xref: /openbmc/linux/drivers/block/loop.c (revision d3349b6b)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80 
81 #include <linux/uaccess.h>
82 
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85 
86 static int max_part;
87 static int part_shift;
88 
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 			struct page *raw_page, unsigned raw_off,
91 			struct page *loop_page, unsigned loop_off,
92 			int size, sector_t real_block)
93 {
94 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 	char *in, *out, *key;
97 	int i, keysize;
98 
99 	if (cmd == READ) {
100 		in = raw_buf;
101 		out = loop_buf;
102 	} else {
103 		in = loop_buf;
104 		out = raw_buf;
105 	}
106 
107 	key = lo->lo_encrypt_key;
108 	keysize = lo->lo_encrypt_key_size;
109 	for (i = 0; i < size; i++)
110 		*out++ = *in++ ^ key[(i & 511) % keysize];
111 
112 	kunmap_atomic(loop_buf);
113 	kunmap_atomic(raw_buf);
114 	cond_resched();
115 	return 0;
116 }
117 
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 	if (unlikely(info->lo_encrypt_key_size <= 0))
121 		return -EINVAL;
122 	return 0;
123 }
124 
125 static struct loop_func_table none_funcs = {
126 	.number = LO_CRYPT_NONE,
127 };
128 
129 static struct loop_func_table xor_funcs = {
130 	.number = LO_CRYPT_XOR,
131 	.transfer = transfer_xor,
132 	.init = xor_init
133 };
134 
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 	&none_funcs,
138 	&xor_funcs
139 };
140 
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 	loff_t loopsize;
144 
145 	/* Compute loopsize in bytes */
146 	loopsize = i_size_read(file->f_mapping->host);
147 	if (offset > 0)
148 		loopsize -= offset;
149 	/* offset is beyond i_size, weird but possible */
150 	if (loopsize < 0)
151 		return 0;
152 
153 	if (sizelimit > 0 && sizelimit < loopsize)
154 		loopsize = sizelimit;
155 	/*
156 	 * Unfortunately, if we want to do I/O on the device,
157 	 * the number of 512-byte sectors has to fit into a sector_t.
158 	 */
159 	return loopsize >> 9;
160 }
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166 
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 	struct file *file = lo->lo_backing_file;
170 	struct address_space *mapping = file->f_mapping;
171 	struct inode *inode = mapping->host;
172 	unsigned short sb_bsize = 0;
173 	unsigned dio_align = 0;
174 	bool use_dio;
175 
176 	if (inode->i_sb->s_bdev) {
177 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 		dio_align = sb_bsize - 1;
179 	}
180 
181 	/*
182 	 * We support direct I/O only if lo_offset is aligned with the
183 	 * logical I/O size of backing device, and the logical block
184 	 * size of loop is bigger than the backing device's and the loop
185 	 * needn't transform transfer.
186 	 *
187 	 * TODO: the above condition may be loosed in the future, and
188 	 * direct I/O may be switched runtime at that time because most
189 	 * of requests in sane applications should be PAGE_SIZE aligned
190 	 */
191 	if (dio) {
192 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 				!(lo->lo_offset & dio_align) &&
194 				mapping->a_ops->direct_IO &&
195 				!lo->transfer)
196 			use_dio = true;
197 		else
198 			use_dio = false;
199 	} else {
200 		use_dio = false;
201 	}
202 
203 	if (lo->use_dio == use_dio)
204 		return;
205 
206 	/* flush dirty pages before changing direct IO */
207 	vfs_fsync(file, 0);
208 
209 	/*
210 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 	 * will get updated by ioctl(LOOP_GET_STATUS)
213 	 */
214 	blk_mq_freeze_queue(lo->lo_queue);
215 	lo->use_dio = use_dio;
216 	if (use_dio) {
217 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
218 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
219 	} else {
220 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
221 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
222 	}
223 	blk_mq_unfreeze_queue(lo->lo_queue);
224 }
225 
226 static int
227 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
228 {
229 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
230 	sector_t x = (sector_t)size;
231 	struct block_device *bdev = lo->lo_device;
232 
233 	if (unlikely((loff_t)x != size))
234 		return -EFBIG;
235 	if (lo->lo_offset != offset)
236 		lo->lo_offset = offset;
237 	if (lo->lo_sizelimit != sizelimit)
238 		lo->lo_sizelimit = sizelimit;
239 	set_capacity(lo->lo_disk, x);
240 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
241 	/* let user-space know about the new size */
242 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
243 	return 0;
244 }
245 
246 static inline int
247 lo_do_transfer(struct loop_device *lo, int cmd,
248 	       struct page *rpage, unsigned roffs,
249 	       struct page *lpage, unsigned loffs,
250 	       int size, sector_t rblock)
251 {
252 	int ret;
253 
254 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
255 	if (likely(!ret))
256 		return 0;
257 
258 	printk_ratelimited(KERN_ERR
259 		"loop: Transfer error at byte offset %llu, length %i.\n",
260 		(unsigned long long)rblock << 9, size);
261 	return ret;
262 }
263 
264 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
265 {
266 	struct iov_iter i;
267 	ssize_t bw;
268 
269 	iov_iter_bvec(&i, ITER_BVEC | WRITE, bvec, 1, bvec->bv_len);
270 
271 	file_start_write(file);
272 	bw = vfs_iter_write(file, &i, ppos, 0);
273 	file_end_write(file);
274 
275 	if (likely(bw ==  bvec->bv_len))
276 		return 0;
277 
278 	printk_ratelimited(KERN_ERR
279 		"loop: Write error at byte offset %llu, length %i.\n",
280 		(unsigned long long)*ppos, bvec->bv_len);
281 	if (bw >= 0)
282 		bw = -EIO;
283 	return bw;
284 }
285 
286 static int lo_write_simple(struct loop_device *lo, struct request *rq,
287 		loff_t pos)
288 {
289 	struct bio_vec bvec;
290 	struct req_iterator iter;
291 	int ret = 0;
292 
293 	rq_for_each_segment(bvec, rq, iter) {
294 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
295 		if (ret < 0)
296 			break;
297 		cond_resched();
298 	}
299 
300 	return ret;
301 }
302 
303 /*
304  * This is the slow, transforming version that needs to double buffer the
305  * data as it cannot do the transformations in place without having direct
306  * access to the destination pages of the backing file.
307  */
308 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
309 		loff_t pos)
310 {
311 	struct bio_vec bvec, b;
312 	struct req_iterator iter;
313 	struct page *page;
314 	int ret = 0;
315 
316 	page = alloc_page(GFP_NOIO);
317 	if (unlikely(!page))
318 		return -ENOMEM;
319 
320 	rq_for_each_segment(bvec, rq, iter) {
321 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
322 			bvec.bv_offset, bvec.bv_len, pos >> 9);
323 		if (unlikely(ret))
324 			break;
325 
326 		b.bv_page = page;
327 		b.bv_offset = 0;
328 		b.bv_len = bvec.bv_len;
329 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
330 		if (ret < 0)
331 			break;
332 	}
333 
334 	__free_page(page);
335 	return ret;
336 }
337 
338 static int lo_read_simple(struct loop_device *lo, struct request *rq,
339 		loff_t pos)
340 {
341 	struct bio_vec bvec;
342 	struct req_iterator iter;
343 	struct iov_iter i;
344 	ssize_t len;
345 
346 	rq_for_each_segment(bvec, rq, iter) {
347 		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
348 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
349 		if (len < 0)
350 			return len;
351 
352 		flush_dcache_page(bvec.bv_page);
353 
354 		if (len != bvec.bv_len) {
355 			struct bio *bio;
356 
357 			__rq_for_each_bio(bio, rq)
358 				zero_fill_bio(bio);
359 			break;
360 		}
361 		cond_resched();
362 	}
363 
364 	return 0;
365 }
366 
367 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
368 		loff_t pos)
369 {
370 	struct bio_vec bvec, b;
371 	struct req_iterator iter;
372 	struct iov_iter i;
373 	struct page *page;
374 	ssize_t len;
375 	int ret = 0;
376 
377 	page = alloc_page(GFP_NOIO);
378 	if (unlikely(!page))
379 		return -ENOMEM;
380 
381 	rq_for_each_segment(bvec, rq, iter) {
382 		loff_t offset = pos;
383 
384 		b.bv_page = page;
385 		b.bv_offset = 0;
386 		b.bv_len = bvec.bv_len;
387 
388 		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
389 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
390 		if (len < 0) {
391 			ret = len;
392 			goto out_free_page;
393 		}
394 
395 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
396 			bvec.bv_offset, len, offset >> 9);
397 		if (ret)
398 			goto out_free_page;
399 
400 		flush_dcache_page(bvec.bv_page);
401 
402 		if (len != bvec.bv_len) {
403 			struct bio *bio;
404 
405 			__rq_for_each_bio(bio, rq)
406 				zero_fill_bio(bio);
407 			break;
408 		}
409 	}
410 
411 	ret = 0;
412 out_free_page:
413 	__free_page(page);
414 	return ret;
415 }
416 
417 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
418 {
419 	/*
420 	 * We use punch hole to reclaim the free space used by the
421 	 * image a.k.a. discard. However we do not support discard if
422 	 * encryption is enabled, because it may give an attacker
423 	 * useful information.
