xref: /openbmc/linux/drivers/block/loop.c (revision d3964221)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80 
81 #include <linux/uaccess.h>
82 
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85 
86 static int max_part;
87 static int part_shift;
88 
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 			struct page *raw_page, unsigned raw_off,
91 			struct page *loop_page, unsigned loop_off,
92 			int size, sector_t real_block)
93 {
94 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 	char *in, *out, *key;
97 	int i, keysize;
98 
99 	if (cmd == READ) {
100 		in = raw_buf;
101 		out = loop_buf;
102 	} else {
103 		in = loop_buf;
104 		out = raw_buf;
105 	}
106 
107 	key = lo->lo_encrypt_key;
108 	keysize = lo->lo_encrypt_key_size;
109 	for (i = 0; i < size; i++)
110 		*out++ = *in++ ^ key[(i & 511) % keysize];
111 
112 	kunmap_atomic(loop_buf);
113 	kunmap_atomic(raw_buf);
114 	cond_resched();
115 	return 0;
116 }
117 
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 	if (unlikely(info->lo_encrypt_key_size <= 0))
121 		return -EINVAL;
122 	return 0;
123 }
124 
125 static struct loop_func_table none_funcs = {
126 	.number = LO_CRYPT_NONE,
127 };
128 
129 static struct loop_func_table xor_funcs = {
130 	.number = LO_CRYPT_XOR,
131 	.transfer = transfer_xor,
132 	.init = xor_init
133 };
134 
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 	&none_funcs,
138 	&xor_funcs
139 };
140 
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 	loff_t loopsize;
144 
145 	/* Compute loopsize in bytes */
146 	loopsize = i_size_read(file->f_mapping->host);
147 	if (offset > 0)
148 		loopsize -= offset;
149 	/* offset is beyond i_size, weird but possible */
150 	if (loopsize < 0)
151 		return 0;
152 
153 	if (sizelimit > 0 && sizelimit < loopsize)
154 		loopsize = sizelimit;
155 	/*
156 	 * Unfortunately, if we want to do I/O on the device,
157 	 * the number of 512-byte sectors has to fit into a sector_t.
158 	 */
159 	return loopsize >> 9;
160 }
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166 
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 	struct file *file = lo->lo_backing_file;
170 	struct address_space *mapping = file->f_mapping;
171 	struct inode *inode = mapping->host;
172 	unsigned short sb_bsize = 0;
173 	unsigned dio_align = 0;
174 	bool use_dio;
175 
176 	if (inode->i_sb->s_bdev) {
177 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 		dio_align = sb_bsize - 1;
179 	}
180 
181 	/*
182 	 * We support direct I/O only if lo_offset is aligned with the
183 	 * logical I/O size of backing device, and the logical block
184 	 * size of loop is bigger than the backing device's and the loop
185 	 * needn't transform transfer.
186 	 *
187 	 * TODO: the above condition may be loosed in the future, and
188 	 * direct I/O may be switched runtime at that time because most
189 	 * of requests in sane applications should be PAGE_SIZE aligned
190 	 */
191 	if (dio) {
192 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 				!(lo->lo_offset & dio_align) &&
194 				mapping->a_ops->direct_IO &&
195 				!lo->transfer)
196 			use_dio = true;
197 		else
198 			use_dio = false;
199 	} else {
200 		use_dio = false;
201 	}
202 
203 	if (lo->use_dio == use_dio)
204 		return;
205 
206 	/* flush dirty pages before changing direct IO */
207 	vfs_fsync(file, 0);
208 
209 	/*
210 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 	 * will get updated by ioctl(LOOP_GET_STATUS)
213 	 */
214 	blk_mq_freeze_queue(lo->lo_queue);
215 	lo->use_dio = use_dio;
216 	if (use_dio) {
217 		queue_flag_clear_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
218 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
219 	} else {
220 		queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
221 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
222 	}
223 	blk_mq_unfreeze_queue(lo->lo_queue);
224 }
225 
226 static int
227 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
228 {
229 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
230 	sector_t x = (sector_t)size;
231 	struct block_device *bdev = lo->lo_device;
232 
233 	if (unlikely((loff_t)x != size))
234 		return -EFBIG;
235 	if (lo->lo_offset != offset)
236 		lo->lo_offset = offset;
237 	if (lo->lo_sizelimit != sizelimit)
238 		lo->lo_sizelimit = sizelimit;
239 	set_capacity(lo->lo_disk, x);
240 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
241 	/* let user-space know about the new size */
242 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
243 	return 0;
244 }
245 
246 static inline int
247 lo_do_transfer(struct loop_device *lo, int cmd,
248 	       struct page *rpage, unsigned roffs,
249 	       struct page *lpage, unsigned loffs,
250 	       int size, sector_t rblock)
251 {
252 	int ret;
253 
254 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
255 	if (likely(!ret))
256 		return 0;
257 
258 	printk_ratelimited(KERN_ERR
259 		"loop: Transfer error at byte offset %llu, length %i.\n",
260 		(unsigned long long)rblock << 9, size);
261 	return ret;
262 }
263 
264 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
265 {
266 	struct iov_iter i;
267 	ssize_t bw;
268 
269 	iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
270 
271 	file_start_write(file);
272 	bw = vfs_iter_write(file, &i, ppos, 0);
273 	file_end_write(file);
274 
275 	if (likely(bw ==  bvec->bv_len))
276 		return 0;
277 
278 	printk_ratelimited(KERN_ERR
279 		"loop: Write error at byte offset %llu, length %i.\n",
280 		(unsigned long long)*ppos, bvec->bv_len);
281 	if (bw >= 0)
282 		bw = -EIO;
283 	return bw;
284 }
285 
286 static int lo_write_simple(struct loop_device *lo, struct request *rq,
287 		loff_t pos)
288 {
289 	struct bio_vec bvec;
290 	struct req_iterator iter;
291 	int ret = 0;
292 
293 	rq_for_each_segment(bvec, rq, iter) {
294 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
295 		if (ret < 0)
296 			break;
297 		cond_resched();
298 	}
299 
300 	return ret;
301 }
302 
303 /*
304  * This is the slow, transforming version that needs to double buffer the
305  * data as it cannot do the transformations in place without having direct
306  * access to the destination pages of the backing file.
