xref: /openbmc/linux/drivers/block/loop.c (revision c3710770)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 
81 #include "loop.h"
82 
83 #include <linux/uaccess.h>
84 
85 static DEFINE_IDR(loop_index_idr);
86 static DEFINE_MUTEX(loop_ctl_mutex);
87 
88 static int max_part;
89 static int part_shift;
90 
91 static int transfer_xor(struct loop_device *lo, int cmd,
92 			struct page *raw_page, unsigned raw_off,
93 			struct page *loop_page, unsigned loop_off,
94 			int size, sector_t real_block)
95 {
96 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
97 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
98 	char *in, *out, *key;
99 	int i, keysize;
100 
101 	if (cmd == READ) {
102 		in = raw_buf;
103 		out = loop_buf;
104 	} else {
105 		in = loop_buf;
106 		out = raw_buf;
107 	}
108 
109 	key = lo->lo_encrypt_key;
110 	keysize = lo->lo_encrypt_key_size;
111 	for (i = 0; i < size; i++)
112 		*out++ = *in++ ^ key[(i & 511) % keysize];
113 
114 	kunmap_atomic(loop_buf);
115 	kunmap_atomic(raw_buf);
116 	cond_resched();
117 	return 0;
118 }
119 
120 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
121 {
122 	if (unlikely(info->lo_encrypt_key_size <= 0))
123 		return -EINVAL;
124 	return 0;
125 }
126 
127 static struct loop_func_table none_funcs = {
128 	.number = LO_CRYPT_NONE,
129 };
130 
131 static struct loop_func_table xor_funcs = {
132 	.number = LO_CRYPT_XOR,
133 	.transfer = transfer_xor,
134 	.init = xor_init
135 };
136 
137 /* xfer_funcs[0] is special - its release function is never called */
138 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
139 	&none_funcs,
140 	&xor_funcs
141 };
142 
143 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
144 {
145 	loff_t loopsize;
146 
147 	/* Compute loopsize in bytes */
148 	loopsize = i_size_read(file->f_mapping->host);
149 	if (offset > 0)
150 		loopsize -= offset;
151 	/* offset is beyond i_size, weird but possible */
152 	if (loopsize < 0)
153 		return 0;
154 
155 	if (sizelimit > 0 && sizelimit < loopsize)
156 		loopsize = sizelimit;
157 	/*
158 	 * Unfortunately, if we want to do I/O on the device,
159 	 * the number of 512-byte sectors has to fit into a sector_t.
160 	 */
161 	return loopsize >> 9;
162 }
163 
164 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
165 {
166 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
167 }
168 
169 static void __loop_update_dio(struct loop_device *lo, bool dio)
170 {
171 	struct file *file = lo->lo_backing_file;
172 	struct address_space *mapping = file->f_mapping;
173 	struct inode *inode = mapping->host;
174 	unsigned short sb_bsize = 0;
175 	unsigned dio_align = 0;
176 	bool use_dio;
177 
178 	if (inode->i_sb->s_bdev) {
179 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
180 		dio_align = sb_bsize - 1;
181 	}
182 
183 	/*
184 	 * We support direct I/O only if lo_offset is aligned with the
185 	 * logical I/O size of backing device, and the logical block
186 	 * size of loop is bigger than the backing device's and the loop
187 	 * needn't transform transfer.
188 	 *
189 	 * TODO: the above condition may be loosed in the future, and
190 	 * direct I/O may be switched runtime at that time because most
191 	 * of requests in sane applications should be PAGE_SIZE aligned
192 	 */
193 	if (dio) {
194 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
195 				!(lo->lo_offset & dio_align) &&
196 				mapping->a_ops->direct_IO &&
197 				!lo->transfer)
198 			use_dio = true;
199 		else
200 			use_dio = false;
201 	} else {
202 		use_dio = false;
203 	}
204 
205 	if (lo->use_dio == use_dio)
206 		return;
207 
208 	/* flush dirty pages before changing direct IO */
209 	vfs_fsync(file, 0);
210 
211 	/*
212 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
213 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
214 	 * will get updated by ioctl(LOOP_GET_STATUS)
215 	 */
216 	blk_mq_freeze_queue(lo->lo_queue);
217 	lo->use_dio = use_dio;
218 	if (use_dio) {
219 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
220 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
221 	} else {
222 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
223 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
224 	}
225 	blk_mq_unfreeze_queue(lo->lo_queue);
226 }
227 
228 static int
229 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
230 {
231 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
232 	sector_t x = (sector_t)size;
233 	struct block_device *bdev = lo->lo_device;
234 
235 	if (unlikely((loff_t)x != size))
236 		return -EFBIG;
237 	if (lo->lo_offset != offset)
238 		lo->lo_offset = offset;
239 	if (lo->lo_sizelimit != sizelimit)
240 		lo->lo_sizelimit = sizelimit;
241 	set_capacity(lo->lo_disk, x);
242 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
243 	/* let user-space know about the new size */
244 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
245 	return 0;
246 }
247 
248 static inline int
249 lo_do_transfer(struct loop_device *lo, int cmd,
250 	       struct page *rpage, unsigned roffs,
251 	       struct page *lpage, unsigned loffs,
252 	       int size, sector_t rblock)
253 {
254 	int ret;
255 
256 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
257 	if (likely(!ret))
258 		return 0;
259 
260 	printk_ratelimited(KERN_ERR
261 		"loop: Transfer error at byte offset %llu, length %i.\n",
262 		(unsigned long long)rblock << 9, size);
263 	return ret;
264 }
265 
266 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
267 {
268 	struct iov_iter i;
269 	ssize_t bw;
270 
271 	iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
272 
273 	file_start_write(file);
274 	bw = vfs_iter_write(file, &i, ppos, 0);
275 	file_end_write(file);
276 
277 	if (likely(bw ==  bvec->bv_len))
278 		return 0;
279 
280 	printk_ratelimited(KERN_ERR
281 		"loop: Write error at byte offset %llu, length %i.\n",
282 		(unsigned long long)*ppos, bvec->bv_len);
283 	if (bw >= 0)
284 		bw = -EIO;
285 	return bw;
286 }
287 
288 static int lo_write_simple(struct loop_device *lo, struct request *rq,
289 		loff_t pos)
290 {
291 	struct bio_vec bvec;
292 	struct req_iterator iter;
293 	int ret = 0;
294 
295 	rq_for_each_segment(bvec, rq, iter) {
296 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
297 		if (ret < 0)
298 			break;
299 		cond_resched();
300 	}
301 
302 	return ret;
303 }
304 
305 /*
306  * This is the slow, transforming version that needs to double buffer the
307  * data as it cannot do the transformations in place without having direct
308  * access to the destination pages of the backing file.
309  */
310 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
311 		loff_t pos)
312 {
313 	struct bio_vec bvec, b;
314 	struct req_iterator iter;
315 	struct page *page;
316 	int ret = 0;
317 
318 	page = alloc_page(GFP_NOIO);
319 	if (unlikely(!page))
320 		return -ENOMEM;
321 
322 	rq_for_each_segment(bvec, rq, iter) {
323 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
324 			bvec.bv_offset, bvec.bv_len, pos >> 9);
325 		if (unlikely(ret))
326 			break;
327 
328 		b.bv_page = page;
329 		b.bv_offset = 0;
330 		b.bv_len = bvec.bv_len;
331 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
332 		if (ret < 0)
333 			break;
334 	}
335 
336 	__free_page(page);
337 	return ret;
338 }
339 
340 static int lo_read_simple(struct loop_device *lo, struct request *rq,
341 		loff_t pos)
342 {
343 	struct bio_vec bvec;
344 	struct req_iterator iter;
345 	struct iov_iter i;
346 	ssize_t len;
347 
348 	rq_for_each_segment(bvec, rq, iter) {
349 		iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
350 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
351 		if (len < 0)
352 			return len;
353 
354 		flush_dcache_page(bvec.bv_page);
355 
356 		if (len != bvec.bv_len) {
357 			struct bio *bio;
358 
359 			__rq_for_each_bio(bio, rq)
360 				zero_fill_bio(bio);
361 			break;
362 		}
363 		cond_resched();
364 	}
365 
366 	return 0;
367 }
368 
369 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
370 		loff_t pos)
371 {
372 	struct bio_vec bvec, b;
373 	struct req_iterator iter;
374 	struct iov_iter i;
375 	struct page *page;
376 	ssize_t len;
377 	int ret = 0;
378 
379 	page = alloc_page(GFP_NOIO);
380 	if (unlikely(!page))
381 		return -ENOMEM;
382 
383 	rq_for_each_segment(bvec, rq, iter) {
384 		loff_t offset = pos;
385 
386 		b.bv_page = page;
387 		b.bv_offset = 0;
388 		b.bv_len = bvec.bv_len;
389 
390 		iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
391 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
392 		if (len < 0) {
393 			ret = len;
394 			goto out_free_page;
395 		}
396 
397 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
398 			bvec.bv_offset, len, offset >> 9);
399 		if (ret)
400 			goto out_free_page;
401 
402 		flush_dcache_page(bvec.bv_page);
403 
404 		if (len != bvec.bv_len) {
405 			struct bio *bio;
406 
407 			__rq_for_each_bio(bio, rq)
408 				zero_fill_bio(bio);
409 			break;
410 		}
411 	}
412 
413 	ret = 0;
414 out_free_page:
415 	__free_page(page);
416 	return ret;
417 }
418 
419 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
420 {
421 	/*
422 	 * We use punch hole to reclaim the free space used by the
423 	 * image a.k.a. discard. However we do not support discard if
424 	 * encryption is enabled, because it may give an attacker
425 	 * useful information.