424 	 */
425 	struct file *file = lo->lo_backing_file;
426 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
427 	int ret;
428 
429 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
430 		ret = -EOPNOTSUPP;
431 		goto out;
432 	}
433 
434 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
435 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
436 		ret = -EIO;
437  out:
438 	return ret;
439 }
440 
441 static int lo_req_flush(struct loop_device *lo, struct request *rq)
442 {
443 	struct file *file = lo->lo_backing_file;
444 	int ret = vfs_fsync(file, 0);
445 	if (unlikely(ret && ret != -EINVAL))
446 		ret = -EIO;
447 
448 	return ret;
449 }
450 
451 static void lo_complete_rq(struct request *rq)
452 {
453 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
454 	blk_status_t ret = BLK_STS_OK;
455 
456 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
457 	    req_op(rq) != REQ_OP_READ) {
458 		if (cmd->ret < 0)
459 			ret = BLK_STS_IOERR;
460 		goto end_io;
461 	}
462 
463 	/*
464 	 * Short READ - if we got some data, advance our request and
465 	 * retry it. If we got no data, end the rest with EIO.
466 	 */
467 	if (cmd->ret) {
468 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
469 		cmd->ret = 0;
470 		blk_mq_requeue_request(rq, true);
471 	} else {
472 		if (cmd->use_aio) {
473 			struct bio *bio = rq->bio;
474 
475 			while (bio) {
476 				zero_fill_bio(bio);
477 				bio = bio->bi_next;
478 			}
479 		}
480 		ret = BLK_STS_IOERR;
481 end_io:
482 		blk_mq_end_request(rq, ret);
483 	}
484 }
485 
486 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
487 {
488 	struct request *rq = blk_mq_rq_from_pdu(cmd);
489 
490 	if (!atomic_dec_and_test(&cmd->ref))
491 		return;
492 	kfree(cmd->bvec);
493 	cmd->bvec = NULL;
494 	blk_mq_complete_request(rq);
495 }
496 
497 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
498 {
499 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
500 
501 	if (cmd->css)
502 		css_put(cmd->css);
503 	cmd->ret = ret;
504 	lo_rw_aio_do_completion(cmd);
505 }
506 
507 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
508 		     loff_t pos, bool rw)
509 {
510 	struct iov_iter iter;
511 	struct bio_vec *bvec;
512 	struct request *rq = blk_mq_rq_from_pdu(cmd);
513 	struct bio *bio = rq->bio;
514 	struct file *file = lo->lo_backing_file;
515 	unsigned int offset;
516 	int segments = 0;
517 	int ret;
518 
519 	if (rq->bio != rq->biotail) {
520 		struct req_iterator iter;
521 		struct bio_vec tmp;
522 
523 		__rq_for_each_bio(bio, rq)
524 			segments += bio_segments(bio);
525 		bvec = kmalloc(sizeof(struct bio_vec) * segments, GFP_NOIO);
526 		if (!bvec)
527 			return -EIO;
528 		cmd->bvec = bvec;
529 
530 		/*
531 		 * The bios of the request may be started from the middle of
532 		 * the 'bvec' because of bio splitting, so we can't directly
533 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
534 		 * API will take care of all details for us.
535 		 */
536 		rq_for_each_segment(tmp, rq, iter) {
537 			*bvec = tmp;
538 			bvec++;
539 		}
540 		bvec = cmd->bvec;
541 		offset = 0;
542 	} else {
543 		/*
544 		 * Same here, this bio may be started from the middle of the
545 		 * 'bvec' because of bio splitting, so offset from the bvec
546 		 * must be passed to iov iterator
547 		 */
548 		offset = bio->bi_iter.bi_bvec_done;
549 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
550 		segments = bio_segments(bio);
551 	}
552 	atomic_set(&cmd->ref, 2);
553 
554 	iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
555 		      segments, blk_rq_bytes(rq));
556 	iter.iov_offset = offset;
557 
558 	cmd->iocb.ki_pos = pos;
559 	cmd->iocb.ki_filp = file;
560 	cmd->iocb.ki_complete = lo_rw_aio_complete;
561 	cmd->iocb.ki_flags = IOCB_DIRECT;
562 	if (cmd->css)
563 		kthread_associate_blkcg(cmd->css);
564 
565 	if (rw == WRITE)
566 		ret = call_write_iter(file, &cmd->iocb, &iter);
567 	else
568 		ret = call_read_iter(file, &cmd->iocb, &iter);
569 
570 	lo_rw_aio_do_completion(cmd);
571 	kthread_associate_blkcg(NULL);
572 
573 	if (ret != -EIOCBQUEUED)
574 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
575 	return 0;
576 }
577 
578 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
579 {
580 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
581 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
582 
583 	/*
584 	 * lo_write_simple and lo_read_simple should have been covered
585 	 * by io submit style function like lo_rw_aio(), one blocker
586 	 * is that lo_read_simple() need to call flush_dcache_page after
587 	 * the page is written from kernel, and it isn't easy to handle
588 	 * this in io submit style function which submits all segments
589 	 * of the req at one time. And direct read IO doesn't need to
590 	 * run flush_dcache_page().
591 	 */
592 	switch (req_op(rq)) {
593 	case REQ_OP_FLUSH:
594 		return lo_req_flush(lo, rq);
595 	case REQ_OP_DISCARD:
596 	case REQ_OP_WRITE_ZEROES:
597 		return lo_discard(lo, rq, pos);
598 	case REQ_OP_WRITE:
599 		if (lo->transfer)
600 			return lo_write_transfer(lo, rq, pos);
601 		else if (cmd->use_aio)
602 			return lo_rw_aio(lo, cmd, pos, WRITE);
603 		else
604 			return lo_write_simple(lo, rq, pos);
605 	case REQ_OP_READ:
606 		if (lo->transfer)
607 			return lo_read_transfer(lo, rq, pos);
608 		else if (cmd->use_aio)
609 			return lo_rw_aio(lo, cmd, pos, READ);
610 		else
611 			return lo_read_simple(lo, rq, pos);
612 	default:
613 		WARN_ON_ONCE(1);
614 		return -EIO;
615 		break;
616 	}
617 }
618 
619 static inline void loop_update_dio(struct loop_device *lo)
620 {
621 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
622 			lo->use_dio);
623 }
624 
625 static void loop_reread_partitions(struct loop_device *lo,
626 				   struct block_device *bdev)
627 {
628 	int rc;
629 
630 	/*
631 	 * bd_mutex has been held already in release path, so don't
632 	 * acquire it if this function is called in such case.
