xref: /openbmc/linux/drivers/block/loop.c (revision d2ac838e)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80 
81 #include <linux/uaccess.h>
82 
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85 
86 static int max_part;
87 static int part_shift;
88 
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 			struct page *raw_page, unsigned raw_off,
91 			struct page *loop_page, unsigned loop_off,
92 			int size, sector_t real_block)
93 {
94 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 	char *in, *out, *key;
97 	int i, keysize;
98 
99 	if (cmd == READ) {
100 		in = raw_buf;
101 		out = loop_buf;
102 	} else {
103 		in = loop_buf;
104 		out = raw_buf;
105 	}
106 
107 	key = lo->lo_encrypt_key;
108 	keysize = lo->lo_encrypt_key_size;
109 	for (i = 0; i < size; i++)
110 		*out++ = *in++ ^ key[(i & 511) % keysize];
111 
112 	kunmap_atomic(loop_buf);
113 	kunmap_atomic(raw_buf);
114 	cond_resched();
115 	return 0;
116 }
117 
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 	if (unlikely(info->lo_encrypt_key_size <= 0))
121 		return -EINVAL;
122 	return 0;
123 }
124 
125 static struct loop_func_table none_funcs = {
126 	.number = LO_CRYPT_NONE,
127 };
128 
129 static struct loop_func_table xor_funcs = {
130 	.number = LO_CRYPT_XOR,
131 	.transfer = transfer_xor,
132 	.init = xor_init
133 };
134 
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 	&none_funcs,
138 	&xor_funcs
139 };
140 
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 	loff_t loopsize;
144 
145 	/* Compute loopsize in bytes */
146 	loopsize = i_size_read(file->f_mapping->host);
147 	if (offset > 0)
148 		loopsize -= offset;
149 	/* offset is beyond i_size, weird but possible */
150 	if (loopsize < 0)
151 		return 0;
152 
153 	if (sizelimit > 0 && sizelimit < loopsize)
154 		loopsize = sizelimit;
155 	/*
156 	 * Unfortunately, if we want to do I/O on the device,
157 	 * the number of 512-byte sectors has to fit into a sector_t.
158 	 */
159 	return loopsize >> 9;
160 }
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166 
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 	struct file *file = lo->lo_backing_file;
170 	struct address_space *mapping = file->f_mapping;
171 	struct inode *inode = mapping->host;
172 	unsigned short sb_bsize = 0;
173 	unsigned dio_align = 0;
174 	bool use_dio;
175 
176 	if (inode->i_sb->s_bdev) {
177 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 		dio_align = sb_bsize - 1;
179 	}
180 
181 	/*
182 	 * We support direct I/O only if lo_offset is aligned with the
183 	 * logical I/O size of backing device, and the logical block
184 	 * size of loop is bigger than the backing device's and the loop
185 	 * needn't transform transfer.
186 	 *
187 	 * TODO: the above condition may be loosed in the future, and
188 	 * direct I/O may be switched runtime at that time because most
189 	 * of requests in sane applications should be PAGE_SIZE aligned
190 	 */
191 	if (dio) {
192 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 				!(lo->lo_offset & dio_align) &&
194 				mapping->a_ops->direct_IO &&
195 				!lo->transfer)
196 			use_dio = true;
197 		else
198 			use_dio = false;
199 	} else {
200 		use_dio = false;
201 	}
202 
203 	if (lo->use_dio == use_dio)
204 		return;
205 
206 	/* flush dirty pages before changing direct IO */
207 	vfs_fsync(file, 0);
208 
209 	/*
210 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 	 * will get updated by ioctl(LOOP_GET_STATUS)
213 	 */
214 	blk_mq_freeze_queue(lo->lo_queue);
215 	lo->use_dio = use_dio;
216 	if (use_dio) {
217 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
218 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
219 	} else {
220 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
221 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
222 	}
223 	blk_mq_unfreeze_queue(lo->lo_queue);
224 }
225 
226 static int
227 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
228 {
229 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
230 	sector_t x = (sector_t)size;
231 	struct block_device *bdev = lo->lo_device;
232 
233 	if (unlikely((loff_t)x != size))
234 		return -EFBIG;
235 	if (lo->lo_offset != offset)
236 		lo->lo_offset = offset;
237 	if (lo->lo_sizelimit != sizelimit)
238 		lo->lo_sizelimit = sizelimit;
239 	set_capacity(lo->lo_disk, x);
240 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
241 	/* let user-space know about the new size */
242 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
243 	return 0;
244 }
245 
246 static inline int
247 lo_do_transfer(struct loop_device *lo, int cmd,
248 	       struct page *rpage, unsigned roffs,
249 	       struct page *lpage, unsigned loffs,
250 	       int size, sector_t rblock)
251 {
252 	int ret;
253 
254 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
255 	if (likely(!ret))
256 		return 0;
257 
258 	printk_ratelimited(KERN_ERR
259 		"loop: Transfer error at byte offset %llu, length %i.\n",
260 		(unsigned long long)rblock << 9, size);
261 	return ret;
262 }
263 
264 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
265 {
266 	struct iov_iter i;
267 	ssize_t bw;
268 
269 	iov_iter_bvec(&i, ITER_BVEC | WRITE, bvec, 1, bvec->bv_len);
270 
271 	file_start_write(file);
272 	bw = vfs_iter_write(file, &i, ppos, 0);
273 	file_end_write(file);
274 
275 	if (likely(bw ==  bvec->bv_len))
276 		return 0;
277 
278 	printk_ratelimited(KERN_ERR
279 		"loop: Write error at byte offset %llu, length %i.\n",
280 		(unsigned long long)*ppos, bvec->bv_len);
281 	if (bw >= 0)
282 		bw = -EIO;
283 	return bw;
284 }
285 
286 static int lo_write_simple(struct loop_device *lo, struct request *rq,
287 		loff_t pos)
288 {
289 	struct bio_vec bvec;
290 	struct req_iterator iter;
291 	int ret = 0;
292 
293 	rq_for_each_segment(bvec, rq, iter) {
294 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
295 		if (ret < 0)
296 			break;
297 		cond_resched();
298 	}
299 
300 	return ret;
301 }
302 
303 /*
304  * This is the slow, transforming version that needs to double buffer the
305  * data as it cannot do the transformations in place without having direct
306  * access to the destination pages of the backing file.
307  */
308 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
309 		loff_t pos)
310 {
311 	struct bio_vec bvec, b;
312 	struct req_iterator iter;
313 	struct page *page;
314 	int ret = 0;
315 
316 	page = alloc_page(GFP_NOIO);
317 	if (unlikely(!page))
318 		return -ENOMEM;
319 
320 	rq_for_each_segment(bvec, rq, iter) {
321 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
322 			bvec.bv_offset, bvec.bv_len, pos >> 9);
323 		if (unlikely(ret))
324 			break;
325 
326 		b.bv_page = page;
327 		b.bv_offset = 0;
328 		b.bv_len = bvec.bv_len;
329 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
330 		if (ret < 0)
331 			break;
332 	}
333 
334 	__free_page(page);
335 	return ret;
336 }
337 
338 static int lo_read_simple(struct loop_device *lo, struct request *rq,
339 		loff_t pos)
340 {
341 	struct bio_vec bvec;
342 	struct req_iterator iter;
343 	struct iov_iter i;
344 	ssize_t len;
345 
346 	rq_for_each_segment(bvec, rq, iter) {
347 		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
348 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
349 		if (len < 0)
350 			return len;
351 
352 		flush_dcache_page(bvec.bv_page);
353 
354 		if (len != bvec.bv_len) {
355 			struct bio *bio;
356 
357 			__rq_for_each_bio(bio, rq)
358 				zero_fill_bio(bio);
359 			break;
360 		}
361 		cond_resched();
362 	}
363 
364 	return 0;
365 }
366 
367 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
368 		loff_t pos)
369 {
370 	struct bio_vec bvec, b;
371 	struct req_iterator iter;
372 	struct iov_iter i;
373 	struct page *page;
374 	ssize_t len;
375 	int ret = 0;
376 
377 	page = alloc_page(GFP_NOIO);
378 	if (unlikely(!page))
379 		return -ENOMEM;
380 
381 	rq_for_each_segment(bvec, rq, iter) {
382 		loff_t offset = pos;
383 
384 		b.bv_page = page;
385 		b.bv_offset = 0;
386 		b.bv_len = bvec.bv_len;
387 
388 		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
389 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
390 		if (len < 0) {
391 			ret = len;
392 			goto out_free_page;
393 		}
394 
395 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
396 			bvec.bv_offset, len, offset >> 9);
397 		if (ret)
398 			goto out_free_page;
399 
400 		flush_dcache_page(bvec.bv_page);
401 
402 		if (len != bvec.bv_len) {
403 			struct bio *bio;
404 
405 			__rq_for_each_bio(bio, rq)
406 				zero_fill_bio(bio);
407 			break;
408 		}
409 	}
410 
411 	ret = 0;
412 out_free_page:
413 	__free_page(page);
414 	return ret;
415 }
416 
417 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
418 {
419 	/*
420 	 * We use punch hole to reclaim the free space used by the
421 	 * image a.k.a. discard. However we do not support discard if
422 	 * encryption is enabled, because it may give an attacker
423 	 * useful information.
