1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/pagemap.h> 57 #include <linux/file.h> 58 #include <linux/stat.h> 59 #include <linux/errno.h> 60 #include <linux/major.h> 61 #include <linux/wait.h> 62 #include <linux/blkdev.h> 63 #include <linux/blkpg.h> 64 #include <linux/init.h> 65 #include <linux/swap.h> 66 #include <linux/slab.h> 67 #include <linux/compat.h> 68 #include <linux/suspend.h> 69 #include <linux/freezer.h> 70 #include <linux/mutex.h> 71 #include <linux/writeback.h> 72 #include <linux/completion.h> 73 #include <linux/highmem.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include <linux/ioprio.h> 80 #include <linux/blk-cgroup.h> 81 #include <linux/sched/mm.h> 82 #include <linux/statfs.h> 83 84 #include "loop.h" 85 86 #include <linux/uaccess.h> 87 88 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 89 #define LOOP_DEFAULT_HW_Q_DEPTH (128) 90 91 static DEFINE_IDR(loop_index_idr); 92 static DEFINE_MUTEX(loop_ctl_mutex); 93 static DEFINE_MUTEX(loop_validate_mutex); 94 95 /** 96 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 97 * 98 * @lo: struct loop_device 99 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 100 * 101 * Returns 0 on success, -EINTR otherwise. 102 * 103 * Since loop_validate_file() traverses on other "struct loop_device" if 104 * is_loop_device() is true, we need a global lock for serializing concurrent 105 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 106 */ 107 static int loop_global_lock_killable(struct loop_device *lo, bool global) 108 { 109 int err; 110 111 if (global) { 112 err = mutex_lock_killable(&loop_validate_mutex); 113 if (err) 114 return err; 115 } 116 err = mutex_lock_killable(&lo->lo_mutex); 117 if (err && global) 118 mutex_unlock(&loop_validate_mutex); 119 return err; 120 } 121 122 /** 123 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 124 * 125 * @lo: struct loop_device 126 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 127 */ 128 static void loop_global_unlock(struct loop_device *lo, bool global) 129 { 130 mutex_unlock(&lo->lo_mutex); 131 if (global) 132 mutex_unlock(&loop_validate_mutex); 133 } 134 135 static int max_part; 136 static int part_shift; 137 138 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 139 { 140 loff_t loopsize; 141 142 /* Compute loopsize in bytes */ 143 loopsize = i_size_read(file->f_mapping->host); 144 if (offset > 0) 145 loopsize -= offset; 146 /* offset is beyond i_size, weird but possible */ 147 if (loopsize < 0) 148 return 0; 149 150 if (sizelimit > 0 && sizelimit < loopsize) 151 loopsize = sizelimit; 152 /* 153 * Unfortunately, if we want to do I/O on the device, 154 * the number of 512-byte sectors has to fit into a sector_t. 155 */ 156 return loopsize >> 9; 157 } 158 159 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 160 { 161 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 162 } 163 164 static void __loop_update_dio(struct loop_device *lo, bool dio) 165 { 166 struct file *file = lo->lo_backing_file; 167 struct address_space *mapping = file->f_mapping; 168 struct inode *inode = mapping->host; 169 unsigned short sb_bsize = 0; 170 unsigned dio_align = 0; 171 bool use_dio; 172 173 if (inode->i_sb->s_bdev) { 174 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 175 dio_align = sb_bsize - 1; 176 } 177 178 /* 179 * We support direct I/O only if lo_offset is aligned with the 180 * logical I/O size of backing device, and the logical block 181 * size of loop is bigger than the backing device's. 182 * 183 * TODO: the above condition may be loosed in the future, and 184 * direct I/O may be switched runtime at that time because most 185 * of requests in sane applications should be PAGE_SIZE aligned 186 */ 187 if (dio) { 188 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 189 !(lo->lo_offset & dio_align) && 190 mapping->a_ops->direct_IO) 191 use_dio = true; 192 else 193 use_dio = false; 194 } else { 195 use_dio = false; 196 } 197 198 if (lo->use_dio == use_dio) 199 return; 200 201 /* flush dirty pages before changing direct IO */ 202 vfs_fsync(file, 0); 203 204 /* 205 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 206 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 207 * will get updated by ioctl(LOOP_GET_STATUS) 208 */ 209 if (lo->lo_state == Lo_bound) 210 blk_mq_freeze_queue(lo->lo_queue); 211 lo->use_dio = use_dio; 212 if (use_dio) { 213 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 214 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 215 } else { 216 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 217 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 218 } 219 if (lo->lo_state == Lo_bound) 220 blk_mq_unfreeze_queue(lo->lo_queue); 221 } 222 223 /** 224 * loop_set_size() - sets device size and notifies userspace 225 * @lo: struct loop_device to set the size for 226 * @size: new size of the loop device 227 * 228 * Callers must validate that the size passed into this function fits into 229 * a sector_t, eg using loop_validate_size() 230 */ 231 static void loop_set_size(struct loop_device *lo, loff_t size) 232 { 233 if (!set_capacity_and_notify(lo->lo_disk, size)) 234 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 235 } 236 237 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 238 { 239 struct iov_iter i; 240 ssize_t bw; 241 242 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len); 243 244 file_start_write(file); 245 bw = vfs_iter_write(file, &i, ppos, 0); 246 file_end_write(file); 247 248 if (likely(bw == bvec->bv_len)) 249 return 0; 250 251 printk_ratelimited(KERN_ERR 252 "loop: Write error at byte offset %llu, length %i.\n", 253 (unsigned long long)*ppos, bvec->bv_len); 254 if (bw >= 0) 255 bw = -EIO; 256 return bw; 257 } 258 259 static int lo_write_simple(struct loop_device *lo, struct request *rq, 260 loff_t pos) 261 { 262 struct bio_vec bvec; 263 struct req_iterator iter; 264 int ret = 0; 265 266 rq_for_each_segment(bvec, rq, iter) { 267 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 268 if (ret < 0) 269 break; 270 cond_resched(); 271 } 272 273 return ret; 274 } 275 276 static int lo_read_simple(struct loop_device *lo, struct request *rq, 277 loff_t pos) 278 { 279 struct bio_vec bvec; 280 struct req_iterator iter; 281 struct iov_iter i; 282 ssize_t len; 283 284 rq_for_each_segment(bvec, rq, iter) { 285 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len); 286 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 287 if (len < 0) 288 return len; 289 290 flush_dcache_page(bvec.bv_page); 291 292 if (len != bvec.bv_len) { 293 struct bio *bio; 294 295 __rq_for_each_bio(bio, rq) 296 zero_fill_bio(bio); 297 break; 298 } 299 cond_resched(); 300 } 301 302 return 0; 303 } 304 305 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 306 int mode) 307 { 308 /* 309 * We use fallocate to manipulate the space mappings used by the image 310 * a.k.a. discard/zerorange. 