1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include <linux/ioprio.h> 80 #include <linux/blk-cgroup.h> 81 82 #include "loop.h" 83 84 #include <linux/uaccess.h> 85 86 static DEFINE_IDR(loop_index_idr); 87 static DEFINE_MUTEX(loop_ctl_mutex); 88 89 static int max_part; 90 static int part_shift; 91 92 static int transfer_xor(struct loop_device *lo, int cmd, 93 struct page *raw_page, unsigned raw_off, 94 struct page *loop_page, unsigned loop_off, 95 int size, sector_t real_block) 96 { 97 char *raw_buf = kmap_atomic(raw_page) + raw_off; 98 char *loop_buf = kmap_atomic(loop_page) + loop_off; 99 char *in, *out, *key; 100 int i, keysize; 101 102 if (cmd == READ) { 103 in = raw_buf; 104 out = loop_buf; 105 } else { 106 in = loop_buf; 107 out = raw_buf; 108 } 109 110 key = lo->lo_encrypt_key; 111 keysize = lo->lo_encrypt_key_size; 112 for (i = 0; i < size; i++) 113 *out++ = *in++ ^ key[(i & 511) % keysize]; 114 115 kunmap_atomic(loop_buf); 116 kunmap_atomic(raw_buf); 117 cond_resched(); 118 return 0; 119 } 120 121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 122 { 123 if (unlikely(info->lo_encrypt_key_size <= 0)) 124 return -EINVAL; 125 return 0; 126 } 127 128 static struct loop_func_table none_funcs = { 129 .number = LO_CRYPT_NONE, 130 }; 131 132 static struct loop_func_table xor_funcs = { 133 .number = LO_CRYPT_XOR, 134 .transfer = transfer_xor, 135 .init = xor_init 136 }; 137 138 /* xfer_funcs[0] is special - its release function is never called */ 139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 140 &none_funcs, 141 &xor_funcs 142 }; 143 144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 145 { 146 loff_t loopsize; 147 148 /* Compute loopsize in bytes */ 149 loopsize = i_size_read(file->f_mapping->host); 150 if (offset > 0) 151 loopsize -= offset; 152 /* offset is beyond i_size, weird but possible */ 153 if (loopsize < 0) 154 return 0; 155 156 if (sizelimit > 0 && sizelimit < loopsize) 157 loopsize = sizelimit; 158 /* 159 * Unfortunately, if we want to do I/O on the device, 160 * the number of 512-byte sectors has to fit into a sector_t. 161 */ 162 return loopsize >> 9; 163 } 164 165 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 166 { 167 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 168 } 169 170 static void __loop_update_dio(struct loop_device *lo, bool dio) 171 { 172 struct file *file = lo->lo_backing_file; 173 struct address_space *mapping = file->f_mapping; 174 struct inode *inode = mapping->host; 175 unsigned short sb_bsize = 0; 176 unsigned dio_align = 0; 177 bool use_dio; 178 179 if (inode->i_sb->s_bdev) { 180 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 181 dio_align = sb_bsize - 1; 182 } 183 184 /* 185 * We support direct I/O only if lo_offset is aligned with the 186 * logical I/O size of backing device, and the logical block 187 * size of loop is bigger than the backing device's and the loop 188 * needn't transform transfer. 189 * 190 * TODO: the above condition may be loosed in the future, and 191 * direct I/O may be switched runtime at that time because most 192 * of requests in sane applications should be PAGE_SIZE aligned 193 */ 194 if (dio) { 195 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 196 !(lo->lo_offset & dio_align) && 197 mapping->a_ops->direct_IO && 198 !lo->transfer) 199 use_dio = true; 200 else 201 use_dio = false; 202 } else { 203 use_dio = false; 204 } 205 206 if (lo->use_dio == use_dio) 207 return; 208 209 /* flush dirty pages before changing direct IO */ 210 vfs_fsync(file, 0); 211 212 /* 213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 215 * will get updated by ioctl(LOOP_GET_STATUS) 216 */ 217 blk_mq_freeze_queue(lo->lo_queue); 218 lo->use_dio = use_dio; 219 if (use_dio) { 220 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 221 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 222 } else { 223 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 224 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 225 } 226 blk_mq_unfreeze_queue(lo->lo_queue); 227 } 228 229 static int 230 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 231 { 232 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 233 sector_t x = (sector_t)size; 234 struct block_device *bdev = lo->lo_device; 235 236 if (unlikely((loff_t)x != size)) 237 return -EFBIG; 238 if (lo->lo_offset != offset) 239 lo->lo_offset = offset; 240 if (lo->lo_sizelimit != sizelimit) 241 lo->lo_sizelimit = sizelimit; 242 set_capacity(lo->lo_disk, x); 243 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 244 /* let user-space know about the new size */ 245 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 246 return 0; 247 } 248 249 static inline int 250 lo_do_transfer(struct loop_device *lo, int cmd, 251 struct page *rpage, unsigned roffs, 252 struct page *lpage, unsigned loffs, 253 int size, sector_t rblock) 254 { 255 int ret; 256 257 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 258 if (likely(!ret)) 259 return 0; 260 261 printk_ratelimited(KERN_ERR 262 "loop: Transfer error at byte offset %llu, length %i.\n", 263 (unsigned long long)rblock << 9, size); 264 return ret; 265 } 266 267 static inline void loop_iov_iter_bvec(struct iov_iter *i, 268 unsigned int direction, const struct bio_vec *bvec, 269 unsigned long nr_segs, size_t count) 270 { 271 iov_iter_bvec(i, direction, bvec, nr_segs, count); 272 i->type |= ITER_BVEC_FLAG_NO_REF; 273 } 274 275 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 276 { 277 struct iov_iter i; 278 ssize_t bw; 279 280 loop_iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len); 281 282 file_start_write(file); 283 bw = vfs_iter_write(file, &i, ppos, 0); 284 file_end_write(file); 285 286 if (likely(bw == bvec->bv_len)) 287 return 0; 288 289 printk_ratelimited(KERN_ERR 290 "loop: Write error at byte offset %llu, length %i.\n", 291 (unsigned long long)*ppos, bvec->bv_len); 292 if (bw >= 0) 293 bw = -EIO; 294 return bw; 295 } 296 297 static int lo_write_simple(struct loop_device *lo, struct request *rq, 298 loff_t pos) 299 { 300 struct bio_vec bvec; 301 struct req_iterator iter; 302 int ret = 0; 303 304 rq_for_each_segment(bvec, rq, iter) { 305 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 306 if (ret < 0) 307 break; 308 cond_resched(); 309 } 310 311 return ret; 312 } 313 314 /* 315 * This is the slow, transforming version that needs to double buffer the 316 * data as it cannot do the transformations in place without having direct 317 * access to the destination pages of the backing file. 318 */ 319 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 320 loff_t pos) 321 { 322 struct bio_vec bvec, b; 323 struct req_iterator iter; 324 struct page *page; 325 int ret = 0; 326 327 page = alloc_page(GFP_NOIO); 328 if (unlikely(!page)) 329 return -ENOMEM; 330 331 rq_for_each_segment(bvec, rq, iter) { 332 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 333 bvec.bv_offset, bvec.bv_len, pos >> 9); 334 if (unlikely(ret)) 335 break; 336 337 b.bv_page = page; 338 b.bv_offset = 0; 339 b.bv_len = bvec.bv_len; 340 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 341 if (ret < 0) 342 break; 343 } 344 345 __free_page(page); 346 return ret; 347 } 348 349 static int lo_read_simple(struct loop_device *lo, struct request *rq, 350 loff_t pos) 351 { 352 struct bio_vec bvec; 353 struct req_iterator iter; 354 struct iov_iter i; 355 ssize_t len; 356 357 rq_for_each_segment(bvec, rq, iter) { 358 loop_iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len); 359 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 360 if (len < 0) 361 return len; 362 363 flush_dcache_page(bvec.bv_page); 364 365 