xref: /openbmc/linux/drivers/block/loop.c (revision c839e7a0)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81 
82 #include "loop.h"
83 
84 #include <linux/uaccess.h>
85 
86 static DEFINE_IDR(loop_index_idr);
87 static DEFINE_MUTEX(loop_index_mutex);
88 
89 static int max_part;
90 static int part_shift;
91 
92 static int transfer_xor(struct loop_device *lo, int cmd,
93 			struct page *raw_page, unsigned raw_off,
94 			struct page *loop_page, unsigned loop_off,
95 			int size, sector_t real_block)
96 {
97 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 	char *in, *out, *key;
100 	int i, keysize;
101 
102 	if (cmd == READ) {
103 		in = raw_buf;
104 		out = loop_buf;
105 	} else {
106 		in = loop_buf;
107 		out = raw_buf;
108 	}
109 
110 	key = lo->lo_encrypt_key;
111 	keysize = lo->lo_encrypt_key_size;
112 	for (i = 0; i < size; i++)
113 		*out++ = *in++ ^ key[(i & 511) % keysize];
114 
115 	kunmap_atomic(loop_buf);
116 	kunmap_atomic(raw_buf);
117 	cond_resched();
118 	return 0;
119 }
120 
121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122 {
123 	if (unlikely(info->lo_encrypt_key_size <= 0))
124 		return -EINVAL;
125 	return 0;
126 }
127 
128 static struct loop_func_table none_funcs = {
129 	.number = LO_CRYPT_NONE,
130 };
131 
132 static struct loop_func_table xor_funcs = {
133 	.number = LO_CRYPT_XOR,
134 	.transfer = transfer_xor,
135 	.init = xor_init
136 };
137 
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
140 	&none_funcs,
141 	&xor_funcs
142 };
143 
144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145 {
146 	loff_t loopsize;
147 
148 	/* Compute loopsize in bytes */
149 	loopsize = i_size_read(file->f_mapping->host);
150 	if (offset > 0)
151 		loopsize -= offset;
152 	/* offset is beyond i_size, weird but possible */
153 	if (loopsize < 0)
154 		return 0;
155 
156 	if (sizelimit > 0 && sizelimit < loopsize)
157 		loopsize = sizelimit;
158 	/*
159 	 * Unfortunately, if we want to do I/O on the device,
160 	 * the number of 512-byte sectors has to fit into a sector_t.
161 	 */
162 	return loopsize >> 9;
163 }
164 
165 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166 {
167 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
168 }
169 
170 static void __loop_update_dio(struct loop_device *lo, bool dio)
171 {
172 	struct file *file = lo->lo_backing_file;
173 	struct address_space *mapping = file->f_mapping;
174 	struct inode *inode = mapping->host;
175 	unsigned short sb_bsize = 0;
176 	unsigned dio_align = 0;
177 	bool use_dio;
178 
179 	if (inode->i_sb->s_bdev) {
180 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 		dio_align = sb_bsize - 1;
182 	}
183 
184 	/*
185 	 * We support direct I/O only if lo_offset is aligned with the
186 	 * logical I/O size of backing device, and the logical block
187 	 * size of loop is bigger than the backing device's and the loop
188 	 * needn't transform transfer.
189 	 *
190 	 * TODO: the above condition may be loosed in the future, and
191 	 * direct I/O may be switched runtime at that time because most
192 	 * of requests in sane applications should be PAGE_SIZE aligned
193 	 */
194 	if (dio) {
195 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 				!(lo->lo_offset & dio_align) &&
197 				mapping->a_ops->direct_IO &&
198 				!lo->transfer)
199 			use_dio = true;
200 		else
201 			use_dio = false;
202 	} else {
203 		use_dio = false;
204 	}
205 
206 	if (lo->use_dio == use_dio)
207 		return;
208 
209 	/* flush dirty pages before changing direct IO */
210 	vfs_fsync(file, 0);
211 
212 	/*
213 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 	 * will get updated by ioctl(LOOP_GET_STATUS)
216 	 */
217 	blk_mq_freeze_queue(lo->lo_queue);
218 	lo->use_dio = use_dio;
219 	if (use_dio) {
220 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
221 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
222 	} else {
223 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
224 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
225 	}
226 	blk_mq_unfreeze_queue(lo->lo_queue);
227 }
228 
229 static int
230 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
231 {
232 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
233 	sector_t x = (sector_t)size;
234 	struct block_device *bdev = lo->lo_device;
235 
236 	if (unlikely((loff_t)x != size))
237 		return -EFBIG;
238 	if (lo->lo_offset != offset)
239 		lo->lo_offset = offset;
240 	if (lo->lo_sizelimit != sizelimit)
241 		lo->lo_sizelimit = sizelimit;
242 	set_capacity(lo->lo_disk, x);
243 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
244 	/* let user-space know about the new size */
245 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
246 	return 0;
247 }
248 
249 static inline int
250 lo_do_transfer(struct loop_device *lo, int cmd,
251 	       struct page *rpage, unsigned roffs,
252 	       struct page *lpage, unsigned loffs,
253 	       int size, sector_t rblock)
254 {
255 	int ret;
256 
257 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
258 	if (likely(!ret))
259 		return 0;
260 
261 	printk_ratelimited(KERN_ERR
262 		"loop: Transfer error at byte offset %llu, length %i.\n",
263 		(unsigned long long)rblock << 9, size);
264 	return ret;
265 }
266 
267 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
268 {
269 	struct iov_iter i;
270 	ssize_t bw;
271 
272 	iov_iter_bvec(&i, ITER_BVEC | WRITE, bvec, 1, bvec->bv_len);
273 
274 	file_start_write(file);
275 	bw = vfs_iter_write(file, &i, ppos, 0);
276 	file_end_write(file);
277 
278 	if (likely(bw ==  bvec->bv_len))
279 		return 0;
280 
281 	printk_ratelimited(KERN_ERR
282 		"loop: Write error at byte offset %llu, length %i.\n",
283 		(unsigned long long)*ppos, bvec->bv_len);
284 	if (bw >= 0)
285 		bw = -EIO;
286 	return bw;
287 }
288 
289 static int lo_write_simple(struct loop_device *lo, struct request *rq,
290 		loff_t pos)
291 {
292 	struct bio_vec bvec;
293 	struct req_iterator iter;
294 	int ret = 0;
295 
296 	rq_for_each_segment(bvec, rq, iter) {
297 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
298 		if (ret < 0)
299 			break;
300 		cond_resched();
301 	}
302 
303 	return ret;
304 }
305 
306 /*
307  * This is the slow, transforming version that needs to double buffer the
308  * data as it cannot do the transformations in place without having direct
309  * access to the destination pages of the backing file.
