1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include "loop.h" 80 81 #include <linux/uaccess.h> 82 83 static DEFINE_IDR(loop_index_idr); 84 static DEFINE_MUTEX(loop_index_mutex); 85 86 static int max_part; 87 static int part_shift; 88 89 static int transfer_xor(struct loop_device *lo, int cmd, 90 struct page *raw_page, unsigned raw_off, 91 struct page *loop_page, unsigned loop_off, 92 int size, sector_t real_block) 93 { 94 char *raw_buf = kmap_atomic(raw_page) + raw_off; 95 char *loop_buf = kmap_atomic(loop_page) + loop_off; 96 char *in, *out, *key; 97 int i, keysize; 98 99 if (cmd == READ) { 100 in = raw_buf; 101 out = loop_buf; 102 } else { 103 in = loop_buf; 104 out = raw_buf; 105 } 106 107 key = lo->lo_encrypt_key; 108 keysize = lo->lo_encrypt_key_size; 109 for (i = 0; i < size; i++) 110 *out++ = *in++ ^ key[(i & 511) % keysize]; 111 112 kunmap_atomic(loop_buf); 113 kunmap_atomic(raw_buf); 114 cond_resched(); 115 return 0; 116 } 117 118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 119 { 120 if (unlikely(info->lo_encrypt_key_size <= 0)) 121 return -EINVAL; 122 return 0; 123 } 124 125 static struct loop_func_table none_funcs = { 126 .number = LO_CRYPT_NONE, 127 }; 128 129 static struct loop_func_table xor_funcs = { 130 .number = LO_CRYPT_XOR, 131 .transfer = transfer_xor, 132 .init = xor_init 133 }; 134 135 /* xfer_funcs[0] is special - its release function is never called */ 136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 137 &none_funcs, 138 &xor_funcs 139 }; 140 141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 142 { 143 loff_t loopsize; 144 145 /* Compute loopsize in bytes */ 146 loopsize = i_size_read(file->f_mapping->host); 147 if (offset > 0) 148 loopsize -= offset; 149 /* offset is beyond i_size, weird but possible */ 150 if (loopsize < 0) 151 return 0; 152 153 if (sizelimit > 0 && sizelimit < loopsize) 154 loopsize = sizelimit; 155 /* 156 * Unfortunately, if we want to do I/O on the device, 157 * the number of 512-byte sectors has to fit into a sector_t. 158 */ 159 return loopsize >> 9; 160 } 161 162 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 163 { 164 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 165 } 166 167 static void __loop_update_dio(struct loop_device *lo, bool dio) 168 { 169 struct file *file = lo->lo_backing_file; 170 struct address_space *mapping = file->f_mapping; 171 struct inode *inode = mapping->host; 172 unsigned short sb_bsize = 0; 173 unsigned dio_align = 0; 174 bool use_dio; 175 176 if (inode->i_sb->s_bdev) { 177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 178 dio_align = sb_bsize - 1; 179 } 180 181 /* 182 * We support direct I/O only if lo_offset is aligned with the 183 * logical I/O size of backing device, and the logical block 184 * size of loop is bigger than the backing device's and the loop 185 * needn't transform transfer. 186 * 187 * TODO: the above condition may be loosed in the future, and 188 * direct I/O may be switched runtime at that time because most 189 * of requests in sane applications should be PAGE_SIZE aligned 190 */ 191 if (dio) { 192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 193 !(lo->lo_offset & dio_align) && 194 mapping->a_ops->direct_IO && 195 !lo->transfer) 196 use_dio = true; 197 else 198 use_dio = false; 199 } else { 200 use_dio = false; 201 } 202 203 if (lo->use_dio == use_dio) 204 return; 205 206 /* flush dirty pages before changing direct IO */ 207 vfs_fsync(file, 0); 208 209 /* 210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 212 * will get updated by ioctl(LOOP_GET_STATUS) 213 */ 214 blk_mq_freeze_queue(lo->lo_queue); 215 lo->use_dio = use_dio; 216 if (use_dio) { 217 queue_flag_clear_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue); 218 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 219 } else { 220 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue); 221 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 222 } 223 blk_mq_unfreeze_queue(lo->lo_queue); 224 } 225 226 static int 227 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 228 { 229 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 230 sector_t x = (sector_t)size; 231 struct block_device *bdev = lo->lo_device; 232 233 if (unlikely((loff_t)x != size)) 234 return -EFBIG; 235 if (lo->lo_offset != offset) 236 lo->lo_offset = offset; 237 if (lo->lo_sizelimit != sizelimit) 238 lo->lo_sizelimit = sizelimit; 239 set_capacity(lo->lo_disk, x); 240 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 241 /* let user-space know about the new size */ 242 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 243 return 0; 244 } 245 246 static inline int 247 lo_do_transfer(struct loop_device *lo, int cmd, 248 struct page *rpage, unsigned roffs, 249 struct page *lpage, unsigned loffs, 250 int size, sector_t rblock) 251 { 252 int ret; 253 254 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 255 if (likely(!ret)) 256 return 0; 257 258 printk_ratelimited(KERN_ERR 259 "loop: Transfer error at byte offset %llu, length %i.\n", 260 (unsigned long long)rblock << 9, size); 261 return ret; 262 } 263 264 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 265 { 266 struct iov_iter i; 267 ssize_t bw; 268 269 iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len); 270 271 file_start_write(file); 272 bw = vfs_iter_write(file, &i, ppos, 0); 273 file_end_write(file); 274 275 if (likely(bw == bvec->bv_len)) 276 return 0; 277 278 printk_ratelimited(KERN_ERR 279 "loop: Write error at byte offset %llu, length %i.\n", 280 (unsigned long long)*ppos, bvec->bv_len); 281 if (bw >= 0) 282 bw = -EIO; 283 return bw; 284 } 285 286 static int lo_write_simple(struct loop_device *lo, struct request *rq, 287 loff_t pos) 288 { 289 struct bio_vec bvec; 290 struct req_iterator iter; 291 int ret = 0; 292 293 rq_for_each_segment(bvec, rq, iter) { 294 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 295 if (ret < 0) 296 break; 297 cond_resched(); 298 } 299 300 return ret; 301 } 302 303 /* 304 * This is the slow, transforming version that needs to double buffer the 305 * data as it cannot do the transformations in place without having direct 306 * access to the destination pages of the backing file. 307 */ 308 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 309 loff_t pos) 310 { 311 struct bio_vec bvec, b; 312 struct req_iterator iter; 313 struct page *page; 314 int ret = 0; 315 316 page = alloc_page(GFP_NOIO); 317 if (unlikely(!page)) 318 return -ENOMEM; 319 320 rq_for_each_segment(bvec, rq, iter) { 321 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 322 bvec.bv_offset, bvec.bv_len, pos >> 9); 323 if (unlikely(ret)) 324 break; 325 326 b.bv_page = page; 327 b.bv_offset = 0; 328 b.bv_len = bvec.bv_len; 329 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 330 if (ret < 0) 331 break; 332 } 333 334 __free_page(page); 335 return ret; 336 } 337 338 static int lo_read_simple(struct loop_device *lo, struct request *rq, 339 loff_t pos) 340 { 341 struct bio_vec bvec; 342 struct req_iterator iter; 343 struct iov_iter i; 344 ssize_t len; 345 346 rq_for_each_segment(bvec, rq, iter) { 347 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len); 348 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 349 if (len < 0) 350 return len; 351 352 flush_dcache_page(bvec.bv_page); 353 354 if (len != bvec.bv_len) { 355 struct bio *bio; 356 357 __rq_for_each_bio(bio, rq) 358 zero_fill_bio(bio); 359 break; 360 } 361 cond_resched(); 362 } 363 364 return 0; 365 } 366 367 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 368 loff_t pos) 369 { 370 struct bio_vec bvec, b; 371 struct req_iterator iter; 372 struct iov_iter i; 373 struct page *page; 374 ssize_t len; 375 int ret = 0; 376 377 page = alloc_page(GFP_NOIO); 378 if (unlikely(!page)) 379 return -ENOMEM; 380 381 rq_for_each_segment(bvec, rq, iter) { 382 loff_t offset = pos; 383 384 b.bv_page = page; 385 b.bv_offset = 0; 386 b.bv_len = bvec.bv_len; 387 388 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len); 389 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 390 if (len < 0) { 391 ret = len; 392 goto out_free_page; 393 } 394 395 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 396 bvec.bv_offset, len, offset >> 9); 397 if (ret) 398 goto out_free_page; 399 400 flush_dcache_page(bvec.bv_page); 401 402 if (len != bvec.bv_len) { 403 struct bio *bio; 404 405 __rq_for_each_bio(bio, rq) 406 zero_fill_bio(bio); 407 break; 408 } 409 } 410 411 ret = 0; 412 out_free_page: 413 __free_page(page); 414 return ret; 415 } 416 417 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos) 418 { 419 /* 420 * We use punch hole to reclaim the free space used by the 421 * image a.k.a. discard. However we do not support discard if 422 * encryption is enabled, because it may give an attacker 423 * useful information. 424 */ 425 struct file *file = lo->lo_backing_file; 426 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 427 int ret; 428 429 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) { 430 ret = -EOPNOTSUPP; 431 goto out; 432 } 433 434 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 435 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 436 ret = -EIO; 437 out: 438 return ret; 439 } 440 441 static int lo_req_flush(struct loop_device *lo, struct request *rq) 442 { 443 struct file *file = lo->lo_backing_file; 444 int ret = vfs_fsync(file, 0); 445 if (unlikely(ret && ret != -EINVAL)) 446 ret = -EIO; 447 448 return ret; 449 } 450 451 static void lo_complete_rq(struct request *rq) 452 { 453 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 454 455 if (unlikely(req_op(cmd->rq) == REQ_OP_READ && cmd->use_aio && 456 cmd->ret >= 0 && cmd->ret < blk_rq_bytes(cmd->rq))) { 457 struct bio *bio = cmd->rq->bio; 458 459 bio_advance(bio, cmd->ret); 460 zero_fill_bio(bio); 461 } 462 463 blk_mq_end_request(rq, cmd->ret < 0 ? BLK_STS_IOERR : BLK_STS_OK); 464 } 465 466 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 467 { 468 if (!atomic_dec_and_test(&cmd->ref)) 469 return; 470 kfree(cmd->bvec); 471 cmd->bvec = NULL; 472 blk_mq_complete_request(cmd->rq); 473 } 474 475 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 476 { 477 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 478 479 cmd->ret = ret; 480 lo_rw_aio_do_completion(cmd); 481 } 482 483 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 484 loff_t pos, bool rw) 485 { 486 struct iov_iter iter; 487 struct bio_vec *bvec; 488 struct request *rq = cmd->rq; 489 struct bio *bio = rq->bio; 490 struct file *file = lo->lo_backing_file; 491 unsigned int offset; 492 int segments = 0; 493 int ret; 494 495 if (rq->bio != rq->biotail) { 496 struct req_iterator iter; 497 struct bio_vec tmp; 498 499 __rq_for_each_bio(bio, rq) 500 segments += bio_segments(bio); 501 bvec = kmalloc(sizeof(struct bio_vec) * segments, GFP_NOIO); 502 if (!bvec) 503 return -EIO; 504 cmd->bvec = bvec; 505 506 /* 507 * The bios of the request may be started from the middle of 508 * the 'bvec' because of bio splitting, so we can't directly 509 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment 510 * API will take care of all details for us. 511 */ 512 rq_for_each_segment(tmp, rq, iter) { 513 *bvec = tmp; 514 bvec++; 515 } 516 bvec = cmd->bvec; 517 offset = 0; 518 } else { 519 /* 520 * Same here, this bio may be started from the middle of the 521 * 'bvec' because of bio splitting, so offset from the bvec 522 * must be passed to iov iterator 523 */ 524 offset = bio->bi_iter.bi_bvec_done; 525 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 526 segments = bio_segments(bio); 527 } 528 atomic_set(&cmd->ref, 2); 529 530 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec, 531 segments, blk_rq_bytes(rq)); 532 iter.iov_offset = offset; 533 534 cmd->iocb.ki_pos = pos; 535 cmd->iocb.ki_filp = file; 536 cmd->iocb.ki_complete = lo_rw_aio_complete; 537 cmd->iocb.ki_flags = IOCB_DIRECT; 538 539 if (rw == WRITE) 540 ret = call_write_iter(file, &cmd->iocb, &iter); 541 else 542 ret = call_read_iter(file, &cmd->iocb, &iter); 543 544 lo_rw_aio_do_completion(cmd); 545 546 if (ret != -EIOCBQUEUED) 547 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 548 return 0; 549 } 550 551 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 552 { 553 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 554 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 555 556 /* 557 * lo_write_simple and lo_read_simple should have been covered 558 * by io submit style function like lo_rw_aio(), one blocker 559 * is that lo_read_simple() need to call flush_dcache_page after 560 * the page is written from kernel, and it isn't easy to handle 561 * this in io submit style function which submits all segments 562 * of the req at one time. And direct read IO doesn't need to 563 * run flush_dcache_page(). 564 */ 565 switch (req_op(rq)) { 566 case REQ_OP_FLUSH: 567 return lo_req_flush(lo, rq); 568 case REQ_OP_DISCARD: 569 case REQ_OP_WRITE_ZEROES: 570 return lo_discard(lo, rq, pos); 571 case REQ_OP_WRITE: 572 if (lo->transfer) 573 return lo_write_transfer(lo, rq, pos); 574 else if (cmd->use_aio) 575 return lo_rw_aio(lo, cmd, pos, WRITE); 576 else 577 return lo_write_simple(lo, rq, pos); 578 case REQ_OP_READ: 579 if (lo->transfer) 580 return lo_read_transfer(lo, rq, pos); 581 else if (cmd->use_aio) 582 return lo_rw_aio(lo, cmd, pos, READ); 583 else 584 return lo_read_simple(lo, rq, pos); 585 default: 586 WARN_ON_ONCE(1); 587 return -EIO; 588 break; 589 } 590 } 591 592 static inline void loop_update_dio(struct loop_device *lo) 593 { 594 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) | 595 lo->use_dio); 596 } 597 598 static void loop_reread_partitions(struct loop_device *lo, 599 struct block_device *bdev) 600 { 601 int rc; 602 603 /* 604 * bd_mutex has been held already in release path, so don't 605 * acquire it if this function is called in such case. 606 * 607 * If the reread partition isn't from release path, lo_refcnt 608 * must be at least one and it can only become zero when the 609 * current holder is released. 