311 */ 312 struct file *file = lo->lo_backing_file; 313 int ret; 314 315 mode |= FALLOC_FL_KEEP_SIZE; 316 317 if (!blk_queue_discard(lo->lo_queue)) { 318 ret = -EOPNOTSUPP; 319 goto out; 320 } 321 322 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 323 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 324 ret = -EIO; 325 out: 326 return ret; 327 } 328 329 static int lo_req_flush(struct loop_device *lo, struct request *rq) 330 { 331 int ret = vfs_fsync(lo->lo_backing_file, 0); 332 if (unlikely(ret && ret != -EINVAL)) 333 ret = -EIO; 334 335 return ret; 336 } 337 338 static void lo_complete_rq(struct request *rq) 339 { 340 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 341 blk_status_t ret = BLK_STS_OK; 342 343 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 344 req_op(rq) != REQ_OP_READ) { 345 if (cmd->ret < 0) 346 ret = errno_to_blk_status(cmd->ret); 347 goto end_io; 348 } 349 350 /* 351 * Short READ - if we got some data, advance our request and 352 * retry it. If we got no data, end the rest with EIO. 353 */ 354 if (cmd->ret) { 355 blk_update_request(rq, BLK_STS_OK, cmd->ret); 356 cmd->ret = 0; 357 blk_mq_requeue_request(rq, true); 358 } else { 359 if (cmd->use_aio) { 360 struct bio *bio = rq->bio; 361 362 while (bio) { 363 zero_fill_bio(bio); 364 bio = bio->bi_next; 365 } 366 } 367 ret = BLK_STS_IOERR; 368 end_io: 369 blk_mq_end_request(rq, ret); 370 } 371 } 372 373 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 374 { 375 struct request *rq = blk_mq_rq_from_pdu(cmd); 376 377 if (!atomic_dec_and_test(&cmd->ref)) 378 return; 379 kfree(cmd->bvec); 380 cmd->bvec = NULL; 381 if (likely(!blk_should_fake_timeout(rq->q))) 382 blk_mq_complete_request(rq); 383 } 384 385 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 386 { 387 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 388 389 cmd->ret = ret; 390 lo_rw_aio_do_completion(cmd); 391 } 392 393 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 394 loff_t pos, bool rw) 395 { 396 struct iov_iter iter; 397 struct req_iterator rq_iter; 398 struct bio_vec *bvec; 399 struct request *rq = blk_mq_rq_from_pdu(cmd); 400 struct bio *bio = rq->bio; 401 struct file *file = lo->lo_backing_file; 402 struct bio_vec tmp; 403 unsigned int offset; 404 int nr_bvec = 0; 405 int ret; 406 407 rq_for_each_bvec(tmp, rq, rq_iter) 408 nr_bvec++; 409 410 if (rq->bio != rq->biotail) { 411 412 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 413 GFP_NOIO); 414 if (!bvec) 415 return -EIO; 416 cmd->bvec = bvec; 417 418 /* 419 * The bios of the request may be started from the middle of 420 * the 'bvec' because of bio splitting, so we can't directly 421 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 422 * API will take care of all details for us. 423 */ 424 rq_for_each_bvec(tmp, rq, rq_iter) { 425 *bvec = tmp; 426 bvec++; 427 } 428 bvec = cmd->bvec; 429 offset = 0; 430 } else { 431 /* 432 * Same here, this bio may be started from the middle of the 433 * 'bvec' because of bio splitting, so offset from the bvec 434 * must be passed to iov iterator 435 */ 436 offset = bio->bi_iter.bi_bvec_done; 437 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 438 } 439 atomic_set(&cmd->ref, 2); 440 441 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 442 iter.iov_offset = offset; 443 444 cmd->iocb.ki_pos = pos; 445 cmd->iocb.ki_filp = file; 446 cmd->iocb.ki_complete = lo_rw_aio_complete; 447 cmd->iocb.ki_flags = IOCB_DIRECT; 448 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 449 450 if (rw == WRITE) 451 ret = call_write_iter(file, &cmd->iocb, &iter); 452 else 453 ret = call_read_iter(file, &cmd->iocb, &iter); 454 455 lo_rw_aio_do_completion(cmd); 456 457 if (ret != -EIOCBQUEUED) 458 lo_rw_aio_complete(&cmd->iocb, ret); 459 return 0; 460 } 461 462 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 463 { 464 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 465 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 466 467 /* 468 * lo_write_simple and lo_read_simple should have been covered 469 * by io submit style function like lo_rw_aio(), one blocker 470 * is that lo_read_simple() need to call flush_dcache_page after 471 * the page is written from kernel, and it isn't easy to handle 472 * this in io submit style function which submits all segments 473 * of the req at one time. And direct read IO doesn't need to 474 * run flush_dcache_page(). 475 */ 476 switch (req_op(rq)) { 477 case REQ_OP_FLUSH: 478 return lo_req_flush(lo, rq); 479 case REQ_OP_WRITE_ZEROES: 480 /* 481 * If the caller doesn't want deallocation, call zeroout to 482 * write zeroes the range. Otherwise, punch them out. 483 */ 484 return lo_fallocate(lo, rq, pos, 485 (rq->cmd_flags & REQ_NOUNMAP) ? 486 FALLOC_FL_ZERO_RANGE : 487 FALLOC_FL_PUNCH_HOLE); 488 case REQ_OP_DISCARD: 489 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 490 case REQ_OP_WRITE: 491 if (cmd->use_aio) 492 return lo_rw_aio(lo, cmd, pos, WRITE); 493 else 494 return lo_write_simple(lo, rq, pos); 495 case REQ_OP_READ: 496 if (cmd->use_aio) 497 return lo_rw_aio(lo, cmd, pos, READ); 498 else 499 return lo_read_simple(lo, rq, pos); 500 default: 501 WARN_ON_ONCE(1); 502 return -EIO; 503 } 504 } 505 506 static inline void loop_update_dio(struct loop_device *lo) 507 { 508 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 509 lo->use_dio); 510 } 511 512 static void loop_reread_partitions(struct loop_device *lo) 513 { 514 int rc; 515 516 mutex_lock(&lo->lo_disk->open_mutex); 517 rc = bdev_disk_changed(lo->lo_disk, false); 518 mutex_unlock(&lo->lo_disk->open_mutex); 519 if (rc) 520 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 521 __func__, lo->lo_number, lo->lo_file_name, rc); 522 } 523 524 static inline int is_loop_device(struct file *file) 525 { 526 struct inode *i = file->f_mapping->host; 527 528 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 529 } 530 531 static int loop_validate_file(struct file *file, struct block_device *bdev) 532 { 533 struct inode *inode = file->f_mapping->host; 534 struct file *f = file; 535 536 /* Avoid recursion */ 537 while (is_loop_device(f)) { 538 struct loop_device *l; 539 540 lockdep_assert_held(&loop_validate_mutex); 541 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 542 return -EBADF; 543 544 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 545 if (l->lo_state != Lo_bound) 546 return -EINVAL; 547 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 548 rmb(); 549 f = l->lo_backing_file; 550 } 551 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 552 return -EINVAL; 553 return 0; 554 } 555 556 /* 557 * loop_change_fd switched the backing store of a loopback device to 558 * a new file. This is useful for operating system installers to free up 559 * the original file and in High Availability environments to switch to 560 * an alternative location for the content in case of server meltdown. 561 * This can only work if the loop device is used read-only, and if the 562 * new backing store is the same size and type as the old backing store. 563 */ 564 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 565 unsigned int arg) 566 { 567 struct file *file = fget(arg); 568 struct file *old_file; 569 int error; 570 bool partscan; 571 bool is_loop; 572 573 if (!file) 574 return -EBADF; 575 is_loop = is_loop_device(file); 576 error = loop_global_lock_killable(lo, is_loop); 577 if (error) 578 goto out_putf; 579 error = -ENXIO; 580 if (lo->lo_state != Lo_bound) 581 goto out_err; 582 583 /* the loop device has to be read-only */ 584 error = -EINVAL; 585 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 586 goto out_err; 587 588 error = loop_validate_file(file, bdev); 589 if (error) 590 goto out_err; 591 592 old_file = lo->lo_backing_file; 593 594 error = -EINVAL; 595 596 /* size of the new backing store needs to be the same */ 597 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 598 goto out_err; 599 600 /* and ... switch */ 601 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE); 602 blk_mq_freeze_queue(lo->lo_queue); 603 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 604 lo->lo_backing_file = file; 605 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 606 mapping_set_gfp_mask(file->f_mapping, 607 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 608 loop_update_dio(lo); 609 blk_mq_unfreeze_queue(lo->lo_queue); 610 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 611 loop_global_unlock(lo, is_loop); 612 613 /* 614 * Flush loop_validate_file() before fput(), for l->lo_backing_file 615 * might be pointing at old_file which might be the last reference. 616 */ 617 if (!is_loop) { 618 mutex_lock(&loop_validate_mutex); 619 mutex_unlock(&loop_validate_mutex); 620 } 621 /* 622 * We must drop file reference outside of lo_mutex as dropping 623 * the file ref can take open_mutex which creates circular locking 624 * dependency. 