xref: /openbmc/linux/drivers/block/loop.c (revision c21b37f6)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bols�, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations prepare_write and/or commit_write are not available on the
44  * backing filesystem.
45  * Anton Altaparmakov, 16 Feb 2005
46  *
47  * Still To Fix:
48  * - Advisory locking is ignored here.
49  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
50  *
51  */
52 
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/sched.h>
56 #include <linux/fs.h>
57 #include <linux/file.h>
58 #include <linux/stat.h>
59 #include <linux/errno.h>
60 #include <linux/major.h>
61 #include <linux/wait.h>
62 #include <linux/blkdev.h>
63 #include <linux/blkpg.h>
64 #include <linux/init.h>
65 #include <linux/smp_lock.h>
66 #include <linux/swap.h>
67 #include <linux/slab.h>
68 #include <linux/loop.h>
69 #include <linux/compat.h>
70 #include <linux/suspend.h>
71 #include <linux/freezer.h>
72 #include <linux/writeback.h>
73 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
74 #include <linux/completion.h>
75 #include <linux/highmem.h>
76 #include <linux/gfp.h>
77 #include <linux/kthread.h>
78 #include <linux/splice.h>
79 
80 #include <asm/uaccess.h>
81 
82 static LIST_HEAD(loop_devices);
83 static DEFINE_MUTEX(loop_devices_mutex);
84 
85 /*
86  * Transfer functions
87  */
88 static int transfer_none(struct loop_device *lo, int cmd,
89 			 struct page *raw_page, unsigned raw_off,
90 			 struct page *loop_page, unsigned loop_off,
91 			 int size, sector_t real_block)
92 {
93 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
94 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
95 
96 	if (cmd == READ)
97 		memcpy(loop_buf, raw_buf, size);
98 	else
99 		memcpy(raw_buf, loop_buf, size);
100 
101 	kunmap_atomic(raw_buf, KM_USER0);
102 	kunmap_atomic(loop_buf, KM_USER1);
103 	cond_resched();
104 	return 0;
105 }
106 
107 static int transfer_xor(struct loop_device *lo, int cmd,
108 			struct page *raw_page, unsigned raw_off,
109 			struct page *loop_page, unsigned loop_off,
110 			int size, sector_t real_block)
111 {
112 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
113 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
114 	char *in, *out, *key;
115 	int i, keysize;
116 
117 	if (cmd == READ) {
118 		in = raw_buf;
119 		out = loop_buf;
120 	} else {
121 		in = loop_buf;
122 		out = raw_buf;
123 	}
124 
125 	key = lo->lo_encrypt_key;
126 	keysize = lo->lo_encrypt_key_size;
127 	for (i = 0; i < size; i++)
128 		*out++ = *in++ ^ key[(i & 511) % keysize];
129 
130 	kunmap_atomic(raw_buf, KM_USER0);
131 	kunmap_atomic(loop_buf, KM_USER1);
132 	cond_resched();
133 	return 0;
134 }
135 
136 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
137 {
138 	if (unlikely(info->lo_encrypt_key_size <= 0))
139 		return -EINVAL;
140 	return 0;
141 }
142 
143 static struct loop_func_table none_funcs = {
144 	.number = LO_CRYPT_NONE,
145 	.transfer = transfer_none,
146 };
147 
148 static struct loop_func_table xor_funcs = {
149 	.number = LO_CRYPT_XOR,
150 	.transfer = transfer_xor,
151 	.init = xor_init
152 };
153 
154 /* xfer_funcs[0] is special - its release function is never called */
155 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
156 	&none_funcs,
157 	&xor_funcs
158 };
159 
160 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
161 {
162 	loff_t size, offset, loopsize;
163 
164 	/* Compute loopsize in bytes */
165 	size = i_size_read(file->f_mapping->host);
166 	offset = lo->lo_offset;
167 	loopsize = size - offset;
168 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
169 		loopsize = lo->lo_sizelimit;
170 
171 	/*
172 	 * Unfortunately, if we want to do I/O on the device,
173 	 * the number of 512-byte sectors has to fit into a sector_t.
174 	 */
175 	return loopsize >> 9;
176 }
177 
178 static int
179 figure_loop_size(struct loop_device *lo)
180 {
181 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
182 	sector_t x = (sector_t)size;
183 
184 	if (unlikely((loff_t)x != size))
185 		return -EFBIG;
186 
187 	set_capacity(lo->lo_disk, x);
188 	return 0;
189 }
190 
191 static inline int
192 lo_do_transfer(struct loop_device *lo, int cmd,
193 	       struct page *rpage, unsigned roffs,
194 	       struct page *lpage, unsigned loffs,
195 	       int size, sector_t rblock)
196 {
197 	if (unlikely(!lo->transfer))
198 		return 0;
199 
200 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
201 }
202 
203 /**
204  * do_lo_send_aops - helper for writing data to a loop device
205  *
206  * This is the fast version for backing filesystems which implement the address
207  * space operations prepare_write and commit_write.
208  */
209 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
210 		int bsize, loff_t pos, struct page *page)
211 {
212 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
213 	struct address_space *mapping = file->f_mapping;
214 	const struct address_space_operations *aops = mapping->a_ops;
215 	pgoff_t index;
216 	unsigned offset, bv_offs;
217 	int len, ret;
218 
219 	mutex_lock(&mapping->host->i_mutex);
220 	index = pos >> PAGE_CACHE_SHIFT;
221 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
222 	bv_offs = bvec->bv_offset;
223 	len = bvec->bv_len;
224 	while (len > 0) {
225 		sector_t IV;
226 		unsigned size;
227 		int transfer_result;
228 
229 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
230 		size = PAGE_CACHE_SIZE - offset;
231 		if (size > len)
232 			size = len;
233 		page = grab_cache_page(mapping, index);
234 		if (unlikely(!page))
235 			goto fail;
236 		ret = aops->prepare_write(file, page, offset,
237 					  offset + size);
238 		if (unlikely(ret)) {
239 			if (ret == AOP_TRUNCATED_PAGE) {
240 				page_cache_release(page);
241 				continue;
242 			}
243 			goto unlock;
244 		}
245 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
246 				bvec->bv_page, bv_offs, size, IV);
247 		if (unlikely(transfer_result)) {
248 			/*
249 			 * The transfer failed, but we still write the data to
250 			 * keep prepare/commit calls balanced.