310  */
311 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
312 		loff_t pos)
313 {
314 	struct bio_vec bvec, b;
315 	struct req_iterator iter;
316 	struct page *page;
317 	int ret = 0;
318 
319 	page = alloc_page(GFP_NOIO);
320 	if (unlikely(!page))
321 		return -ENOMEM;
322 
323 	rq_for_each_segment(bvec, rq, iter) {
324 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
325 			bvec.bv_offset, bvec.bv_len, pos >> 9);
326 		if (unlikely(ret))
327 			break;
328 
329 		b.bv_page = page;
330 		b.bv_offset = 0;
331 		b.bv_len = bvec.bv_len;
332 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
333 		if (ret < 0)
334 			break;
335 	}
336 
337 	__free_page(page);
338 	return ret;
339 }
340 
341 static int lo_read_simple(struct loop_device *lo, struct request *rq,
342 		loff_t pos)
343 {
344 	struct bio_vec bvec;
345 	struct req_iterator iter;
346 	struct iov_iter i;
347 	ssize_t len;
348 
349 	rq_for_each_segment(bvec, rq, iter) {
350 		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
351 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
352 		if (len < 0)
353 			return len;
354 
355 		flush_dcache_page(bvec.bv_page);
356 
357 		if (len != bvec.bv_len) {
358 			struct bio *bio;
359 
360 			__rq_for_each_bio(bio, rq)
361 				zero_fill_bio(bio);
362 			break;
363 		}
364 		cond_resched();
365 	}
366 
367 	return 0;
368 }
369 
370 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
371 		loff_t pos)
372 {
373 	struct bio_vec bvec, b;
374 	struct req_iterator iter;
375 	struct iov_iter i;
376 	struct page *page;
377 	ssize_t len;
378 	int ret = 0;
379 
380 	page = alloc_page(GFP_NOIO);
381 	if (unlikely(!page))
382 		return -ENOMEM;
383 
384 	rq_for_each_segment(bvec, rq, iter) {
385 		loff_t offset = pos;
386 
387 		b.bv_page = page;
388 		b.bv_offset = 0;
389 		b.bv_len = bvec.bv_len;
390 
391 		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
392 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
393 		if (len < 0) {
394 			ret = len;
395 			goto out_free_page;
396 		}
397 
398 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
399 			bvec.bv_offset, len, offset >> 9);
400 		if (ret)
401 			goto out_free_page;
402 
403 		flush_dcache_page(bvec.bv_page);
404 
405 		if (len != bvec.bv_len) {
406 			struct bio *bio;
407 
408 			__rq_for_each_bio(bio, rq)
409 				zero_fill_bio(bio);
410 			break;
411 		}
412 	}
413 
414 	ret = 0;
415 out_free_page:
416 	__free_page(page);
417 	return ret;
418 }
419 
420 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
421 {
422 	/*
423 	 * We use punch hole to reclaim the free space used by the
424 	 * image a.k.a. discard. However we do not support discard if
425 	 * encryption is enabled, because it may give an attacker
426 	 * useful information.
427 	 */
428 	struct file *file = lo->lo_backing_file;
429 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
430 	int ret;
431 
432 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
433 		ret = -EOPNOTSUPP;
434 		goto out;
435 	}
436 
437 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
438 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
439 		ret = -EIO;
440  out:
441 	return ret;
442 }
443 
444 static int lo_req_flush(struct loop_device *lo, struct request *rq)
445 {
446 	struct file *file = lo->lo_backing_file;
447 	int ret = vfs_fsync(file, 0);
448 	if (unlikely(ret && ret != -EINVAL))
449 		ret = -EIO;
450 
451 	return ret;
452 }
453 
454 static void lo_complete_rq(struct request *rq)
455 {
456 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
457 	blk_status_t ret = BLK_STS_OK;
458 
459 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
460 	    req_op(rq) != REQ_OP_READ) {
461 		if (cmd->ret < 0)
462 			ret = BLK_STS_IOERR;
463 		goto end_io;
464 	}
465 
466 	/*
467 	 * Short READ - if we got some data, advance our request and
468 	 * retry it. If we got no data, end the rest with EIO.
469 	 */
470 	if (cmd->ret) {
471 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
472 		cmd->ret = 0;
473 		blk_mq_requeue_request(rq, true);
474 	} else {
475 		if (cmd->use_aio) {
476 			struct bio *bio = rq->bio;
477 
478 			while (bio) {
479 				zero_fill_bio(bio);
480 				bio = bio->bi_next;
481 			}
482 		}
483 		ret = BLK_STS_IOERR;
484 end_io:
485 		blk_mq_end_request(rq, ret);
486 	}
487 }
488 
489 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
490 {
491 	struct request *rq = blk_mq_rq_from_pdu(cmd);
492 
493 	if (!atomic_dec_and_test(&cmd->ref))
494 		return;
495 	kfree(cmd->bvec);
496 	cmd->bvec = NULL;
497 	blk_mq_complete_request(rq);
498 }
499 
500 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
501 {
502 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
503 
504 	if (cmd->css)
505 		css_put(cmd->css);
506 	cmd->ret = ret;
507 	lo_rw_aio_do_completion(cmd);
508 }
509 
510 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
511 		     loff_t pos, bool rw)
512 {
513 	struct iov_iter iter;
514 	struct bio_vec *bvec;
515 	struct request *rq = blk_mq_rq_from_pdu(cmd);
516 	struct bio *bio = rq->bio;
517 	struct file *file = lo->lo_backing_file;
518 	unsigned int offset;
519 	int segments = 0;
520 	int ret;
521 
522 	if (rq->bio != rq->biotail) {
523 		struct req_iterator iter;
524 		struct bio_vec tmp;
525 
526 		__rq_for_each_bio(bio, rq)
527 			segments += bio_segments(bio);
528 		bvec = kmalloc_array(segments, sizeof(struct bio_vec),
529 				     GFP_NOIO);
530 		if (!bvec)
531 			return -EIO;
532 		cmd->bvec = bvec;
533 
534 		/*
535 		 * The bios of the request may be started from the middle of
536 		 * the 'bvec' because of bio splitting, so we can't directly
537 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
538 		 * API will take care of all details for us.
539 		 */
540 		rq_for_each_segment(tmp, rq, iter) {
541 			*bvec = tmp;
542 			bvec++;
543 		}
544 		bvec = cmd->bvec;
545 		offset = 0;
546 	} else {
547 		/*
548 		 * Same here, this bio may be started from the middle of the
549 		 * 'bvec' because of bio splitting, so offset from the bvec
550 		 * must be passed to iov iterator
551 		 */
552 		offset = bio->bi_iter.bi_bvec_done;
553 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
554 		segments = bio_segments(bio);
555 	}
556 	atomic_set(&cmd->ref, 2);
557 
558 	iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
559 		      segments, blk_rq_bytes(rq));
560 	iter.iov_offset = offset;
561 
562 	cmd->iocb.ki_pos = pos;
563 	cmd->iocb.ki_filp = file;
564 	cmd->iocb.ki_complete = lo_rw_aio_complete;
565 	cmd->iocb.ki_flags = IOCB_DIRECT;
566 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
567 	if (cmd->css)
568 		kthread_associate_blkcg(cmd->css);
569 
570 	if (rw == WRITE)
571 		ret = call_write_iter(file, &cmd->iocb, &iter);
572 	else
573 		ret = call_read_iter(file, &cmd->iocb, &iter);
574 
575 	lo_rw_aio_do_completion(cmd);
576 	kthread_associate_blkcg(NULL);
577 
578 	if (ret != -EIOCBQUEUED)
579 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
580 	return 0;
581 }
582 
583 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
584 {
585 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
586 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
587 
588 	/*
589 	 * lo_write_simple and lo_read_simple should have been covered
590 	 * by io submit style function like lo_rw_aio(), one blocker
591 	 * is that lo_read_simple() need to call flush_dcache_page after
592 	 * the page is written from kernel, and it isn't easy to handle
593 	 * this in io submit style function which submits all segments
594 	 * of the req at one time. And direct read IO doesn't need to
595 	 * run flush_dcache_page().
596 	 */
597 	switch (req_op(rq)) {
598 	case REQ_OP_FLUSH:
599 		return lo_req_flush(lo, rq);
600 	case REQ_OP_DISCARD:
601 	case REQ_OP_WRITE_ZEROES:
602 		return lo_discard(lo, rq, pos);
603 	case REQ_OP_WRITE:
604 		if (lo->transfer)
605 			return lo_write_transfer(lo, rq, pos);
606 		else if (cmd->use_aio)
607 			return lo_rw_aio(lo, cmd, pos, WRITE);
608 		else
609 			return lo_write_simple(lo, rq, pos);
610 	case REQ_OP_READ:
611 		if (lo->transfer)
612 			return lo_read_transfer(lo, rq, pos);
613 		else if (cmd->use_aio)
614 			return lo_rw_aio(lo, cmd, pos, READ);
615 		else
616 			return lo_read_simple(lo, rq, pos);
617 	default:
618 		WARN_ON_ONCE(1);
619 		return -EIO;
620 		break;
621 	}
622 }
623 
624 static inline void loop_update_dio(struct loop_device *lo)
625 {
626 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
627 			lo->use_dio);
628 }
629 
630 static void loop_reread_partitions(struct loop_device *lo,
631 				   struct block_device *bdev)
632 {
633 	int rc;
634 
635 	/*
636 	 * bd_mutex has been held already in release path, so don't
637 	 * acquire it if this function is called in such case.