625 */ 626 fput(old_file); 627 if (partscan) 628 loop_reread_partitions(lo); 629 return 0; 630 631 out_err: 632 loop_global_unlock(lo, is_loop); 633 out_putf: 634 fput(file); 635 return error; 636 } 637 638 /* loop sysfs attributes */ 639 640 static ssize_t loop_attr_show(struct device *dev, char *page, 641 ssize_t (*callback)(struct loop_device *, char *)) 642 { 643 struct gendisk *disk = dev_to_disk(dev); 644 struct loop_device *lo = disk->private_data; 645 646 return callback(lo, page); 647 } 648 649 #define LOOP_ATTR_RO(_name) \ 650 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 651 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 652 struct device_attribute *attr, char *b) \ 653 { \ 654 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 655 } \ 656 static struct device_attribute loop_attr_##_name = \ 657 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 658 659 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 660 { 661 ssize_t ret; 662 char *p = NULL; 663 664 spin_lock_irq(&lo->lo_lock); 665 if (lo->lo_backing_file) 666 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 667 spin_unlock_irq(&lo->lo_lock); 668 669 if (IS_ERR_OR_NULL(p)) 670 ret = PTR_ERR(p); 671 else { 672 ret = strlen(p); 673 memmove(buf, p, ret); 674 buf[ret++] = '\n'; 675 buf[ret] = 0; 676 } 677 678 return ret; 679 } 680 681 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 682 { 683 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 684 } 685 686 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 687 { 688 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 689 } 690 691 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 692 { 693 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 694 695 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 696 } 697 698 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 699 { 700 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 701 702 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 703 } 704 705 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 706 { 707 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 708 709 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 710 } 711 712 LOOP_ATTR_RO(backing_file); 713 LOOP_ATTR_RO(offset); 714 LOOP_ATTR_RO(sizelimit); 715 LOOP_ATTR_RO(autoclear); 716 LOOP_ATTR_RO(partscan); 717 LOOP_ATTR_RO(dio); 718 719 static struct attribute *loop_attrs[] = { 720 &loop_attr_backing_file.attr, 721 &loop_attr_offset.attr, 722 &loop_attr_sizelimit.attr, 723 &loop_attr_autoclear.attr, 724 &loop_attr_partscan.attr, 725 &loop_attr_dio.attr, 726 NULL, 727 }; 728 729 static struct attribute_group loop_attribute_group = { 730 .name = "loop", 731 .attrs= loop_attrs, 732 }; 733 734 static void loop_sysfs_init(struct loop_device *lo) 735 { 736 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 737 &loop_attribute_group); 738 } 739 740 static void loop_sysfs_exit(struct loop_device *lo) 741 { 742 if (lo->sysfs_inited) 743 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 744 &loop_attribute_group); 745 } 746 747 static void loop_config_discard(struct loop_device *lo) 748 { 749 struct file *file = lo->lo_backing_file; 750 struct inode *inode = file->f_mapping->host; 751 struct request_queue *q = lo->lo_queue; 752 u32 granularity, max_discard_sectors; 753 754 /* 755 * If the backing device is a block device, mirror its zeroing 756 * capability. Set the discard sectors to the block device's zeroing 757 * capabilities because loop discards result in blkdev_issue_zeroout(), 758 * not blkdev_issue_discard(). This maintains consistent behavior with 759 * file-backed loop devices: discarded regions read back as zero. 760 */ 761 if (S_ISBLK(inode->i_mode)) { 762 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode)); 763 764 max_discard_sectors = backingq->limits.max_write_zeroes_sectors; 765 granularity = backingq->limits.discard_granularity ?: 766 queue_physical_block_size(backingq); 767 768 /* 769 * We use punch hole to reclaim the free space used by the 770 * image a.k.a. discard. 771 */ 772 } else if (!file->f_op->fallocate) { 773 max_discard_sectors = 0; 774 granularity = 0; 775 776 } else { 777 struct kstatfs sbuf; 778 779 max_discard_sectors = UINT_MAX >> 9; 780 if (!vfs_statfs(&file->f_path, &sbuf)) 781 granularity = sbuf.f_bsize; 782 else 783 max_discard_sectors = 0; 784 } 785 786 if (max_discard_sectors) { 787 q->limits.discard_granularity = granularity; 788 blk_queue_max_discard_sectors(q, max_discard_sectors); 789 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors); 790 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 791 } else { 792 q->limits.discard_granularity = 0; 793 blk_queue_max_discard_sectors(q, 0); 794 blk_queue_max_write_zeroes_sectors(q, 0); 795 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 796 } 797 q->limits.discard_alignment = 0; 798 } 799 800 struct loop_worker { 801 struct rb_node rb_node; 802 struct work_struct work; 803 struct list_head cmd_list; 804 struct list_head idle_list; 805 struct loop_device *lo; 806 struct cgroup_subsys_state *blkcg_css; 807 unsigned long last_ran_at; 808 }; 809 810 static void loop_workfn(struct work_struct *work); 811 static void loop_rootcg_workfn(struct work_struct *work); 812 static void loop_free_idle_workers(struct timer_list *timer); 813 814 #ifdef CONFIG_BLK_CGROUP 815 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 816 { 817 return !css || css == blkcg_root_css; 818 } 819 #else 820 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 821 { 822 return !css; 823 } 824 #endif 825 826 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 827 { 828 struct rb_node **node, *parent = NULL; 829 struct loop_worker *cur_worker, *worker = NULL; 830 struct work_struct *work; 831 struct list_head *cmd_list; 832 833 spin_lock_irq(&lo->lo_work_lock); 834 835 if (queue_on_root_worker(cmd->blkcg_css)) 836 goto queue_work; 837 838 node = &lo->worker_tree.rb_node; 839 840 while (*node) { 841 parent = *node; 842 cur_worker = container_of(*node, struct loop_worker, rb_node); 843 if (cur_worker->blkcg_css == cmd->blkcg_css) { 844 worker = cur_worker; 845 break; 846 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 847 node = &(*node)->rb_left; 848 } else { 849 node = &(*node)->rb_right; 850 } 851 } 852 if (worker) 853 goto queue_work; 854 855 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 856 /* 857 * In the event we cannot allocate a worker, just queue on the 858 * rootcg worker and issue the I/O as the rootcg 859 */ 860 if (!worker) { 861 cmd->blkcg_css = NULL; 862 if (cmd->memcg_css) 863 css_put(cmd->memcg_css); 864 cmd->memcg_css = NULL; 865 goto queue_work; 866 } 867 868 worker->blkcg_css = cmd->blkcg_css; 869 css_get(worker->blkcg_css); 870 INIT_WORK(&worker->work, loop_workfn); 871 INIT_LIST_HEAD(&worker->cmd_list); 872 INIT_LIST_HEAD(&worker->idle_list); 873 worker->lo = lo; 874 rb_link_node(&worker->rb_node, parent, node); 875 rb_insert_color(&worker->rb_node, &lo->worker_tree); 876 queue_work: 877 if (worker) { 878 /* 879 * We need to remove from the idle list here while 880 * holding the lock so that the idle timer doesn't 881 * free the worker 882 */ 883 if (!list_empty(&worker->idle_list)) 884 list_del_init(&worker->idle_list); 885 work = &worker->work; 886 cmd_list = &worker->cmd_list; 887 } else { 888 work = &lo->rootcg_work; 889 cmd_list = &lo->rootcg_cmd_list; 890 } 891 list_add_tail(&cmd->list_entry, cmd_list); 892 queue_work(lo->workqueue, work); 893 spin_unlock_irq(&lo->lo_work_lock); 894 } 895 896 static void loop_update_rotational(struct loop_device *lo) 897 { 898 struct file *file = lo->lo_backing_file; 899 struct inode *file_inode = file->f_mapping->host; 900 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 901 struct request_queue *q = lo->lo_queue; 902 bool nonrot = true; 903 904 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 905 if (file_bdev) 906 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev)); 907 908 if (nonrot) 909 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 910 else 911 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 912 } 913 914 /** 915 * loop_set_status_from_info - configure device from loop_info 916 * @lo: struct loop_device to configure 917 * @info: struct loop_info64 to configure the device with 918 * 919 * Configures the loop device parameters according to the passed 920 * in loop_info64 configuration. 