610 */ 611 if (!atomic_read(&lo->lo_refcnt)) 612 rc = __blkdev_reread_part(bdev); 613 else 614 rc = blkdev_reread_part(bdev); 615 if (rc) 616 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 617 __func__, lo->lo_number, lo->lo_file_name, rc); 618 } 619 620 /* 621 * loop_change_fd switched the backing store of a loopback device to 622 * a new file. This is useful for operating system installers to free up 623 * the original file and in High Availability environments to switch to 624 * an alternative location for the content in case of server meltdown. 625 * This can only work if the loop device is used read-only, and if the 626 * new backing store is the same size and type as the old backing store. 627 */ 628 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 629 unsigned int arg) 630 { 631 struct file *file, *old_file; 632 struct inode *inode; 633 int error; 634 635 error = -ENXIO; 636 if (lo->lo_state != Lo_bound) 637 goto out; 638 639 /* the loop device has to be read-only */ 640 error = -EINVAL; 641 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 642 goto out; 643 644 error = -EBADF; 645 file = fget(arg); 646 if (!file) 647 goto out; 648 649 inode = file->f_mapping->host; 650 old_file = lo->lo_backing_file; 651 652 error = -EINVAL; 653 654 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 655 goto out_putf; 656 657 /* size of the new backing store needs to be the same */ 658 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 659 goto out_putf; 660 661 /* and ... switch */ 662 blk_mq_freeze_queue(lo->lo_queue); 663 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 664 lo->lo_backing_file = file; 665 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 666 mapping_set_gfp_mask(file->f_mapping, 667 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 668 loop_update_dio(lo); 669 blk_mq_unfreeze_queue(lo->lo_queue); 670 671 fput(old_file); 672 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 673 loop_reread_partitions(lo, bdev); 674 return 0; 675 676 out_putf: 677 fput(file); 678 out: 679 return error; 680 } 681 682 static inline int is_loop_device(struct file *file) 683 { 684 struct inode *i = file->f_mapping->host; 685 686 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 687 } 688 689 /* loop sysfs attributes */ 690 691 static ssize_t loop_attr_show(struct device *dev, char *page, 692 ssize_t (*callback)(struct loop_device *, char *)) 693 { 694 struct gendisk *disk = dev_to_disk(dev); 695 struct loop_device *lo = disk->private_data; 696 697 return callback(lo, page); 698 } 699 700 #define LOOP_ATTR_RO(_name) \ 701 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 702 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 703 struct device_attribute *attr, char *b) \ 704 { \ 705 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 706 } \ 707 static struct device_attribute loop_attr_##_name = \ 708 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); 709 710 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 711 { 712 ssize_t ret; 713 char *p = NULL; 714 715 spin_lock_irq(&lo->lo_lock); 716 if (lo->lo_backing_file) 717 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 718 spin_unlock_irq(&lo->lo_lock); 719 720 if (IS_ERR_OR_NULL(p)) 721 ret = PTR_ERR(p); 722 else { 723 ret = strlen(p); 724 memmove(buf, p, ret); 725 buf[ret++] = '\n'; 726 buf[ret] = 0; 727 } 728 729 return ret; 730 } 731 732 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 733 { 734 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 735 } 736 737 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 738 { 739 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 740 } 741 742 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 743 { 744 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 745 746 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 747 } 748 749 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 750 { 751 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 752 753 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 754 } 755 756 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 757 { 758 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 759 760 return sprintf(buf, "%s\n", dio ? "1" : "0"); 761 } 762 763 LOOP_ATTR_RO(backing_file); 764 LOOP_ATTR_RO(offset); 765 LOOP_ATTR_RO(sizelimit); 766 LOOP_ATTR_RO(autoclear); 767 LOOP_ATTR_RO(partscan); 768 LOOP_ATTR_RO(dio); 769 770 static struct attribute *loop_attrs[] = { 771 &loop_attr_backing_file.attr, 772 &loop_attr_offset.attr, 773 &loop_attr_sizelimit.attr, 774 &loop_attr_autoclear.attr, 775 &loop_attr_partscan.attr, 776 &loop_attr_dio.attr, 777 NULL, 778 }; 779 780 static struct attribute_group loop_attribute_group = { 781 .name = "loop", 782 .attrs= loop_attrs, 783 }; 784 785 static int loop_sysfs_init(struct loop_device *lo) 786 { 787 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 788 &loop_attribute_group); 789 } 790 791 static void loop_sysfs_exit(struct loop_device *lo) 792 { 793 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 794 &loop_attribute_group); 795 } 796 797 static void loop_config_discard(struct loop_device *lo) 798 { 799 struct file *file = lo->lo_backing_file; 800 struct inode *inode = file->f_mapping->host; 801 struct request_queue *q = lo->lo_queue; 802 803 /* 804 * We use punch hole to reclaim the free space used by the 805 * image a.k.a. discard. However we do not support discard if 806 * encryption is enabled, because it may give an attacker 807 * useful information. 808 */ 809 if ((!file->f_op->fallocate) || 810 lo->lo_encrypt_key_size) { 811 q->limits.discard_granularity = 0; 812 q->limits.discard_alignment = 0; 813 blk_queue_max_discard_sectors(q, 0); 814 blk_queue_max_write_zeroes_sectors(q, 0); 815 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 816 return; 817 } 818 819 q->limits.discard_granularity = inode->i_sb->s_blocksize; 820 q->limits.discard_alignment = 0; 821 822 blk_queue_max_discard_sectors(q, UINT_MAX >> 9); 823 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9); 824 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 825 } 826 827 static void loop_unprepare_queue(struct loop_device *lo) 828 { 829 kthread_flush_worker(&lo->worker); 830 kthread_stop(lo->worker_task); 831 } 832 833 static int loop_kthread_worker_fn(void *worker_ptr) 834 { 835 current->flags |= PF_LESS_THROTTLE; 836 return kthread_worker_fn(worker_ptr); 837 } 838 839 static int loop_prepare_queue(struct loop_device *lo) 840 { 841 kthread_init_worker(&lo->worker); 842 lo->worker_task = kthread_run(loop_kthread_worker_fn, 843 &lo->worker, "loop%d", lo->lo_number); 844 if (IS_ERR(lo->worker_task)) 845 return -ENOMEM; 846 set_user_nice(lo->worker_task, MIN_NICE); 847 return 0; 848 } 849 850 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 