307  */
308 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
309 		loff_t pos)
310 {
311 	struct bio_vec bvec, b;
312 	struct req_iterator iter;
313 	struct page *page;
314 	int ret = 0;
315 
316 	page = alloc_page(GFP_NOIO);
317 	if (unlikely(!page))
318 		return -ENOMEM;
319 
320 	rq_for_each_segment(bvec, rq, iter) {
321 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
322 			bvec.bv_offset, bvec.bv_len, pos >> 9);
323 		if (unlikely(ret))
324 			break;
325 
326 		b.bv_page = page;
327 		b.bv_offset = 0;
328 		b.bv_len = bvec.bv_len;
329 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
330 		if (ret < 0)
331 			break;
332 	}
333 
334 	__free_page(page);
335 	return ret;
336 }
337 
338 static int lo_read_simple(struct loop_device *lo, struct request *rq,
339 		loff_t pos)
340 {
341 	struct bio_vec bvec;
342 	struct req_iterator iter;
343 	struct iov_iter i;
344 	ssize_t len;
345 
346 	rq_for_each_segment(bvec, rq, iter) {
347 		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
348 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
349 		if (len < 0)
350 			return len;
351 
352 		flush_dcache_page(bvec.bv_page);
353 
354 		if (len != bvec.bv_len) {
355 			struct bio *bio;
356 
357 			__rq_for_each_bio(bio, rq)
358 				zero_fill_bio(bio);
359 			break;
360 		}
361 		cond_resched();
362 	}
363 
364 	return 0;
365 }
366 
367 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
368 		loff_t pos)
369 {
370 	struct bio_vec bvec, b;
371 	struct req_iterator iter;
372 	struct iov_iter i;
373 	struct page *page;
374 	ssize_t len;
375 	int ret = 0;
376 
377 	page = alloc_page(GFP_NOIO);
378 	if (unlikely(!page))
379 		return -ENOMEM;
380 
381 	rq_for_each_segment(bvec, rq, iter) {
382 		loff_t offset = pos;
383 
384 		b.bv_page = page;
385 		b.bv_offset = 0;
386 		b.bv_len = bvec.bv_len;
387 
388 		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
389 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
390 		if (len < 0) {
391 			ret = len;
392 			goto out_free_page;
393 		}
394 
395 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
396 			bvec.bv_offset, len, offset >> 9);
397 		if (ret)
398 			goto out_free_page;
399 
400 		flush_dcache_page(bvec.bv_page);
401 
402 		if (len != bvec.bv_len) {
403 			struct bio *bio;
404 
405 			__rq_for_each_bio(bio, rq)
406 				zero_fill_bio(bio);
407 			break;
408 		}
409 	}
410 
411 	ret = 0;
412 out_free_page:
413 	__free_page(page);
414 	return ret;
415 }
416 
417 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
418 {
419 	/*
420 	 * We use punch hole to reclaim the free space used by the
421 	 * image a.k.a. discard. However we do not support discard if
422 	 * encryption is enabled, because it may give an attacker
423 	 * useful information.
424 	 */
425 	struct file *file = lo->lo_backing_file;
426 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
427 	int ret;
428 
429 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
430 		ret = -EOPNOTSUPP;
431 		goto out;
432 	}
433 
434 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
435 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
436 		ret = -EIO;
437  out:
438 	return ret;
439 }
440 
441 static int lo_req_flush(struct loop_device *lo, struct request *rq)
442 {
443 	struct file *file = lo->lo_backing_file;
444 	int ret = vfs_fsync(file, 0);
445 	if (unlikely(ret && ret != -EINVAL))
446 		ret = -EIO;
447 
448 	return ret;
449 }
450 
451 static void lo_complete_rq(struct request *rq)
452 {
453 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
454 
455 	if (unlikely(req_op(cmd->rq) == REQ_OP_READ && cmd->use_aio &&
456 		     cmd->ret >= 0 && cmd->ret < blk_rq_bytes(cmd->rq))) {
457 		struct bio *bio = cmd->rq->bio;
458 
459 		bio_advance(bio, cmd->ret);
460 		zero_fill_bio(bio);
461 	}
462 
463 	blk_mq_end_request(rq, cmd->ret < 0 ? BLK_STS_IOERR : BLK_STS_OK);
464 }
465 
466 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
467 {
468 	if (!atomic_dec_and_test(&cmd->ref))
469 		return;
470 	kfree(cmd->bvec);
471 	cmd->bvec = NULL;
472 	blk_mq_complete_request(cmd->rq);
473 }
474 
475 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
476 {
477 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
478 
479 	cmd->ret = ret;
480 	lo_rw_aio_do_completion(cmd);
481 }
482 
483 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
484 		     loff_t pos, bool rw)
485 {
486 	struct iov_iter iter;
487 	struct bio_vec *bvec;
488 	struct request *rq = cmd->rq;
489 	struct bio *bio = rq->bio;
490 	struct file *file = lo->lo_backing_file;
491 	unsigned int offset;
492 	int segments = 0;
493 	int ret;
494 
495 	if (rq->bio != rq->biotail) {
496 		struct req_iterator iter;
497 		struct bio_vec tmp;
498 
499 		__rq_for_each_bio(bio, rq)
500 			segments += bio_segments(bio);
501 		bvec = kmalloc(sizeof(struct bio_vec) * segments, GFP_NOIO);
502 		if (!bvec)
503 			return -EIO;
504 		cmd->bvec = bvec;
505 
506 		/*
507 		 * The bios of the request may be started from the middle of
508 		 * the 'bvec' because of bio splitting, so we can't directly
509 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
510 		 * API will take care of all details for us.
511 		 */
512 		rq_for_each_segment(tmp, rq, iter) {
513 			*bvec = tmp;
514 			bvec++;
515 		}
516 		bvec = cmd->bvec;
517 		offset = 0;
518 	} else {
519 		/*
520 		 * Same here, this bio may be started from the middle of the
521 		 * 'bvec' because of bio splitting, so offset from the bvec
522 		 * must be passed to iov iterator
523 		 */
524 		offset = bio->bi_iter.bi_bvec_done;
525 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
526 		segments = bio_segments(bio);
527 	}
528 	atomic_set(&cmd->ref, 2);
529 
530 	iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
531 		      segments, blk_rq_bytes(rq));
532 	iter.iov_offset = offset;
533 
534 	cmd->iocb.ki_pos = pos;
535 	cmd->iocb.ki_filp = file;
536 	cmd->iocb.ki_complete = lo_rw_aio_complete;
537 	cmd->iocb.ki_flags = IOCB_DIRECT;
538 
539 	if (rw == WRITE)
540 		ret = call_write_iter(file, &cmd->iocb, &iter);
541 	else
542 		ret = call_read_iter(file, &cmd->iocb, &iter);
543 
544 	lo_rw_aio_do_completion(cmd);
545 
546 	if (ret != -EIOCBQUEUED)
547 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
548 	return 0;
549 }
550 
551 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
552 {
553 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
554 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
555 
556 	/*
557 	 * lo_write_simple and lo_read_simple should have been covered
558 	 * by io submit style function like lo_rw_aio(), one blocker
559 	 * is that lo_read_simple() need to call flush_dcache_page after
560 	 * the page is written from kernel, and it isn't easy to handle
561 	 * this in io submit style function which submits all segments
562 	 * of the req at one time. And direct read IO doesn't need to
563 	 * run flush_dcache_page().
564 	 */
565 	switch (req_op(rq)) {
566 	case REQ_OP_FLUSH:
567 		return lo_req_flush(lo, rq);
568 	case REQ_OP_DISCARD:
569 	case REQ_OP_WRITE_ZEROES:
570 		return lo_discard(lo, rq, pos);
571 	case REQ_OP_WRITE:
572 		if (lo->transfer)
573 			return lo_write_transfer(lo, rq, pos);
574 		else if (cmd->use_aio)
575 			return lo_rw_aio(lo, cmd, pos, WRITE);
576 		else
577 			return lo_write_simple(lo, rq, pos);
578 	case REQ_OP_READ:
579 		if (lo->transfer)
580 			return lo_read_transfer(lo, rq, pos);
581 		else if (cmd->use_aio)
582 			return lo_rw_aio(lo, cmd, pos, READ);
583 		else
584 			return lo_read_simple(lo, rq, pos);
585 	default:
586 		WARN_ON_ONCE(1);
587 		return -EIO;
588 		break;
589 	}
590 }
591 
592 static inline void loop_update_dio(struct loop_device *lo)
593 {
594 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
595 			lo->use_dio);
596 }
597 
598 static void loop_reread_partitions(struct loop_device *lo,
599 				   struct block_device *bdev)
600 {
601 	int rc;
602 
603 	/*
604 	 * bd_mutex has been held already in release path, so don't
605 	 * acquire it if this function is called in such case.
606 	 *
607 	 * If the reread partition isn't from release path, lo_refcnt
608 	 * must be at least one and it can only become zero when the
609 	 * current holder is released.