638 	 *
639 	 * If the reread partition isn't from release path, lo_refcnt
640 	 * must be at least one and it can only become zero when the
641 	 * current holder is released.
642 	 */
643 	if (!atomic_read(&lo->lo_refcnt))
644 		rc = __blkdev_reread_part(bdev);
645 	else
646 		rc = blkdev_reread_part(bdev);
647 	if (rc)
648 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
649 			__func__, lo->lo_number, lo->lo_file_name, rc);
650 }
651 
652 static inline int is_loop_device(struct file *file)
653 {
654 	struct inode *i = file->f_mapping->host;
655 
656 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
657 }
658 
659 static int loop_validate_file(struct file *file, struct block_device *bdev)
660 {
661 	struct inode	*inode = file->f_mapping->host;
662 	struct file	*f = file;
663 
664 	/* Avoid recursion */
665 	while (is_loop_device(f)) {
666 		struct loop_device *l;
667 
668 		if (f->f_mapping->host->i_bdev == bdev)
669 			return -EBADF;
670 
671 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
672 		if (l->lo_state == Lo_unbound) {
673 			return -EINVAL;
674 		}
675 		f = l->lo_backing_file;
676 	}
677 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
678 		return -EINVAL;
679 	return 0;
680 }
681 
682 /*
683  * loop_change_fd switched the backing store of a loopback device to
684  * a new file. This is useful for operating system installers to free up
685  * the original file and in High Availability environments to switch to
686  * an alternative location for the content in case of server meltdown.
687  * This can only work if the loop device is used read-only, and if the
688  * new backing store is the same size and type as the old backing store.
689  */
690 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
691 			  unsigned int arg)
692 {
693 	struct file	*file, *old_file;
694 	int		error;
695 
696 	error = -ENXIO;
697 	if (lo->lo_state != Lo_bound)
698 		goto out;
699 
700 	/* the loop device has to be read-only */
701 	error = -EINVAL;
702 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
703 		goto out;
704 
705 	error = -EBADF;
706 	file = fget(arg);
707 	if (!file)
708 		goto out;
709 
710 	error = loop_validate_file(file, bdev);
711 	if (error)
712 		goto out_putf;
713 
714 	old_file = lo->lo_backing_file;
715 
716 	error = -EINVAL;
717 
718 	/* size of the new backing store needs to be the same */
719 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
720 		goto out_putf;
721 
722 	/* and ... switch */
723 	blk_mq_freeze_queue(lo->lo_queue);
724 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
725 	lo->lo_backing_file = file;
726 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
727 	mapping_set_gfp_mask(file->f_mapping,
728 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
729 	loop_update_dio(lo);
730 	blk_mq_unfreeze_queue(lo->lo_queue);
731 
732 	fput(old_file);
733 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
734 		loop_reread_partitions(lo, bdev);
735 	return 0;
736 
737  out_putf:
738 	fput(file);
739  out:
740 	return error;
741 }
742 
743 /* loop sysfs attributes */
744 
745 static ssize_t loop_attr_show(struct device *dev, char *page,
746 			      ssize_t (*callback)(struct loop_device *, char *))
747 {
748 	struct gendisk *disk = dev_to_disk(dev);
749 	struct loop_device *lo = disk->private_data;
750 
751 	return callback(lo, page);
752 }
753 
754 #define LOOP_ATTR_RO(_name)						\
755 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
756 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
757 				struct device_attribute *attr, char *b)	\
758 {									\
759 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
760 }									\
761 static struct device_attribute loop_attr_##_name =			\
762 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
763 
764 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
765 {
766 	ssize_t ret;
767 	char *p = NULL;
768 
769 	spin_lock_irq(&lo->lo_lock);
770 	if (lo->lo_backing_file)
771 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
772 	spin_unlock_irq(&lo->lo_lock);
773 
774 	if (IS_ERR_OR_NULL(p))
775 		ret = PTR_ERR(p);
776 	else {
777 		ret = strlen(p);
778 		memmove(buf, p, ret);
779 		buf[ret++] = '\n';
780 		buf[ret] = 0;
781 	}
782 
783 	return ret;
784 }
785 
786 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
787 {
788 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
789 }
790 
791 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
792 {
793 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
794 }
795 
796 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
797 {
798 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
799 
800 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
801 }
802 
803 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
804 {
805 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
806 
807 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
808 }
809 
810 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
811 {
812 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
813 
814 	return sprintf(buf, "%s\n", dio ? "1" : "0");
815 }
816 
817 LOOP_ATTR_RO(backing_file);
818 LOOP_ATTR_RO(offset);
819 LOOP_ATTR_RO(sizelimit);
820 LOOP_ATTR_RO(autoclear);
821 LOOP_ATTR_RO(partscan);
822 LOOP_ATTR_RO(dio);
823 
824 static struct attribute *loop_attrs[] = {
825 	&loop_attr_backing_file.attr,
826 	&loop_attr_offset.attr,
827 	&loop_attr_sizelimit.attr,
828 	&loop_attr_autoclear.attr,
829 	&loop_attr_partscan.attr,
830 	&loop_attr_dio.attr,
831 	NULL,
832 };
833 
834 static struct attribute_group loop_attribute_group = {
835 	.name = "loop",
836 	.attrs= loop_attrs,
837 };
838 
839 static void loop_sysfs_init(struct loop_device *lo)
840 {
841 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
842 						&loop_attribute_group);
843 }
844 
845 static void loop_sysfs_exit(struct loop_device *lo)
846 {
847 	if (lo->sysfs_inited)
848 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
849 				   &loop_attribute_group);
850 }
851 
852 static void loop_config_discard(struct loop_device *lo)
853 {
854 	struct file *file = lo->lo_backing_file;
855 	struct inode *inode = file->f_mapping->host;
856 	struct request_queue *q = lo->lo_queue;
857 
858 	/*
859 	 * We use punch hole to reclaim the free space used by the
860 	 * image a.k.a. discard. However we do not support discard if
861 	 * encryption is enabled, because it may give an attacker
862 	 * useful information.