921 */ 922 static int 923 loop_set_status_from_info(struct loop_device *lo, 924 const struct loop_info64 *info) 925 { 926 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 927 return -EINVAL; 928 929 switch (info->lo_encrypt_type) { 930 case LO_CRYPT_NONE: 931 break; 932 case LO_CRYPT_XOR: 933 pr_warn("support for the xor transformation has been removed.\n"); 934 return -EINVAL; 935 case LO_CRYPT_CRYPTOAPI: 936 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 937 return -EINVAL; 938 default: 939 return -EINVAL; 940 } 941 942 lo->lo_offset = info->lo_offset; 943 lo->lo_sizelimit = info->lo_sizelimit; 944 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 945 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 946 lo->lo_flags = info->lo_flags; 947 return 0; 948 } 949 950 static int loop_configure(struct loop_device *lo, fmode_t mode, 951 struct block_device *bdev, 952 const struct loop_config *config) 953 { 954 struct file *file = fget(config->fd); 955 struct inode *inode; 956 struct address_space *mapping; 957 int error; 958 loff_t size; 959 bool partscan; 960 unsigned short bsize; 961 bool is_loop; 962 963 if (!file) 964 return -EBADF; 965 is_loop = is_loop_device(file); 966 967 /* This is safe, since we have a reference from open(). */ 968 __module_get(THIS_MODULE); 969 970 /* 971 * If we don't hold exclusive handle for the device, upgrade to it 972 * here to avoid changing device under exclusive owner. 973 */ 974 if (!(mode & FMODE_EXCL)) { 975 error = bd_prepare_to_claim(bdev, loop_configure); 976 if (error) 977 goto out_putf; 978 } 979 980 error = loop_global_lock_killable(lo, is_loop); 981 if (error) 982 goto out_bdev; 983 984 error = -EBUSY; 985 if (lo->lo_state != Lo_unbound) 986 goto out_unlock; 987 988 error = loop_validate_file(file, bdev); 989 if (error) 990 goto out_unlock; 991 992 mapping = file->f_mapping; 993 inode = mapping->host; 994 995 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 996 error = -EINVAL; 997 goto out_unlock; 998 } 999 1000 if (config->block_size) { 1001 error = blk_validate_block_size(config->block_size); 1002 if (error) 1003 goto out_unlock; 1004 } 1005 1006 error = loop_set_status_from_info(lo, &config->info); 1007 if (error) 1008 goto out_unlock; 1009 1010 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 1011 !file->f_op->write_iter) 1012 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1013 1014 lo->workqueue = alloc_workqueue("loop%d", 1015 WQ_UNBOUND | WQ_FREEZABLE, 1016 0, 1017 lo->lo_number); 1018 if (!lo->workqueue) { 1019 error = -ENOMEM; 1020 goto out_unlock; 1021 } 1022 1023 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE); 1024 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1025 1026 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 1027 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 1028 INIT_LIST_HEAD(&lo->idle_worker_list); 1029 lo->worker_tree = RB_ROOT; 1030 timer_setup(&lo->timer, loop_free_idle_workers, 1031 TIMER_DEFERRABLE); 1032 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1033 lo->lo_device = bdev; 1034 lo->lo_backing_file = file; 1035 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1036 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1037 1038 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 1039 blk_queue_write_cache(lo->lo_queue, true, false); 1040 1041 if (config->block_size) 1042 bsize = config->block_size; 1043 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev) 1044 /* In case of direct I/O, match underlying block size */ 1045 bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 1046 else 1047 bsize = 512; 1048 1049 blk_queue_logical_block_size(lo->lo_queue, bsize); 1050 blk_queue_physical_block_size(lo->lo_queue, bsize); 1051 blk_queue_io_min(lo->lo_queue, bsize); 1052 1053 loop_config_discard(lo); 1054 loop_update_rotational(lo); 1055 loop_update_dio(lo); 1056 loop_sysfs_init(lo); 1057 1058 size = get_loop_size(lo, file); 1059 loop_set_size(lo, size); 1060 1061 /* Order wrt reading lo_state in loop_validate_file(). */ 1062 wmb(); 1063 1064 lo->lo_state = Lo_bound; 1065 if (part_shift) 1066 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1067 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1068 if (partscan) 1069 lo->lo_disk->flags &= ~GENHD_FL_NO_PART; 1070 1071 loop_global_unlock(lo, is_loop); 1072 if (partscan) 1073 loop_reread_partitions(lo); 1074 if (!(mode & FMODE_EXCL)) 1075 bd_abort_claiming(bdev, loop_configure); 1076 return 0; 1077 1078 out_unlock: 1079 loop_global_unlock(lo, is_loop); 1080 out_bdev: 1081 if (!(mode & FMODE_EXCL)) 1082 bd_abort_claiming(bdev, loop_configure); 1083 out_putf: 1084 fput(file); 1085 /* This is safe: open() is still holding a reference. */ 1086 module_put(THIS_MODULE); 1087 return error; 1088 } 1089 1090 static void __loop_clr_fd(struct loop_device *lo, bool release) 1091 { 1092 struct file *filp; 1093 gfp_t gfp = lo->old_gfp_mask; 1094 struct loop_worker *pos, *worker; 1095 1096 /* 1097 * Flush loop_configure() and loop_change_fd(). It is acceptable for 1098 * loop_validate_file() to succeed, for actual clear operation has not 1099 * started yet. 1100 */ 1101 mutex_lock(&loop_validate_mutex); 1102 mutex_unlock(&loop_validate_mutex); 1103 /* 1104 * loop_validate_file() now fails because l->lo_state != Lo_bound 1105 * became visible. 1106 */ 1107 1108 /* 1109 * Since this function is called upon "ioctl(LOOP_CLR_FD)" xor "close() 1110 * after ioctl(LOOP_CLR_FD)", it is a sign of something going wrong if 1111 * lo->lo_state has changed while waiting for lo->lo_mutex. 1112 */ 1113 mutex_lock(&lo->lo_mutex); 1114 BUG_ON(lo->lo_state != Lo_rundown); 1115 mutex_unlock(&lo->lo_mutex); 1116 1117 if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags)) 1118 blk_queue_write_cache(lo->lo_queue, false, false); 1119 1120 /* freeze request queue during the transition */ 1121 blk_mq_freeze_queue(lo->lo_queue); 1122 1123 destroy_workqueue(lo->workqueue); 1124 spin_lock_irq(&lo->lo_work_lock); 1125 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 1126 idle_list) { 1127 list_del(&worker->idle_list); 1128 rb_erase(&worker->rb_node, &lo->worker_tree); 1129 css_put(worker->blkcg_css); 1130 kfree(worker); 1131 } 1132 spin_unlock_irq(&lo->lo_work_lock); 1133 del_timer_sync(&lo->timer); 1134 1135 spin_lock_irq(&lo->lo_lock); 1136 filp = lo->lo_backing_file; 1137 lo->lo_backing_file = NULL; 1138 spin_unlock_irq(&lo->lo_lock); 1139 1140 lo->lo_device = NULL; 1141 lo->lo_offset = 0; 1142 lo->lo_sizelimit = 0; 1143 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1144 blk_queue_logical_block_size(lo->lo_queue, 512); 1145 blk_queue_physical_block_size(lo->lo_queue, 512); 1146 blk_queue_io_min(lo->lo_queue, 512); 1147 invalidate_disk(lo->lo_disk); 1148 loop_sysfs_exit(lo); 1149 /* let user-space know about this change */ 1150 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1151 mapping_set_gfp_mask(filp->f_mapping, gfp); 1152 /* This is safe: open() is still holding a reference. */ 1153 module_put(THIS_MODULE); 1154 blk_mq_unfreeze_queue(lo->lo_queue); 1155 1156 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE); 1157 1158 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1159 int err; 1160 1161 /* 1162 * open_mutex has been held already in release path, so don't 1163 * acquire it if this function is called in such case. 1164 * 1165 * If the reread partition isn't from release path, lo_refcnt 1166 * must be at least one and it can only become zero when the 1167 * current holder is released. 1168 */ 1169 if (!release) 1170 mutex_lock(&lo->lo_disk->open_mutex); 1171 err = bdev_disk_changed(lo->lo_disk, false); 1172 if (!release) 1173 mutex_unlock(&lo->lo_disk->open_mutex); 1174 if (err) 1175 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1176 __func__, lo->lo_number, err); 1177 /* Device is gone, no point in returning error */ 1178 } 1179 1180 /* 1181 * lo->lo_state is set to Lo_unbound here after above partscan has 1182 * finished. There cannot be anybody else entering __loop_clr_fd() as 1183 * Lo_rundown state protects us from all the other places trying to 1184 * change the 'lo' device. 