426 	 */
427 	struct file *file = lo->lo_backing_file;
428 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
429 	int ret;
430 
431 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
432 		ret = -EOPNOTSUPP;
433 		goto out;
434 	}
435 
436 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
437 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
438 		ret = -EIO;
439  out:
440 	return ret;
441 }
442 
443 static int lo_req_flush(struct loop_device *lo, struct request *rq)
444 {
445 	struct file *file = lo->lo_backing_file;
446 	int ret = vfs_fsync(file, 0);
447 	if (unlikely(ret && ret != -EINVAL))
448 		ret = -EIO;
449 
450 	return ret;
451 }
452 
453 static void lo_complete_rq(struct request *rq)
454 {
455 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
456 	blk_status_t ret = BLK_STS_OK;
457 
458 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
459 	    req_op(rq) != REQ_OP_READ) {
460 		if (cmd->ret < 0)
461 			ret = BLK_STS_IOERR;
462 		goto end_io;
463 	}
464 
465 	/*
466 	 * Short READ - if we got some data, advance our request and
467 	 * retry it. If we got no data, end the rest with EIO.
468 	 */
469 	if (cmd->ret) {
470 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
471 		cmd->ret = 0;
472 		blk_mq_requeue_request(rq, true);
473 	} else {
474 		if (cmd->use_aio) {
475 			struct bio *bio = rq->bio;
476 
477 			while (bio) {
478 				zero_fill_bio(bio);
479 				bio = bio->bi_next;
480 			}
481 		}
482 		ret = BLK_STS_IOERR;
483 end_io:
484 		blk_mq_end_request(rq, ret);
485 	}
486 }
487 
488 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
489 {
490 	struct request *rq = blk_mq_rq_from_pdu(cmd);
491 
492 	if (!atomic_dec_and_test(&cmd->ref))
493 		return;
494 	kfree(cmd->bvec);
495 	cmd->bvec = NULL;
496 	blk_mq_complete_request(rq);
497 }
498 
499 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
500 {
501 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
502 
503 	if (cmd->css)
504 		css_put(cmd->css);
505 	cmd->ret = ret;
506 	lo_rw_aio_do_completion(cmd);
507 }
508 
509 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
510 		     loff_t pos, bool rw)
511 {
512 	struct iov_iter iter;
513 	struct bio_vec *bvec;
514 	struct request *rq = blk_mq_rq_from_pdu(cmd);
515 	struct bio *bio = rq->bio;
516 	struct file *file = lo->lo_backing_file;
517 	unsigned int offset;
518 	int segments = 0;
519 	int ret;
520 
521 	if (rq->bio != rq->biotail) {
522 		struct req_iterator iter;
523 		struct bio_vec tmp;
524 
525 		__rq_for_each_bio(bio, rq)
526 			segments += bio_segments(bio);
527 		bvec = kmalloc_array(segments, sizeof(struct bio_vec),
528 				     GFP_NOIO);
529 		if (!bvec)
530 			return -EIO;
531 		cmd->bvec = bvec;
532 
533 		/*
534 		 * The bios of the request may be started from the middle of
535 		 * the 'bvec' because of bio splitting, so we can't directly
536 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
537 		 * API will take care of all details for us.
538 		 */
539 		rq_for_each_segment(tmp, rq, iter) {
540 			*bvec = tmp;
541 			bvec++;
542 		}
543 		bvec = cmd->bvec;
544 		offset = 0;
545 	} else {
546 		/*
547 		 * Same here, this bio may be started from the middle of the
548 		 * 'bvec' because of bio splitting, so offset from the bvec
549 		 * must be passed to iov iterator
550 		 */
551 		offset = bio->bi_iter.bi_bvec_done;
552 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
553 		segments = bio_segments(bio);
554 	}
555 	atomic_set(&cmd->ref, 2);
556 
557 	iov_iter_bvec(&iter, rw, bvec, segments, blk_rq_bytes(rq));
558 	iter.iov_offset = offset;
559 
560 	cmd->iocb.ki_pos = pos;
561 	cmd->iocb.ki_filp = file;
562 	cmd->iocb.ki_complete = lo_rw_aio_complete;
563 	cmd->iocb.ki_flags = IOCB_DIRECT;
564 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
565 	if (cmd->css)
566 		kthread_associate_blkcg(cmd->css);
567 
568 	if (rw == WRITE)
569 		ret = call_write_iter(file, &cmd->iocb, &iter);
570 	else
571 		ret = call_read_iter(file, &cmd->iocb, &iter);
572 
573 	lo_rw_aio_do_completion(cmd);
574 	kthread_associate_blkcg(NULL);
575 
576 	if (ret != -EIOCBQUEUED)
577 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
578 	return 0;
579 }
580 
581 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
582 {
583 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
584 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
585 
586 	/*
587 	 * lo_write_simple and lo_read_simple should have been covered
588 	 * by io submit style function like lo_rw_aio(), one blocker
589 	 * is that lo_read_simple() need to call flush_dcache_page after
590 	 * the page is written from kernel, and it isn't easy to handle
591 	 * this in io submit style function which submits all segments
592 	 * of the req at one time. And direct read IO doesn't need to
593 	 * run flush_dcache_page().
594 	 */
595 	switch (req_op(rq)) {
596 	case REQ_OP_FLUSH:
597 		return lo_req_flush(lo, rq);
598 	case REQ_OP_DISCARD:
599 	case REQ_OP_WRITE_ZEROES:
600 		return lo_discard(lo, rq, pos);
601 	case REQ_OP_WRITE:
602 		if (lo->transfer)
603 			return lo_write_transfer(lo, rq, pos);
604 		else if (cmd->use_aio)
605 			return lo_rw_aio(lo, cmd, pos, WRITE);
606 		else
607 			return lo_write_simple(lo, rq, pos);
608 	case REQ_OP_READ:
609 		if (lo->transfer)
610 			return lo_read_transfer(lo, rq, pos);
611 		else if (cmd->use_aio)
612 			return lo_rw_aio(lo, cmd, pos, READ);
613 		else
614 			return lo_read_simple(lo, rq, pos);
615 	default:
616 		WARN_ON_ONCE(1);
617 		return -EIO;
618 		break;
619 	}
620 }
621 
622 static inline void loop_update_dio(struct loop_device *lo)
623 {
624 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
625 			lo->use_dio);
626 }
627 
628 static void loop_reread_partitions(struct loop_device *lo,
629 				   struct block_device *bdev)
630 {
631 	int rc;
632 
633 	/*
634 	 * bd_mutex has been held already in release path, so don't
635 	 * acquire it if this function is called in such case.
636 	 *
637 	 * If the reread partition isn't from release path, lo_refcnt
638 	 * must be at least one and it can only become zero when the
639 	 * current holder is released.