863 	 */
864 	if ((!file->f_op->fallocate) ||
865 	    lo->lo_encrypt_key_size) {
866 		q->limits.discard_granularity = 0;
867 		q->limits.discard_alignment = 0;
868 		blk_queue_max_discard_sectors(q, 0);
869 		blk_queue_max_write_zeroes_sectors(q, 0);
870 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
871 		return;
872 	}
873 
874 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
875 	q->limits.discard_alignment = 0;
876 
877 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
878 	blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
879 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
880 }
881 
882 static void loop_unprepare_queue(struct loop_device *lo)
883 {
884 	kthread_flush_worker(&lo->worker);
885 	kthread_stop(lo->worker_task);
886 }
887 
888 static int loop_kthread_worker_fn(void *worker_ptr)
889 {
890 	current->flags |= PF_LESS_THROTTLE;
891 	return kthread_worker_fn(worker_ptr);
892 }
893 
894 static int loop_prepare_queue(struct loop_device *lo)
895 {
896 	kthread_init_worker(&lo->worker);
897 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
898 			&lo->worker, "loop%d", lo->lo_number);
899 	if (IS_ERR(lo->worker_task))
900 		return -ENOMEM;
901 	set_user_nice(lo->worker_task, MIN_NICE);
902 	return 0;
903 }
904 
905 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
906 		       struct block_device *bdev, unsigned int arg)
907 {
908 	struct file	*file;
909 	struct inode	*inode;
910 	struct address_space *mapping;
911 	int		lo_flags = 0;
912 	int		error;
913 	loff_t		size;
914 
915 	/* This is safe, since we have a reference from open(). */
916 	__module_get(THIS_MODULE);
917 
918 	error = -EBADF;
919 	file = fget(arg);
920 	if (!file)
921 		goto out;
922 
923 	error = -EBUSY;
924 	if (lo->lo_state != Lo_unbound)
925 		goto out_putf;
926 
927 	error = loop_validate_file(file, bdev);
928 	if (error)
929 		goto out_putf;
930 
931 	mapping = file->f_mapping;
932 	inode = mapping->host;
933 
934 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
935 	    !file->f_op->write_iter)
936 		lo_flags |= LO_FLAGS_READ_ONLY;
937 
938 	error = -EFBIG;
939 	size = get_loop_size(lo, file);
940 	if ((loff_t)(sector_t)size != size)
941 		goto out_putf;
942 	error = loop_prepare_queue(lo);
943 	if (error)
944 		goto out_putf;
945 
946 	error = 0;
947 
948 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
949 
950 	lo->use_dio = false;
951 	lo->lo_device = bdev;
952 	lo->lo_flags = lo_flags;
953 	lo->lo_backing_file = file;
954 	lo->transfer = NULL;
955 	lo->ioctl = NULL;
956 	lo->lo_sizelimit = 0;
957 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
958 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
959 
960 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
961 		blk_queue_write_cache(lo->lo_queue, true, false);
962 
963 	loop_update_dio(lo);
964 	set_capacity(lo->lo_disk, size);
965 	bd_set_size(bdev, size << 9);
966 	loop_sysfs_init(lo);
967 	/* let user-space know about the new size */
968 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
969 
970 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
971 		      block_size(inode->i_bdev) : PAGE_SIZE);
972 
973 	lo->lo_state = Lo_bound;
974 	if (part_shift)
975 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
976 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
977 		loop_reread_partitions(lo, bdev);
978 
979 	/* Grab the block_device to prevent its destruction after we
980 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
981 	 */
982 	bdgrab(bdev);
983 	return 0;
984 
985  out_putf:
986 	fput(file);
987  out:
988 	/* This is safe: open() is still holding a reference. */
989 	module_put(THIS_MODULE);
990 	return error;
991 }
992 
993 static int
994 loop_release_xfer(struct loop_device *lo)
995 {
996 	int err = 0;
997 	struct loop_func_table *xfer = lo->lo_encryption;
998 
999 	if (xfer) {
1000 		if (xfer->release)
1001 			err = xfer->release(lo);
1002 		lo->transfer = NULL;
1003 		lo->lo_encryption = NULL;
1004 		module_put(xfer->owner);
1005 	}
1006 	return err;
1007 }
1008 
1009 static int
1010 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1011 	       const struct loop_info64 *i)
1012 {
1013 	int err = 0;
1014 
1015 	if (xfer) {
1016 		struct module *owner = xfer->owner;
1017 
1018 		if (!try_module_get(owner))
1019 			return -EINVAL;
1020 		if (xfer->init)
1021 			err = xfer->init(lo, i);
1022 		if (err)
1023 			module_put(owner);
1024 		else
1025 			lo->lo_encryption = xfer;
1026 	}
1027 	return err;
1028 }
1029 
1030 static int loop_clr_fd(struct loop_device *lo)
1031 {
1032 	struct file *filp = lo->lo_backing_file;
1033 	gfp_t gfp = lo->old_gfp_mask;
1034 	struct block_device *bdev = lo->lo_device;
1035 
1036 	if (lo->lo_state != Lo_bound)
1037 		return -ENXIO;
1038 
1039 	/*
1040 	 * If we've explicitly asked to tear down the loop device,
1041 	 * and it has an elevated reference count, set it for auto-teardown when
1042 	 * the last reference goes away. This stops $!~#$@ udev from
1043 	 * preventing teardown because it decided that it needs to run blkid on
1044 	 * the loopback device whenever they appear. xfstests is notorious for
1045 	 * failing tests because blkid via udev races with a losetup
1046 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1047 	 * command to fail with EBUSY.
1048 	 */
1049 	if (atomic_read(&lo->lo_refcnt) > 1) {
1050 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1051 		mutex_unlock(&lo->lo_ctl_mutex);
1052 		return 0;
1053 	}
1054 
1055 	if (filp == NULL)
1056 		return -EINVAL;
1057 
1058 	/* freeze request queue during the transition */
1059 	blk_mq_freeze_queue(lo->lo_queue);
1060 
1061 	spin_lock_irq(&lo->lo_lock);
1062 	lo->lo_state = Lo_rundown;
1063 	lo->lo_backing_file = NULL;
1064 	spin_unlock_irq(&lo->lo_lock);
1065 
1066 	loop_release_xfer(lo);
1067 	lo->transfer = NULL;
1068 	lo->ioctl = NULL;
1069 	lo->lo_device = NULL;
1070 	lo->lo_encryption = NULL;
1071 	lo->lo_offset = 0;
1072 	lo->lo_sizelimit = 0;
1073 	lo->lo_encrypt_key_size = 0;
1074 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1075 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1076 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1077 	blk_queue_logical_block_size(lo->lo_queue, 512);
1078 	blk_queue_physical_block_size(lo->lo_queue, 512);
1079 	blk_queue_io_min(lo->lo_queue, 512);
1080 	if (bdev) {
1081 		bdput(bdev);
1082 		invalidate_bdev(bdev);
1083 		bdev->bd_inode->i_mapping->wb_err = 0;
1084 	}
1085 	set_capacity(lo->lo_disk, 0);
1086 	loop_sysfs_exit(lo);
1087 	if (bdev) {
1088 		bd_set_size(bdev, 0);
1089 		/* let user-space know about this change */
1090 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1091 	}
1092 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1093 	lo->lo_state = Lo_unbound;
1094 	/* This is safe: open() is still holding a reference. */
1095 	module_put(THIS_MODULE);
1096 	blk_mq_unfreeze_queue(lo->lo_queue);
1097 
1098 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1099 		loop_reread_partitions(lo, bdev);
1100 	lo->lo_flags = 0;
1101 	if (!part_shift)
1102 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1103 	loop_unprepare_queue(lo);
1104 	mutex_unlock(&lo->lo_ctl_mutex);
1105 	/*
1106 	 * Need not hold lo_ctl_mutex to fput backing file.
