVAL;
841 		if (xfer->init)
842 			err = xfer->init(lo, i);
843 		if (err)
844 			module_put(owner);
845 		else
846 			lo->lo_encryption = xfer;
847 	}
848 	return err;
849 }
850 
851 static int loop_clr_fd(struct loop_device *lo)
852 {
853 	struct file *filp = lo->lo_backing_file;
854 	gfp_t gfp = lo->old_gfp_mask;
855 	struct block_device *bdev = lo->lo_device;
856 
857 	if (lo->lo_state != Lo_bound)
858 		return -ENXIO;
859 
860 	/*
861 	 * If we've explicitly asked to tear down the loop device,
862 	 * and it has an elevated reference count, set it for auto-teardown when
863 	 * the last reference goes away. This stops $!~#$@ udev from
864 	 * preventing teardown because it decided that it needs to run blkid on
865 	 * the loopback device whenever they appear. xfstests is notorious for
866 	 * failing tests because blkid via udev races with a losetup
867 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
868 	 * command to fail with EBUSY.
869 	 */
870 	if (atomic_read(&lo->lo_refcnt) > 1) {
871 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
872 		mutex_unlock(&lo->lo_ctl_mutex);
873 		return 0;
874 	}
875 
876 	if (filp == NULL)
877 		return -EINVAL;
878 
879 	/* freeze request queue during the transition */
880 	blk_mq_freeze_queue(lo->lo_queue);
881 
882 	spin_lock_irq(&lo->lo_lock);
883 	lo->lo_state = Lo_rundown;
884 	lo->lo_backing_file = NULL;
885 	spin_unlock_irq(&lo->lo_lock);
886 
887 	loop_release_xfer(lo);
888 	lo->transfer = NULL;
889 	lo->ioctl = NULL;
890 	lo->lo_device = NULL;
891 	lo->lo_encryption = NULL;
892 	lo->lo_offset = 0;
893 	lo->lo_sizelimit = 0;
894 	lo->lo_encrypt_key_size = 0;
895 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
896 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
897 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
898 	if (bdev) {
899 		bdput(bdev);
900 		invalidate_bdev(bdev);
901 	}
902 	set_capacity(lo->lo_disk, 0);
903 	loop_sysfs_exit(lo);
904 	if (bdev) {
905 		bd_set_size(bdev, 0);
906 		/* let user-space know about this change */
907 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
908 	}
909 	mapping_set_gfp_mask(filp->f_mapping, gfp);
910 	lo->lo_state = Lo_unbound;
911 	/* This is safe: open() is still holding a reference. */
912 	module_put(THIS_MODULE);
913 	blk_mq_unfreeze_queue(lo->lo_queue);
914 
915 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
916 		loop_reread_partitions(lo, bdev);
917 	lo->lo_flags = 0;
918 	if (!part_shift)
919 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
920 	loop_unprepare_queue(lo);
921 	mutex_unlock(&lo->lo_ctl_mutex);
922 	/*
923 	 * Need not hold lo_ctl_mutex to fput backing file.
924 	 * Calling fput holding lo_ctl_mutex triggers a circular
925 	 * lock dependency possibility warning as fput can take
926 	 * bd_mutex which is usually taken before lo_ctl_mutex.