633 	 *
634 	 * If the reread partition isn't from release path, lo_refcnt
635 	 * must be at least one and it can only become zero when the
636 	 * current holder is released.
637 	 */
638 	if (!atomic_read(&lo->lo_refcnt))
639 		rc = __blkdev_reread_part(bdev);
640 	else
641 		rc = blkdev_reread_part(bdev);
642 	if (rc)
643 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
644 			__func__, lo->lo_number, lo->lo_file_name, rc);
645 }
646 
647 /*
648  * loop_change_fd switched the backing store of a loopback device to
649  * a new file. This is useful for operating system installers to free up
650  * the original file and in High Availability environments to switch to
651  * an alternative location for the content in case of server meltdown.
652  * This can only work if the loop device is used read-only, and if the
653  * new backing store is the same size and type as the old backing store.
654  */
655 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
656 			  unsigned int arg)
657 {
658 	struct file	*file, *old_file;
659 	struct inode	*inode;
660 	int		error;
661 
662 	error = -ENXIO;
663 	if (lo->lo_state != Lo_bound)
664 		goto out;
665 
666 	/* the loop device has to be read-only */
667 	error = -EINVAL;
668 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
669 		goto out;
670 
671 	error = -EBADF;
672 	file = fget(arg);
673 	if (!file)
674 		goto out;
675 
676 	inode = file->f_mapping->host;
677 	old_file = lo->lo_backing_file;
678 
679 	error = -EINVAL;
680 
681 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
682 		goto out_putf;
683 
684 	/* size of the new backing store needs to be the same */
685 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
686 		goto out_putf;
687 
688 	/* and ... switch */
689 	blk_mq_freeze_queue(lo->lo_queue);
690 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
691 	lo->lo_backing_file = file;
692 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
693 	mapping_set_gfp_mask(file->f_mapping,
694 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
695 	loop_update_dio(lo);
696 	blk_mq_unfreeze_queue(lo->lo_queue);
697 
698 	fput(old_file);
699 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
700 		loop_reread_partitions(lo, bdev);
701 	return 0;
702 
703  out_putf:
704 	fput(file);
705  out:
706 	return error;
707 }
708 
709 static inline int is_loop_device(struct file *file)
710 {
711 	struct inode *i = file->f_mapping->host;
712 
713 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
714 }
715 
716 /* loop sysfs attributes */
717 
718 static ssize_t loop_attr_show(struct device *dev, char *page,
719 			      ssize_t (*callback)(struct loop_device *, char *))
720 {
721 	struct gendisk *disk = dev_to_disk(dev);
722 	struct loop_device *lo = disk->private_data;
723 
724 	return callback(lo, page);
725 }
726 
727 #define LOOP_ATTR_RO(_name)						\
728 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
729 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
730 				struct device_attribute *attr, char *b)	\
731 {									\
732 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
733 }									\
734 static struct device_attribute loop_attr_##_name =			\
735 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
736 
737 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
738 {
739 	ssize_t ret;
740 	char *p = NULL;
741 
742 	spin_lock_irq(&lo->lo_lock);
743 	if (lo->lo_backing_file)
744 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
745 	spin_unlock_irq(&lo->lo_lock);
746 
747 	if (IS_ERR_OR_NULL(p))
748 		ret = PTR_ERR(p);
749 	else {
750 		ret = strlen(p);
751 		memmove(buf, p, ret);
752 		buf[ret++] = '\n';
753 		buf[ret] = 0;
754 	}
755 
756 	return ret;
757 }
758 
759 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
760 {
761 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
762 }
763 
764 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
765 {
766 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
767 }
768 
769 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
770 {
771 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
772 
773 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
774 }
775 
776 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
777 {
778 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
779 
780 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
781 }
782 
783 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
784 {
785 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
786 
787 	return sprintf(buf, "%s\n", dio ? "1" : "0");
788 }
789 
790 LOOP_ATTR_RO(backing_file);
791 LOOP_ATTR_RO(offset);
792 LOOP_ATTR_RO(sizelimit);
793 LOOP_ATTR_RO(autoclear);
794 LOOP_ATTR_RO(partscan);
795 LOOP_ATTR_RO(dio);
796 
797 static struct attribute *loop_attrs[] = {
798 	&loop_attr_backing_file.attr,
799 	&loop_attr_offset.attr,
800 	&loop_attr_sizelimit.attr,
801 	&loop_attr_autoclear.attr,
802 	&loop_attr_partscan.attr,
803 	&loop_attr_dio.attr,
804 	NULL,
805 };
806 
807 static struct attribute_group loop_attribute_group = {
808 	.name = "loop",
809 	.attrs= loop_attrs,
810 };
811 
812 static void loop_sysfs_init(struct loop_device *lo)
813 {
814 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
815 						&loop_attribute_group);
816 }
817 
818 static void loop_sysfs_exit(struct loop_device *lo)
819 {
820 	if (lo->sysfs_inited)
821 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
822 				   &loop_attribute_group);
823 }
824 
825 static void loop_config_discard(struct loop_device *lo)
826 {
827 	struct file *file = lo->lo_backing_file;
828 	struct inode *inode = file->f_mapping->host;
829 	struct request_queue *q = lo->lo_queue;
830 
831 	/*
832 	 * We use punch hole to reclaim the free space used by the
833 	 * image a.k.a. discard. However we do not support discard if
834 	 * encryption is enabled, because it may give an attacker
835 	 * useful information.
836 	 */
837 	if ((!file->f_op->fallocate) ||
838 	    lo->lo_encrypt_key_size) {
839 		q->limits.discard_granularity = 0;
840 		q->limits.discard_alignment = 0;
841 		blk_queue_max_discard_sectors(q, 0);
842 		blk_queue_max_write_zeroes_sectors(q, 0);
843 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
844 		return;
845 	}
846 
847 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
848 	q->limits.discard_alignment = 0;
849 
850 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
851 	blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
852 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
853 }
854 
855 static void loop_unprepare_queue(struct loop_device *lo)
856 {
857 	kthread_flush_worker(&lo->worker);
858 	kthread_stop(lo->worker_task);
859 }
860 
861 static int loop_kthread_worker_fn(void *worker_ptr)
862 {