251 			 */
252 			printk(KERN_ERR "loop: transfer error block %llu\n",
253 			       (unsigned long long)index);
254 			zero_user_page(page, offset, size, KM_USER0);
255 		}
256 		flush_dcache_page(page);
257 		ret = aops->commit_write(file, page, offset,
258 					 offset + size);
259 		if (unlikely(ret)) {
260 			if (ret == AOP_TRUNCATED_PAGE) {
261 				page_cache_release(page);
262 				continue;
263 			}
264 			goto unlock;
265 		}
266 		if (unlikely(transfer_result))
267 			goto unlock;
268 		bv_offs += size;
269 		len -= size;
270 		offset = 0;
271 		index++;
272 		pos += size;
273 		unlock_page(page);
274 		page_cache_release(page);
275 	}
276 	ret = 0;
277 out:
278 	mutex_unlock(&mapping->host->i_mutex);
279 	return ret;
280 unlock:
281 	unlock_page(page);
282 	page_cache_release(page);
283 fail:
284 	ret = -1;
285 	goto out;
286 }
287 
288 /**
289  * __do_lo_send_write - helper for writing data to a loop device
290  *
291  * This helper just factors out common code between do_lo_send_direct_write()
292  * and do_lo_send_write().
293  */
294 static int __do_lo_send_write(struct file *file,
295 		u8 *buf, const int len, loff_t pos)
296 {
297 	ssize_t bw;
298 	mm_segment_t old_fs = get_fs();
299 
300 	set_fs(get_ds());
301 	bw = file->f_op->write(file, buf, len, &pos);
302 	set_fs(old_fs);
303 	if (likely(bw == len))
304 		return 0;
305 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
306 			(unsigned long long)pos, len);
307 	if (bw >= 0)
308 		bw = -EIO;
309 	return bw;
310 }
311 
312 /**
313  * do_lo_send_direct_write - helper for writing data to a loop device
314  *
315  * This is the fast, non-transforming version for backing filesystems which do
316  * not implement the address space operations prepare_write and commit_write.
317  * It uses the write file operation which should be present on all writeable
318  * filesystems.
319  */
320 static int do_lo_send_direct_write(struct loop_device *lo,
321 		struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
322 {
323 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
324 			kmap(bvec->bv_page) + bvec->bv_offset,
325 			bvec->bv_len, pos);
326 	kunmap(bvec->bv_page);
327 	cond_resched();
328 	return bw;
329 }
330 
331 /**
332  * do_lo_send_write - helper for writing data to a loop device
333  *
334  * This is the slow, transforming version for filesystems which do not
335  * implement the address space operations prepare_write and commit_write.  It
336  * uses the write file operation which should be present on all writeable
337  * filesystems.
338  *
339  * Using fops->write is slower than using aops->{prepare,commit}_write in the
340  * transforming case because we need to double buffer the data as we cannot do
341  * the transformations in place as we do not have direct access to the
342  * destination pages of the backing file.
343  */
344 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
345 		int bsize, loff_t pos, struct page *page)
346 {
347 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
348 			bvec->bv_offset, bvec->bv_len, pos >> 9);
349 	if (likely(!ret))
350 		return __do_lo_send_write(lo->lo_backing_file,
351 				page_address(page), bvec->bv_len,
352 				pos);
353 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
354 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
355 	if (ret > 0)
356 		ret = -EIO;
357 	return ret;
358 }
359 
360 static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
361 		loff_t pos)
362 {
363 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
364 			struct page *page);
365 	struct bio_vec *bvec;
366 	struct page *page = NULL;
367 	int i, ret = 0;
368 
369 	do_lo_send = do_lo_send_aops;
370 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
371 		do_lo_send = do_lo_send_direct_write;
372 		if (lo->transfer != transfer_none) {
373 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
374 			if (unlikely(!page))
375 				goto fail;
376 			kmap(page);
377 			do_lo_send = do_lo_send_write;
378 		}
379 	}
380 	bio_for_each_segment(bvec, bio, i) {
381 		ret = do_lo_send(lo, bvec, bsize, pos, page);
382 		if (ret < 0)
383 			break;
384 		pos += bvec->bv_len;
385 	}
386 	if (page) {
387 		kunmap(page);
388 		__free_page(page);
389 	}
390 out:
391 	return ret;
392 fail:
393 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
394 	ret = -ENOMEM;
395 	goto out;
396 }
397 
398 struct lo_read_data {
399 	struct loop_device *lo;
400 	struct page *page;
401 	unsigned offset;
402 	int bsize;
403 };
404 
405 static int
406 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
407 		struct splice_desc *sd)
408 {
409 	struct lo_read_data *p = sd->u.data;
410 	struct loop_device *lo = p->lo;
411 	struct page *page = buf->page;
412 	sector_t IV;
413 	size_t size;
414 	int ret;
415 
416 	ret = buf->ops->confirm(pipe, buf);
417 	if (unlikely(ret))
418 		return ret;
419 
420 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
421 							(buf->offset >> 9);
422 	size = sd->len;
423 	if (size > p->bsize)
424 		size = p->bsize;
425 
426 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