1107 	 * Calling fput holding lo_ctl_mutex triggers a circular
1108 	 * lock dependency possibility warning as fput can take
1109 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1110 	 */
1111 	fput(filp);
1112 	return 0;
1113 }
1114 
1115 static int
1116 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1117 {
1118 	int err;
1119 	struct loop_func_table *xfer;
1120 	kuid_t uid = current_uid();
1121 
1122 	if (lo->lo_encrypt_key_size &&
1123 	    !uid_eq(lo->lo_key_owner, uid) &&
1124 	    !capable(CAP_SYS_ADMIN))
1125 		return -EPERM;
1126 	if (lo->lo_state != Lo_bound)
1127 		return -ENXIO;
1128 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1129 		return -EINVAL;
1130 
1131 	/* I/O need to be drained during transfer transition */
1132 	blk_mq_freeze_queue(lo->lo_queue);
1133 
1134 	err = loop_release_xfer(lo);
1135 	if (err)
1136 		goto exit;
1137 
1138 	if (info->lo_encrypt_type) {
1139 		unsigned int type = info->lo_encrypt_type;
1140 
1141 		if (type >= MAX_LO_CRYPT) {
1142 			err = -EINVAL;
1143 			goto exit;
1144 		}
1145 		xfer = xfer_funcs[type];
1146 		if (xfer == NULL) {
1147 			err = -EINVAL;
1148 			goto exit;
1149 		}
1150 	} else
1151 		xfer = NULL;
1152 
1153 	err = loop_init_xfer(lo, xfer, info);
1154 	if (err)
1155 		goto exit;
1156 
1157 	if (lo->lo_offset != info->lo_offset ||
1158 	    lo->lo_sizelimit != info->lo_sizelimit) {
1159 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1160 			err = -EFBIG;
1161 			goto exit;
1162 		}
1163 	}
1164 
1165 	loop_config_discard(lo);
1166 
1167 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1168 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1169 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1170 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1171 
1172 	if (!xfer)
1173 		xfer = &none_funcs;
1174 	lo->transfer = xfer->transfer;
1175 	lo->ioctl = xfer->ioctl;
1176 
1177 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1178 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1179 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1180 
1181 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1182 	lo->lo_init[0] = info->lo_init[0];
1183 	lo->lo_init[1] = info->lo_init[1];
1184 	if (info->lo_encrypt_key_size) {
1185 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1186 		       info->lo_encrypt_key_size);
1187 		lo->lo_key_owner = uid;
1188 	}
1189 
1190 	/* update dio if lo_offset or transfer is changed */
1191 	__loop_update_dio(lo, lo->use_dio);
1192 
1193  exit:
1194 	blk_mq_unfreeze_queue(lo->lo_queue);
1195 
1196 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1197 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1198 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1199 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1200 		loop_reread_partitions(lo, lo->lo_device);
1201 	}
1202 
1203 	return err;
1204 }
1205 
1206 static int
1207 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1208 {
1209 	struct file *file;
1210 	struct kstat stat;
1211 	int ret;
1212 
1213 	if (lo->lo_state != Lo_bound) {
1214 		mutex_unlock(&lo->lo_ctl_mutex);
1215 		return -ENXIO;
1216 	}
1217 
1218 	memset(info, 0, sizeof(*info));
1219 	info->lo_number = lo->lo_number;
1220 	info->lo_offset = lo->lo_offset;
1221 	info->lo_sizelimit = lo->lo_sizelimit;
1222 	info->lo_flags = lo->lo_flags;
1223 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1224 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1225 	info->lo_encrypt_type =
1226 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1227 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1228 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1229 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1230 		       lo->lo_encrypt_key_size);
1231 	}
1232 
1233 	/* Drop lo_ctl_mutex while we call into the filesystem. */
1234 	file = get_file(lo->lo_backing_file);
1235 	mutex_unlock(&lo->lo_ctl_mutex);
1236 	ret = vfs_getattr(&file->f_path, &stat, STATX_INO,
1237 			  AT_STATX_SYNC_AS_STAT);
1238 	if (!ret) {
1239 		info->lo_device = huge_encode_dev(stat.dev);
1240 		info->lo_inode = stat.ino;
1241 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1242 	}
1243 	fput(file);
1244 	return ret;
1245 }
1246 
1247 static void
1248 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1249 {
1250 	memset(info64, 0, sizeof(*info64));
1251 	info64->lo_number = info->lo_number;
1252 	info64->lo_device = info->lo_device;
1253 	info64->lo_inode = info->lo_inode;
1254 	info64->lo_rdevice = info->lo_rdevice;
1255 	info64->lo_offset = info->lo_offset;
1256 	info64->lo_sizelimit = 0;
1257 	info64->lo_encrypt_type = info->lo_encrypt_type;
1258 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1259 	info64->lo_flags = info->lo_flags;
1260 	info64->lo_init[0] = info->lo_init[0];
1261 	info64->lo_init[1] = info->lo_init[1];
1262 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1263 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1264 	else
1265 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1266 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1267 }
1268 
1269 static int
1270 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1271 {
1272 	memset(info, 0, sizeof(*info));
1273 	info->lo_number = info64->lo_number;
1274 	info->lo_device = info64->lo_device;
1275 	info->lo_inode = info64->lo_inode;
1276 	info->lo_rdevice = info64->lo_rdevice;
1277 	info->lo_offset = info64->lo_offset;
1278 	info->lo_encrypt_type = info64->lo_encrypt_type;
1279 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1280 	info->lo_flags = info64->lo_flags;
1281 	info->lo_init[0] = info64->lo_init[0];
1282 	info->lo_init[1] = info64->lo_init[1];
1283 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1284 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1285 	else
1286 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1287 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1288 
1289 	/* error in case values were truncated */
1290 	if (info->lo_device != info64->lo_device ||
1291 	    info->lo_rdevice != info64->lo_rdevice ||
1292 	    info->lo_inode != info64->lo_inode ||
1293 	    info->lo_offset != info64->lo_offset)
1294 		return -EOVERFLOW;
1295 
1296 	return 0;
1297 }
1298 
1299 static int
1300 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1301 {
1302 	struct loop_info info;
1303 	struct loop_info64 info64;
1304 
1305 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1306 		return -EFAULT;
1307 	loop_info64_from_old(&info, &info64);
1308 	return loop_set_status(lo, &info64);
1309 }
1310 
1311 static int
1312 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1313 {
1314 	struct loop_info64 info64;
1315 
1316 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1317 		return -EFAULT;
1318 	return loop_set_status(lo, &info64);
1319 }
1320 
1321 static int
1322 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1323 	struct loop_info info;
1324 	struct loop_info64 info64;
1325 	int err;
1326 
1327 	if (!arg) {
1328 		mutex_unlock(&lo->lo_ctl_mutex);
1329 		return -EINVAL;
1330 	}
1331 	err = loop_get_status(lo, &info64);
1332 	if (!err)
1333 		err = loop_info64_to_old(&info64, &info);
1334 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1335 		err = -EFAULT;
1336 
1337 	return err;
1338 }
1339 
1340 static int
1341 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1342 	struct loop_info64 info64;
1343 	int err;
1344 
1345 	if (!arg) {
1346 		mutex_unlock(&lo->lo_ctl_mutex);
1347 		return -EINVAL;
1348 	}
1349 	err = loop_get_status(lo, &info64);
1350 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1351 		err = -EFAULT;
1352 
1353 	return err;
1354 }
1355 
1356 static int loop_set_capacity(struct loop_device *lo)
1357 {
1358 	if (unlikely(lo->lo_state != Lo_bound))
1359 		return -ENXIO;
1360 
1361 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1362 }
1363 
1364 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1365 {
1366 	int error = -ENXIO;
1367 	if (lo->lo_state != Lo_bound)
1368 		goto out;
1369 
1370 	__loop_update_dio(lo, !!arg);
1371 	if (lo->use_dio == !!arg)
1372 		return 0;
1373 	error = -EINVAL;
1374  out:
1375 	return error;
1376 }
1377 
1378 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1379 {
1380 	if (lo->lo_state != Lo_bound)
1381 		return -ENXIO;
1382 
1383 	if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1384 		return -EINVAL;
1385 
1386 	blk_mq_freeze_queue(lo->lo_queue);
1387 
1388 	blk_queue_logical_block_size(lo->lo_queue, arg);
