1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bols�, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations prepare_write and/or commit_write are not available on the 44 * backing filesystem. 45 * Anton Altaparmakov, 16 Feb 2005 46 * 47 * Still To Fix: 48 * - Advisory locking is ignored here. 49 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 50 * 51 */ 52 53 #include <linux/module.h> 54 #include <linux/moduleparam.h> 55 #include <linux/sched.h> 56 #include <linux/fs.h> 57 #include <linux/file.h> 58 #include <linux/stat.h> 59 #include <linux/errno.h> 60 #include <linux/major.h> 61 #include <linux/wait.h> 62 #include <linux/blkdev.h> 63 #include <linux/blkpg.h> 64 #include <linux/init.h> 65 #include <linux/smp_lock.h> 66 #include <linux/swap.h> 67 #include <linux/slab.h> 68 #include <linux/loop.h> 69 #include <linux/compat.h> 70 #include <linux/suspend.h> 71 #include <linux/freezer.h> 72 #include <linux/writeback.h> 73 #include <linux/buffer_head.h> /* for invalidate_bdev() */ 74 #include <linux/completion.h> 75 #include <linux/highmem.h> 76 #include <linux/gfp.h> 77 #include <linux/kthread.h> 78 #include <linux/splice.h> 79 80 #include <asm/uaccess.h> 81 82 static LIST_HEAD(loop_devices); 83 static DEFINE_MUTEX(loop_devices_mutex); 84 85 /* 86 * Transfer functions 87 */ 88 static int transfer_none(struct loop_device *lo, int cmd, 89 struct page *raw_page, unsigned raw_off, 90 struct page *loop_page, unsigned loop_off, 91 int size, sector_t real_block) 92 { 93 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 94 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 95 96 if (cmd == READ) 97 memcpy(loop_buf, raw_buf, size); 98 else 99 memcpy(raw_buf, loop_buf, size); 100 101 kunmap_atomic(raw_buf, KM_USER0); 102 kunmap_atomic(loop_buf, KM_USER1); 103 cond_resched(); 104 return 0; 105 } 106 107 static int transfer_xor(struct loop_device *lo, int cmd, 108 struct page *raw_page, unsigned raw_off, 109 struct page *loop_page, unsigned loop_off, 110 int size, sector_t real_block) 111 { 112 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 113 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 114 char *in, *out, *key; 115 int i, keysize; 116 117 if (cmd == READ) { 118 in = raw_buf; 119 out = loop_buf; 120 } else { 121 in = loop_buf; 122 out = raw_buf; 123 } 124 125 key = lo->lo_encrypt_key; 126 keysize = lo->lo_encrypt_key_size; 127 for (i = 0; i < size; i++) 128 *out++ = *in++ ^ key[(i & 511) % keysize]; 129 130 kunmap_atomic(raw_buf, KM_USER0); 131 kunmap_atomic(loop_buf, KM_USER1); 132 cond_resched(); 133 return 0; 134 } 135 136 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 137 { 138 if (unlikely(info->lo_encrypt_key_size <= 0)) 139 return -EINVAL; 140 return 0; 141 } 142 143 static struct loop_func_table none_funcs = { 144 .number = LO_CRYPT_NONE, 145 .transfer = transfer_none, 146 }; 147 148 static struct loop_func_table xor_funcs = { 149 .number = LO_CRYPT_XOR, 150 .transfer = transfer_xor, 151 .init = xor_init 152 }; 153 154 /* xfer_funcs[0] is special - its release function is never called */ 155 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 156 &none_funcs, 157 &xor_funcs 158 }; 159 160 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 161 { 162 loff_t size, offset, loopsize; 163 164 /* Compute loopsize in bytes */ 165 size = i_size_read(file->f_mapping->host); 166 offset = lo->lo_offset; 167 loopsize = size - offset; 168 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 169 loopsize = lo->lo_sizelimit; 170 171 /* 172 * Unfortunately, if we want to do I/O on the device, 173 * the number of 512-byte sectors has to fit into a sector_t. 174 */ 175 return loopsize >> 9; 176 } 177 178 static int 179 figure_loop_size(struct loop_device *lo) 180 { 181 loff_t size = get_loop_size(lo, lo->lo_backing_file); 182 sector_t x = (sector_t)size; 183 184 if (unlikely((loff_t)x != size)) 185 return -EFBIG; 186 187 set_capacity(lo->lo_disk, x); 188 return 0; 189 } 190 191 static inline int 192 lo_do_transfer(struct loop_device *lo, int cmd, 193 struct page *rpage, unsigned roffs, 194 struct page *lpage, unsigned loffs, 195 int size, sector_t rblock) 196 { 197 if (unlikely(!lo->transfer)) 198 return 0; 199 200 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 201 } 202 203 /** 204 * do_lo_send_aops - helper for writing data to a loop device 205 * 206 * This is the fast version for backing filesystems which implement the address 207 * space operations prepare_write and commit_write. 208 */ 209 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec, 210 int bsize, loff_t pos, struct page *page) 211 { 212 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */ 213 struct address_space *mapping = file->f_mapping; 214 const struct address_space_operations *aops = mapping->a_ops; 215 pgoff_t index; 216 unsigned offset, bv_offs; 217 int len, ret; 218 219 mutex_lock(&mapping->host->i_mutex); 220 index = pos >> PAGE_CACHE_SHIFT; 221 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1); 222 bv_offs = bvec->bv_offset; 223 len = bvec->bv_len; 224 while (len > 0) { 225 sector_t IV; 226 unsigned size; 227 int transfer_result; 228 229 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 230 size = PAGE_CACHE_SIZE - offset; 231 if (size > len) 232 size = len; 233 page = grab_cache_page(mapping, index); 234 if (unlikely(!page)) 235 goto fail; 236 ret = aops->prepare_write(file, page, offset, 237 offset + size); 238 if (unlikely(ret)) { 239 if (ret == AOP_TRUNCATED_PAGE) { 240 page_cache_release(page); 241 continue; 242 } 243 goto unlock; 244 } 245 transfer_result = lo_do_transfer(lo, WRITE, page, offset, 246 bvec->bv_page, bv_offs, size, IV); 247 if (unlikely(transfer_result)) { 248 /* 249 * The transfer failed, but we still write the data to 250 * keep prepare/commit calls balanced. 