927 	 */
928 	fput(filp);
929 	return 0;
930 }
931 
932 static int
933 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
934 {
935 	int err;
936 	struct loop_func_table *xfer;
937 	kuid_t uid = current_uid();
938 
939 	if (lo->lo_encrypt_key_size &&
940 	    !uid_eq(lo->lo_key_owner, uid) &&
941 	    !capable(CAP_SYS_ADMIN))
942 		return -EPERM;
943 	if (lo->lo_state != Lo_bound)
944 		return -ENXIO;
945 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
946 		return -EINVAL;
947 
948 	err = loop_release_xfer(lo);
949 	if (err)
950 		return err;
951 
952 	if (info->lo_encrypt_type) {
953 		unsigned int type = info->lo_encrypt_type;
954 
955 		if (type >= MAX_LO_CRYPT)
956 			return -EINVAL;
957 		xfer = xfer_funcs[type];
958 		if (xfer == NULL)
959 			return -EINVAL;
960 	} else
961 		xfer = NULL;
962 
963 	err = loop_init_xfer(lo, xfer, info);
964 	if (err)
965 		return err;
966 
967 	if (lo->lo_offset != info->lo_offset ||
968 	    lo->lo_sizelimit != info->lo_sizelimit)
969 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
970 			return -EFBIG;
971 
972 	loop_config_discard(lo);
973 
974 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
975 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
976 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
977 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
978 
979 	if (!xfer)
980 		xfer = &none_funcs;
981 	lo->transfer = xfer->transfer;
982 	lo->ioctl = xfer->ioctl;
983 
984 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
985 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
986 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
987 
988 	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
989 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
990 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
991 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
992 		loop_reread_partitions(lo, lo->lo_device);
993 	}
994 
995 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
996 	lo->lo_init[0] = info->lo_init[0];
997 	lo->lo_init[1] = info->lo_init[1];
998 	if (info->lo_encrypt_key_size) {
999 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1000 		       info->lo_encrypt_key_size);
1001 		lo->lo_key_owner = uid;
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 static int
1008 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1009 {
1010 	struct file *file = lo->lo_backing_file;
1011 	struct kstat stat;
1012 	int error;
1013 
1014 	if (lo->lo_state != Lo_bound)
1015 		return -ENXIO;
1016 	error = vfs_getattr(&file->f_path, &stat);
1017 	if (error)
1018 		return error;
1019 	memset(info, 0, sizeof(*info));
1020 	info->lo_number = lo->lo_number;
1021 	info->lo_device = huge_encode_dev(stat.dev);
1022 	info->lo_inode = stat.ino;
1023 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1024 	info->lo_offset = lo->lo_offset;
1025 	info->lo_sizelimit = lo->lo_sizelimit;
1026 	info->lo_flags = lo->lo_flags;
1027 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1028 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1029 	info->lo_encrypt_type =
1030 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1031 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1032 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1033 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1034 		       lo->lo_encrypt_key_size);
1035 	}
1036 	return 0;
1037 }
1038 
1039 static void
1040 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1041 {
1042 	memset(info64, 0, sizeof(*info64));
1043 	info64->lo_number = info->lo_number;
1044 	info64->lo_device = info->lo_device;
1045 	info64->lo_inode = info->lo_inode;
1046 	info64->lo_rdevice = info->lo_rdevice;
1047 	info64->lo_offset = info->lo_offset;
1048 	info64->lo_sizelimit = 0;
1049 	info64->lo_encrypt_type = info->lo_encrypt_type;
1050 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1051 	info64->lo_flags = info->lo_flags;
1052 	info64->lo_init[0] = info->lo_init[0];
1053 	info64->lo_init[1] = info->lo_init[1];
1054 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1055 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1056 	else
1057 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1058 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1059 }
1060 
1061 static int
1062 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1063 {
1064 	memset(info, 0, sizeof(*info));
1065 	info->lo_number = info64->lo_number;
1066 	info->lo_device = info64->lo_device;
1067 	info->lo_inode = info64->lo_inode;
1068 	info->lo_rdevice = info64->lo_rdevice;
1069 	info->lo_offset = info64->lo_offset;
1070 	info->lo_encrypt_type = info64->lo_encrypt_type;
1071 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1072 	info->lo_flags = info64->lo_flags;
1073 	info->lo_init[0] = info64->lo_init[0];