427 		printk(KERN_ERR "loop: transfer error block %ld\n",
428 		       page->index);
429 		size = -EINVAL;
430 	}
431 
432 	flush_dcache_page(p->page);
433 
434 	if (size > 0)
435 		p->offset += size;
436 
437 	return size;
438 }
439 
440 static int
441 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
442 {
443 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
444 }
445 
446 static int
447 do_lo_receive(struct loop_device *lo,
448 	      struct bio_vec *bvec, int bsize, loff_t pos)
449 {
450 	struct lo_read_data cookie;
451 	struct splice_desc sd;
452 	struct file *file;
453 	long retval;
454 
455 	cookie.lo = lo;
456 	cookie.page = bvec->bv_page;
457 	cookie.offset = bvec->bv_offset;
458 	cookie.bsize = bsize;
459 
460 	sd.len = 0;
461 	sd.total_len = bvec->bv_len;
462 	sd.flags = 0;
463 	sd.pos = pos;
464 	sd.u.data = &cookie;
465 
466 	file = lo->lo_backing_file;
467 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
468 
469 	if (retval < 0)
470 		return retval;
471 
472 	return 0;
473 }
474 
475 static int
476 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
477 {
478 	struct bio_vec *bvec;
479 	int i, ret = 0;
480 
481 	bio_for_each_segment(bvec, bio, i) {
482 		ret = do_lo_receive(lo, bvec, bsize, pos);
483 		if (ret < 0)
484 			break;
485 		pos += bvec->bv_len;
486 	}
487 	return ret;
488 }
489 
490 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
491 {
492 	loff_t pos;
493 	int ret;
494 
495 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
496 	if (bio_rw(bio) == WRITE)
497 		ret = lo_send(lo, bio, lo->lo_blocksize, pos);
498 	else
499 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
500 	return ret;
501 }
502 
503 /*
504  * Add bio to back of pending list
505  */
506 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
507 {
508 	if (lo->lo_biotail) {
509 		lo->lo_biotail->bi_next = bio;
510 		lo->lo_biotail = bio;
511 	} else
512 		lo->lo_bio = lo->lo_biotail = bio;
513 }
514 
515 /*
516  * Grab first pending buffer
517  */
518 static struct bio *loop_get_bio(struct loop_device *lo)
519 {
520 	struct bio *bio;
521 
522 	if ((bio = lo->lo_bio)) {
523 		if (bio == lo->lo_biotail)
524 			lo->lo_biotail = NULL;
525 		lo->lo_bio = bio->bi_next;
526 		bio->bi_next = NULL;
527 	}
528 
529 	return bio;
530 }
531 
532 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
533 {
534 	struct loop_device *lo = q->queuedata;
535 	int rw = bio_rw(old_bio);
536 
537 	if (rw == READA)
538 		rw = READ;
539 
540 	BUG_ON(!lo || (rw != READ && rw != WRITE));
541 
542 	spin_lock_irq(&lo->lo_lock);
543 	if (lo->lo_state != Lo_bound)
544 		goto out;
545 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
546 		goto out;
547 	loop_add_bio(lo, old_bio);
548 	wake_up(&lo->lo_event);
549 	spin_unlock_irq(&lo->lo_lock);
550 	return 0;
551 
552 out:
553 	spin_unlock_irq(&lo->lo_lock);
554 	bio_io_error(old_bio, old_bio->bi_size);
555 	return 0;
556 }
557 
558 /*
559  * kick off io on the underlying address space
560  */
561 static void loop_unplug(struct request_queue *q)
562 {
563 	struct loop_device *lo = q->queuedata;
564 
565 	clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
566 	blk_run_address_space(lo->lo_backing_file->f_mapping);
567 }
568 
569 struct switch_request {
570 	struct file *file;
571 	struct completion wait;
572 };
573 
574 static void do_loop_switch(struct loop_device *, struct switch_request *);
575 
576 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
577 {
578 	if (unlikely(!bio->bi_bdev)) {
579 		do_loop_switch(lo, bio->bi_private);
580 		bio_put(bio);
581 	} else {
582 		int ret = do_bio_filebacked(lo, bio);
583 		bio_endio(bio, bio->bi_size, ret);
584 	}
585 }
586 
587 /*
588  * worker thread that handles reads/writes to file backed loop devices,
589  * to avoid blocking in our make_request_fn. it also does loop decrypting
590  * on reads for block backed loop, as that is too heavy to do from
591  * b_end_io context where irqs may be disabled.
592  *
593  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
594  * calling kthread_stop().  Therefore once kthread_should_stop() is
595  * true, make_request will not place any more requests.  Therefore
596  * once kthread_should_stop() is true and lo_bio is NULL, we are
597  * done with the loop.
598  */
599 static int loop_thread(void *data)
600 {
601 	struct loop_device *lo = data;
602 	struct bio *bio;
603 
604 	set_user_nice(current, -20);
605 
606 	while (!kthread_should_stop() || lo->lo_bio) {
607 
608 		wait_event_interruptible(lo->lo_event,
609 				lo->lo_bio || kthread_should_stop());
610 
611 		if (!lo->lo_bio)
612 			continue;
613 		spin_lock_irq(&lo->lo_lock);
614 		bio = loop_get_bio(lo);
615 		spin_unlock_irq(&lo->lo_lock);
616 
617 		BUG_ON(!bio);
618 		loop_handle_bio(lo, bio);
619 	}
620 
621 	return 0;
622 }
623 
624 /*
625  * loop_switch performs the hard work of switching a backing store.
626  * First it needs to flush existing IO, it does this by sending a magic
627  * BIO down the pipe. The completion of this BIO does the actual switch.