if (len != bvec.bv_len) { 366 struct bio *bio; 367 368 __rq_for_each_bio(bio, rq) 369 zero_fill_bio(bio); 370 break; 371 } 372 cond_resched(); 373 } 374 375 return 0; 376 } 377 378 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 379 loff_t pos) 380 { 381 struct bio_vec bvec, b; 382 struct req_iterator iter; 383 struct iov_iter i; 384 struct page *page; 385 ssize_t len; 386 int ret = 0; 387 388 page = alloc_page(GFP_NOIO); 389 if (unlikely(!page)) 390 return -ENOMEM; 391 392 rq_for_each_segment(bvec, rq, iter) { 393 loff_t offset = pos; 394 395 b.bv_page = page; 396 b.bv_offset = 0; 397 b.bv_len = bvec.bv_len; 398 399 loop_iov_iter_bvec(&i, READ, &b, 1, b.bv_len); 400 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 401 if (len < 0) { 402 ret = len; 403 goto out_free_page; 404 } 405 406 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 407 bvec.bv_offset, len, offset >> 9); 408 if (ret) 409 goto out_free_page; 410 411 flush_dcache_page(bvec.bv_page); 412 413 if (len != bvec.bv_len) { 414 struct bio *bio; 415 416 __rq_for_each_bio(bio, rq) 417 zero_fill_bio(bio); 418 break; 419 } 420 } 421 422 ret = 0; 423 out_free_page: 424 __free_page(page); 425 return ret; 426 } 427 428 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos) 429 { 430 /* 431 * We use punch hole to reclaim the free space used by the 432 * image a.k.a. discard. However we do not support discard if 433 * encryption is enabled, because it may give an attacker 434 * useful information. 435 */ 436 struct file *file = lo->lo_backing_file; 437 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 438 int ret; 439 440 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) { 441 ret = -EOPNOTSUPP; 442 goto out; 443 } 444 445 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 446 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 447 ret = -EIO; 448 out: 449 return ret; 450 } 451 452 static int lo_req_flush(struct loop_device *lo, struct request *rq) 453 { 454 struct file *file = lo->lo_backing_file; 455 int ret = vfs_fsync(file, 0); 456 if (unlikely(ret && ret != -EINVAL)) 457 ret = -EIO; 458 459 return ret; 460 } 461 462 static void lo_complete_rq(struct request *rq) 463 { 464 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 465 blk_status_t ret = BLK_STS_OK; 466 467 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 468 req_op(rq) != REQ_OP_READ) { 469 if (cmd->ret < 0) 470 ret = BLK_STS_IOERR; 471 goto end_io; 472 } 473 474 /* 475 * Short READ - if we got some data, advance our request and 476 * retry it. If we got no data, end the rest with EIO. 477 */ 478 if (cmd->ret) { 479 blk_update_request(rq, BLK_STS_OK, cmd->ret); 480 cmd->ret = 0; 481 blk_mq_requeue_request(rq, true); 482 } else { 483 if (cmd->use_aio) { 484 struct bio *bio = rq->bio; 485 486 while (bio) { 487 zero_fill_bio(bio); 488 bio = bio->bi_next; 489 } 490 } 491 ret = BLK_STS_IOERR; 492 end_io: 493 blk_mq_end_request(rq, ret); 494 } 495 } 496 497 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 498 { 499 struct request *rq = blk_mq_rq_from_pdu(cmd); 500 501 if (!atomic_dec_and_test(&cmd->ref)) 502 return; 503 kfree(cmd->bvec); 504 cmd->bvec = NULL; 505 blk_mq_complete_request(rq); 506 } 507 508 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 509 { 510 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 511 512 if (cmd->css) 513 css_put(cmd->css); 514 cmd->ret = ret; 515 lo_rw_aio_do_completion(cmd); 516 } 517 518 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 519 loff_t pos, bool rw) 520 { 521 struct iov_iter iter; 522 struct req_iterator rq_iter; 523 struct bio_vec *bvec; 524 struct request *rq = blk_mq_rq_from_pdu(cmd); 525 struct bio *bio = rq->bio; 526 struct file *file = lo->lo_backing_file; 527 struct bio_vec tmp; 528 unsigned int offset; 529 int nr_bvec = 0; 530 int ret; 531 532 rq_for_each_bvec(tmp, rq, rq_iter) 533 nr_bvec++; 534 535 if (rq->bio != rq->biotail) { 536 537 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 538 GFP_NOIO); 539 if (!bvec) 540 return -EIO; 541 cmd->bvec = bvec; 542 543 /* 544 * The bios of the request may be started from the middle of 545 * the 'bvec' because of bio splitting, so we can't directly 546 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 547 * API will take care of all details for us. 548 */ 549 rq_for_each_bvec(tmp, rq, rq_iter) { 550 *bvec = tmp; 551 bvec++; 552 } 553 bvec = cmd->bvec; 554 offset = 0; 555 } else { 556 /* 557 * Same here, this bio may be started from the middle of the 558 * 'bvec' because of bio splitting, so offset from the bvec 559 * must be passed to iov iterator 560 */ 561 offset = bio->bi_iter.bi_bvec_done; 562 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 563 } 564 atomic_set(&cmd->ref, 2); 565 566 loop_iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 567 iter.iov_offset = offset; 568 569 cmd->iocb.ki_pos = pos; 570 cmd->iocb.ki_filp = file; 571 cmd->iocb.ki_complete = lo_rw_aio_complete; 572 cmd->iocb.ki_flags = IOCB_DIRECT; 573 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 574 if (cmd->css) 575 kthread_associate_blkcg(cmd->css); 576 577 if (rw == WRITE) 578 ret = call_write_iter(file, &cmd->iocb, &iter); 579 else 580 ret = call_read_iter(file, &cmd->iocb, &iter); 581 582 lo_rw_aio_do_completion(cmd); 583 kthread_associate_blkcg(NULL); 584 585 if (ret != -EIOCBQUEUED) 586 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 587 return 0; 588 } 589 590 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 591 { 592 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 593 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 594 595 /* 596 * lo_write_simple and lo_read_simple should have been covered 597 * by io submit style function like lo_rw_aio(), one blocker 598 * is that lo_read_simple() need to call flush_dcache_page after 599 * the page is written from kernel, and it isn't easy to handle 600 * this in io submit style function which submits all segments 601 * of the req at one time. And direct read IO doesn't need to 602 * run flush_dcache_page(). 603 */ 604 switch (req_op(rq)) { 605 case REQ_OP_FLUSH: 606 return lo_req_flush(lo, rq); 607 case REQ_OP_DISCARD: 608 case REQ_OP_WRITE_ZEROES: 609 return lo_discard(lo, rq, pos); 610 case REQ_OP_WRITE: 611 if (lo->transfer) 612 return lo_write_transfer(lo, rq, pos); 613 else if (cmd->use_aio) 614 return lo_rw_aio(lo, cmd, pos, WRITE); 615 else 616 return lo_write_simple(lo, rq, pos); 617 case REQ_OP_READ: 618 if (lo->transfer) 619 return lo_read_transfer(lo, rq, pos); 620 else if (cmd->use_aio) 621 return lo_rw_aio(lo, cmd, pos, READ); 622 else 623 return lo_read_simple(lo, rq, pos); 624 default: 625 WARN_ON_ONCE(1); 626 return -EIO; 627 } 628 } 629 630 static inline void loop_update_dio(struct loop_device *lo) 631 { 632 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) | 633 lo->use_dio); 634 } 635 636 static void loop_reread_partitions(struct loop_device *lo, 637 struct block_device *bdev) 638 { 639 int rc; 640 641 rc = blkdev_reread_part(bdev); 642 if (rc) 643 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 644 __func__, lo->lo_number, lo->lo_file_name, rc); 645 } 646 647 static inline int is_loop_device(struct file *file) 648 { 649 struct inode *i = file->f_mapping->host; 650 651 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 652 } 653 654 static int loop_validate_file(struct file *file, struct block_device *bdev) 655 { 656 struct inode *inode = file->f_mapping->host; 657 struct file *f = file; 658 659 /* Avoid recursion */ 660 while (is_loop_device(f)) { 661 struct loop_device *l; 662 663 if (f->f_mapping->host->i_bdev == bdev) 664 return -EBADF; 665 666 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 667 if (l->lo_state != Lo_bound) { 668 return -EINVAL; 669 } 670 f = l->lo_backing_file; 671 } 672 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 673 return -EINVAL; 674 return 0; 675 } 676 677 /* 678 * loop_change_fd switched the backing store of a loopback device to 679 * a new file. This is useful for operating system installers to free up 680 * the original file and in High Availability environments to switch to 681 * an alternative location for the content in case of server meltdown. 