251 */ 252 printk(KERN_ERR "loop: transfer error block %llu\n", 253 (unsigned long long)index); 254 zero_user_page(page, offset, size, KM_USER0); 255 } 256 flush_dcache_page(page); 257 ret = aops->commit_write(file, page, offset, 258 offset + size); 259 if (unlikely(ret)) { 260 if (ret == AOP_TRUNCATED_PAGE) { 261 page_cache_release(page); 262 continue; 263 } 264 goto unlock; 265 } 266 if (unlikely(transfer_result)) 267 goto unlock; 268 bv_offs += size; 269 len -= size; 270 offset = 0; 271 index++; 272 pos += size; 273 unlock_page(page); 274 page_cache_release(page); 275 } 276 ret = 0; 277 out: 278 mutex_unlock(&mapping->host->i_mutex); 279 return ret; 280 unlock: 281 unlock_page(page); 282 page_cache_release(page); 283 fail: 284 ret = -1; 285 goto out; 286 } 287 288 /** 289 * __do_lo_send_write - helper for writing data to a loop device 290 * 291 * This helper just factors out common code between do_lo_send_direct_write() 292 * and do_lo_send_write(). 293 */ 294 static int __do_lo_send_write(struct file *file, 295 u8 *buf, const int len, loff_t pos) 296 { 297 ssize_t bw; 298 mm_segment_t old_fs = get_fs(); 299 300 set_fs(get_ds()); 301 bw = file->f_op->write(file, buf, len, &pos); 302 set_fs(old_fs); 303 if (likely(bw == len)) 304 return 0; 305 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 306 (unsigned long long)pos, len); 307 if (bw >= 0) 308 bw = -EIO; 309 return bw; 310 } 311 312 /** 313 * do_lo_send_direct_write - helper for writing data to a loop device 314 * 315 * This is the fast, non-transforming version for backing filesystems which do 316 * not implement the address space operations prepare_write and commit_write. 317 * It uses the write file operation which should be present on all writeable 318 * filesystems. 319 */ 320 static int do_lo_send_direct_write(struct loop_device *lo, 321 struct bio_vec *bvec, int bsize, loff_t pos, struct page *page) 322 { 323 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 324 kmap(bvec->bv_page) + bvec->bv_offset, 325 bvec->bv_len, pos); 326 kunmap(bvec->bv_page); 327 cond_resched(); 328 return bw; 329 } 330 331 /** 332 * do_lo_send_write - helper for writing data to a loop device 333 * 334 * This is the slow, transforming version for filesystems which do not 335 * implement the address space operations prepare_write and commit_write. It 336 * uses the write file operation which should be present on all writeable 337 * filesystems. 338 * 339 * Using fops->write is slower than using aops->{prepare,commit}_write in the 340 * transforming case because we need to double buffer the data as we cannot do 341 * the transformations in place as we do not have direct access to the 342 * destination pages of the backing file. 343 */ 344 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 345 int bsize, loff_t pos, struct page *page) 346 { 347 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 348 bvec->bv_offset, bvec->bv_len, pos >> 9); 349 if (likely(!ret)) 350 return __do_lo_send_write(lo->lo_backing_file, 351 page_address(page), bvec->bv_len, 352 pos); 353 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 354 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 355 if (ret > 0) 356 ret = -EIO; 357 return ret; 358 } 359 360 static int lo_send(struct loop_device *lo, struct bio *bio, int bsize, 361 loff_t pos) 362 { 363 int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t, 364 struct page *page); 365 struct bio_vec *bvec; 366 struct page *page = NULL; 367 int i, ret = 0; 368 369 do_lo_send = do_lo_send_aops; 370 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) { 371 do_lo_send = do_lo_send_direct_write; 372 if (lo->transfer != transfer_none) { 373 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 374 if (unlikely(!page)) 375 goto fail; 376 kmap(page); 377 do_lo_send = do_lo_send_write; 378 } 379 } 380 bio_for_each_segment(bvec, bio, i) { 381 ret = do_lo_send(lo, bvec, bsize, pos, page); 382 if (ret < 0) 383 break; 384 pos += bvec->bv_len; 385 } 386 if (page) { 387 kunmap(page); 388 __free_page(page); 389 } 390 out: 391 return ret; 392 fail: 393 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 394 ret = -ENOMEM; 395 goto out; 396 } 397 398 struct lo_read_data { 399 struct loop_device *lo; 400 struct page *page; 401 unsigned offset; 402 int bsize; 403 }; 404 405 static int 406 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 407 struct splice_desc *sd) 408 { 409 struct lo_read_data *p = sd->u.data; 410 struct loop_device *lo = p->lo; 411 struct page *page = buf->page; 412 sector_t IV; 413 size_t size; 414 int ret; 415 416 ret = buf->ops->confirm(pipe, buf); 417 if (unlikely(ret)) 418 return ret; 419 420 