628  */
629 static int loop_switch(struct loop_device *lo, struct file *file)
630 {
631 	struct switch_request w;
632 	struct bio *bio = bio_alloc(GFP_KERNEL, 1);
633 	if (!bio)
634 		return -ENOMEM;
635 	init_completion(&w.wait);
636 	w.file = file;
637 	bio->bi_private = &w;
638 	bio->bi_bdev = NULL;
639 	loop_make_request(lo->lo_queue, bio);
640 	wait_for_completion(&w.wait);
641 	return 0;
642 }
643 
644 /*
645  * Do the actual switch; called from the BIO completion routine
646  */
647 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
648 {
649 	struct file *file = p->file;
650 	struct file *old_file = lo->lo_backing_file;
651 	struct address_space *mapping = file->f_mapping;
652 
653 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
654 	lo->lo_backing_file = file;
655 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
656 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
657 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
658 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
659 	complete(&p->wait);
660 }
661 
662 
663 /*
664  * loop_change_fd switched the backing store of a loopback device to
665  * a new file. This is useful for operating system installers to free up
666  * the original file and in High Availability environments to switch to
667  * an alternative location for the content in case of server meltdown.
668  * This can only work if the loop device is used read-only, and if the
669  * new backing store is the same size and type as the old backing store.
670  */
671 static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
672 		       struct block_device *bdev, unsigned int arg)
673 {
674 	struct file	*file, *old_file;
675 	struct inode	*inode;
676 	int		error;
677 
678 	error = -ENXIO;
679 	if (lo->lo_state != Lo_bound)
680 		goto out;
681 
682 	/* the loop device has to be read-only */
683 	error = -EINVAL;
684 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
685 		goto out;
686 
687 	error = -EBADF;
688 	file = fget(arg);
689 	if (!file)
690 		goto out;
691 
692 	inode = file->f_mapping->host;
693 	old_file = lo->lo_backing_file;
694 
695 	error = -EINVAL;
696 
697 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
698 		goto out_putf;
699 
700 	/* new backing store needs to support loop (eg splice_read) */
701 	if (!inode->i_fop->splice_read)
702 		goto out_putf;
703 
704 	/* size of the new backing store needs to be the same */
705 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
706 		goto out_putf;
707 
708 	/* and ... switch */
709 	error = loop_switch(lo, file);
710 	if (error)
711 		goto out_putf;
712 
713 	fput(old_file);
714 	return 0;
715 
716  out_putf:
717 	fput(file);
718  out:
719 	return error;
720 }
721 
722 static inline int is_loop_device(struct file *file)
723 {
724 	struct inode *i = file->f_mapping->host;
725 
726 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
727 }
728 
729 static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
730 		       struct block_device *bdev, unsigned int arg)
731 {
732 	struct file	*file, *f;
733 	struct inode	*inode;
734 	struct address_space *mapping;
735 	unsigned lo_blocksize;
736 	int		lo_flags = 0;
737 	int		error;
738 	loff_t		size;
739 
740 	/* This is safe, since we have a reference from open(). */
741 	__module_get(THIS_MODULE);
742 
743 	error = -EBADF;
744 	file = fget(arg);
745 	if (!file)
746 		goto out;
747 
748 	error = -EBUSY;
749 	if (lo->lo_state != Lo_unbound)
750 		goto out_putf;
751 
752 	/* Avoid recursion */
753 	f = file;
754 	while (is_loop_device(f)) {
755 		struct loop_device *l;
756 
757 		if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
758 			goto out_putf;
759 
760 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
761 		if (l->lo_state == Lo_unbound) {
762 			error = -EINVAL;
763 			goto out_putf;
764 		}
765 		f = l->lo_backing_file;
766 	}
767 
768 	mapping = file->f_mapping;
769 	inode = mapping->host;
770 
771 	if (!(file->f_mode & FMODE_WRITE))
772 		lo_flags |= LO_FLAGS_READ_ONLY;
773 
774 	error = -EINVAL;
775 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
776 		const struct address_space_operations *aops = mapping->a_ops;
777 		/*
778 		 * If we can't read - sorry. If we only can't write - well,
779 		 * it's going to be read-only.
780 		 */
781 		if (!file->f_op->splice_read)
782 			goto out_putf;
783 		if (aops->prepare_write && aops->commit_write)
784 			lo_flags |= LO_FLAGS_USE_AOPS;
785 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
786 			lo_flags |= LO_FLAGS_READ_ONLY;
787 
788 		lo_blocksize = S_ISBLK(inode->i_mode) ?
789 			inode->i_bdev->bd_block_size : PAGE_SIZE;
790 
791 		error = 0;
792 	} else {
793 		goto out_putf;
794 	}
795 
796 	size = get_loop_size(lo, file);
797 
798 	if ((loff_t)(sector_t)size != size) {
799 		error = -EFBIG;
800 		goto out_putf;
801 	}
802 
803 	if (!(lo_file->f_mode & FMODE_WRITE))
804 		lo_flags |= LO_FLAGS_READ_ONLY;
805 
806 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
807 
808 	lo->lo_blocksize = lo_blocksize;
809 	lo->lo_device = bdev;
810 	lo->lo_flags = lo_flags;
811 	lo->lo_backing_file = file;
812 	lo->transfer = transfer_none;
813 	lo->ioctl = NULL;
814 	lo->lo_sizelimit = 0;
815 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
816 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
817 
818 	lo->lo_bio = lo->lo_biotail = NULL;
819 
820 	/*
821 	 * set queue make_request_fn, and add limits based on lower level