1074 	info->lo_init[1] = info64->lo_init[1];
1075 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1076 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1077 	else
1078 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1079 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1080 
1081 	/* error in case values were truncated */
1082 	if (info->lo_device != info64->lo_device ||
1083 	    info->lo_rdevice != info64->lo_rdevice ||
1084 	    info->lo_inode != info64->lo_inode ||
1085 	    info->lo_offset != info64->lo_offset)
1086 		return -EOVERFLOW;
1087 
1088 	return 0;
1089 }
1090 
1091 static int
1092 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1093 {
1094 	struct loop_info info;
1095 	struct loop_info64 info64;
1096 
1097 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1098 		return -EFAULT;
1099 	loop_info64_from_old(&info, &info64);
1100 	return loop_set_status(lo, &info64);
1101 }
1102 
1103 static int
1104 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1105 {
1106 	struct loop_info64 info64;
1107 
1108 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1109 		return -EFAULT;
1110 	return loop_set_status(lo, &info64);
1111 }
1112 
1113 static int
1114 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1115 	struct loop_info info;
1116 	struct loop_info64 info64;
1117 	int err = 0;
1118 
1119 	if (!arg)
1120 		err = -EINVAL;
1121 	if (!err)
1122 		err = loop_get_status(lo, &info64);
1123 	if (!err)
1124 		err = loop_info64_to_old(&info64, &info);
1125 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1126 		err = -EFAULT;
1127 
1128 	return err;
1129 }
1130 
1131 static int
1132 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1133 	struct loop_info64 info64;
1134 	int err = 0;
1135 
1136 	if (!arg)
1137 		err = -EINVAL;
1138 	if (!err)
1139 		err = loop_get_status(lo, &info64);
1140 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1141 		err = -EFAULT;
1142 
1143 	return err;
1144 }
1145 
1146 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1147 {
1148 	if (unlikely(lo->lo_state != Lo_bound))
1149 		return -ENXIO;
1150 
1151 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1152 }
1153 
1154 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1155 	unsigned int cmd, unsigned long arg)
1156 {
1157 	struct loop_device *lo = bdev->bd_disk->private_data;
1158 	int err;
1159 
1160 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1161 	switch (cmd) {
1162 	case LOOP_SET_FD:
1163 		err = loop_set_fd(lo, mode, bdev, arg);
1164 		break;
1165 	case LOOP_CHANGE_FD:
1166 		err = loop_change_fd(lo, bdev, arg);
1167 		break;
1168 	case LOOP_CLR_FD:
1169 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1170 		err = loop_clr_fd(lo);
1171 		if (!err)
1172 			goto out_unlocked;
1173 		break;
1174 	case LOOP_SET_STATUS:
1175 		err = -EPERM;
1176 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1177 			err = loop_set_status_old(lo,
1178 					(struct loop_info __user *)arg);
1179 		break;
1180 	case LOOP_GET_STATUS:
1181 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1182 		break;
1183 	case LOOP_SET_STATUS64:
1184 		err = -EPERM;
1185 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1186 			err = loop_set_status64(lo,
1187 					(struct loop_info64 __user *) arg);
1188 		break;
1189 	case LOOP_GET_STATUS64:
1190 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1191 		break;
1192 	case LOOP_SET_CAPACITY:
1193 		err = -EPERM;
1194 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1195 			err = loop_set_capacity(lo, bdev);
1196 		break;
1197 	default:
1198 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1199 	}
1200 	mutex_unlock(&lo->lo_ctl_mutex);
1201 
1202 out_unlocked:
1203 	return err;
1204 }
1205 
1206 #ifdef CONFIG_COMPAT
1207 struct compat_loop_info {
1208 	compat_int_t	lo_number;      /* ioctl r/o */
1209 	compat_dev_t	lo_device;      /* ioctl r/o */
1210 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1211 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1212 	compat_int_t	lo_offset;
1213 	compat_int_t	lo_encrypt_type;
1214 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1215 	compat_int_t	lo_flags;       /* ioctl r/o */
1216 	char		lo_name[LO_NAME_SIZE];
1217 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1218 	compat_ulong_t	lo_init[2];
1219 	char		reserved[4];
1220 };
1221 
1222 /*
1223  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1224  * - noinlined to reduce stack space usage in main part of driver
1225  */
1226 static noinline int
1227 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1228 			struct loop_info64 *info64)
1229 {
1230 	struct compat_loop_info info;
1231 
1232 	if (copy_from_user(&info, arg, sizeof(info)))
1233 		return -EFAULT;
1234 
1235 	memset(info64, 0, sizeof(*info64));