424 	 */
425 	struct file *file = lo->lo_backing_file;
426 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
427 	int ret;
428 
429 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
430 		ret = -EOPNOTSUPP;
431 		goto out;
432 	}
433 
434 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
435 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
436 		ret = -EIO;
437  out:
438 	return ret;
439 }
440 
441 static int lo_req_flush(struct loop_device *lo, struct request *rq)
442 {
443 	struct file *file = lo->lo_backing_file;
444 	int ret = vfs_fsync(file, 0);
445 	if (unlikely(ret && ret != -EINVAL))
446 		ret = -EIO;
447 
448 	return ret;
449 }
450 
451 static void lo_complete_rq(struct request *rq)
452 {
453 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
454 	blk_status_t ret = BLK_STS_OK;
455 
456 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
457 	    req_op(rq) != REQ_OP_READ) {
458 		if (cmd->ret < 0)
459 			ret = BLK_STS_IOERR;
460 		goto end_io;
461 	}
462 
463 	/*
464 	 * Short READ - if we got some data, advance our request and
465 	 * retry it. If we got no data, end the rest with EIO.
466 	 */
467 	if (cmd->ret) {
468 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
469 		cmd->ret = 0;
470 		blk_mq_requeue_request(rq, true);
471 	} else {
472 		if (cmd->use_aio) {
473 			struct bio *bio = rq->bio;
474 
475 			while (bio) {
476 				zero_fill_bio(bio);
477 				bio = bio->bi_next;
478 			}
479 		}
480 		ret = BLK_STS_IOERR;
481 end_io:
482 		blk_mq_end_request(rq, ret);
483 	}
484 }
485 
486 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
487 {
488 	struct request *rq = blk_mq_rq_from_pdu(cmd);
489 
490 	if (!atomic_dec_and_test(&cmd->ref))
491 		return;
492 	kfree(cmd->bvec);
493 	cmd->bvec = NULL;
494 	blk_mq_complete_request(rq);
495 }
496 
497 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
498 {
499 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
500 
501 	if (cmd->css)
502 		css_put(cmd->css);
503 	cmd->ret = ret;
504 	lo_rw_aio_do_completion(cmd);
505 }
506 
507 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
508 		     loff_t pos, bool rw)
509 {
510 	struct iov_iter iter;
511 	struct bio_vec *bvec;
512 	struct request *rq = blk_mq_rq_from_pdu(cmd);
513 	struct bio *bio = rq->bio;
514 	struct file *file = lo->lo_backing_file;
515 	unsigned int offset;
516 	int segments = 0;
517 	int ret;
518 
519 	if (rq->bio != rq->biotail) {
520 		struct req_iterator iter;
521 		struct bio_vec tmp;
522 
523 		__rq_for_each_bio(bio, rq)
524 			segments += bio_segments(bio);
525 		bvec = kmalloc(sizeof(struct bio_vec) * segments, GFP_NOIO);
526 		if (!bvec)
527 			return -EIO;
528 		cmd->bvec = bvec;
529 
530 		/*
531 		 * The bios of the request may be started from the middle of
532 		 * the 'bvec' because of bio splitting, so we can't directly
533 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
534 		 * API will take care of all details for us.
535 		 */
536 		rq_for_each_segment(tmp, rq, iter) {
537 			*bvec = tmp;
538 			bvec++;
539 		}
540 		bvec = cmd->bvec;
541 		offset = 0;
542 	} else {
543 		/*
544 		 * Same here, this bio may be started from the middle of the
545 		 * 'bvec' because of bio splitting, so offset from the bvec
546 		 * must be passed to iov iterator
547 		 */
548 		offset = bio->bi_iter.bi_bvec_done;
549 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
550 		segments = bio_segments(bio);
551 	}
552 	atomic_set(&cmd->ref, 2);
553 
554 	iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
555 		      segments, blk_rq_bytes(rq));
556 	iter.iov_offset = offset;
557 
558 	cmd->iocb.ki_pos = pos;
559 	cmd->iocb.ki_filp = file;
560 	cmd->iocb.ki_complete = lo_rw_aio_complete;
561 	cmd->iocb.ki_flags = IOCB_DIRECT;
562 	if (cmd->css)
563 		kthread_associate_blkcg(cmd->css);
564 
565 	if (rw == WRITE)
566 		ret = call_write_iter(file, &cmd->iocb, &iter);
567 	else
568 		ret = call_read_iter(file, &cmd->iocb, &iter);
569 
570 	lo_rw_aio_do_completion(cmd);
571 	kthread_associate_blkcg(NULL);
572 
573 	if (ret != -EIOCBQUEUED)
574 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
575 	return 0;
576 }
577 
578 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
579 {
580 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
581 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
582 
583 	/*
584 	 * lo_write_simple and lo_read_simple should have been covered
585 	 * by io submit style function like lo_rw_aio(), one blocker
586 	 * is that lo_read_simple() need to call flush_dcache_page after
587 	 * the page is written from kernel, and it isn't easy to handle
588 	 * this in io submit style function which submits all segments
589 	 * of the req at one time. And direct read IO doesn't need to
590 	 * run flush_dcache_page().
591 	 */
592 	switch (req_op(rq)) {
593 	case REQ_OP_FLUSH:
594 		return lo_req_flush(lo, rq);
595 	case REQ_OP_DISCARD:
596 	case REQ_OP_WRITE_ZEROES:
597 		return lo_discard(lo, rq, pos);
598 	case REQ_OP_WRITE:
599 		if (lo->transfer)
600 			return lo_write_transfer(lo, rq, pos);
601 		else if (cmd->use_aio)
602 			return lo_rw_aio(lo, cmd, pos, WRITE);
603 		else
604 			return lo_write_simple(lo, rq, pos);
605 	case REQ_OP_READ:
606 		if (lo->transfer)
607 			return lo_read_transfer(lo, rq, pos);
608 		else if (cmd->use_aio)
609 			return lo_rw_aio(lo, cmd, pos, READ);
610 		else
611 			return lo_read_simple(lo, rq, pos);
612 	default:
613 		WARN_ON_ONCE(1);
614 		return -EIO;
615 		break;
616 	}
617 }
618 
619 static inline void loop_update_dio(struct loop_device *lo)
620 {
621 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
622 			lo->use_dio);
623 }
624 
625 static void loop_reread_partitions(struct loop_device *lo,
626 				   struct block_device *bdev)
627 {
628 	int rc;
629 
630 	/*
631 	 * bd_mutex has been held already in release path, so don't
632 	 * acquire it if this function is called in such case.
633 	 *
634 	 * If the reread partition isn't from release path, lo_refcnt
635 	 * must be at least one and it can only become zero when the
636 	 * current holder is released.