851 struct block_device *bdev, unsigned int arg) 852 { 853 struct file *file, *f; 854 struct inode *inode; 855 struct address_space *mapping; 856 int lo_flags = 0; 857 int error; 858 loff_t size; 859 860 /* This is safe, since we have a reference from open(). */ 861 __module_get(THIS_MODULE); 862 863 error = -EBADF; 864 file = fget(arg); 865 if (!file) 866 goto out; 867 868 error = -EBUSY; 869 if (lo->lo_state != Lo_unbound) 870 goto out_putf; 871 872 /* Avoid recursion */ 873 f = file; 874 while (is_loop_device(f)) { 875 struct loop_device *l; 876 877 if (f->f_mapping->host->i_bdev == bdev) 878 goto out_putf; 879 880 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 881 if (l->lo_state == Lo_unbound) { 882 error = -EINVAL; 883 goto out_putf; 884 } 885 f = l->lo_backing_file; 886 } 887 888 mapping = file->f_mapping; 889 inode = mapping->host; 890 891 error = -EINVAL; 892 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 893 goto out_putf; 894 895 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 896 !file->f_op->write_iter) 897 lo_flags |= LO_FLAGS_READ_ONLY; 898 899 error = -EFBIG; 900 size = get_loop_size(lo, file); 901 if ((loff_t)(sector_t)size != size) 902 goto out_putf; 903 error = loop_prepare_queue(lo); 904 if (error) 905 goto out_putf; 906 907 error = 0; 908 909 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 910 911 lo->use_dio = false; 912 lo->lo_device = bdev; 913 lo->lo_flags = lo_flags; 914 lo->lo_backing_file = file; 915 lo->transfer = NULL; 916 lo->ioctl = NULL; 917 lo->lo_sizelimit = 0; 918 lo->old_gfp_mask = mapping_gfp_mask(mapping); 919 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 920 921 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 922 blk_queue_write_cache(lo->lo_queue, true, false); 923 924 loop_update_dio(lo); 925 set_capacity(lo->lo_disk, size); 926 bd_set_size(bdev, size << 9); 927 loop_sysfs_init(lo); 928 /* let user-space know about the new size */ 929 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 930 931 set_blocksize(bdev, S_ISBLK(inode->i_mode) ? 932 block_size(inode->i_bdev) : PAGE_SIZE); 933 934 lo->lo_state = Lo_bound; 935 if (part_shift) 936 lo->lo_flags |= LO_FLAGS_PARTSCAN; 937 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 938 loop_reread_partitions(lo, bdev); 939 940 /* Grab the block_device to prevent its destruction after we 941 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev). 942 */ 943 bdgrab(bdev); 944 return 0; 945 946 out_putf: 947 fput(file); 948 out: 949 /* This is safe: open() is still holding a reference. */ 950 module_put(THIS_MODULE); 951 return error; 952 } 953 954 static int 955 loop_release_xfer(struct loop_device *lo) 956 { 957 int err = 0; 958 struct loop_func_table *xfer = lo->lo_encryption; 959 960 if (xfer) { 961 if (xfer->release) 962 err = xfer->release(lo); 963 lo->transfer = NULL; 964 lo->lo_encryption = NULL; 965 module_put(xfer->owner); 966 } 967 return err; 968 } 969 970 static int 971 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 972 const struct loop_info64 *i) 973 { 974 int err = 0; 975 976 if (xfer) { 977 struct module *owner = xfer->owner; 978 979 if (!try_module_get(owner)) 980 return -EINVAL; 981 if (xfer->init) 982 err = xfer->init(lo, i); 983 if (err) 984 module_put(owner); 985 else 986 lo->lo_encryption = xfer; 987 } 988 return err; 989 } 990 991 static int loop_clr_fd(struct loop_device *lo) 992 { 993 struct file *filp = lo->lo_backing_file; 994 gfp_t gfp = lo->old_gfp_mask; 995 struct block_device *bdev = lo->lo_device; 996 997 if (lo->lo_state != Lo_bound) 998 return -ENXIO; 999 1000 /* 1001 * If we've explicitly asked to tear down the loop device, 1002 * and it has an elevated reference count, set it for auto-teardown when 1003 * the last reference goes away. This stops $!~#$@ udev from 1004 * preventing teardown because it decided that it needs to run blkid on 1005 * the loopback device whenever they appear. xfstests is notorious for 1006 * failing tests because blkid via udev races with a losetup 1007 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1008 * command to fail with EBUSY. 1009 */ 1010 if (atomic_read(&lo->lo_refcnt) > 1) { 1011 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1012 mutex_unlock(&lo->lo_ctl_mutex); 1013 return 0; 1014 } 1015 1016 if (filp == NULL) 1017 return -EINVAL; 1018 1019 /* freeze request queue during the transition */ 1020 blk_mq_freeze_queue(lo->lo_queue); 1021 1022 spin_lock_irq(&lo->lo_lock); 1023 lo->lo_state = Lo_rundown; 1024 lo->lo_backing_file = NULL; 1025 spin_unlock_irq(&lo->lo_lock); 1026 1027 loop_release_xfer(lo); 1028 lo->transfer = NULL; 1029 lo->ioctl = NULL; 1030 lo->lo_device = NULL; 1031 lo->lo_encryption = NULL; 1032 lo->lo_offset = 0; 1033 lo->lo_sizelimit = 0; 1034 lo->lo_encrypt_key_size = 0; 1035 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1036 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1037 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1038 blk_queue_logical_block_size(lo->lo_queue, 512); 1039 blk_queue_physical_block_size(lo->lo_queue, 512); 1040 blk_queue_io_min(lo->lo_queue, 512); 1041 if (bdev) { 1042 bdput(bdev); 1043 invalidate_bdev(bdev); 1044 } 1045 set_capacity(lo->lo_disk, 0); 1046 loop_sysfs_exit(lo); 1047 if (bdev) { 1048 bd_set_size(bdev, 0); 1049 /* let user-space know about this change */ 1050 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1051 } 1052 mapping_set_gfp_mask(filp->f_mapping, gfp); 1053 lo->lo_state = Lo_unbound; 1054 /* This is safe: open() is still holding a reference. */ 1055 module_put(THIS_MODULE); 1056 blk_mq_unfreeze_queue(lo->lo_queue); 1057 1058 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) 1059 loop_reread_partitions(lo, bdev); 1060 lo->lo_flags = 0; 1061 if (!part_shift) 1062 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1063 loop_unprepare_queue(lo); 1064 mutex_unlock(&lo->lo_ctl_mutex); 1065 /* 1066 * Need not hold lo_ctl_mutex to fput backing file. 1067 * Calling fput holding lo_ctl_mutex triggers a circular 1068 * lock dependency possibility warning as fput can take 1069 * bd_mutex which is usually taken before lo_ctl_mutex. 