1389 	blk_queue_physical_block_size(lo->lo_queue, arg);
1390 	blk_queue_io_min(lo->lo_queue, arg);
1391 	loop_update_dio(lo);
1392 
1393 	blk_mq_unfreeze_queue(lo->lo_queue);
1394 
1395 	return 0;
1396 }
1397 
1398 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1399 	unsigned int cmd, unsigned long arg)
1400 {
1401 	struct loop_device *lo = bdev->bd_disk->private_data;
1402 	int err;
1403 
1404 	err = mutex_lock_killable_nested(&lo->lo_ctl_mutex, 1);
1405 	if (err)
1406 		goto out_unlocked;
1407 
1408 	switch (cmd) {
1409 	case LOOP_SET_FD:
1410 		err = loop_set_fd(lo, mode, bdev, arg);
1411 		break;
1412 	case LOOP_CHANGE_FD:
1413 		err = loop_change_fd(lo, bdev, arg);
1414 		break;
1415 	case LOOP_CLR_FD:
1416 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1417 		err = loop_clr_fd(lo);
1418 		if (!err)
1419 			goto out_unlocked;
1420 		break;
1421 	case LOOP_SET_STATUS:
1422 		err = -EPERM;
1423 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1424 			err = loop_set_status_old(lo,
1425 					(struct loop_info __user *)arg);
1426 		break;
1427 	case LOOP_GET_STATUS:
1428 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1429 		/* loop_get_status() unlocks lo_ctl_mutex */
1430 		goto out_unlocked;
1431 	case LOOP_SET_STATUS64:
1432 		err = -EPERM;
1433 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1434 			err = loop_set_status64(lo,
1435 					(struct loop_info64 __user *) arg);
1436 		break;
1437 	case LOOP_GET_STATUS64:
1438 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1439 		/* loop_get_status() unlocks lo_ctl_mutex */
1440 		goto out_unlocked;
1441 	case LOOP_SET_CAPACITY:
1442 		err = -EPERM;
1443 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1444 			err = loop_set_capacity(lo);
1445 		break;
1446 	case LOOP_SET_DIRECT_IO:
1447 		err = -EPERM;
1448 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1449 			err = loop_set_dio(lo, arg);
1450 		break;
1451 	case LOOP_SET_BLOCK_SIZE:
1452 		err = -EPERM;
1453 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1454 			err = loop_set_block_size(lo, arg);
1455 		break;
1456 	default:
1457 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1458 	}
1459 	mutex_unlock(&lo->lo_ctl_mutex);
1460 
1461 out_unlocked:
1462 	return err;
1463 }
1464 
1465 #ifdef CONFIG_COMPAT
1466 struct compat_loop_info {
1467 	compat_int_t	lo_number;      /* ioctl r/o */
1468 	compat_dev_t	lo_device;      /* ioctl r/o */
1469 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1470 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1471 	compat_int_t	lo_offset;
1472 	compat_int_t	lo_encrypt_type;
1473 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1474 	compat_int_t	lo_flags;       /* ioctl r/o */
1475 	char		lo_name[LO_NAME_SIZE];
1476 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1477 	compat_ulong_t	lo_init[2];
1478 	char		reserved[4];
1479 };
1480 
1481 /*
1482  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1483  * - noinlined to reduce stack space usage in main part of driver
1484  */
1485 static noinline int
1486 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1487 			struct loop_info64 *info64)
1488 {
1489 	struct compat_loop_info info;
1490 
1491 	if (copy_from_user(&info, arg, sizeof(info)))
1492 		return -EFAULT;
1493 
1494 	memset(info64, 0, sizeof(*info64));
1495 	info64->lo_number = info.lo_number;
1496 	info64->lo_device = info.lo_device;
1497 	info64->lo_inode = info.lo_inode;
1498 	info64->lo_rdevice = info.lo_rdevice;
1499 	info64->lo_offset = info.lo_offset;
1500 	info64->lo_sizelimit = 0;
1501 	info64->lo_encrypt_type = info.lo_encrypt_type;
1502 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1503 	info64->lo_flags = info.lo_flags;
1504 	info64->lo_init[0] = info.lo_init[0];
1505 	info64->lo_init[1] = info.lo_init[1];
1506 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1507 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1508 	else
1509 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1510 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1511 	return 0;
1512 }
1513 
1514 /*
1515  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1516  * - noinlined to reduce stack space usage in main part of driver
1517  */
1518 static noinline int
1519 loop_info64_to_compat(const struct loop_info64 *info64,
1520 		      struct compat_loop_info __user *arg)
1521 {
1522 	struct compat_loop_info info;
1523 
1524 	memset(&info, 0, sizeof(info));
1525 	info.lo_number = info64->lo_number;
1526 	info.lo_device = info64->lo_device;
1527 	info.lo_inode = info64->lo_inode;
1528 	info.lo_rdevice = info64->lo_rdevice;
1529 	info.lo_offset = info64->lo_offset;
1530 	info.lo_encrypt_type = info64->lo_encrypt_type;
1531 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1532 	info.lo_flags = info64->lo_flags;
1533 	info.lo_init[0] = info64->lo_init[0];
1534 	info.lo_init[1] = info64->lo_init[1];
1535 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1536 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1537 	else
1538 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1539 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1540 
1541 	/* error in case values were truncated */
1542 	if (info.lo_device != info64->lo_device ||
1543 	    info.lo_rdevice != info64->lo_rdevice ||
1544 	    info.lo_inode != info64->lo_inode ||
1545 	    info.lo_offset != info64->lo_offset ||
1546 	    info.lo_init[0] != info64->lo_init[0] ||
1547 	    info.lo_init[1] != info64->lo_init[1])
1548 		return -EOVERFLOW;
1549 
1550 	if (copy_to_user(arg, &info, sizeof(info)))
1551 		return -EFAULT;
1552 	return 0;
1553 }
1554 
1555 static int
1556 loop_set_status_compat(struct loop_device *lo,
1557 		       const struct compat_loop_info __user *arg)
1558 {
1559 	struct loop_info64 info64;
1560 	int ret;
1561 
1562 	ret = loop_info64_from_compat(arg, &info64);
1563 	if (ret < 0)
1564 		return ret;
1565 	return loop_set_status(lo, &info64);
1566 }
1567 
1568 static int
1569 loop_get_status_compat(struct loop_device *lo,
1570 		       struct compat_loop_info __user *arg)
1571 {
1572 	struct loop_info64 info64;
1573 	int err;
1574 
1575 	if (!arg) {
1576 		mutex_unlock(&lo->lo_ctl_mutex);
1577 		return -EINVAL;
1578 	}
1579 	err = loop_get_status(lo, &info64);
1580 	if (!err)
1581 		err = loop_info64_to_compat(&info64, arg);
1582 	return err;
1583 }
1584 
1585 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1586 			   unsigned int cmd, unsigned long arg)
1587 {
1588 	struct loop_device *lo = bdev->bd_disk->private_data;
1589 	int err;
1590 
1591 	switch(cmd) {
1592 	case LOOP_SET_STATUS:
1593 		err = mutex_lock_killable(&lo->lo_ctl_mutex);
1594 		if (!err) {
1595 			err = loop_set_status_compat(lo,
1596 						     (const struct compat_loop_info __user *)arg);
1597 			mutex_unlock(&lo->lo_ctl_mutex);
1598 		}
1599 		break;
1600 	case LOOP_GET_STATUS:
1601 		err = mutex_lock_killable(&lo->lo_ctl_mutex);
1602 		if (!err) {
1603 			err = loop_get_status_compat(lo,
1604 						     (struct compat_loop_info __user *)arg);
1605 			/* loop_get_status() unlocks lo_ctl_mutex */
1606 		}
1607 		break;
1608 	case LOOP_SET_CAPACITY:
1609 	case LOOP_CLR_FD:
1610 	case LOOP_GET_STATUS64:
1611 	case LOOP_SET_STATUS64:
1612 		arg = (unsigned long) compat_ptr(arg);
1613 		/* fall through */
1614 	case LOOP_SET_FD:
1615 	case LOOP_CHANGE_FD:
1616 	case LOOP_SET_BLOCK_SIZE:
1617 		err = lo_ioctl(bdev, mode, cmd, arg);
1618 		break;
1619 	default:
1620 		err = -ENOIOCTLCMD;
1621 		break;
1622 	}
1623 	return err;
1624 }
1625 #endif
1626 
1627 static int lo_open(struct block_device *bdev, fmode_t mode)
1628 {
1629 	struct loop_device *lo;
1630 	int err = 0;
1631 
1632 	mutex_lock(&loop_index_mutex);
1633 	lo = bdev->bd_disk->private_data;
1634 	if (!lo) {
1635 		err = -ENXIO;
1636 		goto out;
1637 	}
1638 
1639 	atomic_inc(&lo->lo_refcnt);
1640 out:
1641 	mutex_unlock(&loop_index_mutex);
1642 	return err;
1643 }
1644 
1645 static void __lo_release(struct loop_device *lo)
1646 {
1647 	int err;
1648 
1649 	if (atomic_dec_return(&lo->lo_refcnt))
1650 		return;
1651 
1652 	mutex_lock(&lo->lo_ctl_mutex);
1653 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1654 		/*
1655 		 * In autoclear mode, stop the loop thread
1656 		 * and remove configuration after last close.
1657 		 */
1658 		err = loop_clr_fd(lo);
1659 		if (!err)
1660 			return;
1661 	} else if (lo->lo_state == Lo_bound) {
1662 		/*
1663 		 * Otherwise keep thread (if running) and config,
1664 		 * but flush possible ongoing bios in thread.