610 	 */
611 	if (!atomic_read(&lo->lo_refcnt))
612 		rc = __blkdev_reread_part(bdev);
613 	else
614 		rc = blkdev_reread_part(bdev);
615 	if (rc)
616 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
617 			__func__, lo->lo_number, lo->lo_file_name, rc);
618 }
619 
620 /*
621  * loop_change_fd switched the backing store of a loopback device to
622  * a new file. This is useful for operating system installers to free up
623  * the original file and in High Availability environments to switch to
624  * an alternative location for the content in case of server meltdown.
625  * This can only work if the loop device is used read-only, and if the
626  * new backing store is the same size and type as the old backing store.
627  */
628 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
629 			  unsigned int arg)
630 {
631 	struct file	*file, *old_file;
632 	struct inode	*inode;
633 	int		error;
634 
635 	error = -ENXIO;
636 	if (lo->lo_state != Lo_bound)
637 		goto out;
638 
639 	/* the loop device has to be read-only */
640 	error = -EINVAL;
641 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
642 		goto out;
643 
644 	error = -EBADF;
645 	file = fget(arg);
646 	if (!file)
647 		goto out;
648 
649 	inode = file->f_mapping->host;
650 	old_file = lo->lo_backing_file;
651 
652 	error = -EINVAL;
653 
654 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
655 		goto out_putf;
656 
657 	/* size of the new backing store needs to be the same */
658 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
659 		goto out_putf;
660 
661 	/* and ... switch */
662 	blk_mq_freeze_queue(lo->lo_queue);
663 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
664 	lo->lo_backing_file = file;
665 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
666 	mapping_set_gfp_mask(file->f_mapping,
667 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
668 	loop_update_dio(lo);
669 	blk_mq_unfreeze_queue(lo->lo_queue);
670 
671 	fput(old_file);
672 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
673 		loop_reread_partitions(lo, bdev);
674 	return 0;
675 
676  out_putf:
677 	fput(file);
678  out:
679 	return error;
680 }
681 
682 static inline int is_loop_device(struct file *file)
683 {
684 	struct inode *i = file->f_mapping->host;
685 
686 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
687 }
688 
689 /* loop sysfs attributes */
690 
691 static ssize_t loop_attr_show(struct device *dev, char *page,
692 			      ssize_t (*callback)(struct loop_device *, char *))
693 {
694 	struct gendisk *disk = dev_to_disk(dev);
695 	struct loop_device *lo = disk->private_data;
696 
697 	return callback(lo, page);
698 }
699 
700 #define LOOP_ATTR_RO(_name)						\
701 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
702 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
703 				struct device_attribute *attr, char *b)	\
704 {									\
705 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
706 }									\
707 static struct device_attribute loop_attr_##_name =			\
708 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
709 
710 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
711 {
712 	ssize_t ret;
713 	char *p = NULL;
714 
715 	spin_lock_irq(&lo->lo_lock);
716 	if (lo->lo_backing_file)
717 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
718 	spin_unlock_irq(&lo->lo_lock);
719 
720 	if (IS_ERR_OR_NULL(p))
721 		ret = PTR_ERR(p);
722 	else {
723 		ret = strlen(p);
724 		memmove(buf, p, ret);
725 		buf[ret++] = '\n';
726 		buf[ret] = 0;
727 	}
728 
729 	return ret;
730 }
731 
732 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
733 {
734 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
735 }
736 
737 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
738 {
739 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
740 }
741 
742 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
743 {
744 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
745 
746 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
747 }
748 
749 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
750 {
751 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
752 
753 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
754 }
755 
756 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
757 {
758 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
759 
760 	return sprintf(buf, "%s\n", dio ? "1" : "0");
761 }
762 
763 LOOP_ATTR_RO(backing_file);
764 LOOP_ATTR_RO(offset);
765 LOOP_ATTR_RO(sizelimit);
766 LOOP_ATTR_RO(autoclear);
767 LOOP_ATTR_RO(partscan);
768 LOOP_ATTR_RO(dio);
769 
770 static struct attribute *loop_attrs[] = {
771 	&loop_attr_backing_file.attr,
772 	&loop_attr_offset.attr,
773 	&loop_attr_sizelimit.attr,
774 	&loop_attr_autoclear.attr,
775 	&loop_attr_partscan.attr,
776 	&loop_attr_dio.attr,
777 	NULL,
778 };
779 
780 static struct attribute_group loop_attribute_group = {
781 	.name = "loop",
782 	.attrs= loop_attrs,
783 };
784 
785 static int loop_sysfs_init(struct loop_device *lo)
786 {
787 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
788 				  &loop_attribute_group);
789 }
790 
791 static void loop_sysfs_exit(struct loop_device *lo)
792 {
793 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
794 			   &loop_attribute_group);
795 }
796 
797 static void loop_config_discard(struct loop_device *lo)
798 {
799 	struct file *file = lo->lo_backing_file;
800 	struct inode *inode = file->f_mapping->host;
801 	struct request_queue *q = lo->lo_queue;
802 
803 	/*
804 	 * We use punch hole to reclaim the free space used by the
805 	 * image a.k.a. discard. However we do not support discard if
806 	 * encryption is enabled, because it may give an attacker
807 	 * useful information.
808 	 */
809 	if ((!file->f_op->fallocate) ||
810 	    lo->lo_encrypt_key_size) {
811 		q->limits.discard_granularity = 0;
812 		q->limits.discard_alignment = 0;
813 		blk_queue_max_discard_sectors(q, 0);
814 		blk_queue_max_write_zeroes_sectors(q, 0);
815 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
816 		return;
817 	}
818 
819 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
820 	q->limits.discard_alignment = 0;
821 
822 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
823 	blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
824 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
825 }
826 
827 static void loop_unprepare_queue(struct loop_device *lo)
828 {
829 	kthread_flush_worker(&lo->worker);
830 	kthread_stop(lo->worker_task);
831 }
832 
833 static int loop_kthread_worker_fn(void *worker_ptr)
834 {
835 	current->flags |= PF_LESS_THROTTLE;
836 	return kthread_worker_fn(worker_ptr);
837 }
838 