863 	current->flags |= PF_LESS_THROTTLE;
864 	return kthread_worker_fn(worker_ptr);
865 }
866 
867 static int loop_prepare_queue(struct loop_device *lo)
868 {
869 	kthread_init_worker(&lo->worker);
870 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
871 			&lo->worker, "loop%d", lo->lo_number);
872 	if (IS_ERR(lo->worker_task))
873 		return -ENOMEM;
874 	set_user_nice(lo->worker_task, MIN_NICE);
875 	return 0;
876 }
877 
878 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
879 		       struct block_device *bdev, unsigned int arg)
880 {
881 	struct file	*file, *f;
882 	struct inode	*inode;
883 	struct address_space *mapping;
884 	int		lo_flags = 0;
885 	int		error;
886 	loff_t		size;
887 
888 	/* This is safe, since we have a reference from open(). */
889 	__module_get(THIS_MODULE);
890 
891 	error = -EBADF;
892 	file = fget(arg);
893 	if (!file)
894 		goto out;
895 
896 	error = -EBUSY;
897 	if (lo->lo_state != Lo_unbound)
898 		goto out_putf;
899 
900 	/* Avoid recursion */
901 	f = file;
902 	while (is_loop_device(f)) {
903 		struct loop_device *l;
904 
905 		if (f->f_mapping->host->i_bdev == bdev)
906 			goto out_putf;
907 
908 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
909 		if (l->lo_state == Lo_unbound) {
910 			error = -EINVAL;
911 			goto out_putf;
912 		}
913 		f = l->lo_backing_file;
914 	}
915 
916 	mapping = file->f_mapping;
917 	inode = mapping->host;
918 
919 	error = -EINVAL;
920 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
921 		goto out_putf;
922 
923 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
924 	    !file->f_op->write_iter)
925 		lo_flags |= LO_FLAGS_READ_ONLY;
926 
927 	error = -EFBIG;
928 	size = get_loop_size(lo, file);
929 	if ((loff_t)(sector_t)size != size)
930 		goto out_putf;
931 	error = loop_prepare_queue(lo);
932 	if (error)
933 		goto out_putf;
934 
935 	error = 0;
936 
937 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
938 
939 	lo->use_dio = false;
940 	lo->lo_device = bdev;
941 	lo->lo_flags = lo_flags;
942 	lo->lo_backing_file = file;
943 	lo->transfer = NULL;
944 	lo->ioctl = NULL;
945 	lo->lo_sizelimit = 0;
946 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
947 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
948 
949 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
950 		blk_queue_write_cache(lo->lo_queue, true, false);
951 
952 	loop_update_dio(lo);
953 	set_capacity(lo->lo_disk, size);
954 	bd_set_size(bdev, size << 9);
955 	loop_sysfs_init(lo);
956 	/* let user-space know about the new size */
957 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
958 
959 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
960 		      block_size(inode->i_bdev) : PAGE_SIZE);
961 
962 	lo->lo_state = Lo_bound;
963 	if (part_shift)
964 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
965 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
966 		loop_reread_partitions(lo, bdev);
967 
968 	/* Grab the block_device to prevent its destruction after we
969 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
970 	 */
971 	bdgrab(bdev);
972 	return 0;
973 
974  out_putf:
975 	fput(file);
976  out:
977 	/* This is safe: open() is still holding a reference. */
978 	module_put(THIS_MODULE);
979 	return error;
980 }
981 
982 static int
983 loop_release_xfer(struct loop_device *lo)
984 {
985 	int err = 0;
986 	struct loop_func_table *xfer = lo->lo_encryption;
987 
988 	if (xfer) {
989 		if (xfer->release)
990 			err = xfer->release(lo);
991 		lo->transfer = NULL;
992 		lo->lo_encryption = NULL;
993 		module_put(xfer->owner);
994 	}
995 	return err;
996 }
997 
998 static int
999 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1000 	       const struct loop_info64 *i)
1001 {
1002 	int err = 0;
1003 
1004 	if (xfer) {
1005 		struct module *owner = xfer->owner;
1006 
1007 		if (!try_module_get(owner))
1008 			return -EINVAL;
1009 		if (xfer->init)
1010 			err = xfer->init(lo, i);
1011 		if (err)
1012 			module_put(owner);
1013 		else
1014 			lo->lo_encryption = xfer;
1015 	}
1016 	return err;
1017 }
1018 
1019 static int loop_clr_fd(struct loop_device *lo)
1020 {
1021 	struct file *filp = lo->lo_backing_file;
1022 	gfp_t gfp = lo->old_gfp_mask;
1023 	struct block_device *bdev = lo->lo_device;
1024 
1025 	if (lo->lo_state != Lo_bound)
1026 		return -ENXIO;
1027 
1028 	/*
1029 	 * If we've explicitly asked to tear down the loop device,
1030 	 * and it has an elevated reference count, set it for auto-teardown when
1031 	 * the last reference goes away. This stops $!~#$@ udev from
1032 	 * preventing teardown because it decided that it needs to run blkid on
1033 	 * the loopback device whenever they appear. xfstests is notorious for
1034 	 * failing tests because blkid via udev races with a losetup
1035 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1036 	 * command to fail with EBUSY.
1037 	 */
1038 	if (atomic_read(&lo->lo_refcnt) > 1) {
1039 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1040 		mutex_unlock(&lo->lo_ctl_mutex);
1041 		return 0;
1042 	}
1043 
1044 	if (filp == NULL)
1045 		return -EINVAL;
1046 
1047 	/* freeze request queue during the transition */
1048 	blk_mq_freeze_queue(lo->lo_queue);
1049 
1050 	spin_lock_irq(&lo->lo_lock);
1051 	lo->lo_state = Lo_rundown;
1052 	lo->lo_backing_file = NULL;
1053 	spin_unlock_irq(&lo->lo_lock);
1054 
1055 	loop_release_xfer(lo);
1056 	lo->transfer = NULL;
1057 	lo->ioctl = NULL;
1058 	lo->lo_device = NULL;
1059 	lo->lo_encryption = NULL;
1060 	lo->lo_offset = 0;
1061 	lo->lo_sizelimit = 0;
1062 	lo->lo_encrypt_key_size = 0;
1063 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1064 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1065 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1066 	blk_queue_logical_block_size(lo->lo_queue, 512);
1067 	blk_queue_physical_block_size(lo->lo_queue, 512);
1068 	blk_queue_io_min(lo->lo_queue, 512);
1069 	if (bdev) {
1070 		bdput(bdev);
1071 		invalidate_bdev(bdev);
1072 	}
1073 	set_capacity(lo->lo_disk, 0);
1074 	loop_sysfs_exit(lo);
1075 	if (bdev) {
1076 		bd_set_size(bdev, 0);
1077 		/* let user-space know about this change */
1078 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1079 	}
1080 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1081 	lo->lo_state = Lo_unbound;
1082 	/* This is safe: open() is still holding a reference. */
1083 	module_put(THIS_MODULE);
1084 	blk_mq_unfreeze_queue(lo->lo_queue);
1085 
1086 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1087 		loop_reread_partitions(lo, bdev);
1088 	lo->lo_flags = 0;
1089 	if (!part_shift)
1090 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1091 	loop_unprepare_queue(lo);
1092 	mutex_unlock(&lo->lo_ctl_mutex);
1093 	/*
1094 	 * Need not hold lo_ctl_mutex to fput backing file.