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 421 (buf->offset >> 9); 422 size = sd->len; 423 if (size > p->bsize) 424 size = p->bsize; 425 426 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 427 printk(KERN_ERR "loop: transfer error block %ld\n", 428 page->index); 429 size = -EINVAL; 430 } 431 432 flush_dcache_page(p->page); 433 434 if (size > 0) 435 p->offset += size; 436 437 return size; 438 } 439 440 static int 441 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 442 { 443 return __splice_from_pipe(pipe, sd, lo_splice_actor); 444 } 445 446 static int 447 do_lo_receive(struct loop_device *lo, 448 struct bio_vec *bvec, int bsize, loff_t pos) 449 { 450 struct lo_read_data cookie; 451 struct splice_desc sd; 452 struct file *file; 453 long retval; 454 455 cookie.lo = lo; 456 cookie.page = bvec->bv_page; 457 cookie.offset = bvec->bv_offset; 458 cookie.bsize = bsize; 459 460 sd.len = 0; 461 sd.total_len = bvec->bv_len; 462 sd.flags = 0; 463 sd.pos = pos; 464 sd.u.data = &cookie; 465 466 file = lo->lo_backing_file; 467 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 468 469 if (retval < 0) 470 return retval; 471 472 return 0; 473 } 474 475 static int 476 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 477 { 478 struct bio_vec *bvec; 479 int i, ret = 0; 480 481 bio_for_each_segment(bvec, bio, i) { 482 ret = do_lo_receive(lo, bvec, bsize, pos); 483 if (ret < 0) 484 break; 485 pos += bvec->bv_len; 486 } 487 return ret; 488 } 489 490 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 491 { 492 loff_t pos; 493 int ret; 494 495 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 496 if (bio_rw(bio) == WRITE) 497 ret = lo_send(lo, bio, lo->lo_blocksize, pos); 498 else 499 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 500 return ret; 501 } 502 503 /* 504 * Add bio to back of pending list 505 */ 506 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 507 { 508 if (lo->lo_biotail) { 509 lo->lo_biotail->bi_next = bio; 510 lo->lo_biotail = bio; 511 } else 512 lo->lo_bio = lo->lo_biotail = bio; 513 } 514 515 /* 516 * Grab first pending buffer 517 */ 518 static struct bio *loop_get_bio(struct loop_device *lo) 519 { 520 struct bio *bio; 521 522 if ((bio = lo->lo_bio)) { 523 if (bio == lo->lo_biotail) 524 lo->lo_biotail = NULL; 525 lo->lo_bio = bio->bi_next; 526 bio->bi_next = NULL; 527 } 528 529 return bio; 530 } 531 532 static int loop_make_request(struct request_queue *q, struct bio *old_bio) 533 { 534 struct loop_device *lo = q->queuedata; 535 int rw = bio_rw(old_bio); 536 537 if (rw == READA) 538 rw = READ; 539 540 BUG_ON(!lo || (rw != READ && rw != WRITE)); 541 542 spin_lock_irq(&lo->lo_lock); 543 if (lo->lo_state != Lo_bound) 544 goto out; 545 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 546 goto out; 547 loop_add_bio(lo, old_bio); 548 wake_up(&lo->lo_event); 549 spin_unlock_irq(&lo->lo_lock); 550 return 0; 551 552 out: 553 spin_unlock_irq(&lo->lo_lock); 554 bio_io_error(old_bio, old_bio->bi_size); 555 return 0; 556 } 557 558 /* 559 * kick off io on the underlying address space 560 */ 561 static void loop_unplug(struct request_queue *q) 562 { 563 struct loop_device *lo = q->queuedata; 564 565 clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags); 566 blk_run_address_space(lo->lo_backing_file->f_mapping); 567 } 568 569 struct switch_request { 570 struct file *file; 571 struct completion wait; 572 }; 573 574 static void do_loop_switch(struct loop_device *, struct switch_request *); 575 576 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 577 { 578 if (unlikely(!bio->bi_bdev)) { 579 do_loop_switch(lo, bio->bi_private); 580 bio_put(bio); 581 } else { 582 int ret = do_bio_filebacked(lo, bio); 583 bio_endio(bio, bio->bi_size, ret); 584 } 585 } 586 587 /* 588 * worker thread that handles reads/writes to file backed loop devices, 589 * to avoid blocking in our make_request_fn. it also does loop decrypting 590 * on reads for block backed loop, as that is too heavy to do from 591 * b_end_io context where irqs may be disabled. 592 * 593 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 594 * calling kthread_stop(). Therefore once kthread_should_stop() is 595 * true, make_request will not place any more requests. Therefore 596 * once kthread_should_stop() is true and lo_bio is NULL, we are 597 * done with the loop. 598 */ 599 static int loop_thread(void *data) 600 { 601 struct loop_device *lo = data; 602 struct bio *bio; 603 604 set_user_nice(current, -20); 605 606 while (!kthread_should_stop() || lo->lo_bio) { 607 608 wait_event_interruptible(lo->lo_event, 609 lo->lo_bio || kthread_should_stop()); 610 611 if (!lo->lo_bio) 612 continue; 613 spin_lock_irq(&lo->lo_lock); 614 bio = loop_get_bio(lo); 615 spin_unlock_irq(&lo->lo_lock); 616 617 BUG_ON(!bio); 618 loop_handle_bio(lo, bio); 619 } 620 621 return 0; 622 } 623 624 /* 625 * loop_switch performs the hard work of switching a backing store. 626 * First it needs to flush existing IO, it does this by sending a magic 627 * BIO down the pipe. The completion of this BIO does the actual switch. 