839 static int loop_prepare_queue(struct loop_device *lo)
840 {
841 	kthread_init_worker(&lo->worker);
842 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
843 			&lo->worker, "loop%d", lo->lo_number);
844 	if (IS_ERR(lo->worker_task))
845 		return -ENOMEM;
846 	set_user_nice(lo->worker_task, MIN_NICE);
847 	return 0;
848 }
849 
850 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
851 		       struct block_device *bdev, unsigned int arg)
852 {
853 	struct file	*file, *f;
854 	struct inode	*inode;
855 	struct address_space *mapping;
856 	int		lo_flags = 0;
857 	int		error;
858 	loff_t		size;
859 
860 	/* This is safe, since we have a reference from open(). */
861 	__module_get(THIS_MODULE);
862 
863 	error = -EBADF;
864 	file = fget(arg);
865 	if (!file)
866 		goto out;
867 
868 	error = -EBUSY;
869 	if (lo->lo_state != Lo_unbound)
870 		goto out_putf;
871 
872 	/* Avoid recursion */
873 	f = file;
874 	while (is_loop_device(f)) {
875 		struct loop_device *l;
876 
877 		if (f->f_mapping->host->i_bdev == bdev)
878 			goto out_putf;
879 
880 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
881 		if (l->lo_state == Lo_unbound) {
882 			error = -EINVAL;
883 			goto out_putf;
884 		}
885 		f = l->lo_backing_file;
886 	}
887 
888 	mapping = file->f_mapping;
889 	inode = mapping->host;
890 
891 	error = -EINVAL;
892 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
893 		goto out_putf;
894 
895 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
896 	    !file->f_op->write_iter)
897 		lo_flags |= LO_FLAGS_READ_ONLY;
898 
899 	error = -EFBIG;
900 	size = get_loop_size(lo, file);
901 	if ((loff_t)(sector_t)size != size)
902 		goto out_putf;
903 	error = loop_prepare_queue(lo);
904 	if (error)
905 		goto out_putf;
906 
907 	error = 0;
908 
909 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
910 
911 	lo->use_dio = false;
912 	lo->lo_device = bdev;
913 	lo->lo_flags = lo_flags;
914 	lo->lo_backing_file = file;
915 	lo->transfer = NULL;
916 	lo->ioctl = NULL;
917 	lo->lo_sizelimit = 0;
918 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
919 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
920 
921 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
922 		blk_queue_write_cache(lo->lo_queue, true, false);
923 
924 	loop_update_dio(lo);
925 	set_capacity(lo->lo_disk, size);
926 	bd_set_size(bdev, size << 9);
927 	loop_sysfs_init(lo);
928 	/* let user-space know about the new size */
929 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
930 
931 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
932 		      block_size(inode->i_bdev) : PAGE_SIZE);
933 
934 	lo->lo_state = Lo_bound;
935 	if (part_shift)
936 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
937 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
938 		loop_reread_partitions(lo, bdev);
939 
940 	/* Grab the block_device to prevent its destruction after we
941 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
942 	 */
943 	bdgrab(bdev);
944 	return 0;
945 
946  out_putf:
947 	fput(file);
948  out:
949 	/* This is safe: open() is still holding a reference. */
950 	module_put(THIS_MODULE);
951 	return error;
952 }
953 
954 static int
955 loop_release_xfer(struct loop_device *lo)
956 {
957 	int err = 0;
958 	struct loop_func_table *xfer = lo->lo_encryption;
959 
960 	if (xfer) {
961 		if (xfer->release)
962 			err = xfer->release(lo);
963 		lo->transfer = NULL;
964 		lo->lo_encryption = NULL;
965 		module_put(xfer->owner);
966 	}
967 	return err;
968 }
969 
970 static int
971 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
972 	       const struct loop_info64 *i)
973 {
974 	int err = 0;
975 
976 	if (xfer) {
977 		struct module *owner = xfer->owner;
978 
979 		if (!try_module_get(owner))
980 			return -EINVAL;
981 		if (xfer->init)
982 			err = xfer->init(lo, i);
983 		if (err)
984 			module_put(owner);
985 		else
986 			lo->lo_encryption = xfer;
987 	}
988 	return err;
989 }
990 
991 static int loop_clr_fd(struct loop_device *lo)
992 {
993 	struct file *filp = lo->lo_backing_file;
994 	gfp_t gfp = lo->old_gfp_mask;
995 	struct block_device *bdev = lo->lo_device;
996 
997 	if (lo->lo_state != Lo_bound)
998 		return -ENXIO;
999 
1000 	/*
1001 	 * If we've explicitly asked to tear down the loop device,
1002 	 * and it has an elevated reference count, set it for auto-teardown when
1003 	 * the last reference goes away. This stops $!~#$@ udev from
1004 	 * preventing teardown because it decided that it needs to run blkid on
1005 	 * the loopback device whenever they appear. xfstests is notorious for
1006 	 * failing tests because blkid via udev races with a losetup
1007 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1008 	 * command to fail with EBUSY.
1009 	 */
1010 	if (atomic_read(&lo->lo_refcnt) > 1) {
1011 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1012 		mutex_unlock(&lo->lo_ctl_mutex);
1013 		return 0;
1014 	}
1015 
1016 	if (filp == NULL)
1017 		return -EINVAL;
1018 
1019 	/* freeze request queue during the transition */
1020 	blk_mq_freeze_queue(lo->lo_queue);
1021 
1022 	spin_lock_irq(&lo->lo_lock);
1023 	lo->lo_state = Lo_rundown;
1024 	lo->lo_backing_file = NULL;
1025 	spin_unlock_irq(&lo->lo_lock);
1026 
1027 	loop_release_xfer(lo);
1028 	lo->transfer = NULL;
1029 	lo->ioctl = NULL;
1030 	lo->lo_device = NULL;
1031 	lo->lo_encryption = NULL;
1032 	lo->lo_offset = 0;
1033 	lo->lo_sizelimit = 0;
1034 	lo->lo_encrypt_key_size = 0;
1035 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1036 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1037 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1038 	blk_queue_logical_block_size(lo->lo_queue, 512);
1039 	blk_queue_physical_block_size(lo->lo_queue, 512);
1040 	blk_queue_io_min(lo->lo_queue, 512);
1041 	if (bdev) {
1042 		bdput(bdev);
1043 		invalidate_bdev(bdev);
1044 	}
1045 	set_capacity(lo->lo_disk, 0);
1046 	loop_sysfs_exit(lo);
1047 	if (bdev) {
1048 		bd_set_size(bdev, 0);
1049 		/* let user-space know about this change */
1050 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1051 	}
1052 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1053 	lo->lo_state = Lo_unbound;
1054 	/* This is safe: open() is still holding a reference. */
1055 	module_put(THIS_MODULE);
1056 	blk_mq_unfreeze_queue(lo->lo_queue);
1057 
1058 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1059 		loop_reread_partitions(lo, bdev);
1060 	lo->lo_flags = 0;
1061 	if (!part_shift)
1062 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1063 	loop_unprepare_queue(lo);
1064 	mutex_unlock(&lo->lo_ctl_mutex);
1065 	/*
1066 	 * Need not hold lo_ctl_mutex to fput backing file.