1070 */ 1071 fput(filp); 1072 return 0; 1073 } 1074 1075 static int 1076 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1077 { 1078 int err; 1079 struct loop_func_table *xfer; 1080 kuid_t uid = current_uid(); 1081 1082 if (lo->lo_encrypt_key_size && 1083 !uid_eq(lo->lo_key_owner, uid) && 1084 !capable(CAP_SYS_ADMIN)) 1085 return -EPERM; 1086 if (lo->lo_state != Lo_bound) 1087 return -ENXIO; 1088 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1089 return -EINVAL; 1090 1091 /* I/O need to be drained during transfer transition */ 1092 blk_mq_freeze_queue(lo->lo_queue); 1093 1094 err = loop_release_xfer(lo); 1095 if (err) 1096 goto exit; 1097 1098 if (info->lo_encrypt_type) { 1099 unsigned int type = info->lo_encrypt_type; 1100 1101 if (type >= MAX_LO_CRYPT) 1102 return -EINVAL; 1103 xfer = xfer_funcs[type]; 1104 if (xfer == NULL) 1105 return -EINVAL; 1106 } else 1107 xfer = NULL; 1108 1109 err = loop_init_xfer(lo, xfer, info); 1110 if (err) 1111 goto exit; 1112 1113 if (lo->lo_offset != info->lo_offset || 1114 lo->lo_sizelimit != info->lo_sizelimit) { 1115 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) { 1116 err = -EFBIG; 1117 goto exit; 1118 } 1119 } 1120 1121 loop_config_discard(lo); 1122 1123 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1124 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1125 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1126 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1127 1128 if (!xfer) 1129 xfer = &none_funcs; 1130 lo->transfer = xfer->transfer; 1131 lo->ioctl = xfer->ioctl; 1132 1133 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1134 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1135 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1136 1137 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1138 lo->lo_init[0] = info->lo_init[0]; 1139 lo->lo_init[1] = info->lo_init[1]; 1140 if (info->lo_encrypt_key_size) { 1141 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1142 info->lo_encrypt_key_size); 1143 lo->lo_key_owner = uid; 1144 } 1145 1146 /* update dio if lo_offset or transfer is changed */ 1147 __loop_update_dio(lo, lo->use_dio); 1148 1149 exit: 1150 blk_mq_unfreeze_queue(lo->lo_queue); 1151 1152 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) && 1153 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1154 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1155 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1156 loop_reread_partitions(lo, lo->lo_device); 1157 } 1158 1159 return err; 1160 } 1161 1162 static int 1163 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1164 { 1165 struct file *file = lo->lo_backing_file; 1166 struct kstat stat; 1167 int error; 1168 1169 if (lo->lo_state != Lo_bound) 1170 return -ENXIO; 1171 error = vfs_getattr(&file->f_path, &stat, 1172 STATX_INO, AT_STATX_SYNC_AS_STAT); 1173 if (error) 1174 return error; 1175 memset(info, 0, sizeof(*info)); 1176 info->lo_number = lo->lo_number; 1177 info->lo_device = huge_encode_dev(stat.dev); 1178 info->lo_inode = stat.ino; 1179 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1180 info->lo_offset = lo->lo_offset; 1181 info->lo_sizelimit = lo->lo_sizelimit; 1182 info->lo_flags = lo->lo_flags; 1183 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1184 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1185 info->lo_encrypt_type = 1186 lo->lo_encryption ? lo->lo_encryption->number : 0; 1187 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1188 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1189 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1190 lo->lo_encrypt_key_size); 1191 } 1192 return 0; 1193 } 1194 1195 static void 1196 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1197 { 1198 memset(info64, 0, sizeof(*info64)); 1199 info64->lo_number = info->lo_number; 1200 info64->lo_device = info->lo_device; 1201 info64->lo_inode = info->lo_inode; 1202 info64->lo_rdevice = info->lo_rdevice; 1203 info64->lo_offset = info->lo_offset; 1204 info64->lo_sizelimit = 0; 1205 info64->lo_encrypt_type = info->lo_encrypt_type; 1206 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1207 info64->lo_flags = info->lo_flags; 1208 info64->lo_init[0] = info->lo_init[0]; 1209 info64->lo_init[1] = info->lo_init[1]; 1210 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1211 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1212 else 1213 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1214 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1215 } 1216 1217 static int 1218 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1219 { 1220 memset(info, 0, sizeof(*info)); 1221 info->lo_number = info64->lo_number; 1222 info->lo_device = info64->lo_device; 1223 info->lo_inode = info64->lo_inode; 1224 info->lo_rdevice = info64->lo_rdevice; 1225 info->lo_offset = info64->lo_offset; 1226 info->lo_encrypt_type = info64->lo_encrypt_type; 1227 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1228 info->lo_flags = info64->lo_flags; 1229 info->lo_init[0] = info64->lo_init[0]; 1230 info->lo_init[1] = info64->lo_init[1]; 1231 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1232 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1233 else 1234 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1235 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1236 1237 /* error in case values were truncated */ 1238 if (info->lo_device != info64->lo_device || 1239 info->lo_rdevice != info64->lo_rdevice || 1240 info->lo_inode != info64->lo_inode || 1241 info->lo_offset != info64->lo_offset) 1242 return -EOVERFLOW; 1243 1244 return 0; 1245 } 1246 1247 static int 1248 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1249 { 1250 struct loop_info info; 1251 struct loop_info64 info64; 1252 1253 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1254 return -EFAULT; 1255 loop_info64_from_old(&info, &info64); 1256 return loop_set_status(lo, &info64); 1257 } 1258 1259 static int 1260 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1261 { 1262 struct loop_info64 info64; 1263 1264 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1265 return -EFAULT; 1266 return loop_set_status(lo, &info64); 1267 } 1268 1269 static int 1270 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1271 struct loop_info info; 1272 struct loop_info64 info64; 1273 int err = 0; 1274 1275 if (!arg) 1276 err = -EINVAL; 1277 if (!err) 1278 err = loop_get_status(lo, &info64); 1279 if (!err) 1280 err = loop_info64_to_old(&info64, &info); 1281 if (!err && copy_to_user(arg, &info, sizeof(info))) 1282 err = -EFAULT; 1283 1284 return err; 1285 } 1286 1287 static int 1288 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1289 struct loop_info64 info64; 1290 int err = 0; 1291 1292 if (!arg) 1293 err = -EINVAL; 1294 if (!err) 1295 err = loop_get_status(lo, &info64); 1296 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1297 err = -EFAULT; 1298 1299 return err; 1300 } 1301 1302 static int loop_set_capacity(struct loop_device *lo) 1303 { 1304 if (unlikely(lo->lo_state != Lo_bound)) 1305 return -ENXIO; 1306 1307 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1308 } 1309 1310 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1311 { 1312 int error = -ENXIO; 1313 if (lo->lo_state != Lo_bound) 1314 goto out; 1315 1316 __loop_update_dio(lo, !!arg); 1317 if (lo->use_dio == !!arg) 1318 return 0; 1319 error = -EINVAL; 1320 out: 1321 return error; 1322 } 1323 1324 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1325 { 1326 if (lo->lo_state != Lo_bound) 1327 return -ENXIO; 1328 1329 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg)) 1330 return -EINVAL; 1331 1332 blk_mq_freeze_queue(lo->lo_queue); 1333 1334 