1185 */ 1186 lo->lo_flags = 0; 1187 if (!part_shift) 1188 lo->lo_disk->flags |= GENHD_FL_NO_PART; 1189 mutex_lock(&lo->lo_mutex); 1190 lo->lo_state = Lo_unbound; 1191 mutex_unlock(&lo->lo_mutex); 1192 1193 /* 1194 * Need not hold lo_mutex to fput backing file. Calling fput holding 1195 * lo_mutex triggers a circular lock dependency possibility warning as 1196 * fput can take open_mutex which is usually taken before lo_mutex. 1197 */ 1198 fput(filp); 1199 } 1200 1201 static int loop_clr_fd(struct loop_device *lo) 1202 { 1203 int err; 1204 1205 err = mutex_lock_killable(&lo->lo_mutex); 1206 if (err) 1207 return err; 1208 if (lo->lo_state != Lo_bound) { 1209 mutex_unlock(&lo->lo_mutex); 1210 return -ENXIO; 1211 } 1212 /* 1213 * If we've explicitly asked to tear down the loop device, 1214 * and it has an elevated reference count, set it for auto-teardown when 1215 * the last reference goes away. This stops $!~#$@ udev from 1216 * preventing teardown because it decided that it needs to run blkid on 1217 * the loopback device whenever they appear. xfstests is notorious for 1218 * failing tests because blkid via udev races with a losetup 1219 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1220 * command to fail with EBUSY. 1221 */ 1222 if (atomic_read(&lo->lo_refcnt) > 1) { 1223 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1224 mutex_unlock(&lo->lo_mutex); 1225 return 0; 1226 } 1227 lo->lo_state = Lo_rundown; 1228 mutex_unlock(&lo->lo_mutex); 1229 1230 __loop_clr_fd(lo, false); 1231 return 0; 1232 } 1233 1234 static int 1235 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1236 { 1237 int err; 1238 int prev_lo_flags; 1239 bool partscan = false; 1240 bool size_changed = false; 1241 1242 err = mutex_lock_killable(&lo->lo_mutex); 1243 if (err) 1244 return err; 1245 if (lo->lo_state != Lo_bound) { 1246 err = -ENXIO; 1247 goto out_unlock; 1248 } 1249 1250 if (lo->lo_offset != info->lo_offset || 1251 lo->lo_sizelimit != info->lo_sizelimit) { 1252 size_changed = true; 1253 sync_blockdev(lo->lo_device); 1254 invalidate_bdev(lo->lo_device); 1255 } 1256 1257 /* I/O need to be drained during transfer transition */ 1258 blk_mq_freeze_queue(lo->lo_queue); 1259 1260 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) { 1261 /* If any pages were dirtied after invalidate_bdev(), try again */ 1262 err = -EAGAIN; 1263 pr_warn("%s: loop%d (%s) still has dirty pages (nrpages=%lu)\n", 1264 __func__, lo->lo_number, lo->lo_file_name, 1265 lo->lo_device->bd_inode->i_mapping->nrpages); 1266 goto out_unfreeze; 1267 } 1268 1269 prev_lo_flags = lo->lo_flags; 1270 1271 err = loop_set_status_from_info(lo, info); 1272 if (err) 1273 goto out_unfreeze; 1274 1275 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1276 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1277 /* For those flags, use the previous values instead */ 1278 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1279 /* For flags that can't be cleared, use previous values too */ 1280 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1281 1282 if (size_changed) { 1283 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1284 lo->lo_backing_file); 1285 loop_set_size(lo, new_size); 1286 } 1287 1288 loop_config_discard(lo); 1289 1290 /* update dio if lo_offset or transfer is changed */ 1291 __loop_update_dio(lo, lo->use_dio); 1292 1293 out_unfreeze: 1294 blk_mq_unfreeze_queue(lo->lo_queue); 1295 1296 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1297 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1298 lo->lo_disk->flags &= ~GENHD_FL_NO_PART; 1299 partscan = true; 1300 } 1301 out_unlock: 1302 mutex_unlock(&lo->lo_mutex); 1303 if (partscan) 1304 loop_reread_partitions(lo); 1305 1306 return err; 1307 } 1308 1309 static int 1310 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1311 { 1312 struct path path; 1313 struct kstat stat; 1314 int ret; 1315 1316 ret = mutex_lock_killable(&lo->lo_mutex); 1317 if (ret) 1318 return ret; 1319 if (lo->lo_state != Lo_bound) { 1320 mutex_unlock(&lo->lo_mutex); 1321 return -ENXIO; 1322 } 1323 1324 memset(info, 0, sizeof(*info)); 1325 info->lo_number = lo->lo_number; 1326 info->lo_offset = lo->lo_offset; 1327 info->lo_sizelimit = lo->lo_sizelimit; 1328 info->lo_flags = lo->lo_flags; 1329 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1330 1331 /* Drop lo_mutex while we call into the filesystem. */ 1332 path = lo->lo_backing_file->f_path; 1333 path_get(&path); 1334 mutex_unlock(&lo->lo_mutex); 1335 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1336 if (!ret) { 1337 info->lo_device = huge_encode_dev(stat.dev); 1338 info->lo_inode = stat.ino; 1339 info->lo_rdevice = huge_encode_dev(stat.rdev); 1340 } 1341 path_put(&path); 1342 return ret; 1343 } 1344 1345 static void 1346 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1347 { 1348 memset(info64, 0, sizeof(*info64)); 1349 info64->lo_number = info->lo_number; 1350 info64->lo_device = info->lo_device; 1351 info64->lo_inode = info->lo_inode; 1352 info64->lo_rdevice = info->lo_rdevice; 1353 info64->lo_offset = info->lo_offset; 1354 info64->lo_sizelimit = 0; 1355 info64->lo_flags = info->lo_flags; 1356 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1357 } 1358 1359 static int 1360 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1361 { 1362 memset(info, 0, sizeof(*info)); 1363 info->lo_number = info64->lo_number; 1364 info->lo_device = info64->lo_device; 1365 info->lo_inode = info64->lo_inode; 1366 info->lo_rdevice = info64->lo_rdevice; 1367 info->lo_offset = info64->lo_offset; 1368 info->lo_flags = info64->lo_flags; 1369 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1370 1371 /* error in case values were truncated */ 1372 if (info->lo_device != info64->lo_device || 1373 info->lo_rdevice != info64->lo_rdevice || 1374 info->lo_inode != info64->lo_inode || 1375 info->lo_offset != info64->lo_offset) 1376 return -EOVERFLOW; 1377 1378 return 0; 1379 } 1380 1381 static int 1382 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1383 { 1384 struct loop_info info; 1385 struct loop_info64 info64; 1386 1387 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1388 return -EFAULT; 1389 loop_info64_from_old(&info, &info64); 1390 return loop_set_status(lo, &info64); 1391 } 1392 1393 static int 1394 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1395 { 1396 struct loop_info64 info64; 1397 1398 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1399 return -EFAULT; 1400 return loop_set_status(lo, &info64); 1401 } 1402 1403 static int 1404 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1405 struct loop_info info; 1406 struct loop_info64 info64; 1407 int err; 1408 1409 if (!arg) 1410 return -EINVAL; 1411 err = loop_get_status(lo, &info64); 1412 if (!err) 1413 err = loop_info64_to_old(&info64, &info); 1414 if (!err && copy_to_user(arg, &info, sizeof(info))) 1415 err = -EFAULT; 1416 1417 return err; 1418 } 1419 1420 static int 1421 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1422 struct loop_info64 info64; 1423 int err; 1424 1425 if (!arg) 1426 return -EINVAL; 1427 err = loop_get_status(lo, &info64); 1428 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1429 err = -EFAULT; 1430 1431 return err; 1432 } 1433 1434 static int loop_set_capacity(struct loop_device *lo) 1435 { 1436 loff_t size; 1437 1438 if (unlikely(lo->lo_state != Lo_bound)) 1439 return -ENXIO; 1440 1441 size = get_loop_size(lo, lo->lo_backing_file); 1442 loop_set_size(lo, size); 1443 1444 return 0; 1445 } 1446 1447 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1448 { 1449 int error = -ENXIO; 1450 if (lo->lo_state != Lo_bound) 1451 goto out; 1452 1453 __loop_update_dio(lo, !!arg); 1454 if (lo->use_dio == !!arg) 1455 return 0; 1456 error = -EINVAL; 1457 out: 1458 return error; 1459 } 1460 1461 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1462 { 1463 int err = 0; 1464 1465 if (lo->lo_state != Lo_bound) 1466 return -ENXIO; 1467 1468 err = blk_validate_block_size(arg); 1469 if (err) 1470 return err; 1471 1472 if (lo->lo_queue->limits.logical_block_size == arg) 1473 return 0; 1474 1475 sync_blockdev(lo->lo_device); 1476 invalidate_bdev(lo->lo_device); 1477 1478 blk_mq_freeze_queue(lo->lo_queue); 1479 1480 /* invalidate_bdev should have truncated all the pages */ 1481 if (lo->lo_device->bd_inode->i_mapping->nrpages) { 1482 err = -EAGAIN; 1483 pr_warn("%s: loop%d (%s) still has dirty pages (nrpages=%lu)\n", 1484 __func__, lo->lo_number, lo->lo_file_name, 1485 lo->lo_device->bd_inode->i_mapping->nrpages); 1486 goto out_unfreeze; 1487 } 1488 1489 blk_queue_logical_block_size(lo->lo_queue, arg); 1490 blk_queue_physical_block_size(lo->lo_queue, arg); 1491 blk_queue_io_min(lo->lo_queue, arg); 1492 loop_update_dio(lo); 1493 out_unfreeze: 1494 blk_mq_unfreeze_queue(lo->lo_queue); 1495 1496 return err; 1497 } 1498 1499 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1500 unsigned long arg) 1501 { 1502 int err; 1503 1504 err = mutex_lock_killable(&lo->lo_mutex); 1505 if (err) 1506 return err; 1507 switch (cmd) { 1508 case LOOP_SET_CAPACITY: 1509 err = loop_set_capacity(lo); 1510 break; 1511 case LOOP_SET_DIRECT_IO: 1512 err = loop_set_dio(lo, arg); 1513 break; 1514 case LOOP_SET_BLOCK_SIZE: 1515 err = loop_set_block_size(lo, arg); 1516 break; 1517 default: 1518 err = -EINVAL; 1519 } 1520 mutex_unlock(&lo->lo_mutex); 1521 return err; 1522 } 1523 1524 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1525 unsigned int cmd, unsigned long arg) 1526 { 1527 struct loop_device *lo = bdev->bd_disk->private_data; 1528 void __user *argp = (void __user *) arg; 1529 int err; 1530 1531 switch (cmd) { 1532 case LOOP_SET_FD: { 1533 /* 1534 * Legacy case - pass in a zeroed out struct loop_config with 1535 * only the file descriptor set , which corresponds with the 1536 * default parameters we'd have used otherwise. 1537 */ 1538 struct loop_config config; 1539 1540 memset(&config, 0, sizeof(config)); 1541 config.fd = arg; 1542 1543 return loop_configure(lo, mode, bdev, &config); 1544 } 1545 case LOOP_CONFIGURE: { 1546 struct loop_config config; 1547 1548 if (copy_from_user(&config, argp, sizeof(config))) 1549 return -EFAULT; 1550 1551 return loop_configure(lo, mode, bdev, &config); 1552 } 1553 case LOOP_CHANGE_FD: 1554 return loop_change_fd(lo, bdev, arg); 1555 case LOOP_CLR_FD: 1556 return loop_clr_fd(lo); 1557 case LOOP_SET_STATUS: 1558 err = -EPERM; 1559 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1560 err = loop_set_status_old(lo, argp); 1561 } 1562 break; 1563 case LOOP_GET_STATUS: 1564 return loop_get_status_old(lo, argp); 1565 case LOOP_SET_STATUS64: 1566 err = -EPERM; 1567 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1568 err = loop_set_status64(lo, argp); 1569 } 1570 break; 1571 case LOOP_GET_STATUS64: 1572 return loop_get_status64(lo, argp); 1573 case LOOP_SET_CAPACITY: 1574 case LOOP_SET_DIRECT_IO: 1575 case LOOP_SET_BLOCK_SIZE: 1576 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN)) 1577 return -EPERM; 1578 fallthrough; 1579 default: 1580 err = lo_simple_ioctl(lo, cmd, arg); 1581 break; 1582 } 1583 1584 return err; 1585 } 1586 1587 #ifdef CONFIG_COMPAT 1588 struct compat_loop_info { 1589 compat_int_t lo_number; /* ioctl r/o */ 1590 compat_dev_t lo_device; /* ioctl r/o */ 1591 compat_ulong_t lo_inode; /* ioctl r/o */ 1592 compat_dev_t lo_rdevice; /* ioctl r/o */ 1593 compat_int_t lo_offset; 1594 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1595 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1596 compat_int_t lo_flags; /* ioctl r/o */ 1597 char lo_name[LO_NAME_SIZE]; 1598 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1599 compat_ulong_t lo_init[2]; 1600 char reserved[4]; 1601 }; 1602 1603 /* 1604 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1605 * - noinlined to reduce stack space usage in main part of driver 1606 */ 1607 static noinline int 1608 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1609 struct loop_info64 *info64) 1610 { 1611 struct compat_loop_info info; 1612 1613 if (copy_from_user(&info, arg, sizeof(info))) 1614 return -EFAULT; 1615 1616 memset(info64, 0, sizeof(*info64)); 1617 info64->lo_number = info.lo_number; 1618 info64->lo_device = info.lo_device; 1619 info64->lo_inode = info.lo_inode; 1620 info64->lo_rdevice = info.lo_rdevice; 1621 info64->lo_offset = info.lo_offset; 1622 info64->lo_sizelimit = 0; 1623 info64->lo_flags = info.lo_flags; 1624 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1625 return 0; 1626 } 1627 1628 /* 1629 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1630 * - noinlined to reduce stack space usage in main part of driver 1631 */ 1632 static noinline int 1633 loop_info64_to_compat(const struct loop_info64 *info64, 1634 struct compat_loop_info __user *arg) 1635 { 1636 struct compat_loop_info info; 1637 1638 memset(&info, 0, sizeof(info)); 1639 info.lo_number = info64->lo_number; 1640 info.lo_device = info64->lo_device; 1641 info.lo_inode = info64->lo_inode; 1642 info.lo_rdevice = info64->lo_rdevice; 1643 info.lo_offset = info64->lo_offset; 1644 info.lo_flags = info64->lo_flags; 1645 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1646 1647 /* error in case values were truncated */ 1648 if (info.lo_device != info64->lo_device || 1649 info.lo_rdevice != info64->lo_rdevice || 1650 info.lo_inode != info64->lo_inode || 1651 info.lo_offset != info64->lo_offset) 1652 return -EOVERFLOW; 1653 1654 if (copy_to_user(arg, &info, sizeof(info))) 1655 return -EFAULT; 1656 return 0; 1657 } 1658 1659 static int 1660 loop_set_status_compat(struct loop_device *lo, 1661 const struct compat_loop_info __user *arg) 1662 { 1663 struct loop_info64 info64; 1664 int ret; 1665 1666 ret = loop_info64_from_compat(arg, &info64); 1667 if (ret < 0) 1668 return ret; 1669 return loop_set_status(lo, &info64); 1670 } 1671 1672 static int 1673 loop_get_status_compat(struct loop_device *lo, 1674 struct compat_loop_info __user *arg) 1675 { 1676 struct loop_info64 info64; 1677 int err; 1678 1679 if (!arg) 1680 return -EINVAL; 1681 err = loop_get_status(lo, &info64); 1682 if (!err) 1683 err = loop_info64_to_compat(&info64, arg); 1684 return err; 1685 } 1686 1687 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1688 unsigned int cmd, unsigned long arg) 1689 { 1690 struct loop_device *lo = bdev->bd_disk->private_data; 1691 int err; 1692 1693 switch(cmd) { 1694 case LOOP_SET_STATUS: 1695 err = loop_set_status_compat(lo, 1696 (const struct compat_loop_info __user *)arg); 1697 break; 1698 case LOOP_GET_STATUS: 1699 err = loop_get_status_compat(lo, 1700 (struct compat_loop_info __user *)arg); 1701 break; 1702 case LOOP_SET_CAPACITY: 1703 case LOOP_CLR_FD: 1704 case LOOP_GET_STATUS64: 1705 case LOOP_SET_STATUS64: 1706 case LOOP_CONFIGURE: 1707 arg = (unsigned long) compat_ptr(arg); 1708 fallthrough; 1709 case LOOP_SET_FD: 1710 case LOOP_CHANGE_FD: 1711 case LOOP_SET_BLOCK_SIZE: 1712 case LOOP_SET_DIRECT_IO: 1713 err = lo_ioctl(bdev, mode, cmd, arg); 1714 break; 1715 default: 1716 err = -ENOIOCTLCMD; 1717 break; 1718 } 1719 return err; 1720 } 1721 #endif 1722 1723 static int lo_open(struct block_device *bdev, fmode_t mode) 1724 { 1725 struct loop_device *lo = bdev->bd_disk->private_data; 1726 int err; 1727 1728 err = mutex_lock_killable(&lo->lo_mutex); 1729 if (err) 1730 return err; 1731 if (lo->lo_state == Lo_deleting) 1732 err = -ENXIO; 1733 else 1734 atomic_inc(&lo->lo_refcnt); 1735 mutex_unlock(&lo->lo_mutex); 1736 return err; 1737 } 1738 1739 static void lo_release(struct gendisk *disk, fmode_t mode) 1740 { 1741 struct loop_device *lo = disk->private_data; 1742 1743 mutex_lock(&lo->lo_mutex); 1744 if (atomic_dec_return(&lo->lo_refcnt)) 1745 goto out_unlock; 1746 1747 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1748 if (lo->lo_state != Lo_bound) 1749 goto out_unlock; 1750 lo->lo_state = Lo_rundown; 1751 mutex_unlock(&lo->lo_mutex); 1752 /* 1753 * In autoclear mode, stop the loop thread 1754 * and remove configuration after last close. 