1067 	 * Calling fput holding lo_ctl_mutex triggers a circular
1068 	 * lock dependency possibility warning as fput can take
1069 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1070 	 */
1071 	fput(filp);
1072 	return 0;
1073 }
1074 
1075 static int
1076 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1077 {
1078 	int err;
1079 	struct loop_func_table *xfer;
1080 	kuid_t uid = current_uid();
1081 
1082 	if (lo->lo_encrypt_key_size &&
1083 	    !uid_eq(lo->lo_key_owner, uid) &&
1084 	    !capable(CAP_SYS_ADMIN))
1085 		return -EPERM;
1086 	if (lo->lo_state != Lo_bound)
1087 		return -ENXIO;
1088 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1089 		return -EINVAL;
1090 
1091 	/* I/O need to be drained during transfer transition */
1092 	blk_mq_freeze_queue(lo->lo_queue);
1093 
1094 	err = loop_release_xfer(lo);
1095 	if (err)
1096 		goto exit;
1097 
1098 	if (info->lo_encrypt_type) {
1099 		unsigned int type = info->lo_encrypt_type;
1100 
1101 		if (type >= MAX_LO_CRYPT)
1102 			return -EINVAL;
1103 		xfer = xfer_funcs[type];
1104 		if (xfer == NULL)
1105 			return -EINVAL;
1106 	} else
1107 		xfer = NULL;
1108 
1109 	err = loop_init_xfer(lo, xfer, info);
1110 	if (err)
1111 		goto exit;
1112 
1113 	if (lo->lo_offset != info->lo_offset ||
1114 	    lo->lo_sizelimit != info->lo_sizelimit) {
1115 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1116 			err = -EFBIG;
1117 			goto exit;
1118 		}
1119 	}
1120 
1121 	loop_config_discard(lo);
1122 
1123 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1124 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1125 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1126 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1127 
1128 	if (!xfer)
1129 		xfer = &none_funcs;
1130 	lo->transfer = xfer->transfer;
1131 	lo->ioctl = xfer->ioctl;
1132 
1133 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1134 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1135 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1136 
1137 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1138 	lo->lo_init[0] = info->lo_init[0];
1139 	lo->lo_init[1] = info->lo_init[1];
1140 	if (info->lo_encrypt_key_size) {
1141 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1142 		       info->lo_encrypt_key_size);
1143 		lo->lo_key_owner = uid;
1144 	}
1145 
1146 	/* update dio if lo_offset or transfer is changed */
1147 	__loop_update_dio(lo, lo->use_dio);
1148 
1149  exit:
1150 	blk_mq_unfreeze_queue(lo->lo_queue);
1151 
1152 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1153 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1154 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1155 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1156 		loop_reread_partitions(lo, lo->lo_device);
1157 	}
1158 
1159 	return err;
1160 }
1161 
1162 static int
1163 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1164 {
1165 	struct file *file = lo->lo_backing_file;
1166 	struct kstat stat;
1167 	int error;
1168 
1169 	if (lo->lo_state != Lo_bound)
1170 		return -ENXIO;
1171 	error = vfs_getattr(&file->f_path, &stat,
1172 			    STATX_INO, AT_STATX_SYNC_AS_STAT);
1173 	if (error)
1174 		return error;
1175 	memset(info, 0, sizeof(*info));
1176 	info->lo_number = lo->lo_number;
1177 	info->lo_device = huge_encode_dev(stat.dev);
1178 	info->lo_inode = stat.ino;
1179 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1180 	info->lo_offset = lo->lo_offset;
1181 	info->lo_sizelimit = lo->lo_sizelimit;
1182 	info->lo_flags = lo->lo_flags;
1183 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1184 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1185 	info->lo_encrypt_type =
1186 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1187 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1188 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1189 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1190 		       lo->lo_encrypt_key_size);
1191 	}
1192 	return 0;
1193 }
1194 
1195 static void
1196 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1197 {
1198 	memset(info64, 0, sizeof(*info64));
1199 	info64->lo_number = info->lo_number;
1200 	info64->lo_device = info->lo_device;
1201 	info64->lo_inode = info->lo_inode;
1202 	info64->lo_rdevice = info->lo_rdevice;
1203 	info64->lo_offset = info->lo_offset;
1204 	info64->lo_sizelimit = 0;
1205 	info64->lo_encrypt_type = info->lo_encrypt_type;
1206 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1207 	info64->lo_flags = info->lo_flags;
1208 	info64->lo_init[0] = info->lo_init[0];
1209 	info64->lo_init[1] = info->lo_init[1];
1210 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1211 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1212 	else
1213 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1214 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1215 }
1216 
1217 static int
1218 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1219 {
1220 	memset(info, 0, sizeof(*info));
1221 	info->lo_number = info64->lo_number;
1222 	info->lo_device = info64->lo_device;
1223 	info->lo_inode = info64->lo_inode;
1224 	info->lo_rdevice = info64->lo_rdevice;
1225 	info->lo_offset = info64->lo_offset;
1226 	info->lo_encrypt_type = info64->lo_encrypt_type;
1227 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1228 	info->lo_flags = info64->lo_flags;
1229 	info->lo_init[0] = info64->lo_init[0];
1230 	info->lo_init[1] = info64->lo_init[1];
1231 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1232 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1233 	else
1234 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1235 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1236 
1237 	/* error in case values were truncated */
1238 	if (info->lo_device != info64->lo_device ||
1239 	    info->lo_rdevice != info64->lo_rdevice ||
1240 	    info->lo_inode != info64->lo_inode ||
1241 	    info->lo_offset != info64->lo_offset)
1242 		return -EOVERFLOW;
1243 
1244 	return 0;
1245 }
1246 
1247 static int
1248 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1249 {
1250 	struct loop_info info;
1251 	struct loop_info64 info64;
1252 
1253 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1254 		return -EFAULT;
1255 	loop_info64_from_old(&info, &info64);
1256 	return loop_set_status(lo, &info64);
1257 }
1258 
1259 static int
1260 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1261 {
1262 	struct loop_info64 info64;
1263 
1264 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1265 		return -EFAULT;
1266 	return loop_set_status(lo, &info64);
1267 }
1268 
1269 static int
1270 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1271 	struct loop_info info;
1272 	struct loop_info64 info64;
1273 	int err = 0;
1274 
1275 	if (!arg)
1276 		err = -EINVAL;
1277 	if (!err)
1278 		err = loop_get_status(lo, &info64);
1279 	if (!err)
1280 		err = loop_info64_to_old(&info64, &info);
1281 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1282 		err = -EFAULT;
1283 
1284 	return err;
1285 }
1286 
1287 static int
1288 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1289 	struct loop_info64 info64;
1290 	int err = 0;
1291 
1292 	if (!arg)
1293 		err = -EINVAL;
1294 	if (!err)
1295 		err = loop_get_status(lo, &info64);
1296 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1297 		err = -EFAULT;
1298 
1299 	return err;
1300 }
1301 
1302 static int loop_set_capacity(struct loop_device *lo)
1303 {
1304 	if (unlikely(lo->lo_state != Lo_bound))
1305 		return -ENXIO;
1306 
1307 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1308 }
1309 
1310 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1311 {
1312 	int error = -ENXIO;
1313 	if (lo->lo_state != Lo_bound)
1314 		goto out;
1315 
1316 	__loop_update_dio(lo, !!arg);
1317 	if (lo->use_dio == !!arg)
1318 		return 0;
1319 	error = -EINVAL;
1320  out:
1321 	return error;
1322 }
1323 
1324 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1325 {
1326 	if (lo->lo_state != Lo_bound)
1327 		return -ENXIO;
1328 
1329 	if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1330 		return -EINVAL;
1331 
1332 	blk_mq_freeze_queue(lo->lo_queue);
1333 
1334 	blk_queue_logical_block_size(lo->lo_queue, arg);