640 	 */
641 	if (!atomic_read(&lo->lo_refcnt))
642 		rc = __blkdev_reread_part(bdev);
643 	else
644 		rc = blkdev_reread_part(bdev);
645 	if (rc)
646 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
647 			__func__, lo->lo_number, lo->lo_file_name, rc);
648 }
649 
650 static inline int is_loop_device(struct file *file)
651 {
652 	struct inode *i = file->f_mapping->host;
653 
654 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
655 }
656 
657 static int loop_validate_file(struct file *file, struct block_device *bdev)
658 {
659 	struct inode	*inode = file->f_mapping->host;
660 	struct file	*f = file;
661 
662 	/* Avoid recursion */
663 	while (is_loop_device(f)) {
664 		struct loop_device *l;
665 
666 		if (f->f_mapping->host->i_bdev == bdev)
667 			return -EBADF;
668 
669 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
670 		if (l->lo_state == Lo_unbound) {
671 			return -EINVAL;
672 		}
673 		f = l->lo_backing_file;
674 	}
675 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
676 		return -EINVAL;
677 	return 0;
678 }
679 
680 /*
681  * loop_change_fd switched the backing store of a loopback device to
682  * a new file. This is useful for operating system installers to free up
683  * the original file and in High Availability environments to switch to
684  * an alternative location for the content in case of server meltdown.
685  * This can only work if the loop device is used read-only, and if the
686  * new backing store is the same size and type as the old backing store.
687  */
688 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
689 			  unsigned int arg)
690 {
691 	struct file	*file, *old_file;
692 	int		error;
693 
694 	error = mutex_lock_killable_nested(&loop_ctl_mutex, 1);
695 	if (error)
696 		return error;
697 	error = -ENXIO;
698 	if (lo->lo_state != Lo_bound)
699 		goto out_unlock;
700 
701 	/* the loop device has to be read-only */
702 	error = -EINVAL;
703 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
704 		goto out_unlock;
705 
706 	error = -EBADF;
707 	file = fget(arg);
708 	if (!file)
709 		goto out_unlock;
710 
711 	error = loop_validate_file(file, bdev);
712 	if (error)
713 		goto out_putf;
714 
715 	old_file = lo->lo_backing_file;
716 
717 	error = -EINVAL;
718 
719 	/* size of the new backing store needs to be the same */
720 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
721 		goto out_putf;
722 
723 	/* and ... switch */
724 	blk_mq_freeze_queue(lo->lo_queue);
725 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
726 	lo->lo_backing_file = file;
727 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
728 	mapping_set_gfp_mask(file->f_mapping,
729 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
730 	loop_update_dio(lo);
731 	blk_mq_unfreeze_queue(lo->lo_queue);
732 
733 	fput(old_file);
734 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
735 		loop_reread_partitions(lo, bdev);
736 	mutex_unlock(&loop_ctl_mutex);
737 	return 0;
738 
739 out_putf:
740 	fput(file);
741 out_unlock:
742 	mutex_unlock(&loop_ctl_mutex);
743 	return error;
744 }
745 
746 /* loop sysfs attributes */
747 
748 static ssize_t loop_attr_show(struct device *dev, char *page,
749 			      ssize_t (*callback)(struct loop_device *, char *))
750 {
751 	struct gendisk *disk = dev_to_disk(dev);
752 	struct loop_device *lo = disk->private_data;
753 
754 	return callback(lo, page);
755 }
756 
757 #define LOOP_ATTR_RO(_name)						\
758 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
759 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
760 				struct device_attribute *attr, char *b)	\
761 {									\
762 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
763 }									\
764 static struct device_attribute loop_attr_##_name =			\
765 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
766 
767 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
768 {
769 	ssize_t ret;
770 	char *p = NULL;
771 
772 	spin_lock_irq(&lo->lo_lock);
773 	if (lo->lo_backing_file)
774 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
775 	spin_unlock_irq(&lo->lo_lock);
776 
777 	if (IS_ERR_OR_NULL(p))
778 		ret = PTR_ERR(p);
779 	else {
780 		ret = strlen(p);
781 		memmove(buf, p, ret);
782 		buf[ret++] = '\n';
783 		buf[ret] = 0;
784 	}
785 
786 	return ret;
787 }
788 
789 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
790 {
791 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
792 }
793 
794 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
795 {
796 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
797 }
798 
799 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
800 {
801 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
802 
803 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
804 }
805 
806 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
807 {
808 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
809 
810 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
811 }
812 
813 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
814 {
815 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
816 
817 	return sprintf(buf, "%s\n", dio ? "1" : "0");
818 }
819 
820 LOOP_ATTR_RO(backing_file);
821 LOOP_ATTR_RO(offset);
822 LOOP_ATTR_RO(sizelimit);
823 LOOP_ATTR_RO(autoclear);
824 LOOP_ATTR_RO(partscan);
825 LOOP_ATTR_RO(dio);
826 
827 static struct attribute *loop_attrs[] = {
828 	&loop_attr_backing_file.attr,
829 	&loop_attr_offset.attr,
830 	&loop_attr_sizelimit.attr,
831 	&loop_attr_autoclear.attr,
832 	&loop_attr_partscan.attr,
833 	&loop_attr_dio.attr,
834 	NULL,
835 };
836 
837 static struct attribute_group loop_attribute_group = {
838 	.name = "loop",
839 	.attrs= loop_attrs,
840 };
841 
842 static void loop_sysfs_init(struct loop_device *lo)
843 {
844 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
845 						&loop_attribute_group);
846 }
847 
848 static void loop_sysfs_exit(struct loop_device *lo)
849 {
850 	if (lo->sysfs_inited)
851 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
852 				   &loop_attribute_group);
853 }
854 
855 static void loop_config_discard(struct loop_device *lo)
856 {
857 	struct file *file = lo->lo_backing_file;
858 	struct inode *inode = file->f_mapping->host;
859 	struct request_queue *q = lo->lo_queue;
860 
861 	/*
862 	 * We use punch hole to reclaim the free space used by the
863 	 * image a.k.a. discard. However we do not support discard if
864 	 * encryption is enabled, because it may give an attacker
865 	 * useful information.