628 */ 629 static int loop_switch(struct loop_device *lo, struct file *file) 630 { 631 struct switch_request w; 632 struct bio *bio = bio_alloc(GFP_KERNEL, 1); 633 if (!bio) 634 return -ENOMEM; 635 init_completion(&w.wait); 636 w.file = file; 637 bio->bi_private = &w; 638 bio->bi_bdev = NULL; 639 loop_make_request(lo->lo_queue, bio); 640 wait_for_completion(&w.wait); 641 return 0; 642 } 643 644 /* 645 * Do the actual switch; called from the BIO completion routine 646 */ 647 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 648 { 649 struct file *file = p->file; 650 struct file *old_file = lo->lo_backing_file; 651 struct address_space *mapping = file->f_mapping; 652 653 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 654 lo->lo_backing_file = file; 655 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 656 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 657 lo->old_gfp_mask = mapping_gfp_mask(mapping); 658 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 659 complete(&p->wait); 660 } 661 662 663 /* 664 * loop_change_fd switched the backing store of a loopback device to 665 * a new file. This is useful for operating system installers to free up 666 * the original file and in High Availability environments to switch to 667 * an alternative location for the content in case of server meltdown. 668 * This can only work if the loop device is used read-only, and if the 669 * new backing store is the same size and type as the old backing store. 670 */ 671 static int loop_change_fd(struct loop_device *lo, struct file *lo_file, 672 struct block_device *bdev, unsigned int arg) 673 { 674 struct file *file, *old_file; 675 struct inode *inode; 676 int error; 677 678 error = -ENXIO; 679 if (lo->lo_state != Lo_bound) 680 goto out; 681 682 /* the loop device has to be read-only */ 683 error = -EINVAL; 684 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 685 goto out; 686 687 error = -EBADF; 688 file = fget(arg); 689 if (!file) 690 goto out; 691 692 inode = file->f_mapping->host; 693 old_file = lo->lo_backing_file; 694 695 error = -EINVAL; 696 697 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 698 goto out_putf; 699 700 /* new backing store needs to support loop (eg splice_read) */ 701 if (!inode->i_fop->splice_read) 702 goto out_putf; 703 704 /* size of the new backing store needs to be the same */ 705 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 706 goto out_putf; 707 708 /* and ... switch */ 709 error = loop_switch(lo, file); 710 if (error) 711 goto out_putf; 712 713 fput(old_file); 714 return 0; 715 716 out_putf: 717 fput(file); 718 out: 719 return error; 720 } 721 722 static inline int is_loop_device(struct file *file) 723 { 724 struct inode *i = file->f_mapping->host; 725 726 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 727 } 728 729 static int loop_set_fd(struct loop_device *lo, struct file *lo_file, 730 struct block_device *bdev, unsigned int arg) 731 { 732 struct file *file, *f; 733 struct inode *inode; 734 struct address_space *mapping; 735 unsigned lo_blocksize; 736 int lo_flags = 0; 737 int error; 738 loff_t size; 739 740 /* This is safe, since we have a reference from open(). */ 741 __module_get(THIS_MODULE); 742 743 error = -EBADF; 744 file = fget(arg); 745 if (!file) 746 goto out; 747 748 error = -EBUSY; 749 if (lo->lo_state != Lo_unbound) 750 goto out_putf; 751 752 /* Avoid recursion */ 753 f = file; 754 while (is_loop_device(f)) { 755 struct loop_device *l; 756 757 if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev) 758 goto out_putf; 759 760 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 761 if (l->lo_state == Lo_unbound) { 762 error = -EINVAL; 763 goto out_putf; 764 } 765 f = l->lo_backing_file; 766 } 767 768 mapping = file->f_mapping; 769 inode = mapping->host; 770 771 if (!(file->f_mode & FMODE_WRITE)) 772 lo_flags |= LO_FLAGS_READ_ONLY; 773 774 error = -EINVAL; 775 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) { 776 const struct address_space_operations *aops = mapping->a_ops; 777 /* 778 * If we can't read - sorry. If we only can't write - well, 779 * it's going to be read-only. 780 */ 781 if (!file->f_op->splice_read) 782 goto out_putf; 783 if (aops->prepare_write && aops->commit_write) 784 lo_flags |= LO_FLAGS_USE_AOPS; 785 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write) 786 lo_flags |= LO_FLAGS_READ_ONLY; 787 788 lo_blocksize = S_ISBLK(inode->i_mode) ? 789 inode->i_bdev->bd_block_size : PAGE_SIZE; 790 791 error = 0; 792 } else { 793 goto out_putf; 794 } 795 796 size = get_loop_size(lo, file); 797 798 if ((loff_t)(sector_t)size != size) { 799 error = -EFBIG; 800 goto out_putf; 801 } 802 803 if (!