822 	 * device
823 	 */
824 	blk_queue_make_request(lo->lo_queue, loop_make_request);
825 	lo->lo_queue->queuedata = lo;
826 	lo->lo_queue->unplug_fn = loop_unplug;
827 
828 	set_capacity(lo->lo_disk, size);
829 	bd_set_size(bdev, size << 9);
830 
831 	set_blocksize(bdev, lo_blocksize);
832 
833 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
834 						lo->lo_number);
835 	if (IS_ERR(lo->lo_thread)) {
836 		error = PTR_ERR(lo->lo_thread);
837 		goto out_clr;
838 	}
839 	lo->lo_state = Lo_bound;
840 	wake_up_process(lo->lo_thread);
841 	return 0;
842 
843 out_clr:
844 	lo->lo_thread = NULL;
845 	lo->lo_device = NULL;
846 	lo->lo_backing_file = NULL;
847 	lo->lo_flags = 0;
848 	set_capacity(lo->lo_disk, 0);
849 	invalidate_bdev(bdev);
850 	bd_set_size(bdev, 0);
851 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
852 	lo->lo_state = Lo_unbound;
853  out_putf:
854 	fput(file);
855  out:
856 	/* This is safe: open() is still holding a reference. */
857 	module_put(THIS_MODULE);
858 	return error;
859 }
860 
861 static int
862 loop_release_xfer(struct loop_device *lo)
863 {
864 	int err = 0;
865 	struct loop_func_table *xfer = lo->lo_encryption;
866 
867 	if (xfer) {
868 		if (xfer->release)
869 			err = xfer->release(lo);
870 		lo->transfer = NULL;
871 		lo->lo_encryption = NULL;
872 		module_put(xfer->owner);
873 	}
874 	return err;
875 }
876 
877 static int
878 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
879 	       const struct loop_info64 *i)
880 {
881 	int err = 0;
882 
883 	if (xfer) {
884 		struct module *owner = xfer->owner;
885 
886 		if (!try_module_get(owner))
887 			return -EINVAL;
888 		if (xfer->init)
889 			err = xfer->init(lo, i);
890 		if (err)
891 			module_put(owner);
892 		else
893 			lo->lo_encryption = xfer;
894 	}
895 	return err;
896 }
897 
898 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
899 {
900 	struct file *filp = lo->lo_backing_file;
901 	gfp_t gfp = lo->old_gfp_mask;
902 
903 	if (lo->lo_state != Lo_bound)
904 		return -ENXIO;
905 
906 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
907 		return -EBUSY;
908 
909 	if (filp == NULL)
910 		return -EINVAL;
911 
912 	spin_lock_irq(&lo->lo_lock);
913 	lo->lo_state = Lo_rundown;
914 	spin_unlock_irq(&lo->lo_lock);
915 
916 	kthread_stop(lo->lo_thread);
917 
918 	lo->lo_backing_file = NULL;
919 
920 	loop_release_xfer(lo);
921 	lo->transfer = NULL;
922 	lo->ioctl = NULL;
923 	lo->lo_device = NULL;
924 	lo->lo_encryption = NULL;
925 	lo->lo_offset = 0;
926 	lo->lo_sizelimit = 0;
927 	lo->lo_encrypt_key_size = 0;
928 	lo->lo_flags = 0;
929 	lo->lo_thread = NULL;
930 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
931 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
932 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
933 	invalidate_bdev(bdev);
934 	set_capacity(lo->lo_disk, 0);
935 	bd_set_size(bdev, 0);
936 	mapping_set_gfp_mask(filp->f_mapping, gfp);
937 	lo->lo_state = Lo_unbound;
938 	fput(filp);
939 	/* This is safe: open() is still holding a reference. */
940 	module_put(THIS_MODULE);
941 	return 0;
942 }
943 
944 static int
945 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
946 {
947 	int err;
948 	struct loop_func_table *xfer;
949 
950 	if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
951 	    !capable(CAP_SYS_ADMIN))
952 		return -EPERM;
953 	if (lo->lo_state != Lo_bound)
954 		return -ENXIO;
955 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
956 		return -EINVAL;
957 
958 	err = loop_release_xfer(lo);
959 	if (err)
960 		return err;
961 
962 	if (info->lo_encrypt_type) {
963 		unsigned int type = info->lo_encrypt_type;
964 
965 		if (type >= MAX_LO_CRYPT)
966 			return -EINVAL;
967 		xfer = xfer_funcs[type];
968 		if (xfer == NULL)
969 			return -EINVAL;
970 	} else
971 		xfer = NULL;
972 
973 	err = loop_init_xfer(lo, xfer, info);
974 	if (err)
975 		return err;
976 
977 	if (lo->lo_offset != info->lo_offset ||
978 	    lo->lo_sizelimit != info->lo_sizelimit) {
979 		lo->lo_offset = info->lo_offset;
980 		lo->lo_sizelimit = info->lo_sizelimit;
981 		if (figure_loop_size(lo))
982 			return -EFBIG;
983 	}
984 
985 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
986 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
987 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
988 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
989 
990 	if (!xfer)
991 		xfer = &none_funcs;
992 	lo->transfer = xfer->transfer;
993 	lo->ioctl = xfer->ioctl;
994 
995 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
996 	lo->lo_init[0] = info->lo_init[0];
997 	lo->lo_init[1] = info->lo_init[1];
998 	if (info->lo_encrypt_key_size) {
999 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1000 		       info->lo_encrypt_key_size);
1001 		lo->lo_key_owner = current->uid;
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 static int
1008 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1009 {
1010 	struct file *file = lo->lo_backing_file;
1011 	struct kstat stat;
1012 	int error;
1013 
1014 	if (lo->lo_state != Lo_bound)
1015 		return -ENXIO;
1016 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1017 	if (error)
1018 		return error;
1019 	memset(info, 0, sizeof(*info));
1020 	info->lo_number = lo->lo_number;
1021 	info->lo_device = huge_encode_dev(stat.dev);
1022 	info->lo_inode = stat.ino;
1023 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1024 	info->lo_offset = lo->lo_offset;
1025 	info->lo_sizelimit = lo->lo_sizelimit;