682 * This can only work if the loop device is used read-only, and if the 683 * new backing store is the same size and type as the old backing store. 684 */ 685 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 686 unsigned int arg) 687 { 688 struct file *file = NULL, *old_file; 689 int error; 690 bool partscan; 691 692 error = mutex_lock_killable(&loop_ctl_mutex); 693 if (error) 694 return error; 695 error = -ENXIO; 696 if (lo->lo_state != Lo_bound) 697 goto out_err; 698 699 /* the loop device has to be read-only */ 700 error = -EINVAL; 701 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 702 goto out_err; 703 704 error = -EBADF; 705 file = fget(arg); 706 if (!file) 707 goto out_err; 708 709 error = loop_validate_file(file, bdev); 710 if (error) 711 goto out_err; 712 713 old_file = lo->lo_backing_file; 714 715 error = -EINVAL; 716 717 /* size of the new backing store needs to be the same */ 718 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 719 goto out_err; 720 721 /* and ... switch */ 722 blk_mq_freeze_queue(lo->lo_queue); 723 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 724 lo->lo_backing_file = file; 725 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 726 mapping_set_gfp_mask(file->f_mapping, 727 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 728 loop_update_dio(lo); 729 blk_mq_unfreeze_queue(lo->lo_queue); 730 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 731 mutex_unlock(&loop_ctl_mutex); 732 /* 733 * We must drop file reference outside of loop_ctl_mutex as dropping 734 * the file ref can take bd_mutex which creates circular locking 735 * dependency. 736 */ 737 fput(old_file); 738 if (partscan) 739 loop_reread_partitions(lo, bdev); 740 return 0; 741 742 out_err: 743 mutex_unlock(&loop_ctl_mutex); 744 if (file) 745 fput(file); 746 return error; 747 } 748 749 /* loop sysfs attributes */ 750 751 static ssize_t loop_attr_show(struct device *dev, char *page, 752 ssize_t (*callback)(struct loop_device *, char *)) 753 { 754 struct gendisk *disk = dev_to_disk(dev); 755 struct loop_device *lo = disk->private_data; 756 757 return callback(lo, page); 758 } 759 760 #define LOOP_ATTR_RO(_name) \ 761 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 762 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 763 struct device_attribute *attr, char *b) \ 764 { \ 765 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 766 } \ 767 static struct device_attribute loop_attr_##_name = \ 768 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 769 770 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 771 { 772 ssize_t ret; 773 char *p = NULL; 774 775 spin_lock_irq(&lo->lo_lock); 776 if (lo->lo_backing_file) 777 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 778 spin_unlock_irq(&lo->lo_lock); 779 780 if (IS_ERR_OR_NULL(p)) 781 ret = PTR_ERR(p); 782 else { 783 ret = strlen(p); 784 memmove(buf, p, ret); 785 buf[ret++] = '\n'; 786 buf[ret] = 0; 787 } 788 789 return ret; 790 } 791 792 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 793 { 794 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 795 } 796 797 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 798 { 799 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 800 } 801 802 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 803 { 804 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 805 806 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 807 } 808 809 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 810 { 811 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 812 813 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 814 } 815 816 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 817 { 818 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 819 820 return sprintf(buf, "%s\n", dio ? "1" : "0"); 821 } 822 823 LOOP_ATTR_RO(backing_file); 824 LOOP_ATTR_RO(offset); 825 LOOP_ATTR_RO(sizelimit); 826 LOOP_ATTR_RO(autoclear); 827 LOOP_ATTR_RO(partscan); 828 LOOP_ATTR_RO(dio); 829 830 static struct attribute *loop_attrs[] = { 831 &loop_attr_backing_file.attr, 832 &loop_attr_offset.attr, 833 &loop_attr_sizelimit.attr, 834 &loop_attr_autoclear.attr, 835 &loop_attr_partscan.attr, 836 &loop_attr_dio.attr, 837 NULL, 838 }; 839 840 static struct attribute_group loop_attribute_group = { 841 .name = "loop", 842 .attrs= loop_attrs, 843 }; 844 845 static void loop_sysfs_init(struct loop_device *lo) 846 { 847 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 848 &loop_attribute_group); 849 } 850 851 static void loop_sysfs_exit(struct loop_device *lo) 852 { 853 if (lo->sysfs_inited) 854 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 855 &loop_attribute_group); 856 } 857 858 static void loop_config_discard(struct loop_device *lo) 859 { 860 struct file *file = lo->lo_backing_file; 861 struct inode *inode = file->f_mapping->host; 862 struct request_queue *q = lo->lo_queue; 863 864 /* 865 * We use punch hole to reclaim the free space used by the 866 * image a.k.a. discard. However we do not support discard if 867 * encryption is enabled, because it may give an attacker 868 * useful information. 869 */ 870 if ((!file->f_op->fallocate) || 871 lo->lo_encrypt_key_size) { 872 q->limits.discard_granularity = 0; 873 q->limits.discard_alignment = 0; 874 blk_queue_max_discard_sectors(q, 0); 875 blk_queue_max_write_zeroes_sectors(q, 0); 876 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 877 return; 878 } 879 880 q->limits.discard_granularity = inode->i_sb->s_blocksize; 881 q->limits.discard_alignment = 0; 882 883 blk_queue_max_discard_sectors(q, UINT_MAX >> 9); 884 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9); 885 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 886 } 887 888 static void loop_unprepare_queue(struct loop_device *lo) 889 { 890 kthread_flush_worker(&lo->worker); 891 kthread_stop(lo->worker_task); 892 } 893 894 static int loop_kthread_worker_fn(void *worker_ptr) 895 { 896 current->flags |= PF_LESS_THROTTLE; 897 return kthread_worker_fn(worker_ptr); 898 } 899 900 static int loop_prepare_queue(struct loop_device *lo) 901 { 902 kthread_init_worker(&lo->worker); 903 lo->worker_task = kthread_run(loop_kthread_worker_fn, 904 &lo->worker, "loop%d", lo->lo_number); 905 if (IS_ERR(lo->worker_task)) 906 return -ENOMEM; 907 set_user_nice(lo->worker_task, MIN_NICE); 908 return 0; 909 } 910 911 static void loop_update_rotational(struct loop_device *lo) 912 { 913 struct file *file = lo->lo_backing_file; 914 struct inode *file_inode = file->f_mapping->host; 915 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 916 struct request_queue *q = lo->lo_queue; 917 bool nonrot = true; 918 919 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 920 if (file_bdev) 921 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev)); 922 923 if (nonrot) 924 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 925 else 926 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 927 } 928 929 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 930 struct block_device *bdev, unsigned int arg) 931 { 932 struct