1236 	info64->lo_number = info.lo_number;
1237 	info64->lo_device = info.lo_device;
1238 	info64->lo_inode = info.lo_inode;
1239 	info64->lo_rdevice = info.lo_rdevice;
1240 	info64->lo_offset = info.lo_offset;
1241 	info64->lo_sizelimit = 0;
1242 	info64->lo_encrypt_type = info.lo_encrypt_type;
1243 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1244 	info64->lo_flags = info.lo_flags;
1245 	info64->lo_init[0] = info.lo_init[0];
1246 	info64->lo_init[1] = info.lo_init[1];
1247 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1248 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1249 	else
1250 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1251 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1252 	return 0;
1253 }
1254 
1255 /*
1256  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1257  * - noinlined to reduce stack space usage in main part of driver
1258  */
1259 static noinline int
1260 loop_info64_to_compat(const struct loop_info64 *info64,
1261 		      struct compat_loop_info __user *arg)
1262 {
1263 	struct compat_loop_info info;
1264 
1265 	memset(&info, 0, sizeof(info));
1266 	info.lo_number = info64->lo_number;
1267 	info.lo_device = info64->lo_device;
1268 	info.lo_inode = info64->lo_inode;
1269 	info.lo_rdevice = info64->lo_rdevice;
1270 	info.lo_offset = info64->lo_offset;
1271 	info.lo_encrypt_type = info64->lo_encrypt_type;
1272 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1273 	info.lo_flags = info64->lo_flags;
1274 	info.lo_init[0] = info64->lo_init[0];
1275 	info.lo_init[1] = info64->lo_init[1];
1276 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1277 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1278 	else
1279 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1280 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1281 
1282 	/* error in case values were truncated */
1283 	if (info.lo_device != info64->lo_device ||
1284 	    info.lo_rdevice != info64->lo_rdevice ||
1285 	    info.lo_inode != info64->lo_inode ||
1286 	    info.lo_offset != info64->lo_offset ||
1287 	    info.lo_init[0] != info64->lo_init[0] ||
1288 	    info.lo_init[1] != info64->lo_init[1])
1289 		return -EOVERFLOW;
1290 
1291 	if (copy_to_user(arg, &info, sizeof(info)))
1292 		return -EFAULT;
1293 	return 0;
1294 }
1295 
1296 static int
1297 loop_set_status_compat(struct loop_device *lo,
1298 		       const struct compat_loop_info __user *arg)
1299 {
1300 	struct loop_info64 info64;
1301 	int ret;
1302 
1303 	ret = loop_info64_from_compat(arg, &info64);
1304 	if (ret < 0)
1305 		return ret;
1306 	return loop_set_status(lo, &info64);
1307 }
1308 
1309 static int
1310 loop_get_status_compat(struct loop_device *lo,
1311 		       struct compat_loop_info __user *arg)
1312 {
1313 	struct loop_info64 info64;
1314 	int err = 0;
1315 
1316 	if (!arg)
1317 		err = -EINVAL;
1318 	if (!err)
1319 		err = loop_get_status(lo, &info64);
1320 	if (!err)
1321 		err = loop_info64_to_compat(&info64, arg);
1322 	return err;
1323 }
1324 
1325 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1326 			   unsigned int cmd, unsigned long arg)
1327 {
1328 	struct loop_device *lo = bdev->bd_disk->private_data;
1329 	int err;
1330 
1331 	switch(cmd) {
1332 	case LOOP_SET_STATUS:
1333 		mutex_lock(&lo->lo_ctl_mutex);
1334 		err = loop_set_status_compat(
1335 			lo, (const struct compat_loop_info __user *) arg);
1336 		mutex_unlock(&lo->lo_ctl_mutex);
1337 		break;
1338 	case LOOP_GET_STATUS:
1339 		mutex_lock(&lo->lo_ctl_mutex);
1340 		err = loop_get_status_compat(
1341 			lo, (struct compat_loop_info __user *) arg);
1342 		mutex_unlock(&lo->lo_ctl_mutex);
1343 		break;
1344 	case LOOP_SET_CAPACITY:
1345 	case LOOP_CLR_FD:
1346 	case LOOP_GET_STATUS64:
1347 	case LOOP_SET_STATUS64:
1348 		arg = (unsigned long) compat_ptr(arg);
1349 	case LOOP_SET_FD:
1350 	case LOOP_CHANGE_FD:
1351 		err = lo_ioctl(bdev, mode, cmd, arg);
1352 		break;
1353 	default:
1354 		err = -ENOIOCTLCMD;
1355 		break;
1356 	}
1357 	return err;
1358 }
1359 #endif
1360 
1361 static int lo_open(struct block_device *bdev, fmode_t mode)
1362 {
1363 	struct loop_device *lo;
1364 	int err = 0;
1365 
1366 	mutex_lock(&loop_index_mutex);
1367 	lo = bdev->bd_disk->private_data;
1368 	if (!lo) {
1369 		err = -ENXIO;
1370 		goto out;
1371 	}
1372 
1373 	atomic_inc(&lo->lo_refcnt);
1374 out:
1375 	mutex_unlock(&loop_index_mutex);
1376 	return err;
1377 }
1378 
1379 static void lo_release(struct gendisk *disk, fmode_t mode)
1380 {
1381 	struct loop_device *lo = disk->private_data;
1382 	int err;
1383 
1384 	if (atomic_dec_return(&lo->lo_refcnt))
1385 		return;
1386 
1387 	mutex_lock(&lo->lo_ctl_mutex);
1388 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1389 		/*
1390 		 * In autoclear mode, stop the loop thread
1391 		 * and remove configuration after last close.