1335 	blk_queue_physical_block_size(lo->lo_queue, arg);
1336 	blk_queue_io_min(lo->lo_queue, arg);
1337 	loop_update_dio(lo);
1338 
1339 	blk_mq_unfreeze_queue(lo->lo_queue);
1340 
1341 	return 0;
1342 }
1343 
1344 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1345 	unsigned int cmd, unsigned long arg)
1346 {
1347 	struct loop_device *lo = bdev->bd_disk->private_data;
1348 	int err;
1349 
1350 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1351 	switch (cmd) {
1352 	case LOOP_SET_FD:
1353 		err = loop_set_fd(lo, mode, bdev, arg);
1354 		break;
1355 	case LOOP_CHANGE_FD:
1356 		err = loop_change_fd(lo, bdev, arg);
1357 		break;
1358 	case LOOP_CLR_FD:
1359 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1360 		err = loop_clr_fd(lo);
1361 		if (!err)
1362 			goto out_unlocked;
1363 		break;
1364 	case LOOP_SET_STATUS:
1365 		err = -EPERM;
1366 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1367 			err = loop_set_status_old(lo,
1368 					(struct loop_info __user *)arg);
1369 		break;
1370 	case LOOP_GET_STATUS:
1371 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1372 		break;
1373 	case LOOP_SET_STATUS64:
1374 		err = -EPERM;
1375 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1376 			err = loop_set_status64(lo,
1377 					(struct loop_info64 __user *) arg);
1378 		break;
1379 	case LOOP_GET_STATUS64:
1380 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1381 		break;
1382 	case LOOP_SET_CAPACITY:
1383 		err = -EPERM;
1384 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1385 			err = loop_set_capacity(lo);
1386 		break;
1387 	case LOOP_SET_DIRECT_IO:
1388 		err = -EPERM;
1389 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1390 			err = loop_set_dio(lo, arg);
1391 		break;
1392 	case LOOP_SET_BLOCK_SIZE:
1393 		err = -EPERM;
1394 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1395 			err = loop_set_block_size(lo, arg);
1396 		break;
1397 	default:
1398 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1399 	}
1400 	mutex_unlock(&lo->lo_ctl_mutex);
1401 
1402 out_unlocked:
1403 	return err;
1404 }
1405 
1406 #ifdef CONFIG_COMPAT
1407 struct compat_loop_info {
1408 	compat_int_t	lo_number;      /* ioctl r/o */
1409 	compat_dev_t	lo_device;      /* ioctl r/o */
1410 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1411 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1412 	compat_int_t	lo_offset;
1413 	compat_int_t	lo_encrypt_type;
1414 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1415 	compat_int_t	lo_flags;       /* ioctl r/o */
1416 	char		lo_name[LO_NAME_SIZE];
1417 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1418 	compat_ulong_t	lo_init[2];
1419 	char		reserved[4];
1420 };
1421 
1422 /*
1423  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1424  * - noinlined to reduce stack space usage in main part of driver
1425  */
1426 static noinline int
1427 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1428 			struct loop_info64 *info64)
1429 {
1430 	struct compat_loop_info info;
1431 
1432 	if (copy_from_user(&info, arg, sizeof(info)))
1433 		return -EFAULT;
1434 
1435 	memset(info64, 0, sizeof(*info64));
1436 	info64->lo_number = info.lo_number;
1437 	info64->lo_device = info.lo_device;
1438 	info64->lo_inode = info.lo_inode;
1439 	info64->lo_rdevice = info.lo_rdevice;
1440 	info64->lo_offset = info.lo_offset;
1441 	info64->lo_sizelimit = 0;
1442 	info64->lo_encrypt_type = info.lo_encrypt_type;
1443 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1444 	info64->lo_flags = info.lo_flags;
1445 	info64->lo_init[0] = info.lo_init[0];
1446 	info64->lo_init[1] = info.lo_init[1];
1447 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1448 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1449 	else
1450 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1451 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1452 	return 0;
1453 }
1454 
1455 /*
1456  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1457  * - noinlined to reduce stack space usage in main part of driver
1458  */
1459 static noinline int
1460 loop_info64_to_compat(const struct loop_info64 *info64,
1461 		      struct compat_loop_info __user *arg)
1462 {
1463 	struct compat_loop_info info;
1464 
1465 	memset(&info, 0, sizeof(info));
1466 	info.lo_number = info64->lo_number;
1467 	info.lo_device = info64->lo_device;
1468 	info.lo_inode = info64->lo_inode;
1469 	info.lo_rdevice = info64->lo_rdevice;
1470 	info.lo_offset = info64->lo_offset;
1471 	info.lo_encrypt_type = info64->lo_encrypt_type;
1472 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1473 	info.lo_flags = info64->lo_flags;
1474 	info.lo_init[0] = info64->lo_init[0];
1475 	info.lo_init[1] = info64->lo_init[1];
1476 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1477 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1478 	else
1479 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1480 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1481 
1482 	/* error in case values were truncated */
1483 	if (info.lo_device != info64->lo_device ||
1484 	    info.lo_rdevice != info64->lo_rdevice ||
1485 	    info.lo_inode != info64->lo_inode ||
1486 	    info.lo_offset != info64->lo_offset ||
1487 	    info.lo_init[0] != info64->lo_init[0] ||
1488 	    info.lo_init[1] != info64->lo_init[1])
1489 		return -EOVERFLOW;
1490 
1491 	if (copy_to_user(arg, &info, sizeof(info)))
1492 		return -EFAULT;
1493 	return 0;
1494 }
1495 
1496 static int
1497 loop_set_status_compat(struct loop_device *lo,
1498 		       const struct compat_loop_info __user *arg)
1499 {
1500 	struct loop_info64 info64;
1501 	int ret;
1502 
1503 	ret = loop_info64_from_compat(arg, &info64);
1504 	if (ret < 0)
1505 		return ret;
1506 	return loop_set_status(lo, &info64);
1507 }
1508 
1509 static int
1510 loop_get_status_compat(struct loop_device *lo,
1511 		       struct compat_loop_info __user *arg)
1512 {
1513 	struct loop_info64 info64;
1514 	int err = 0;
1515 
1516 	if (!arg)
1517 		err = -EINVAL;
1518 	if (!err)
1519 		err = loop_get_status(lo, &info64);
1520 	if (!err)
1521 		err = loop_info64_to_compat(&info64, arg);
1522 	return err;
1523 }
1524 
1525 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1526 			   unsigned int cmd, unsigned long arg)
1527 {
1528 	struct loop_device *lo = bdev->bd_disk->private_data;
1529 	int err;
1530 
1531 	switch(cmd) {
1532 	case LOOP_SET_STATUS:
1533 		mutex_lock(&lo->lo_ctl_mutex);
1534 		err = loop_set_status_compat(
1535 			lo, (const struct compat_loop_info __user *) arg);
1536 		mutex_unlock(&lo->lo_ctl_mutex);
1537 		break;
1538 	case LOOP_GET_STATUS:
1539 		mutex_lock(&lo->lo_ctl_mutex);
1540 		err = loop_get_status_compat(
1541 			lo, (struct compat_loop_info __user *) arg);
1542 		mutex_unlock(&lo->lo_ctl_mutex);
1543 		break;
1544 	case LOOP_SET_CAPACITY:
1545 	case LOOP_CLR_FD:
1546 	case LOOP_GET_STATUS64:
1547 	case LOOP_SET_STATUS64:
1548 		arg = (unsigned long) compat_ptr(arg);
1549 	case LOOP_SET_FD:
1550 	case LOOP_CHANGE_FD:
1551 		err = lo_ioctl(bdev, mode, cmd, arg);
1552 		break;
1553 	default:
1554 		err = -ENOIOCTLCMD;
1555 		break;
1556 	}
1557 	return err;
1558 }
1559 #endif
1560 
1561 static int lo_open(struct block_device *bdev, fmode_t mode)
1562 {
1563 	struct loop_device *lo;
1564 	int err = 0;
1565 
1566 	mutex_lock(&loop_index_mutex);
1567 	lo = bdev->bd_disk->private_data;
1568 	if (!lo) {
1569 		err = -ENXIO;
1570 		goto out;
1571 	}
1572 
1573 	atomic_inc(&lo->lo_refcnt);
1574 out:
1575 	mutex_unlock(&loop_index_mutex);
1576 	return err;
1577 }
1578 
1579 static void lo_release(struct gendisk *disk, fmode_t mode)
1580 {
1581 	struct loop_device *lo = disk->private_data;
1582 	int err;
1583 
1584 	if (atomic_dec_return(&lo->lo_refcnt))
1585 		return;
1586 
1587 	mutex_lock(&lo->lo_ctl_mutex);
1588 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1589 		/*
1590 		 * In autoclear mode, stop the loop thread
1591 		 * and remove configuration after last close.
1592 		 */
1593 		err = loop_clr_fd(lo);
1594 		if (!err)
1595 			return;
1596 	} else if (lo->lo_state == Lo_bound) {
1597 		/*
1598 		 * Otherwise keep thread (if running) and config,
1599 		 * but flush possible ongoing bios in thread.