866 	 */
867 	if ((!file->f_op->fallocate) ||
868 	    lo->lo_encrypt_key_size) {
869 		q->limits.discard_granularity = 0;
870 		q->limits.discard_alignment = 0;
871 		blk_queue_max_discard_sectors(q, 0);
872 		blk_queue_max_write_zeroes_sectors(q, 0);
873 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
874 		return;
875 	}
876 
877 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
878 	q->limits.discard_alignment = 0;
879 
880 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
881 	blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
882 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
883 }
884 
885 static void loop_unprepare_queue(struct loop_device *lo)
886 {
887 	kthread_flush_worker(&lo->worker);
888 	kthread_stop(lo->worker_task);
889 }
890 
891 static int loop_kthread_worker_fn(void *worker_ptr)
892 {
893 	current->flags |= PF_LESS_THROTTLE;
894 	return kthread_worker_fn(worker_ptr);
895 }
896 
897 static int loop_prepare_queue(struct loop_device *lo)
898 {
899 	kthread_init_worker(&lo->worker);
900 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
901 			&lo->worker, "loop%d", lo->lo_number);
902 	if (IS_ERR(lo->worker_task))
903 		return -ENOMEM;
904 	set_user_nice(lo->worker_task, MIN_NICE);
905 	return 0;
906 }
907 
908 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
909 		       struct block_device *bdev, unsigned int arg)
910 {
911 	struct file	*file;
912 	struct inode	*inode;
913 	struct address_space *mapping;
914 	int		lo_flags = 0;
915 	int		error;
916 	loff_t		size;
917 
918 	/* This is safe, since we have a reference from open(). */
919 	__module_get(THIS_MODULE);
920 
921 	error = -EBADF;
922 	file = fget(arg);
923 	if (!file)
924 		goto out;
925 
926 	error = mutex_lock_killable_nested(&loop_ctl_mutex, 1);
927 	if (error)
928 		goto out_putf;
929 
930 	error = -EBUSY;
931 	if (lo->lo_state != Lo_unbound)
932 		goto out_unlock;
933 
934 	error = loop_validate_file(file, bdev);
935 	if (error)
936 		goto out_unlock;
937 
938 	mapping = file->f_mapping;
939 	inode = mapping->host;
940 
941 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
942 	    !file->f_op->write_iter)
943 		lo_flags |= LO_FLAGS_READ_ONLY;
944 
945 	error = -EFBIG;
946 	size = get_loop_size(lo, file);
947 	if ((loff_t)(sector_t)size != size)
948 		goto out_unlock;
949 	error = loop_prepare_queue(lo);
950 	if (error)
951 		goto out_unlock;
952 
953 	error = 0;
954 
955 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
956 
957 	lo->use_dio = false;
958 	lo->lo_device = bdev;
959 	lo->lo_flags = lo_flags;
960 	lo->lo_backing_file = file;
961 	lo->transfer = NULL;
962 	lo->ioctl = NULL;
963 	lo->lo_sizelimit = 0;
964 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
965 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
966 
967 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
968 		blk_queue_write_cache(lo->lo_queue, true, false);
969 
970 	loop_update_dio(lo);
971 	set_capacity(lo->lo_disk, size);
972 	bd_set_size(bdev, size << 9);
973 	loop_sysfs_init(lo);
974 	/* let user-space know about the new size */
975 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
976 
977 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
978 		      block_size(inode->i_bdev) : PAGE_SIZE);
979 
980 	lo->lo_state = Lo_bound;
981 	if (part_shift)
982 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
983 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
984 		loop_reread_partitions(lo, bdev);
985 
986 	/* Grab the block_device to prevent its destruction after we
987 	 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
988 	 */
989 	bdgrab(bdev);
990 	mutex_unlock(&loop_ctl_mutex);
991 	return 0;
992 
993 out_unlock:
994 	mutex_unlock(&loop_ctl_mutex);
995 out_putf:
996 	fput(file);
997 out:
998 	/* This is safe: open() is still holding a reference. */
999 	module_put(THIS_MODULE);
1000 	return error;
1001 }
1002 
1003 static int
1004 loop_release_xfer(struct loop_device *lo)
1005 {
1006 	int err = 0;
1007 	struct loop_func_table *xfer = lo->lo_encryption;
1008 
1009 	if (xfer) {
1010 		if (xfer->release)
1011 			err = xfer->release(lo);
1012 		lo->transfer = NULL;
1013 		lo->lo_encryption = NULL;
1014 		module_put(xfer->owner);
1015 	}
1016 	return err;
1017 }
1018 
1019 static int
1020 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1021 	       const struct loop_info64 *i)
1022 {
1023 	int err = 0;
1024 
1025 	if (xfer) {
1026 		struct module *owner = xfer->owner;
1027 
1028 		if (!try_module_get(owner))
1029 			return -EINVAL;
1030 		if (xfer->init)
1031 			err = xfer->init(lo, i);
1032 		if (err)
1033 			module_put(owner);
1034 		else
1035 			lo->lo_encryption = xfer;
1036 	}
1037 	return err;
1038 }
1039 
1040 static int __loop_clr_fd(struct loop_device *lo)
1041 {
1042 	struct file *filp = NULL;
1043 	gfp_t gfp = lo->old_gfp_mask;
1044 	struct block_device *bdev = lo->lo_device;
1045 	int err = 0;
1046 
1047 	mutex_lock(&loop_ctl_mutex);
1048 	if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1049 		err = -ENXIO;
1050 		goto out_unlock;
1051 	}
1052 
1053 	filp = lo->lo_backing_file;
1054 	if (filp == NULL) {
1055 		err = -EINVAL;
1056 		goto out_unlock;
1057 	}
1058 
1059 	/* freeze request queue during the transition */
1060 	blk_mq_freeze_queue(lo->lo_queue);
1061 
1062 	spin_lock_irq(&lo->lo_lock);
1063 	lo->lo_backing_file = NULL;
1064 	spin_unlock_irq(&lo->lo_lock);
1065 
1066 	loop_release_xfer(lo);
1067 	lo->transfer = NULL;
1068 	lo->ioctl = NULL;
1069 	lo->lo_device = NULL;
1070 	lo->lo_encryption = NULL;
1071 	lo->lo_offset = 0;
1072 	lo->lo_sizelimit = 0;
1073 	lo->lo_encrypt_key_size = 0;
1074 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1075 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1076 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1077 	blk_queue_logical_block_size(lo->lo_queue, 512);
1078 	blk_queue_physical_block_size(lo->lo_queue, 512);
1079 	blk_queue_io_min(lo->lo_queue, 512);
1080 	if (bdev) {
1081 		bdput(bdev);
1082 		invalidate_bdev(bdev);
1083 		bdev->bd_inode->i_mapping->wb_err = 0;
1084 	}
1085 	set_capacity(lo->lo_disk, 0);
1086 	loop_sysfs_exit(lo);
1087 	if (bdev) {
1088 		bd_set_size(bdev, 0);
1089 		/* let user-space know about this change */
1090 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1091 	}
1092 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1093 	lo->lo_state = Lo_unbound;
1094 	/* This is safe: open() is still holding a reference. */
1095 	module_put(THIS_MODULE);
1096 	blk_mq_unfreeze_queue(lo->lo_queue);
1097 
1098 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1099 		loop_reread_partitions(lo, bdev);
1100 	lo->lo_flags = 0;
1101 	if (!part_shift)
1102 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1103 	loop_unprepare_queue(lo);
1104 out_unlock:
1105 	mutex_unlock(&loop_ctl_mutex);
1106 	/*
1107 	 * Need not hold loop_ctl_mutex to fput backing file.
1108 	 * Calling fput holding loop_ctl_mutex triggers a circular
1109 	 * lock dependency possibility warning as fput can take
1110 	 * bd_mutex which is usually taken before loop_ctl_mutex.
1111 	 */
1112 	if (filp)
1113 		fput(filp);
1114 	return err;
1115 }
1116 
1117 static int loop_clr_fd(struct loop_device *lo)
1118 {
1119 	int err;
1120 
1121 	err = mutex_lock_killable_nested(&loop_ctl_mutex, 1);
1122 	if (err)
1123 		return err;
1124 	if (lo->lo_state != Lo_bound) {
1125 		mutex_unlock(&loop_ctl_mutex);
1126 		return -ENXIO;
1127 	}
1128 	/*
1129 	 * If we've explicitly asked to tear down the loop device,
1130 	 * and it has an elevated reference count, set it for auto-teardown when
1131 	 * the last reference goes away. This stops $!~#$@ udev from
1132 	 * preventing teardown because it decided that it needs to run blkid on
1133 	 * the loopback device whenever they appear. xfstests is notorious for
1134 	 * failing tests because blkid via udev races with a losetup
1135 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1136 	 * command to fail with EBUSY.