1392 		 */
1393 		err = loop_clr_fd(lo);
1394 		if (!err)
1395 			return;
1396 	} else {
1397 		/*
1398 		 * Otherwise keep thread (if running) and config,
1399 		 * but flush possible ongoing bios in thread.
1400 		 */
1401 		loop_flush(lo);
1402 	}
1403 
1404 	mutex_unlock(&lo->lo_ctl_mutex);
1405 }
1406 
1407 static const struct block_device_operations lo_fops = {
1408 	.owner =	THIS_MODULE,
1409 	.open =		lo_open,
1410 	.release =	lo_release,
1411 	.ioctl =	lo_ioctl,
1412 #ifdef CONFIG_COMPAT
1413 	.compat_ioctl =	lo_compat_ioctl,
1414 #endif
1415 };
1416 
1417 /*
1418  * And now the modules code and kernel interface.
1419  */
1420 static int max_loop;
1421 module_param(max_loop, int, S_IRUGO);
1422 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1423 module_param(max_part, int, S_IRUGO);
1424 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1425 MODULE_LICENSE("GPL");
1426 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1427 
1428 int loop_register_transfer(struct loop_func_table *funcs)
1429 {
1430 	unsigned int n = funcs->number;
1431 
1432 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1433 		return -EINVAL;
1434 	xfer_funcs[n] = funcs;
1435 	return 0;
1436 }
1437 
1438 static int unregister_transfer_cb(int id, void *ptr, void *data)
1439 {
1440 	struct loop_device *lo = ptr;
1441 	struct loop_func_table *xfer = data;
1442 
1443 	mutex_lock(&lo->lo_ctl_mutex);
1444 	if (lo->lo_encryption == xfer)
1445 		loop_release_xfer(lo);
1446 	mutex_unlock(&lo->lo_ctl_mutex);
1447 	return 0;
1448 }
1449 
1450 int loop_unregister_transfer(int number)
1451 {
1452 	unsigned int n = number;
1453 	struct loop_func_table *xfer;
1454 
1455 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1456 		return -EINVAL;
1457 
1458 	xfer_funcs[n] = NULL;
1459 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1460 	return 0;
1461 }
1462 
1463 EXPORT_SYMBOL(loop_register_transfer);
1464 EXPORT_SYMBOL(loop_unregister_transfer);
1465 
1466 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1467 		const struct blk_mq_queue_data *bd)
1468 {
1469 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1470 	struct loop_device *lo = cmd->rq->q->queuedata;
1471 
1472 	blk_mq_start_request(bd->rq);
1473 
1474 	if (lo->lo_state != Lo_bound)
1475 		return -EIO;
1476 
1477 	queue_kthread_work(&lo->worker, &cmd->work);
1478 
1479 	return BLK_MQ_RQ_QUEUE_OK;
1480 }
1481 
1482 static void loop_handle_cmd(struct loop_cmd *cmd)
1483 {
1484 	const bool write = cmd->rq->cmd_flags & REQ_WRITE;
1485 	struct loop_device *lo = cmd->rq->q->queuedata;
1486 	int ret = -EIO;
1487 
1488 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY))
1489 		goto failed;
1490 
1491 	ret = do_req_filebacked(lo, cmd->rq);
1492 
1493  failed:
1494 	if (ret)
1495 		cmd->rq->errors = -EIO;
1496 	blk_mq_complete_request(cmd->rq);
1497 }
1498 
1499 static void loop_queue_work(struct kthread_work *work)
1500 {
1501 	struct loop_cmd *cmd =
1502 		container_of(work, struct loop_cmd, work);
1503 
1504 	loop_handle_cmd(cmd);
1505 }
1506 