637 	 */
638 	if (!atomic_read(&lo->lo_refcnt))
639 		rc = __blkdev_reread_part(bdev);
640 	else
641 		rc = blkdev_reread_part(bdev);
642 	if (rc)
643 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
644 			__func__, lo->lo_number, lo->lo_file_name, rc);
645 }
646 
647 static inline int is_loop_device(struct file *file)
648 {
649 	struct inode *i = file->f_mapping->host;
650 
651 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
652 }
653 
654 static int loop_validate_file(struct file *file, struct block_device *bdev)
655 {
656 	struct inode	*inode = file->f_mapping->host;
657 	struct file	*f = file;
658 
659 	/* Avoid recursion */
660 	while (is_loop_device(f)) {
661 		struct loop_device *l;
662 
663 		if (f->f_mapping->host->i_bdev == bdev)
664 			return -EBADF;
665 
666 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
667 		if (l->lo_state == Lo_unbound) {
668 			return -EINVAL;
669 		}
670 		f = l->lo_backing_file;
671 	}
672 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
673 		return -EINVAL;
674 	return 0;
675 }
676 
677 /*
678  * loop_change_fd switched the backing store of a loopback device to
679  * a new file. This is useful for operating system installers to free up
680  * the original file and in High Availability environments to switch to
681  * an alternative location for the content in case of server meltdown.
682  * This can only work if the loop device is used read-only, and if the
683  * new backing store is the same size and type as the old backing store.
684  */
685 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
686 			  unsigned int arg)
687 {
688 	struct file	*file, *old_file;
689 	struct inode	*inode;
690 	int		error;
691 
692 	error = -ENXIO;
693 	if (lo->lo_state != Lo_bound)
694 		goto out;
695 
696 	/* the loop device has to be read-only */
697 	error = -EINVAL;
698 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
699 		goto out;
700 
701 	error = -EBADF;
702 	file = fget(arg);
703 	if (!file)
704 		goto out;
705 
706 	error = loop_validate_file(file, bdev);
707 	if (error)
708 		goto out_putf;
709 
710 	inode = file->f_mapping->host;
711 	old_file = lo->lo_backing_file;
712 
713 	error = -EINVAL;
714 
715 	/* size of the new backing store needs to be the same */
716 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
717 		goto out_putf;
718 
719 	/* and ... switch */
720 	blk_mq_freeze_queue(lo->lo_queue);
721 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
722 	lo->lo_backing_file = file;
723 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
724 	mapping_set_gfp_mask(file->f_mapping,
725 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
726 	loop_update_dio(lo);
727 	blk_mq_unfreeze_queue(lo->lo_queue);
728 
729 	fput(old_file);
730 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
731 		loop_reread_partitions(lo, bdev);
732 	return 0;
733 
734  out_putf:
735 	fput(file);
736  out:
737 	return error;
738 }
739 
740 /* loop sysfs attributes */
741 
742 static ssize_t loop_attr_show(struct device *dev, char *page,
743 			      ssize_t (*callback)(struct loop_device *, char *))
744 {
745 	struct gendisk *disk = dev_to_disk(dev);
746 	struct loop_device *lo = disk->private_data;
747 
748 	return callback(lo, page);
749 }
750 
751 #define LOOP_ATTR_RO(_name)						\
752 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
753 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
754 				struct device_attribute *attr, char *b)	\
755 {									\
756 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
757 }									\
758 static struct device_attribute loop_attr_##_name =			\
759 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
760 
761 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
762 {
763 	ssize_t ret;
764 	char *p = NULL;
765 
766 	spin_lock_irq(&lo->lo_lock);
767 	if (lo->lo_backing_file)
768 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
769 	spin_unlock_irq(&lo->lo_lock);
770 
771 	if (IS_ERR_OR_NULL(p))
772 		ret = PTR_ERR(p);
773 	else {
774 		ret = strlen(p);
775 		memmove(buf, p, ret);
776 		buf[ret++] = '\n';
777 		buf[ret] = 0;
778 	}
779 
780 	return ret;
781 }
782 
783 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
784 {
785 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
786 }
787 
788 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
789 {
790 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
791 }
792 
793 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
794 {
795 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
796 
797 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
798 }
799 
800 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
801 {
802 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
803 
804 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
805 }
806 
807 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
808 {
809 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
810 
811 	return sprintf(buf, "%s\n", dio ? "1" : "0");
812 }
813 
814 LOOP_ATTR_RO(backing_file);
815 LOOP_ATTR_RO(offset);
816 LOOP_ATTR_RO(sizelimit);
817 LOOP_ATTR_RO(autoclear);
818 LOOP_ATTR_RO(partscan);
819 LOOP_ATTR_RO(dio);
820 
821 static struct attribute *loop_attrs[] = {
822 	&loop_attr_backing_file.attr,
823 	&loop_attr_offset.attr,
824 	&loop_attr_sizelimit.attr,
825 	&loop_attr_autoclear.attr,
826 	&loop_attr_partscan.attr,
827 	&loop_attr_dio.attr,
828 	NULL,
829 };
830 
831 static struct attribute_group loop_attribute_group = {
832 	.name = "loop",
833 	.attrs= loop_attrs,
834 };
835 
836 static void loop_sysfs_init(struct loop_device *lo)
837 {
838 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
839 						&loop_attribute_group);
840 }
841 
842 static void loop_sysfs_exit(struct loop_device *lo)
843 {
844 	if (lo->sysfs_inited)
845 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
846 				   &loop_attribute_group);
847 }
848 
849 static void loop_config_discard(struct loop_device *lo)
850 {
851 	struct file *file = lo->lo_backing_file;
852 	struct inode *inode = file->f_mapping->host;
853 	struct request_queue *q = lo->lo_queue;
854 
855 	/*
856 	 * We use punch hole to reclaim the free space used by the
857 	 * image a.k.a. discard. However we do not support discard if
858 	 * encryption is enabled, because it may give an attacker
859 	 * useful information.