1095 	 * Calling fput holding lo_ctl_mutex triggers a circular
1096 	 * lock dependency possibility warning as fput can take
1097 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1098 	 */
1099 	fput(filp);
1100 	return 0;
1101 }
1102 
1103 static int
1104 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1105 {
1106 	int err;
1107 	struct loop_func_table *xfer;
1108 	kuid_t uid = current_uid();
1109 
1110 	if (lo->lo_encrypt_key_size &&
1111 	    !uid_eq(lo->lo_key_owner, uid) &&
1112 	    !capable(CAP_SYS_ADMIN))
1113 		return -EPERM;
1114 	if (lo->lo_state != Lo_bound)
1115 		return -ENXIO;
1116 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1117 		return -EINVAL;
1118 
1119 	/* I/O need to be drained during transfer transition */
1120 	blk_mq_freeze_queue(lo->lo_queue);
1121 
1122 	err = loop_release_xfer(lo);
1123 	if (err)
1124 		goto exit;
1125 
1126 	if (info->lo_encrypt_type) {
1127 		unsigned int type = info->lo_encrypt_type;
1128 
1129 		if (type >= MAX_LO_CRYPT) {
1130 			err = -EINVAL;
1131 			goto exit;
1132 		}
1133 		xfer = xfer_funcs[type];
1134 		if (xfer == NULL) {
1135 			err = -EINVAL;
1136 			goto exit;
1137 		}
1138 	} else
1139 		xfer = NULL;
1140 
1141 	err = loop_init_xfer(lo, xfer, info);
1142 	if (err)
1143 		goto exit;
1144 
1145 	if (lo->lo_offset != info->lo_offset ||
1146 	    lo->lo_sizelimit != info->lo_sizelimit) {
1147 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1148 			err = -EFBIG;
1149 			goto exit;
1150 		}
1151 	}
1152 
1153 	loop_config_discard(lo);
1154 
1155 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1156 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1157 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1158 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1159 
1160 	if (!xfer)
1161 		xfer = &none_funcs;
1162 	lo->transfer = xfer->transfer;
1163 	lo->ioctl = xfer->ioctl;
1164 
1165 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1166 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1167 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1168 
1169 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1170 	lo->lo_init[0] = info->lo_init[0];
1171 	lo->lo_init[1] = info->lo_init[1];
1172 	if (info->lo_encrypt_key_size) {
1173 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1174 		       info->lo_encrypt_key_size);
1175 		lo->lo_key_owner = uid;
1176 	}
1177 
1178 	/* update dio if lo_offset or transfer is changed */
1179 	__loop_update_dio(lo, lo->use_dio);
1180 
1181  exit:
1182 	blk_mq_unfreeze_queue(lo->lo_queue);
1183 
1184 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1185 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1186 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1187 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1188 		loop_reread_partitions(lo, lo->lo_device);
1189 	}
1190 
1191 	return err;
1192 }
1193 
1194 static int
1195 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1196 {
1197 	struct file *file;
1198 	struct kstat stat;
1199 	int ret;
1200 
1201 	if (lo->lo_state != Lo_bound) {
1202 		mutex_unlock(&lo->lo_ctl_mutex);
1203 		return -ENXIO;
1204 	}
1205 
1206 	memset(info, 0, sizeof(*info));
1207 	info->lo_number = lo->lo_number;
1208 	info->lo_offset = lo->lo_offset;
1209 	info->lo_sizelimit = lo->lo_sizelimit;
1210 	info->lo_flags = lo->lo_flags;
1211 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1212 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1213 	info->lo_encrypt_type =
1214 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1215 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1216 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1217 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1218 		       lo->lo_encrypt_key_size);
1219 	}
1220 
1221 	/* Drop lo_ctl_mutex while we call into the filesystem. */
1222 	file = get_file(lo->lo_backing_file);
1223 	mutex_unlock(&lo->lo_ctl_mutex);
1224 	ret = vfs_getattr(&file->f_path, &stat, STATX_INO,
1225 			  AT_STATX_SYNC_AS_STAT);
1226 	if (!ret) {
1227 		info->lo_device = huge_encode_dev(stat.dev);
1228 		info->lo_inode = stat.ino;
1229 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1230 	}
1231 	fput(file);
1232 	return ret;
1233 }
1234 
1235 static void
1236 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1237 {
1238 	memset(info64, 0, sizeof(*info64));
1239 	info64->lo_number = info->lo_number;
1240 	info64->lo_device = info->lo_device;
1241 	info64->lo_inode = info->lo_inode;
1242 	info64->lo_rdevice = info->lo_rdevice;
1243 	info64->lo_offset = info->lo_offset;
1244 	info64->lo_sizelimit = 0;
1245 	info64->lo_encrypt_type = info->lo_encrypt_type;
1246 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1247 	info64->lo_flags = info->lo_flags;
1248 	info64->lo_init[0] = info->lo_init[0];
1249 	info64->lo_init[1] = info->lo_init[1];
1250 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1251 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1252 	else
1253 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1254 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1255 }
1256 
1257 static int
1258 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1259 {
1260 	memset(info, 0, sizeof(*info));
1261 	info->lo_number = info64->lo_number;
1262 	info->lo_device = info64->lo_device;
1263 	info->lo_inode = info64->lo_inode;
1264 	info->lo_rdevice = info64->lo_rdevice;
1265 	info->lo_offset = info64->lo_offset;
1266 	info->lo_encrypt_type = info64->lo_encrypt_type;
1267 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1268 	info->lo_flags = info64->lo_flags;
1269 	info->lo_init[0] = info64->lo_init[0];
1270 	info->lo_init[1] = info64->lo_init[1];
1271 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1272 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1273 	else
1274 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1275 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1276 
1277 	/* error in case values were truncated */
1278 	if (info->lo_device != info64->lo_device ||
1279 	    info->lo_rdevice != info64->lo_rdevice ||
1280 	    info->lo_inode != info64->lo_inode ||
1281 	    info->lo_offset != info64->lo_offset)
1282 		return -EOVERFLOW;
1283 
1284 	return 0;
1285 }
1286 
1287 static int
1288 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1289 {
1290 	struct loop_info info;
1291 	struct loop_info64 info64;
1292 
1293 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1294 		return -EFAULT;
1295 	loop_info64_from_old(&info, &info64);
1296 	return loop_set_status(lo, &info64);
1297 }
1298 
1299 static int
1300 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1301 {
1302 	struct loop_info64 info64;
1303 
1304 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1305 		return -EFAULT;
1306 	return loop_set_status(lo, &info64);
1307 }
1308 
1309 static int
1310 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1311 	struct loop_info info;
1312 	struct loop_info64 info64;
1313 	int err;
1314 
1315 	if (!arg) {
1316 		mutex_unlock(&lo->lo_ctl_mutex);
1317 		return -EINVAL;
1318 	}
1319 	err = loop_get_status(lo, &info64);
1320 	if (!err)
1321 		err = loop_info64_to_old(&info64, &info);
1322 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1323 		err = -EFAULT;
1324 
1325 	return err;
1326 }
1327 
1328 static int
1329 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1330 	struct loop_info64 info64;
1331 	int err;
1332 
1333 	if (!arg) {
1334 		mutex_unlock(&lo->lo_ctl_mutex);
1335 		return -EINVAL;
1336 	}
1337 	err = loop_get_status(lo, &info64);
1338 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1339 		err = -EFAULT;
1340 
1341 	return err;
1342 }
1343 
1344 static int loop_set_capacity(struct loop_device *lo)
1345 {
1346 	if (unlikely(lo->lo_state != Lo_bound))
1347 		return -ENXIO;
1348 
1349 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1350 }
1351 
1352 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1353 {
1354 	int error = -ENXIO;
1355 	if (lo->lo_state != Lo_bound)
1356 		goto out;
1357 
1358 	__loop_update_dio(lo, !!arg);
1359 	if (lo->use_dio == !!arg)
1360 		return 0;
1361 	error = -EINVAL;
1362  out:
1363 	return error;
1364 }
1365 
1366 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1367 {
1368 	if (lo->lo_state != Lo_bound)
1369 		return -ENXIO;
1370 
1371 	if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1372 		return -EINVAL;
1373 
1374 	blk_mq_freeze_queue(lo->lo_queue);
1375 
1376 	blk_queue_logical_block_size(lo->lo_queue, arg);