1507 static int loop_init_request(void *data, struct request *rq,
1508 		unsigned int hctx_idx, unsigned int request_idx,
1509 		unsigned int numa_node)
1510 {
1511 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1512 
1513 	cmd->rq = rq;
1514 	init_kthread_work(&cmd->work, loop_queue_work);
1515 
1516 	return 0;
1517 }
1518 
1519 static struct blk_mq_ops loop_mq_ops = {
1520 	.queue_rq       = loop_queue_rq,
1521 	.map_queue      = blk_mq_map_queue,
1522 	.init_request	= loop_init_request,
1523 };
1524 
1525 static int loop_add(struct loop_device **l, int i)
1526 {
1527 	struct loop_device *lo;
1528 	struct gendisk *disk;
1529 	int err;
1530 
1531 	err = -ENOMEM;
1532 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1533 	if (!lo)
1534 		goto out;
1535 
1536 	lo->lo_state = Lo_unbound;
1537 
1538 	/* allocate id, if @id >= 0, we're requesting that specific id */
1539 	if (i >= 0) {
1540 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1541 		if (err == -ENOSPC)
1542 			err = -EEXIST;
1543 	} else {
1544 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1545 	}
1546 	if (err < 0)
1547 		goto out_free_dev;
1548 	i = err;
1549 
1550 	err = -ENOMEM;
1551 	lo->tag_set.ops = &loop_mq_ops;
1552 	lo->tag_set.nr_hw_queues = 1;
1553 	lo->tag_set.queue_depth = 128;
1554 	lo->tag_set.numa_node = NUMA_NO_NODE;
1555 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1556 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1557 	lo->tag_set.driver_data = lo;
1558 
1559 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1560 	if (err)
1561 		goto out_free_idr;
1562 
1563 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1564 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1565 		err = PTR_ERR(lo->lo_queue);
1566 		goto out_cleanup_tags;
1567 	}
1568 	lo->lo_queue->queuedata = lo;
1569 
1570 	/*
1571 	 * It doesn't make sense to enable merge because the I/O
1572 	 * submitted to backing file is handled page by page.
1573 	 */
1574 	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1575 
1576 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1577 	if (!disk)
1578 		goto out_free_queue;
1579 
1580 	/*
1581 	 * Disable partition scanning by default. The in-kernel partition
1582 	 * scanning can be requested individually per-device during its
1583 	 * setup. Userspace can always add and remove partitions from all
1584 	 * devices. The needed partition minors are allocated from the
1585 	 * extended minor space, the main loop device numbers will continue
1586 	 * to match the loop minors, regardless of the number of partitions
1587 	 * used.
1588 	 *
1589 	 * If max_part is given, partition scanning is globally enabled for
1590 	 * all loop devices. The minors for the main loop devices will be
1591 	 * multiples of max_part.
1592 	 *
1593 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1594 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1595 	 * complicated, are too static, inflexible and may surprise
1596 	 * userspace tools. Parameters like this in general should be avoided.