blk_queue_logical_block_size(lo->lo_queue, arg); 1335 blk_queue_physical_block_size(lo->lo_queue, arg); 1336 blk_queue_io_min(lo->lo_queue, arg); 1337 loop_update_dio(lo); 1338 1339 blk_mq_unfreeze_queue(lo->lo_queue); 1340 1341 return 0; 1342 } 1343 1344 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1345 unsigned int cmd, unsigned long arg) 1346 { 1347 struct loop_device *lo = bdev->bd_disk->private_data; 1348 int err; 1349 1350 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1351 switch (cmd) { 1352 case LOOP_SET_FD: 1353 err = loop_set_fd(lo, mode, bdev, arg); 1354 break; 1355 case LOOP_CHANGE_FD: 1356 err = loop_change_fd(lo, bdev, arg); 1357 break; 1358 case LOOP_CLR_FD: 1359 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1360 err = loop_clr_fd(lo); 1361 if (!err) 1362 goto out_unlocked; 1363 break; 1364 case LOOP_SET_STATUS: 1365 err = -EPERM; 1366 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1367 err = loop_set_status_old(lo, 1368 (struct loop_info __user *)arg); 1369 break; 1370 case LOOP_GET_STATUS: 1371 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1372 break; 1373 case LOOP_SET_STATUS64: 1374 err = -EPERM; 1375 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1376 err = loop_set_status64(lo, 1377 (struct loop_info64 __user *) arg); 1378 break; 1379 case LOOP_GET_STATUS64: 1380 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1381 break; 1382 case LOOP_SET_CAPACITY: 1383 err = -EPERM; 1384 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1385 err = loop_set_capacity(lo); 1386 break; 1387 case LOOP_SET_DIRECT_IO: 1388 err = -EPERM; 1389 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1390 err = loop_set_dio(lo, arg); 1391 break; 1392 case LOOP_SET_BLOCK_SIZE: 1393 err = -EPERM; 1394 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1395 err = loop_set_block_size(lo, arg); 1396 break; 1397 default: 1398 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1399 } 1400 mutex_unlock(&lo->lo_ctl_mutex); 1401 1402 out_unlocked: 1403 return err; 1404 } 1405 1406 #ifdef CONFIG_COMPAT 1407 struct compat_loop_info { 1408 compat_int_t lo_number; /* ioctl r/o */ 1409 compat_dev_t lo_device; /* ioctl r/o */ 1410 compat_ulong_t lo_inode; /* ioctl r/o */ 1411 compat_dev_t lo_rdevice; /* ioctl r/o */ 1412 compat_int_t lo_offset; 1413 compat_int_t lo_encrypt_type; 1414 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1415 compat_int_t lo_flags; /* ioctl r/o */ 1416 char lo_name[LO_NAME_SIZE]; 1417 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1418 compat_ulong_t lo_init[2]; 1419 char reserved[4]; 1420 }; 1421 1422 /* 1423 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1424 * - noinlined to reduce stack space usage in main part of driver 1425 */ 1426 static noinline int 1427 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1428 struct loop_info64 *info64) 1429 { 1430 struct compat_loop_info info; 1431 1432 if (copy_from_user(&info, arg, sizeof(info))) 1433 return -EFAULT; 1434 1435 memset(info64, 0, sizeof(*info64)); 1436 info64->lo_number = info.lo_number; 1437 info64->lo_device = info.lo_device; 1438 info64->lo_inode = info.lo_inode; 1439 info64->lo_rdevice = info.lo_rdevice; 1440 info64->lo_offset = info.lo_offset; 1441 info64->lo_sizelimit = 0; 1442 info64->lo_encrypt_type = info.lo_encrypt_type; 1443 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1444 info64->lo_flags = info.lo_flags; 1445 info64->lo_init[0] = info.lo_init[0]; 1446 info64->lo_init[1] = info.lo_init[1]; 1447 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1448 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1449 else 1450 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1451 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1452 return 0; 1453 } 1454 1455 /* 1456 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1457 * - noinlined to reduce stack space usage in main part of driver 1458 */ 1459 static noinline int 1460 loop_info64_to_compat(const struct loop_info64 *info64, 1461 struct compat_loop_info __user *arg) 1462 { 1463 struct compat_loop_info info; 1464 1465 memset(&info, 0, sizeof(info)); 1466 info.lo_number = info64->lo_number; 1467 info.lo_device = info64->lo_device; 1468 info.lo_inode = info64->lo_inode; 1469 info.lo_rdevice = info64->lo_rdevice; 1470 info.lo_offset = info64->lo_offset; 1471 info.lo_encrypt_type = info64->lo_encrypt_type; 1472 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1473 info.lo_flags = info64->lo_flags; 1474 info.lo_init[0] = info64->lo_init[0]; 1475 info.lo_init[1] = info64->lo_init[1]; 1476 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1477 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1478 else 1479 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1480 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1481 1482 /* error in case values were truncated */ 1483 if (info.lo_device != info64->lo_device || 1484 info.lo_rdevice != info64->lo_rdevice || 1485 info.lo_inode != info64->lo_inode || 1486 info.lo_offset != info64->lo_offset || 1487 info.lo_init[0] != info64->lo_init[0] || 1488 info.lo_init[1] != info64->lo_init[1]) 1489 return -EOVERFLOW; 1490 1491 if (copy_to_user(arg, &info, sizeof(info))) 1492 return -EFAULT; 1493 return 0; 1494 } 1495 1496 static int 1497 loop_set_status_compat(struct loop_device *lo, 1498 const struct compat_loop_info __user *arg) 1499 { 1500 struct loop_info64 info64; 1501 int ret; 1502 1503 ret = loop_info64_from_compat(arg, &info64); 1504 if (ret < 0) 1505 return ret; 1506 return loop_set_status(lo, &info64); 1507 } 1508 1509 static int 1510 loop_get_status_compat(struct loop_device *lo, 1511 struct compat_loop_info __user *arg) 1512 { 1513 struct loop_info64 info64; 1514 int err = 0; 1515 1516 if (!arg) 1517 err = -EINVAL; 1518 if (!err) 1519 err = loop_get_status(lo, &info64); 1520 if (!err) 1521 err = loop_info64_to_compat(&info64, arg); 1522 return err; 1523 } 1524 1525 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1526 unsigned int cmd, unsigned long arg) 1527 { 1528 struct loop_device *lo = bdev->bd_disk->private_data; 1529 int err; 1530 1531 switch(cmd) { 1532 case LOOP_SET_STATUS: 1533 mutex_lock(&lo->lo_ctl_mutex); 1534 err = loop_set_status_compat( 1535 lo, (const struct compat_loop_info __user *) arg); 1536 mutex_unlock(&lo->lo_ctl_mutex); 1537 break; 1538 case LOOP_GET_STATUS: 1539 mutex_lock(&lo->lo_ctl_mutex); 1540 err = loop_get_status_compat( 1541 lo, (struct compat_loop_info __user *) arg); 1542 mutex_unlock(&lo->lo_ctl_mutex); 1543 break; 1544 case LOOP_SET_CAPACITY: 1545 case LOOP_CLR_FD: 1546 case LOOP_GET_STATUS64: 1547 case LOOP_SET_STATUS64: 1548 arg = (unsigned long) compat_ptr(arg); 1549 case LOOP_SET_FD: 1550 case LOOP_CHANGE_FD: 1551 err = lo_ioctl(bdev, mode, cmd, arg); 1552 break; 1553 default: 1554 err = -ENOIOCTLCMD; 1555 break; 1556 } 1557 return err; 1558 } 1559 #endif 1560 1561 static int lo_open(struct block_device *bdev, fmode_t mode) 1562 { 1563 struct loop_device *lo; 1564 int err = 0; 1565 1566 mutex_lock(&loop_index_mutex); 1567 lo = bdev->bd_disk->private_data; 1568 if (!lo) { 1569 err = -ENXIO; 1570 goto out; 1571 } 1572 1573 atomic_inc(&lo->lo_refcnt); 1574 out: 1575 mutex_unlock(&loop_index_mutex); 1576 return err; 1577 } 1578 1579 static void lo_release(struct gendisk *disk, fmode_t mode) 1580 { 1581 struct loop_device *lo = disk->private_data; 1582 int err; 1583 1584 if (atomic_dec_return(&lo->lo_refcnt)) 1585 return; 1586 1587 mutex_lock(&lo->lo_ctl_mutex); 1588 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1589 /* 1590 * In autoclear mode, stop the loop thread 1591 * and remove configuration after last close. 