1026 	info->lo_flags = lo->lo_flags;
1027 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1028 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1029 	info->lo_encrypt_type =
1030 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1031 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1032 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1033 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1034 		       lo->lo_encrypt_key_size);
1035 	}
1036 	return 0;
1037 }
1038 
1039 static void
1040 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1041 {
1042 	memset(info64, 0, sizeof(*info64));
1043 	info64->lo_number = info->lo_number;
1044 	info64->lo_device = info->lo_device;
1045 	info64->lo_inode = info->lo_inode;
1046 	info64->lo_rdevice = info->lo_rdevice;
1047 	info64->lo_offset = info->lo_offset;
1048 	info64->lo_sizelimit = 0;
1049 	info64->lo_encrypt_type = info->lo_encrypt_type;
1050 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1051 	info64->lo_flags = info->lo_flags;
1052 	info64->lo_init[0] = info->lo_init[0];
1053 	info64->lo_init[1] = info->lo_init[1];
1054 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1055 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1056 	else
1057 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1058 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1059 }
1060 
1061 static int
1062 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1063 {
1064 	memset(info, 0, sizeof(*info));
1065 	info->lo_number = info64->lo_number;
1066 	info->lo_device = info64->lo_device;
1067 	info->lo_inode = info64->lo_inode;
1068 	info->lo_rdevice = info64->lo_rdevice;
1069 	info->lo_offset = info64->lo_offset;
1070 	info->lo_encrypt_type = info64->lo_encrypt_type;
1071 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1072 	info->lo_flags = info64->lo_flags;
1073 	info->lo_init[0] = info64->lo_init[0];
1074 	info->lo_init[1] = info64->lo_init[1];
1075 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1076 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1077 	else
1078 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1079 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1080 
1081 	/* error in case values were truncated */
1082 	if (info->lo_device != info64->lo_device ||
1083 	    info->lo_rdevice != info64->lo_rdevice ||
1084 	    info->lo_inode != info64->lo_inode ||
1085 	    info->lo_offset != info64->lo_offset)
1086 		return -EOVERFLOW;
1087 
1088 	return 0;
1089 }
1090 
1091 static int
1092 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1093 {
1094 	struct loop_info info;
1095 	struct loop_info64 info64;
1096 
1097 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1098 		return -EFAULT;
1099 	loop_info64_from_old(&info, &info64);
1100 	return loop_set_status(lo, &info64);
1101 }
1102 
1103 static int
1104 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1105 {
1106 	struct loop_info64 info64;
1107 
1108 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1109 		return -EFAULT;
1110 	return loop_set_status(lo, &info64);
1111 }
1112 
1113 static int
1114 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1115 	struct loop_info info;
1116 	struct loop_info64 info64;
1117 	int err = 0;
1118 
1119 	if (!arg)
1120 		err = -EINVAL;
1121 	if (!err)
1122 		err = loop_get_status(lo, &info64);
1123 	if (!err)
1124 		err = loop_info64_to_old(&info64, &info);
1125 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1126 		err = -EFAULT;
1127 
1128 	return err;
1129 }
1130 
1131 static int
1132 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1133 	struct loop_info64 info64;
1134 	int err = 0;
1135 
1136 	if (!arg)
1137 		err = -EINVAL;
1138 	if (!err)
1139 		err = loop_get_status(lo, &info64);
1140 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1141 		err = -EFAULT;
1142 
1143 	return err;
1144 }
1145 
1146 static int lo_ioctl(struct inode * inode, struct file * file,
1147 	unsigned int cmd, unsigned long arg)
1148 {
1149 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1150 	int err;
1151 
1152 	mutex_lock(&lo->lo_ctl_mutex);
1153 	switch (cmd) {
1154 	case LOOP_SET_FD:
1155 		err = loop_set_fd(lo, file, inode->i_bdev, arg);
1156 		break;
1157 	case LOOP_CHANGE_FD:
1158 		err = loop_change_fd(lo, file, inode->i_bdev, arg);
1159 		break;
1160 	case LOOP_CLR_FD:
1161 		err = loop_clr_fd(lo, inode->i_bdev);
1162 		break;
1163 	case LOOP_SET_STATUS:
1164 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1165 		break;
1166 	case LOOP_GET_STATUS:
1167 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1168 		break;
1169 	case LOOP_SET_STATUS64:
1170 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1171 		break;
1172 	case LOOP_GET_STATUS64:
1173 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1174 		break;
1175 	default:
1176 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1177 	}
1178 	mutex_unlock(&lo->lo_ctl_mutex);
1179 	return err;
1180 }
1181 
1182 #ifdef CONFIG_COMPAT
1183 struct compat_loop_info {
1184 	compat_int_t	lo_number;      /* ioctl r/o */
1185 	compat_dev_t	lo_device;      /* ioctl r/o */
1186 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1187 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1188 	compat_int_t	lo_offset;
1189 	compat_int_t	lo_encrypt_type;
1190 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1191 	compat_int_t	lo_flags;       /* ioctl r/o */
1192 	char		lo_name[LO_NAME_SIZE];