file *file; 933 struct inode *inode; 934 struct address_space *mapping; 935 int lo_flags = 0; 936 int error; 937 loff_t size; 938 bool partscan; 939 940 /* This is safe, since we have a reference from open(). */ 941 __module_get(THIS_MODULE); 942 943 error = -EBADF; 944 file = fget(arg); 945 if (!file) 946 goto out; 947 948 error = mutex_lock_killable(&loop_ctl_mutex); 949 if (error) 950 goto out_putf; 951 952 error = -EBUSY; 953 if (lo->lo_state != Lo_unbound) 954 goto out_unlock; 955 956 error = loop_validate_file(file, bdev); 957 if (error) 958 goto out_unlock; 959 960 mapping = file->f_mapping; 961 inode = mapping->host; 962 963 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 964 !file->f_op->write_iter) 965 lo_flags |= LO_FLAGS_READ_ONLY; 966 967 error = -EFBIG; 968 size = get_loop_size(lo, file); 969 if ((loff_t)(sector_t)size != size) 970 goto out_unlock; 971 error = loop_prepare_queue(lo); 972 if (error) 973 goto out_unlock; 974 975 error = 0; 976 977 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 978 979 lo->use_dio = false; 980 lo->lo_device = bdev; 981 lo->lo_flags = lo_flags; 982 lo->lo_backing_file = file; 983 lo->transfer = NULL; 984 lo->ioctl = NULL; 985 lo->lo_sizelimit = 0; 986 lo->old_gfp_mask = mapping_gfp_mask(mapping); 987 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 988 989 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 990 blk_queue_write_cache(lo->lo_queue, true, false); 991 992 loop_update_rotational(lo); 993 loop_update_dio(lo); 994 set_capacity(lo->lo_disk, size); 995 bd_set_size(bdev, size << 9); 996 loop_sysfs_init(lo); 997 /* let user-space know about the new size */ 998 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 999 1000 set_blocksize(bdev, S_ISBLK(inode->i_mode) ? 1001 block_size(inode->i_bdev) : PAGE_SIZE); 1002 1003 lo->lo_state = Lo_bound; 1004 if (part_shift) 1005 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1006 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1007 1008 /* Grab the block_device to prevent its destruction after we 1009 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev). 1010 */ 1011 bdgrab(bdev); 1012 mutex_unlock(&loop_ctl_mutex); 1013 if (partscan) 1014 loop_reread_partitions(lo, bdev); 1015 return 0; 1016 1017 out_unlock: 1018 mutex_unlock(&loop_ctl_mutex); 1019 out_putf: 1020 fput(file); 1021 out: 1022 /* This is safe: open() is still holding a reference. */ 1023 module_put(THIS_MODULE); 1024 return error; 1025 } 1026 1027 static int 1028 loop_release_xfer(struct loop_device *lo) 1029 { 1030 int err = 0; 1031 struct loop_func_table *xfer = lo->lo_encryption; 1032 1033 if (xfer) { 1034 if (xfer->release) 1035 err = xfer->release(lo); 1036 lo->transfer = NULL; 1037 lo->lo_encryption = NULL; 1038 module_put(xfer->owner); 1039 } 1040 return err; 1041 } 1042 1043 static int 1044 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 1045 const struct loop_info64 *i) 1046 { 1047 int err = 0; 1048 1049 if (xfer) { 1050 struct module *owner = xfer->owner; 1051 1052 if (!try_module_get(owner)) 1053 return -EINVAL; 1054 if (xfer->init) 1055 err = xfer->init(lo, i); 1056 if (err) 1057 module_put(owner); 1058 else 1059 lo->lo_encryption = xfer; 1060 } 1061 return err; 1062 } 1063 1064 static int __loop_clr_fd(struct loop_device *lo, bool release) 1065 { 1066 struct file *filp = NULL; 1067 gfp_t gfp = lo->old_gfp_mask; 1068 struct block_device *bdev = lo->lo_device; 1069 int err = 0; 1070 bool partscan = false; 1071 int lo_number; 1072 1073 mutex_lock(&loop_ctl_mutex); 1074 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) { 1075 err = -ENXIO; 1076 goto out_unlock; 1077 } 1078 1079 filp = lo->lo_backing_file; 1080 if (filp == NULL) { 1081 err = -EINVAL; 1082 goto out_unlock; 1083 } 1084 1085 /* freeze request queue during the transition */ 1086 blk_mq_freeze_queue(lo->lo_queue); 1087 1088 spin_lock_irq(&lo->lo_lock); 1089 lo->lo_backing_file = NULL; 1090 spin_unlock_irq(&lo->lo_lock); 1091 1092 loop_release_xfer(lo); 1093 lo->transfer = NULL; 1094 lo->ioctl = NULL; 1095 lo->lo_device = NULL; 1096 lo->lo_encryption = NULL; 1097 lo->lo_offset = 0; 1098 lo->lo_sizelimit = 0; 1099 lo->lo_encrypt_key_size = 0; 1100 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1101 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1102 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1103 blk_queue_logical_block_size(lo->lo_queue, 512); 1104 blk_queue_physical_block_size(lo->lo_queue, 512); 1105 blk_queue_io_min(lo->lo_queue, 512); 1106 if (bdev) { 1107 bdput(bdev); 1108 invalidate_bdev(bdev); 1109 bdev->bd_inode->i_mapping->wb_err = 0; 1110 } 1111 set_capacity(lo->lo_disk, 0); 1112 loop_sysfs_exit(lo); 1113 if (bdev) { 1114 bd_set_size(bdev, 0); 1115 /* let user-space know about this change */ 1116 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1117 } 1118 mapping_set_gfp_mask(filp->f_mapping, gfp); 1119 /* This is safe: open() is still holding a reference. */ 1120 module_put(THIS_MODULE); 1121 blk_mq_unfreeze_queue(lo->lo_queue); 1122 1123 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev; 1124 lo_number = lo->lo_number; 1125 loop_unprepare_queue(lo); 1126 out_unlock: 1127 mutex_unlock(&loop_ctl_mutex); 1128 if (partscan) { 1129 /* 1130 * bd_mutex has been held already in release path, so don't 1131 * acquire it if this function is called in such case. 1132 * 1133 * If the reread partition isn't from release path, lo_refcnt 1134 * must be at least one and it can only become zero when the 1135 * current holder is released. 1136 */ 1137 if (release) 1138 err = __blkdev_reread_part(bdev); 1139 else 1140 err = blkdev_reread_part(bdev); 1141 if (err) 1142 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1143 __func__, lo_number, err); 1144 /* Device is gone, no point in returning error */ 1145 err = 0; 1146 } 1147 1148 /* 1149 * lo->lo_state is set to Lo_unbound here after above partscan has 1150 * finished. 1151 * 1152 * There cannot be anybody else entering __loop_clr_fd() as 1153 * lo->lo_backing_file is already cleared and Lo_rundown state 1154 * protects us from all the other places trying to change the 'lo' 1155 * device. 1156 */ 1157 mutex_lock(&loop_ctl_mutex); 1158 lo->lo_flags = 0; 1159 if (!part_shift) 1160 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1161 lo->lo_state = Lo_unbound; 1162 mutex_unlock(&loop_ctl_mutex); 1163 1164 /* 1165 * Need not hold loop_ctl_mutex to fput backing file. 1166 * Calling fput holding loop_ctl_mutex triggers a circular 1167 * lock dependency possibility warning as fput can take 1168 * bd_mutex which is usually taken before loop_ctl_mutex. 1169 */ 1170 if (filp) 1171 fput(filp); 1172 return err; 1173 } 1174 1175 static int loop_clr_fd(struct loop_device *lo) 1176 { 1177 int err; 1178 1179 err = mutex_lock_killable(&loop_ctl_mutex); 1180 if (err) 1181 return err; 1182 if (lo->lo_state != Lo_bound) { 1183 mutex_unlock(&loop_ctl_mutex); 1184 return -ENXIO; 1185 } 1186 /* 1187 * If we've explicitly asked to tear down the loop device, 1188 * and it has an elevated reference count, set it for auto-teardown when 1189 * the last reference goes away. This stops $!~#$@ udev from 1190 * preventing teardown because it decided that it needs to run blkid on 1191 * the loopback device whenever they appear. xfstests is notorious for 1192 * failing tests because blkid via udev races with a losetup 1193 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1194 * command to fail with EBUSY. 