1592 */ 1593 err = loop_clr_fd(lo); 1594 if (!err) 1595 return; 1596 } else if (lo->lo_state == Lo_bound) { 1597 /* 1598 * Otherwise keep thread (if running) and config, 1599 * but flush possible ongoing bios in thread. 1600 */ 1601 blk_mq_freeze_queue(lo->lo_queue); 1602 blk_mq_unfreeze_queue(lo->lo_queue); 1603 } 1604 1605 mutex_unlock(&lo->lo_ctl_mutex); 1606 } 1607 1608 static const struct block_device_operations lo_fops = { 1609 .owner = THIS_MODULE, 1610 .open = lo_open, 1611 .release = lo_release, 1612 .ioctl = lo_ioctl, 1613 #ifdef CONFIG_COMPAT 1614 .compat_ioctl = lo_compat_ioctl, 1615 #endif 1616 }; 1617 1618 /* 1619 * And now the modules code and kernel interface. 1620 */ 1621 static int max_loop; 1622 module_param(max_loop, int, S_IRUGO); 1623 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1624 module_param(max_part, int, S_IRUGO); 1625 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1626 MODULE_LICENSE("GPL"); 1627 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1628 1629 int loop_register_transfer(struct loop_func_table *funcs) 1630 { 1631 unsigned int n = funcs->number; 1632 1633 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1634 return -EINVAL; 1635 xfer_funcs[n] = funcs; 1636 return 0; 1637 } 1638 1639 static int unregister_transfer_cb(int id, void *ptr, void *data) 1640 { 1641 struct loop_device *lo = ptr; 1642 struct loop_func_table *xfer = data; 1643 1644 mutex_lock(&lo->lo_ctl_mutex); 1645 if (lo->lo_encryption == xfer) 1646 loop_release_xfer(lo); 1647 mutex_unlock(&lo->lo_ctl_mutex); 1648 return 0; 1649 } 1650 1651 int loop_unregister_transfer(int number) 1652 { 1653 unsigned int n = number; 1654 struct loop_func_table *xfer; 1655 1656 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1657 return -EINVAL; 1658 1659 xfer_funcs[n] = NULL; 1660 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1661 return 0; 1662 } 1663 1664 EXPORT_SYMBOL(loop_register_transfer); 1665 EXPORT_SYMBOL(loop_unregister_transfer); 1666 1667 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1668 const struct blk_mq_queue_data *bd) 1669 { 1670 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq); 1671 struct loop_device *lo = cmd->rq->q->queuedata; 1672 1673 blk_mq_start_request(bd->rq); 1674 1675 if (lo->lo_state != Lo_bound) 1676 return BLK_STS_IOERR; 1677 1678 switch (req_op(cmd->rq)) { 1679 case REQ_OP_FLUSH: 1680 case REQ_OP_DISCARD: 1681 case REQ_OP_WRITE_ZEROES: 1682 cmd->use_aio = false; 1683 break; 1684 default: 1685 cmd->use_aio = lo->use_dio; 1686 break; 1687 } 1688 1689 kthread_queue_work(&lo->worker, &cmd->work); 1690 1691 return BLK_STS_OK; 1692 } 1693 1694 static void loop_handle_cmd(struct loop_cmd *cmd) 1695 { 1696 const bool write = op_is_write(req_op(cmd->rq)); 1697 struct loop_device *lo = cmd->rq->q->queuedata; 1698 int ret = 0; 1699 1700 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1701 ret = -EIO; 1702 goto failed; 1703 } 1704 1705 ret = do_req_filebacked(lo, cmd->rq); 1706 failed: 1707 /* complete non-aio request */ 1708 if (!cmd->use_aio || ret) { 1709 cmd->ret = ret ? -EIO : 0; 1710 blk_mq_complete_request(cmd->rq); 1711 } 1712 } 1713 1714 static void loop_queue_work(struct kthread_work *work) 1715 { 1716 struct loop_cmd *cmd = 1717 container_of(work, struct loop_cmd, work); 1718 1719 loop_handle_cmd(cmd); 1720 } 1721 1722 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq, 1723 unsigned int hctx_idx, unsigned int numa_node) 1724 { 1725 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1726 1727 cmd->rq = rq; 1728 kthread_init_work(&cmd->work, loop_queue_work); 1729 1730 return 0; 1731 } 1732 1733 static const struct blk_mq_ops loop_mq_ops = { 1734 .queue_rq = loop_queue_rq, 1735 .init_request = loop_init_request, 1736 .complete = lo_complete_rq, 1737 }; 1738 1739 static int loop_add(struct loop_device **l, int i) 1740 { 1741 struct loop_device *lo; 1742 struct gendisk *disk; 1743 int err; 1744 1745 err = -ENOMEM; 1746 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1747 if (!lo) 1748 goto out; 1749 1750 lo->lo_state = Lo_unbound; 1751 1752 /* allocate id, if @id >= 0, we're requesting that specific id */ 1753 if (i >= 0) { 1754 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1755 if (err == -ENOSPC) 1756 err = -EEXIST; 1757 } else { 1758 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1759 } 1760 if (err < 0) 1761 goto out_free_dev; 1762 i = err; 1763 1764 err = -ENOMEM; 1765 lo->tag_set.ops = &loop_mq_ops; 1766 lo->tag_set.nr_hw_queues = 1; 1767 lo->tag_set.queue_depth = 128; 1768 lo->tag_set.numa_node = NUMA_NO_NODE; 1769 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 1770 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 1771 lo->tag_set.driver_data = lo; 1772 1773 err = blk_mq_alloc_tag_set(&lo->tag_set); 1774 if (err) 1775 goto out_free_idr; 1776 1777 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 1778 if (IS_ERR_OR_NULL(lo->lo_queue)) { 1779 err = PTR_ERR(lo->lo_queue); 1780 goto out_cleanup_tags; 1781 } 1782 lo->lo_queue->queuedata = lo; 1783 1784 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 1785 1786 /* 1787 * By default, we do buffer IO, so it doesn't make sense to enable 1788 * merge because the I/O submitted to backing file is handled page by 1789 * page. For directio mode, merge does help to dispatch bigger request 1790 * to underlayer disk. We will enable merge once directio is enabled. 1791 */ 1792 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue); 1793 1794 err = -ENOMEM; 1795 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1796 if (!disk) 1797 goto out_free_queue; 1798 1799 /* 1800 * Disable partition scanning by default. The in-kernel partition 1801 * scanning can be requested individually per-device during its 1802 * setup. Userspace can always add and remove partitions from all 1803 * devices. The needed partition minors are allocated from the 1804 * extended minor space, the main loop device numbers will continue 1805 * to match the loop minors, regardless of the number of partitions 1806 * used. 1807 * 1808 * If max_part is given, partition scanning is globally enabled for 1809 * all loop devices. The minors for the main loop devices will be 1810 * multiples of max_part. 1811 * 1812 * Note: Global-for-all-devices, set-only-at-init, read-only module 1813 * parameteters like 'max_loop' and 'max_part' make things needlessly 1814 * complicated, are too static, inflexible and may surprise 1815 * userspace tools. Parameters like this in general should be avoided. 