1755 */ 1756 __loop_clr_fd(lo, true); 1757 return; 1758 } else if (lo->lo_state == Lo_bound) { 1759 /* 1760 * Otherwise keep thread (if running) and config, 1761 * but flush possible ongoing bios in thread. 1762 */ 1763 blk_mq_freeze_queue(lo->lo_queue); 1764 blk_mq_unfreeze_queue(lo->lo_queue); 1765 } 1766 1767 out_unlock: 1768 mutex_unlock(&lo->lo_mutex); 1769 } 1770 1771 static const struct block_device_operations lo_fops = { 1772 .owner = THIS_MODULE, 1773 .open = lo_open, 1774 .release = lo_release, 1775 .ioctl = lo_ioctl, 1776 #ifdef CONFIG_COMPAT 1777 .compat_ioctl = lo_compat_ioctl, 1778 #endif 1779 }; 1780 1781 /* 1782 * And now the modules code and kernel interface. 1783 */ 1784 static int max_loop; 1785 module_param(max_loop, int, 0444); 1786 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1787 module_param(max_part, int, 0444); 1788 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1789 1790 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1791 1792 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1793 { 1794 int ret = kstrtoint(s, 10, &hw_queue_depth); 1795 1796 return (ret || (hw_queue_depth < 1)) ? -EINVAL : 0; 1797 } 1798 1799 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1800 .set = loop_set_hw_queue_depth, 1801 .get = param_get_int, 1802 }; 1803 1804 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1805 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 128"); 1806 1807 MODULE_LICENSE("GPL"); 1808 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1809 1810 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1811 const struct blk_mq_queue_data *bd) 1812 { 1813 struct request *rq = bd->rq; 1814 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1815 struct loop_device *lo = rq->q->queuedata; 1816 1817 blk_mq_start_request(rq); 1818 1819 if (lo->lo_state != Lo_bound) 1820 return BLK_STS_IOERR; 1821 1822 switch (req_op(rq)) { 1823 case REQ_OP_FLUSH: 1824 case REQ_OP_DISCARD: 1825 case REQ_OP_WRITE_ZEROES: 1826 cmd->use_aio = false; 1827 break; 1828 default: 1829 cmd->use_aio = lo->use_dio; 1830 break; 1831 } 1832 1833 /* always use the first bio's css */ 1834 cmd->blkcg_css = NULL; 1835 cmd->memcg_css = NULL; 1836 #ifdef CONFIG_BLK_CGROUP 1837 if (rq->bio && rq->bio->bi_blkg) { 1838 cmd->blkcg_css = &bio_blkcg(rq->bio)->css; 1839 #ifdef CONFIG_MEMCG 1840 cmd->memcg_css = 1841 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1842 &memory_cgrp_subsys); 1843 #endif 1844 } 1845 #endif 1846 loop_queue_work(lo, cmd); 1847 1848 return BLK_STS_OK; 1849 } 1850 1851 static void loop_handle_cmd(struct loop_cmd *cmd) 1852 { 1853 struct request *rq = blk_mq_rq_from_pdu(cmd); 1854 const bool write = op_is_write(req_op(rq)); 1855 struct loop_device *lo = rq->q->queuedata; 1856 int ret = 0; 1857 struct mem_cgroup *old_memcg = NULL; 1858 1859 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1860 ret = -EIO; 1861 goto failed; 1862 } 1863 1864 if (cmd->blkcg_css) 1865 kthread_associate_blkcg(cmd->blkcg_css); 1866 if (cmd->memcg_css) 1867 old_memcg = set_active_memcg( 1868 mem_cgroup_from_css(cmd->memcg_css)); 1869 1870 ret = do_req_filebacked(lo, rq); 1871 1872 if (cmd->blkcg_css) 1873 kthread_associate_blkcg(NULL); 1874 1875 if (cmd->memcg_css) { 1876 set_active_memcg(old_memcg); 1877 css_put(cmd->memcg_css); 1878 } 1879 failed: 1880 /* complete non-aio request */ 1881 if (!cmd->use_aio || ret) { 1882 if (ret == -EOPNOTSUPP) 1883 cmd->ret = ret; 1884 else 1885 cmd->ret = ret ? -EIO : 0; 1886 if (likely(!blk_should_fake_timeout(rq->q))) 1887 blk_mq_complete_request(rq); 1888 } 1889 } 1890 1891 static void loop_set_timer(struct loop_device *lo) 1892 { 1893 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 1894 } 1895 1896 static void loop_process_work(struct loop_worker *worker, 1897 struct list_head *cmd_list, struct loop_device *lo) 1898 { 1899 int orig_flags = current->flags; 1900 struct loop_cmd *cmd; 1901 1902 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1903 spin_lock_irq(&lo->lo_work_lock); 1904 while (!list_empty(cmd_list)) { 1905 cmd = container_of( 1906 cmd_list->next, struct loop_cmd, list_entry); 1907 list_del(cmd_list->next); 1908 spin_unlock_irq(&lo->lo_work_lock); 1909 1910 loop_handle_cmd(cmd); 1911 cond_resched(); 1912 1913 spin_lock_irq(&lo->lo_work_lock); 1914 } 1915 1916 /* 1917 * We only add to the idle list if there are no pending cmds 1918 * *and* the worker will not run again which ensures that it 1919 * is safe to free any worker on the idle list 1920 */ 1921 if (worker && !work_pending(&worker->work)) { 1922 worker->last_ran_at = jiffies; 1923 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1924 loop_set_timer(lo); 1925 } 1926 spin_unlock_irq(&lo->lo_work_lock); 1927 current->flags = orig_flags; 1928 } 1929 1930 static void loop_workfn(struct work_struct *work) 1931 { 1932 struct loop_worker *worker = 1933 container_of(work, struct loop_worker, work); 1934 loop_process_work(worker, &worker->cmd_list, worker->lo); 1935 } 1936 1937 static void loop_rootcg_workfn(struct work_struct *work) 1938 { 1939 struct loop_device *lo = 1940 container_of(work, struct loop_device, rootcg_work); 1941 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1942 } 1943 1944 static void loop_free_idle_workers(struct timer_list *timer) 1945 { 1946 struct loop_device *lo = container_of(timer, struct loop_device, timer); 1947 struct loop_worker *pos, *worker; 1948 1949 spin_lock_irq(&lo->lo_work_lock); 1950 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 1951 idle_list) { 1952 if (time_is_after_jiffies(worker->last_ran_at + 1953 LOOP_IDLE_WORKER_TIMEOUT)) 1954 break; 1955 list_del(&worker->idle_list); 1956 rb_erase(&worker->rb_node, &lo->worker_tree); 1957 css_put(worker->blkcg_css); 1958 kfree(worker); 1959 } 1960 if (!list_empty(&lo->idle_worker_list)) 1961 loop_set_timer(lo); 1962 spin_unlock_irq(&lo->lo_work_lock); 1963 } 1964 1965 static const struct blk_mq_ops loop_mq_ops = { 1966 .queue_rq = loop_queue_rq, 1967 .complete = lo_complete_rq, 1968 }; 1969 1970 static int loop_add(int i) 1971 { 1972 struct loop_device *lo; 1973 struct gendisk *disk; 1974 int err; 1975 1976 err = -ENOMEM; 1977 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1978 if (!lo) 1979 goto out; 1980 lo->lo_state = Lo_unbound; 1981 1982 err = mutex_lock_killable(&loop_ctl_mutex); 1983 if (err) 1984 goto out_free_dev; 1985 1986 /* allocate id, if @id >= 0, we're requesting that specific id */ 1987 if (i >= 0) { 1988 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1989 if (err == -ENOSPC) 1990 err = -EEXIST; 1991 } else { 1992 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1993 } 1994 mutex_unlock(&loop_ctl_mutex); 1995 if (err < 0) 1996 goto out_free_dev; 1997 i = err; 1998 1999 lo->tag_set.ops = &loop_mq_ops; 2000 lo->tag_set.nr_hw_queues = 1; 2001 lo->tag_set.queue_depth = hw_queue_depth; 2002 lo->tag_set.numa_node = NUMA_NO_NODE; 2003 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2004 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING | 2005 BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2006 lo->tag_set.driver_data = lo; 2007 2008 err = blk_mq_alloc_tag_set(&lo->tag_set); 2009 if (err) 2010 goto out_free_idr; 2011 2012 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, lo); 2013 if (IS_ERR(disk)) { 2014 err = PTR_ERR(disk); 2015 goto out_cleanup_tags; 2016 } 2017 lo->lo_queue = lo->lo_disk->queue; 2018 2019 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 2020 2021 /* 2022 * By default, we do buffer IO, so it doesn't make sense to enable 2023 * merge because the I/O submitted to backing file is handled page by 2024 * page. For directio mode, merge does help to dispatch bigger request 2025 * to underlayer disk. We will enable merge once directio is enabled. 