1377 	blk_queue_physical_block_size(lo->lo_queue, arg);
1378 	blk_queue_io_min(lo->lo_queue, arg);
1379 	loop_update_dio(lo);
1380 
1381 	blk_mq_unfreeze_queue(lo->lo_queue);
1382 
1383 	return 0;
1384 }
1385 
1386 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1387 	unsigned int cmd, unsigned long arg)
1388 {
1389 	struct loop_device *lo = bdev->bd_disk->private_data;
1390 	int err;
1391 
1392 	err = mutex_lock_killable_nested(&lo->lo_ctl_mutex, 1);
1393 	if (err)
1394 		goto out_unlocked;
1395 
1396 	switch (cmd) {
1397 	case LOOP_SET_FD:
1398 		err = loop_set_fd(lo, mode, bdev, arg);
1399 		break;
1400 	case LOOP_CHANGE_FD:
1401 		err = loop_change_fd(lo, bdev, arg);
1402 		break;
1403 	case LOOP_CLR_FD:
1404 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1405 		err = loop_clr_fd(lo);
1406 		if (!err)
1407 			goto out_unlocked;
1408 		break;
1409 	case LOOP_SET_STATUS:
1410 		err = -EPERM;
1411 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1412 			err = loop_set_status_old(lo,
1413 					(struct loop_info __user *)arg);
1414 		break;
1415 	case LOOP_GET_STATUS:
1416 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1417 		/* loop_get_status() unlocks lo_ctl_mutex */
1418 		goto out_unlocked;
1419 	case LOOP_SET_STATUS64:
1420 		err = -EPERM;
1421 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1422 			err = loop_set_status64(lo,
1423 					(struct loop_info64 __user *) arg);
1424 		break;
1425 	case LOOP_GET_STATUS64:
1426 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1427 		/* loop_get_status() unlocks lo_ctl_mutex */
1428 		goto out_unlocked;
1429 	case LOOP_SET_CAPACITY:
1430 		err = -EPERM;
1431 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1432 			err = loop_set_capacity(lo);
1433 		break;
1434 	case LOOP_SET_DIRECT_IO:
1435 		err = -EPERM;
1436 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1437 			err = loop_set_dio(lo, arg);
1438 		break;
1439 	case LOOP_SET_BLOCK_SIZE:
1440 		err = -EPERM;
1441 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1442 			err = loop_set_block_size(lo, arg);
1443 		break;
1444 	default:
1445 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1446 	}
1447 	mutex_unlock(&lo->lo_ctl_mutex);
1448 
1449 out_unlocked:
1450 	return err;
1451 }
1452 
1453 #ifdef CONFIG_COMPAT
1454 struct compat_loop_info {
1455 	compat_int_t	lo_number;      /* ioctl r/o */
1456 	compat_dev_t	lo_device;      /* ioctl r/o */
1457 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1458 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1459 	compat_int_t	lo_offset;
1460 	compat_int_t	lo_encrypt_type;
1461 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1462 	compat_int_t	lo_flags;       /* ioctl r/o */
1463 	char		lo_name[LO_NAME_SIZE];
1464 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1465 	compat_ulong_t	lo_init[2];
1466 	char		reserved[4];
1467 };
1468 
1469 /*
1470  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1471  * - noinlined to reduce stack space usage in main part of driver
1472  */
1473 static noinline int
1474 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1475 			struct loop_info64 *info64)
1476 {
1477 	struct compat_loop_info info;
1478 
1479 	if (copy_from_user(&info, arg, sizeof(info)))
1480 		return -EFAULT;
1481 
1482 	memset(info64, 0, sizeof(*info64));
1483 	info64->lo_number = info.lo_number;
1484 	info64->lo_device = info.lo_device;
1485 	info64->lo_inode = info.lo_inode;
1486 	info64->lo_rdevice = info.lo_rdevice;
1487 	info64->lo_offset = info.lo_offset;
1488 	info64->lo_sizelimit = 0;
1489 	info64->lo_encrypt_type = info.lo_encrypt_type;
1490 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1491 	info64->lo_flags = info.lo_flags;
1492 	info64->lo_init[0] = info.lo_init[0];
1493 	info64->lo_init[1] = info.lo_init[1];
1494 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1495 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1496 	else
1497 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1498 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1499 	return 0;
1500 }
1501 
1502 /*
1503  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1504  * - noinlined to reduce stack space usage in main part of driver
1505  */
1506 static noinline int
1507 loop_info64_to_compat(const struct loop_info64 *info64,
1508 		      struct compat_loop_info __user *arg)
1509 {
1510 	struct compat_loop_info info;
1511 
1512 	memset(&info, 0, sizeof(info));
1513 	info.lo_number = info64->lo_number;
1514 	info.lo_device = info64->lo_device;
1515 	info.lo_inode = info64->lo_inode;
1516 	info.lo_rdevice = info64->lo_rdevice;
1517 	info.lo_offset = info64->lo_offset;
1518 	info.lo_encrypt_type = info64->lo_encrypt_type;
1519 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1520 	info.lo_flags = info64->lo_flags;
1521 	info.lo_init[0] = info64->lo_init[0];
1522 	info.lo_init[1] = info64->lo_init[1];
1523 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1524 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1525 	else
1526 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1527 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1528 
1529 	/* error in case values were truncated */
1530 	if (info.lo_device != info64->lo_device ||
1531 	    info.lo_rdevice != info64->lo_rdevice ||
1532 	    info.lo_inode != info64->lo_inode ||
1533 	    info.lo_offset != info64->lo_offset ||
1534 	    info.lo_init[0] != info64->lo_init[0] ||
1535 	    info.lo_init[1] != info64->lo_init[1])
1536 		return -EOVERFLOW;
1537 
1538 	if (copy_to_user(arg, &info, sizeof(info)))
1539 		return -EFAULT;
1540 	return 0;
1541 }
1542 
1543 static int
1544 loop_set_status_compat(struct loop_device *lo,
1545 		       const struct compat_loop_info __user *arg)
1546 {
1547 	struct loop_info64 info64;
1548 	int ret;
1549 
1550 	ret = loop_info64_from_compat(arg, &info64);
1551 	if (ret < 0)
1552 		return ret;
1553 	return loop_set_status(lo, &info64);
1554 }
1555 
1556 static int
1557 loop_get_status_compat(struct loop_device *lo,
1558 		       struct compat_loop_info __user *arg)
1559 {
1560 	struct loop_info64 info64;
1561 	int err;
1562 
1563 	if (!arg) {
1564 		mutex_unlock(&lo->lo_ctl_mutex);
1565 		return -EINVAL;
1566 	}
1567 	err = loop_get_status(lo, &info64);
1568 	if (!err)
1569 		err = loop_info64_to_compat(&info64, arg);
1570 	return err;
1571 }
1572 
1573 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1574 			   unsigned int cmd, unsigned long arg)
1575 {
1576 	struct loop_device *lo = bdev->bd_disk->private_data;
1577 	int err;
1578 
1579 	switch(cmd) {
1580 	case LOOP_SET_STATUS:
1581 		err = mutex_lock_killable(&lo->lo_ctl_mutex);
1582 		if (!err) {
1583 			err = loop_set_status_compat(lo,
1584 						     (const struct compat_loop_info __user *)arg);
1585 			mutex_unlock(&lo->lo_ctl_mutex);
1586 		}
1587 		break;
1588 	case LOOP_GET_STATUS:
1589 		err = mutex_lock_killable(&lo->lo_ctl_mutex);
1590 		if (!err) {
1591 			err = loop_get_status_compat(lo,
1592 						     (struct compat_loop_info __user *)arg);
1593 			/* loop_get_status() unlocks lo_ctl_mutex */
1594 		}
1595 		break;
1596 	case LOOP_SET_CAPACITY:
1597 	case LOOP_CLR_FD:
1598 	case LOOP_GET_STATUS64:
1599 	case LOOP_SET_STATUS64:
1600 		arg = (unsigned long) compat_ptr(arg);
1601 	case LOOP_SET_FD:
1602 	case LOOP_CHANGE_FD:
1603 		err = lo_ioctl(bdev, mode, cmd, arg);
1604 		break;
1605 	default:
1606 		err = -ENOIOCTLCMD;
1607 		break;
1608 	}
1609 	return err;
1610 }
1611 #endif
1612 
1613 static int lo_open(struct block_device *bdev, fmode_t mode)
1614 {
1615 	struct loop_device *lo;
1616 	int err = 0;
1617 
1618 	mutex_lock(&loop_index_mutex);
1619 	lo = bdev->bd_disk->private_data;
1620 	if (!lo) {
1621 		err = -ENXIO;
1622 		goto out;
1623 	}
1624 
1625 	atomic_inc(&lo->lo_refcnt);
1626 out:
1627 	mutex_unlock(&loop_index_mutex);
1628 	return err;
1629 }
1630 
1631 static void __lo_release(struct loop_device *lo)
1632 {
1633 	int err;
1634 
1635 	if (atomic_dec_return(&lo->lo_refcnt))
1636 		return;
1637 
1638 	mutex_lock(&lo->lo_ctl_mutex);
1639 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1640 		/*
1641 		 * In autoclear mode, stop the loop thread
1642 		 * and remove configuration after last close.
1643 		 */
1644 		err = loop_clr_fd(lo);
1645 		if (!err)
1646 			return;
1647 	} else if (lo->lo_state == Lo_bound) {
1648 		/*
1649 		 * Otherwise keep thread (if running) and config,
1650 		 * but flush possible ongoing bios in thread.