1597 	 */
1598 	if (!part_shift)
1599 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1600 	disk->flags |= GENHD_FL_EXT_DEVT;
1601 	mutex_init(&lo->lo_ctl_mutex);
1602 	atomic_set(&lo->lo_refcnt, 0);
1603 	lo->lo_number		= i;
1604 	spin_lock_init(&lo->lo_lock);
1605 	disk->major		= LOOP_MAJOR;
1606 	disk->first_minor	= i << part_shift;
1607 	disk->fops		= &lo_fops;
1608 	disk->private_data	= lo;
1609 	disk->queue		= lo->lo_queue;
1610 	sprintf(disk->disk_name, "loop%d", i);
1611 	add_disk(disk);
1612 	*l = lo;
1613 	return lo->lo_number;
1614 
1615 out_free_queue:
1616 	blk_cleanup_queue(lo->lo_queue);
1617 out_cleanup_tags:
1618 	blk_mq_free_tag_set(&lo->tag_set);
1619 out_free_idr:
1620 	idr_remove(&loop_index_idr, i);
1621 out_free_dev:
1622 	kfree(lo);
1623 out:
1624 	return err;
1625 }
1626 
1627 static void loop_remove(struct loop_device *lo)
1628 {
1629 	blk_cleanup_queue(lo->lo_queue);
1630 	del_gendisk(lo->lo_disk);
1631 	blk_mq_free_tag_set(&lo->tag_set);
1632 	put_disk(lo->lo_disk);
1633 	kfree(lo);
1634 }
1635 
1636 static int find_free_cb(int id, void *ptr, void *data)
1637 {
1638 	struct loop_device *lo = ptr;
1639 	struct loop_device **l = data;
1640 
1641 	if (lo->lo_state == Lo_unbound) {
1642 		*l = lo;
1643 		return 1;
1644 	}
1645 	return 0;
1646 }
1647 
1648 static int loop_lookup(struct loop_device **l, int i)
1649 {
1650 	struct loop_device *lo;
1651 	int ret = -ENODEV;
1652 
1653 	if (i < 0) {
1654 		int err;
1655 
1656 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1657 		if (err == 1) {
1658 			*l = lo;
1659 			ret = lo->lo_number;
1660 		}
1661 		goto out;
1662 	}
1663 
1664 	/* lookup and return a specific i */
1665 	lo = idr_find(&loop_index_idr, i);
1666 	if (lo) {
1667 		*l = lo;
1668 		ret = lo->lo_number;
1669 	}
1670 out:
1671 	return ret;
1672 }
1673 
1674 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1675 {
1676 	struct loop_device *lo;
1677 	struct kobject *kobj;
1678 	int err;
1679 
1680 	mutex_lock(&loop_index_mutex);
1681 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1682 	if (err < 0)
1683 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1684 	if (err < 0)
1685 		kobj = NULL;
1686 	else
1687 		kobj = get_disk(lo->lo_disk);
1688 	mutex_unlock(&loop_index_mutex);
1689 
1690 	*part = 0;
1691 	return kobj;
1692 }
1693 
1694 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1695 			       unsigned long parm)
1696 {
1697 	struct loop_device *lo;
1698 	int ret = -ENOSYS;
1699 
1700 	mutex_lock(&loop_index_mutex);
1701 	switch (cmd) {
1702 	case LOOP_CTL_ADD:
1703 		ret = loop_lookup(&lo, parm);
1704 		if (ret >= 0) {
1705 			ret = -EEXIST;
1706 			break;
1707 		}
1708 		ret = loop_add(&lo, parm);
1709 		break;
1710 	case LOOP_CTL_REMOVE:
1711 		ret = loop_lookup(&lo, parm);
1712 		if (ret < 0)
1713 			break;
1714 		mutex_lock(&lo->lo_ctl_mutex);
1715 		if (lo->lo_state != Lo_unbound) {
1716 			ret = -EBUSY;
1717 			mutex_unlock(&lo->lo_ctl_mutex);
1718 			break;
1719 		}
1720 		if (atomic_read(&lo->lo_refcnt) > 0) {
1721 			ret = -EBUSY;
1722 			mutex_unlock(&lo->lo_ctl_mutex);
1723 			break;
1724 		}
1725 		lo->lo_disk->private_data = NULL;
1726 		mutex_unlock(&lo->lo_ctl_mutex);
1727 		idr_remove(&loop_index_idr, lo->lo_number);
1728 		loop_remove(lo);
1729 		break;
1730 	case LOOP_CTL_GET_FREE:
1731 		ret = loop_lookup(&lo, -1);
1732 		if (ret >= 0)
1733 			break;
1734 		ret = loop_add(&lo, -1);
1735 	}
1736 	mutex_unlock(&loop_index_mutex);