1193 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1194 	compat_ulong_t	lo_init[2];
1195 	char		reserved[4];
1196 };
1197 
1198 /*
1199  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1200  * - noinlined to reduce stack space usage in main part of driver
1201  */
1202 static noinline int
1203 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1204 			struct loop_info64 *info64)
1205 {
1206 	struct compat_loop_info info;
1207 
1208 	if (copy_from_user(&info, arg, sizeof(info)))
1209 		return -EFAULT;
1210 
1211 	memset(info64, 0, sizeof(*info64));
1212 	info64->lo_number = info.lo_number;
1213 	info64->lo_device = info.lo_device;
1214 	info64->lo_inode = info.lo_inode;
1215 	info64->lo_rdevice = info.lo_rdevice;
1216 	info64->lo_offset = info.lo_offset;
1217 	info64->lo_sizelimit = 0;
1218 	info64->lo_encrypt_type = info.lo_encrypt_type;
1219 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1220 	info64->lo_flags = info.lo_flags;
1221 	info64->lo_init[0] = info.lo_init[0];
1222 	info64->lo_init[1] = info.lo_init[1];
1223 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1224 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1225 	else
1226 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1227 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1228 	return 0;
1229 }
1230 
1231 /*
1232  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1233  * - noinlined to reduce stack space usage in main part of driver
1234  */
1235 static noinline int
1236 loop_info64_to_compat(const struct loop_info64 *info64,
1237 		      struct compat_loop_info __user *arg)
1238 {
1239 	struct compat_loop_info info;
1240 
1241 	memset(&info, 0, sizeof(info));
1242 	info.lo_number = info64->lo_number;
1243 	info.lo_device = info64->lo_device;
1244 	info.lo_inode = info64->lo_inode;
1245 	info.lo_rdevice = info64->lo_rdevice;
1246 	info.lo_offset = info64->lo_offset;
1247 	info.lo_encrypt_type = info64->lo_encrypt_type;
1248 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1249 	info.lo_flags = info64->lo_flags;
1250 	info.lo_init[0] = info64->lo_init[0];
1251 	info.lo_init[1] = info64->lo_init[1];
1252 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1253 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1254 	else
1255 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1256 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1257 
1258 	/* error in case values were truncated */
1259 	if (info.lo_device != info64->lo_device ||
1260 	    info.lo_rdevice != info64->lo_rdevice ||
1261 	    info.lo_inode != info64->lo_inode ||
1262 	    info.lo_offset != info64->lo_offset ||
1263 	    info.lo_init[0] != info64->lo_init[0] ||
1264 	    info.lo_init[1] != info64->lo_init[1])
1265 		return -EOVERFLOW;
1266 
1267 	if (copy_to_user(arg, &info, sizeof(info)))
1268 		return -EFAULT;
1269 	return 0;
1270 }
1271 
1272 static int
1273 loop_set_status_compat(struct loop_device *lo,
1274 		       const struct compat_loop_info __user *arg)
1275 {
1276 	struct loop_info64 info64;
1277 	int ret;
1278 
1279 	ret = loop_info64_from_compat(arg, &info64);
1280 	if (ret < 0)
1281 		return ret;
1282 	return loop_set_status(lo, &info64);
1283 }
1284 
1285 static int
1286 loop_get_status_compat(struct loop_device *lo,
1287 		       struct compat_loop_info __user *arg)
1288 {
1289 	struct loop_info64 info64;
1290 	int err = 0;
1291 
1292 	if (!arg)
1293 		err = -EINVAL;
1294 	if (!err)
1295 		err = loop_get_status(lo, &info64);
1296 	if (!err)
1297 		err = loop_info64_to_compat(&info64, arg);
1298 	return err;
1299 }
1300 
1301 static long lo_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1302 {
1303 	struct inode *inode = file->f_path.dentry->d_inode;
1304 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1305 	int err;
1306 
1307 	lock_kernel();
1308 	switch(cmd) {
1309 	case LOOP_SET_STATUS:
1310 		mutex_lock(&lo->lo_ctl_mutex);
1311 		err = loop_set_status_compat(
1312 			lo, (const struct compat_loop_info __user *) arg);
1313 		mutex_unlock(&lo->lo_ctl_mutex);
1314 		break;
1315 	case LOOP_GET_STATUS:
1316 		mutex_lock(&lo->lo_ctl_mutex);
1317 		err = loop_get_status_compat(
1318 			lo, (struct compat_loop_info __user *) arg);
1319 		mutex_unlock(&lo->lo_ctl_mutex);
1320 		break;
1321 	case LOOP_CLR_FD:
1322 	case LOOP_GET_STATUS64:
1323 	case LOOP_SET_STATUS64:
1324 		arg = (unsigned long) compat_ptr(arg);
1325 	case LOOP_SET_FD:
1326 	case LOOP_CHANGE_FD:
1327 		err = lo_ioctl(inode, file, cmd, arg);
1328 		break;
1329 	default:
1330 		err = -ENOIOCTLCMD;
1331 		break;
1332 	}
1333 	unlock_kernel();
1334 	return err;
1335 }
1336 #endif
1337 
1338 static int lo_open(struct inode *inode, struct file *file)
1339 {
1340 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1341 
1342 	mutex_lock(&lo->lo_ctl_mutex);
1343 	lo->lo_refcnt++;
1344 	mutex_unlock(&lo->lo_ctl_mutex);
1345 
1346 	return 0;
1347 }
1348 
1349 static int lo_release(struct inode *inode, struct file *file)
1350 {
1351 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1352 
1353 	mutex_lock(&lo->lo_ctl_mutex);
1354 	--lo->lo_refcnt;
1355 	mutex_unlock(&lo->lo_ctl_mutex);
1356 
1357 	return 0;
1358 }
1359 
1360 static struct block_device_operations lo_fops = {
1361 	.owner =	THIS_MODULE,
1362 	.open =		lo_open,
1363 	.release =	lo_release,
1364 	.ioctl =	lo_ioctl,
1365 #ifdef CONFIG_COMPAT
1366 	.compat_ioctl =	lo_compat_ioctl,
1367 #endif
1368 };
1369 
1370 /*
1371  * And now the modules code and kernel interface.