1195 */ 1196 if (atomic_read(&lo->lo_refcnt) > 1) { 1197 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1198 mutex_unlock(&loop_ctl_mutex); 1199 return 0; 1200 } 1201 lo->lo_state = Lo_rundown; 1202 mutex_unlock(&loop_ctl_mutex); 1203 1204 return __loop_clr_fd(lo, false); 1205 } 1206 1207 static int 1208 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1209 { 1210 int err; 1211 struct loop_func_table *xfer; 1212 kuid_t uid = current_uid(); 1213 struct block_device *bdev; 1214 bool partscan = false; 1215 1216 err = mutex_lock_killable(&loop_ctl_mutex); 1217 if (err) 1218 return err; 1219 if (lo->lo_encrypt_key_size && 1220 !uid_eq(lo->lo_key_owner, uid) && 1221 !capable(CAP_SYS_ADMIN)) { 1222 err = -EPERM; 1223 goto out_unlock; 1224 } 1225 if (lo->lo_state != Lo_bound) { 1226 err = -ENXIO; 1227 goto out_unlock; 1228 } 1229 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) { 1230 err = -EINVAL; 1231 goto out_unlock; 1232 } 1233 1234 if (lo->lo_offset != info->lo_offset || 1235 lo->lo_sizelimit != info->lo_sizelimit) { 1236 sync_blockdev(lo->lo_device); 1237 kill_bdev(lo->lo_device); 1238 } 1239 1240 /* I/O need to be drained during transfer transition */ 1241 blk_mq_freeze_queue(lo->lo_queue); 1242 1243 err = loop_release_xfer(lo); 1244 if (err) 1245 goto out_unfreeze; 1246 1247 if (info->lo_encrypt_type) { 1248 unsigned int type = info->lo_encrypt_type; 1249 1250 if (type >= MAX_LO_CRYPT) { 1251 err = -EINVAL; 1252 goto out_unfreeze; 1253 } 1254 xfer = xfer_funcs[type]; 1255 if (xfer == NULL) { 1256 err = -EINVAL; 1257 goto out_unfreeze; 1258 } 1259 } else 1260 xfer = NULL; 1261 1262 err = loop_init_xfer(lo, xfer, info); 1263 if (err) 1264 goto out_unfreeze; 1265 1266 if (lo->lo_offset != info->lo_offset || 1267 lo->lo_sizelimit != info->lo_sizelimit) { 1268 /* kill_bdev should have truncated all the pages */ 1269 if (lo->lo_device->bd_inode->i_mapping->nrpages) { 1270 err = -EAGAIN; 1271 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1272 __func__, lo->lo_number, lo->lo_file_name, 1273 lo->lo_device->bd_inode->i_mapping->nrpages); 1274 goto out_unfreeze; 1275 } 1276 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) { 1277 err = -EFBIG; 1278 goto out_unfreeze; 1279 } 1280 } 1281 1282 loop_config_discard(lo); 1283 1284 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1285 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1286 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1287 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1288 1289 if (!xfer) 1290 xfer = &none_funcs; 1291 lo->transfer = xfer->transfer; 1292 lo->ioctl = xfer->ioctl; 1293 1294 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1295 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1296 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1297 1298 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1299 lo->lo_init[0] = info->lo_init[0]; 1300 lo->lo_init[1] = info->lo_init[1]; 1301 if (info->lo_encrypt_key_size) { 1302 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1303 info->lo_encrypt_key_size); 1304 lo->lo_key_owner = uid; 1305 } 1306 1307 /* update dio if lo_offset or transfer is changed */ 1308 __loop_update_dio(lo, lo->use_dio); 1309 1310 out_unfreeze: 1311 blk_mq_unfreeze_queue(lo->lo_queue); 1312 1313 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) && 1314 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1315 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1316 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1317 bdev = lo->lo_device; 1318 partscan = true; 1319 } 1320 out_unlock: 1321 mutex_unlock(&loop_ctl_mutex); 1322 if (partscan) 1323 loop_reread_partitions(lo, bdev); 1324 1325 return err; 1326 } 1327 1328 static int 1329 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1330 { 1331 struct path path; 1332 struct kstat stat; 1333 int ret; 1334 1335 ret = mutex_lock_killable(&loop_ctl_mutex); 1336 if (ret) 1337 return ret; 1338 if (lo->lo_state != Lo_bound) { 1339 mutex_unlock(&loop_ctl_mutex); 1340 return -ENXIO; 1341 } 1342 1343 memset(info, 0, sizeof(*info)); 1344 info->lo_number = lo->lo_number; 1345 info->lo_offset = lo->lo_offset; 1346 info->lo_sizelimit = lo->lo_sizelimit; 1347 info->lo_flags = lo->lo_flags; 1348 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1349 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1350 info->lo_encrypt_type = 1351 lo->lo_encryption ? lo->lo_encryption->number : 0; 1352 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1353 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1354 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1355 lo->lo_encrypt_key_size); 1356 } 1357 1358 /* Drop loop_ctl_mutex while we call into the filesystem. */ 1359 path = lo->lo_backing_file->f_path; 1360 path_get(&path); 1361 mutex_unlock(&loop_ctl_mutex); 1362 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1363 if (!ret) { 1364 info->lo_device = huge_encode_dev(stat.dev); 1365 info->lo_inode = stat.ino; 1366 info->lo_rdevice = huge_encode_dev(stat.rdev); 1367 } 1368 path_put(&path); 1369 return ret; 1370 } 1371 1372 static void 1373 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1374 { 1375 memset(info64, 0, sizeof(*info64)); 1376 info64->lo_number = info->lo_number; 1377 info64->lo_device = info->lo_device; 1378 info64->lo_inode = info->lo_inode; 1379 info64->lo_rdevice = info->lo_rdevice; 1380 info64->lo_offset = info->lo_offset; 1381 info64->lo_sizelimit = 0; 1382 info64->lo_encrypt_type = info->lo_encrypt_type; 1383 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1384 info64->lo_flags = info->lo_flags; 1385 info64->lo_init[0] = info->lo_init[0]; 1386 info64->lo_init[1] = info->lo_init[1]; 1387 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1388 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1389 else 1390 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1391 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1392 } 1393 1394 static int 1395 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1396 { 1397 memset(info, 0, sizeof(*info)); 1398 info->lo_number = info64->lo_number; 1399 info->lo_device = info64->lo_device; 1400 info->lo_inode = info64->lo_inode; 1401 info->lo_rdevice = info64->lo_rdevice; 1402 info->lo_offset = info64->lo_offset; 1403 info->lo_encrypt_type = info64->lo_encrypt_type; 1404 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1405 info->lo_flags = info64->lo_flags; 1406 info->lo_init[0] = info64->lo_init[0]; 1407 info->lo_init[1] = info64->lo_init[1]; 1408 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1409 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1410 else 1411 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1412 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1413 1414 /* error in case values were truncated */ 1415 if (info->lo_device != info64->lo_device || 1416 info->lo_rdevice != info64->lo_rdevice || 1417 info->lo_inode != info64->lo_inode || 1418 info->lo_offset != info64->lo_offset) 1419 return -EOVERFLOW; 1420 1421 return 0; 1422 } 1423 1424 static int 1425 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1426 { 1427 struct loop_info info; 1428 struct loop_info64 info64; 1429 1430 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1431 return -EFAULT; 1432 loop_info64_from_old(&info, &info64); 1433 return loop_set_status(lo, &info64); 1434 } 1435 1436 static int 1437 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1438 { 1439 struct loop_info64 info64; 1440 1441 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1442 return -EFAULT; 1443 return loop_set_status(lo, &info64); 1444 } 1445 1446 static int 1447 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1448 struct loop_info info; 1449 struct loop_info64 info64; 1450 int err; 1451 1452 if (!arg) 1453 return -EINVAL; 1454 err = loop_get_status(lo, &info64); 1455 if (!err) 1456 err = loop_info64_to_old(&info64, &info); 1457 if (!err && copy_to_user(arg, &info, sizeof(info))) 1458 err = -EFAULT; 1459 1460 return err; 1461 } 1462 1463 static int 1464 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1465 struct loop_info64 info64; 1466 int err; 1467 1468 if (!arg) 1469 return -EINVAL; 1470 err = loop_get_status(lo, &info64); 1471 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1472 err = -EFAULT; 1473 1474 return err; 1475 } 1476 1477 static int loop_set_capacity(struct loop_device *lo) 1478 { 1479 if (unlikely(lo->lo_state != Lo_bound)) 1480 return -ENXIO; 1481 1482 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1483 } 1484 1485 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1486 { 1487 int error = -ENXIO; 1488 if (lo->lo_state != Lo_bound) 1489 goto out; 1490 1491 __loop_update_dio(lo, !!arg); 1492 if (lo->use_dio == !!arg) 1493 return 0; 1494 error = -EINVAL; 1495 out: 1496 return error; 1497 } 1498 1499 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1500 { 1501 int err = 0; 1502 1503 if (lo->lo_state != Lo_bound) 1504 return -ENXIO; 1505 1506 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg)) 1507 return -EINVAL; 1508 1509 if (lo->lo_queue->limits.logical_block_size != arg) { 1510 sync_blockdev(lo->lo_device); 1511 kill_bdev(lo->lo_device); 1512 } 1513 1514 blk_mq_freeze_queue(lo->lo_queue); 1515 1516 /* kill_bdev should have truncated all the pages */ 1517 if (lo->lo_queue->limits.logical_block_size != arg && 1518 lo->lo_device->bd_inode->i_mapping->nrpages) { 1519 err = -EAGAIN; 1520 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1521 __func__, lo->lo_number, lo->lo_file_name, 1522 lo->lo_device->bd_inode->i_mapping->nrpages); 1523 goto out_unfreeze; 1524 } 1525 1526 blk_queue_logical_block_size(lo->lo_queue, arg); 1527 blk_queue_physical_block_size(lo->lo_queue, arg); 1528 blk_queue_io_min(lo->lo_queue, arg); 1529 loop_update_dio(lo); 1530 out_unfreeze: 1531 blk_mq_unfreeze_queue(lo->lo_queue); 1532 1533 return err; 1534 } 1535 1536 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1537 unsigned long arg) 1538 { 1539 int err; 1540 1541 err = mutex_lock_killable(&loop_ctl_mutex); 1542 if (err) 1543 return err; 1544 switch (cmd) { 1545 case LOOP_SET_CAPACITY: 1546 err = loop_set_capacity(lo); 1547 break; 1548 case LOOP_SET_DIRECT_IO: 1549 err = loop_set_dio(lo, arg); 1550 break; 1551 case LOOP_SET_BLOCK_SIZE: 1552 err = loop_set_block_size(lo, arg); 1553 break; 1554 default: 1555 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1556 } 1557 mutex_unlock(&loop_ctl_mutex); 1558 return err; 1559 } 1560 1561 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1562 unsigned int cmd, unsigned long arg) 1563 { 1564 struct loop_device *lo = bdev->bd_disk->private_data; 1565 int err; 1566 1567 switch (cmd) { 1568 case LOOP_SET_FD: 1569 return loop_set_fd(lo, mode, bdev, arg); 1570 case LOOP_CHANGE_FD: 1571 return loop_change_fd(lo, bdev, arg); 1572 case LOOP_CLR_FD: 1573 return loop_clr_fd(lo); 1574 case LOOP_SET_STATUS: 1575 err = -EPERM; 1576 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1577 err = loop_set_status_old(lo, 1578 (struct loop_info __user *)arg); 1579 } 1580 break; 1581 case LOOP_GET_STATUS: 1582 return loop_get_status_old(lo, (struct loop_info __user *) arg); 1583 case LOOP_SET_STATUS64: 1584 err = -EPERM; 1585 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1586 err = loop_set_status64(lo, 1587 (struct loop_info64 __user *) arg); 1588 } 1589 break; 1590 case LOOP_GET_STATUS64: 1591 return loop_get_status64(lo, (struct loop_info64 __user *) arg); 1592 case LOOP_SET_CAPACITY: 1593 case LOOP_SET_DIRECT_IO: 1594 case LOOP_SET_BLOCK_SIZE: 1595 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN)) 1596 return -EPERM; 1597 /* Fall through */ 1598 default: 1599 err = lo_simple_ioctl(lo, cmd, arg); 1600 break; 1601 } 1602 1603 return err; 1604 } 1605 1606 #ifdef CONFIG_COMPAT 1607 struct compat_loop_info { 1608 compat_int_t lo_number; /* ioctl r/o */ 1609 compat_dev_t lo_device; /* ioctl r/o */ 1610 compat_ulong_t lo_inode; /* ioctl r/o */ 1611 compat_dev_t lo_rdevice; /* ioctl r/o */ 1612 compat_int_t lo_offset; 1613 compat_int_t lo_encrypt_type; 1614 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1615 compat_int_t lo_flags; /* ioctl r/o */ 1616 char lo_name[LO_NAME_SIZE]; 1617 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1618 compat_ulong_t lo_init[2]; 1619 char reserved[4]; 1620 }; 1621 1622 /* 1623 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1624 * - noinlined to reduce stack space usage in main part of driver 1625 */ 1626 static noinline int 1627 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1628 struct loop_info64 *info64) 1629 { 1630 struct compat_loop_info info; 1631 1632 if (copy_from_user(&info, arg, sizeof(info))) 1633 return -EFAULT; 1634 1635 memset(info64, 0, sizeof(*info64)); 1636 info64->lo_number = info.lo_number; 1637 info64->lo_device = info.lo_device; 1638 info64->lo_inode = info.lo_inode; 1639 info64->lo_rdevice = info.lo_rdevice; 1640 info64->lo_offset = info.lo_offset; 1641 info64->lo_sizelimit = 0; 1642 info64->lo_encrypt_type = info.lo_encrypt_type; 1643 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1644 info64->lo_flags = info.lo_flags; 1645 info64->lo_init[0] = info.lo_init[0]; 1646 info64->lo_init[1] = info.lo_init[1]; 1647 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1648 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1649 else 1650 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1651 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1652 return 0; 1653 } 1654 1655 /* 1656 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1657 * - noinlined to reduce stack space usage in main part of driver 1658 */ 1659 static noinline int 1660 loop_info64_to_compat(const struct loop_info64 *info64, 1661 struct compat_loop_info __user *arg) 1662 { 1663 struct compat_loop_info info; 1664 1665 memset(&info, 0, sizeof(info)); 1666 info.lo_number = info64->lo_number; 1667 info.lo_device = info64->lo_device; 1668 info.lo_inode = info64->lo_inode; 1669 info.lo_rdevice = info64->lo_rdevice; 1670 info.lo_offset = info64->lo_offset; 1671 info.lo_encrypt_type = info64->lo_encrypt_type; 1672 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1673 info.lo_flags = info64->lo_flags; 1674 info.lo_init[0] = info64->lo_init[0]; 1675 info.lo_init[1] = info64->lo_init[1]; 1676 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1677 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1678 else 1679 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1680 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1681 1682 /* error in case values were truncated */ 1683 if (info.lo_device != info64->lo_device || 1684 info.lo_rdevice != info64->lo_rdevice || 1685 info.lo_inode != info64->lo_inode || 1686 info.lo_offset != info64->lo_offset || 1687 info.lo_init[0] != info64->lo_init[0] || 1688 info.lo_init[1] != info64->lo_init[1]) 1689 return -EOVERFLOW; 1690 1691 if (copy_to_user(arg, &info, sizeof(info))) 1692 return -EFAULT; 1693 return 0; 1694 } 1695 1696 static int 1697 loop_set_status_compat(struct loop_device *lo, 1698 const struct compat_loop_info __user *arg) 1699 { 1700 struct loop_info64 info64; 1701 int ret; 1702 1703 ret = loop_info64_from_compat(arg, &info64); 1704 if (ret < 0) 1705 return ret; 1706 return loop_set_status(lo, &info64); 1707 } 1708 1709 static int 1710 loop_get_status_compat(struct loop_device *lo, 1711 struct compat_loop_info __user *arg) 1712 { 1713 