860 	 */
861 	if ((!file->f_op->fallocate) ||
862 	    lo->lo_encrypt_key_size) {
863 		q->limits.discard_granularity = 0;
864 		q->limits.discard_alignment = 0;
865 		blk_queue_max_discard_sectors(q, 0);
866 		blk_queue_max_write_zeroes_sectors(q, 0);
867 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
868 		return;
869 	}
870 
871 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
872 	q->limits.discard_alignment = 0;
873 
874 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
875 	blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
876 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
877 }
878 
879 static void loop_unprepare_queue(struct loop_device *lo)
880 {
881 	kthread_flush_worker(&lo->worker);
882 	kthread_stop(lo->worker_task);
883 }
884 
885 static int loop_kthread_worker_fn(void *worker_ptr)
886 {
887 	current->flags |= PF_LESS_THROTTLE;
888 	return kthread_worker_fn(worker_ptr);
889 }
890 
891 static int loop_prepare_queue(struct loop_device *lo)
892 {
893 	kthread_init_worker(&lo->worker);
894 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
895 			&lo->worker, "loop%d", lo->lo_number);
896 	if (IS_ERR(lo->worker_task))
897 		return -ENOMEM;
898 	set_user_nice(lo->worker_task, MIN_NICE);
899 	return 0;
900 }
901 
902 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
903 		       struct block_device *bdev, unsigned int arg)
904 {
905 	struct file	*file;
906 	struct inode	*inode;
907 	struct address_space *mapping;
908 	int		lo_flags = 0;
909 	int		error;
910 	loff_t		size;
911 
912 	/* This is safe, since we have a reference from open(). */
913 	__module_get(THIS_MODULE);
914 
915 	error = -EBADF;
916 	file = fget(arg);
917 	if (!file)
918 		goto out;
919 
920 	error = -EBUSY;
921 	if (lo->lo_state != Lo_unbound)
922 		goto out_putf;
923 
924 	error = loop_validate_file(file, bdev);
925 	if (error)
926 		goto out_putf;
927 
928 	mapping = file->f_mapping;
929 	inode = mapping->host;
930 
931 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
932 	    !file->f_op->write_iter)
933 		lo_flags |= LO_FLAGS_READ_ONLY;
934 
935 	error = -EFBIG;
936 	size = get_loop_size(lo, file);
937 	if ((loff_t)(sector_t)size != size)
938 		goto out_putf;
939 	error = loop_prepare_queue(lo);
940 	if (error)
941 		goto out_putf;
942 
943 	error = 0;
944 
945 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
946 
947 	lo->use_dio = false;
948 	lo->lo_device = bdev;
949 	lo->lo_flags = lo_flags;
950 	lo->lo_backing_file = file;
951 	lo->transfer = NULL;
952 	lo->ioctl = NULL;
953 	lo->lo_sizelimit = 0;
954 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
955 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
956 
957 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
958 		blk_queue_write_cache(lo->lo_queue, true, false);
959 
960 	loop_update_dio(lo);
961 	set_capacity(lo->lo_disk, size);
962 	bd_set_size(bdev, size << 9);
963 	loop_sysfs_init(lo);
964 	/* let user-space know about the new size */
965 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
966 
967 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
968 		      block_size(inode->i_bdev) : PAGE_SIZE);
969 
970 	lo->lo_state = Lo_bound;
971 	if (part_shift)
972 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
973 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
974 		loop_reread_partitions(lo, bdev);
975 
976 	/* Grab the block_device to prevent its destruction after we
977 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
978 	 */
979 	bdgrab(bdev);
980 	return 0;
981 
982  out_putf:
983 	fput(file);
984  out:
985 	/* This is safe: open() is still holding a reference. */
986 	module_put(THIS_MODULE);
987 	return error;
988 }
989 
990 static int
991 loop_release_xfer(struct loop_device *lo)
992 {
993 	int err = 0;
994 	struct loop_func_table *xfer = lo->lo_encryption;
995 
996 	if (xfer) {
997 		if (xfer->release)
998 			err = xfer->release(lo);
999 		lo->transfer = NULL;
1000 		lo->lo_encryption = NULL;
1001 		module_put(xfer->owner);
1002 	}
1003 	return err;
1004 }
1005 
1006 static int
1007 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1008 	       const struct loop_info64 *i)
1009 {
1010 	int err = 0;
1011 
1012 	if (xfer) {
1013 		struct module *owner = xfer->owner;
1014 
1015 		if (!try_module_get(owner))
1016 			return -EINVAL;
1017 		if (xfer->init)
1018 			err = xfer->init(lo, i);
1019 		if (err)
1020 			module_put(owner);
1021 		else
1022 			lo->lo_encryption = xfer;
1023 	}
1024 	return err;
1025 }
1026 
1027 static int loop_clr_fd(struct loop_device *lo)
1028 {
1029 	struct file *filp = lo->lo_backing_file;
1030 	gfp_t gfp = lo->old_gfp_mask;
1031 	struct block_device *bdev = lo->lo_device;
1032 
1033 	if (lo->lo_state != Lo_bound)
1034 		return -ENXIO;
1035 
1036 	/*
1037 	 * If we've explicitly asked to tear down the loop device,
1038 	 * and it has an elevated reference count, set it for auto-teardown when
1039 	 * the last reference goes away. This stops $!~#$@ udev from
1040 	 * preventing teardown because it decided that it needs to run blkid on
1041 	 * the loopback device whenever they appear. xfstests is notorious for
1042 	 * failing tests because blkid via udev races with a losetup
1043 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1044 	 * command to fail with EBUSY.
1045 	 */
1046 	if (atomic_read(&lo->lo_refcnt) > 1) {
1047 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1048 		mutex_unlock(&lo->lo_ctl_mutex);
1049 		return 0;
1050 	}
1051 
1052 	if (filp == NULL)
1053 		return -EINVAL;
1054 
1055 	/* freeze request queue during the transition */
1056 	blk_mq_freeze_queue(lo->lo_queue);
1057 
1058 	spin_lock_irq(&lo->lo_lock);
1059 	lo->lo_state = Lo_rundown;
1060 	lo->lo_backing_file = NULL;
1061 	spin_unlock_irq(&lo->lo_lock);
1062 
1063 	loop_release_xfer(lo);
1064 	lo->transfer = NULL;
1065 	lo->ioctl = NULL;
1066 	lo->lo_device = NULL;
1067 	lo->lo_encryption = NULL;
1068 	lo->lo_offset = 0;
1069 	lo->lo_sizelimit = 0;
1070 	lo->lo_encrypt_key_size = 0;
1071 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1072 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1073 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1074 	blk_queue_logical_block_size(lo->lo_queue, 512);
1075 	blk_queue_physical_block_size(lo->lo_queue, 512);
1076 	blk_queue_io_min(lo->lo_queue, 512);
1077 	if (bdev) {
1078 		bdput(bdev);
1079 		invalidate_bdev(bdev);
1080 		bdev->bd_inode->i_mapping->wb_err = 0;
1081 	}
1082 	set_capacity(lo->lo_disk, 0);
1083 	loop_sysfs_exit(lo);
1084 	if (bdev) {
1085 		bd_set_size(bdev, 0);
1086 		/* let user-space know about this change */
1087 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1088 	}
1089 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1090 	lo->lo_state = Lo_unbound;
1091 	/* This is safe: open() is still holding a reference. */
1092 	module_put(THIS_MODULE);
1093 	blk_mq_unfreeze_queue(lo->lo_queue);
1094 
1095 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1096 		loop_reread_partitions(lo, bdev);
1097 	lo->lo_flags = 0;
1098 	if (!part_shift)
1099 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1100 	loop_unprepare_queue(lo);
1101 	mutex_unlock(&lo->lo_ctl_mutex);
1102 	/*
1103 	 * Need not hold lo_ctl_mutex to fput backing file.