1737 
1738 	return ret;
1739 }
1740 
1741 static const struct file_operations loop_ctl_fops = {
1742 	.open		= nonseekable_open,
1743 	.unlocked_ioctl	= loop_control_ioctl,
1744 	.compat_ioctl	= loop_control_ioctl,
1745 	.owner		= THIS_MODULE,
1746 	.llseek		= noop_llseek,
1747 };
1748 
1749 static struct miscdevice loop_misc = {
1750 	.minor		= LOOP_CTRL_MINOR,
1751 	.name		= "loop-control",
1752 	.fops		= &loop_ctl_fops,
1753 };
1754 
1755 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1756 MODULE_ALIAS("devname:loop-control");
1757 
1758 static int __init loop_init(void)
1759 {
1760 	int i, nr;
1761 	unsigned long range;
1762 	struct loop_device *lo;
1763 	int err;
1764 
1765 	err = misc_register(&loop_misc);
1766 	if (err < 0)
1767 		return err;
1768 
1769 	part_shift = 0;
1770 	if (max_part > 0) {
1771 		part_shift = fls(max_part);
1772 
1773 		/*
1774 		 * Adjust max_part according to part_shift as it is exported
1775 		 * to user space so that user can decide correct minor number
1776 		 * if [s]he want to create more devices.
1777 		 *
1778 		 * Note that -1 is required because partition 0 is reserved
1779 		 * for the whole disk.
1780 		 */
1781 		max_part = (1UL << part_shift) - 1;
1782 	}
1783 
1784 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1785 		err = -EINVAL;
1786 		goto misc_out;
1787 	}
1788 
1789 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1790 		err = -EINVAL;
1791 		goto misc_out;
1792 	}
1793 
1794 	/*
1795 	 * If max_loop is specified, create that many devices upfront.
1796 	 * This also becomes a hard limit. If max_loop is not specified,
1797 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1798 	 * init time. Loop devices can be requested on-demand with the
1799 	 * /dev/loop-control interface, or be instantiated by accessing
1800 	 * a 'dead' device node.
1801 	 */
1802 	if (max_loop) {
1803 		nr = max_loop;
1804 		range = max_loop << part_shift;
1805 	} else {
1806 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1807 		range = 1UL << MINORBITS;
1808 	}
1809 
1810 	if (register_blkdev(LOOP_MAJOR, "loop")) {
1811 		err = -EIO;
1812 		goto misc_out;
1813 	}
1814 
1815 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1816 				  THIS_MODULE, loop_probe, NULL, NULL);
1817 
1818 	/* pre-create number of devices given by config or max_loop */
1819 	mutex_lock(&loop_index_mutex);
1820 	for (i = 0; i < nr; i++)
1821 		loop_add(&lo, i);
1822 	mutex_unlock(&loop_index_mutex);
1823 
1824 	printk(KERN_INFO "loop: module loaded\n");
1825 	return 0;
1826 
1827 misc_out:
1828 	misc_deregister(&loop_misc);
1829 	return err;
1830 }
1831 
1832 static int loop_exit_cb(int id, void *ptr, void *data)
1833 {
1834 	struct loop_device *lo = ptr;
1835 
1836 	loop_remove(lo);
1837 	return 0;
1838 }
1839 
1840 static void __exit loop_exit(void)
1841 {
1842 	unsigned long range;
1843 
1844 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1845 
1846 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1847 	idr_destroy(&loop_index_idr);
1848 
1849 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1850 	unregister_blkdev(LOOP_MAJOR, "loop");
1851 
1852 	misc_deregister(&loop_misc);
1853 }
1854 
1855 module_init(loop_init);
1856 module_exit(loop_exit);
1857 
1858 #ifndef MODULE
1859 static int __init max_loop_setup(char *str)
1860 {
1861 	max_loop = simple_strtol(str, NULL, 0);
1862 	return 1;
1863 }
1864 
1865 __setup("max_loop=", max_loop_setup);
1866 #endif
1867