struct loop_info64 info64; 1714 int err; 1715 1716 if (!arg) 1717 return -EINVAL; 1718 err = loop_get_status(lo, &info64); 1719 if (!err) 1720 err = loop_info64_to_compat(&info64, arg); 1721 return err; 1722 } 1723 1724 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1725 unsigned int cmd, unsigned long arg) 1726 { 1727 struct loop_device *lo = bdev->bd_disk->private_data; 1728 int err; 1729 1730 switch(cmd) { 1731 case LOOP_SET_STATUS: 1732 err = loop_set_status_compat(lo, 1733 (const struct compat_loop_info __user *)arg); 1734 break; 1735 case LOOP_GET_STATUS: 1736 err = loop_get_status_compat(lo, 1737 (struct compat_loop_info __user *)arg); 1738 break; 1739 case LOOP_SET_CAPACITY: 1740 case LOOP_CLR_FD: 1741 case LOOP_GET_STATUS64: 1742 case LOOP_SET_STATUS64: 1743 arg = (unsigned long) compat_ptr(arg); 1744 /* fall through */ 1745 case LOOP_SET_FD: 1746 case LOOP_CHANGE_FD: 1747 case LOOP_SET_BLOCK_SIZE: 1748 err = lo_ioctl(bdev, mode, cmd, arg); 1749 break; 1750 default: 1751 err = -ENOIOCTLCMD; 1752 break; 1753 } 1754 return err; 1755 } 1756 #endif 1757 1758 static int lo_open(struct block_device *bdev, fmode_t mode) 1759 { 1760 struct loop_device *lo; 1761 int err; 1762 1763 err = mutex_lock_killable(&loop_ctl_mutex); 1764 if (err) 1765 return err; 1766 lo = bdev->bd_disk->private_data; 1767 if (!lo) { 1768 err = -ENXIO; 1769 goto out; 1770 } 1771 1772 atomic_inc(&lo->lo_refcnt); 1773 out: 1774 mutex_unlock(&loop_ctl_mutex); 1775 return err; 1776 } 1777 1778 static void lo_release(struct gendisk *disk, fmode_t mode) 1779 { 1780 struct loop_device *lo; 1781 1782 mutex_lock(&loop_ctl_mutex); 1783 lo = disk->private_data; 1784 if (atomic_dec_return(&lo->lo_refcnt)) 1785 goto out_unlock; 1786 1787 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1788 if (lo->lo_state != Lo_bound) 1789 goto out_unlock; 1790 lo->lo_state = Lo_rundown; 1791 mutex_unlock(&loop_ctl_mutex); 1792 /* 1793 * In autoclear mode, stop the loop thread 1794 * and remove configuration after last close. 1795 */ 1796 __loop_clr_fd(lo, true); 1797 return; 1798 } else if (lo->lo_state == Lo_bound) { 1799 /* 1800 * Otherwise keep thread (if running) and config, 1801 * but flush possible ongoing bios in thread. 1802 */ 1803 blk_mq_freeze_queue(lo->lo_queue); 1804 blk_mq_unfreeze_queue(lo->lo_queue); 1805 } 1806 1807 out_unlock: 1808 mutex_unlock(&loop_ctl_mutex); 1809 } 1810 1811 static const struct block_device_operations lo_fops = { 1812 .owner = THIS_MODULE, 1813 .open = lo_open, 1814 .release = lo_release, 1815 .ioctl = lo_ioctl, 1816 #ifdef CONFIG_COMPAT 1817 .compat_ioctl = lo_compat_ioctl, 1818 #endif 1819 }; 1820 1821 /* 1822 * And now the modules code and kernel interface. 1823 */ 1824 static int max_loop; 1825 module_param(max_loop, int, 0444); 1826 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1827 module_param(max_part, int, 0444); 1828 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1829 MODULE_LICENSE("GPL"); 1830 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1831 1832 int loop_register_transfer(struct loop_func_table *funcs) 1833 { 1834 unsigned int n = funcs->number; 1835 1836 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1837 return -EINVAL; 1838 xfer_funcs[n] = funcs; 1839 return 0; 1840 } 1841 1842 static int unregister_transfer_cb(int id, void *ptr, void *data) 1843 { 1844 struct loop_device *lo = ptr; 1845 struct loop_func_table *xfer = data; 1846 1847 mutex_lock(&loop_ctl_mutex); 1848 if (lo->lo_encryption == xfer) 1849 loop_release_xfer(lo); 1850 mutex_unlock(&loop_ctl_mutex); 1851 return 0; 1852 } 1853 1854 int loop_unregister_transfer(int number) 1855 { 1856 unsigned int n = number; 1857 struct loop_func_table *xfer; 1858 1859 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1860 return -EINVAL; 1861 1862 xfer_funcs[n] = NULL; 1863 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1864 return 0; 1865 } 1866 1867 EXPORT_SYMBOL(loop_register_transfer); 1868 EXPORT_SYMBOL(loop_unregister_transfer); 1869 1870 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1871 const struct blk_mq_queue_data *bd) 1872 { 1873 struct request *rq = bd->rq; 1874 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1875 struct loop_device *lo = rq->q->queuedata; 1876 1877 blk_mq_start_request(rq); 1878 1879 if (lo->lo_state != Lo_bound) 1880 return BLK_STS_IOERR; 1881 1882 switch (req_op(rq)) { 1883 case REQ_OP_FLUSH: 1884 case REQ_OP_DISCARD: 1885 case REQ_OP_WRITE_ZEROES: 1886 cmd->use_aio = false; 1887 break; 1888 default: 1889 cmd->use_aio = lo->use_dio; 1890 break; 1891 } 1892 1893 /* always use the first bio's css */ 1894 #ifdef CONFIG_BLK_CGROUP 1895 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) { 1896 cmd->css = &bio_blkcg(rq->bio)->css; 1897 css_get(cmd->css); 1898 } else 1899 #endif 1900 cmd->css = NULL; 1901 kthread_queue_work(&lo->worker, &cmd->work); 1902 1903 return BLK_STS_OK; 1904 } 1905 1906 static void loop_handle_cmd(struct loop_cmd *cmd) 1907 { 1908 struct request *rq = blk_mq_rq_from_pdu(cmd); 1909 const bool write = op_is_write(req_op(rq)); 1910 struct loop_device *lo = rq->q->queuedata; 1911 int ret = 0; 1912 1913 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1914 ret = -EIO; 1915 goto failed; 1916 } 1917 1918 ret = do_req_filebacked(lo, rq); 1919 failed: 1920 /* complete non-aio request */ 1921 if (!cmd->use_aio || ret) { 1922 cmd->ret = ret ? -EIO : 0; 1923 blk_mq_complete_request(rq); 1924 } 1925 } 1926 1927 static void loop_queue_work(struct kthread_work *work) 1928 { 1929 struct loop_cmd *cmd = 1930 container_of(work, struct loop_cmd, work); 1931 1932 loop_handle_cmd(cmd); 1933 } 1934 1935 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq, 1936 unsigned int hctx_idx, unsigned int numa_node) 1937 { 1938 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1939 1940 kthread_init_work(&cmd->work, loop_queue_work); 1941 return 0; 1942 } 1943 1944 static const struct blk_mq_ops loop_mq_ops = { 1945 .queue_rq = loop_queue_rq, 1946 .init_request = loop_init_request, 1947 .complete = lo_complete_rq, 1948 }; 1949 1950 static int loop_add(struct loop_device **l, int i) 1951 { 1952 struct loop_device *lo; 1953 struct gendisk *disk; 1954 int err; 1955 1956 err = -ENOMEM; 1957 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1958 if (!lo) 1959 goto out; 1960 1961 lo->lo_state = Lo_unbound; 1962 1963 /* allocate id, if @id >= 0, we're requesting that specific id */ 1964 if (i >= 0) { 1965 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1966 if (err == -ENOSPC) 1967 err = -EEXIST; 1968 } else { 1969 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1970 } 1971 if (err < 0) 1972 goto out_free_dev; 1973 i = err; 1974 1975 err = -ENOMEM; 1976 lo->tag_set.ops = &loop_mq_ops; 1977 lo->tag_set.nr_hw_queues = 1; 1978 lo->tag_set.queue_depth = 128; 1979 lo->tag_set.numa_node = NUMA_NO_NODE; 1980 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 1981 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1982 lo->tag_set.driver_data = lo; 1983 1984 err = blk_mq_alloc_tag_set(&lo->tag_set); 1985 if (err) 1986 goto out_free_idr; 1987 1988 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 1989 if (IS_ERR(lo->lo_queue)) { 1990 err = PTR_ERR(lo->lo_queue); 1991 goto out_cleanup_tags; 1992 } 1993 lo->lo_queue->queuedata = lo; 1994 1995 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 1996 1997 /* 1998 * By default, we do buffer IO, so it doesn't make sense to enable 1999 * merge because the I/O submitted to backing file is handled page by 2000 * page. For directio mode, merge does help to dispatch bigger request 2001 * to underlayer disk. We will enable merge once directio is enabled. 