1665 		 */
1666 		blk_mq_freeze_queue(lo->lo_queue);
1667 		blk_mq_unfreeze_queue(lo->lo_queue);
1668 	}
1669 
1670 	mutex_unlock(&lo->lo_ctl_mutex);
1671 }
1672 
1673 static void lo_release(struct gendisk *disk, fmode_t mode)
1674 {
1675 	mutex_lock(&loop_index_mutex);
1676 	__lo_release(disk->private_data);
1677 	mutex_unlock(&loop_index_mutex);
1678 }
1679 
1680 static const struct block_device_operations lo_fops = {
1681 	.owner =	THIS_MODULE,
1682 	.open =		lo_open,
1683 	.release =	lo_release,
1684 	.ioctl =	lo_ioctl,
1685 #ifdef CONFIG_COMPAT
1686 	.compat_ioctl =	lo_compat_ioctl,
1687 #endif
1688 };
1689 
1690 /*
1691  * And now the modules code and kernel interface.
1692  */
1693 static int max_loop;
1694 module_param(max_loop, int, 0444);
1695 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1696 module_param(max_part, int, 0444);
1697 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1698 MODULE_LICENSE("GPL");
1699 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1700 
1701 int loop_register_transfer(struct loop_func_table *funcs)
1702 {
1703 	unsigned int n = funcs->number;
1704 
1705 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1706 		return -EINVAL;
1707 	xfer_funcs[n] = funcs;
1708 	return 0;
1709 }
1710 
1711 static int unregister_transfer_cb(int id, void *ptr, void *data)
1712 {
1713 	struct loop_device *lo = ptr;
1714 	struct loop_func_table *xfer = data;
1715 
1716 	mutex_lock(&lo->lo_ctl_mutex);
1717 	if (lo->lo_encryption == xfer)
1718 		loop_release_xfer(lo);
1719 	mutex_unlock(&lo->lo_ctl_mutex);
1720 	return 0;
1721 }
1722 
1723 int loop_unregister_transfer(int number)
1724 {
1725 	unsigned int n = number;
1726 	struct loop_func_table *xfer;
1727 
1728 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1729 		return -EINVAL;
1730 
1731 	xfer_funcs[n] = NULL;
1732 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1733 	return 0;
1734 }
1735 
1736 EXPORT_SYMBOL(loop_register_transfer);
1737 EXPORT_SYMBOL(loop_unregister_transfer);
1738 
1739 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1740 		const struct blk_mq_queue_data *bd)
1741 {
1742 	struct request *rq = bd->rq;
1743 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1744 	struct loop_device *lo = rq->q->queuedata;
1745 
1746 	blk_mq_start_request(rq);
1747 
1748 	if (lo->lo_state != Lo_bound)
1749 		return BLK_STS_IOERR;
1750 
1751 	switch (req_op(rq)) {
1752 	case REQ_OP_FLUSH:
1753 	case REQ_OP_DISCARD:
1754 	case REQ_OP_WRITE_ZEROES:
1755 		cmd->use_aio = false;
1756 		break;
1757 	default:
1758 		cmd->use_aio = lo->use_dio;
1759 		break;
1760 	}
1761 
1762 	/* always use the first bio's css */
1763 #ifdef CONFIG_BLK_CGROUP
1764 	if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
1765 		cmd->css = &bio_blkcg(rq->bio)->css;
1766 		css_get(cmd->css);
1767 	} else
1768 #endif
1769 		cmd->css = NULL;
1770 	kthread_queue_work(&lo->worker, &cmd->work);
1771 
1772 	return BLK_STS_OK;
1773 }
1774 
1775 static void loop_handle_cmd(struct loop_cmd *cmd)
1776 {
1777 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1778 	const bool write = op_is_write(req_op(rq));
1779 	struct loop_device *lo = rq->q->queuedata;
1780 	int ret = 0;
1781 
1782 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1783 		ret = -EIO;
1784 		goto failed;
1785 	}
1786 
1787 	ret = do_req_filebacked(lo, rq);
1788  failed:
1789 	/* complete non-aio request */
1790 	if (!cmd->use_aio || ret) {
1791 		cmd->ret = ret ? -EIO : 0;
1792 		blk_mq_complete_request(rq);
1793 	}
1794 }
1795 
1796 static void loop_queue_work(struct kthread_work *work)
1797 {
1798 	struct loop_cmd *cmd =
1799 		container_of(work, struct loop_cmd, work);
1800 
1801 	loop_handle_cmd(cmd);
1802 }
1803 
1804 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1805 		unsigned int hctx_idx, unsigned int numa_node)
1806 {
1807 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1808 
1809 	kthread_init_work(&cmd->work, loop_queue_work);
1810 	return 0;
1811 }
1812 
1813 static const struct blk_mq_ops loop_mq_ops = {
1814 	.queue_rq       = loop_queue_rq,
1815 	.init_request	= loop_init_request,
1816 	.complete	= lo_complete_rq,
1817 };
1818 
1819 static int loop_add(struct loop_device **l, int i)
1820 {
1821 	struct loop_device *lo;
1822 	struct gendisk *disk;
1823 	int err;
1824 
1825 	err = -ENOMEM;
1826 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1827 	if (!lo)
1828 		goto out;
1829 
1830 	lo->lo_state = Lo_unbound;
1831 
1832 	/* allocate id, if @id >= 0, we're requesting that specific id */
1833 	if (i >= 0) {
1834 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1835 		if (err == -ENOSPC)
1836 			err = -EEXIST;
1837 	} else {
1838 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1839 	}
1840 	if (err < 0)
1841 		goto out_free_dev;
1842 	i = err;
1843 
1844 	err = -ENOMEM;
1845 	lo->tag_set.ops = &loop_mq_ops;
1846 	lo->tag_set.nr_hw_queues = 1;
1847 	lo->tag_set.queue_depth = 128;
1848 	lo->tag_set.numa_node = NUMA_NO_NODE;
1849 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1850 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1851 	lo->tag_set.driver_data = lo;
1852 
1853 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1854 	if (err)
1855 		goto out_free_idr;
1856 
1857 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1858 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1859 		err = PTR_ERR(lo->lo_queue);
1860 		goto out_cleanup_tags;
1861 	}
1862 	lo->lo_queue->queuedata = lo;
1863 
1864 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1865 
1866 	/*
1867 	 * By default, we do buffer IO, so it doesn't make sense to enable
1868 	 * merge because the I/O submitted to backing file is handled page by
1869 	 * page. For directio mode, merge does help to dispatch bigger request
1870 	 * to underlayer disk. We will enable merge once directio is enabled.
1871 	 */
1872 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1873 
1874 	err = -ENOMEM;
1875 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1876 	if (!disk)
1877 		goto out_free_queue;
1878 
1879 	/*
1880 	 * Disable partition scanning by default. The in-kernel partition
1881 	 * scanning can be requested individually per-device during its
1882 	 * setup. Userspace can always add and remove partitions from all
1883 	 * devices. The needed partition minors are allocated from the
1884 	 * extended minor space, the main loop device numbers will continue
1885 	 * to match the loop minors, regardless of the number of partitions
1886 	 * used.
1887 	 *
1888 	 * If max_part is given, partition scanning is globally enabled for
1889 	 * all loop devices. The minors for the main loop devices will be
1890 	 * multiples of max_part.
1891 	 *
1892 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1893 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1894 	 * complicated, are too static, inflexible and may surprise
1895 	 * userspace tools. Parameters like this in general should be avoided.