1600 		 */
1601 		blk_mq_freeze_queue(lo->lo_queue);
1602 		blk_mq_unfreeze_queue(lo->lo_queue);
1603 	}
1604 
1605 	mutex_unlock(&lo->lo_ctl_mutex);
1606 }
1607 
1608 static const struct block_device_operations lo_fops = {
1609 	.owner =	THIS_MODULE,
1610 	.open =		lo_open,
1611 	.release =	lo_release,
1612 	.ioctl =	lo_ioctl,
1613 #ifdef CONFIG_COMPAT
1614 	.compat_ioctl =	lo_compat_ioctl,
1615 #endif
1616 };
1617 
1618 /*
1619  * And now the modules code and kernel interface.
1620  */
1621 static int max_loop;
1622 module_param(max_loop, int, S_IRUGO);
1623 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1624 module_param(max_part, int, S_IRUGO);
1625 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1626 MODULE_LICENSE("GPL");
1627 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1628 
1629 int loop_register_transfer(struct loop_func_table *funcs)
1630 {
1631 	unsigned int n = funcs->number;
1632 
1633 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1634 		return -EINVAL;
1635 	xfer_funcs[n] = funcs;
1636 	return 0;
1637 }
1638 
1639 static int unregister_transfer_cb(int id, void *ptr, void *data)
1640 {
1641 	struct loop_device *lo = ptr;
1642 	struct loop_func_table *xfer = data;
1643 
1644 	mutex_lock(&lo->lo_ctl_mutex);
1645 	if (lo->lo_encryption == xfer)
1646 		loop_release_xfer(lo);
1647 	mutex_unlock(&lo->lo_ctl_mutex);
1648 	return 0;
1649 }
1650 
1651 int loop_unregister_transfer(int number)
1652 {
1653 	unsigned int n = number;
1654 	struct loop_func_table *xfer;
1655 
1656 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1657 		return -EINVAL;
1658 
1659 	xfer_funcs[n] = NULL;
1660 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1661 	return 0;
1662 }
1663 
1664 EXPORT_SYMBOL(loop_register_transfer);
1665 EXPORT_SYMBOL(loop_unregister_transfer);
1666 
1667 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1668 		const struct blk_mq_queue_data *bd)
1669 {
1670 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1671 	struct loop_device *lo = cmd->rq->q->queuedata;
1672 
1673 	blk_mq_start_request(bd->rq);
1674 
1675 	if (lo->lo_state != Lo_bound)
1676 		return BLK_STS_IOERR;
1677 
1678 	switch (req_op(cmd->rq)) {
1679 	case REQ_OP_FLUSH:
1680 	case REQ_OP_DISCARD:
1681 	case REQ_OP_WRITE_ZEROES:
1682 		cmd->use_aio = false;
1683 		break;
1684 	default:
1685 		cmd->use_aio = lo->use_dio;
1686 		break;
1687 	}
1688 
1689 	kthread_queue_work(&lo->worker, &cmd->work);
1690 
1691 	return BLK_STS_OK;
1692 }
1693 
1694 static void loop_handle_cmd(struct loop_cmd *cmd)
1695 {
1696 	const bool write = op_is_write(req_op(cmd->rq));
1697 	struct loop_device *lo = cmd->rq->q->queuedata;
1698 	int ret = 0;
1699 
1700 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1701 		ret = -EIO;
1702 		goto failed;
1703 	}
1704 
1705 	ret = do_req_filebacked(lo, cmd->rq);
1706  failed:
1707 	/* complete non-aio request */
1708 	if (!cmd->use_aio || ret) {
1709 		cmd->ret = ret ? -EIO : 0;
1710 		blk_mq_complete_request(cmd->rq);
1711 	}
1712 }
1713 
1714 static void loop_queue_work(struct kthread_work *work)
1715 {
1716 	struct loop_cmd *cmd =
1717 		container_of(work, struct loop_cmd, work);
1718 
1719 	loop_handle_cmd(cmd);
1720 }
1721 
1722 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1723 		unsigned int hctx_idx, unsigned int numa_node)
1724 {
1725 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1726 
1727 	cmd->rq = rq;
1728 	kthread_init_work(&cmd->work, loop_queue_work);
1729 
1730 	return 0;
1731 }
1732 
1733 static const struct blk_mq_ops loop_mq_ops = {
1734 	.queue_rq       = loop_queue_rq,
1735 	.init_request	= loop_init_request,
1736 	.complete	= lo_complete_rq,
1737 };
1738 
1739 static int loop_add(struct loop_device **l, int i)
1740 {
1741 	struct loop_device *lo;
1742 	struct gendisk *disk;
1743 	int err;
1744 
1745 	err = -ENOMEM;
1746 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1747 	if (!lo)
1748 		goto out;
1749 
1750 	lo->lo_state = Lo_unbound;
1751 
1752 	/* allocate id, if @id >= 0, we're requesting that specific id */
1753 	if (i >= 0) {
1754 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1755 		if (err == -ENOSPC)
1756 			err = -EEXIST;
1757 	} else {
1758 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1759 	}
1760 	if (err < 0)
1761 		goto out_free_dev;
1762 	i = err;
1763 
1764 	err = -ENOMEM;
1765 	lo->tag_set.ops = &loop_mq_ops;
1766 	lo->tag_set.nr_hw_queues = 1;
1767 	lo->tag_set.queue_depth = 128;
1768 	lo->tag_set.numa_node = NUMA_NO_NODE;
1769 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1770 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1771 	lo->tag_set.driver_data = lo;
1772 
1773 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1774 	if (err)
1775 		goto out_free_idr;
1776 
1777 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1778 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1779 		err = PTR_ERR(lo->lo_queue);
1780 		goto out_cleanup_tags;
1781 	}
1782 	lo->lo_queue->queuedata = lo;
1783 
1784 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1785 
1786 	/*
1787 	 * By default, we do buffer IO, so it doesn't make sense to enable
1788 	 * merge because the I/O submitted to backing file is handled page by
1789 	 * page. For directio mode, merge does help to dispatch bigger request
1790 	 * to underlayer disk. We will enable merge once directio is enabled.
1791 	 */
1792 	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1793 
1794 	err = -ENOMEM;
1795 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1796 	if (!disk)
1797 		goto out_free_queue;
1798 
1799 	/*
1800 	 * Disable partition scanning by default. The in-kernel partition
1801 	 * scanning can be requested individually per-device during its
1802 	 * setup. Userspace can always add and remove partitions from all
1803 	 * devices. The needed partition minors are allocated from the
1804 	 * extended minor space, the main loop device numbers will continue
1805 	 * to match the loop minors, regardless of the number of partitions
1806 	 * used.
1807 	 *
1808 	 * If max_part is given, partition scanning is globally enabled for
1809 	 * all loop devices. The minors for the main loop devices will be
1810 	 * multiples of max_part.
1811 	 *
1812 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1813 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1814 	 * complicated, are too static, inflexible and may surprise
1815 	 * userspace tools. Parameters like this in general should be avoided.