1104 	 * Calling fput holding lo_ctl_mutex triggers a circular
1105 	 * lock dependency possibility warning as fput can take
1106 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1107 	 */
1108 	fput(filp);
1109 	return 0;
1110 }
1111 
1112 static int
1113 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1114 {
1115 	int err;
1116 	struct loop_func_table *xfer;
1117 	kuid_t uid = current_uid();
1118 
1119 	if (lo->lo_encrypt_key_size &&
1120 	    !uid_eq(lo->lo_key_owner, uid) &&
1121 	    !capable(CAP_SYS_ADMIN))
1122 		return -EPERM;
1123 	if (lo->lo_state != Lo_bound)
1124 		return -ENXIO;
1125 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1126 		return -EINVAL;
1127 
1128 	/* I/O need to be drained during transfer transition */
1129 	blk_mq_freeze_queue(lo->lo_queue);
1130 
1131 	err = loop_release_xfer(lo);
1132 	if (err)
1133 		goto exit;
1134 
1135 	if (info->lo_encrypt_type) {
1136 		unsigned int type = info->lo_encrypt_type;
1137 
1138 		if (type >= MAX_LO_CRYPT) {
1139 			err = -EINVAL;
1140 			goto exit;
1141 		}
1142 		xfer = xfer_funcs[type];
1143 		if (xfer == NULL) {
1144 			err = -EINVAL;
1145 			goto exit;
1146 		}
1147 	} else
1148 		xfer = NULL;
1149 
1150 	err = loop_init_xfer(lo, xfer, info);
1151 	if (err)
1152 		goto exit;
1153 
1154 	if (lo->lo_offset != info->lo_offset ||
1155 	    lo->lo_sizelimit != info->lo_sizelimit) {
1156 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1157 			err = -EFBIG;
1158 			goto exit;
1159 		}
1160 	}
1161 
1162 	loop_config_discard(lo);
1163 
1164 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1165 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1166 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1167 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1168 
1169 	if (!xfer)
1170 		xfer = &none_funcs;
1171 	lo->transfer = xfer->transfer;
1172 	lo->ioctl = xfer->ioctl;
1173 
1174 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1175 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1176 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1177 
1178 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1179 	lo->lo_init[0] = info->lo_init[0];
1180 	lo->lo_init[1] = info->lo_init[1];
1181 	if (info->lo_encrypt_key_size) {
1182 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1183 		       info->lo_encrypt_key_size);
1184 		lo->lo_key_owner = uid;
1185 	}
1186 
1187 	/* update dio if lo_offset or transfer is changed */
1188 	__loop_update_dio(lo, lo->use_dio);
1189 
1190  exit:
1191 	blk_mq_unfreeze_queue(lo->lo_queue);
1192 
1193 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1194 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1195 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1196 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1197 		loop_reread_partitions(lo, lo->lo_device);
1198 	}
1199 
1200 	return err;
1201 }
1202 
1203 static int
1204 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1205 {
1206 	struct file *file;
1207 	struct kstat stat;
1208 	int ret;
1209 
1210 	if (lo->lo_state != Lo_bound) {
1211 		mutex_unlock(&lo->lo_ctl_mutex);
1212 		return -ENXIO;
1213 	}
1214 
1215 	memset(info, 0, sizeof(*info));
1216 	info->lo_number = lo->lo_number;
1217 	info->lo_offset = lo->lo_offset;
1218 	info->lo_sizelimit = lo->lo_sizelimit;
1219 	info->lo_flags = lo->lo_flags;
1220 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1221 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1222 	info->lo_encrypt_type =
1223 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1224 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1225 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1226 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1227 		       lo->lo_encrypt_key_size);
1228 	}
1229 
1230 	/* Drop lo_ctl_mutex while we call into the filesystem. */
1231 	file = get_file(lo->lo_backing_file);
1232 	mutex_unlock(&lo->lo_ctl_mutex);
1233 	ret = vfs_getattr(&file->f_path, &stat, STATX_INO,
1234 			  AT_STATX_SYNC_AS_STAT);
1235 	if (!ret) {
1236 		info->lo_device = huge_encode_dev(stat.dev);
1237 		info->lo_inode = stat.ino;
1238 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1239 	}
1240 	fput(file);
1241 	return ret;
1242 }
1243 
1244 static void
1245 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1246 {
1247 	memset(info64, 0, sizeof(*info64));
1248 	info64->lo_number = info->lo_number;
1249 	info64->lo_device = info->lo_device;
1250 	info64->lo_inode = info->lo_inode;
1251 	info64->lo_rdevice = info->lo_rdevice;
1252 	info64->lo_offset = info->lo_offset;
1253 	info64->lo_sizelimit = 0;
1254 	info64->lo_encrypt_type = info->lo_encrypt_type;
1255 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1256 	info64->lo_flags = info->lo_flags;
1257 	info64->lo_init[0] = info->lo_init[0];
1258 	info64->lo_init[1] = info->lo_init[1];
1259 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1260 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1261 	else
1262 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1263 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1264 }
1265 
1266 static int
1267 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1268 {
1269 	memset(info, 0, sizeof(*info));
1270 	info->lo_number = info64->lo_number;
1271 	info->lo_device = info64->lo_device;
1272 	info->lo_inode = info64->lo_inode;
1273 	info->lo_rdevice = info64->lo_rdevice;
1274 	info->lo_offset = info64->lo_offset;
1275 	info->lo_encrypt_type = info64->lo_encrypt_type;
1276 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1277 	info->lo_flags = info64->lo_flags;
1278 	info->lo_init[0] = info64->lo_init[0];
1279 	info->lo_init[1] = info64->lo_init[1];
1280 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1281 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1282 	else
1283 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1284 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1285 
1286 	/* error in case values were truncated */
1287 	if (info->lo_device != info64->lo_device ||
1288 	    info->lo_rdevice != info64->lo_rdevice ||
1289 	    info->lo_inode != info64->lo_inode ||
1290 	    info->lo_offset != info64->lo_offset)
1291 		return -EOVERFLOW;
1292 
1293 	return 0;
1294 }
1295 
1296 static int
1297 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1298 {
1299 	struct loop_info info;
1300 	struct loop_info64 info64;
1301 
1302 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1303 		return -EFAULT;
1304 	loop_info64_from_old(&info, &info64);
1305 	return loop_set_status(lo, &info64);
1306 }
1307 
1308 static int
1309 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1310 {
1311 	struct loop_info64 info64;
1312 
1313 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1314 		return -EFAULT;
1315 	return loop_set_status(lo, &info64);
1316 }
1317 
1318 static int
1319 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1320 	struct loop_info info;
1321 	struct loop_info64 info64;
1322 	int err;
1323 
1324 	if (!arg) {
1325 		mutex_unlock(&lo->lo_ctl_mutex);
1326 		return -EINVAL;
1327 	}
1328 	err = loop_get_status(lo, &info64);
1329 	if (!err)
1330 		err = loop_info64_to_old(&info64, &info);
1331 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1332 		err = -EFAULT;
1333 
1334 	return err;
1335 }
1336 
1337 static int
1338 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1339 	struct loop_info64 info64;
1340 	int err;
1341 
1342 	if (!arg) {
1343 		mutex_unlock(&lo->lo_ctl_mutex);
1344 		return -EINVAL;
1345 	}
1346 	err = loop_get_status(lo, &info64);
1347 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1348 		err = -EFAULT;
1349 
1350 	return err;
1351 }
1352 
1353 static int loop_set_capacity(struct loop_device *lo)
1354 {
1355 	if (unlikely(lo->lo_state != Lo_bound))
1356 		return -ENXIO;
1357 
1358 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1359 }
1360 
1361 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1362 {
1363 	int error = -ENXIO;
1364 	if (lo->lo_state != Lo_bound)
1365 		goto out;
1366 
1367 	__loop_update_dio(lo, !!arg);
1368 	if (lo->use_dio == !!arg)
1369 		return 0;
1370 	error = -EINVAL;
1371  out:
1372 	return error;
1373 }
1374 
1375 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1376 {
1377 	if (lo->lo_state != Lo_bound)
1378 		return -ENXIO;
1379 
1380 	if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1381 		return -EINVAL;
1382 
1383 	blk_mq_freeze_queue(lo->lo_queue);
1384 
1385 	blk_queue_logical_block_size(lo->lo_queue, arg);