1896 	 */
1897 	if (!part_shift)
1898 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1899 	disk->flags |= GENHD_FL_EXT_DEVT;
1900 	mutex_init(&lo->lo_ctl_mutex);
1901 	atomic_set(&lo->lo_refcnt, 0);
1902 	lo->lo_number		= i;
1903 	spin_lock_init(&lo->lo_lock);
1904 	disk->major		= LOOP_MAJOR;
1905 	disk->first_minor	= i << part_shift;
1906 	disk->fops		= &lo_fops;
1907 	disk->private_data	= lo;
1908 	disk->queue		= lo->lo_queue;
1909 	sprintf(disk->disk_name, "loop%d", i);
1910 	add_disk(disk);
1911 	*l = lo;
1912 	return lo->lo_number;
1913 
1914 out_free_queue:
1915 	blk_cleanup_queue(lo->lo_queue);
1916 out_cleanup_tags:
1917 	blk_mq_free_tag_set(&lo->tag_set);
1918 out_free_idr:
1919 	idr_remove(&loop_index_idr, i);
1920 out_free_dev:
1921 	kfree(lo);
1922 out:
1923 	return err;
1924 }
1925 
1926 static void loop_remove(struct loop_device *lo)
1927 {
1928 	del_gendisk(lo->lo_disk);
1929 	blk_cleanup_queue(lo->lo_queue);
1930 	blk_mq_free_tag_set(&lo->tag_set);
1931 	put_disk(lo->lo_disk);
1932 	kfree(lo);
1933 }
1934 
1935 static int find_free_cb(int id, void *ptr, void *data)
1936 {
1937 	struct loop_device *lo = ptr;
1938 	struct loop_device **l = data;
1939 
1940 	if (lo->lo_state == Lo_unbound) {
1941 		*l = lo;
1942 		return 1;
1943 	}
1944 	return 0;
1945 }
1946 
1947 static int loop_lookup(struct loop_device **l, int i)
1948 {
1949 	struct loop_device *lo;
1950 	int ret = -ENODEV;
1951 
1952 	if (i < 0) {
1953 		int err;
1954 
1955 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1956 		if (err == 1) {
1957 			*l = lo;
1958 			ret = lo->lo_number;
1959 		}
1960 		goto out;
1961 	}
1962 
1963 	/* lookup and return a specific i */
1964 	lo = idr_find(&loop_index_idr, i);
1965 	if (lo) {
1966 		*l = lo;
1967 		ret = lo->lo_number;
1968 	}
1969 out:
1970 	return ret;
1971 }
1972 
1973 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1974 {
1975 	struct loop_device *lo;
1976 	struct kobject *kobj;
1977 	int err;
1978 
1979 	mutex_lock(&loop_index_mutex);
1980 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1981 	if (err < 0)
1982 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1983 	if (err < 0)
1984 		kobj = NULL;
1985 	else
1986 		kobj = get_disk_and_module(lo->lo_disk);
1987 	mutex_unlock(&loop_index_mutex);
1988 
1989 	*part = 0;
1990 	return kobj;
1991 }
1992 
1993 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1994 			       unsigned long parm)
1995 {
1996 	struct loop_device *lo;
1997 	int ret = -ENOSYS;
1998 
1999 	mutex_lock(&loop_index_mutex);
2000 	switch (cmd) {
2001 	case LOOP_CTL_ADD:
2002 		ret = loop_lookup(&lo, parm);
2003 		if (ret >= 0) {
2004 			ret = -EEXIST;
2005 			break;
2006 		}
2007 		ret = loop_add(&lo, parm);
2008 		break;
2009 	case LOOP_CTL_REMOVE:
2010 		ret = loop_lookup(&lo, parm);
2011 		if (ret < 0)
2012 			break;
2013 		ret = mutex_lock_killable(&lo->lo_ctl_mutex);
2014 		if (ret)
2015 			break;
2016 		if (lo->lo_state != Lo_unbound) {
2017 			ret = -EBUSY;
2018 			mutex_unlock(&lo->lo_ctl_mutex);
2019 			break;
2020 		}
2021 		if (atomic_read(&lo->lo_refcnt) > 0) {
2022 			ret = -EBUSY;
2023 			mutex_unlock(&lo->lo_ctl_mutex);
2024 			break;
2025 		}
2026 		lo->lo_disk->private_data = NULL;
2027 		mutex_unlock(&lo->lo_ctl_mutex);
2028 		idr_remove(&loop_index_idr, lo->lo_number);
2029 		loop_remove(lo);
2030 		break;
2031 	case LOOP_CTL_GET_FREE:
2032 		ret = loop_lookup(&lo, -1);
2033 		if (ret >= 0)
2034 			break;
2035 		ret = loop_add(&lo, -1);
2036 	}
2037 	mutex_unlock(&loop_index_mutex);
2038 
2039 	return ret;
2040 }
2041 
2042 static const struct file_operations loop_ctl_fops = {
2043 	.open		= nonseekable_open,
2044 	.unlocked_ioctl	= loop_control_ioctl,
2045 	.compat_ioctl	= loop_control_ioctl,
2046 	.owner		= THIS_MODULE,
2047 	.llseek		= noop_llseek,
2048 };
2049 
2050 static struct miscdevice loop_misc = {
2051 	.minor		= LOOP_CTRL_MINOR,
2052 	.name		= "loop-control",
2053 	.fops		= &loop_ctl_fops,
2054 };
2055 
2056 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2057 MODULE_ALIAS("devname:loop-control");
2058 
2059 static int __init loop_init(void)
2060 {
2061 	int i, nr;
2062 	unsigned long range;
2063 	struct loop_device *lo;
2064 	int err;
2065 
2066 	part_shift = 0;
2067 	if (max_part > 0) {
2068 		part_shift = fls(max_part);
2069 
2070 		/*
2071 		 * Adjust max_part according to part_shift as it is exported
2072 		 * to user space so that user can decide correct minor number
2073 		 * if [s]he want to create more devices.
2074 		 *
2075 		 * Note that -1 is required because partition 0 is reserved
2076 		 * for the whole disk.
2077 		 */
2078 		max_part = (1UL << part_shift) - 1;
2079 	}
2080 
2081 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2082 		err = -EINVAL;
2083 		goto err_out;
2084 	}
2085 
2086 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2087 		err = -EINVAL;
2088 		goto err_out;
2089 	}
2090 
2091 	/*
2092 	 * If max_loop is specified, create that many devices upfront.
2093 	 * This also becomes a hard limit. If max_loop is not specified,
2094 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2095 	 * init time. Loop devices can be requested on-demand with the
2096 	 * /dev/loop-control interface, or be instantiated by accessing
2097 	 * a 'dead' device node.
2098 	 */
2099 	if (max_loop) {
2100 		nr = max_loop;
2101 		range = max_loop << part_shift;
2102 	} else {
2103 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2104 		range = 1UL << MINORBITS;
2105 	}
2106 
2107 	err = misc_register(&loop_misc);
2108 	if (err < 0)
2109 		goto err_out;
2110 
2111 
2112 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2113 		err = -EIO;
2114 		goto misc_out;
2115 	}
2116 
2117 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2118 				  THIS_MODULE, loop_probe, NULL, NULL);
2119 
2120 	/* pre-create number of devices given by config or max_loop */
2121 	mutex_lock(&loop_index_mutex);
2122 	for (i = 0; i < nr; i++)
2123 		loop_add(&lo, i);
2124 	mutex_unlock(&loop_index_mutex);
2125 
2126 	printk(KERN_INFO "loop: module loaded\n");
2127 	return 0;
2128 
2129 misc_out:
2130 	misc_deregister(&loop_misc);
2131 err_out:
2132 	return err;
2133 }
2134 
2135 static int loop_exit_cb(int id, void *ptr, void *data)
2136 {
2137 	struct loop_device *lo = ptr;
2138 
2139 	loop_remove(lo);
2140 	return 0;
2141 }
2142 
2143 static void __exit loop_exit(void)
2144 {
2145 	unsigned long range;
2146 
2147 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2148 
2149 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2150 	idr_destroy(&loop_index_idr);
2151 
2152 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2153 	unregister_blkdev(LOOP_MAJOR, "loop");
2154 
2155 	misc_deregister(&loop_misc);
2156 }
2157 
2158 module_init(loop_init);
2159 module_exit(loop_exit);
2160 
2161 #ifndef MODULE
2162 static int __init max_loop_setup(char *str)
2163 {
2164 	max_loop = simple_strtol(str, NULL, 0);
2165 	return 1;
2166 }
2167 
2168 __setup("max_loop=", max_loop_setup);
2169 #endif
2170