1816 	 */
1817 	if (!part_shift)
1818 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1819 	disk->flags |= GENHD_FL_EXT_DEVT;
1820 	mutex_init(&lo->lo_ctl_mutex);
1821 	atomic_set(&lo->lo_refcnt, 0);
1822 	lo->lo_number		= i;
1823 	spin_lock_init(&lo->lo_lock);
1824 	disk->major		= LOOP_MAJOR;
1825 	disk->first_minor	= i << part_shift;
1826 	disk->fops		= &lo_fops;
1827 	disk->private_data	= lo;
1828 	disk->queue		= lo->lo_queue;
1829 	sprintf(disk->disk_name, "loop%d", i);
1830 	add_disk(disk);
1831 	*l = lo;
1832 	return lo->lo_number;
1833 
1834 out_free_queue:
1835 	blk_cleanup_queue(lo->lo_queue);
1836 out_cleanup_tags:
1837 	blk_mq_free_tag_set(&lo->tag_set);
1838 out_free_idr:
1839 	idr_remove(&loop_index_idr, i);
1840 out_free_dev:
1841 	kfree(lo);
1842 out:
1843 	return err;
1844 }
1845 
1846 static void loop_remove(struct loop_device *lo)
1847 {
1848 	blk_cleanup_queue(lo->lo_queue);
1849 	del_gendisk(lo->lo_disk);
1850 	blk_mq_free_tag_set(&lo->tag_set);
1851 	put_disk(lo->lo_disk);
1852 	kfree(lo);
1853 }
1854 
1855 static int find_free_cb(int id, void *ptr, void *data)
1856 {
1857 	struct loop_device *lo = ptr;
1858 	struct loop_device **l = data;
1859 
1860 	if (lo->lo_state == Lo_unbound) {
1861 		*l = lo;
1862 		return 1;
1863 	}
1864 	return 0;
1865 }
1866 
1867 static int loop_lookup(struct loop_device **l, int i)
1868 {
1869 	struct loop_device *lo;
1870 	int ret = -ENODEV;
1871 
1872 	if (i < 0) {
1873 		int err;
1874 
1875 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1876 		if (err == 1) {
1877 			*l = lo;
1878 			ret = lo->lo_number;
1879 		}
1880 		goto out;
1881 	}
1882 
1883 	/* lookup and return a specific i */
1884 	lo = idr_find(&loop_index_idr, i);
1885 	if (lo) {
1886 		*l = lo;
1887 		ret = lo->lo_number;
1888 	}
1889 out:
1890 	return ret;
1891 }
1892 
1893 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1894 {
1895 	struct loop_device *lo;
1896 	struct kobject *kobj;
1897 	int err;
1898 
1899 	mutex_lock(&loop_index_mutex);
1900 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1901 	if (err < 0)
1902 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1903 	if (err < 0)
1904 		kobj = NULL;
1905 	else
1906 		kobj = get_disk(lo->lo_disk);
1907 	mutex_unlock(&loop_index_mutex);
1908 
1909 	*part = 0;
1910 	return kobj;
1911 }
1912 
1913 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1914 			       unsigned long parm)
1915 {
1916 	struct loop_device *lo;
1917 	int ret = -ENOSYS;
1918 
1919 	mutex_lock(&loop_index_mutex);
1920 	switch (cmd) {
1921 	case LOOP_CTL_ADD:
1922 		ret = loop_lookup(&lo, parm);
1923 		if (ret >= 0) {
1924 			ret = -EEXIST;
1925 			break;
1926 		}
1927 		ret = loop_add(&lo, parm);
1928 		break;
1929 	case LOOP_CTL_REMOVE:
1930 		ret = loop_lookup(&lo, parm);
1931 		if (ret < 0)
1932 			break;
1933 		mutex_lock(&lo->lo_ctl_mutex);
1934 		if (lo->lo_state != Lo_unbound) {
1935 			ret = -EBUSY;
1936 			mutex_unlock(&lo->lo_ctl_mutex);
1937 			break;
1938 		}
1939 		if (atomic_read(&lo->lo_refcnt) > 0) {
1940 			ret = -EBUSY;
1941 			mutex_unlock(&lo->lo_ctl_mutex);
1942 			break;
1943 		}
1944 		lo->lo_disk->private_data = NULL;
1945 		mutex_unlock(&lo->lo_ctl_mutex);
1946 		idr_remove(&loop_index_idr, lo->lo_number);
1947 		loop_remove(lo);
1948 		break;
1949 	case LOOP_CTL_GET_FREE:
1950 		ret = loop_lookup(&lo, -1);
1951 		if (ret >= 0)
1952 			break;
1953 		ret = loop_add(&lo, -1);
1954 	}
1955 	mutex_unlock(&loop_index_mutex);
1956 
1957 	return ret;
1958 }
1959 
1960 static const struct file_operations loop_ctl_fops = {
1961 	.open		= nonseekable_open,
1962 	.unlocked_ioctl	= loop_control_ioctl,
1963 	.compat_ioctl	= loop_control_ioctl,
1964 	.owner		= THIS_MODULE,
1965 	.llseek		= noop_llseek,
1966 };
1967 
1968 static struct miscdevice loop_misc = {
1969 	.minor		= LOOP_CTRL_MINOR,
1970 	.name		= "loop-control",
1971 	.fops		= &loop_ctl_fops,
1972 };
1973 
1974 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1975 MODULE_ALIAS("devname:loop-control");
1976 
1977 static int __init loop_init(void)
1978 {
1979 	int i, nr;
1980 	unsigned long range;
1981 	struct loop_device *lo;
1982 	int err;
1983 
1984 	part_shift = 0;
1985 	if (max_part > 0) {
1986 		part_shift = fls(max_part);
1987 
1988 		/*
1989 		 * Adjust max_part according to part_shift as it is exported
1990 		 * to user space so that user can decide correct minor number
1991 		 * if [s]he want to create more devices.
1992 		 *
1993 		 * Note that -1 is required because partition 0 is reserved
1994 		 * for the whole disk.
1995 		 */
1996 		max_part = (1UL << part_shift) - 1;
1997 	}
1998 
1999 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2000 		err = -EINVAL;
2001 		goto err_out;
2002 	}
2003 
2004 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2005 		err = -EINVAL;
2006 		goto err_out;
2007 	}
2008 
2009 	/*
2010 	 * If max_loop is specified, create that many devices upfront.
2011 	 * This also becomes a hard limit. If max_loop is not specified,
2012 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2013 	 * init time. Loop devices can be requested on-demand with the
2014 	 * /dev/loop-control interface, or be instantiated by accessing
2015 	 * a 'dead' device node.
2016 	 */
2017 	if (max_loop) {
2018 		nr = max_loop;
2019 		range = max_loop << part_shift;
2020 	} else {
2021 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2022 		range = 1UL << MINORBITS;
2023 	}
2024 
2025 	err = misc_register(&loop_misc);
2026 	if (err < 0)
2027 		goto err_out;
2028 
2029 
2030 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2031 		err = -EIO;
2032 		goto misc_out;
2033 	}
2034 
2035 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2036 				  THIS_MODULE, loop_probe, NULL, NULL);
2037 
2038 	/* pre-create number of devices given by config or max_loop */
2039 	mutex_lock(&loop_index_mutex);
2040 	for (i = 0; i < nr; i++)
2041 		loop_add(&lo, i);
2042 	mutex_unlock(&loop_index_mutex);
2043 
2044 	printk(KERN_INFO "loop: module loaded\n");
2045 	return 0;
2046 
2047 misc_out:
2048 	misc_deregister(&loop_misc);
2049 err_out:
2050 	return err;
2051 }
2052 
2053 static int loop_exit_cb(int id, void *ptr, void *data)
2054 {
2055 	struct loop_device *lo = ptr;
2056 
2057 	loop_remove(lo);
2058 	return 0;
2059 }
2060 
2061 static void __exit loop_exit(void)
2062 {
2063 	unsigned long range;
2064 
2065 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2066 
2067 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2068 	idr_destroy(&loop_index_idr);
2069 
2070 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2071 	unregister_blkdev(LOOP_MAJOR, "loop");
2072 
2073 	misc_deregister(&loop_misc);
2074 }
2075 
2076 module_init(loop_init);
2077 module_exit(loop_exit);
2078 
2079 #ifndef MODULE
2080 static int __init max_loop_setup(char *str)
2081 {
2082 	max_loop = simple_strtol(str, NULL, 0);
2083 	return 1;
2084 }
2085 
2086 __setup("max_loop=", max_loop_setup);
2087 #endif
2088