1651 		 */
1652 		blk_mq_freeze_queue(lo->lo_queue);
1653 		blk_mq_unfreeze_queue(lo->lo_queue);
1654 	}
1655 
1656 	mutex_unlock(&lo->lo_ctl_mutex);
1657 }
1658 
1659 static void lo_release(struct gendisk *disk, fmode_t mode)
1660 {
1661 	mutex_lock(&loop_index_mutex);
1662 	__lo_release(disk->private_data);
1663 	mutex_unlock(&loop_index_mutex);
1664 }
1665 
1666 static const struct block_device_operations lo_fops = {
1667 	.owner =	THIS_MODULE,
1668 	.open =		lo_open,
1669 	.release =	lo_release,
1670 	.ioctl =	lo_ioctl,
1671 #ifdef CONFIG_COMPAT
1672 	.compat_ioctl =	lo_compat_ioctl,
1673 #endif
1674 };
1675 
1676 /*
1677  * And now the modules code and kernel interface.
1678  */
1679 static int max_loop;
1680 module_param(max_loop, int, S_IRUGO);
1681 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1682 module_param(max_part, int, S_IRUGO);
1683 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1684 MODULE_LICENSE("GPL");
1685 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1686 
1687 int loop_register_transfer(struct loop_func_table *funcs)
1688 {
1689 	unsigned int n = funcs->number;
1690 
1691 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1692 		return -EINVAL;
1693 	xfer_funcs[n] = funcs;
1694 	return 0;
1695 }
1696 
1697 static int unregister_transfer_cb(int id, void *ptr, void *data)
1698 {
1699 	struct loop_device *lo = ptr;
1700 	struct loop_func_table *xfer = data;
1701 
1702 	mutex_lock(&lo->lo_ctl_mutex);
1703 	if (lo->lo_encryption == xfer)
1704 		loop_release_xfer(lo);
1705 	mutex_unlock(&lo->lo_ctl_mutex);
1706 	return 0;
1707 }
1708 
1709 int loop_unregister_transfer(int number)
1710 {
1711 	unsigned int n = number;
1712 	struct loop_func_table *xfer;
1713 
1714 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1715 		return -EINVAL;
1716 
1717 	xfer_funcs[n] = NULL;
1718 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1719 	return 0;
1720 }
1721 
1722 EXPORT_SYMBOL(loop_register_transfer);
1723 EXPORT_SYMBOL(loop_unregister_transfer);
1724 
1725 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1726 		const struct blk_mq_queue_data *bd)
1727 {
1728 	struct request *rq = bd->rq;
1729 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1730 	struct loop_device *lo = rq->q->queuedata;
1731 
1732 	blk_mq_start_request(rq);
1733 
1734 	if (lo->lo_state != Lo_bound)
1735 		return BLK_STS_IOERR;
1736 
1737 	switch (req_op(rq)) {
1738 	case REQ_OP_FLUSH:
1739 	case REQ_OP_DISCARD:
1740 	case REQ_OP_WRITE_ZEROES:
1741 		cmd->use_aio = false;
1742 		break;
1743 	default:
1744 		cmd->use_aio = lo->use_dio;
1745 		break;
1746 	}
1747 
1748 	/* always use the first bio's css */
1749 #ifdef CONFIG_BLK_CGROUP
1750 	if (cmd->use_aio && rq->bio && rq->bio->bi_css) {
1751 		cmd->css = rq->bio->bi_css;
1752 		css_get(cmd->css);
1753 	} else
1754 #endif
1755 		cmd->css = NULL;
1756 	kthread_queue_work(&lo->worker, &cmd->work);
1757 
1758 	return BLK_STS_OK;
1759 }
1760 
1761 static void loop_handle_cmd(struct loop_cmd *cmd)
1762 {
1763 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1764 	const bool write = op_is_write(req_op(rq));
1765 	struct loop_device *lo = rq->q->queuedata;
1766 	int ret = 0;
1767 
1768 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1769 		ret = -EIO;
1770 		goto failed;
1771 	}
1772 
1773 	ret = do_req_filebacked(lo, rq);
1774  failed:
1775 	/* complete non-aio request */
1776 	if (!cmd->use_aio || ret) {
1777 		cmd->ret = ret ? -EIO : 0;
1778 		blk_mq_complete_request(rq);
1779 	}
1780 }
1781 
1782 static void loop_queue_work(struct kthread_work *work)
1783 {
1784 	struct loop_cmd *cmd =
1785 		container_of(work, struct loop_cmd, work);
1786 
1787 	loop_handle_cmd(cmd);
1788 }
1789 
1790 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1791 		unsigned int hctx_idx, unsigned int numa_node)
1792 {
1793 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1794 
1795 	kthread_init_work(&cmd->work, loop_queue_work);
1796 	return 0;
1797 }
1798 
1799 static const struct blk_mq_ops loop_mq_ops = {
1800 	.queue_rq       = loop_queue_rq,
1801 	.init_request	= loop_init_request,
1802 	.complete	= lo_complete_rq,
1803 };
1804 
1805 static int loop_add(struct loop_device **l, int i)
1806 {
1807 	struct loop_device *lo;
1808 	struct gendisk *disk;
1809 	int err;
1810 
1811 	err = -ENOMEM;
1812 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1813 	if (!lo)
1814 		goto out;
1815 
1816 	lo->lo_state = Lo_unbound;
1817 
1818 	/* allocate id, if @id >= 0, we're requesting that specific id */
1819 	if (i >= 0) {
1820 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1821 		if (err == -ENOSPC)
1822 			err = -EEXIST;
1823 	} else {
1824 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1825 	}
1826 	if (err < 0)
1827 		goto out_free_dev;
1828 	i = err;
1829 
1830 	err = -ENOMEM;
1831 	lo->tag_set.ops = &loop_mq_ops;
1832 	lo->tag_set.nr_hw_queues = 1;
1833 	lo->tag_set.queue_depth = 128;
1834 	lo->tag_set.numa_node = NUMA_NO_NODE;
1835 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1836 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1837 	lo->tag_set.driver_data = lo;
1838 
1839 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1840 	if (err)
1841 		goto out_free_idr;
1842 
1843 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1844 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1845 		err = PTR_ERR(lo->lo_queue);
1846 		goto out_cleanup_tags;
1847 	}
1848 	lo->lo_queue->queuedata = lo;
1849 
1850 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1851 
1852 	/*
1853 	 * By default, we do buffer IO, so it doesn't make sense to enable
1854 	 * merge because the I/O submitted to backing file is handled page by
1855 	 * page. For directio mode, merge does help to dispatch bigger request
1856 	 * to underlayer disk. We will enable merge once directio is enabled.
1857 	 */
1858 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1859 
1860 	err = -ENOMEM;
1861 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1862 	if (!disk)
1863 		goto out_free_queue;
1864 
1865 	/*
1866 	 * Disable partition scanning by default. The in-kernel partition
1867 	 * scanning can be requested individually per-device during its
1868 	 * setup. Userspace can always add and remove partitions from all
1869 	 * devices. The needed partition minors are allocated from the
1870 	 * extended minor space, the main loop device numbers will continue
1871 	 * to match the loop minors, regardless of the number of partitions
1872 	 * used.
1873 	 *
1874 	 * If max_part is given, partition scanning is globally enabled for
1875 	 * all loop devices. The minors for the main loop devices will be
1876 	 * multiples of max_part.
1877 	 *
1878 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1879 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1880 	 * complicated, are too static, inflexible and may surprise
1881 	 * userspace tools. Parameters like this in general should be avoided.