(lo_file->f_mode & FMODE_WRITE)) 804 lo_flags |= LO_FLAGS_READ_ONLY; 805 806 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 807 808 lo->lo_blocksize = lo_blocksize; 809 lo->lo_device = bdev; 810 lo->lo_flags = lo_flags; 811 lo->lo_backing_file = file; 812 lo->transfer = transfer_none; 813 lo->ioctl = NULL; 814 lo->lo_sizelimit = 0; 815 lo->old_gfp_mask = mapping_gfp_mask(mapping); 816 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 817 818 lo->lo_bio = lo->lo_biotail = NULL; 819 820 /* 821 * set queue make_request_fn, and add limits based on lower level 822 * device 823 */ 824 blk_queue_make_request(lo->lo_queue, loop_make_request); 825 lo->lo_queue->queuedata = lo; 826 lo->lo_queue->unplug_fn = loop_unplug; 827 828 set_capacity(lo->lo_disk, size); 829 bd_set_size(bdev, size << 9); 830 831 set_blocksize(bdev, lo_blocksize); 832 833 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 834 lo->lo_number); 835 if (IS_ERR(lo->lo_thread)) { 836 error = PTR_ERR(lo->lo_thread); 837 goto out_clr; 838 } 839 lo->lo_state = Lo_bound; 840 wake_up_process(lo->lo_thread); 841 return 0; 842 843 out_clr: 844 lo->lo_thread = NULL; 845 lo->lo_device = NULL; 846 lo->lo_backing_file = NULL; 847 lo->lo_flags = 0; 848 set_capacity(lo->lo_disk, 0); 849 invalidate_bdev(bdev); 850 bd_set_size(bdev, 0); 851 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 852 lo->lo_state = Lo_unbound; 853 out_putf: 854 fput(file); 855 out: 856 /* This is safe: open() is still holding a reference. */ 857 module_put(THIS_MODULE); 858 return error; 859 } 860 861 static int 862 loop_release_xfer(struct loop_device *lo) 863 { 864 int err = 0; 865 struct loop_func_table *xfer = lo->lo_encryption; 866 867 if (xfer) { 868 if (xfer->release) 869 err = xfer->release(lo); 870 lo->transfer = NULL; 871 lo->lo_encryption = NULL; 872 module_put(xfer->owner); 873 } 874 return err; 875 } 876 877 static int 878 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 879 const struct loop_info64 *i) 880 { 881 int err = 0; 882 883 if (xfer) { 884 struct module *owner = xfer->owner; 885 886 if (!try_module_get(owner)) 887 return -EINVAL; 888 if (xfer->init) 889 err = xfer->init(lo, i); 890 if (err) 891 module_put(owner); 892 else 893 lo->lo_encryption = xfer; 894 } 895 return err; 896 } 897 898 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev) 899 { 900 struct file *filp = lo->lo_backing_file; 901 gfp_t gfp = lo->old_gfp_mask; 902 903 if (lo->lo_state != Lo_bound) 904 return -ENXIO; 905 906 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ 907 return -EBUSY; 908 909 if (filp == NULL) 910 return -EINVAL; 911 912 spin_lock_irq(&lo->lo_lock); 913 lo->lo_state = Lo_rundown; 914 spin_unlock_irq(&lo->lo_lock); 915 916 kthread_stop(lo->lo_thread); 917 918 lo->lo_backing_file = NULL; 919 920 loop_release_xfer(lo); 921 lo->transfer = NULL; 922 lo->ioctl = NULL; 923 lo->lo_device = NULL; 924 lo->lo_encryption = NULL; 925 lo->lo_offset = 0; 926 lo->lo_sizelimit = 0; 927 lo->lo_encrypt_key_size = 0; 928 lo->lo_flags = 0; 929 lo->lo_thread = NULL; 930 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 931 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 932 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 933 invalidate_bdev(bdev); 934 set_capacity(lo->lo_disk, 0); 935 bd_set_size(bdev, 0); 936 mapping_set_gfp_mask(filp->f_mapping, gfp); 937 lo->lo_state = Lo_unbound; 938 fput(filp); 939 /* This is safe: open() is still holding a reference. */ 940 module_put(THIS_MODULE); 941 return 0; 942 } 943 944 static int 945 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 946 { 947 int err; 948 struct loop_func_table *xfer; 949 950 if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid && 951 !capable(CAP_SYS_ADMIN)) 952 return -EPERM; 953 if (lo->lo_state != Lo_bound) 954 return -ENXIO; 955 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 956 return -EINVAL; 957 958 err = loop_release_xfer(lo); 959 if (err) 960 return err; 961 962 if (info->lo_encrypt_type) { 963 unsigned int type = info->lo_encrypt_type; 964 965 if (type >= MAX_LO_CRYPT) 966 return -EINVAL; 967 xfer = xfer_funcs[type]; 968 if (xfer == NULL) 969 return -EINVAL; 970 } else 971 xfer = NULL; 972 973 err = loop_init_xfer(lo, xfer, info); 974 if (err) 975 return err; 976 977 if (lo->lo_offset != info->lo_offset || 978 lo->lo_sizelimit != info->lo_sizelimit) { 979 lo->lo_offset = info->lo_offset; 980 lo->lo_sizelimit = info->lo_sizelimit; 981 if (figure_loop_size(lo)) 982 return -EFBIG; 983 } 984 985 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 986 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 987 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 988 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 989 990 if (!xfer) 991 xfer = &none_funcs; 992 lo->transfer = xfer->transfer; 993 lo->ioctl = xfer->ioctl; 994 995 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 996 lo->lo_init[0] = info->lo_init[0]; 997 lo->lo_init[1] = info->lo_init[1]; 998 if (info->lo_encrypt_key_size) { 999 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1000 info->lo_encrypt_key_size); 1001 lo->lo_key_owner = current->uid; 1002 } 1003 1004 return 0; 1005 } 1006 1007 static int 1008 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1009 { 1010 struct file *file = lo->lo_backing_file; 1011 struct kstat stat; 1012 int error; 1013 1014 if (lo->lo_state != Lo_bound) 1015 return -ENXIO; 1016 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat); 1017 if (error) 1018 return error; 1019 memset(info, 0, sizeof(*info)); 1020 info->lo_number = lo->lo_number; 1021 info->lo_device = huge_encode_dev(stat.dev); 1022 info->lo_inode = stat.ino; 1023 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1024 info->lo_offset = lo->lo_offset; 1025 info->lo_sizelimit = lo->lo_sizelimit; 1026 info->lo_flags = lo->lo_flags; 1027 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1028 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1029 info->lo_encrypt_type = 1030 lo->lo_encryption ? lo->lo_encryption->number : 0; 1031 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1032 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1033 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1034 lo->lo_encrypt_key_size); 1035 } 1036 return 0; 1037 } 1038 1039 static void 1040 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1041 { 1042 memset(info64, 0, sizeof(*info64)); 1043 info64->lo_number = info->lo_number; 1044 info64->lo_device = info->lo_device; 1045 info64->lo_inode = info->lo_inode; 1046 info64->lo_rdevice = info->lo_rdevice; 1047 info64->lo_offset = info->lo_offset; 1048 info64->lo_sizelimit = 0; 1049 info64->lo_encrypt_type = info->lo_encrypt_type; 1050 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1051 info64->lo_flags = info->lo_flags; 1052 info64->lo_init[0] = info->lo_init[0]; 1053 info64->lo_init[1] = info->lo_init[1]; 1054 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1055 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1056 else 1057 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1058 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1059 } 1060 1061 static int 1062 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1063 { 1064 memset(info, 0, sizeof(*info)); 1065 info->lo_number = info64->lo_number; 1066 info->lo_device = info64->lo_device; 1067 info->lo_inode = info64->lo_inode; 1068 info->lo_rdevice = info64->lo_rdevice; 1069 info->lo_offset = info64->lo_offset; 1070 info->lo_encrypt_type = info64->lo_encrypt_type; 1071 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1072 info->lo_flags = info64->lo_flags; 1073 info->lo_init[0] = info64->lo_init[0]; 1074 info->lo_init[1] = info64->lo_init[1]; 1075 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1076 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1077 else 1078 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1079 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1080 1081 /* error in case values were truncated */ 1082 if (info->lo_device != info64->lo_device || 1083 info->lo_rdevice != info64->lo_rdevice || 1084 info->lo_inode != info64->lo_inode || 1085 info->lo_offset != info64->lo_offset) 1086 return -EOVERFLOW; 1087 1088 return 0; 1089 } 1090 1091 static int 1092 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1093 { 1094 struct loop_info info; 1095 struct loop_info64 info64; 1096 1097 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1098 return -EFAULT; 1099 loop_info64_from_old(&info, &info64); 1100 return loop_set_status(lo, &info64); 1101 } 1102 1103 static int 1104 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1105 { 1106 struct loop_info64 info64; 1107 1108 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1109 return -EFAULT; 1110 return loop_set_status(lo, &info64); 1111 } 1112 1113 static int 1114 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1115 struct loop_info info; 1116 struct loop_info64 info64; 1117 int err = 0; 1118 1119 if (!arg) 1120 err = -EINVAL; 1121 if (!err) 1122 err = loop_get_status(lo, &info64); 1123 if (!err) 1124 err = loop_info64_to_old(&info64, &info); 1125 if (!err && copy_to_user(arg, &info, sizeof(info))) 1126 err = -EFAULT; 1127 1128 return err; 1129 } 1130 1131 static int 1132 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1133 struct loop_info64 info64; 1134 int err = 0; 1135 1136 if (!arg) 1137 err = -EINVAL; 1138 if (!err) 1139 err = loop_get_status(lo, &info64); 1140 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1141 err = -EFAULT; 1142 1143 return err; 1144 } 1145 1146 static int lo_ioctl(struct inode * inode, struct file * file, 1147 unsigned int cmd, unsigned long arg) 1148 { 1149 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1150 int err; 1151 1152 mutex_lock(&lo->lo_ctl_mutex); 1153 switch (cmd) { 1154 case LOOP_SET_FD: 1155 err = loop_set_fd(lo, file, inode->i_bdev, arg); 1156 break; 1157 case LOOP_CHANGE_FD: 1158 err = loop_change_fd(lo, file, inode->i_bdev, arg); 1159 break; 1160 case LOOP_CLR_FD: 1161 err = loop_clr_fd(lo, inode->i_bdev); 1162 break; 1163 case LOOP_SET_STATUS: 1164 err = loop_set_status_old(lo, (struct loop_info __user *) arg); 1165 break; 1166 case LOOP_GET_STATUS: 1167 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1168 break; 1169 case LOOP_SET_STATUS64: 1170 err = loop_set_status64(lo, (struct loop_info64 __user *) arg); 1171 break; 1172 case LOOP_GET_STATUS64: 1173 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1174 break; 1175 default: 1176 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1177 } 1178 mutex_unlock(&lo->lo_ctl_mutex); 1179 return err; 1180 } 1181 1182 #ifdef CONFIG_COMPAT 1183 struct compat_loop_info { 1184 compat_int_t lo_number; /* ioctl r/o */ 1185 compat_dev_t lo_device; /* ioctl r/o */ 1186 compat_ulong_t lo_inode; /* ioctl r/o */ 1187 compat_dev_t lo_rdevice; /* ioctl r/o */ 1188 compat_int_t lo_offset; 1189 compat_int_t lo_encrypt_type; 1190 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1191 compat_int_t lo_flags; /* ioctl r/o */ 1192 char lo_name[LO_NAME_SIZE]; 1193 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1194 compat_ulong_t lo_init[2]; 1195 char reserved[4]; 1196 }; 1197 1198 /* 1199 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1200 * - noinlined to reduce stack space usage in main part of driver 1201 */ 1202 static noinline int 1203 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1204 struct loop_info64 *info64) 1205 { 1206 struct compat_loop_info info; 1207 1208 if (copy_from_user(&info, arg, sizeof(info))) 1209 return -EFAULT; 1210 1211 memset(info64, 0, sizeof(*info64)); 1212 info64->lo_number = info.lo_number; 1213 info64->lo_device = info.lo_device; 1214 info64->lo_inode = info.lo_inode; 1215 info64->lo_rdevice = info.lo_rdevice; 1216 info64->lo_offset = info.lo_offset; 1217 info64->lo_sizelimit = 0; 1218 info64->lo_encrypt_type = info.lo_encrypt_type; 1219 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1220 info64->lo_flags = info.lo_flags; 1221 info64->lo_init[0] = info.lo_init[0]; 1222 info64->lo_init[1] = info.lo_init[1]; 1223 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1224 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1225 else 1226 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1227 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1228 return 0; 1229 } 1230 1231 /* 1232 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1233 * - noinlined to reduce stack space usage in main part of driver 1234 */ 1235 static noinline int 1236 loop_info64_to_compat(const struct loop_info64 *info64, 1237 struct compat_loop_info __user *arg) 1238 { 1239 struct compat_loop_info info; 1240 1241 memset(&info, 0, sizeof(info)); 1242 info.lo_number = info64->lo_number; 1243 info.lo_device = info64->lo_device; 1244 info.lo_inode = info64->lo_inode; 1245 info.lo_rdevice = info64->lo_rdevice; 1246 info.lo_offset = info64->lo_offset; 1247 info.lo_encrypt_type = info64->lo_encrypt_type; 1248 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1249 info.lo_flags = info64->lo_flags; 1250 info.lo_init[0] = info64->lo_init[0]; 1251 info.lo_init[1] = info64->lo_init[1]; 1252 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1253 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1254 else 1255 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1256 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1257 1258 /* error in case values were truncated */ 1259 if (info.lo_device != info64->lo_device || 1260 info.lo_rdevice != info64->lo_rdevice || 1261 info.lo_inode != info64->lo_inode || 1262 info.lo_offset != info64->lo_offset || 1263 info.lo_init[0] != info64->lo_init[0] || 1264 info.lo_init[1] != info64->lo_init[1]) 1265 return -EOVERFLOW; 1266 1267 if (copy_to_user(arg, &info, sizeof(info))) 1268 return -EFAULT; 1269 return 0; 1270 } 1271 1272 static int 1273 loop_set_status_compat(struct loop_device *lo, 1274 const struct compat_loop_info __user *arg) 1275 { 1276 struct loop_info64 info64; 1277 int ret; 1278 1279 ret = loop_info64_from_compat(arg, &info64); 1280 if (ret < 0) 1281 return ret; 1282 return loop_set_status(lo, &info64); 1283 } 1284 1285 static int 1286 loop_get_status_compat(struct loop_device *lo, 1287 struct compat_loop_info __user *arg) 1288 { 1289 struct loop_info64 info64; 1290 int err = 0; 1291 1292 if (!arg) 1293 err = -EINVAL; 1294 if (!err) 1295 err = loop_get_status(lo, &info64); 1296 if (!err) 1297 err = loop_info64_to_compat(&info64, arg); 1298 return err; 1299 } 1300 1301 static long lo_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1302 { 1303 struct inode *inode = file->f_path.dentry->d_inode; 1304 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1305 int err; 1306 1307 lock_kernel(); 1308 switch(cmd) { 1309 case LOOP_SET_STATUS: 1310 mutex_lock(&lo->lo_ctl_mutex); 1311 err = loop_set_status_compat( 1312 lo, (const struct compat_loop_info __user *) arg); 1313 mutex_unlock(&lo->lo_ctl_mutex); 1314 break; 1315 case LOOP_GET_STATUS: 1316 mutex_lock(&lo->lo_ctl_mutex); 1317 err = loop_get_status_compat( 1318 lo, (struct compat_loop_info __user *) arg); 1319 mutex_unlock(&lo->lo_ctl_mutex); 1320 break; 1321 case LOOP_CLR_FD: 1322 case LOOP_GET_STATUS64: 1323 case LOOP_SET_STATUS64: 1324 arg = (unsigned long) compat_ptr(arg); 1325 case LOOP_SET_FD: 1326 case LOOP_CHANGE_FD: 1327 err = lo_ioctl(inode, file, cmd, arg); 1328 break; 1329 default: 1330 err = -ENOIOCTLCMD; 1331 break; 1332 } 1333 unlock_kernel(); 1334 return err; 1335 } 1336 #endif 1337 1338 static int lo_open(struct inode *inode, struct file *file) 1339 { 1340 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1341 1342 mutex_lock(&lo->lo_ctl_mutex); 1343 lo->lo_refcnt++; 1344 mutex_unlock(&lo->lo_ctl_mutex); 1345 1346 return 0; 1347 } 1348 1349 static int lo_release(struct inode *inode, struct file *file) 1350 { 1351 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1352 1353 mutex_lock(&lo->lo_ctl_mutex); 1354 --lo->lo_refcnt; 1355 mutex_unlock(&lo->lo_ctl_mutex); 1356 1357 return 0; 1358 } 1359 1360 static struct block_device_operations lo_fops = { 1361 .owner = THIS_MODULE, 1362 .open = lo_open, 1363 .release = lo_release, 1364 .ioctl = lo_ioctl, 1365 #ifdef CONFIG_COMPAT 1366 .compat_ioctl = lo_compat_ioctl, 1367 #endif 1368 }; 1369 1370 /* 1371 * And now the modules code and kernel interface. 