2026 */ 2027 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2028 2029 /* 2030 * Disable partition scanning by default. The in-kernel partition 2031 * scanning can be requested individually per-device during its 2032 * setup. Userspace can always add and remove partitions from all 2033 * devices. The needed partition minors are allocated from the 2034 * extended minor space, the main loop device numbers will continue 2035 * to match the loop minors, regardless of the number of partitions 2036 * used. 2037 * 2038 * If max_part is given, partition scanning is globally enabled for 2039 * all loop devices. The minors for the main loop devices will be 2040 * multiples of max_part. 2041 * 2042 * Note: Global-for-all-devices, set-only-at-init, read-only module 2043 * parameteters like 'max_loop' and 'max_part' make things needlessly 2044 * complicated, are too static, inflexible and may surprise 2045 * userspace tools. Parameters like this in general should be avoided. 2046 */ 2047 if (!part_shift) 2048 disk->flags |= GENHD_FL_NO_PART; 2049 atomic_set(&lo->lo_refcnt, 0); 2050 mutex_init(&lo->lo_mutex); 2051 lo->lo_number = i; 2052 spin_lock_init(&lo->lo_lock); 2053 spin_lock_init(&lo->lo_work_lock); 2054 disk->major = LOOP_MAJOR; 2055 disk->first_minor = i << part_shift; 2056 disk->minors = 1 << part_shift; 2057 disk->fops = &lo_fops; 2058 disk->private_data = lo; 2059 disk->queue = lo->lo_queue; 2060 disk->events = DISK_EVENT_MEDIA_CHANGE; 2061 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2062 sprintf(disk->disk_name, "loop%d", i); 2063 /* Make this loop device reachable from pathname. */ 2064 err = add_disk(disk); 2065 if (err) 2066 goto out_cleanup_disk; 2067 2068 /* Show this loop device. */ 2069 mutex_lock(&loop_ctl_mutex); 2070 lo->idr_visible = true; 2071 mutex_unlock(&loop_ctl_mutex); 2072 2073 return i; 2074 2075 out_cleanup_disk: 2076 blk_cleanup_disk(disk); 2077 out_cleanup_tags: 2078 blk_mq_free_tag_set(&lo->tag_set); 2079 out_free_idr: 2080 mutex_lock(&loop_ctl_mutex); 2081 idr_remove(&loop_index_idr, i); 2082 mutex_unlock(&loop_ctl_mutex); 2083 out_free_dev: 2084 kfree(lo); 2085 out: 2086 return err; 2087 } 2088 2089 static void loop_remove(struct loop_device *lo) 2090 { 2091 /* Make this loop device unreachable from pathname. */ 2092 del_gendisk(lo->lo_disk); 2093 blk_cleanup_disk(lo->lo_disk); 2094 blk_mq_free_tag_set(&lo->tag_set); 2095 2096 mutex_lock(&loop_ctl_mutex); 2097 idr_remove(&loop_index_idr, lo->lo_number); 2098 mutex_unlock(&loop_ctl_mutex); 2099 /* There is no route which can find this loop device. */ 2100 mutex_destroy(&lo->lo_mutex); 2101 kfree(lo); 2102 } 2103 2104 static void loop_probe(dev_t dev) 2105 { 2106 int idx = MINOR(dev) >> part_shift; 2107 2108 if (max_loop && idx >= max_loop) 2109 return; 2110 loop_add(idx); 2111 } 2112 2113 static int loop_control_remove(int idx) 2114 { 2115 struct loop_device *lo; 2116 int ret; 2117 2118 if (idx < 0) { 2119 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2120 return -EINVAL; 2121 } 2122 2123 /* Hide this loop device for serialization. */ 2124 ret = mutex_lock_killable(&loop_ctl_mutex); 2125 if (ret) 2126 return ret; 2127 lo = idr_find(&loop_index_idr, idx); 2128 if (!lo || !lo->idr_visible) 2129 ret = -ENODEV; 2130 else 2131 lo->idr_visible = false; 2132 mutex_unlock(&loop_ctl_mutex); 2133 if (ret) 2134 return ret; 2135 2136 /* Check whether this loop device can be removed. */ 2137 ret = mutex_lock_killable(&lo->lo_mutex); 2138 if (ret) 2139 goto mark_visible; 2140 if (lo->lo_state != Lo_unbound || 2141 atomic_read(&lo->lo_refcnt) > 0) { 2142 mutex_unlock(&lo->lo_mutex); 2143 ret = -EBUSY; 2144 goto mark_visible; 2145 } 2146 /* Mark this loop device no longer open()-able. */ 2147 lo->lo_state = Lo_deleting; 2148 mutex_unlock(&lo->lo_mutex); 2149 2150 loop_remove(lo); 2151 return 0; 2152 2153 mark_visible: 2154 /* Show this loop device again. */ 2155 mutex_lock(&loop_ctl_mutex); 2156 lo->idr_visible = true; 2157 mutex_unlock(&loop_ctl_mutex); 2158 return ret; 2159 } 2160 2161 static int loop_control_get_free(int idx) 2162 { 2163 struct loop_device *lo; 2164 int id, ret; 2165 2166 ret = mutex_lock_killable(&loop_ctl_mutex); 2167 if (ret) 2168 return ret; 2169 idr_for_each_entry(&loop_index_idr, lo, id) { 2170 /* Hitting a race results in creating a new loop device which is harmless. */ 2171 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2172 goto found; 2173 } 2174 mutex_unlock(&loop_ctl_mutex); 2175 return loop_add(-1); 2176 found: 2177 mutex_unlock(&loop_ctl_mutex); 2178 return id; 2179 } 2180 2181 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2182 unsigned long parm) 2183 { 2184 switch (cmd) { 2185 case LOOP_CTL_ADD: 2186 return loop_add(parm); 2187 case LOOP_CTL_REMOVE: 2188 return loop_control_remove(parm); 2189 case LOOP_CTL_GET_FREE: 2190 return loop_control_get_free(parm); 2191 default: 2192 return -ENOSYS; 2193 } 2194 } 2195 2196 static const struct file_operations loop_ctl_fops = { 2197 .open = nonseekable_open, 2198 .unlocked_ioctl = loop_control_ioctl, 2199 .compat_ioctl = loop_control_ioctl, 2200 .owner = THIS_MODULE, 2201 .llseek = noop_llseek, 2202 }; 2203 2204 static struct miscdevice loop_misc = { 2205 .minor = LOOP_CTRL_MINOR, 2206 .name = "loop-control", 2207 .fops = &loop_ctl_fops, 2208 }; 2209 2210 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2211 MODULE_ALIAS("devname:loop-control"); 2212 2213 static int __init loop_init(void) 2214 { 2215 int i, nr; 2216 int err; 2217 2218 part_shift = 0; 2219 if (max_part > 0) { 2220 part_shift = fls(max_part); 2221 2222 /* 2223 * Adjust max_part according to part_shift as it is exported 2224 * to user space so that user can decide correct minor number 2225 * if [s]he want to create more devices. 2226 * 2227 * Note that -1 is required because partition 0 is reserved 2228 * for the whole disk. 2229 */ 2230 max_part = (1UL << part_shift) - 1; 2231 } 2232 2233 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2234 err = -EINVAL; 2235 goto err_out; 2236 } 2237 2238 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2239 err = -EINVAL; 2240 goto err_out; 2241 } 2242 2243 /* 2244 * If max_loop is specified, create that many devices upfront. 2245 * This also becomes a hard limit. If max_loop is not specified, 2246 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2247 * init time. Loop devices can be requested on-demand with the 2248 * /dev/loop-control interface, or be instantiated by accessing 2249 * a 'dead' device node. 2250 */ 2251 if (max_loop) 2252 nr = max_loop; 2253 else 2254 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2255 2256 err = misc_register(&loop_misc); 2257 if (err < 0) 2258 goto err_out; 2259 2260 2261 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2262 err = -EIO; 2263 goto misc_out; 2264 } 2265 2266 /* pre-create number of devices given by config or max_loop */ 2267 for (i = 0; i < nr; i++) 2268 loop_add(i); 2269 2270 printk(KERN_INFO "loop: module loaded\n"); 2271 return 0; 2272 2273 misc_out: 2274 misc_deregister(&loop_misc); 2275 err_out: 2276 return err; 2277 } 2278 2279 static void __exit loop_exit(void) 2280 { 2281 struct loop_device *lo; 2282 int id; 2283 2284 unregister_blkdev(LOOP_MAJOR, "loop"); 2285 misc_deregister(&loop_misc); 2286 2287 /* 2288 * There is no need to use loop_ctl_mutex here, for nobody else can 2289 * access loop_index_idr when this module is unloading (unless forced 2290 * module unloading is requested). If this is not a clean unloading, 2291 * we have no means to avoid kernel crash. 2292 */ 2293 idr_for_each_entry(&loop_index_idr, lo, id) 2294 loop_remove(lo); 2295 2296 idr_destroy(&loop_index_idr); 2297 } 2298 2299 module_init(loop_init); 2300 module_exit(loop_exit); 2301 2302 #ifndef MODULE 2303 static int __init max_loop_setup(char *str) 2304 { 2305 max_loop = simple_strtol(str, NULL, 0); 2306 return 1; 2307 } 2308 2309 __setup("max_loop=", max_loop_setup); 2310 #endif 2311