1137 	 */
1138 	if (atomic_read(&lo->lo_refcnt) > 1) {
1139 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1140 		mutex_unlock(&loop_ctl_mutex);
1141 		return 0;
1142 	}
1143 	lo->lo_state = Lo_rundown;
1144 	mutex_unlock(&loop_ctl_mutex);
1145 
1146 	return __loop_clr_fd(lo);
1147 }
1148 
1149 static int
1150 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1151 {
1152 	int err;
1153 	struct loop_func_table *xfer;
1154 	kuid_t uid = current_uid();
1155 
1156 	err = mutex_lock_killable_nested(&loop_ctl_mutex, 1);
1157 	if (err)
1158 		return err;
1159 	if (lo->lo_encrypt_key_size &&
1160 	    !uid_eq(lo->lo_key_owner, uid) &&
1161 	    !capable(CAP_SYS_ADMIN)) {
1162 		err = -EPERM;
1163 		goto out_unlock;
1164 	}
1165 	if (lo->lo_state != Lo_bound) {
1166 		err = -ENXIO;
1167 		goto out_unlock;
1168 	}
1169 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) {
1170 		err = -EINVAL;
1171 		goto out_unlock;
1172 	}
1173 
1174 	/* I/O need to be drained during transfer transition */
1175 	blk_mq_freeze_queue(lo->lo_queue);
1176 
1177 	err = loop_release_xfer(lo);
1178 	if (err)
1179 		goto out_unfreeze;
1180 
1181 	if (info->lo_encrypt_type) {
1182 		unsigned int type = info->lo_encrypt_type;
1183 
1184 		if (type >= MAX_LO_CRYPT) {
1185 			err = -EINVAL;
1186 			goto out_unfreeze;
1187 		}
1188 		xfer = xfer_funcs[type];
1189 		if (xfer == NULL) {
1190 			err = -EINVAL;
1191 			goto out_unfreeze;
1192 		}
1193 	} else
1194 		xfer = NULL;
1195 
1196 	err = loop_init_xfer(lo, xfer, info);
1197 	if (err)
1198 		goto out_unfreeze;
1199 
1200 	if (lo->lo_offset != info->lo_offset ||
1201 	    lo->lo_sizelimit != info->lo_sizelimit) {
1202 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1203 			err = -EFBIG;
1204 			goto out_unfreeze;
1205 		}
1206 	}
1207 
1208 	loop_config_discard(lo);
1209 
1210 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1211 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1212 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1213 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1214 
1215 	if (!xfer)
1216 		xfer = &none_funcs;
1217 	lo->transfer = xfer->transfer;
1218 	lo->ioctl = xfer->ioctl;
1219 
1220 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1221 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1222 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1223 
1224 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1225 	lo->lo_init[0] = info->lo_init[0];
1226 	lo->lo_init[1] = info->lo_init[1];
1227 	if (info->lo_encrypt_key_size) {
1228 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1229 		       info->lo_encrypt_key_size);
1230 		lo->lo_key_owner = uid;
1231 	}
1232 
1233 	/* update dio if lo_offset or transfer is changed */
1234 	__loop_update_dio(lo, lo->use_dio);
1235 
1236 out_unfreeze:
1237 	blk_mq_unfreeze_queue(lo->lo_queue);
1238 
1239 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1240 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1241 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1242 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1243 		loop_reread_partitions(lo, lo->lo_device);
1244 	}
1245 out_unlock:
1246 	mutex_unlock(&loop_ctl_mutex);
1247 
1248 	return err;
1249 }
1250 
1251 static int
1252 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1253 {
1254 	struct path path;
1255 	struct kstat stat;
1256 	int ret;
1257 
1258 	ret = mutex_lock_killable_nested(&loop_ctl_mutex, 1);
1259 	if (ret)
1260 		return ret;
1261 	if (lo->lo_state != Lo_bound) {
1262 		mutex_unlock(&loop_ctl_mutex);
1263 		return -ENXIO;
1264 	}
1265 
1266 	memset(info, 0, sizeof(*info));
1267 	info->lo_number = lo->lo_number;
1268 	info->lo_offset = lo->lo_offset;
1269 	info->lo_sizelimit = lo->lo_sizelimit;
1270 	info->lo_flags = lo->lo_flags;
1271 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1272 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1273 	info->lo_encrypt_type =
1274 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1275 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1276 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1277 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1278 		       lo->lo_encrypt_key_size);
1279 	}
1280 
1281 	/* Drop loop_ctl_mutex while we call into the filesystem. */
1282 	path = lo->lo_backing_file->f_path;
1283 	path_get(&path);
1284 	mutex_unlock(&loop_ctl_mutex);
1285 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1286 	if (!ret) {
1287 		info->lo_device = huge_encode_dev(stat.dev);
1288 		info->lo_inode = stat.ino;
1289 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1290 	}
1291 	path_put(&path);
1292 	return ret;
1293 }
1294 
1295 static void
1296 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1297 {
1298 	memset(info64, 0, sizeof(*info64));
1299 	info64->lo_number = info->lo_number;
1300 	info64->lo_device = info->lo_device;
1301 	info64->lo_inode = info->lo_inode;
1302 	info64->lo_rdevice = info->lo_rdevice;
1303 	info64->lo_offset = info->lo_offset;
1304 	info64->lo_sizelimit = 0;
1305 	info64->lo_encrypt_type = info->lo_encrypt_type;
1306 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1307 	info64->lo_flags = info->lo_flags;
1308 	info64->lo_init[0] = info->lo_init[0];
1309 	info64->lo_init[1] = info->lo_init[1];
1310 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1311 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1312 	else
1313 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1314 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1315 }
1316 
1317 static int
1318 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1319 {
1320 	memset(info, 0, sizeof(*info));
1321 	info->lo_number = info64->lo_number;
1322 	info->lo_device = info64->lo_device;
1323 	info->lo_inode = info64->lo_inode;
1324 	info->lo_rdevice = info64->lo_rdevice;
1325 	info->lo_offset = info64->lo_offset;
1326 	info->lo_encrypt_type = info64->lo_encrypt_type;
1327 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1328 	info->lo_flags = info64->lo_flags;
1329 	info->lo_init[0] = info64->lo_init[0];
1330 	info->lo_init[1] = info64->lo_init[1];
1331 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1332 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1333 	else
1334 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1335 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1336 
1337 	/* error in case values were truncated */
1338 	if (info->lo_device != info64->lo_device ||
1339 	    info->lo_rdevice != info64->lo_rdevice ||
1340 	    info->lo_inode != info64->lo_inode ||
1341 	    info->lo_offset != info64->lo_offset)
1342 		return -EOVERFLOW;
1343 
1344 	return 0;
1345 }
1346 
1347 static int
1348 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1349 {
1350 	struct loop_info info;
1351 	struct loop_info64 info64;
1352 
1353 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1354 		return -EFAULT;
1355 	loop_info64_from_old(&info, &info64);
1356 	return loop_set_status(lo, &info64);
1357 }
1358 
1359 static int
1360 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1361 {
1362 	struct loop_info64 info64;
1363 
1364 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1365 		return -EFAULT;
1366 	return loop_set_status(lo, &info64);
1367 }
1368 
1369 static int
1370 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1371 	struct loop_info info;
1372 	struct loop_info64 info64;
1373 	int err;
1374 
1375 	if (!arg)
1376 		return -EINVAL;
1377 	err = loop_get_status(lo, &info64);
1378 	if (!err)
1379 		err = loop_info64_to_old(&info64, &info);
1380 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1381 		err = -EFAULT;
1382 
1383 	return err;
1384 }
1385 
1386 static int
1387 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1388 	struct loop_info64 info64;
1389 	int err;
1390 
1391 	if (!arg)
1392 		return -EINVAL;
1393 	err = loop_get_status(lo, &info64);
1394 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1395 		err = -EFAULT;
1396 
1397 	return err;
1398 }
1399 
1400 static int loop_set_capacity(struct loop_device *lo)
1401 {
1402 	if (unlikely(lo->lo_state != Lo_bound))
1403 		return -ENXIO;
1404 
1405 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1406 }
1407 
1408 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1409 {
1410 	int error = -ENXIO;
1411 	if (lo->lo_state != Lo_bound)
1412 		goto out;
1413 
1414 	__loop_update_dio(lo, !!arg);
1415 	if (lo->use_dio == !!arg)
1416 		return 0;
1417 	error = -EINVAL;
1418  out:
1419 	return error;
1420 }
1421 
1422 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1423 {
1424 	if (lo->lo_state != Lo_bound)
1425 		return -ENXIO;
1426 
1427 	if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1428 		return -EINVAL;
1429 
1430 	blk_mq_freeze_queue(lo->lo_queue);
1431 
1432 	blk_queue_logical_block_size(lo->lo_queue, arg);
1433 	blk_queue_physical_block_size(lo->lo_queue, arg);
1434 	blk_queue_io_min(lo->lo_queue, arg);
1435 	loop_update_dio(lo);
1436 
1437 	blk_mq_unfreeze_queue(lo->lo_queue);
1438 
1439 	return 0;
1440 }
1441 
1442 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1443 			   unsigned long arg)
1444 {
1445 	int err;
1446 
1447 	err = mutex_lock_killable_nested(&loop_ctl_mutex, 1);
1448 	if (err)
1449 		return err;
1450 	switch (cmd) {
1451 	case LOOP_SET_CAPACITY:
1452 		err = loop_set_capacity(lo);
1453 		break;
1454 	case LOOP_SET_DIRECT_IO:
1455 		err = loop_set_dio(lo, arg);
1456 		break;
1457 	case LOOP_SET_BLOCK_SIZE:
1458 		err = loop_set_block_size(lo, arg);
1459 		break;
1460 	default:
1461 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1462 	}
1463 	mutex_unlock(&loop_ctl_mutex);
1464 	return err;
1465 }
1466 
1467 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1468 	unsigned int cmd, unsigned long arg)
1469 {
1470 	struct loop_device *lo = bdev->bd_disk->private_data;
1471 	int err;
1472 
1473 	switch (cmd) {
1474 	case LOOP_SET_FD:
1475 		return loop_set_fd(lo, mode, bdev, arg);
1476 	case LOOP_CHANGE_FD:
1477 		return loop_change_fd(lo, bdev, arg);
1478 	case LOOP_CLR_FD:
1479 		return loop_clr_fd(lo);
1480 	case LOOP_SET_STATUS:
1481 		err = -EPERM;
1482 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1483 			err = loop_set_status_old(lo,
1484 					(struct loop_info __user *)arg);
1485 		}
1486 		break;
1487 	case LOOP_GET_STATUS:
1488 		return loop_get_status_old(lo, (struct loop_info __user *) arg);
1489 	case LOOP_SET_STATUS64:
1490 		err = -EPERM;
1491 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1492 			err = loop_set_status64(lo,
1493 					(struct loop_info64 __user *) arg);
1494 		}
1495 		break;
1496 	case LOOP_GET_STATUS64:
1497 		return loop_get_status64(lo, (struct loop_info64 __user *) arg);
1498 	case LOOP_SET_CAPACITY:
1499 	case LOOP_SET_DIRECT_IO:
1500 	case LOOP_SET_BLOCK_SIZE:
1501 		if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1502 			return -EPERM;
1503 		/* Fall through */
1504 	default:
1505 		err = lo_simple_ioctl(lo, cmd, arg);
1506 		break;
1507 	}
1508 
1509 	return err;
1510 }
1511 
1512 #ifdef CONFIG_COMPAT
1513 struct compat_loop_info {
1514 	compat_int_t	lo_number;      /* ioctl r/o */
1515 	compat_dev_t	lo_device;      /* ioctl r/o */
1516 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1517 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1518 	compat_int_t	lo_offset;
1519 	compat_int_t	lo_encrypt_type;
1520 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1521 	compat_int_t	lo_flags;       /* ioctl r/o */
1522 	char		lo_name[LO_NAME_SIZE];
1523 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1524 	compat_ulong_t	lo_init[2];
1525 	char		reserved[4];
1526 };
1527 
1528 /*
1529  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1530  * - noinlined to reduce stack space usage in main part of driver
1531  */
1532 static noinline int
1533 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1534 			struct loop_info64 *info64)
1535 {
1536 	struct compat_loop_info info;
1537 
1538 	if (copy_from_user(&info, arg, sizeof(info)))
1539 		return -EFAULT;
1540 
1541 	memset(info64, 0, sizeof(*info64));
1542 	info64->lo_number = info.lo_number;
1543 	info64->lo_device = info.lo_device;
1544 	info64->lo_inode = info.lo_inode;
1545 	info64->lo_rdevice = info.lo_rdevice;
1546 	info64->lo_offset = info.lo_offset;
1547 	info64->lo_sizelimit = 0;
1548 	info64->lo_encrypt_type = info.lo_encrypt_type;
1549 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1550 	info64->lo_flags = info.lo_flags;
1551 	info64->lo_init[0] = info.lo_init[0];
1552 	info64->lo_init[1] = info.lo_init[1];
1553 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1554 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1555 	else
1556 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1557 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1558 	return 0;
1559 }
1560 
1561 /*
1562  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1563  * - noinlined to reduce stack space usage in main part of driver
1564  */
1565 static noinline int
1566 loop_info64_to_compat(const struct loop_info64 *info64,
1567 		      struct compat_loop_info __user *arg)
1568 {
1569 	struct compat_loop_info info;
1570 
1571 	memset(&info, 0, sizeof(info));
1572 	info.lo_number = info64->lo_number;
1573 	info.lo_device = info64->lo_device;
1574 	info.lo_inode = info64->lo_inode;
1575 	info.lo_rdevice = info64->lo_rdevice;
1576 	info.lo_offset = info64->lo_offset;
1577 	info.lo_encrypt_type = info64->lo_encrypt_type;
1578 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1579 	info.lo_flags = info64->lo_flags;
1580 	info.lo_init[0] = info64->lo_init[0];
1581 	info.lo_init[1] = info64->lo_init[1];
1582 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1583 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1584 	else
1585 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1586 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1587 
1588 	/* error in case values were truncated */
1589 	if (info.lo_device != info64->lo_device ||
1590 	    info.lo_rdevice != info64->lo_rdevice ||
1591 	    info.lo_inode != info64->lo_inode ||
1592 	    info.lo_offset != info64->lo_offset ||
1593 	    info.lo_init[0] != info64->lo_init[0] ||
1594 	    info.lo_init[1] != info64->lo_init[1])
1595 		return -EOVERFLOW;
1596 
1597 	if (copy_to_user(arg, &info, sizeof(info)))
1598 		return -EFAULT;
1599 	return 0;
1600 }
1601 
1602 static int
1603 loop_set_status_compat(struct loop_device *lo,
1604 		       const struct compat_loop_info __user *arg)
1605 {
1606 	struct loop_info64 info64;
1607 	int ret;
1608 
1609 	ret = loop_info64_from_compat(arg, &info64);
1610 	if (ret < 0)
1611 		return ret;
1612 	return loop_set_status(lo, &info64);
1613 }
1614 
1615 static int
1616 loop_get_status_compat(struct loop_device *lo,
1617 		       struct compat_loop_info __user *arg)
1618 {
1619 	struct loop_info64 info64;
1620 	int err;
1621 
1622 	if (!arg)
1623 		return -EINVAL;
1624 	err = loop_get_status(lo, &info64);
1625 	if (!err)
1626 		err = loop_info64_to_compat(&info64, arg);
1627 	return err;
1628 }
1629 
1630 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1631 			   unsigned int cmd, unsigned long arg)
1632 {
1633 	struct loop_device *lo = bdev->bd_disk->private_data;
1634 	int err;
1635 
1636 	switch(cmd) {
1637 	case LOOP_SET_STATUS:
1638 		err = loop_set_status_compat(lo,
1639 			     (const struct compat_loop_info __user *)arg);
1640 		break;
1641 	case LOOP_GET_STATUS:
1642 		err = loop_get_status_compat(lo,
1643 				     (struct compat_loop_info __user *)arg);
1644 		break;
1645 	case LOOP_SET_CAPACITY:
1646 	case LOOP_CLR_FD:
1647 	case LOOP_GET_STATUS64:
1648 	case LOOP_SET_STATUS64:
1649 		arg = (unsigned long) compat_ptr(arg);
1650 		/* fall through */
1651 	case LOOP_SET_FD:
1652 	case LOOP_CHANGE_FD:
1653 	case LOOP_SET_BLOCK_SIZE:
1654 		err = lo_ioctl(bdev, mode, cmd, arg);
1655 		break;
1656 	default:
1657 		err = -ENOIOCTLCMD;
1658 		break;
1659 	}
1660 	return err;
1661 }
1662 #endif
1663 
1664 static int lo_open(struct block_device *bdev, fmode_t mode)
1665 {
1666 	struct loop_device *lo;
1667 	int err;
1668 
1669 	err = mutex_lock_killable(&loop_ctl_mutex);
1670 	if (err)
1671 		return err;
1672 	lo = bdev->bd_disk->private_data;
1673 	if (!lo) {
1674 		err = -ENXIO;
1675 		goto out;
1676 	}
1677 
1678 	atomic_inc(&lo->lo_refcnt);
1679 out:
1680 	mutex_unlock(&loop_ctl_mutex);
1681 	return err;
1682 }
1683 
1684 static void lo_release(struct gendisk *disk, fmode_t mode)
1685 {
1686 	struct loop_device *lo;
1687 
1688 	mutex_lock(&loop_ctl_mutex);
1689 	lo = disk->private_data;
1690 	if (atomic_dec_return(&lo->lo_refcnt))
1691 		goto out_unlock;
1692 
1693 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1694 		if (lo->lo_state != Lo_bound)
1695 			goto out_unlock;
1696 		lo->lo_state = Lo_rundown;
1697 		mutex_unlock(&loop_ctl_mutex);
1698 		/*
1699 		 * In autoclear mode, stop the loop thread
1700 		 * and remove configuration after last close.