1386 	blk_queue_physical_block_size(lo->lo_queue, arg);
1387 	blk_queue_io_min(lo->lo_queue, arg);
1388 	loop_update_dio(lo);
1389 
1390 	blk_mq_unfreeze_queue(lo->lo_queue);
1391 
1392 	return 0;
1393 }
1394 
1395 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1396 	unsigned int cmd, unsigned long arg)
1397 {
1398 	struct loop_device *lo = bdev->bd_disk->private_data;
1399 	int err;
1400 
1401 	err = mutex_lock_killable_nested(&lo->lo_ctl_mutex, 1);
1402 	if (err)
1403 		goto out_unlocked;
1404 
1405 	switch (cmd) {
1406 	case LOOP_SET_FD:
1407 		err = loop_set_fd(lo, mode, bdev, arg);
1408 		break;
1409 	case LOOP_CHANGE_FD:
1410 		err = loop_change_fd(lo, bdev, arg);
1411 		break;
1412 	case LOOP_CLR_FD:
1413 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1414 		err = loop_clr_fd(lo);
1415 		if (!err)
1416 			goto out_unlocked;
1417 		break;
1418 	case LOOP_SET_STATUS:
1419 		err = -EPERM;
1420 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1421 			err = loop_set_status_old(lo,
1422 					(struct loop_info __user *)arg);
1423 		break;
1424 	case LOOP_GET_STATUS:
1425 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1426 		/* loop_get_status() unlocks lo_ctl_mutex */
1427 		goto out_unlocked;
1428 	case LOOP_SET_STATUS64:
1429 		err = -EPERM;
1430 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1431 			err = loop_set_status64(lo,
1432 					(struct loop_info64 __user *) arg);
1433 		break;
1434 	case LOOP_GET_STATUS64:
1435 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1436 		/* loop_get_status() unlocks lo_ctl_mutex */
1437 		goto out_unlocked;
1438 	case LOOP_SET_CAPACITY:
1439 		err = -EPERM;
1440 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1441 			err = loop_set_capacity(lo);
1442 		break;
1443 	case LOOP_SET_DIRECT_IO:
1444 		err = -EPERM;
1445 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1446 			err = loop_set_dio(lo, arg);
1447 		break;
1448 	case LOOP_SET_BLOCK_SIZE:
1449 		err = -EPERM;
1450 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1451 			err = loop_set_block_size(lo, arg);
1452 		break;
1453 	default:
1454 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1455 	}
1456 	mutex_unlock(&lo->lo_ctl_mutex);
1457 
1458 out_unlocked:
1459 	return err;
1460 }
1461 
1462 #ifdef CONFIG_COMPAT
1463 struct compat_loop_info {
1464 	compat_int_t	lo_number;      /* ioctl r/o */
1465 	compat_dev_t	lo_device;      /* ioctl r/o */
1466 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1467 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1468 	compat_int_t	lo_offset;
1469 	compat_int_t	lo_encrypt_type;
1470 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1471 	compat_int_t	lo_flags;       /* ioctl r/o */
1472 	char		lo_name[LO_NAME_SIZE];
1473 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1474 	compat_ulong_t	lo_init[2];
1475 	char		reserved[4];
1476 };
1477 
1478 /*
1479  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1480  * - noinlined to reduce stack space usage in main part of driver
1481  */
1482 static noinline int
1483 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1484 			struct loop_info64 *info64)
1485 {
1486 	struct compat_loop_info info;
1487 
1488 	if (copy_from_user(&info, arg, sizeof(info)))
1489 		return -EFAULT;
1490 
1491 	memset(info64, 0, sizeof(*info64));
1492 	info64->lo_number = info.lo_number;
1493 	info64->lo_device = info.lo_device;
1494 	info64->lo_inode = info.lo_inode;
1495 	info64->lo_rdevice = info.lo_rdevice;
1496 	info64->lo_offset = info.lo_offset;
1497 	info64->lo_sizelimit = 0;
1498 	info64->lo_encrypt_type = info.lo_encrypt_type;
1499 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1500 	info64->lo_flags = info.lo_flags;
1501 	info64->lo_init[0] = info.lo_init[0];
1502 	info64->lo_init[1] = info.lo_init[1];
1503 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1504 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1505 	else
1506 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1507 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1508 	return 0;
1509 }
1510 
1511 /*
1512  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1513  * - noinlined to reduce stack space usage in main part of driver
1514  */
1515 static noinline int
1516 loop_info64_to_compat(const struct loop_info64 *info64,
1517 		      struct compat_loop_info __user *arg)
1518 {
1519 	struct compat_loop_info info;
1520 
1521 	memset(&info, 0, sizeof(info));
1522 	info.lo_number = info64->lo_number;
1523 	info.lo_device = info64->lo_device;
1524 	info.lo_inode = info64->lo_inode;
1525 	info.lo_rdevice = info64->lo_rdevice;
1526 	info.lo_offset = info64->lo_offset;
1527 	info.lo_encrypt_type = info64->lo_encrypt_type;
1528 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1529 	info.lo_flags = info64->lo_flags;
1530 	info.lo_init[0] = info64->lo_init[0];
1531 	info.lo_init[1] = info64->lo_init[1];
1532 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1533 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1534 	else
1535 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1536 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1537 
1538 	/* error in case values were truncated */
1539 	if (info.lo_device != info64->lo_device ||
1540 	    info.lo_rdevice != info64->lo_rdevice ||
1541 	    info.lo_inode != info64->lo_inode ||
1542 	    info.lo_offset != info64->lo_offset ||
1543 	    info.lo_init[0] != info64->lo_init[0] ||
1544 	    info.lo_init[1] != info64->lo_init[1])
1545 		return -EOVERFLOW;
1546 
1547 	if (copy_to_user(arg, &info, sizeof(info)))
1548 		return -EFAULT;
1549 	return 0;
1550 }
1551 
1552 static int
1553 loop_set_status_compat(struct loop_device *lo,
1554 		       const struct compat_loop_info __user *arg)
1555 {
1556 	struct loop_info64 info64;
1557 	int ret;
1558 
1559 	ret = loop_info64_from_compat(arg, &info64);
1560 	if (ret < 0)
1561 		return ret;
1562 	return loop_set_status(lo, &info64);
1563 }
1564 
1565 static int
1566 loop_get_status_compat(struct loop_device *lo,
1567 		       struct compat_loop_info __user *arg)
1568 {
1569 	struct loop_info64 info64;
1570 	int err;
1571 
1572 	if (!arg) {
1573 		mutex_unlock(&lo->lo_ctl_mutex);
1574 		return -EINVAL;
1575 	}
1576 	err = loop_get_status(lo, &info64);
1577 	if (!err)
1578 		err = loop_info64_to_compat(&info64, arg);
1579 	return err;
1580 }
1581 
1582 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1583 			   unsigned int cmd, unsigned long arg)
1584 {
1585 	struct loop_device *lo = bdev->bd_disk->private_data;
1586 	int err;
1587 
1588 	switch(cmd) {
1589 	case LOOP_SET_STATUS:
1590 		err = mutex_lock_killable(&lo->lo_ctl_mutex);
1591 		if (!err) {
1592 			err = loop_set_status_compat(lo,
1593 						     (const struct compat_loop_info __user *)arg);
1594 			mutex_unlock(&lo->lo_ctl_mutex);
1595 		}
1596 		break;
1597 	case LOOP_GET_STATUS:
1598 		err = mutex_lock_killable(&lo->lo_ctl_mutex);
1599 		if (!err) {
1600 			err = loop_get_status_compat(lo,
1601 						     (struct compat_loop_info __user *)arg);
1602 			/* loop_get_status() unlocks lo_ctl_mutex */
1603 		}
1604 		break;
1605 	case LOOP_SET_CAPACITY:
1606 	case LOOP_CLR_FD:
1607 	case LOOP_GET_STATUS64:
1608 	case LOOP_SET_STATUS64:
1609 		arg = (unsigned long) compat_ptr(arg);
1610 	case LOOP_SET_FD:
1611 	case LOOP_CHANGE_FD:
1612 		err = lo_ioctl(bdev, mode, cmd, arg);
1613 		break;
1614 	default:
1615 		err = -ENOIOCTLCMD;
1616 		break;
1617 	}
1618 	return err;
1619 }
1620 #endif
1621 
1622 static int lo_open(struct block_device *bdev, fmode_t mode)
1623 {
1624 	struct loop_device *lo;
1625 	int err = 0;
1626 
1627 	mutex_lock(&loop_index_mutex);
1628 	lo = bdev->bd_disk->private_data;
1629 	if (!lo) {
1630 		err = -ENXIO;
1631 		goto out;
1632 	}
1633 
1634 	atomic_inc(&lo->lo_refcnt);
1635 out:
1636 	mutex_unlock(&loop_index_mutex);
1637 	return err;
1638 }
1639 
1640 static void __lo_release(struct loop_device *lo)
1641 {
1642 	int err;
1643 
1644 	if (atomic_dec_return(&lo->lo_refcnt))
1645 		return;
1646 
1647 	mutex_lock(&lo->lo_ctl_mutex);
1648 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1649 		/*
1650 		 * In autoclear mode, stop the loop thread
1651 		 * and remove configuration after last close.
1652 		 */
1653 		err = loop_clr_fd(lo);
1654 		if (!err)
1655 			return;
1656 	} else if (lo->lo_state == Lo_bound) {
1657 		/*
1658 		 * Otherwise keep thread (if running) and config,
1659 		 * but flush possible ongoing bios in thread.