1372  */
1373 static int max_loop;
1374 module_param(max_loop, int, 0);
1375 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1376 MODULE_LICENSE("GPL");
1377 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1378 
1379 int loop_register_transfer(struct loop_func_table *funcs)
1380 {
1381 	unsigned int n = funcs->number;
1382 
1383 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1384 		return -EINVAL;
1385 	xfer_funcs[n] = funcs;
1386 	return 0;
1387 }
1388 
1389 int loop_unregister_transfer(int number)
1390 {
1391 	unsigned int n = number;
1392 	struct loop_device *lo;
1393 	struct loop_func_table *xfer;
1394 
1395 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1396 		return -EINVAL;
1397 
1398 	xfer_funcs[n] = NULL;
1399 
1400 	list_for_each_entry(lo, &loop_devices, lo_list) {
1401 		mutex_lock(&lo->lo_ctl_mutex);
1402 
1403 		if (lo->lo_encryption == xfer)
1404 			loop_release_xfer(lo);
1405 
1406 		mutex_unlock(&lo->lo_ctl_mutex);
1407 	}
1408 
1409 	return 0;
1410 }
1411 
1412 EXPORT_SYMBOL(loop_register_transfer);
1413 EXPORT_SYMBOL(loop_unregister_transfer);
1414 
1415 static struct loop_device *loop_alloc(int i)
1416 {
1417 	struct loop_device *lo;
1418 	struct gendisk *disk;
1419 
1420 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1421 	if (!lo)
1422 		goto out;
1423 
1424 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1425 	if (!lo->lo_queue)
1426 		goto out_free_dev;
1427 
1428 	disk = lo->lo_disk = alloc_disk(1);
1429 	if (!disk)
1430 		goto out_free_queue;
1431 
1432 	mutex_init(&lo->lo_ctl_mutex);
1433 	lo->lo_number		= i;
1434 	lo->lo_thread		= NULL;
1435 	init_waitqueue_head(&lo->lo_event);
1436 	spin_lock_init(&lo->lo_lock);
1437 	disk->major		= LOOP_MAJOR;
1438 	disk->first_minor	= i;
1439 	disk->fops		= &lo_fops;
1440 	disk->private_data	= lo;
1441 	disk->queue		= lo->lo_queue;
1442 	sprintf(disk->disk_name, "loop%d", i);
1443 	return lo;
1444 
1445 out_free_queue:
1446 	blk_cleanup_queue(lo->lo_queue);
1447 out_free_dev:
1448 	kfree(lo);
1449 out:
1450 	return NULL;
1451 }
1452 
1453 static void loop_free(struct loop_device *lo)
1454 {
1455 	blk_cleanup_queue(lo->lo_queue);
1456 	put_disk(lo->lo_disk);
1457 	list_del(&lo->lo_list);
1458 	kfree(lo);
1459 }
1460 
1461 static struct loop_device *loop_init_one(int i)
1462 {
1463 	struct loop_device *lo;
1464 
1465 	list_for_each_entry(lo, &loop_devices, lo_list) {
1466 		if (lo->lo_number == i)
1467 			return lo;
1468 	}
1469 
1470 	lo = loop_alloc(i);
1471 	if (lo) {
1472 		add_disk(lo->lo_disk);
1473 		list_add_tail(&lo->lo_list, &loop_devices);
1474 	}
1475 	return lo;
1476 }
1477 
1478 static void loop_del_one(struct loop_device *lo)
1479 {
1480 	del_gendisk(lo->lo_disk);
1481 	loop_free(lo);
1482 }
1483 
1484 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1485 {
1486 	struct loop_device *lo;
1487 	struct kobject *kobj;
1488 
1489 	mutex_lock(&loop_devices_mutex);
1490 	lo = loop_init_one(dev & MINORMASK);
1491 	kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1492 	mutex_unlock(&loop_devices_mutex);
1493 
1494 	*part = 0;
1495 	return kobj;
1496 }
1497 
1498 static int __init loop_init(void)
1499 {
1500 	int i, nr;
1501 	unsigned long range;
1502 	struct loop_device *lo, *next;
1503 
1504 	/*
1505 	 * loop module now has a feature to instantiate underlying device
1506 	 * structure on-demand, provided that there is an access dev node.
1507 	 * However, this will not work well with user space tool that doesn't
1508 	 * know about such "feature".  In order to not break any existing
1509 	 * tool, we do the following:
1510 	 *
1511 	 * (1) if max_loop is specified, create that many upfront, and this
1512 	 *     also becomes a hard limit.
1513 	 * (2) if max_loop is not specified, create 8 loop device on module
1514 	 *     load, user can further extend loop device by create dev node
1515 	 *     themselves and have kernel automatically instantiate actual
1516 	 *     device on-demand.
1517 	 */
1518 	if (max_loop > 1UL << MINORBITS)
1519 		return -EINVAL;
1520 
1521 	if (max_loop) {
1522 		nr = max_loop;
1523 		range = max_loop;
1524 	} else {
1525 		nr = 8;
1526 		range = 1UL << MINORBITS;
1527 	}
1528 
1529 	if (register_blkdev(LOOP_MAJOR, "loop"))
1530 		return -EIO;
1531 
1532 	for (i = 0; i < nr; i++) {
1533 		lo = loop_alloc(i);
1534 		if (!lo)
1535 			goto Enomem;
1536 		list_add_tail(&lo->lo_list, &loop_devices);
1537 	}
1538 
1539 	/* point of no return */
1540 
1541 	list_for_each_entry(lo, &loop_devices, lo_list)
1542 		add_disk(lo->lo_disk);
1543 
1544 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1545 				  THIS_MODULE, loop_probe, NULL, NULL);
1546 
1547 	printk(KERN_INFO "loop: module loaded\n");
1548 	return 0;
1549 
1550 Enomem:
1551 	printk(KERN_INFO "loop: out of memory\n");
1552 
1553 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1554 		loop_free(lo);
1555 
1556 	unregister_blkdev(LOOP_MAJOR, "loop");
1557 	return -ENOMEM;
1558 }
1559 
1560 static void __exit loop_exit(void)
1561 {
1562 	unsigned long range;
1563 	struct loop_device *lo, *next;
1564 
1565 	range = max_loop ? max_loop :  1UL << MINORBITS;
1566 
1567 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1568 		loop_del_one(lo);
1569 
1570 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1571 	unregister_blkdev(LOOP_MAJOR, "loop");
1572 }
1573 
1574 module_init(loop_init);
1575 module_exit(loop_exit);
1576 
1577 #ifndef MODULE
1578 static int __init max_loop_setup(char *str)
1579 {
1580 	max_loop = simple_strtol(str, NULL, 0);
1581 	return 1;
1582 }
1583 
1584 __setup("max_loop=", max_loop_setup);
1585 #endif
1586