1701 		 */
1702 		__loop_clr_fd(lo);
1703 		return;
1704 	} else if (lo->lo_state == Lo_bound) {
1705 		/*
1706 		 * Otherwise keep thread (if running) and config,
1707 		 * but flush possible ongoing bios in thread.
1708 		 */
1709 		blk_mq_freeze_queue(lo->lo_queue);
1710 		blk_mq_unfreeze_queue(lo->lo_queue);
1711 	}
1712 
1713 out_unlock:
1714 	mutex_unlock(&loop_ctl_mutex);
1715 }
1716 
1717 static const struct block_device_operations lo_fops = {
1718 	.owner =	THIS_MODULE,
1719 	.open =		lo_open,
1720 	.release =	lo_release,
1721 	.ioctl =	lo_ioctl,
1722 #ifdef CONFIG_COMPAT
1723 	.compat_ioctl =	lo_compat_ioctl,
1724 #endif
1725 };
1726 
1727 /*
1728  * And now the modules code and kernel interface.
1729  */
1730 static int max_loop;
1731 module_param(max_loop, int, 0444);
1732 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1733 module_param(max_part, int, 0444);
1734 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1735 MODULE_LICENSE("GPL");
1736 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1737 
1738 int loop_register_transfer(struct loop_func_table *funcs)
1739 {
1740 	unsigned int n = funcs->number;
1741 
1742 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1743 		return -EINVAL;
1744 	xfer_funcs[n] = funcs;
1745 	return 0;
1746 }
1747 
1748 static int unregister_transfer_cb(int id, void *ptr, void *data)
1749 {
1750 	struct loop_device *lo = ptr;
1751 	struct loop_func_table *xfer = data;
1752 
1753 	mutex_lock(&loop_ctl_mutex);
1754 	if (lo->lo_encryption == xfer)
1755 		loop_release_xfer(lo);
1756 	mutex_unlock(&loop_ctl_mutex);
1757 	return 0;
1758 }
1759 
1760 int loop_unregister_transfer(int number)
1761 {
1762 	unsigned int n = number;
1763 	struct loop_func_table *xfer;
1764 
1765 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1766 		return -EINVAL;
1767 
1768 	xfer_funcs[n] = NULL;
1769 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1770 	return 0;
1771 }
1772 
1773 EXPORT_SYMBOL(loop_register_transfer);
1774 EXPORT_SYMBOL(loop_unregister_transfer);
1775 
1776 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1777 		const struct blk_mq_queue_data *bd)
1778 {
1779 	struct request *rq = bd->rq;
1780 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1781 	struct loop_device *lo = rq->q->queuedata;
1782 
1783 	blk_mq_start_request(rq);
1784 
1785 	if (lo->lo_state != Lo_bound)
1786 		return BLK_STS_IOERR;
1787 
1788 	switch (req_op(rq)) {
1789 	case REQ_OP_FLUSH:
1790 	case REQ_OP_DISCARD:
1791 	case REQ_OP_WRITE_ZEROES:
1792 		cmd->use_aio = false;
1793 		break;
1794 	default:
1795 		cmd->use_aio = lo->use_dio;
1796 		break;
1797 	}
1798 
1799 	/* always use the first bio's css */
1800 #ifdef CONFIG_BLK_CGROUP
1801 	if (cmd->use_aio && rq->bio && rq->bio->bi_css) {
1802 		cmd->css = rq->bio->bi_css;
1803 		css_get(cmd->css);
1804 	} else
1805 #endif
1806 		cmd->css = NULL;
1807 	kthread_queue_work(&lo->worker, &cmd->work);
1808 
1809 	return BLK_STS_OK;
1810 }
1811 
1812 static void loop_handle_cmd(struct loop_cmd *cmd)
1813 {
1814 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1815 	const bool write = op_is_write(req_op(rq));
1816 	struct loop_device *lo = rq->q->queuedata;
1817 	int ret = 0;
1818 
1819 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1820 		ret = -EIO;
1821 		goto failed;
1822 	}
1823 
1824 	ret = do_req_filebacked(lo, rq);
1825  failed:
1826 	/* complete non-aio request */
1827 	if (!cmd->use_aio || ret) {
1828 		cmd->ret = ret ? -EIO : 0;
1829 		blk_mq_complete_request(rq);
1830 	}
1831 }
1832 
1833 static void loop_queue_work(struct kthread_work *work)
1834 {
1835 	struct loop_cmd *cmd =
1836 		container_of(work, struct loop_cmd, work);
1837 
1838 	loop_handle_cmd(cmd);
1839 }
1840 
1841 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1842 		unsigned int hctx_idx, unsigned int numa_node)
1843 {
1844 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1845 
1846 	kthread_init_work(&cmd->work, loop_queue_work);
1847 	return 0;
1848 }
1849 
1850 static const struct blk_mq_ops loop_mq_ops = {
1851 	.queue_rq       = loop_queue_rq,
1852 	.init_request	= loop_init_request,
1853 	.complete	= lo_complete_rq,
1854 };
1855 
1856 static int loop_add(struct loop_device **l, int i)
1857 {
1858 	struct loop_device *lo;
1859 	struct gendisk *disk;
1860 	int err;
1861 
1862 	err = -ENOMEM;
1863 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1864 	if (!lo)
1865 		goto out;
1866 
1867 	lo->lo_state = Lo_unbound;
1868 
1869 	/* allocate id, if @id >= 0, we're requesting that specific id */
1870 	if (i >= 0) {
1871 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1872 		if (err == -ENOSPC)
1873 			err = -EEXIST;
1874 	} else {
1875 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1876 	}
1877 	if (err < 0)
1878 		goto out_free_dev;
1879 	i = err;
1880 
1881 	err = -ENOMEM;
1882 	lo->tag_set.ops = &loop_mq_ops;
1883 	lo->tag_set.nr_hw_queues = 1;
1884 	lo->tag_set.queue_depth = 128;
1885 	lo->tag_set.numa_node = NUMA_NO_NODE;
1886 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1887 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1888 	lo->tag_set.driver_data = lo;
1889 
1890 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1891 	if (err)
1892 		goto out_free_idr;
1893 
1894 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1895 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1896 		err = PTR_ERR(lo->lo_queue);
1897 		goto out_cleanup_tags;
1898 	}
1899 	lo->lo_queue->queuedata = lo;
1900 
1901 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1902 
1903 	/*
1904 	 * By default, we do buffer IO, so it doesn't make sense to enable
1905 	 * merge because the I/O submitted to backing file is handled page by
1906 	 * page. For directio mode, merge does help to dispatch bigger request
1907 	 * to underlayer disk. We will enable merge once directio is enabled.
1908 	 */
1909 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1910 
1911 	err = -ENOMEM;
1912 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1913 	if (!disk)
1914 		goto out_free_queue;
1915 
1916 	/*
1917 	 * Disable partition scanning by default. The in-kernel partition
1918 	 * scanning can be requested individually per-device during its
1919 	 * setup. Userspace can always add and remove partitions from all
1920 	 * devices. The needed partition minors are allocated from the
1921 	 * extended minor space, the main loop device numbers will continue
1922 	 * to match the loop minors, regardless of the number of partitions
1923 	 * used.
1924 	 *
1925 	 * If max_part is given, partition scanning is globally enabled for
1926 	 * all loop devices. The minors for the main loop devices will be
1927 	 * multiples of max_part.
1928 	 *
1929 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1930 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1931 	 * complicated, are too static, inflexible and may surprise
1932 	 * userspace tools. Parameters like this in general should be avoided.