1660 		 */
1661 		blk_mq_freeze_queue(lo->lo_queue);
1662 		blk_mq_unfreeze_queue(lo->lo_queue);
1663 	}
1664 
1665 	mutex_unlock(&lo->lo_ctl_mutex);
1666 }
1667 
1668 static void lo_release(struct gendisk *disk, fmode_t mode)
1669 {
1670 	mutex_lock(&loop_index_mutex);
1671 	__lo_release(disk->private_data);
1672 	mutex_unlock(&loop_index_mutex);
1673 }
1674 
1675 static const struct block_device_operations lo_fops = {
1676 	.owner =	THIS_MODULE,
1677 	.open =		lo_open,
1678 	.release =	lo_release,
1679 	.ioctl =	lo_ioctl,
1680 #ifdef CONFIG_COMPAT
1681 	.compat_ioctl =	lo_compat_ioctl,
1682 #endif
1683 };
1684 
1685 /*
1686  * And now the modules code and kernel interface.
1687  */
1688 static int max_loop;
1689 module_param(max_loop, int, 0444);
1690 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1691 module_param(max_part, int, 0444);
1692 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1693 MODULE_LICENSE("GPL");
1694 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1695 
1696 int loop_register_transfer(struct loop_func_table *funcs)
1697 {
1698 	unsigned int n = funcs->number;
1699 
1700 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1701 		return -EINVAL;
1702 	xfer_funcs[n] = funcs;
1703 	return 0;
1704 }
1705 
1706 static int unregister_transfer_cb(int id, void *ptr, void *data)
1707 {
1708 	struct loop_device *lo = ptr;
1709 	struct loop_func_table *xfer = data;
1710 
1711 	mutex_lock(&lo->lo_ctl_mutex);
1712 	if (lo->lo_encryption == xfer)
1713 		loop_release_xfer(lo);
1714 	mutex_unlock(&lo->lo_ctl_mutex);
1715 	return 0;
1716 }
1717 
1718 int loop_unregister_transfer(int number)
1719 {
1720 	unsigned int n = number;
1721 	struct loop_func_table *xfer;
1722 
1723 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1724 		return -EINVAL;
1725 
1726 	xfer_funcs[n] = NULL;
1727 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1728 	return 0;
1729 }
1730 
1731 EXPORT_SYMBOL(loop_register_transfer);
1732 EXPORT_SYMBOL(loop_unregister_transfer);
1733 
1734 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1735 		const struct blk_mq_queue_data *bd)
1736 {
1737 	struct request *rq = bd->rq;
1738 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1739 	struct loop_device *lo = rq->q->queuedata;
1740 
1741 	blk_mq_start_request(rq);
1742 
1743 	if (lo->lo_state != Lo_bound)
1744 		return BLK_STS_IOERR;
1745 
1746 	switch (req_op(rq)) {
1747 	case REQ_OP_FLUSH:
1748 	case REQ_OP_DISCARD:
1749 	case REQ_OP_WRITE_ZEROES:
1750 		cmd->use_aio = false;
1751 		break;
1752 	default:
1753 		cmd->use_aio = lo->use_dio;
1754 		break;
1755 	}
1756 
1757 	/* always use the first bio's css */
1758 #ifdef CONFIG_BLK_CGROUP
1759 	if (cmd->use_aio && rq->bio && rq->bio->bi_css) {
1760 		cmd->css = rq->bio->bi_css;
1761 		css_get(cmd->css);
1762 	} else
1763 #endif
1764 		cmd->css = NULL;
1765 	kthread_queue_work(&lo->worker, &cmd->work);
1766 
1767 	return BLK_STS_OK;
1768 }
1769 
1770 static void loop_handle_cmd(struct loop_cmd *cmd)
1771 {
1772 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1773 	const bool write = op_is_write(req_op(rq));
1774 	struct loop_device *lo = rq->q->queuedata;
1775 	int ret = 0;
1776 
1777 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1778 		ret = -EIO;
1779 		goto failed;
1780 	}
1781 
1782 	ret = do_req_filebacked(lo, rq);
1783  failed:
1784 	/* complete non-aio request */
1785 	if (!cmd->use_aio || ret) {
1786 		cmd->ret = ret ? -EIO : 0;
1787 		blk_mq_complete_request(rq);
1788 	}
1789 }
1790 
1791 static void loop_queue_work(struct kthread_work *work)
1792 {
1793 	struct loop_cmd *cmd =
1794 		container_of(work, struct loop_cmd, work);
1795 
1796 	loop_handle_cmd(cmd);
1797 }
1798 
1799 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1800 		unsigned int hctx_idx, unsigned int numa_node)
1801 {
1802 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1803 
1804 	kthread_init_work(&cmd->work, loop_queue_work);
1805 	return 0;
1806 }
1807 
1808 static const struct blk_mq_ops loop_mq_ops = {
1809 	.queue_rq       = loop_queue_rq,
1810 	.init_request	= loop_init_request,
1811 	.complete	= lo_complete_rq,
1812 };
1813 
1814 static int loop_add(struct loop_device **l, int i)
1815 {
1816 	struct loop_device *lo;
1817 	struct gendisk *disk;
1818 	int err;
1819 
1820 	err = -ENOMEM;
1821 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1822 	if (!lo)
1823 		goto out;
1824 
1825 	lo->lo_state = Lo_unbound;
1826 
1827 	/* allocate id, if @id >= 0, we're requesting that specific id */
1828 	if (i >= 0) {
1829 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1830 		if (err == -ENOSPC)
1831 			err = -EEXIST;
1832 	} else {
1833 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1834 	}
1835 	if (err < 0)
1836 		goto out_free_dev;
1837 	i = err;
1838 
1839 	err = -ENOMEM;
1840 	lo->tag_set.ops = &loop_mq_ops;
1841 	lo->tag_set.nr_hw_queues = 1;
1842 	lo->tag_set.queue_depth = 128;
1843 	lo->tag_set.numa_node = NUMA_NO_NODE;
1844 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1845 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1846 	lo->tag_set.driver_data = lo;
1847 
1848 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1849 	if (err)
1850 		goto out_free_idr;
1851 
1852 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1853 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1854 		err = PTR_ERR(lo->lo_queue);
1855 		goto out_cleanup_tags;
1856 	}
1857 	lo->lo_queue->queuedata = lo;
1858 
1859 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1860 
1861 	/*
1862 	 * By default, we do buffer IO, so it doesn't make sense to enable
1863 	 * merge because the I/O submitted to backing file is handled page by
1864 	 * page. For directio mode, merge does help to dispatch bigger request
1865 	 * to underlayer disk. We will enable merge once directio is enabled.
1866 	 */
1867 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1868 
1869 	err = -ENOMEM;
1870 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1871 	if (!disk)
1872 		goto out_free_queue;
1873 
1874 	/*
1875 	 * Disable partition scanning by default. The in-kernel partition
1876 	 * scanning can be requested individually per-device during its
1877 	 * setup. Userspace can always add and remove partitions from all
1878 	 * devices. The needed partition minors are allocated from the
1879 	 * extended minor space, the main loop device numbers will continue
1880 	 * to match the loop minors, regardless of the number of partitions
1881 	 * used.
1882 	 *
1883 	 * If max_part is given, partition scanning is globally enabled for
1884 	 * all loop devices. The minors for the main loop devices will be
1885 	 * multiples of max_part.
1886 	 *
1887 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1888 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1889 	 * complicated, are too static, inflexible and may surprise
1890 	 * userspace tools. Parameters like this in general should be avoided.