1372 */ 1373 static int max_loop; 1374 module_param(max_loop, int, 0); 1375 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1376 MODULE_LICENSE("GPL"); 1377 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1378 1379 int loop_register_transfer(struct loop_func_table *funcs) 1380 { 1381 unsigned int n = funcs->number; 1382 1383 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1384 return -EINVAL; 1385 xfer_funcs[n] = funcs; 1386 return 0; 1387 } 1388 1389 int loop_unregister_transfer(int number) 1390 { 1391 unsigned int n = number; 1392 struct loop_device *lo; 1393 struct loop_func_table *xfer; 1394 1395 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1396 return -EINVAL; 1397 1398 xfer_funcs[n] = NULL; 1399 1400 list_for_each_entry(lo, &loop_devices, lo_list) { 1401 mutex_lock(&lo->lo_ctl_mutex); 1402 1403 if (lo->lo_encryption == xfer) 1404 loop_release_xfer(lo); 1405 1406 mutex_unlock(&lo->lo_ctl_mutex); 1407 } 1408 1409 return 0; 1410 } 1411 1412 EXPORT_SYMBOL(loop_register_transfer); 1413 EXPORT_SYMBOL(loop_unregister_transfer); 1414 1415 static struct loop_device *loop_alloc(int i) 1416 { 1417 struct loop_device *lo; 1418 struct gendisk *disk; 1419 1420 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1421 if (!lo) 1422 goto out; 1423 1424 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1425 if (!lo->lo_queue) 1426 goto out_free_dev; 1427 1428 disk = lo->lo_disk = alloc_disk(1); 1429 if (!disk) 1430 goto out_free_queue; 1431 1432 mutex_init(&lo->lo_ctl_mutex); 1433 lo->lo_number = i; 1434 lo->lo_thread = NULL; 1435 init_waitqueue_head(&lo->lo_event); 1436 spin_lock_init(&lo->lo_lock); 1437 disk->major = LOOP_MAJOR; 1438 disk->first_minor = i; 1439 disk->fops = &lo_fops; 1440 disk->private_data = lo; 1441 disk->queue = lo->lo_queue; 1442 sprintf(disk->disk_name, "loop%d", i); 1443 return lo; 1444 1445 out_free_queue: 1446 blk_cleanup_queue(lo->lo_queue); 1447 out_free_dev: 1448 kfree(lo); 1449 out: 1450 return NULL; 1451 } 1452 1453 static void loop_free(struct loop_device *lo) 1454 { 1455 blk_cleanup_queue(lo->lo_queue); 1456 put_disk(lo->lo_disk); 1457 list_del(&lo->lo_list); 1458 kfree(lo); 1459 } 1460 1461 static struct loop_device *loop_init_one(int i) 1462 { 1463 struct loop_device *lo; 1464 1465 list_for_each_entry(lo, &loop_devices, lo_list) { 1466 if (lo->lo_number == i) 1467 return lo; 1468 } 1469 1470 lo = loop_alloc(i); 1471 if (lo) { 1472 add_disk(lo->lo_disk); 1473 list_add_tail(&lo->lo_list, &loop_devices); 1474 } 1475 return lo; 1476 } 1477 1478 static void loop_del_one(struct loop_device *lo) 1479 { 1480 del_gendisk(lo->lo_disk); 1481 loop_free(lo); 1482 } 1483 1484 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1485 { 1486 struct loop_device *lo; 1487 struct kobject *kobj; 1488 1489 mutex_lock(&loop_devices_mutex); 1490 lo = loop_init_one(dev & MINORMASK); 1491 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM); 1492 mutex_unlock(&loop_devices_mutex); 1493 1494 *part = 0; 1495 return kobj; 1496 } 1497 1498 static int __init loop_init(void) 1499 { 1500 int i, nr; 1501 unsigned long range; 1502 struct loop_device *lo, *next; 1503 1504 /* 1505 * loop module now has a feature to instantiate underlying device 1506 * structure on-demand, provided that there is an access dev node. 1507 * However, this will not work well with user space tool that doesn't 1508 * know about such "feature". In order to not break any existing 1509 * tool, we do the following: 1510 * 1511 * (1) if max_loop is specified, create that many upfront, and this 1512 * also becomes a hard limit. 1513 * (2) if max_loop is not specified, create 8 loop device on module 1514 * load, user can further extend loop device by create dev node 1515 * themselves and have kernel automatically instantiate actual 1516 * device on-demand. 1517 */ 1518 if (max_loop > 1UL << MINORBITS) 1519 return -EINVAL; 1520 1521 if (max_loop) { 1522 nr = max_loop; 1523 range = max_loop; 1524 } else { 1525 nr = 8; 1526 range = 1UL << MINORBITS; 1527 } 1528 1529 if (register_blkdev(LOOP_MAJOR, "loop")) 1530 return -EIO; 1531 1532 for (i = 0; i < nr; i++) { 1533 lo = loop_alloc(i); 1534 if (!lo) 1535 goto Enomem; 1536 list_add_tail(&lo->lo_list, &loop_devices); 1537 } 1538 1539 /* point of no return */ 1540 1541 list_for_each_entry(lo, &loop_devices, lo_list) 1542 add_disk(lo->lo_disk); 1543 1544 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1545 THIS_MODULE, loop_probe, NULL, NULL); 1546 1547 printk(KERN_INFO "loop: module loaded\n"); 1548 return 0; 1549 1550 Enomem: 1551 printk(KERN_INFO "loop: out of memory\n"); 1552 1553 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1554 loop_free(lo); 1555 1556 unregister_blkdev(LOOP_MAJOR, "loop"); 1557 return -ENOMEM; 1558 } 1559 1560 static void __exit loop_exit(void) 1561 { 1562 unsigned long range; 1563 struct loop_device *lo, *next; 1564 1565 range = max_loop ? max_loop : 1UL << MINORBITS; 1566 1567 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1568 loop_del_one(lo); 1569 1570 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1571 unregister_blkdev(LOOP_MAJOR, "loop"); 1572 } 1573 1574 module_init(loop_init); 1575 module_exit(loop_exit); 1576 1577 #ifndef MODULE 1578 static int __init max_loop_setup(char *str) 1579 { 1580 max_loop = simple_strtol(str, NULL, 0); 1581 return 1; 1582 } 1583 1584 __setup("max_loop=", max_loop_setup); 1585 #endif 1586