1933 	 */
1934 	if (!part_shift)
1935 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1936 	disk->flags |= GENHD_FL_EXT_DEVT;
1937 	atomic_set(&lo->lo_refcnt, 0);
1938 	lo->lo_number		= i;
1939 	spin_lock_init(&lo->lo_lock);
1940 	disk->major		= LOOP_MAJOR;
1941 	disk->first_minor	= i << part_shift;
1942 	disk->fops		= &lo_fops;
1943 	disk->private_data	= lo;
1944 	disk->queue		= lo->lo_queue;
1945 	sprintf(disk->disk_name, "loop%d", i);
1946 	add_disk(disk);
1947 	*l = lo;
1948 	return lo->lo_number;
1949 
1950 out_free_queue:
1951 	blk_cleanup_queue(lo->lo_queue);
1952 out_cleanup_tags:
1953 	blk_mq_free_tag_set(&lo->tag_set);
1954 out_free_idr:
1955 	idr_remove(&loop_index_idr, i);
1956 out_free_dev:
1957 	kfree(lo);
1958 out:
1959 	return err;
1960 }
1961 
1962 static void loop_remove(struct loop_device *lo)
1963 {
1964 	del_gendisk(lo->lo_disk);
1965 	blk_cleanup_queue(lo->lo_queue);
1966 	blk_mq_free_tag_set(&lo->tag_set);
1967 	put_disk(lo->lo_disk);
1968 	kfree(lo);
1969 }
1970 
1971 static int find_free_cb(int id, void *ptr, void *data)
1972 {
1973 	struct loop_device *lo = ptr;
1974 	struct loop_device **l = data;
1975 
1976 	if (lo->lo_state == Lo_unbound) {
1977 		*l = lo;
1978 		return 1;
1979 	}
1980 	return 0;
1981 }
1982 
1983 static int loop_lookup(struct loop_device **l, int i)
1984 {
1985 	struct loop_device *lo;
1986 	int ret = -ENODEV;
1987 
1988 	if (i < 0) {
1989 		int err;
1990 
1991 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1992 		if (err == 1) {
1993 			*l = lo;
1994 			ret = lo->lo_number;
1995 		}
1996 		goto out;
1997 	}
1998 
1999 	/* lookup and return a specific i */
2000 	lo = idr_find(&loop_index_idr, i);
2001 	if (lo) {
2002 		*l = lo;
2003 		ret = lo->lo_number;
2004 	}
2005 out:
2006 	return ret;
2007 }
2008 
2009 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2010 {
2011 	struct loop_device *lo;
2012 	struct kobject *kobj;
2013 	int err;
2014 
2015 	mutex_lock(&loop_ctl_mutex);
2016 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2017 	if (err < 0)
2018 		err = loop_add(&lo, MINOR(dev) >> part_shift);
2019 	if (err < 0)
2020 		kobj = NULL;
2021 	else
2022 		kobj = get_disk_and_module(lo->lo_disk);
2023 	mutex_unlock(&loop_ctl_mutex);
2024 
2025 	*part = 0;
2026 	return kobj;
2027 }
2028 
2029 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2030 			       unsigned long parm)
2031 {
2032 	struct loop_device *lo;
2033 	int ret;
2034 
2035 	ret = mutex_lock_killable(&loop_ctl_mutex);
2036 	if (ret)
2037 		return ret;
2038 
2039 	ret = -ENOSYS;
2040 	switch (cmd) {
2041 	case LOOP_CTL_ADD:
2042 		ret = loop_lookup(&lo, parm);
2043 		if (ret >= 0) {
2044 			ret = -EEXIST;
2045 			break;
2046 		}
2047 		ret = loop_add(&lo, parm);
2048 		break;
2049 	case LOOP_CTL_REMOVE:
2050 		ret = loop_lookup(&lo, parm);
2051 		if (ret < 0)
2052 			break;
2053 		if (lo->lo_state != Lo_unbound) {
2054 			ret = -EBUSY;
2055 			mutex_unlock(&loop_ctl_mutex);
2056 			break;
2057 		}
2058 		if (atomic_read(&lo->lo_refcnt) > 0) {
2059 			ret = -EBUSY;
2060 			mutex_unlock(&loop_ctl_mutex);
2061 			break;
2062 		}
2063 		lo->lo_disk->private_data = NULL;
2064 		idr_remove(&loop_index_idr, lo->lo_number);
2065 		loop_remove(lo);
2066 		break;
2067 	case LOOP_CTL_GET_FREE:
2068 		ret = loop_lookup(&lo, -1);
2069 		if (ret >= 0)
2070 			break;
2071 		ret = loop_add(&lo, -1);
2072 	}
2073 	mutex_unlock(&loop_ctl_mutex);
2074 
2075 	return ret;
2076 }
2077 
2078 static const struct file_operations loop_ctl_fops = {
2079 	.open		= nonseekable_open,
2080 	.unlocked_ioctl	= loop_control_ioctl,
2081 	.compat_ioctl	= loop_control_ioctl,
2082 	.owner		= THIS_MODULE,
2083 	.llseek		= noop_llseek,
2084 };
2085 
2086 static struct miscdevice loop_misc = {
2087 	.minor		= LOOP_CTRL_MINOR,
2088 	.name		= "loop-control",
2089 	.fops		= &loop_ctl_fops,
2090 };
2091 
2092 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2093 MODULE_ALIAS("devname:loop-control");
2094 
2095 static int __init loop_init(void)
2096 {
2097 	int i, nr;
2098 	unsigned long range;
2099 	struct loop_device *lo;
2100 	int err;
2101 
2102 	part_shift = 0;
2103 	if (max_part > 0) {
2104 		part_shift = fls(max_part);
2105 
2106 		/*
2107 		 * Adjust max_part according to part_shift as it is exported
2108 		 * to user space so that user can decide correct minor number
2109 		 * if [s]he want to create more devices.
2110 		 *
2111 		 * Note that -1 is required because partition 0 is reserved
2112 		 * for the whole disk.
2113 		 */
2114 		max_part = (1UL << part_shift) - 1;
2115 	}
2116 
2117 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2118 		err = -EINVAL;
2119 		goto err_out;
2120 	}
2121 
2122 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2123 		err = -EINVAL;
2124 		goto err_out;
2125 	}
2126 
2127 	/*
2128 	 * If max_loop is specified, create that many devices upfront.
2129 	 * This also becomes a hard limit. If max_loop is not specified,
2130 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2131 	 * init time. Loop devices can be requested on-demand with the
2132 	 * /dev/loop-control interface, or be instantiated by accessing
2133 	 * a 'dead' device node.
2134 	 */
2135 	if (max_loop) {
2136 		nr = max_loop;
2137 		range = max_loop << part_shift;
2138 	} else {
2139 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2140 		range = 1UL << MINORBITS;
2141 	}
2142 
2143 	err = misc_register(&loop_misc);
2144 	if (err < 0)
2145 		goto err_out;
2146 
2147 
2148 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2149 		err = -EIO;
2150 		goto misc_out;
2151 	}
2152 
2153 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2154 				  THIS_MODULE, loop_probe, NULL, NULL);
2155 
2156 	/* pre-create number of devices given by config or max_loop */
2157 	mutex_lock(&loop_ctl_mutex);
2158 	for (i = 0; i < nr; i++)
2159 		loop_add(&lo, i);
2160 	mutex_unlock(&loop_ctl_mutex);
2161 
2162 	printk(KERN_INFO "loop: module loaded\n");
2163 	return 0;
2164 
2165 misc_out:
2166 	misc_deregister(&loop_misc);
2167 err_out:
2168 	return err;
2169 }
2170 
2171 static int loop_exit_cb(int id, void *ptr, void *data)
2172 {
2173 	struct loop_device *lo = ptr;
2174 
2175 	loop_remove(lo);
2176 	return 0;
2177 }
2178 
2179 static void __exit loop_exit(void)
2180 {
2181 	unsigned long range;
2182 
2183 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2184 
2185 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2186 	idr_destroy(&loop_index_idr);
2187 
2188 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2189 	unregister_blkdev(LOOP_MAJOR, "loop");
2190 
2191 	misc_deregister(&loop_misc);
2192 }
2193 
2194 module_init(loop_init);
2195 module_exit(loop_exit);
2196 
2197 #ifndef MODULE
2198 static int __init max_loop_setup(char *str)
2199 {
2200 	max_loop = simple_strtol(str, NULL, 0);
2201 	return 1;
2202 }
2203 
2204 __setup("max_loop=", max_loop_setup);
2205 #endif
2206