1891 	 */
1892 	if (!part_shift)
1893 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1894 	disk->flags |= GENHD_FL_EXT_DEVT;
1895 	mutex_init(&lo->lo_ctl_mutex);
1896 	atomic_set(&lo->lo_refcnt, 0);
1897 	lo->lo_number		= i;
1898 	spin_lock_init(&lo->lo_lock);
1899 	disk->major		= LOOP_MAJOR;
1900 	disk->first_minor	= i << part_shift;
1901 	disk->fops		= &lo_fops;
1902 	disk->private_data	= lo;
1903 	disk->queue		= lo->lo_queue;
1904 	sprintf(disk->disk_name, "loop%d", i);
1905 	add_disk(disk);
1906 	*l = lo;
1907 	return lo->lo_number;
1908 
1909 out_free_queue:
1910 	blk_cleanup_queue(lo->lo_queue);
1911 out_cleanup_tags:
1912 	blk_mq_free_tag_set(&lo->tag_set);
1913 out_free_idr:
1914 	idr_remove(&loop_index_idr, i);
1915 out_free_dev:
1916 	kfree(lo);
1917 out:
1918 	return err;
1919 }
1920 
1921 static void loop_remove(struct loop_device *lo)
1922 {
1923 	del_gendisk(lo->lo_disk);
1924 	blk_cleanup_queue(lo->lo_queue);
1925 	blk_mq_free_tag_set(&lo->tag_set);
1926 	put_disk(lo->lo_disk);
1927 	kfree(lo);
1928 }
1929 
1930 static int find_free_cb(int id, void *ptr, void *data)
1931 {
1932 	struct loop_device *lo = ptr;
1933 	struct loop_device **l = data;
1934 
1935 	if (lo->lo_state == Lo_unbound) {
1936 		*l = lo;
1937 		return 1;
1938 	}
1939 	return 0;
1940 }
1941 
1942 static int loop_lookup(struct loop_device **l, int i)
1943 {
1944 	struct loop_device *lo;
1945 	int ret = -ENODEV;
1946 
1947 	if (i < 0) {
1948 		int err;
1949 
1950 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1951 		if (err == 1) {
1952 			*l = lo;
1953 			ret = lo->lo_number;
1954 		}
1955 		goto out;
1956 	}
1957 
1958 	/* lookup and return a specific i */
1959 	lo = idr_find(&loop_index_idr, i);
1960 	if (lo) {
1961 		*l = lo;
1962 		ret = lo->lo_number;
1963 	}
1964 out:
1965 	return ret;
1966 }
1967 
1968 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1969 {
1970 	struct loop_device *lo;
1971 	struct kobject *kobj;
1972 	int err;
1973 
1974 	mutex_lock(&loop_index_mutex);
1975 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1976 	if (err < 0)
1977 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1978 	if (err < 0)
1979 		kobj = NULL;
1980 	else
1981 		kobj = get_disk_and_module(lo->lo_disk);
1982 	mutex_unlock(&loop_index_mutex);
1983 
1984 	*part = 0;
1985 	return kobj;
1986 }
1987 
1988 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1989 			       unsigned long parm)
1990 {
1991 	struct loop_device *lo;
1992 	int ret = -ENOSYS;
1993 
1994 	mutex_lock(&loop_index_mutex);
1995 	switch (cmd) {
1996 	case LOOP_CTL_ADD:
1997 		ret = loop_lookup(&lo, parm);
1998 		if (ret >= 0) {
1999 			ret = -EEXIST;
2000 			break;
2001 		}
2002 		ret = loop_add(&lo, parm);
2003 		break;
2004 	case LOOP_CTL_REMOVE:
2005 		ret = loop_lookup(&lo, parm);
2006 		if (ret < 0)
2007 			break;
2008 		ret = mutex_lock_killable(&lo->lo_ctl_mutex);
2009 		if (ret)
2010 			break;
2011 		if (lo->lo_state != Lo_unbound) {
2012 			ret = -EBUSY;
2013 			mutex_unlock(&lo->lo_ctl_mutex);
2014 			break;
2015 		}
2016 		if (atomic_read(&lo->lo_refcnt) > 0) {
2017 			ret = -EBUSY;
2018 			mutex_unlock(&lo->lo_ctl_mutex);
2019 			break;
2020 		}
2021 		lo->lo_disk->private_data = NULL;
2022 		mutex_unlock(&lo->lo_ctl_mutex);
2023 		idr_remove(&loop_index_idr, lo->lo_number);
2024 		loop_remove(lo);
2025 		break;
2026 	case LOOP_CTL_GET_FREE:
2027 		ret = loop_lookup(&lo, -1);
2028 		if (ret >= 0)
2029 			break;
2030 		ret = loop_add(&lo, -1);
2031 	}
2032 	mutex_unlock(&loop_index_mutex);
2033 
2034 	return ret;
2035 }
2036 
2037 static const struct file_operations loop_ctl_fops = {
2038 	.open		= nonseekable_open,
2039 	.unlocked_ioctl	= loop_control_ioctl,
2040 	.compat_ioctl	= loop_control_ioctl,
2041 	.owner		= THIS_MODULE,
2042 	.llseek		= noop_llseek,
2043 };
2044 
2045 static struct miscdevice loop_misc = {
2046 	.minor		= LOOP_CTRL_MINOR,
2047 	.name		= "loop-control",
2048 	.fops		= &loop_ctl_fops,
2049 };
2050 
2051 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2052 MODULE_ALIAS("devname:loop-control");
2053 
2054 static int __init loop_init(void)
2055 {
2056 	int i, nr;
2057 	unsigned long range;
2058 	struct loop_device *lo;
2059 	int err;
2060 
2061 	part_shift = 0;
2062 	if (max_part > 0) {
2063 		part_shift = fls(max_part);
2064 
2065 		/*
2066 		 * Adjust max_part according to part_shift as it is exported
2067 		 * to user space so that user can decide correct minor number
2068 		 * if [s]he want to create more devices.
2069 		 *
2070 		 * Note that -1 is required because partition 0 is reserved
2071 		 * for the whole disk.
2072 		 */
2073 		max_part = (1UL << part_shift) - 1;
2074 	}
2075 
2076 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2077 		err = -EINVAL;
2078 		goto err_out;
2079 	}
2080 
2081 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2082 		err = -EINVAL;
2083 		goto err_out;
2084 	}
2085 
2086 	/*
2087 	 * If max_loop is specified, create that many devices upfront.
2088 	 * This also becomes a hard limit. If max_loop is not specified,
2089 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2090 	 * init time. Loop devices can be requested on-demand with the
2091 	 * /dev/loop-control interface, or be instantiated by accessing
2092 	 * a 'dead' device node.
2093 	 */
2094 	if (max_loop) {
2095 		nr = max_loop;
2096 		range = max_loop << part_shift;
2097 	} else {
2098 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2099 		range = 1UL << MINORBITS;
2100 	}
2101 
2102 	err = misc_register(&loop_misc);
2103 	if (err < 0)
2104 		goto err_out;
2105 
2106 
2107 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2108 		err = -EIO;
2109 		goto misc_out;
2110 	}
2111 
2112 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2113 				  THIS_MODULE, loop_probe, NULL, NULL);
2114 
2115 	/* pre-create number of devices given by config or max_loop */
2116 	mutex_lock(&loop_index_mutex);
2117 	for (i = 0; i < nr; i++)
2118 		loop_add(&lo, i);
2119 	mutex_unlock(&loop_index_mutex);
2120 
2121 	printk(KERN_INFO "loop: module loaded\n");
2122 	return 0;
2123 
2124 misc_out:
2125 	misc_deregister(&loop_misc);
2126 err_out:
2127 	return err;
2128 }
2129 
2130 static int loop_exit_cb(int id, void *ptr, void *data)
2131 {
2132 	struct loop_device *lo = ptr;
2133 
2134 	loop_remove(lo);
2135 	return 0;
2136 }
2137 
2138 static void __exit loop_exit(void)
2139 {
2140 	unsigned long range;
2141 
2142 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2143 
2144 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2145 	idr_destroy(&loop_index_idr);
2146 
2147 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2148 	unregister_blkdev(LOOP_MAJOR, "loop");
2149 
2150 	misc_deregister(&loop_misc);
2151 }
2152 
2153 module_init(loop_init);
2154 module_exit(loop_exit);
2155 
2156 #ifndef MODULE
2157 static int __init max_loop_setup(char *str)
2158 {
2159 	max_loop = simple_strtol(str, NULL, 0);
2160 	return 1;
2161 }
2162 
2163 __setup("max_loop=", max_loop_setup);
2164 #endif
2165