1882 	 */
1883 	if (!part_shift)
1884 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1885 	disk->flags |= GENHD_FL_EXT_DEVT;
1886 	mutex_init(&lo->lo_ctl_mutex);
1887 	atomic_set(&lo->lo_refcnt, 0);
1888 	lo->lo_number		= i;
1889 	spin_lock_init(&lo->lo_lock);
1890 	disk->major		= LOOP_MAJOR;
1891 	disk->first_minor	= i << part_shift;
1892 	disk->fops		= &lo_fops;
1893 	disk->private_data	= lo;
1894 	disk->queue		= lo->lo_queue;
1895 	sprintf(disk->disk_name, "loop%d", i);
1896 	add_disk(disk);
1897 	*l = lo;
1898 	return lo->lo_number;
1899 
1900 out_free_queue:
1901 	blk_cleanup_queue(lo->lo_queue);
1902 out_cleanup_tags:
1903 	blk_mq_free_tag_set(&lo->tag_set);
1904 out_free_idr:
1905 	idr_remove(&loop_index_idr, i);
1906 out_free_dev:
1907 	kfree(lo);
1908 out:
1909 	return err;
1910 }
1911 
1912 static void loop_remove(struct loop_device *lo)
1913 {
1914 	del_gendisk(lo->lo_disk);
1915 	blk_cleanup_queue(lo->lo_queue);
1916 	blk_mq_free_tag_set(&lo->tag_set);
1917 	put_disk(lo->lo_disk);
1918 	kfree(lo);
1919 }
1920 
1921 static int find_free_cb(int id, void *ptr, void *data)
1922 {
1923 	struct loop_device *lo = ptr;
1924 	struct loop_device **l = data;
1925 
1926 	if (lo->lo_state == Lo_unbound) {
1927 		*l = lo;
1928 		return 1;
1929 	}
1930 	return 0;
1931 }
1932 
1933 static int loop_lookup(struct loop_device **l, int i)
1934 {
1935 	struct loop_device *lo;
1936 	int ret = -ENODEV;
1937 
1938 	if (i < 0) {
1939 		int err;
1940 
1941 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1942 		if (err == 1) {
1943 			*l = lo;
1944 			ret = lo->lo_number;
1945 		}
1946 		goto out;
1947 	}
1948 
1949 	/* lookup and return a specific i */
1950 	lo = idr_find(&loop_index_idr, i);
1951 	if (lo) {
1952 		*l = lo;
1953 		ret = lo->lo_number;
1954 	}
1955 out:
1956 	return ret;
1957 }
1958 
1959 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1960 {
1961 	struct loop_device *lo;
1962 	struct kobject *kobj;
1963 	int err;
1964 
1965 	mutex_lock(&loop_index_mutex);
1966 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1967 	if (err < 0)
1968 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1969 	if (err < 0)
1970 		kobj = NULL;
1971 	else
1972 		kobj = get_disk_and_module(lo->lo_disk);
1973 	mutex_unlock(&loop_index_mutex);
1974 
1975 	*part = 0;
1976 	return kobj;
1977 }
1978 
1979 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1980 			       unsigned long parm)
1981 {
1982 	struct loop_device *lo;
1983 	int ret = -ENOSYS;
1984 
1985 	mutex_lock(&loop_index_mutex);
1986 	switch (cmd) {
1987 	case LOOP_CTL_ADD:
1988 		ret = loop_lookup(&lo, parm);
1989 		if (ret >= 0) {
1990 			ret = -EEXIST;
1991 			break;
1992 		}
1993 		ret = loop_add(&lo, parm);
1994 		break;
1995 	case LOOP_CTL_REMOVE:
1996 		ret = loop_lookup(&lo, parm);
1997 		if (ret < 0)
1998 			break;
1999 		ret = mutex_lock_killable(&lo->lo_ctl_mutex);
2000 		if (ret)
2001 			break;
2002 		if (lo->lo_state != Lo_unbound) {
2003 			ret = -EBUSY;
2004 			mutex_unlock(&lo->lo_ctl_mutex);
2005 			break;
2006 		}
2007 		if (atomic_read(&lo->lo_refcnt) > 0) {
2008 			ret = -EBUSY;
2009 			mutex_unlock(&lo->lo_ctl_mutex);
2010 			break;
2011 		}
2012 		lo->lo_disk->private_data = NULL;
2013 		mutex_unlock(&lo->lo_ctl_mutex);
2014 		idr_remove(&loop_index_idr, lo->lo_number);
2015 		loop_remove(lo);
2016 		break;
2017 	case LOOP_CTL_GET_FREE:
2018 		ret = loop_lookup(&lo, -1);
2019 		if (ret >= 0)
2020 			break;
2021 		ret = loop_add(&lo, -1);
2022 	}
2023 	mutex_unlock(&loop_index_mutex);
2024 
2025 	return ret;
2026 }
2027 
2028 static const struct file_operations loop_ctl_fops = {
2029 	.open		= nonseekable_open,
2030 	.unlocked_ioctl	= loop_control_ioctl,
2031 	.compat_ioctl	= loop_control_ioctl,
2032 	.owner		= THIS_MODULE,
2033 	.llseek		= noop_llseek,
2034 };
2035 
2036 static struct miscdevice loop_misc = {
2037 	.minor		= LOOP_CTRL_MINOR,
2038 	.name		= "loop-control",
2039 	.fops		= &loop_ctl_fops,
2040 };
2041 
2042 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2043 MODULE_ALIAS("devname:loop-control");
2044 
2045 static int __init loop_init(void)
2046 {
2047 	int i, nr;
2048 	unsigned long range;
2049 	struct loop_device *lo;
2050 	int err;
2051 
2052 	part_shift = 0;
2053 	if (max_part > 0) {
2054 		part_shift = fls(max_part);
2055 
2056 		/*
2057 		 * Adjust max_part according to part_shift as it is exported
2058 		 * to user space so that user can decide correct minor number
2059 		 * if [s]he want to create more devices.
2060 		 *
2061 		 * Note that -1 is required because partition 0 is reserved
2062 		 * for the whole disk.
2063 		 */
2064 		max_part = (1UL << part_shift) - 1;
2065 	}
2066 
2067 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2068 		err = -EINVAL;
2069 		goto err_out;
2070 	}
2071 
2072 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2073 		err = -EINVAL;
2074 		goto err_out;
2075 	}
2076 
2077 	/*
2078 	 * If max_loop is specified, create that many devices upfront.
2079 	 * This also becomes a hard limit. If max_loop is not specified,
2080 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2081 	 * init time. Loop devices can be requested on-demand with the
2082 	 * /dev/loop-control interface, or be instantiated by accessing
2083 	 * a 'dead' device node.
2084 	 */
2085 	if (max_loop) {
2086 		nr = max_loop;
2087 		range = max_loop << part_shift;
2088 	} else {
2089 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2090 		range = 1UL << MINORBITS;
2091 	}
2092 
2093 	err = misc_register(&loop_misc);
2094 	if (err < 0)
2095 		goto err_out;
2096 
2097 
2098 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2099 		err = -EIO;
2100 		goto misc_out;
2101 	}
2102 
2103 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2104 				  THIS_MODULE, loop_probe, NULL, NULL);
2105 
2106 	/* pre-create number of devices given by config or max_loop */
2107 	mutex_lock(&loop_index_mutex);
2108 	for (i = 0; i < nr; i++)
2109 		loop_add(&lo, i);
2110 	mutex_unlock(&loop_index_mutex);
2111 
2112 	printk(KERN_INFO "loop: module loaded\n");
2113 	return 0;
2114 
2115 misc_out:
2116 	misc_deregister(&loop_misc);
2117 err_out:
2118 	return err;
2119 }
2120 
2121 static int loop_exit_cb(int id, void *ptr, void *data)
2122 {
2123 	struct loop_device *lo = ptr;
2124 
2125 	loop_remove(lo);
2126 	return 0;
2127 }
2128 
2129 static void __exit loop_exit(void)
2130 {
2131 	unsigned long range;
2132 
2133 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2134 
2135 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2136 	idr_destroy(&loop_index_idr);
2137 
2138 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2139 	unregister_blkdev(LOOP_MAJOR, "loop");
2140 
2141 	misc_deregister(&loop_misc);
2142 }
2143 
2144 module_init(loop_init);
2145 module_exit(loop_exit);
2146 
2147 #ifndef MODULE
2148 static int __init max_loop_setup(char *str)
2149 {
2150 	max_loop = simple_strtol(str, NULL, 0);
2151 	return 1;
2152 }
2153 
2154 __setup("max_loop=", max_loop_setup);
2155 #endif
2156