2002 */ 2003 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2004 2005 err = -ENOMEM; 2006 disk = lo->lo_disk = alloc_disk(1 << part_shift); 2007 if (!disk) 2008 goto out_free_queue; 2009 2010 /* 2011 * Disable partition scanning by default. The in-kernel partition 2012 * scanning can be requested individually per-device during its 2013 * setup. Userspace can always add and remove partitions from all 2014 * devices. The needed partition minors are allocated from the 2015 * extended minor space, the main loop device numbers will continue 2016 * to match the loop minors, regardless of the number of partitions 2017 * used. 2018 * 2019 * If max_part is given, partition scanning is globally enabled for 2020 * all loop devices. The minors for the main loop devices will be 2021 * multiples of max_part. 2022 * 2023 * Note: Global-for-all-devices, set-only-at-init, read-only module 2024 * parameteters like 'max_loop' and 'max_part' make things needlessly 2025 * complicated, are too static, inflexible and may surprise 2026 * userspace tools. Parameters like this in general should be avoided. 2027 */ 2028 if (!part_shift) 2029 disk->flags |= GENHD_FL_NO_PART_SCAN; 2030 disk->flags |= GENHD_FL_EXT_DEVT; 2031 atomic_set(&lo->lo_refcnt, 0); 2032 lo->lo_number = i; 2033 spin_lock_init(&lo->lo_lock); 2034 disk->major = LOOP_MAJOR; 2035 disk->first_minor = i << part_shift; 2036 disk->fops = &lo_fops; 2037 disk->private_data = lo; 2038 disk->queue = lo->lo_queue; 2039 sprintf(disk->disk_name, "loop%d", i); 2040 add_disk(disk); 2041 *l = lo; 2042 return lo->lo_number; 2043 2044 out_free_queue: 2045 blk_cleanup_queue(lo->lo_queue); 2046 out_cleanup_tags: 2047 blk_mq_free_tag_set(&lo->tag_set); 2048 out_free_idr: 2049 idr_remove(&loop_index_idr, i); 2050 out_free_dev: 2051 kfree(lo); 2052 out: 2053 return err; 2054 } 2055 2056 static void loop_remove(struct loop_device *lo) 2057 { 2058 del_gendisk(lo->lo_disk); 2059 blk_cleanup_queue(lo->lo_queue); 2060 blk_mq_free_tag_set(&lo->tag_set); 2061 put_disk(lo->lo_disk); 2062 kfree(lo); 2063 } 2064 2065 static int find_free_cb(int id, void *ptr, void *data) 2066 { 2067 struct loop_device *lo = ptr; 2068 struct loop_device **l = data; 2069 2070 if (lo->lo_state == Lo_unbound) { 2071 *l = lo; 2072 return 1; 2073 } 2074 return 0; 2075 } 2076 2077 static int loop_lookup(struct loop_device **l, int i) 2078 { 2079 struct loop_device *lo; 2080 int ret = -ENODEV; 2081 2082 if (i < 0) { 2083 int err; 2084 2085 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 2086 if (err == 1) { 2087 *l = lo; 2088 ret = lo->lo_number; 2089 } 2090 goto out; 2091 } 2092 2093 /* lookup and return a specific i */ 2094 lo = idr_find(&loop_index_idr, i); 2095 if (lo) { 2096 *l = lo; 2097 ret = lo->lo_number; 2098 } 2099 out: 2100 return ret; 2101 } 2102 2103 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 2104 { 2105 struct loop_device *lo; 2106 struct kobject *kobj; 2107 int err; 2108 2109 mutex_lock(&loop_ctl_mutex); 2110 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 2111 if (err < 0) 2112 err = loop_add(&lo, MINOR(dev) >> part_shift); 2113 if (err < 0) 2114 kobj = NULL; 2115 else 2116 kobj = get_disk_and_module(lo->lo_disk); 2117 mutex_unlock(&loop_ctl_mutex); 2118 2119 *part = 0; 2120 return kobj; 2121 } 2122 2123 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2124 unsigned long parm) 2125 { 2126 struct loop_device *lo; 2127 int ret; 2128 2129 ret = mutex_lock_killable(&loop_ctl_mutex); 2130 if (ret) 2131 return ret; 2132 2133 ret = -ENOSYS; 2134 switch (cmd) { 2135 case LOOP_CTL_ADD: 2136 ret = loop_lookup(&lo, parm); 2137 if (ret >= 0) { 2138 ret = -EEXIST; 2139 break; 2140 } 2141 ret = loop_add(&lo, parm); 2142 break; 2143 case LOOP_CTL_REMOVE: 2144 ret = loop_lookup(&lo, parm); 2145 if (ret < 0) 2146 break; 2147 if (lo->lo_state != Lo_unbound) { 2148 ret = -EBUSY; 2149 break; 2150 } 2151 if (atomic_read(&lo->lo_refcnt) > 0) { 2152 ret = -EBUSY; 2153 break; 2154 } 2155 lo->lo_disk->private_data = NULL; 2156 idr_remove(&loop_index_idr, lo->lo_number); 2157 loop_remove(lo); 2158 break; 2159 case LOOP_CTL_GET_FREE: 2160 ret = loop_lookup(&lo, -1); 2161 if (ret >= 0) 2162 break; 2163 ret = loop_add(&lo, -1); 2164 } 2165 mutex_unlock(&loop_ctl_mutex); 2166 2167 return ret; 2168 } 2169 2170 static const struct file_operations loop_ctl_fops = { 2171 .open = nonseekable_open, 2172 .unlocked_ioctl = loop_control_ioctl, 2173 .compat_ioctl = loop_control_ioctl, 2174 .owner = THIS_MODULE, 2175 .llseek = noop_llseek, 2176 }; 2177 2178 static struct miscdevice loop_misc = { 2179 .minor = LOOP_CTRL_MINOR, 2180 .name = "loop-control", 2181 .fops = &loop_ctl_fops, 2182 }; 2183 2184 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2185 MODULE_ALIAS("devname:loop-control"); 2186 2187 static int __init loop_init(void) 2188 { 2189 int i, nr; 2190 unsigned long range; 2191 struct loop_device *lo; 2192 int err; 2193 2194 part_shift = 0; 2195 if (max_part > 0) { 2196 part_shift = fls(max_part); 2197 2198 /* 2199 * Adjust max_part according to part_shift as it is exported 2200 * to user space so that user can decide correct minor number 2201 * if [s]he want to create more devices. 2202 * 2203 * Note that -1 is required because partition 0 is reserved 2204 * for the whole disk. 2205 */ 2206 max_part = (1UL << part_shift) - 1; 2207 } 2208 2209 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2210 err = -EINVAL; 2211 goto err_out; 2212 } 2213 2214 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2215 err = -EINVAL; 2216 goto err_out; 2217 } 2218 2219 /* 2220 * If max_loop is specified, create that many devices upfront. 2221 * This also becomes a hard limit. If max_loop is not specified, 2222 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2223 * init time. Loop devices can be requested on-demand with the 2224 * /dev/loop-control interface, or be instantiated by accessing 2225 * a 'dead' device node. 2226 */ 2227 if (max_loop) { 2228 nr = max_loop; 2229 range = max_loop << part_shift; 2230 } else { 2231 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2232 range = 1UL << MINORBITS; 2233 } 2234 2235 err = misc_register(&loop_misc); 2236 if (err < 0) 2237 goto err_out; 2238 2239 2240 if (register_blkdev(LOOP_MAJOR, "loop")) { 2241 err = -EIO; 2242 goto misc_out; 2243 } 2244 2245 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2246 THIS_MODULE, loop_probe, NULL, NULL); 2247 2248 /* pre-create number of devices given by config or max_loop */ 2249 mutex_lock(&loop_ctl_mutex); 2250 for (i = 0; i < nr; i++) 2251 loop_add(&lo, i); 2252 mutex_unlock(&loop_ctl_mutex); 2253 2254 printk(KERN_INFO "loop: module loaded\n"); 2255 return 0; 2256 2257 misc_out: 2258 misc_deregister(&loop_misc); 2259 err_out: 2260 return err; 2261 } 2262 2263 static int loop_exit_cb(int id, void *ptr, void *data) 2264 { 2265 struct loop_device *lo = ptr; 2266 2267 loop_remove(lo); 2268 return 0; 2269 } 2270 2271 static void __exit loop_exit(void) 2272 { 2273 unsigned long range; 2274 2275 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2276 2277 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2278 idr_destroy(&loop_index_idr); 2279 2280 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2281 unregister_blkdev(LOOP_MAJOR, "loop"); 2282 2283 misc_deregister(&loop_misc); 2284 } 2285 2286 module_init(loop_init); 2287 module_exit(loop_exit); 2288 2289 #ifndef MODULE 2290 static int __init max_loop_setup(char *str) 2291 { 2292 max_loop = simple_strtol(str, NULL, 0); 2293 return 1; 2294 } 2295 2296 __setup("max_loop=", max_loop_setup); 2297 #endif 2298