1816 */ 1817 if (!part_shift) 1818 disk->flags |= GENHD_FL_NO_PART_SCAN; 1819 disk->flags |= GENHD_FL_EXT_DEVT; 1820 mutex_init(&lo->lo_ctl_mutex); 1821 atomic_set(&lo->lo_refcnt, 0); 1822 lo->lo_number = i; 1823 spin_lock_init(&lo->lo_lock); 1824 disk->major = LOOP_MAJOR; 1825 disk->first_minor = i << part_shift; 1826 disk->fops = &lo_fops; 1827 disk->private_data = lo; 1828 disk->queue = lo->lo_queue; 1829 sprintf(disk->disk_name, "loop%d", i); 1830 add_disk(disk); 1831 *l = lo; 1832 return lo->lo_number; 1833 1834 out_free_queue: 1835 blk_cleanup_queue(lo->lo_queue); 1836 out_cleanup_tags: 1837 blk_mq_free_tag_set(&lo->tag_set); 1838 out_free_idr: 1839 idr_remove(&loop_index_idr, i); 1840 out_free_dev: 1841 kfree(lo); 1842 out: 1843 return err; 1844 } 1845 1846 static void loop_remove(struct loop_device *lo) 1847 { 1848 blk_cleanup_queue(lo->lo_queue); 1849 del_gendisk(lo->lo_disk); 1850 blk_mq_free_tag_set(&lo->tag_set); 1851 put_disk(lo->lo_disk); 1852 kfree(lo); 1853 } 1854 1855 static int find_free_cb(int id, void *ptr, void *data) 1856 { 1857 struct loop_device *lo = ptr; 1858 struct loop_device **l = data; 1859 1860 if (lo->lo_state == Lo_unbound) { 1861 *l = lo; 1862 return 1; 1863 } 1864 return 0; 1865 } 1866 1867 static int loop_lookup(struct loop_device **l, int i) 1868 { 1869 struct loop_device *lo; 1870 int ret = -ENODEV; 1871 1872 if (i < 0) { 1873 int err; 1874 1875 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 1876 if (err == 1) { 1877 *l = lo; 1878 ret = lo->lo_number; 1879 } 1880 goto out; 1881 } 1882 1883 /* lookup and return a specific i */ 1884 lo = idr_find(&loop_index_idr, i); 1885 if (lo) { 1886 *l = lo; 1887 ret = lo->lo_number; 1888 } 1889 out: 1890 return ret; 1891 } 1892 1893 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1894 { 1895 struct loop_device *lo; 1896 struct kobject *kobj; 1897 int err; 1898 1899 mutex_lock(&loop_index_mutex); 1900 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 1901 if (err < 0) 1902 err = loop_add(&lo, MINOR(dev) >> part_shift); 1903 if (err < 0) 1904 kobj = NULL; 1905 else 1906 kobj = get_disk(lo->lo_disk); 1907 mutex_unlock(&loop_index_mutex); 1908 1909 *part = 0; 1910 return kobj; 1911 } 1912 1913 static long loop_control_ioctl(struct file *file, unsigned int cmd, 1914 unsigned long parm) 1915 { 1916 struct loop_device *lo; 1917 int ret = -ENOSYS; 1918 1919 mutex_lock(&loop_index_mutex); 1920 switch (cmd) { 1921 case LOOP_CTL_ADD: 1922 ret = loop_lookup(&lo, parm); 1923 if (ret >= 0) { 1924 ret = -EEXIST; 1925 break; 1926 } 1927 ret = loop_add(&lo, parm); 1928 break; 1929 case LOOP_CTL_REMOVE: 1930 ret = loop_lookup(&lo, parm); 1931 if (ret < 0) 1932 break; 1933 mutex_lock(&lo->lo_ctl_mutex); 1934 if (lo->lo_state != Lo_unbound) { 1935 ret = -EBUSY; 1936 mutex_unlock(&lo->lo_ctl_mutex); 1937 break; 1938 } 1939 if (atomic_read(&lo->lo_refcnt) > 0) { 1940 ret = -EBUSY; 1941 mutex_unlock(&lo->lo_ctl_mutex); 1942 break; 1943 } 1944 lo->lo_disk->private_data = NULL; 1945 mutex_unlock(&lo->lo_ctl_mutex); 1946 idr_remove(&loop_index_idr, lo->lo_number); 1947 loop_remove(lo); 1948 break; 1949 case LOOP_CTL_GET_FREE: 1950 ret = loop_lookup(&lo, -1); 1951 if (ret >= 0) 1952 break; 1953 ret = loop_add(&lo, -1); 1954 } 1955 mutex_unlock(&loop_index_mutex); 1956 1957 return ret; 1958 } 1959 1960 static const struct file_operations loop_ctl_fops = { 1961 .open = nonseekable_open, 1962 .unlocked_ioctl = loop_control_ioctl, 1963 .compat_ioctl = loop_control_ioctl, 1964 .owner = THIS_MODULE, 1965 .llseek = noop_llseek, 1966 }; 1967 1968 static struct miscdevice loop_misc = { 1969 .minor = LOOP_CTRL_MINOR, 1970 .name = "loop-control", 1971 .fops = &loop_ctl_fops, 1972 }; 1973 1974 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 1975 MODULE_ALIAS("devname:loop-control"); 1976 1977 static int __init loop_init(void) 1978 { 1979 int i, nr; 1980 unsigned long range; 1981 struct loop_device *lo; 1982 int err; 1983 1984 part_shift = 0; 1985 if (max_part > 0) { 1986 part_shift = fls(max_part); 1987 1988 /* 1989 * Adjust max_part according to part_shift as it is exported 1990 * to user space so that user can decide correct minor number 1991 * if [s]he want to create more devices. 1992 * 1993 * Note that -1 is required because partition 0 is reserved 1994 * for the whole disk. 1995 */ 1996 max_part = (1UL << part_shift) - 1; 1997 } 1998 1999 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2000 err = -EINVAL; 2001 goto err_out; 2002 } 2003 2004 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2005 err = -EINVAL; 2006 goto err_out; 2007 } 2008 2009 /* 2010 * If max_loop is specified, create that many devices upfront. 2011 * This also becomes a hard limit. If max_loop is not specified, 2012 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2013 * init time. Loop devices can be requested on-demand with the 2014 * /dev/loop-control interface, or be instantiated by accessing 2015 * a 'dead' device node. 2016 */ 2017 if (max_loop) { 2018 nr = max_loop; 2019 range = max_loop << part_shift; 2020 } else { 2021 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2022 range = 1UL << MINORBITS; 2023 } 2024 2025 err = misc_register(&loop_misc); 2026 if (err < 0) 2027 goto err_out; 2028 2029 2030 if (register_blkdev(LOOP_MAJOR, "loop")) { 2031 err = -EIO; 2032 goto misc_out; 2033 } 2034 2035 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2036 THIS_MODULE, loop_probe, NULL, NULL); 2037 2038 /* pre-create number of devices given by config or max_loop */ 2039 mutex_lock(&loop_index_mutex); 2040 for (i = 0; i < nr; i++) 2041 loop_add(&lo, i); 2042 mutex_unlock(&loop_index_mutex); 2043 2044 printk(KERN_INFO "loop: module loaded\n"); 2045 return 0; 2046 2047 misc_out: 2048 misc_deregister(&loop_misc); 2049 err_out: 2050 return err; 2051 } 2052 2053 static int loop_exit_cb(int id, void *ptr, void *data) 2054 { 2055 struct loop_device *lo = ptr; 2056 2057 loop_remove(lo); 2058 return 0; 2059 } 2060 2061 static void __exit loop_exit(void) 2062 { 2063 unsigned long range; 2064 2065 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2066 2067 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2068 idr_destroy(&loop_index_idr); 2069 2070 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2071 unregister_blkdev(LOOP_MAJOR, "loop"); 2072 2073 misc_deregister(&loop_misc); 2074 } 2075 2076 module_init(loop_init); 2077 module_exit(loop_exit); 2078 2079 #ifndef MODULE 2080 static int __init max_loop_setup(char *str) 2081 { 2082 max_loop = simple_strtol(str, NULL, 0); 2083 return 1; 2084 } 2085 2086 __setup("max_loop=", max_loop_setup); 2087 #endif 2088